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Abstract

Universal methods for optimization are designed
to achieve theoretically optimal convergence rates
without any prior knowledge of the problem’s
regularity parameters or the accurarcy of the gra-
dient oracle employed by the optimizer. In this re-
gard, existing state-of-the-art algorithms achieve
an O(1/T 2) value convergence rate in Lipschitz
smooth problems with a perfect gradient oracle,
and an O(1/

√
T ) convergence rate when the un-

derlying problem is non-smooth and/or the gradi-
ent oracle is stochastic. On the downside, these
methods do not take into account the problem’s
dimensionality, and this can have a catastrophic
impact on the achieved convergence rate, in both
theory and practice. Our paper aims to bridge
this gap by providing a scalable universal gradi-
ent method – dubbed UNDERGRAD – whose ora-
cle complexity is almost dimension-free in prob-
lems with a favorable geometry (like the simplex,
linearly constrained semidefinite programs and
combinatorial bandits), while retaining the order-
optimal dependence on T described above. These
“best-of-both-worlds” results are achieved via a
primal-dual update scheme inspired by the dual
exploration method for variational inequalities.

1. Introduction
The analysis of first-order methods for convex minimiza-
tion typically revolves around the following basic regularity
conditions: a) Lipschitz continuity of a problem’s objective
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function and / or b) Lipschitz continuity of the objective’s
gradients. Depending on these conditions and the quality
of the gradient oracle available to the optimizer, the opti-
mal convergence rates that can be obtained by an iterative
first-order algorithm after T oracle queries are:

1. O
(
∥X∥

√
(G2 + σ2)/T

)
if the problem’s objective is

G-Lipschitz continuous and the oracle’s variance is σ.

2. O
(
L∥X∥2/T 2 + σ∥X∥/

√
T
)

if the objective is L-
Lipschitz smooth.

[In both cases, ∥X∥ := supx,x′∈X ∥x′ − x∥ denotes the
diameter of the problem’s domain X ⊆ Rd; for an in-depth
treatment, see [11, 38] and references therein.]

This stark separation of black-box guarantees has led to
an intense search for universal methods that are capable
of interpolating smoothly between these rates without any
prior knowledge of the problem’s regularity properties or the
oracle’s noise profile. As far as we are aware, the first algo-
rithm with order-optimal rate guarantees for unconstrained
problems and no knowledge of the problem’s smoothness pa-
rameters was the ACCELEGRAD proposal of Levy et al. [28].
Subsequently, in the context of constrained convex prob-
lems (the focus of our work), Kavis et al. [24] combined the
extra-gradient / mirror-prox algorithmic template of Korpele-
vich [25] and Nemirovski [36] with an “iterate averaging”
scheme introduced by Cutkosky [16] to change the query
structure of the base algorithm and make it more amenable
to acceleration. In this way, Kavis et al. [24] obtained a
universal extra-gradient algorithm – dubbed UNIXGRAD
– which interpolates between the optimal rates mentioned
above, without requiring any tuning.

Our contributions. The starting point of our paper is the
observation that, even though the rates in question are opti-
mal in T , they may be highly supoptimal in d, the problem’s
dimensionality. For example, if the noise in the oracle has
unit variance, σ would scale as O(

√
d); this represents a

hidden dependence on d which could have a catastrophic im-
pact on the method’s actual convergence rate. Likewise, in
problems with a favorable geometry (like the L1-ball, trace-
constrained semidefinite programs, combinatorial bandits,
etc.), methods based on the mirror descent [37] and mirror-
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prox [36] templates can achieve rates with a logarithmic
(instead of polynomial) dependence on d.

Importantly, the UNIXGRAD algorithm of Kavis et al. [24]
is itself based on the mirror-prox blueprint, so it would
seem ideally suited to achieve convergence rates that are
simultaneously optimal in T and d. However, the method’s
guarantees depend crucially on the Bregman diameter of
the problem’s domain, a quantity which becomes infinite
when the method is used with a regularization setup that can
lead to almost dimension-free guarantees. This would seem
to suggest that universality comes at the cost of scalability,
leading to the following open question:

Is it possible to achieve almost dimension-free convergence
rates while retaining an order-optimal dependence on T?

In this paper, we develop a novel adaptive algorithm, which
we call universal dual extrapolation with reweighted gradi-
ents (UNDERGRAD), and which provides a positive answer
to this question. Specifically, the value convergence rate of
UNDERGRAD scales in terms of G, σ, L and T as:

1. O
(√

Rh(G2 + σ2)/T
)

in non-smooth problems.

2. O
(
RhL/T

2 + σ
√
Rh/T

)
in smooth problems.

In the above, the method’s “range parameter” Rh scales as
O(∥X∥2) in the worst case and as O(log d) in problems
with a favorable geometry – that is, in problems where it is
possible to attain almost dimension-free convergence rates
[11, 38]. In this regard, UNDERGRAD seems to be the first
method in the literature that concurrently achieves order-
optimal rates in both T and d, without any prior knowledge
on the problem’s level of smoothness.

To achieve this result, the UNDERGRAD algorithm com-
bines the following basic ingredients:

1. A modified version of the dual extrapolation method of
Nesterov [39] for solving variational inequalities.

2. A gradient “reweighting” scheme that allows gradients
to enter the algorithm with increasing weights.

3. An iterative averaging scheme in the spirit of Cutkosky
[16] which allows us to obtain an accelerated rate of
convergence by means of an online-to-batch conversion.

The glue that holds these elements together is an adap-
tive learning rate inspired by Rakhlin & Sridharan [41, 42]
which automatically rescales aggregated gradients by a) a
small, constant amount when the method approaches a so-
lution where gradient differences vanish (as in the smooth,
deterministic case); and b) a factor of O(

√
T ) otherwise

(thus providing the desired interpolation between smooth
and non-smooth problems). In so doing, the proposed pol-
icy achieves the correct step-size scaling and achieves the
desired optimal rates.

Related work. The term “universality” was coined by
Nesterov [40] whose universal primal gradient descent
(UPGD) algorithm interpolates between the O(1/T 2) and
O(1/

√
T ) rates for smooth and non-smooth problems re-

spectively (assuming access to noiseless gradients in both
cases). On the downside, UPGD relies on an Armijo-like
line search to interpolate between smooth and non-smooth
objectives, so it is not applicable to stochastic environments.

A partial work-around to this issue was achieved by the
accelerated stochastic approximation (AC-SA) algorithm of
Lan [26] which uses a mirror descent template and guaran-
tees order-optimal rates for both noisy and noiseless ora-
cles. However, to attain these rates, the AC-SA algorithm
requires a precise estimate of the smoothness modulus of
the problem’s objective, so it is not universal in this respect.
Subsequent works on the topic have focused on attaining uni-
versal guarantees for composite problems [21], non-convex
objectives [29, 46], preconditioned methods [17, 21], non-
Lipschitz settings [2–4], specific applications [45], or varia-
tional inequalities / min-max problems [4, 5, 7, 20].

Of the generalist works above, some employ a Bregman reg-
ularization setup [2, 7], but the guarantees obtained therein
either fall short of an accelerated O(1/T 2) convergence
rate for Lipschitz smooth problems, or they depend on the
problem’s Bregman diameter – so they cannot be associ-
ated with a Bregman setup leading to almost dimension-free
convergence rate guarantees. To the best of our knowledge,
UNDERGRAD is the first method that manages to combine
the “best of both worlds” in terms of universality with re-
spect to T and scalability with respect to d.

2. Preliminaries
2.1. Notation and basic definitions

Let V be a d-dimensional space with norm ∥·∥. In what
follows, we will write Y ≡ V∗ for the dual of V , ⟨y, x⟩
for the pairing between y ∈ Y and x ∈ V , and ∥y∥∗ ≡
sup{⟨y, x⟩ : ∥x∥ ≤ 1} for the dual norm on Y . Given an
extended-real-valued convex function f : V → R∪{∞}, we
will write dom f ≡ {x ∈ V : f(x) < ∞} for its effective
domain and ∂f(x) ≡ {y ∈ Y : f(x′)−f(x)−⟨y, x′−x⟩ ≥
0 for all x′ ∈ V} for the subdifferential of f at x ∈ dom f .
Any element g ∈ ∂f(x) will be called a subgradient of f
at x, and we will write dom ∂f ≡ {x ∈ dom f : ∂f ̸= ∅}
for the domain of subdifferentiability of f .

2.2. Problem setup and blanket assumptions

The main focus of our paper is the solution of convex mini-
mization problems of the form

minimize f(x)

subject to x ∈ X
(Opt)
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where X is a closed convex subset of V and f : V → R ∪
{∞} is a convex function with dom f = dom ∂f = X .
To avoid trivialities, we will assume throughout that the
solution set X ∗ := argmin f of (Opt) is non-empty, and
we will write x∗ for a generic minimizer of f .

Other than this blanket assumption, our main reqularity
requirements for f will be as follows:

1. Lipschitz continuity:

|f(x′)− f(x)| ≤ G∥x′ − x∥ (LC)

for some G ≥ 0 and for all x, x′ ∈ X .

2. Lipschitz smoothness:

f(x′) ≤ f(x) + ⟨∇f(x), x′ − x⟩+ L

2
∥x′ − x∥2 (LS)

for some L ≥ 0 and for all g ∈ ∂f(x), x, x′ ∈ X .

Since dom ∂f = X , the above requirements are respec-
tively equivalent to assuming that f admits a selection of
subgradients ∇f(x) ∈ ∂f(x) with the properties below:

1. Bounded (sub)gradient selection:

∥∇f(x)∥∗ ≤ G (BG)

for some G ≥ 0 and for all x ∈ X .

2. Lipschitz (sub)gradient selection:

∥∇f(x′)−∇f(x)∥∗ ≤ L∥x′ − x∥ (LG)

for some L ≥ 0 and for all x, x′ ∈ X .

In the rest of our paper, we will assume that f satisfies at
least one of (BG) or (LG).
Remark 1. For posterity, we note here that the requirement
(LG) does not imply that ∂f(x) is a singleton.1 In any case,
the directional derivative f ′(x; z) = d/dt|t=0f(x+ tz) of
f at x ∈ X along z ∈ V exists and is equal to ⟨∇f(x), z⟩
for all vectors of the form z = x′ − x, x′ ∈ X . We will use
this fact freely in the sequel. ¶

2.3. The oracle model

To solve (Opt), we will consider iterative methods and algo-
rithms with access to a stochastic first-order oracle (SFO),
i.e., a black-box device that returns a (possibly random)
estimate of a subgradient of f at the point at which it was
queried. Formally, following Nesterov [38], an SFO for f
is a measurable function G : X × Ω→ Y such that

E[G(x;ω)] = ∇f(x) for all x ∈ X (SFO)

1Consider for example the case of f(x) = x for x ∈ [0, 1] and
f(x) = ∞ otherwise: f clearly satisfies (BG)/(LS), even though its
∂f(0) and ∂f(1) are infinite sets.

where (Ω,F ,P) is a complete probability space and∇f(x)
is a selection of subgradients of f as per (BG)/(LG). The
oracle’s statistical precision will then be measured by the
associated noise level σ := ess supω,x∥G(x;ω)−∇f(x)∥∗
(assumed finite). In particular, if σ = 0, G will be called
perfect (or deterministic); otherwise, G will be called noisy.

In practice, the oracle is called repeatedly at a sequence
of query points xt with a different random seed ωt drawn
according to P at each time.2 In this way, at the t-th query
to (SFO), the oracle G returns the gradient signal

gt = G(xt;ωt) = ∇f(xt) + Ut (1)

where Ut denotes the “gradient noise” of the oracle (obvi-
ously, Ut ≡ 0 if the oracle is perfect). For measurability
purposes, we will write Ft for the history (adapted filtra-
tion) of xt, so xt is Ft-measurable (by definition) but ωt, gt
and Ut are not. In particular, conditioning on Ft, we have
E[gt | Ft] = ∇f(xt) and E[Ut | Ft] = 0, justifying in this
way the terminology “gradient noise” for Ut.
Remark 2. The oracle model detailed above is not the only
one possible, but it is very widely used in the analysis of
parameter-agnostic and adaptive methods, cf. [2, 24, 28, 46]
and references therein. In view of this, we will not examine
either finer or coarser assumptions for (SFO). ¶

We close this section by noting that the best convergence
rates that can be achieved by an iterative algorithm that
outputs a candidate solution x̄T ∈ X after T queries to
(SFO) are:3

1. f(x̄T ) −min f = O(1/
√
T ) if f satisfies (BG) and G

is deterministic.

2. f(x̄T )−min f = O(1/T 2) if f satisfies (LG) and G is
deterministic.

3. E[f(x̄T )−min f ] = O(1/
√
T ) if G is stochastic.

In general, without finer assumptions on f or G, the depen-
dence of these rates on T cannot be improved [11, 38]; we
will revisit this issue several times in the sequel.

3. Regularization, universality, and the curse
of dimensionality

To set the stage for the analysis to come, we discuss be-
low the properties of two algorithmic frameworks – one
non-adaptive, the other adaptive – based on the mirror-prox
template [36]. Our aim in doing this will be to set a baseline
for the sequel as well as to explore the impact of the prob-
lem’s dimensionality on the attained rates of convergence.

2In the sequel, t may take both integer and half-integer values.
3In general, the query and output points – xT and x̄T respectively –

need not coincide, hence the different notation. The only assumption for the
rates provided below is that the output point x̄T is an affine combination
of x1, g1, . . . , xT , gT [11, 38].
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3.1. Motivating examples

As a first step, we present three archetypal problems to
motivate and illustrate the general setup that follows.

Example 1 (Resource allocation). Consider a set of com-
puting resources (GPUs in a cluster, servers in a computing
grid, . . . ) indexed by s ∈ S = {1, . . . , d}. Each resource
is capable of serving a stream of computing demands that
arrive at a rate of ρ units per time: if the optimizer assigns
a load of xs ≥ 0 to the s-th resource, the marginal cost
incurred is cs(xs) per unit served, where cs : [0, ρ] → R+

is the cost function of the s-th resource (assumed convex,
differentiable, and increasing in xs). Taking ρ = 1 for
simplicity, the goal of the optimizer is to minimize the ag-
gregate cost f(x) =

∑d
s=1 xscs(xs), leading to a convex

minimization problem over the unit d-dimensional simplex
X = ∆(S) = {x ∈ Rd

+ :
∑

s xs = 1}. ¶

Example 2 (Input covariance matrix optimization). Con-
sider a Gaussian vector channel in the spirit of [44, 47]: the
encoder controls the covariance matrix X = E[xx†] of the
Gaussian input signal x ∈ CM and seeks to maximize the
transfer rate of the output signal y = Hx+z, where z ∈ CN

is the ambient noise in the channel and H ∈ CN×M is the
channel’s transfer matrix. By the Shannon–Telatar formula
[44], this boils down to maximizing the capacity function

R(X) = E
[
log det

(
I+HXH†)] (2)

subject to the constraint tr(X) ≤ P , where P denotes the
encoder’s maximum input power and the expectation in (2)
is taken over the statistics of the (possibly deterministic)
matrix H. Since R is concave in X [10, 47], we obtain a
minimization problem of the form (Opt) over the spectrahe-
dron D = {X ≽ 0 : tr(X) ≤ P}. Since X is Hermitian, D
can be seen as a convex body of Rd where d =M2; in the
optimization literature, this is sometimes referred to as the
“spectrahedron setup” [22]. ¶

Example 3 (Combinatorial bandits). In bandit linear opti-
mization problems, the optimizer is given a finite set of n
possible actions A ⊆ {0, 1}d, i.e., each action α ∈ A is
a d-dimensional binary vector indicating whether the i-th
component is “on” or “off”. The optimizer then chooses
an action α ∈ A based on a mixed strategy p ∈ ∆(A) and
incurs the mean loss

ℓ(p;ω) = E
[∑

α∈A
pα⟨α, ω⟩

]
(3)

where ω is a random vector with values in [0, 1]d (but oth-
erwise unknown distribution). In many cases of interest –
such as slate recommendation and shortest-path problems
– the cardinality of A is exponential in d, so it is compu-
tationally prohibitive to state the resulting minimization
problem in terms of p. Instead, writing xi =

∑
α∈A pααi

for the probability of the i-th component being “on” under p,

the optimizer’s objective can be rewritten more compactly
as f(x) = E[⟨x, ω⟩] with x constrained to lie on the d-
dimensional convex hull X = conv(A) of A in Rd. In
the literature on multi-armed bandits, this setup is known
as a combinatorial bandit; for an in-depth treatment, see
[13, 14, 19, 27] and the many references cited therein. ¶

Examples 1–3 all suffer from the “curse of dimensionality”:
for instance, the dimensionality of a vector Gaussian chan-
nel with M = 256 input entries is d ≈ 6.5 × 104, while
a combinatorial bandit for recommendation systems may
have upwards of several million arms. Nonetheless, these
examples also share a number of geometric properties that
make it possible to design scalable optimization algorithms
with (almost) dimension-free convergence rate guarantees.
We elaborate on this in the next section.

3.2. The mirror-prox template

We begin by considering the well-known mirror-prox (MP)
method of Nemirovski [36]. Following [22, 35], this is
defined via the recursion

Xt+1/2 = PXt
(−γtgt)

Xt+1 = PXt
(−γtgt+1/2)

(MP)

where

1. t = 1, 2, . . . denotes the method’s iteration counter (for
the origins of the half-integer notation, see Facchinei &
Pang [18] and references therein).

2. γt > 0 is the algorithm’s step-size sequence.

3. gt and gt+1/2 are stochastic gradients of f obtained by
querying the oracle G at Xt and Xt+1/2 respectively.

4. PXt(·) is a generalized projection operator known as the
method’s “prox-mapping” (more on this later).

The most elementary instance of (MP) is the extra-gradient
(EG) algorithm of Korpelevich [25], in which case the
method’s prox-mapping is the Euclidean projector

Px(y) = ΠX (x+ y) := argminx′∈X ∥x+ y − x′∥2 (4)

for all x ∈ X , y ∈ Y . More generally, the prox-mapping
in (MP) is defined in terms of a Bregman regularizer as
follows:

Definition 1. A Bregman regularizer on X is a convex
function h : V → R ∪ {∞} such that

1. domh = X and h is continuous on X .

2. The subdifferential of h admits a continuous selection,
i.e., there exists a continuous mapping ∇h : dom ∂h→
Y with∇h(x) ∈ ∂h(x) for all x ∈ dom ∂h.

3. h is strongly convex on X , i.e.,

h(x′) ≥ h(x)+ ⟨∇h(x), x′−x⟩+ 1
2Kh∥x′−x∥2 (5)
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Domain (X ) Breg. Diameter (Bh) Range (Rh) Shape (χ) Rate (L =∞) Rate (L <∞, σ = 0)

EUCLIDEAN any below O(1) O(1)
√
d O

(√
d/T

)
O(d/T )

ENTROPIC simplex ∞ log d 1 O
(√

log d/T
)

O(log d/T )
VON NEUMANN spectrahedron ∞ log d 1 O

(√
log d/T

)
O(log d/T )

COMBAND conv(A) ∞ O(log d) 1 O
(√

log d/T
)

O(log d/T )

Table 1: The convergence rate of (MP) in terms of d and T for different regularizers. In the combinatorial setup of Example 3, the
unnormalized entropy has Rh = m(1 + log(d/m)), where m = maxα∈A∥α∥1 is the maximum number of elements of {1, . . . , d} that
can be simultaneously “on” [27, Chap. 30]. In many applications, m does not scale with d, so it has been absorbed in the O(·) notation;
other than that, O(·) contains only universal constants.

for some Kh > 0 and all x ∈ dom ∂h, x′ ∈ X .

We also define the Bregman divergence of h as

D(x′, x) = h(x′)− h(x)− ⟨∇h(x), x′ − x⟩ (6)

and the induced prox-mapping as

Px(y) = argminx′∈X {⟨y, x− x′⟩+D(x′, x)} (7)

for all x ∈ Xh, x′ ∈ X and all y ∈ Y .

Remark. The set Xh := dom ∂h is often referred to as the
prox-domain of h; by standard results in convex analysis,
we have riX ⊆ Xh ⊆ X [43, Chap. 26].

In terms of output, the candidate solution returned by (MP)
after T iterations is the so-called “ergodic average”

X̄T =

∑T
t=1 γtXt+1/2∑T

t=1 γt
. (8)

Then, assuming the method’s step-size γt is chosen appro-
priately (more on this below), X̄T enjoys the following
guarantees [22, 42]:

a) If f satisfies (BG), then

E[f(X̄T )−min f ] = O

√G2 + σ2

Kh

D1

T

 (9a)

b) If f satisfies (LG), then

E[f(X̄T )−min f ] = O

(
LD1

KhT
+ σ

√
D1

KhT

)
(9b)

In the above, D1 = D(x∗, X1) is the minimum Bregman
divergence between a solution x∗ of (Opt) and the initial
state X1 of (MP). In particular, if (MP) is initialized at the
prox-center xc = argminh of X , we have

D1 ≤ h(x∗)−minh ≤ maxh−minh =: Rh. (10)

We will refer to Rh = maxh−minh as the range of h.

To quantify the interplay betwen the problem’s dimensional-
ity and the rate guarantees (9) for (MP), it will be convenient
to introduce the normalized regularity parameters

Gh =
G√
Kh

Lh =
L

Kh
and σh =

σ√
Kh

(11)

and the associated shape factor

χ =


√
G2

h + σ2
h if L =∞,√

Lh if L <∞ and σ = 0,
σh if L <∞ and σ > 0.

(12)

Since at least one of the termsG/
√
Kh, L/Kh and σ/

√
Kh

appears in (9), it follows that the leading term in T scales
as O(χ

√
D1/T ) in non-smooth / stochastic environments,

and as O(χ2D1/T ) in smooth, deterministic problems.

The importance of the normalized parameters Gh, Lh, σh
and the shape factor χ lies in the fact that they do not depend
on the ambient norm ∥·∥ (a choice which, to a certain extent,
is arbitrary). Indeed, if ∥·∥ and ∥·∥′ are two norms on
V that are related as ∥·∥ ≤ µ∥·∥′ for some µ > 0, it is
straightforward to verify that h is (µ2Kh)-strongly convex
relative to ∥·∥′. Likewise, in terms of dual norms we have
∥·∥∗ ≥ (1/µ)∥·∥′∗, so the constants G, σ and L would
respectively become µG, µσ and µ2Lwhen computed under
∥·∥′. In general, these inequalities are all tight, so a change
in norm does not affect the shape factor χ; accordingly, any
dependence of χ on d will be propagated verbatim to the
guarantees (9).

In Table 1, we provide the values of Rh and χ for the fol-
lowing cases:

1. The Euclidean regularizer h(x) = ∥x∥22/2 that gives
rise to the extra-gradient algorithm (4).

2. The entropic regularizer h(x) =
∑d

i=1 xi log xi for the
simplex setup of Example 1.

3. The von Neumann regularizer h(X) = tr(X logX) +
(1− trX) log(1− trX) for the spectrahedron setup of
Example 2.

4. The unnormalized entropy h(x) =
∑d

i=1(xi log xi−xi)
for the combinatorial setup of Example 3.
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These derivations are standard, so we omit the details. For
posterity, we only note that the logarithmic dependence on
d is asymptotically optimal, cf. [12, 13] and references
therein.

3.3. The UNIXGRAD algorithm

As can be seen from Table 1, the mirror-prox algorithm
achieves an almost dimension-free rate of convergence when
used with a suitable regularizer. However, this comes with
two important caveats: First, the algorithm’s rate in the
smooth case falls short of the optimalO(1/T 2) dependence
in T , so (MP) is suboptimal in this regard. Second, to
achieve the rates presented in Eq. (9), the algorithm’s step-
size γt must be tuned with prior knowledge of the problem’s
parameters: in particular, under (BG), the algorithm must
be run with step-size γt ∝ 1/

√
(G2 + σ2)T while, under

(LG), the algorithm requires γt = Kh/L if σ = 0 and
γt ∝ 1/(σ

√
T ) otherwise. This creates an undesirable state

of affairs because the parameters G, L and σ are usually
not known in advance, and (MP) can – and does – fail to
converge if run with an untuned step-size.

In the rest of this section, we briefly discuss the UNIX-
GRAD algorithm of Kavis et al. [24] which expands on the
mirror-prox template in the following two crucial ways: a) it
introduces an iterate-averaging mechanism in the spirit of
Cutkosky [16] to enable acceleration; and b) it employs an
adaptive step-size policy that does not require any tuning
by the optimizer. In so doing, UNIXGRAD interpolates
smoothly between the optimal convergence rates described
in Section 2 without requiring any prior knowledge of G, L
or σ.

Concretely, UNIXGRAD proceeds as (MP), but instead of
querying G at Xt and Xt+1/2, it introduces the weighted
query states

X̄t =
αtXt +

∑t−1
s=1 αsXs+1/2∑t
s=1 αs

X̄t+1/2 =
αtXt+1/2 +

∑t−1
s=1 αsXs+1/2∑t

s=1 αs

(13)

where αt is a “gradient weighting” parameter. Then, build-
ing on an idea by Rakhlin & Sridharan [41, 42], the oracle
queries gt ← G(X̄t;ωt) and gt+1/2 ← G(X̄t+1/2;ωt+1/2)
are used to update the method’s step-size as

γt =
Bhαt√

1 +
∑t−1

s=1 α
2
s∥gs+1/2 − gs∥2∗

(14)

where
Bh = supx∈X ,x′∈Xh

√
2D(x, x′) (15)

is the so-called Bregman diameter of X .

With all this in hand, Kavis et al. [24] provide the following
bounds if UNIXGRAD is run with αt = t:

a) If f satisfies (BG), then

E[f(X̄T+1/2)−min f ] = O
(
Bh

√
G2 + σ2

√
KhT

)
(16a)

b) If f satisfies (LG), then

E[f(X̄T+1/2)−min f ] = O
(
B2

hL

KhT 2
+

Bhσ√
KhT

)
(16b)

As we mentioned in Section 2, the bounds (16) cannot be
improved in terms of T without further assumptions, so
UNIXGRAD is universally optimal in this regard.

That being said, these guarantees also uncover an impor-
tant limitation of UNIXGRAD, namely that the bounds (16)
become void when the method is used in conjunction with
one of the non-Euclidean frameworks of Examples 1–3. For
example, the Bregman diameter of the simplex under the en-
tropic regularizer is Bh = supx,x′

∑
i xi log(xi/x

′
i) =∞,

so the multiplicative constants in (16) become infinite (and
the bounds themselves become meaningless). However,
since the use of these regularizers is crucial to obtain the
scalable, dimension-free convergence rates reported in Ta-
ble 1, 4 we are led to the open question we stated before:

Is it possible to achieve almost dimension-free convergence
rates while retaining an order-optimal dependence on T?

We address this question in the next section.

4. Universal dual extrapolation
The point of departure of our analysis is the observation
that gradient queries enter (MP) with decreasing weights.
Specifically, if UNIXGRAD is run with αt = t (a choice
which is necessary to have a shot at acceleration), the de-
nominator of (14) may grow as fast as Θ(t3/2) in the non-
smooth/stochastic case, leading to an asymptotic O(1/

√
t)

worst-case behavior for γt. In fact, even under the ansatz
that the algorithm’s query points converge to a minimizer
of f at an accelerated rate, the denominator of (14) may
still grow as Θ(t), indicating that γt will, at best, stabilize
to a positive value as t→∞. This feature of the step-size
rule (14) is somewhat counterintuitive because conventional
wisdom would suggest that a) recent queries are more use-
ful than older, potentially obsolete ones; and b) gradients
should be “inflated” as the method’s query points approach
a zero-gradient solution in order to maintain a fast rate of
convergence.

4In particular, since the shape factor of the Euclidean regularizer is
χ =

√
d, employing UNIXGRAD with ordinary Euclidean projections

would not lead to scalable guarantees.
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The problem with a vanishing step-size becomes especially
pronounced if the method is used with a non-Euclidean
regularizer (which is what one would wish to do in order
to obtain scalable convergence guarantees). To see this,
consider the iterates of the mirror-prox template generated
by the regularizer h(x) = x log x on X = [0,∞).5 In
this case, the induced prox-mapping is Px(y) = x exp(y),
leading to the recursion

x+ = Px(−γv) = x exp(−γv). (17)

Therefore, if the problem’s objective function attains its
minimum at 0, the actual steps of the method scale as x+ −
x = O(x) for small x, so it is imperative to maintain a large
step-size to avoid stalling the algorithm.

This scaling issue is at the heart of the dual extrapolation
(DE) method of Nesterov [39]. Originally designed to solve
variational inequalities and related problems, the method
proceeds by (i) using a prox-step to generate the method’s
leading state and get a “look-ahead” gradient query; (ii ) ag-
gregating gradient information with a constant weight; and,
finally, (iii ) using a “primal-dual” mirror map to update the
method’s base state. Formally, the algorithm follows the
iterative update rule

Xt+1/2 = PXt(−γtgt)
Yt+1 = Yt − gt+1/2

Xt+1 = Q(γt+1Yt+1)

(DE)

where the so-called “mirror map” Q : Y → X is defined as

Q(y) = argmax
x∈X

{⟨y, x⟩ − h(x)}. (18)

Unfortunately, the template (DE) is not sufficient for our pur-
poses, for two main reasons: First, the method still couples
a prox-step with a variable (decreasing) step-size update;
this is not problematic for the application of the method to
VIs (where the achievable rates are different), but it is not
otherwise favorable for acceleration.

In addition to the above, the method’s gradient pre-
multiplier is the same as its post-multiplier (γt in both cases),
and it is not possible to differentiate these parameters while
maintaining optimal rates [39]. However, this differentiation
is essential for acceleration, especially when γt cannot be
tuned with prior knowledge of the problem’s parameters.

Our approach to overcome this issue consists of: a) elimi-
nating the prox-step altogether in favor of a mirror step; and
b) separating the weights used for introducing new gradients
to the algorithm versus those used to generate the base and
leading states. To formalize this, we introduce below the

5Strictly speaking this regularizer is not strongly convex over [0,∞)
but this detail is not relevant for the question at hand.

Algorithm 1: Universal dual extrapolation with
reweighted gradients (UNDERGRAD)

1 Parameters a←
√
Kh; b←

√
Kh(Rh +Kh∥X∥2)

2 Initialize Y1 ← 0; Z1 ← 0; S1 ← a2

3 for t = 1, 2, . . . , T do
4 ηt ← b/

√
St // set learning rate

5 Xt ← Q(ηtYt) // mirror step
6 X̄t ← (αtXt + Zt)

/∑t
s=1 αs // mixing

7 gt ← G(X̄t;ωt) // oracle query
8 Yt+1/2 ← Yt − αtgt // dual step
9 Xt+1/2 ← Q

(
ηtYt+1/2

)
// mirror step

10 X̄t+1/2 ←
(
αtXt+1/2 + Zt

)/∑t
s=1 αs // mixing

11 gt+1/2 ← G(X̄t+1/2;ωt+1/2) // oracle query
12 Yt+1 ← Yt − αtgt+1/2 // dual step
13 St+1 ← St + α2

t∥gt+1/2 − gt∥2∗ // precondition
14 Zt+1 ← Zt + αtXt+1/2 // update mixing state

15 return x̄T ← X̄T+1/2

“universal” dual extrapolation template:

Yt+1/2 = Yt − αtgt Xt+1/2 = Q(ηtYt+1/2)

Yt+1 = Yt − αtgt+1/2 Xt+1 = Q(ηt+1Yt+1)
(UDE)

In the above, the gradient signals gt and gt+1/2 are con-
sidered generic and the query points are not specified. To
get a concrete algorithm, we will use the weighting scheme
of Kavis et al. [24] and query the oracle at the averaged
states X̄t and X̄t+1/2 introduced previously in (13). Finally,
regarding the algorithm’s gradient weighting and averag-
ing parameters (αt and ηt respectively), we will use an
increasing weight for the method’s step-size αt = t and the
adaptive rule

ηt =
b√

a2 +
∑t−1

s=1 α
2
s∥gs+1/2 − gs∥2∗

(19)

for the method’s learning rate (the parameters a and b are
discussed below, and we are using the standard convention
that empty sums are taken equal to zero).

The resulting method – which we call universal dual ex-
trapolation with reweighted gradients (UNDERGRAD) – is
encoded in pseudocode form in Algorithm 1 and represented
schematically in Fig. 1. Its main guarantees are as follows:
Theorem 1. Suppose that UNDERGRAD (Algorithm 1) is
run for T iterations with ηt given by (19), αt = t for all
t = 1, 2, . . . , and a =

√
Kh, b = Ch

√
Kh with Ch =√

Rh +Kh∥X∥2. Then the algorithm’s output state x̄T ≡
X̄T+1/2 simultaneously enjoys the following guarantees:

a) If f satisfies (BG), then

E[f(x̄T )] ≤ min f + 2Ch

√
Kh + 8(G2 + σ2)

KhT
(20a)
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Figure 1: Schematic representation of the UNDERGRAD algo-
rithm (Algorithm 1). The light blue area represents the problem’s
domain (X ), whereas the grey area represents the dual space (Y).

b) If f satisfies (LG), then

E[f(x̄T )] ≤ min f +
32
√
2C2

hL

KhT 2
+

8
√
2Chσ√
KhT

(20b)

Theorem 1 is our main result so, before discussing its proof
(which we carry out in detail in the appendix), some remarks
are in order.

The first point of note concerns the dependence of the any-
time bounds (20) on the problem’s dimensionality. To that
end, let Cfast = C2

h and Cslow = Ch, so UNDERGRAD’s
rate of convergence scales as O(Cfastχ

2/T 2) in smooth, de-
terministic problems, and asO(Cslowχ/

√
T ) in non-smooth

and/or stochastic environments. Thus, to compare the al-
gorithm’s rate of convergence to that of mirror-prox and
UNIXGRAD (and up to universal constants), we have to
compare Ch to Rh and Bh respectively.

To that end, we calculate below the values of Cfast and Cslow
in the three archetypal examples of Section 3:

1. In the simplex setup of Example 1, we have Rh = log d,
∥X∥ = 1 and Kh = 1, so Cslow = O(

√
log d) and

Cfast = O(log d).
2. In the spectrahedron setup of Example 2, we have again
Rh = log d, ∥X∥ = 1 and Kh = 1, so Cslow =
O(
√
log d) and Cfast = O(log d). [For a detailed dis-

cussion, see [9, 23, 34] and references therein.]

3. Finally, in the combinatorial setup of Example 3, we
have Rh = m(1 + log(d/m)), ∥X∥ = m and Kh = 1
[27]. Thus, if m = O(1) in d, we get again Cslow =
O(
√
log d) and Cfast = O(log d).

The above shows that UNDERGRAD achieves the desired

almost dimension-free rates of the non-adaptive mirror-prox
algorithm, as well as the universal order-optimal guaran-
tees of UNIXGRAD. The only discrepancy with the rates
presented in Table 1 is the additive constant Kh that ap-
pears in the numerator of (20a): this constant is an artifact
of the analysis and it only becomes relevant when G → 0
and σ → 0. Since the scaling of the algorithm’s conver-
gence rate concerns the large G regime, this difference is
not relevant for our purposes.

An additional difference between UNDERGRAD and UNIX-
GRAD is that the latter involves the prox-mapping (7),
whereas the former involves the mirror map (18). To com-
pare the two in terms of their per-iteration complexity, note
that if we apply the prox-mapping (7) to the prox-center
xc ← argminh of X , we get

Pxc
(y) = argminx∈X {⟨y, xc − x⟩+D(x, xc)}

= argminx∈X {h(x)− ⟨∇h(xc) + y, x⟩}
= Q(∇h(xc) + y) (21)

so, in particular, Q(y) = Pxc
(y) whenever xc ∈ riX

(which is the case for most regularizers used in practice,
including the Legendre regularizers used in Examples 1–3
above). This shows that the calculation of the mirror map
Q(y) = Pxc(y −∇h(xc)) is at least as simple as the calcu-
lation of the prox-mapping Px(y) for a general base point
x ∈ X – and, typically, calculating the mirror map is strictly
lighter because there is no need to vary the base point over
different iterations of the algorithm. In this regard, the per-
iteration overhead of (UDE) is actually lighter compared to
(MP) or (DE).

Finally, we should note that all our results above implic-
itly assume that the problem’s domain is bounded (oth-
erwise the range parameter Rh of the problem becomes
infinite). Thus, in addition to these convergence proper-
ties of UNDERGRAD, we also provide below an asymptotic
guarantee for problems with an unbounded domain:

Theorem 2. Suppose that UNDERGRAD is run with perfect
oracle feedback with ηt given by (19) and αt = t. If f
satisfies (LG), the algorithm’s output state x̄T = X̄T+1/2

enjoys the rate f(x̄T )−min f = O(1/T 2).

This result provides an important extension of Theorem 1
to problems with unbounded domains. It remains an open
question for the future to derive the precise constants in the
convergence rate presented in Theorem 2.

Main ideas of the proof. The detailed proof of Theorem 1
is fairly long so we defer it to the appendix and only present
here the main ideas.

The main ingredient of our proof is a specific template
inequality used to derive an “appropriate” upper bound
of the term R̃T (x) :=

∑T
t=1 αt

〈
gt+1/2, Xt+1/2 − x

〉
.
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Importantly, to prove the dimension-free properties of
UNDERGRAD, such an upper-bound cannot involve Breg-
man divergences: even though this is common practice
in previous papers [1, 24], these terms would ultimately
lead to the Bregman diameter Bh that we seek to avoid.
This is a principal part of the reason for switching gears
to the DE template for UNDERGRAD: in so doing, we are
able to employ the notion of the Fenchel coupling [31, 32],
which is a “primal-dual distance” as opposed to the Breg-
man divergence which is a “primal-primal distance” (cf.
Appendix A.1). This poses another challenge on connecting
the Fenchel coupling of targeted points before and after a
mirror step, for which we need to employ a primal-dual
version of the “three-point identity” (Lemma A.3). These
elements lead to the following proposition:

Proposition 1. For all x ∈ X , we have

R̃T (x) ≤
Rh

ηT+1
+

T∑
t=1

αt⟨gt+1/2 − gt, Xt+1/2 −Xt+1⟩

−Kh

T∑
t=1

∥Xt+1 −Xt+1/2∥2 + ∥Xt+1/2 −Xt∥2

2ηt

(22)

With (22) in hand, (20a) comes from the application of the
Fenchel-Young inequality to upper-bound the right-hand-
side of (22) as

∑T
t=1 α

2
t ηt+1∥gt+1/2−gt∥∗ (plus a constant

term involving ∥X∥). The challenge here is to notice and
successfully prove that this summation is actually upper-
bounded by η−1

T+1 (due to our special choice of the learning
rate update). Finally, by its definition, η−1

T+1 can be bounded
by G, σ and Kh as described in the statement of Theorem 1.

The proof of (20b) is far more complex. The main challenge
is to manipulate the terms in (22) to derive an upper-bound
of the form

∑T
t=1 α

2
t g(ηt+1)∥∇f(X̄t+1/2) − ∇fX̄t∥2∗

(plus a term involving the noise level σ) where g(ηt+1) is a
function of the learning rate chosen such that only the first
T0 ≪ T elements of this summation are positive. Once this
has been achieved, the quantity ∥∇f(X̄t+1/2)−∇fX̄t∥∗
is connected to ∥X∥ via (LG) and our claim is obtained.

5. Numerical Experiments
For the experimental validation of our results, we focus
on the simplex setup of Example 1 with linear losses and
d = 100. Our first experiment concerns the perfect SFO
case and tracks down the convergence properties of UN-
DERGRAD run with the entropic regularizer adapted to the
simplex. As a baseline, we ran UNIXGRAD, also with the
entropic regularizer. A first challenge here is that the Breg-
man diameterBh of the simmplex is infinite, so UNIXGRAD
is not well-defined. On that account, we choose the step-size
update rule of UNIXGRAD such that its initial step-size γ1

T

∆
(T

)

Figure 2: Convergence of UNDERGRAD and UNIXGRAD in the simplex
setup with a perfect SFO. The y-axis corresponds to the differences be-
tween the f -value of the relevant point of each algorithm and min f . The
code is available at https://github.com/dongquan-vu/UnDerGrad_
Universal_CnvOpt_ICML2022.

equals the initial learning rate η1 of UNDERGRAD. We also
ran UNIXGRAD with the update rule such that γ1 is smaller
or larger than η1. Finally, for comparison purposes, we also
present a non-adaptive accelerated entropic gradient (AEG)
algorithm, and we report the results in Fig. 2.

Fig. 2 confirms that UNDERGRAD successfully converges
with an accelerated rate of O(1/T 2). Perhaps surprisingly,
it also shows that when UNIXGRAD’s initial step-size is
small (10E-3 or smaller), UNIXGRAD also achieves an
O(1/T 2), but at a much more conservative pace, trailing
UNDERGRAD by one or two orders of magnitude. On the
other hand, when UNIXGRAD’s initial step-size is of the
same magnitude as the UNDERGRAD’s learning rate (or
larger), UNIXGRAD eventually destabilizes and its rate
drops from O(1/T 2) to approximately O(1/T ). We also
conducted experiments in the setup with a noisy SFO; these
are reported in Appendix C.
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A. Bregman regularizers and several preliminary results
A.1. Bregman regularizers and their properties

We begin by clarifying and recalling some of the notational convetions used throughout the paper. We also give the formal
definition of the Fenchel coupling (a key notion for the proof our main results) and we present some preliminary results to
prepare the ground for the sequel.

The convex conjugate h∗ : Y → R of h is then defined as

h∗(y) = sup
x∈X
{⟨y, x⟩ − h(x)}. (A.1)

As a result, the supremum in (A.1) is always attained, and h∗(y) is finite for all y ∈ Y [8]. Moreover, by standard results in
convex analysis [43, Chap. 26], h∗ is differentiable on Y and its gradient satisfies the identity

∇h∗(y) = argmax
x∈X

{⟨y, x⟩ − h(x)}. (A.2)

Thus, recalling the definition of the mirror map Q : Y → X , we readily get

Q(y) = ∇h∗(y). (A.3)

Lemma A.1. Let h be a Bregman regularizer on X . Then, for all x,∈+ dom ∂h and all y, v ∈ Y , we have:

a) x = Q(y) ⇐⇒ y ∈ ∂h(x). (A.4a)

b) x+ = Q(∇h(x) + v) ⇐⇒ ∇h(x) + v ∈ ∂h(x+) (A.4b)

Finally, if x = Q(y) and x∗ ∈ X , we have

⟨∇h(x), x− x∗⟩ ≤ ⟨y, x− x∗⟩. (A.5)

Proof of Lemma A.1. To prove (A.4a), note that x solves (A.2) if and only if y − ∂h(x) ∋ 0, i.e., if and only if y ∈ ∂h(x).
Eq. (A.4b) is then obtained in the same manner.

For the inequality (A.5), it suffices to show it holds for all x∗ ∈ Xh ≡ dom ∂h (by continuity). To do so, let

ϕ(t) = h(x+ t(x∗ − x))− [h(x) + ⟨y, x+ t(x∗ − x)⟩]. (A.6)

Since h is strongly convex relative to g and y ∈ ∂h(x) by (A.4a), it follows that ϕ(t) ≥ 0 with equality if and only if t = 0.
Moreover, note that ψ(t) = ⟨∇h(x+ t(x∗ − x))− y, x∗ − x⟩ is a continuous selection of subgradients of ϕ. Given that
ϕ and ψ are both continuous on [0, 1], it follows that ϕ is continuously differentiable and ϕ′ = ψ on [0, 1]. Thus, with ϕ
convex and ϕ(t) ≥ 0 = ϕ(0) for all t ∈ [0, 1], we conclude that ϕ′(0) = ⟨∇h(x)− y, x∗ − x⟩ ≥ 0. ■

As we mentioned earlier, much of our analysis revolves around a ”primal-dual” divergence between a target point x∗ ∈ X
and a dual vector y ∈ Y , called the Fenchel coupling. Following [33], this is defined as follows for all x∗ ∈ X , y ∈ Y:

F (x∗, y) = h(x∗) + h∗(y)− ⟨y, x∗⟩. (A.7)

The following lemma illustrates some basic properties of the Fenchel coupling:

Lemma A.2. Let h be a Bregman regularizer on X with convexity modulus Kh. Then, for all x∗ ∈ X and all y ∈ Y , we
have:

1. F (x∗, y) = D(x∗, Q(y)) if Q(y) ∈ Xh (but not necessarily otherwise).

2. F (x∗, y) ≥ Kh

2 ∥Q(y)− x∗∥2
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Proof. For our first claim, let x = Q(y). Then, by definition we have:

F (x∗, y) = h(x∗)− ⟨y,Q(y)⟩ − h(Q(y))− ⟨y, x∗⟩ = h(x∗)− h(x)− ⟨y, x∗ − x⟩. (A.8)

Since y ∈ ∂h(x), we have h′(x;x∗ − x) = ⟨y, x∗ − x⟩ whenever x ∈ Xh, thus proving our first claim. For our second
claim, working in the previous spirit we get that:

F (x∗, y) = h(x∗)− h(x)− ⟨y, x∗ − x⟩ (A.9)

Thus, we obtain the result by recalling the strong convexity assumption for h with respect to the respetive norm ∥·∥. ■

We continue with some basic relations connecting the Fenchel coupling relative to a target point before and after a gradient
step. The basic ingredient for this is a primal-dual analogue of the so-called “three-point identity” for Bregman functions
[15]:
Lemma A.3. Let h be a Bregman regularizer on X . Fix some x∗ ∈ X and let y, y+ ∈ Y . Then, letting x = Q(y), we have

F (x∗, y+) = F (x∗, y) + F (x, y+) + ⟨y+ − y, x− x∗⟩. (A.10)

Proof. By definition, we get:
F (x∗, y+) = h(x∗) + h∗(y+)− ⟨y+, x∗⟩
F (x∗, y) = h(x∗) + h∗(y)− ⟨y, x∗⟩.

(A.11)

Then, by subtracting the above we get:

F (x∗, y+)− F (x∗, y) = h(x∗) + h∗(y+)− ⟨y+, x∗⟩ − h(x∗)− h∗(y) + ⟨y, x∗⟩
= h∗(y+)− h∗(y)− ⟨y+ − y, x∗⟩
= h∗(y+)− ⟨y,Q(y)⟩+ h(Q(y))− ⟨y+ − y, x∗⟩
= h∗(y+)− ⟨y, x⟩+ h(x)− ⟨y+ − y, x∗⟩
= h∗(y+) + ⟨y+ − y, x⟩ − ⟨y+, x⟩+ h(x)− ⟨y+ − y, x∗⟩
= F (x, y+) + ⟨y+ − y, x− x∗⟩ (A.12)

and our proof is complete. ■

A.2. Numerical sequence inequalities

In this section, we provide some necessary inequalities on numerical sequences that we require for the convergence rate
analysis of the previous sections. Most of the lemmas presented below already exist in the literature, and go as far back
as Auer et al. [6] and McMahan & Streeter [30]; when appropriate, we note next to each lemma the references with the
statement closest to the precise version we are using in our analysis.

Lemma A.4 (30, 28). For all non-negative numbers a1, . . . at, the following inequality holds:√√√√a2 +

T∑
t=1

at ≤ a+
T∑

t=1

at√∑t
s=1 as

≤ 2

√√√√a2 +

T∑
t=1

at (A.13)

B. Analysis and proofs of the main results
The proof of the template inequality. We first prove the template inequality of UNDERGRAD; this is the primary element
of our proof of Theorem 1:
Proposition 1. For all x ∈ X , we have

R̃T (x) ≤
Rh

ηT+1
+

T∑
t=1

αt⟨gt+1/2 − gt, Xt+1/2 −Xt+1⟩

−Kh

T∑
t=1

∥Xt+1 −Xt+1/2∥2 + ∥Xt+1/2 −Xt∥2

2ηt
(22)
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Proof. First, we set Ỹt = ηtYt. For all x ∈ X we have:

αt⟨gt+1/2, Xt+1 − x⟩

=⟨ 1
ηt
Ỹt −

1

ηt+1
Ỹt+1, Xt+1 − x⟩

=
1

ηt
⟨Ỹt − Ỹt+1, Xt+1 − x⟩+

[
1

ηt+1
− 1

ηt

]
⟨0− Ỹt+1, Xt+1 − x⟩

=
1

ηt

[
F (x, Ỹt)− F (x, Ỹt+1)− F (Xt+1, Ỹt)

]
+

[
1

ηt+1
− 1

ηt

](
F (x, 0)− F (x, Ỹt+1)− F (Xt+1, 0)

)
# from Lemma A.3

≤ 1

ηt
F (x, Ỹt)−

1

ηt+1
F (x, Ỹt+1) +

[
1

ηt+1
− 1

ηt

]
Rh −

1

ηt
F (Xt+1, Ỹt). (B.1)

Here, the last inequality comes from the facts that F (x, 0) = h(x)− h(Q(0)) = h(x)−minx∈X h ≤ Rh and F (·, ·) ≥ 0
and that ηt is decreasing.

As a consequence of (B.1), we have:

αt⟨gt+1/2, Xt+1/2 − x⟩
=αt⟨gt+1/2, Xt+1/2 −Xt+1⟩+ αt⟨gt+1/2, Xt+1 − x⟩

≤αt⟨gt+1/2, Xt+1/2 −Xt+1⟩+
1

ηt
F (x, Ỹt)−

1

ηt+1
F (x, Ỹt+1) +

[
1

ηt+1
− 1

ηt

]
Rh −

1

ηt
F (Xt+1, Ỹt) (B.2)

On the other hand, let us define Ỹt+1/2 := ηtYt+1/2, we have

αt⟨gt, Xt+1/2 −Xt+1⟩ =
1

ηt
⟨Ỹt − Ỹt+1/2, Xt+1/2 −Xt+1⟩ =

1

ηt

[
F (Xt+1, Ỹt)− F (Xt+1, Ỹt+1/2)− F (Xt+1/2, Ỹt)

]
⇒ 1

ηt
F (Xt+1, Ỹt) = αt⟨gt, Xt+1/2 −Xt+1⟩+ 1

ηt
F (Xt+1, Ỹt+1/2) +

1

ηt
F (Xt+1/2, Ỹt). (B.3)

Replace (B.3) into (B.2), we get:

αt⟨gt+1/2, Xt+1/2 − x⟩

≤αt⟨gt+1/2 − gt, Xt+1/2 −Xt+1⟩+
1

ηt
F (x, Ỹt)−

1

ηt+1
F (x, Ỹt+1)−

1

ηt
F (Xt+1, Ỹt+1/2)

− 1

ηt
F (Xt+1/2, Ỹt) +

[
1

ηt+1
− 1

ηt

]
Rh. (B.4)

Now, recall the definitions Xt+1/2 = Q(Ỹt+1/2) and Xt+1 = Q(Yt+1) in Algorithm 1, apply Lemma A.2 to
F (Xt+1, Ỹt+1/2) and F (Xt+1/2, Ỹt) then combine with (B.4), we get:

αt⟨gt+1/2, Xt+1/2 − x⟩ ≤ αt⟨gt+1/2 − gt, Xt+1/2 −Xt+1⟩+
1

ηt
F (x, Ỹt)−

1

ηt+1
F (x, Ỹt+1)

− Kh

2ηt
∥Xt+1 −Xt+1/2∥2 −

Kh

2ηt
∥Xt+1/2 −Xt∥2 +

(
1

ηt+1
− 1

ηt

)
Rh (B.5)

Hence, after telescoping t = 1, . . . , T and recalling the notation R̃T (x) :=
∑T

t=1 αt

〈
gt+1/2, Xt+1/2 − x

〉
, we get:

R̃T (x) ≤
1

η1
F (x, Ỹ1) +

(
1

ηT+1
− 1

η1

)
Rh
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+

T∑
t=1

αt⟨gt+1/2 − gt, Xt+1/2 −Xt+1⟩ −
T∑

t=1

Kh

2ηt
∥Xt+1 −Xt+1/2∥2 −

T∑
t=1

Kh

2ηt
∥Xt+1/2 −Xt∥2 (B.6)

Finally, by our initial choice of Y1 = 0, we have F (x, Ỹ1) = h(x) − minx∈X h(x) ≤ Rh and (22) follows (B.6). This
concludes the proof of Proposition 1. ■

Regret-to-rate conversion lemma. The next element in our proof is the following lemma that will be used to connect
the term R̃T (x) (which, in intuition, is similar to a regret term) and the term E

[
f(X̄T+1/2)−min f

]
whose bounds will

characterize the convergence rate of UNDERGRAD.

Lemma B.1. For any x∗ ∈ X ∗, for any T , we have:

E
[
f(X̄T+1/2)−min f

]
≤ E

[
2

T 2

T∑
t=1

αt⟨∇f
(
X̄t+1/2

)
, Xt+1/2 − x∗⟩

]
=

2

T 2
E
[
R̃T (x

∗)
]
. (B.7)

Note that a version of Lemma B.1 appears previously in [16, 24]; for the sake of completeness, we provide its proof below.

Proof. Let us denote Ht :=
∑t

s=1 αs. From the update rule of Algorithm 1, we have can rewrite Xt+1/2 = Ht

αt
X̄t+1/2 −

Ht−1

αt
X̄t−1/2. Therefore,

Xt+1/2 − x∗ =
Ht

αt
(X̄t+1/2 − x∗)−

Ht−1

αt
(X̄t−1/2 − x∗) =

1

αt

[
αt(X̄t+1/2 − x∗) +Ht−1(X̄t+1/2 − X̄t−1/2)

]
. (B.8)

As a consequence, we have:

T∑
t=1

αt⟨∇f(X̄t+1/2), Xt+1/2 − x∗⟩

=

T∑
t=1

[
αt

〈
∇f(X̄t+1/2), X̄t+1/2 − x∗

〉
+Ht−1

〈
∇f(X̄t+1/2), X̄t+1/2 − X̄t−1/2

〉]
≥

T∑
t=1

αt

[
f(X̄t+1/2)− f(x∗)

]
+

T∑
t=1

Ht−1

[
f(X̄t+1/2)− f(X̄t−1/2)

]
=

T∑
t=1

αt

[
f(X̄t+1/2)− f(x∗)

]
+

T−1∑
t=1

αt

[
f(X̄T+1/2)− f(X̄t+1/2)

]
# since Ht −Ht−1 = αt

=
[
f(X̄T+1/2)− f(x∗)

] T∑
t=1

αt. (B.9)

Divide two sides of (B.9) by Ht > 0 and choose αt such that Ht >
T 2

2 (for example, choose αt = α), we obtain that:

2

T 2

T∑
t=1

αt⟨∇f(X̄t+1/2), Xt+1/2 − x∗⟩ ≥ f(X̄T+1/2)− f(x∗) = f(X̄T+1/2)−min f. (B.10)

Finally, we recall that by definition, gt+1/2 = G(X̄t+1/2;ωt+1/2) = ∇f(X̄t+1/2)+Ut+1/2 where E
[
Ut+1/2

∣∣Ft+1/2

]
= 0.

Therefore, by the law of total expectation, we have:

R̃T (x
∗) =E

[
T∑

t=1

αt⟨∇f(X̄t+1/2), Xt+1/2 − x∗⟩

]
+ E

[
T∑

t=1

αt⟨Ut+1/2, Xt+1/2 − x∗⟩

]
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=E

[
T∑

t=1

αt⟨∇f(X̄t+1/2), Xt+1/2 − x∗⟩

]
+ E

[
T∑

t=1

αt E
[
⟨Ut+1/2, Xt+1/2 − x∗⟩

∣∣Ft+1/2

]]

=E

[
T∑

t=1

αt⟨∇f(X̄t+1/2), Xt+1/2 − x∗⟩

]
. (B.11)

Take the expectation of the two sides of (B.10) then combine it with (B.11), we conclude the proof. ■

Proof of (20a): convergence of UNDERGRAD under (LC)/(BG). Our starting point is Eq. (22) that we established in
Proposition 1 that leads to the following inequality:

R̃T (x) ≤
Rh

ηT+1
+

T∑
t=1

αt⟨gt+1/2 − gt, Xt+1/2 −Xt+1⟩ −
T∑

t=1

Kh

2ηt
∥Xt+1 −Xt+1/2∥2 (B.12)

We now focus on the second term in the right hand side of (B.12). From the Cauchy-Schwarz inequality and the fact that
∥Y − Y ′∥∗∥X −X ′∥ = mina>0

{
1
2a∥Y − Y

′∥2∗ +
a
2∥X −X

′∥2
}

for any X,X ′, Y, Y ′ ∈ Rd,6 we have:

T∑
t=1

αt⟨gt+1/2 − gt, Xt+1/2 −Xt+1⟩ ≤
T∑

t=1

αt∥gt+1/2 − gt∥∗∥Xt+1/2 −Xt+1∥

≤ 1

2Kh

T∑
t=1

α2
t ηt+1∥gt+1/2 − gt∥2∗ +

Kh

2

T∑
t=1

1

ηt+1
∥Xt+1 −Xt+1/2∥2. (B.13)

Moreover, from the definition of ηt+1 and by applying Lemma A.4, we have:

1

2Kh

T∑
t=1

α2
t ηt+1∥gt+1/2 − gt∥2∗ =

b

2Kh

T∑
t=1

α2
t ∥gt+1/2 − gt∥2∗√

a2 +
∑t

s=1∥gs+1/2 − gs∥2∗

≤ b

Kh

√√√√a2 +

T∑
t=1

α2
t ∥gt+1/2 − gt∥2∗ −

b
√
a2

2Kh

=
b2

Kh · ηT+1
− b
√
a2

2Kh
. (B.14)

Combine (B.13) and (B.14) with (B.12) and by the compactness of the feasible region X , we get:

R̃T (x) ≤
Rh

ηT+1
+

1

2Kh

T∑
t=1

α2
t ηt+1∥gt+1/2 − gt∥2∗

+
Kh

2

T∑
t=1

[
1

ηt+1
− 1

ηt

]
∥Xt+1 −Xt+1/2∥2

≤ Rh

ηT+1
+

b2

Kh · ηT+1
− b
√
a2

2Kh
+
Kh∥X∥2

2

T∑
t=1

[
1

ηt+1
− 1

ηt

]
=

1

ηT+1

(
Rh +

b2

Kh
+
Kh∥X∥2

2

)
− b
√
a2
(

1

2Kh
+
Kh∥X∥2

2

)
. (B.15)

6This can be proved trivially: a∗ = ∥Y − Y ′∥∗∥X −X′∥ is a minimizer of the function ψ(a) = 1
2a

∥Y − Y ′∥2∗ + a
2
∥X −X′∥2.
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Hence, by invoking Lemma B.1, we have:

E
[
f(XT+1/2)−min

x∈X
f(x)

]
≤

2E
[
R̃T (x

∗)
]

T 2

=
2

T 2

[(
Rh +

b2

Kh
+
Kh∥X∥2

2

)
E
[

1

ηT+1

]
− b
√
a2
(

1

2Kh
+
Kh∥X∥2

2

)]
. (B.16)

On the other hand, by the definition of ηT+1, we get:

E
[

1

ηT+1

]
≤ 1

b
E


√√√√a2 +

T∑
t=1

α2
t ∥gt+1/2 − gt∥2∗

 ≤ 1

b

√√√√a2 +

T∑
t=1

α2
t E
[
∥gt+1/2 − gt∥2∗

]
. (B.17)

Moreover, we have that:

E
[
∥gt+1/2 − gt∥2∗

]
= E

[
∥∇f(Xt+1/2)−∇f(Xt)− (Ut+1/2 − Ut)∥2∗

]
≤ E

[
2∥∇f(Xt+1/2)−∇f(Xt)∥2∗ + 2∥Ut+1/2 − Ut∥2∗

]
≤ E

[
4(∥∇f(Xt+1/2)∥2∗ + ∥∇f(Xt)∥2∗) + 4(∥Ut+1/2∥2∗ + ∥Ut∥2∗)

]
≤ E

[
8G2 + 4(∥Ut+1/2∥2∗ + ∥Ut∥2∗)

]
# from (BG)

= 8
[
G2 + σ2

]
. (B.18)

Therefore, when we choose the step-size parameters αt = t, ∀t as indicated in Theorem 1, we have:

(
Rh +

b2

Kh
+
Kh∥X∥2

2

)
E
[

1

ηT+1

]
≤
(
Rh +

b2

Kh
+
Kh∥X∥2

2

)
1

b

√√√√a2 + 8 (G2 + σ2)

T∑
t=1

α2
t

≤
(
Rh

b
+

b

Kh
+
Kh∥X∥2

2b

)√
a2 + 8(G2 + σ2)T 3. (B.19)

Finally, substituting (B.19) into (B.16), we get:

E
[
f(XT+1/2)−min

x∈X
f(x)

]
≤ 2

(
Rh

b
+

b

Kh
+
Kh∥X∥2

2b

)√
a2 + 8(G2 + σ2)T 3

T 2

− b
√
a2

T 2

(
1

2Kh
+
Kh∥X∥2

2

)
. (B.20)

Then, from our choice for b and a2 in Theorem 1, we obtain:

E
[
f(XT+1/2)−min

x∈X
f(x)

]
≤ 2

Ch√
Kh

√
Kh + 8(G2 + σ2)√

T
. (B.21)

Proof of (20b): convergence of UNDERGRAD under (LG)/(LS). From (22) and (B.13), we have:

R̃T (x) ≤
Rh

ηT+1
+

1

2Kh

T∑
t=1

α2
t ηt+1∥gt+1/2 − gt∥2∗

+
Kh

2

T∑
t=1

(
1

ηt+1
− 1

ηt

)
∥Xt+1 −Xt+1/2∥2 −

T∑
t=1

Kh

2ηt
∥Xt+1/2 −Xt∥2. (B.22)

We analyze the terms in the right-hand-side of (B.22). First, we have:

Kh

2

T∑
t=1

(
1

ηt+1
− 1

ηt

)
∥Xt+1 −Xt+1/2∥2 ≤

Kh∥X∥2

2

(
1

ηT+1
− 1

η1

)
. (B.23)
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Second, we have:

Kh

2

T∑
t=1

1

ηt+1
∥Xt+1/2 −Xt∥2 =

Kh

2

T∑
t=1

[
1

ηt+1
− 1

ηt

]
∥Xt+1/2 −Xt∥2 +

Kh

2

T∑
t=1

1

ηt
∥Xt+1/2 −Xt∥2

≤ Kh∥X∥2

2

(
1

ηT+1
− 1

η1

)
+
Kh

2

T∑
t=1

1

ηt
∥Xt+1/2 −Xt∥2 (B.24)

Hence,

−Kh

2

T∑
t=1

1

ηt
∥Xt+1/2 −Xt∥2 ≤

Kh∥X∥2

2

(
1

ηT+1
− 1

η1

)
− Kh

2

T∑
t=1

1

ηt+1
∥Xt+1/2 −Xt∥2. (B.25)

Combine (B.23) and (B.25) with (B.22), we have:

R̃T (x) ≤
Rh +Kh∥X∥2

ηT+1
− Kh∥X∥2

η1
+

1

2Kh

T∑
t=1

α2
t ηt+1∥gt+1/2 − gt∥2∗ −

Kh

2

T∑
t=1

1

ηt+1
∥Xt+1/2 −Xt∥2. (B.26)

We will analyze the terms in the right-hand-side of (B.26). To do this, we first introduce the quantities

B2
t = min{∥∇f(Xt+1/2)−∇f(Xt)∥2∗, ∥gt+1/2 − gt∥2∗} (B.27a)

and

ξt =
[
gt+1/2 − gt

]
−
[
∇f(Xt+1/2)−∇f(Xt)

]
. (B.27b)

We also define

η̃t =
b√

a2 +
∑t−1

s=1 α
2
sB

2
s

. (B.28)

By these definitions, we obtain that

∥gt+1/2 − gt∥2∗ ≤ B2
t +

[
∥gt+1/2 − gt∥2∗ −min{∥∇f(Xt+1/2)−∇f(Xt)∥2∗, ∥gt+1/2 − gt∥2∗}

]
≤ B2

t +max{0, ∥gt+1/2 − gt∥2∗ − ∥∇f(Xt+1/2)−∇f(Xt)∥2∗}
≤ B2

t +B2
t + 2∥ξt∥2∗

= 2B2
t + 2∥ξt∥2∗. (B.29)

Here, the last inequality is obtained by the fact that if ∥gt+1/2 − gt∥2∗ ≥ ∥∇f(Xt+1/2)−∇f(Xt)∥2∗ then it yields:

∥gt+1/2 − gt∥2∗ − ∥∇f(Xt+1/2)−∇f(Xt)∥2∗ ≤ B2
t + 2∥ξt∥2∗. (B.30)

Therefore, we have:

1

2Kh

T∑
t=1

α2
t ηt+1∥gt+1/2 − gt∥2∗ =

b

2Kh

T∑
t=1

α2
t ∥gt+1/2 − gt∥2∗√

a2 +
∑t

s=1 α
2
s

∥∥gs+1/2 − gs
∥∥2

≤ b

Kh

√√√√a2 +

T∑
t=1

α2
t ∥gt+1/2 − gt∥2∗ −

b
√
a2

2Kh
# from Lemma A.4

≤ b

Kh

√√√√a2 + 2

T∑
t=1

α2
tB

2
t + 2

T∑
t=1

α2
t ∥ξt∥2∗ −

b
√
a2

2Kh
# from (B.29)
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≤ b
√
2

Kh

√√√√a2 +

T∑
t=1

α2
tB

2
t +

b
√
2

Kh

√√√√ T∑
t=1

α2
t ∥ξt∥2∗ −

b
√
a2

2Kh

≤ b
√
2

Kh

√a2 + T∑
t=1

α2
tB

2
t√

a2 +
∑t

s=1 α
2
sB

2
s

+
b
√
2

Kh

√√√√ T∑
t=1

α2
t ∥ξt∥2∗ −

b
√
a2

2Kh

# from Lemma A.4

=

√
2

Kh

T∑
t=1

α2
t η̃t+1B

2
t +

b
√
2

Kh

√√√√ T∑
t=1

α2
t ∥ξt∥2∗ +

b
√
a2

Kh

(√
2− 1

2

)
. (B.31)

On the other hand, by the update rule in Algorithm 1 and our choice of αt = t,∀t as in Theorem 1, we also have
Xt −Xt+1/2 =

∑t
s=1 αs

αt

(
X̄t − X̄t+1/2

)
= αt+1

2

(
X̄t − X̄t+1/2

)
. Use this and recall that 1

η̃t
≤ 1

ηt
for any t and that f is

L-smooth over X , we have:

−Kh

2

T∑
t=1

1

ηt+1
∥Xt −Xt+1/2∥2 ≤ −

Kh

2

T∑
t=1

1

η̃t+1
∥Xt −Xt+1/2∥2

= −Kh

8

T∑
t=1

α2
t+1

η̃t+1
∥X̄t − X̄t+1/2∥2

≤ −Kh

8

T∑
t=1

1

η̃t+1

1

L2
∥∇f(Xt)−∇f(Xt+1/2)∥2∗

≤ −Kh

8L2

T∑
t=1

α2
tB

2
t

η̃t+1
. (B.32)

Finally, letting Ch =
√
Rh +Kh∥X∥2, (B.29) yields:

C2
h

ηT+1
=
C2

h

b

√√√√a2 +

T∑
t=1

α2
t ∥gt+1/2 − gt∥2∗

≤ C2
h

b

√√√√a2 + 2

T∑
t=1

α2
tB

2
t + 2

T∑
t=1

α2
t ∥ξt∥2∗

≤
√
2C2

h

b

√√√√a2 +

T∑
t=1

α2
tB

2
t +

√
2C2

h

b

√√√√ T∑
t=1

α2
t ∥ξt∥2∗

≤
√
2C2

h

b

√a2 + T∑
t=1

α2
tB

2
t√

a2 +
∑t

s=1 α
2
sB

2
s

+

√
2C2

h

b

√√√√ T∑
t=1

α2
t ∥ξt∥2∗

≤
√
2C2

h

b2

T∑
t=1

α2
t η̃t+1B

2
t +

√
2C2

h

√
a2

b
+

√
2C2

h

b

√√√√ T∑
t=1

α2
t ∥ξt∥2∗. (B.33)

Combine (B.31), (B.32) and (B.33) into (B.26), we have:

R̃T (x) ≤
√
2

T∑
t=1

α2
tB

2
t

[(
Rh

b2
+
Kh∥X∥2

b2
+

1

Kh

)
η̃t+1 −

Kh

8L2η̃t+1

]
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+
√
2

(
Rh

b
+
Kh∥X∥2

b
+

b

Kh

)√√√√ T∑
t=1

α2
t ∥ξt∥2∗ +

[
b
√
a2

Kh

(√
2− 1

2

)
− Kh∥X∥2

√
a2

b
+

√
2C2

h

√
a2

b

]
. (B.34)

Now, define T0 as follows:

T0 = max

1 ≤ t ≤ T : η̃t+1 ≥
√
Kh√

8L2
(

Rh

b2 + Kh∥X∥2

b2 + 1
Kh

)
 (B.35)

In other words, for any t > T0,
(

Rh

b2 + Kh∥X∥2

b2 + 1
Kh

)
η̃t+1 − Kh

8L2η̃t+1
< 0. As a consequence,

√
2
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α2
tB

2
t

[(
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+
Kh∥X∥2

b2
+

1

Kh

)
η̃t+1 −

Kh

8L2η̃t+1

]

=
√
2
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tB

2
t
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+
Kh∥X∥2

b2
+

1

Kh

)
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Kh

8L2η̃t+1

]

≤
√
2

(
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+
Kh∥X∥2

b2
+

1

Kh
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tB

2
t η̃t+1

=
√
2

(
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b2
+
Kh∥X∥2
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+

1

Kh

) T0∑
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b
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2
t√

a2 +
∑t

s=1 α
2
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2
s

≤
√
2

(
Rh

b
+
Kh∥X∥2

b
+

b
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)2
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T0∑
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α2
tB

2
t −
√
a2


=2
√
2

(
Rh

b
+
Kh∥X∥2

b
+

b
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)
b

η̃T0+1
−
√
2a2
(
Rh

b
+
Kh∥X∥2

b
+

b
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)
≤8
(
Rh

b2
+
Kh∥X∥2

b2
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1
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b2L√
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−
√
2a2
(
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b
+
Kh∥X∥2

b
+

b
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)
. (B.36)

Combine (B.34) with (B.36) and use the fact that E
[
∥ξ∥2∗

]
≤ 4σ2, we have:

E
[
R̃T (x)

]
≤ 8

(
Rh

b2
+
Kh∥X∥2
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+

1

Kh
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−
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2a2
(
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b
+
Kh∥X∥2

b
+

b
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)

+ 2
√
2

(
Rh

b
+
Kh∥X∥2

b
+

b
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σ

√√√√ T∑
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α2
t +

[
b
√
a2
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(√
2− 1

2

)
− Kh∥X∥2

√
a2

b
+

√
2C2

h

√
a2

b

]
(B.37)

Recall the choice αt = t,∀t, apply Lemma B.1, we have:

E
[
f(XT+1/2)−min

x∈X
f(x)

]
≤ 16

T 2

(
Rh

b2
+
Kh∥X∥2

b2
+

1

Kh

)3/2
b2L√
Kh

+
4
√
2√
T

(
Rh

b
+
Kh∥X∥2

b
+

b
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)
σ

+
2C(b, a2)

T 2
. (B.38)
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where we set

C(b, a2) :=
b
√
a2

Kh

(√
2− 1

2

)
− Kh∥X∥2

√
a2

b
+

√
2C2

h

√
a2

b
−
√
2a2
(
Rh

b
+
Kh∥X∥2

b
+

b

Kh

)
. (B.39)

Finally, replace b =
√
KhC2

h and a2 = Kh as chosen in Theorem 1 into (B.38) and note that with these choices,
C(b, a2) ≤ − 1

2Ch

√
Kh ≤ 0; we rewrite (B.38) as follows:

E
[
f(XT+1/2)−min

x∈X
f(x)

]
≤ 32

√
2L

T 2

(
C2

h

Kh

)
+

8
√
2σ√
T

Ch√
Kh

. (B.40)

Convergence of UNDERGRAD in unbounded domains. Finally, we give the proof of Theorem 2 concerning the
deterministic SFO in the (LG) case with a possibly unbounded domain X .

Proof. Since the respective learning rate ηt is non-increasing and non-negative, we have that its limit exists. Particularly,

lim
t→∞

ηt = inf
t∈N

ηt ≥ 0 (B.41)

Let us assume that inft∈N ηt = 0. Then, by applying Proposition 1 we have:

T∑
t=1

αt⟨∇f(Xt+1/2), Xt+1/2 − x⟩ ≤
h(x)−minx∈X h(x)

ηT+1

+

T∑
t=1

αt⟨∇f(Xt+1/2)−∇f(Xt+1/2), Xt −Xt+1⟩ −
T∑

t=1

Kh

2ηt
∥Xt+1 −Xt+1/2∥2 −

T∑
t=1

Kh

2ηt
∥Xt+1/2 −Xt∥2 (B.42)

Now for the term:
∑T

t=1 αt⟨∇f(Xt+1/2)−∇f(Xt), Xt+1/2 −Xt+1⟩ −
∑T

t=1
Kh

2ηt
∥Xt+1 −Xt+1/2∥2 we have:
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αt⟨∇f(Xt+1/2)−∇f(Xt+1/2), Xt −Xt+1⟩ −
T∑

t=1

Kh

2ηt
∥Xt+1 −Xt+1/2∥2

≤ 1

2Kh

T∑
t=1

α2
t ηt∥∇f(Xs+1/2)−∇f(Xs)∥2∗

+
Kh

2

T∑
t=1

1

ηt
∥Xt+1 −Xt+1/2∥2 −

T∑
t=1

Kh

2ηt
∥Xt+1 −Xt+1/2∥2

(B.43)

which readily yields:

T∑
t=1

αt⟨∇f(Xt+1/2)−∇f(Xt), Xt+1/2 −Xt+1⟩ −
T∑

t=1

Kh

2ηt
∥Xt+1 −Xt+1/2∥2

≤ 1

2Kh

T∑
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α2
t ηt∥∇f(Xs+1/2)−∇f(Xs)∥2∗ (B.44)

Hence, putting everything together, we get:

T∑
t=1

αt⟨∇f(Xt+1/2), Xt+1/2 − x⟩ ≤
1

2Kh

T∑
t=1

α2
t ηt∥∇f(Xs+1/2)−∇f(Xs)∥2∗

− Kh

2

T∑
t=1

1

ηt
∥Xt −Xt+1/2∥2 (B.45)
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Moreover, since f is smooth we have:

∥∇f(Xt+1/2)−∇f(Xt)∥2∗ ≤ L2∥Xt+1/2 −Xt∥2

≤ L2 α2
t(∑T

t=1 αt

)2 ∥Xt+1/2 −Xt∥2

= L2 4t2

t2(t+ 1)2
∥Xt+1/2 −Xt∥2

≤ 4L2

α2
t

∥Xt+1/2 −Xt∥2 (B.46)

Combining this with the fact that ηt is a decreasing sequence, we can rewrite (B.45) as follows:

T∑
t=1

αt⟨∇f(Xt+1/2), Xt+1/2 − x⟩ ≤
η1
2Kh

T∑
t=1

α2
t ∥∇f(Xs+1/2)−∇f(Xs)∥2∗

− Kh

8L2

T∑
t=1

α2
t

ηt
∥∇f(Xt+1/2)−∇f(Xt)∥2∗] (B.47)

In the sequel, we look for the appropriate bounds of the two terms in the right-hand-side of (B.47). We start with the second
term. From (B.9), we also have

∑T
t=1 αt⟨∇f(Xt+1/2), Xt+1/2 − x⟩ ≥ 0. Combine this with (B.47), we have:

0 ≤ 1

2Kh

T∑
t=1

α2
t ηt∥∇f(Xs+1/2)−∇f(Xs)∥2∗ −

Kh

8L2

T∑
t=1

α2
t

ηt
∥∇f(Xt+1/2)−∇f(Xt)∥2∗ (B.48)

Hence by rearranging we have:

Kh

16L2

T∑
t=1

α2
t
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1

2Kh
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α2
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16L2
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t=1

α2
t

ηt
∥∇f(Xt+1/2)−∇f(Xt)∥2∗

=
1

2
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t=1

α2
t ∥∇f(Xt+1/2)−∇f(Xt)∥2∗

[
ηt
Kh
− Kh

8ηtL2

]
(B.49)

Now, since we assumed that ηt converges to 0, there exists some t0 ∈ N such that:

ηt ≤
Kh√
8L

for all t > t0 (B.50)

which directly yields that
[

ηt

Kh
− Kh

8ηtL2

]
≤ 0 for all t > T0. Hence, we have:

Kh

16L2
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α2
t

ηt
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1
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Kh
− Kh

8ηtL2

]
(B.51)

On the other hand, we have:

1

ηt
=

1√
Kh

√√√√Kh +

t−1∑
s=1

α2
s∥∇f(Xs+1/2)−∇f(Xs)∥2∗

≥ 1√
Kh

√
Kh = 1 (B.52)
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Figure 3: Convergence of UNDERGRAD and UNIXGRAD in the simplex setup with a noisy SFO. The plot is drawn in log-log scale. The y-axis
corresponds to the differences between the f -value of the relevant point of each algorithm and min f .

and hence

Kh

16L2

T∑
t=1

α2
t

ηt
∥∇f(Xt+1/2)−∇f(Xt)∥2∗ ≥

Kh

16L2
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=
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(B.53)

So, summarizing we have:

K2
h

16η2T−1L
2
≤ 1

2

T0∑
t=1

α2
t ∥∇f(Xt+1/2)−∇f(Xt)∥2∗

[
ηt
Kh
− Kh

8ηtL2

]
(B.54)

We now focus on the first term of the right-hand-size of (B.47). If one lets T to infinity and recalling the fact that we
assumed that ηt converges to 0 (and so 1/η2t →∞), we have that:

∞ ≤ 1

2

T0∑
t=1

α2
t ∥∇f(Xt+1/2)−∇f(Xt)∥2∗

[
ηt
Kh
− Kh

8ηtL2

]
<∞ (B.55)

a contradiction. This shows that inft∈N ηt > 0 and hence

+∞∑
t=1

α2
t ∥∇f(Xt+1/2)−∇f(Xt)∥2∗ = lim

T→+∞

T∑
t=1

α2
t ∥∇f(Xt+1/2)−∇f(Xt)∥2∗

= lim
T→∞

Kh

η2t
−Kh

=
Kh

inft ηt

2

−Kh <∞ (B.56)

so our proof is complete. ■

C. Additional Numerical Experiments
In this last section, we report another numerical experiment highlighting the universality of UNDERGRAD. In this experiment,
we also focus on the simplex setup as presented in Section 5. However, this time, we work with a noisy SFO that returns
first-order feedback that is perturbed by a noise generated from a pre-determined zero-mean normal distribution. We
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Figure 4: Convergence of UNDERGRAD in the simplex setup with different noise levels of the SFO.

compare the performances of UNDERGRAD and UNIXGRAD, both run with the entropic regularizer. The result of this
experiment is reported in Fig. 3.

Fig. 3 shows that UNDERGRAD obtains the optimal rate O(1/
√
T ) in this set-up. UNIXGRAD can also obtain the same rate

but only when its step-size update rule is chosen appropriately (note again that with entropic regularizer, the update rule
(14) of UNIXGRAD is not available due to the fact that Bh =∞): when γ1 is chosen with the same or larger magnitude
of UNDERGRAD’s initial learning rate, UNIXGRAD converges with the rate O(1/

√
T ); but if γ1 is too small (e.g., when

γ1 = 10−3 · η1), UNIXGRAD can have a very long warming up phase. This experiment reasserts that in cases where the
step-size update rule (14) is unavailable, it is non-trivial to choose an appropriate step-size update rule of UNIXGRAD: small
γ1 might lead to better performances under perfect SFO (cf. Section 5) but might create unwanted behaviors in noisy SFO
setups. On the contrary, UNDERGRAD does not encounter such issues in our experiments.

Finally, we conduct another experiment to confirm the dependency of the convergence rates of UNDERGRAD on the noise
level σ. The result is reported in Fig. 4.
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