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Abstract
We consider the experimental design problem
in an online environment, an important practical
task for reducing the variance of estimates in ran-
domized experiments which allows for greater
precision, and in turn, improved decision mak-
ing. In this work, we present algorithms that
build on recent advances in online discrepancy
minimization which accommodate both arbitrary
treatment probabilities and multiple treatments.
The proposed algorithms are computationally ef-
ficient, minimize covariate imbalance, and in-
clude randomization which enables robustness to
misspecification. We provide worst case bounds
on the expected mean squared error of the causal
estimate and show that the proposed estimator is
no worse than an implicit ridge regression, which
are within a logarithmic factor of the best known
results for offline experimental design. We con-
clude with a detailed simulation study showing
favorable results relative to complete randomiza-
tion as well as to offline methods for experimen-
tal design with time complexities exceeding our
algorithm, which has a linear dependence on the
number of observations, by polynomial factors.

1. Introduction
Randomized experimentation is a fundamental tool for ob-
taining counterfactual estimates. The efficacy of random-
ization comes from a very simple intuition–by randomly
assigning treatment status dependence between observed
(and unobserved) treatment and pre-treatment covariates
necessarily tends to zero as a function of the number of
units. In the context of experimentation, this indepen-
dence condition on observed covariates, commonly known
as balance (Imai et al., 2008; Imai and Ratkovic, 2014), re-
duces the variance of estimates of the average treatment ef-
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fect (Greevy et al., 2004; Higgins et al., 2016; Kallus, 2018;
Li et al., 2018; Harshaw et al., 2020). Under the appropri-
ate conditions such corrections can result in large increases
in effective sample size, allowing for the detection of the
small effects which are commonplace in many large scale
studies and industrial applications (Dimmery et al., 2019;
Azevedo et al., 2020). These contexts rely heavily on ex-
perimentation for decision-making, so reduced variance di-
rectly translates into more reliable decisions (Kohavi et al.,
2012).

Traditional experimental design like blocking (Greevy
et al., 2004; Higgins et al., 2016) or even the novel Gram-
Schmidt Walk design (Harshaw et al., 2020) require more
than one pass over the sample and their sample complexity
is greater thanO(n). Even algorithms which admit sequen-
tial assignment such as Moore and Moore (2017) suffer
from the fact that the algorithm is not linear time and, thus,
respondents late in the experiment may take substantially
longer to receive a treatment assignment (Cavaille, 2018).
Our work is motivated by this setting to provide a linear-
time, single-pass (i.e. sequential) algorithm for balancing
experimental design. Our focus is on linear measures of
balance (often of particular interest to applied researchers).
This provides a new avenue through which experimenters
can ensure that their experiments optimize the information
they gain from costly samples.

We start by presenting four desiderata for effective, prac-
tical online experimental design. First, a method must be
computationally efficient. In a review of existing methods
for online assignment in the case of survey experiments,
Cavaille (2018) finds that existing methods become slow to
unusable as increasingly more respondents are included in
a study. This resulting speed is fundamentally incompati-
ble with effective administration of an experiment. In short,
high latency will cause disproportionately large dropoff in
an experiment, which may completely nullify the gains
from using more sophisticated experimental design. Any
algorithm with greater than linear time complexity exacer-
bates this problem: higher latency for later subjects than
earlier subjects will tend to cause non-random sample at-
trition, as later subjects (who may be different than earlier
respondents) will be more likely to drop out.

Second, an experimental design must reduce covariate im-
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balance to be effective. This is the entire justification for
using methods more sophisticated than Bernoulli random-
ization, so if the design is not able to improve on balance,
then there will be no subsequent reduction in variance and
therefore no compelling reason to use it.

Third, the design must incorporate randomization. Har-
shaw et al. (2020) provides an extensive discussion on the
inherent tradeoff between robustness and balance within
experimental design. A design which solely optimizes for
balance will tend to operate on a knife-edge of accidental
bias (Efron, 1971): the potential bias from an adversari-
ally chosen confounder. With higher accidental bias than
Bernoulli randomization, if units do not arrive precisely
i.i.d., then the entire design may be compromised. Given
that experimental settings are prized specifically for their
unbiasedness, this could completely undermine any gains
from improved balance. Strong theoretical guarantees on
robustness are extremely important in this setting in order
to ensure that inferences rest squarely on the design. If
assumptions about sampling procedures or data generating
processes are necessary to ensure the reliability of estima-
tion, then inferences are not based solely on properties of
the experiment, but rather on factors outside the control of
the experimenter (Aronow et al., 2021).

Fourth, units which do not show up in the sample should
not be included in the balancing. An offline algorithm used
in an online environment would fail this condition, because
to use it would require to balance the entire population of
units expected to show up to an experiment. Units within
that population who fail to show would nevertheless be as-
signed a treatment. Depending on the distribution of units
who actually show up in the sample, there are no longer
any guarantees that balance will obtain.

Our approach satisfies all four of these desiderata. Our con-
tributions are the following:

• We propose an online method for covariate balancing re-
quiring linear time and space which provably provides
variance reduction.

• All analyses incorporate an adversarial, non-i.i.d. sam-
pling mechanism in the analysis of worst-case behavior.

• Building upon recent work on discrepancy
minimization—the self-balancing walk (Alweiss
et al., 2020) and kernel thinning (Dwivedi and Mackey,
2021)—we provide an algorithm whose L2-imbalance
matches the best known online discrepancy algorithm.
Where δ is a failure probability, performing this opti-
mization online results in a log(n/δ) cost in convergence
of the average treatment effect over the offline algorithm
of discrepancy minimization by Harshaw et al. (2020).

• Using restarts, we show that the unconditional perfor-
mance of this algorithm differs by only a constant factor.

• We extend this algorithm to multiple treatments and non-
uniform treatment probabilities.

• These algorithms provide a tuning parameter, φ, which
allows practitioners to directly manage the balance-
robustness tradeoff.

The rest of the paper is organized as follows. Section 2 with
a discussion of related work to position our contribution in
the literature. Section 3 defines notation and formally in-
troduces the problem. Section 4 provides our proposed al-
gorithms and methods. Section 6 provides a detailed simu-
lation study of the behavior of the proposed algorithms.

2. Related Work
There are two common approaches for achieving improved
covariate balance in experiments. The first, and most com-
mon especially within industrial settings, approach is to
perform a post-hoc regression adjustment which includes
pre-treatment covariates (Deng et al., 2013; Lin, 2013).
The second approach is to consider covariate balance dur-
ing the design phase of the experiment, i.e., explicitly op-
timizing treatment assignment in order to minimize imbal-
ance between treatment groups (Greevy et al., 2004; Hig-
gins et al., 2016; Kallus, 2018).

Post-hoc stratification may be seen as asymptotically
equivalent in terms of variance reduction to its analogous
pre-stratified design as shown by Miratrix et al. (2013). Mi-
ratrix et al.’s (2013) analysis is limited by two factors: it
assumes a fixed number of stratification cells (that do not
grow with sample size) and it is conditioned on the post-
stratification estimator being defined (e.g. treatment and
control units within each stratification cell). These limita-
tions may weaken it’s asymptotic equivalence argument. A
key limitation of post-hoc adjustment approaches is that the
desire for simplicity and scalability implies that practition-
ers typically adjust for only a linear function of the pre-
treatment covariates. Indeed, in the common “CUPED”
approach, adjustment is performed solely on a linear func-
tion of a single pre-treatment outcome measurement (Deng
et al., 2013). Second, many common approaches for con-
structing stratification cells (i.e. clustering algorithms) may
be computationally infeasible in practice for industrial ap-
plications when the number of simultaneous experiments
and the number of outcome variables of interest are large.
Third, without sample splitting (or when naively applied)
advanced machine-learning based methods for adjustment
may slip in assumptions of correct-specification of the out-
come model, or have confidence intervals with poor cov-
erage properties. While cross-fitting may ameliorate some
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of these problems in larger samples, sample splitting may
prove too high a cost when sample sizes are low.

A key shortcoming of design-based covariate balance is the
lack of computationally efficient algorithms which provide
theoretical guarantees over worst case behavior. Block-
ing (Fisher, 1935) partitions variables into non-overlapping
sets and performs complete randomization within each
partition (”blocks”). Higgins et al. (2016) introduced a
computationally approximation of blocking which runs in
O(n log(n)) time. Kallus (2018); Bertsimas et al. (2015)
propose an optimization based approach, Kallus (2018)
additionally considers a partially random approach using
semi-definite programming. Zhou et al. (2018) provide
a method combining batch-based sequential experimenta-
tion with rerandomization to achieve balance, but which
is not computationally feasible in moderate to large sam-
ple sizes. Perhaps the closest to the current work is Har-
shaw et al. (2020) which propose a balancing design using
the Gram-Schmidt walk, an offline method for (linear) dis-
crepancy minimization. Current state of the art for balanc-
ing treatment assignment requires polynomial running time
and generally requires knowing all of the covariate vectors
prior to determining assignment (Higgins et al., 2016; Har-
shaw et al., 2020; Arbour et al., 2021). As we discuss in
section 3, this is a non-starter for online treatment assign-
ment. In this setting, subjects must be allocated as they ar-
rive; it does no good to know how you should have assigned
a user at the end of the experiment; you need to know when
that subject arrives. It’s crucial that when a subject in an
experiment arrives they be swiftly allocated to a unit. Es-
pecially in an online environment, high latency will lead
to attrition, which may counteract any potential gains from
greater efficiency. Moreover, the users who attrit may be
the very subjects of interest (Munger et al., 2021). By in-
ducing differential attrition based on patience, the sample
in the experiment may differ greatly from the population
of interest on unobserved characteristics that make it diffi-
cult to extrapolate to a population-level effect (Egami and
Hartman, 2020).

There is also a variety of methods aimed at sequential, on-
line assignment in experiments. The seminal work in this
literature is Efron (1971) which introduced an online vari-
ant of complete randomization which aims to ensure that a
pre-specified marginal treatment probability is met without
introducing too much accidental bias. Smith (1984) pro-
vides a generalization of the Efron (1971) approach which
extends gracefully to multiple treatments. There are a va-
riety of online balanced coin designs which seek to reduce
covariate imbalance (e.g. Baldi Antognini and Zagoraiou,
2011; Moore and Moore, 2017). Moore and Moore (2017)
is based around Mahalanobis distance. As such, it has poly-
nomial time-complexity at each arrival time. In addition
to inefficiency, the theoretical worst-case behavior of this

algorithm has not been resolved, even in the stochastic set-
ting. Theoretical guarantees of this sort are paramount in
the design setting, as practitioners need to know the cred-
ibility of their inferences (and how they may differ from
simple Bernoulli randomization).

3. Background and Problem Setting
We first fix notation. Random variables will be denoted in
upper case, with sets in bold. The problem setting, which
we refer to as experimental treatment allocation, is as fol-
lows. We assume that we observe 1, . . . , n i.i.d. observa-
tions of X ∈ Rn×d: the covariates1. The experimenter is
asked to assign a treatment assignment, A ∈ {1,−1} (we
will later loosen this to multiple discrete treatment values).
We will refer to the assignments ofA as treatment and con-
trol, respectively. Each unit is imbued with potential out-
comes for each treatment, the value of the outcome if that
unit had been assigned to the given group: y(1) for treat-
ment and y(−1) for control. After assignment we observe
only the potential outcome corresponding to the realized
treatment assignment, Y . We assume that the outcomes are
not available until the conclusion of the experiment. At the
end of the experiment we are interested in measuring the
sample average treatment effect (SATE) between any two
treatments, k and k′ with the difference in means estimator:

τ̂kk′ =
1

n

n∑
i

Ai
p(Ai)

Yi (1)

where p(Ai) denotes the probability of assigning treatment
Ai to instance i. Note that this is simply the difference-
in-means rather than the more general Horwitz-Thompson
estimator (Horvitz and Thompson, 1952), as the treatment
probability is marginal rather than conditional. More so-
phisticated estimators are usable in this setting (e.g. Tsiatis
et al., 2008; Aronow and Middleton, 2013), but we will
focus on the simplest as we optimize design as is common-
place for studying design (Kallus, 2017; Harshaw et al.,
2020).

If propensity scores are constant, the estimator of the SATE
given by equation 1 will be unbiased and consistent for its
oracle counterpart,

τkk′ =
1

n

n∑
i

yi(k)− yi(k′), (2)

the difference of potential outcomes of the k and k′ treat-
ments. This SATE is our estimand of interest, as estimated
by equation 1.

1We assume linear feature maps throughout. We note that
nonlinearities can be handled with the same guarantees following
Dwivedi and Mackey (2021) at the cost of additional computa-
tional complexity.
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We will maintain the following assumptions:

Assumption 1 (Consistency). Yi = yi(k) if Ai =
k ∀i, k.

The problem of experimental allocation is to observe co-
variate vectors and assign A to units so as to achieve desir-
able properties of the SATE (for instance, to minimize vari-
ance). In the most general setting where no assumptions are
placed the relationship between the covariates and outcome
complete randomization—randomly drawing assignments
without respect to background covariates—is known to be
minimax optimal (Kallus, 2017).

3.1. Robustness in sequential design

Experiments are prized for their ability to provide unbiased
estimates of causal effects with relatively mild assump-
tions. These assumptions are on the design of the exper-
iment rather than more difficult assumptions about the data
used in the course of analysis (Sekhon, 2009; Aronow et al.,
2021).

In the study of vector balancing, there are three main sam-
pling schemes of interest, listed in order of how adversarial
they are:

• Stochastic arrivals Units are sampled i.i.d. from some
fixed (possibly infinite) population. As such, a given co-
variate vector is just as likely to arrive early in the se-
quence as late.

• Oblivious adversarial arrivals The adversary is allowed
to arbitrarily set the order in which units arrive prior to
the first assignment, but cannot change the order in re-
sponse to assignment of the units to treatment/control.

• Fully adversarial arrivals The adversary is allowed
to arbitrarily set the order in which units arrive and
may change the ordering in response to assignments.
The fully adversarial case has a discrepancy bound of
Ω
(√

T
)

, with Bernoulli randomization as the optimal
strategy (Alweiss et al., 2020).

Assumption 2 (Oblivious Adversary). The current imbal-
ance is independent of the newly arrived covariate profile
conditional on the history of covariate profiles

3.2. Balance v. Robustness

The fully adversarial case represents an extreme form of
robustness. In the face of such an adversary there is no
strategy more effective than complete randomization, as in
the No Free Lunch Theorem of Kallus (2018). As such, it
isn’t possible to reduce imbalance by departing from com-
plete randomization without incurring a large cost in terms
of robustness. In the oblivious adversarial setting, however,

the best available algorithms for discrepancy minimization
incorporate randomization (Alweiss et al., 2020; Dwivedi
and Mackey, 2021), but with substantially less entropy than
in the fully adversarial environment by modulating their as-
signment probabilities based on the current state of imbal-
ance, leading to O(log nd/δ) discrepancy with probability
1 − δ. In this setting, it is not necessary to “purely” ran-
domize to ensure sufficient robustness, but rather it is only
necessary to incorporate sufficient randomization so that an
adversary cannot recover too much information about the
state of the system at any point in time.

It is this setting which incurs a substantive tradeoff between
imbalance minimization and robustness (Harshaw et al.,
2020): too much randomization will result in greater im-
balance (and, therefore, variance), while too little will re-
sult in the potential for exploitation by the adversary. The
algorithmic task is to assign units such that imbalance is
reduced, while randomizing enough that it’s impossible to
infer the algorithm’s state at any time. Our approach in-
corporates a parameter, φ, to manage the tradeoff between
imbalance reduction and worst-case error. This allows the
practitioner to choose how to manage this tradeoff based on
their preferences between the two.

4. Weighted Online Discrepancy
Minimization

Our approach for online experimental design uses weighted
online discrepancy minimization. In what follows, we first
describe our procedure–a variant of prior work (Alweiss
et al., 2020; Dwivedi and Mackey, 2021) to accommodate
arbitrary marginal treatment probabilities–before describ-
ing it’s application and implications for experimental de-
sign.

We consider a variant of the online Komlós prob-
lem (Spencer, 1977), where vectors x1, . . .xn arrive one
by one and must be immediately assigned a weighted sign
of either −2q or 2(1 − q), for 0 < q < 1, such that
the weighed discrepancy ‖

∑n
i=1 ηixi‖∞, where ηi is the

weighted sign given to xi, is minimized. Notice that when
q = 1/2, the signs become ±1.

Algorithm 1, takes i = 1, . . . , n unit vectors in sequentially
and assigns them to a treatment and control, represented by
the value of ηi. The procedure, an extension of recent work
in online discrepancy minimization (Alweiss et al., 2020;
Dwivedi and Mackey, 2021), assigns treatment with prob-
ability proportional to the inner product between a running
sum of the signed prior observations. The algorithm and
analysis differs from prior work for discrepancy in two as-
pects which are necessary for use in experimentation:

1. We provide a ridge regression guarantee, by characteriz-
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ing the random vectors output by the algorithm in terms

of the projection matrix, P i = X>i

(
XiX

>
i

)−1
Xi,

where Xi is the i × d submatrix of X corresponding
to covariates {x1, ..,xi}. This can be seen as an online
analogue to what is provided Harshaw et al. (2020) for
offline discrepancy minimization.

2. A generalization of the discrepancy minimization al-
gorithm given by Dwivedi and Mackey (2021) to al-
low for arbitary marginal probabilities q. This allows
for the case of imbalanced treatment assignments. A
straightforward adoption of the analysis in Dwivedi and
Mackey (2021) to this case results in a worse depen-
dence on 1/q. We derive a sub-exponential concentra-
tion bound and get a better dependence on 1/q.

Algorithm 1 takes each input vector xi and assigns it
{−2q, 2(1 − q)} signs online to maintain low weighted discrep-
ancy with probability 1− δ.

Input: x, q
c← min(1/q, 9.3) log(2n/δ)
for i from 1 to n do

if |w>i−1xi| > c then

wi ← wi−1 − 2q
w>i−1xi

c
xi

else

ηi ←

{
2(1− q), w.p. q(1−w>i−1xi/c)

−2q, w.p. 1− q(1−w>i−1xi/c)

wi ← wi−1 + ηixi
end if

end for
Output: η,w

Our main theorem relies on two non-standard definitions
of sub-Gaussian and sub-exponential random vectors. We
provide a definition of each below before introducing our
main results.

Definition 1 (Sub-Gaussian). A mean zero random vector
w is (σ,P ) sub-Gaussian if for all unit vectors u and λ ∈
R, E[exp

(
λw>u

)
] ≤ exp

(
λ2σ2u>Pu

2

)
.

Definition 2 (Sub-exponential). A mean zero random
vector w is (ν, α,P ) sub-exponential if for all unit
vectors u and |λ| ≤ 1

α
√
u>Pu

, E[exp
(
λw>u

)
] ≤

exp
(
λ2ν2u>Pu

2

)
.

Theorem 1 (Main). Let w1, ...wn be as in Algorithm 1,
A = 0.5803, B = 0.4310 and α = 2/B. Then

1. wi is mean zero
(√

c/2q, Pi

)
sub-Gaussian.

2. wi is mean zero
(√

8Ac, α, Pi

)
sub-exponential.

3. With probability 1− δ, for all i, |wT
i xi| ≤ c.

Note that ηi is defined only when |w>i−1xi| ≤ c. Therefore,
η is defined with probability at least 1− δ.
Remark 1. Ifwi is a is a mean zero (σ,P i) sub-Gaussian
random vector, then Cov(wi) ≤ σ2P i. Similarly, we have
that if wi is a is a mean zero (ν, α, Pi) sub-exponential
random vector, then Cov(wi) ≤ 3

2ν
2P i. A proof is given

in Lemma 6.

We will use Theorem 1 to derive results on the average
treatment effect using the framework developed by (Har-
shaw et al., 2020).

5. Online Experimental Design
We now describe how the results developed in section 4 can
be applied to experimental design, and describe the impli-
cations in terms of the efficacy of the estimate.

Let zi = ηi + 2q − 1 ∈ {−1, 1}, denote treatment sta-
tus with 1 indicating treatment, and −1 indicating control,
respectively. We will show that the expected imbalance
is zero, i.e., E[ηi] = 0, and so we have marginal treat-
ment probability E[zi] = 2q − 1, and z − E[z] = η. Let
µ = Y (1)

4q + Y (0)
4(1−q) . Harshaw et al. (2020) give a linear al-

gebraic expression for the error of HT-estimators in terms
of µ. In particular, they show

Lemma 1 (Lemma A2 and Corollary A1 in (Harshaw et al.,
2020)). Let τ̂ = 1

n

∑n
i

Ai
p(Ai)

Yi be the empirical estimate
of the average treatment effect and τ be its population
counterpart. We have

τ̂ − τ =
2

n
(z − E[z])

>
µ =

2

n
η>µ

and hence,

Var(τ̂) = E
[
(τ̂ − τ)2

]
=

4

n2
µ>Cov(z)µ.

5.1. Controlling Balance/Robustness Tradeoff

Theorem 1 immediately implies that assignments gener-
ated by Algorithm 1 are well balanced. But optimizing just
for balance can lead to accidental bias (Efron, 1971). We
have from Lemma 1 that Var(τ̂) = 4

n2λmax (Cov(z)) ‖µ‖2
in the worst case when µ is along the top eigenvector of
Cov(z). Therefore, to control accidental bias we need to
make sure λmax (Cov(z)) is not high.

We achieve this by augmenting the original covariates xi

by
√
φei to get

[ √
φei√

1− φxi

]
, where φ ∈ (0, 1) is a pa-

rameter which controls the extent of the covariate balance,
and ei is a basis vector in dimension n. By a simple cal-
culation, we can see that running Algorithm 1 on xi aug-
mented with

√
φei is equivalent to running it with xi and
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replacing w>i−1xi by
√

1− φw>i−1xi everywhere. There-
fore, we don’t have to explicitly augment the covariates in
the algorithm.

We note that with augmented covariates, wn =[ √
φη√

1− φX>η

]
is a sub-Gaussian or a sub-exponential

random vector as in Theorem 1.

The parameter φ controls the worst case behavior of the
assignment process. In the fully general case, when no as-
sumptions are placed on the potential outcomes, it’s known
that complete randomization is minimax optimal. How-
ever, as our results and others show, with additional as-
sumptions substantial variance reduction can be achieved.
The largest eigenvalue of the covariance matrix of treat-
ments quantifies the extent to which bias can occur from
this misspecification. The function of φ in our setting (and
also in Harshaw et al. (2020)), is to balance between re-
ducing this worst case bias and improving the precision of
effect estimates by minimizing imbalance. We will see in
Proposition 6, the worst case bias becomes unbounded as
the algorithm focuses solely on balance, while the improve-
ment from balancing given in Proposition 7 has the oppo-
site dependence on φ.

We now describe the properties of treatment effect es-
timates generated using the weighted online design.
Our main guarantees are within the context of an im-
plicit ridge regression, and so we will define Q =(
φI + (1− φ)XX>

)−1
.

Proposition 1. When Algorithm 1 is run with augmented
covariates as described above, then η = z−E[z] is a mean
zero (

√
c/2q,Q) sub-Gaussian random vector and also,

η is a mean zero (
√

8Ac, α,Q) sub-exponential random
vector. Where A = 0.5803 as in theorem 1.

The consequence of proposition 1 is that E[η] = 0 for all i,
as given below.
Corollary 1 (Unbiasedness). When Algorithm 1 is run with
augmented covariates, we have with probability at least 1−
δ, E [

∑
i xiηi] = 0. 2

We now show how these bounds can be applied to con-
trol the balance/robustness trade-off by bounding covari-
ance Cov(z) in Loewner order. We will also let σ2 = c/2q
if c = log(2n/δ)/q and σ2 = 12Ac if c = 9.3 log(2n/δ).
Where A = 0.5803 as in theorem 1, for the remainder of
the paper.
Corollary 2 (Eigenvalues of Treatment Covariance). With
probability at least 1−δ, Algorithm 1 produces η satisfying
Cov(z) = Cov(η) � σ2Q.

2Here and in other places, 1− δ is a lower bound on the prob-
ability that all ηis are defined in Algorithm 1. The expectations
are conditional on this event.

Proposition 2 gives a bound on covariate discrepancy at the
end of the experiment.
Proposition 2. Letw =

∑
i ηixi. With probability at least

1− δ,

‖w‖2 ≤
√
d ‖w‖∞ ≤ min

(
1

q
, 9.3

)√
d log(4d/δ) log(4n/δ)

2(1− φ)φ .

5.2. Error bounds

Our final set of results provide bounds on the concentration
and worst case mean squared error of the treatment effect
estimation. As we note above, we do so by bounding our
estimate by an implicit ridge regression.

Proposition 3 (Concentration of ATE). Algorithm 1 when
run with augmented covariates, generates a random as-
signment z such that

|τ̂ − τ | = 2

n
|η>µ| ≤ 2c

n

√
µ>Qµ.

with probability 1− δ.

Lemma A10 in (Harshaw et al., 2020) shows thatµ>Qµ =

minβ∈Rd
[
1
φ‖µ−Xβ‖

2 + ‖β‖2
(1−φ)

]
.

Proposition 4. The worst-case mean squared error of
the online balancing walk design is upper bounded by
E
[
(τ̂ − τ)2

]
≤ 4σ2

φn2

∑n
i=1 µ

2
i where φ ∈ (0, 1) with prob-

ability 1− δ.

Proof of Proposition 4. This follows from Lemma 1 and
Proposition 2. We note thatQ � σ2

φ I.

Proposition 5 (Ridge Connection). The worst-case mean
squared error of the online balancing walk design is up-
per bounded by an implicit ridge regression estimator with
regularization proportional to φ. That is, E

[
(τ̂ − τ)2

]
≤

4σ2L
n where L = minβ∈Rd

[
1
φn‖µ−Xβ‖

2 + ‖β‖2
(1−φ)n

]
with probability 1− δ.

We note that proposition 5 closely mirrors the results ob-
tained by Harshaw et al. (2020) in the offline case, with an
additional penalty (σ2) incurred by using an online proce-
dure.

5.3. Algorithm with Restart

We saw earlier that η, z are defined only with probability
1− δ. This is because with our choice of c, only with prob-
ability 1 − δ we have for all i, |w>i xi| ≤ c. This means
our treatment assignment fails with probability δ. There is
a simple way to make sure that the algorithm never fails
and have same error bound guarantees with a slightly worse
constant.
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To do so, we slightly modify Algorithm 1 so that whenever
|w>i−1xi| > c for a particular i, we start a new instance of
the algorithm for covariates xi+1, ...xn. This is equivalent
to setting wi−1 = 0 and continuing with the algorithm.

Since for any treat assignment procedure E (τ̂ − τ)
2 just

depends on Cov(z), and Algorithm 1 fails with probability
≥ δ, we can show that

Cov(z) � (1− δ)Q+ δQ+ δ2Q+ ...

� 2Q when δ ≤ 1/2.

Therefore, for the modified algorithm, we will have error
guarantees as in Propositions 4 and 5 (but worse by at most
a factor of 2) and with probability one.

5.4. Extension to Multiple Treatments

In this section, we consider an online multi-treatment set-
ting, where each vector is assigned to a group in M =
{m1,m2, . . . ,mk} immediately on arrival. For each 1 ≤
i ≤ k, group mi is associated with a weight αi. The goal
is to minimize the multi-treatment discrepancy:

max
m1,m2∈M

2

∥∥∥∥s(m1)/α1 − s(m2)/α2

1/α1 + 1/α2

∥∥∥∥
∞

where s(m) is the sum of all vectors assigned to treatment
m. Notice that by setting α1 = 1

1−q and α2 = 1
q , we can

recover the definition given for the weighted discrepancy
between two treatments m1 and m2.

Our algorithm can leverage any oracle (we call it
BinaryBalance in Algorithm 2) that minimizes the
weighted discrepancy for two treatments. Our results are
obtained by using Algorithm 1.

We first build a binary tree where each leaf of the tree cor-
responds to one of the k treatments in M . Let h be the
smallest integer such that 2h ≥ k. We start with a complete
binary tree of height h, and then remove 2h−k leaves from
the tree such that no two siblings are removed. Note that
this is possible by the definition of h. We further contract
each internal node with only one child to its child. This
process does not change the number of leaves in the tree.
Let T be the obtained tree. By construction, all internal
nodes of T have 2 children and T has exactly k leaves. We
then associate each leaf of T with a treatment in M . For
each vector assigned to treatment mi, we also say that it is
assigned to the leaf corresponding to mi, ∀1 ≤ i ≤ k. For
each node v ∈ T , denote by s(v) the sum of all vectors
assigned to leaves under v. In addition, let α(v) be the sum
of all weights assigned to leaves under v. For each internal
node v of T , the weighted discrepancy vector at v is defined

as:

w(v) =
α(vr)

α(vl) + α(vr)
s(vl)−

α(vl)

α(vl) + α(vr)
s(vr),

where vl and vr are the left and right child of v respectively.

For each internal node v in T , we maintain an independent
run of a two-treatment algorithm that minimizes ‖w(v)‖∞.
At a high level, we minimize the weighted discrepancies at
all internal nodes simultaneously. When a new vector x ar-
rives, we first feed it to the algorithm at root r. If the result
is +, we continue with the left sub-tree of r. Otherwise,
we go to the right sub-tree. We continue in that manner un-
til we reach a leaf l. x will then be assigned to l (and the
treatment associated with l).

Theorem 2. Let BinaryBalance be Algorithm 1. Then

Algorithm 2 obtains O
(

log k
√

(1−φ)d log(dk/δ) log(nk/δ)
φ

)
multi-treatment discrepancy with probability 1− δ.

Algorithm 2 KGroupBalance takes each input vector xi and
assigns it to one of the groups online to maintain low discrepancy
with probability 1− δ.

Input: x, k, α.
h← smallest integer such that 2h ≥ k.
T ← complete binary tree with height h. Remove 2h−k leaves
from T such that no two siblings are removed. Associate each
treatment to a leaf of T . Contract each internal node in T with
one child to its child.
for node v in T do
α(v)← sum of all weights of groups associating with leaves
under v.

end for
for internal node v of T do

Instantiate BinaryBalance(v) ← oracle for weighted
discrepancy problem at v with weighted signs α(vr)

α(vl)+α(vr)

and − α(vl)
α(vl)+α(vr)

.
end for
for i from 1 to n do
v ← root of T .
for v is an internal node of T do

Feed xi to BinaryBalance(v)
v ← one of the children of v according to the assignment
of BinaryBalance(v) on input xi

end for
Assign xi to the group corresponding to v.

end for

6. Experiments
In this section, we provide simulation evidence on the effi-
cacy of our proposed methods. In particular, we use a wide
variety of data generating processes, many of which do not
assume that units arrive i.i.d. as is often standard in sim-
ulation settings for this problem. Subjects are unlikely to
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Figure 1. Time to design. All timings performed on a
ml.r5.2xlarge instance of Amazon SageMaker. The y-axis
is scaled by the square root for easier visualization.

arrive truly i.i.d. in the real world. Earlier arrivals will typ-
ically be more active than late-arriving units, for example.

All data generating processes used in simulations are
shown in Table A1. If not otherwise specified, the sam-
ple size is 1000 subjects, the number of groups is two and
the marginal probability of treatment is 1

2 .

Methods compared in the simulations are simple ran-
domization (Bernoulli coin flips), complete randomization
(fixed-margins randomization), the biased coin designs of
Efron (1971) and of Smith (1984), QuickBlock of Higgins
et al. (2016), and Alweiss et al. (2020). These are compared
to our proposed methods which are generalized versions
of the discrepancy minimization procedure of Dwivedi and
Mackey (2021). We provide three versions of our pro-
posed algorithms, called BWD for ”Balancing Walk De-
sign”. The most basic version (BWDRandom) reverts to
simple random assignment for all remaining periods once
|w>i−1xi| > c. Our preferred approach restarts the algo-
rithm in this case as described in section 5.3. We examine
this with two levels of robustness, φ: 0 (purely balancing)
and 0.5 (a uniform mix between randomization and bal-
ancing): BWD(0) and BWD(0.5) respectively. For further
details, see section A.4.

In these comparisons, BWD need not out-perform all meth-
ods in all data-generating processes. QuickBlock, for in-
stance, is a fully off-line method, so comparable perfor-
mance by an online method is noteworthy. In general, Al-
weiss and BWD will be most effective when the true re-
lationship between covariates and outcome is linear, since
they seek linear balance. All plots incorporate 95% confi-
dence intervals.

6.1. Binary treatment

Timing. Our proposed method (BWD) is highly efficient,
scaling substantially better than other balancing methods.
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Figure 2. MSE. BWD provides effective variance reduction
across a wide array of simulation environments.

This analysis of runtime directly compares online meth-
ods to a widely used offline balancing method (Quick-
Block). It’s important to note that the QuickBlock algo-
rithm cannot be used in the online setting, even if its run-
time did not make that prohibitive. While QuickBlock is
O(n log n), the proposed online balancing methods are all
linear-time. Given QuickBlock’s runtime, the following
simulations only include it for comparisons up to sample
sizes of 104.

MSE. Next, we demonstrate in Figure 2 how imbalance
minimization translates to improved estimation of causal
effects, measured by the mean squared-error of our es-
timate of the average treatment effect. We normalize
this graph based on n, the rate of convergence of the
difference-in-means estimator under simple randomization.
The results depend strongly on the true nature of the data-
generating process. In short, on non-linear data generat-
ing processes, offline blocking performs better than any-
thing else, but in many settings BWD converges to sim-
ilar error rates as QuickBlock. On linear or near-linear
data-generating processes, our proposed algorithms per-
form very strongly, outperforming QuickBlock even in
small sample-sizes. When there is a break from the purely
i.i.d. stochastic setting (such as LinearDriftDGP and
LinearSeasonDGP), BWD behaves well, as expected.
When φ is chosen to be 0.5 (the line marked BWD(0.5)),
representing a desire for more emphasis on robustness than
on pure imbalance reduction, the reduction in MSE is more
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Figure 3. MISE. BWD effective reduces variance no matter the
number of treatments.

similar to full imbalance minimization than to complete
randomization.

6.2. Multiple Treatments

MISE. BWD gracefully extends to the multiple-
treatment setting, which we demonstrate in Figure 3. This
chart measures the mean integrated squared-error of our
estimates of the ATEs (relative to a single control group).
Figure 3 shows the results. BWD consistently outper-
forms existing online assignment methods by substantial
margins.

An array of additional simulation results may be found in
Appendix B.

7. Conclusion
Experiments are a crucial part of how humans learn about
the world and make decisions. This paper is aimed at pro-
viding a way to more effectively run experiments in the
online setting. Practitioners must commonly operate their
experiments in this environment, but due to the lack of suit-
able options for design fall back to simple randomization as
the assignment mechanism. In this paper, we have shown
how the Balancing Walk Design can be an effective tool
in this setting. It is efficient, effective at reducing imbal-
ance (and, therefore, the variance of resulting causal esti-
mates), robust and it is fully suited to the particularities of
online treatment assignment. Simulations have shown it to

work well across a range of diverse settings. The Balancing
Walk Design can improve the practice of large-scale online
experimentation.
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A. Proofs
A.1. Proof of Theorem 1

Proposition 6 (Loewner Order). LetM � 0, C ≥ 1, L ≥ 0. If

M � CLP := CLB>
(
B>B

)−1
B

then for any vector v ∈ Rn with ‖v‖2 ≤ 1

M ′ =
(
I − C−1vv>

)
M
(
I − C−1vv>

)
+ Lvv>

satisfies

0 �M ′ � CLP ′ := CLP + CL
(I − P )vv> (I − P )

v> (I − P )v
.

Proof. By definition ofM ′ and the assumptionM � cLP , we have

M ′ � CL
(
I − C−1vv>

)
P
(
I − C−1vv>

)
+ Lvv>.

Therefore, it is sufficient to prove(
I − C−1vv>

)
P
(
I − C−1vv>

)
+ C−1vv> � P +

(I − P )vv> (I − P )

v> (I − P )v
.

Also note that, since ‖v‖ ≤ 1 and C ≥ 1, we can absorb C into v (by taking v := v/
√
C) and therefore without loss of

generality assume that C = 1 and ‖v‖ ≤ 1. Define:

P x = B>
(
B>B

)−1
B Qx := (I − P ) P v = vv> Qv =

(
I − vv>

)
a := P xv b := Qxv α := ‖a‖2 β := ‖b‖2

We want to show

QvP xQv + P v 4 P x +
QxP vQx

β

Beginning by rewriting the LHS

QvP xQv + P v = (I − P v)P x(I − P v) + P v

= P x − P vP x − P xP v + P vP xP v + P v

= P x − va> − av> + vv>α+ P v

= P x − (a+ b)a> − a(a+ b)> + (a+ b)(a+ b)>α+ P v

Expanding P v as P v = (a+ b) (b+ a)
>

= aa> + bb> + ab> + ba> gives

P x − (a+ b)a> − a (a+ b)
>

+ (1 + α)
(
aa> + bb> + ab> + ba>

)
=P x + (α− 1)aa> + α

(
ab> + ba>

)
+ (1 + α)bb>

Since ‖v‖2 ≤ 1, we have α + β ≤ 1. Now considering the difference of the LHS from the RHS after multiplying both
sides by β we arrive at

β(RHS− LHS) =bb>( 1− β(1 + α)︸ ︷︷ ︸
1−β−βα≥α(1−β)≥α2

) + β(1− α)aa> − αβ(ab> + ba>)

<α2bb> + β2aa> − αβ(ab> + ba>)

= (αb− βa) (αb− βa)
> < 0.
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Lemma 2. When |w>i−1xi| < c, we have
E [ηi] = −2qw>i−1xi/c.

Proof.

E [ηi] = 2(1− q) · (q(1−w>i−1xi/c)) + (−2q) · (1− q(1−w>i−1xi/c))
= 0 + 2(1− q)(−qw>i−1xi/c) + (−2q)(qw>i−1xi/c)

= −2qw>i−1xi/c.

For all i and u ∈ Rd, we have

〈wi,u〉 =

〈
wi−1,u− 2q

x>i u

c
xi

〉
+ εix

>
i u

= 〈wi,

(
I − 2q

c
xix

>
i

)
u〉+ εix

>
i u

= 〈wi,Qxi,cu〉+ εix
>
i u,

where εi = 0 if |w>i−1xi| > c and εi = ηi − E[ηi] otherwise andQxi,c =
(
I − 2q

c xix
>
i

)
.

Consider the case when |w>i−1xi| ≤ c and εi = ηi − E[ηi]. Let q̃ = q(1−w>i−1xi/c). Note that 0 ≤ q̃ ≤ 2q. We have

εi ←

{
2(1− q̃) with probability q̃,
−2q̃ with probability 1− q̃.

Definition 3 (Sub-Gaussian). A mean zero random variable X is sub-Gaussian with parameter σ if for all λ ∈ R,

E[exp (λX)] ≤ exp

(
λ2σ2

2

)
.

A mean zero random vector w is (σ,P ) sub-Gaussian if for all unit vectors u and λ ∈ R,

E[exp
(
λw>u

)
] ≤ exp

(
λ2σ2u>Pu

2

)
.

In particular, w>u is σ′ sub-Gaussian, where σ′2 = σ2u>Pu.

Definition 4 (Sub-exponential). A mean zero random variable X is (ν, α) sub-exponential if for all |λ| ≤ 1
α ,

E[exp (λX)] ≤ exp

(
λ2ν2

2

)
.

A mean zero random vector w is (ν, α,P ) sub-exponential if for all unit vectors u and |λ| ≤ 1

α
√
u>Pu

,

E[exp
(
λw>u

)
] ≤ exp

(
λ2ν2u>Pu

2

)
.

In particular, w>u is (ν′, α′) sub-exponential, where ν′2 = ν2u>Pu and α′ = α
√
u>Pu.

The following concentration bounds for sub-Gaussian and sub-exponential vectors are obtained from standard bounds
for scalar sub-Gaussian and sub-exponential random variables (Wainwright, 2019) by scaling σ, ν and α by appropriate
factors.
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Lemma 3 (Sub-Gaussian Concentration). If a random vector w is (σ,P ) sub-Gaussian, then for all unit vectors u,

P
(
|w>u| ≥ t

)
≤ 2 exp

(
− t2

2σ2u>Pu

)
.

Lemma 4 (Sub-exponential Concentration). If a random vector w is (ν, α,P ) sub-exponential, then for all unit vectors
u,

P
(
|w>u| ≥ t

)
≤

2 exp
(
− t2

2ν2u>Pu

)
if 0 ≤ t ≤ ν2

√
u>Pu
α

2 exp
(
− t

2α
√
u>Pu

)
if t > ν2

√
u>Pu
α .

Lemma 5. Suppose X is a (ν, α) sub-exponential random variable with 2
ν2 ≤ 1

α2 . Then

Var(X) ≤ 3

2
ν2.

Proof. We will use the inequality x2 ≤ C (ex + e−x) , ∀x and C = 1.5/e. This gives

Var(λX) ≤ CE
(
eλX + e−λX

)
≤ 2C exp(0.5λ2ν2), if |λ| ≤ 1

α
.

We therefore have

Var(X) ≤ Cν2 exp(0.5λ2ν2)

0.5λ2ν2

= eCν2 when 0.5λ2ν2 = 1.

We get the result with C = 1.5/e.

Lemma 6. If w is a is a mean zero (σ,P ) sub-Gaussian random vector, then Cov(w) � σ2P . If w is a is a mean zero
(ν, α,P ) sub-exponential random vector with 2

ν2 ≤ 1
α2 , Cov(w) � 3

2ν
2P .

Proof. For all unit vector u, we have

u>Cov(w)u = u>E(ww>)u = E[(w>u)2] = Var(w>u).

By definition, if w is a is a mean zero (σ,P ) sub-Gaussian random vector, w>u is σ2u>Pu sub-Gaussian. Therefore,

u>Cov(w)u = Var(w>u) ≤ σ2u>Pu

as desired.

Similarly, if w is a is a mean zero (ν, α,P ) sub-exponential random vector, w>u is (ν
√
u>Pu, α

√
u>Pu) sub-

exponential. By Lemma 5,

u>Cov(w)u = Var(w>u) ≤ 3

2
ν2u>Pu.

Lemma 7. For all i ∈ [n]

1. εi is sub-Gaussian with σ = 1, and

2. εi is (4
√
Aq, 2/B) sub-exponential for any A,B > 0 satisfying ex < 1 + x+Ax2 for x < B.
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Proof. For the first claim, note that a random variable bounded in [a, b] is sub-Gaussian with σ2 = (b−a)2
4 . To prove second

claim, we have

exp(λεi) = q̃ exp(2λ(1− q̃)) + (1− q̃) exp(−2λq̃)

= exp(−2λq̃)(1 + q̃(exp(2λ)− 1))

< exp (−2λq̃) exp (q̃(exp(2λ)− 1)))

≤ exp
(
q̃A(2λ)2

)
,

for 2λ < B. The last step follows from ex ≤ 1 + x+Ax2 for x < B. Recall that q̃ < 2q, we have

exp(λεi) ≤ exp

(
16qAλ2

2

)
for λ < B/2 as desired.

Let P i, i ∈ [n] be orthogonal projection matrices onto the span of {x1, ..,xi}, that is,

P i := P i−1 +
(I − P i−1)xix

>
i (I − P i−1)

‖(I − P i−1)xi‖2
,

with P 0 = 0.

Lemma 8. Suppose A,B > 0 satisfy ex < 1 + x+Ax2 for all x < B. Let σ2 := c/2q, ν2 := 8Ac and α := 2/B. Then

1. If wi−1 is (σ,P i−1) sub-Gaussian, wi is (σ,P i) sub-Gaussian.

2. If wi−1 is (ν, α,P i−1) sub-exponential, wi is (ν, α,P i) sub-exponential.

Proof. We have

E
[
exp(λw>i u)

]
= E

[
E
[
exp(λw>i u)

∣∣wi−1
]]

= E

[
E

[
e
λ

〈
wi−1,u−2q

x>i u

c xi

〉
+λεix

>
i u∣∣wi−1

]]
= E

[
eλ〈wi−1,Qxi,c

u〉E
[
eλεix

>
i u
∣∣wi−1

]]
.

First, suppose that wi−1 is (σ,P i−1) sub-Gaussian, we will prove that wi is (σ,P i) sub-Gaussian. By Lemma 7, εi is
1-sub-Gaussian. Therefore,

E
[
eλ〈wi−1,Qxi,c

u〉E
[
eλεix

>
i u|wi−1

]]
≤ E

[
eλ〈wi−1,Qxi,c

u〉 · e 1
2λ

2‖x>i u‖
2
]

≤ e
λ2σ2

2 (Qxi,c
u)
>
P i−1(Qxi,c

u)+λ2

2 (u>xix
>
i u).

We now consider the exponent (divided by the common factor λ2). It is sufficient to show

σ2

2

(
Qxi,cu

)>
P i−1

(
Qxi,cu

)
+

1

2
u>xix

>
i u ≤

σ2

2
u>P iu ∀u

⇐⇒ σ2Q>xi,cP i−1Qxi,c + xix
>
i � σ2P i.

Using Proposition 6 (with L← 1, C ← c/2q) and assuming σ2 = c/2q ≥ 1, we have

Qxi,cP i−1Qxi,cσ
2 + P xi =

c

2q

(
I − 2q

c
xix

>
i

)
P i−1

(
I − 2q

c
xix

>
i

)
+ xix

>
i

� c

2q
P i.
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Therefore, wi is a (c/2q,P i) sub-Gaussian random vector.

Now suppose that wi−1 is (ν, α,P i−1) sub-exponential, we will prove that wi is (ν, α,P i) sub-exponential. Again, by
Lemma 7, εi is (4

√
Aq, 2/B) sub-exponential. Therefore,

E
[
eλ〈wi−1,Qxi,c

u〉E
[
eλεix

>
i u|wi−1

]]
≤ E

[
eλ〈wi−1,Qxi,c

u〉 · e8Aqλ
2‖x>i u‖

2
]

for |λ| < 2
B|x>i u|

= 1

α
√
u>xix>i u

. Since wi−1 is (ν, α,P i−1) sub-exponential,

E
[
eλ〈wi−1,Qxi,c

u〉
]
≤ e

λ2ν2

2 (Qxi,c
u)
>
P i−1(Qxi,c

u)

for |λ| < 1

α
√
u>P i−1u

. Note that u>P iu is greater than both u>P i−1u and u>xix>i u. We have

E
[
eλ〈wi−1,Qxi,c

u〉E
[
eλεix

>
i u|wi−1

]]
≤ e

λ2ν2

2 (Qxi,c
u)
>
P i−1(Qxi,c

u)+ 8Aqλ2(u>xix
>
i u)

for all |λ| < 1

α
√
u>P iu

. Hence, it is sufficient to show

ν2

2

(
Qxi,cu

)>
P i−1

(
Qxi,cu

)
+ 8Aqu>xix

>
i u ≤

ν2

2
u>P iu ∀u

⇐⇒ ν2Q>xi,cP i−1Qxi,c + 16Aqxix
>
i � ν2P i.

This follows from Proposition 6 by substituting L← 16Aq and C ← c/2q and noting that ν2 = 8Ac = Lc.

Lemma 9. If c = min(1/q, 9.3) log(2n/δ) then with probability at least 1− δ, we have

|w>i−1xi| < c for all i ∈ [n].

Proof. By definition, c is either equal to log(2n/δ)/q or 9.3 log(2n/δ). We consider these two cases.

First suppose c = log(2n/δ)/q. With σ2 = c/2q, we have

c = log(2n/δ)/q = σ
√

2 log(2n/δ).

By Lemma 3,

P
(
|w>i−1xi| > c

)
≤ P

(
|w>i−1xi| > c

√
x>i P i−1xi

)
≤ 2 exp

(
− c2

2σ2

)
≤ δ/n.

The result then follows by a union bound over i ∈ [n].

Now suppose c = 9.3 log(2n/δ). Note that A = 0.5803 and B = 0.4310 satisfy ex < 1 + x + Ax2 for x < B. Let
ν2 = 8Ac and α = 2/B. We have

ν2

α
=

8Ac

2/B
= 4ABc > c.

Therefore, by Lemma 4,

P
(
|w>i−1xi| > c

)
≤ P

(
|w>i−1xi| > c

√
x>i P i−1xi

)
≤ 2 exp

(
− c2

2ν2

)
= 2 exp

(
− c

16A

)
< 2 exp

(
− c

9.3

)
≤ δ/n.

Again, the result follows by union bounding over i ∈ [n].

Lemma 9 and Lemma 8 together prove Theorem 1.
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A.2. Proof of Theorem 2

Proof of Theorem 2. Let D(δ) be the discrepancy obtained by BinaryBalance as a function of the failure probability
δ. We will show that (2 log k)D(δ/k) is the corresponding discrepancy obtained by Algorithm 2. Theorem 2 will then
follow from Proposition 2. Notice that with probability δ/k, each run of BinaryBalance at an internal node of T
has discrepancy D(δ/k). By union bounding over O(k) internal nodes, we have that with probability 1 − δ, all of the
discrepancies are bounded by D(δ/k).

Assume all the discrepancies at the internal nodes in T are bounded, we show how to bound the discrepancy between any
two treatments. Let l and l′ be any two leaves in T . The goal is to show that∥∥∥∥ α(l′)

α(l′) + α(l)
s(l)− α(l)

α(l′) + α(l)
s(l′)

∥∥∥∥
∞

is small. First we relate s(v) to s(vl) and s(vr) where vl, vr are the left and right children of v. By definition,

w(v) =
α(vr)

α(vl) + α(vr)
s(vl)−

α(vl)

α(vl) + α(vr)
s(vr)

and
s(v) = s(vl) + s(vr).

Therefore,

w(v) = s(vl)−
α(vl)

α(vl) + α(vr)
s(v),

and

−w(v) = s(vr)−
α(vr)

α(vl) + α(vr)
s(v).

Hence, both ∥∥∥∥s(vl)− α(vl)

α(v)
s(v)

∥∥∥∥
∞

and
∥∥∥∥s(vr)− α(vr)

α(v)
s(v)

∥∥∥∥
∞

are bounded by D(δ/k).

Now consider v1, v2 and v3 in T such that v1 is a child of v2 and v2 is a child of v3. We have, by triangle inequality,∥∥∥∥s(v1)− α(v1)

α(v3)
s(v3)

∥∥∥∥
∞
≤
∥∥∥∥s(v1)− α(v1)

α(v2)
s(v2)

∥∥∥∥
∞

+
α(v1)

α(v2)

∥∥∥∥s(v2)− α(v2)

α(v3)
s(v3)

∥∥∥∥
∞
≤
(

1 +
α(v1)

α(v2)

)
D(δ/k).

Let l be a leaf in T and let lv1v2 . . . r be the path from l to the root r. Repeatedly applying the above relation along the
path gives ∥∥∥∥s(l)− α(l)

α(r)
s(r)

∥∥∥∥
∞
≤
(

1 +
α(l)

α(v1)
+

α(l)

α(v2)
. . .+

α(l)

α(r)

)
D(δ/k). (3)

Since there are at most log k nodes in the path from l to r,∥∥∥∥s(l)− α(l)

α(r)
s(r)

∥∥∥∥
∞
≤ (log k)D(δ/k).

Finally, for any two leaves l and l′,∥∥∥∥s(l)/α(l)− s(l′)/α(l′)

1/α(l) + 1/α(l′)

∥∥∥∥
∞
≤
∥∥∥∥s(l)/α(l)− s(r)/α(r)

1/α(l) + 1/α(l′)

∥∥∥∥
∞

+

∥∥∥∥s(l′)/α(l′)− s(r)/α(r)

1/α(l) + 1/α(l′)

∥∥∥∥
∞
≤ (2 log k)D(δ/k).

Remark 2. If all weights are uniform, the summation in (3) becomes a geometric series and can be bounded by a constant.
Therefore, we can remove the factor log k in Theorem 2.



Balanced Experimentation

A.3. Other Proofs

Proof of Proposition 1. Let B =

[ √
φI√

1− φX>
]

. We have from Threorem 1 that wn = Bη =

[ √
φη√

1− φX>η

]
is a

mean zero (c/2q,P ) sub-Gaussian random vector, where

P = B(B>B)−1B>

=

[
φQ ∗
∗ ∗

]
.

Therefore, by sub-Gaussianity of wn, for any vector u, we have

E
[
exp

(√
φη>u

)]
≤ exp

(
c

4q
u> (φQ)u.

)
We therefore have the sub-Gaussian claim. The sub-exponential result follows similarly.

Proof of Proposition 2. Suppose c = log(2n/δ)/q. We have from Proposition 1 that z is a (
√
c/2q,Q) sub-Gaussian

vector. This implies that Cov(z) � c
2qQ.

When c = 9.3 log(2n/δ), we have from Proposition 1 that η is a (
√

8Ac, α,Q) sub-exponential vector. Now, Lemma 5
gives that

Cov(z) � 3

2
8AcQ = 12AcQ.

Proof of Proposition 2. When c = log(4n/δ)
q we have that with probability at least 1 − δ/2, Bη is a

(√
c/2q,Q

)
sub-Gaussian vector. Since Bη =

[ √
φη√

1− φX>η

]
and Q � φI, we have

√
1− φ

∑
i ηixi =

√
1− φX>η is

a
(√

1/φ
√
c/2q, I

)
sub-Gaussian random vector. By sub-Gaussian concentration, we have with probability at least

1 − δ/2d, |
(
X>η

)>
ei| ≤

(√
(c/2φ(1− φ)q

)√
4d/δ. The result follows by a union bound over e1, ..., ed and

‖X>η‖2 ≤
√
d‖X>η‖∞.

When c = 9.3 log(4n/δ), then with probability 1 − δ,
[ √

φη√
1− φX>η

]
is a (

√
8Ac, α,Q) random vector. Like before,

this implies
√

1− φX>η is a (
√

8Ac, α, φI) random vector. By sub-exponential concentration, we have

P

(∣∣∣∣√1− φ
(
X>η

)>
ei

∣∣∣∣ ≥ t) ≤
{

2 exp
(
−t2φ/2ν2

)
when t ≤ ν2

α
√
φ

2 exp (−t/2α) otherwise

Setting t =
√

2 log(4dδ)(8Ac) ≤ c ≤ ν2/α, (when n ≥ d), we get that with probability at least 1− δ/2d, we have

|
√

1− φ
(
X>η

)>
ei| ≤ 9.3

√
log(4d/δ) log(4n/δ)

φ
.

The rest follows by a union bound.

Proof of Proposition 3. First consider the case when c = log(2n/δ)/q = σ
√

2 log(2n/δ). By Proposition 1, η is (σ,Q)

sub-Gaussian with σ =
√
c/2q. From Lemma 3, we have

P (|η>µ| > c
√
µTQµ) ≤ 2 exp

(
− c2

2σ2

)
= δ/n.
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Now consider c = 9.3 log(2n/δ). By Proposition 1, η is (ν, α,Q) sub-exponential with ν =
√

8Ac. Note that

ν2/α = 8Ac/(2/B) = 4ABc > c.

From Lemma 4, we have

P (|η>µ| > c
√
µTQµ) ≤ 2 exp

(
− c2

2ν2

)
= 2 exp

(
− c

16A

)
≤ δ/n.

The result then follows by a union bound.

Proof of Proposition 5. This follows from Proposition 2 and the proof of Theorem 3 in (Harshaw et al., 2020).

A.4. Robustness

Proposition 2 immediately gives a bound on λmax(Cov(z)) and hence bounds accidental bias.

Remark 3 (Accidental Bias). With probability ≥ 1− δ the maximum eigenvalue of Cov(z) satisfies

λmax (Cov(z)) ≤ σ2

φ
.

B. Simulations
B.1. Description

DGP Name X y(0) y(a) s.t. a 6= 0

QuickBlockDGP Xi,k ∼ U(0, 10),∀k ∈ {1, 2}
∏2
k=1Xk + ε 1 + y(0)

LinearDGP Xi,k = εk, k ∈ {1, . . . , 4} Xβ + 1
10εy(0) 1 + Xβ + 1

10εy(1)

LinearDriftDGP Xi,k = i
N + εk, k ∈ {1, . . . , 4} Xβ + 1

10εy(0) 1 + Xβ + 1
10εy(1)

LinearSeasonDGP Xi,k = sin(2π i
N ) + εk, k ∈ {1, . . . , 4} Xβ + 1

10εy(0) 1 + Xβ + 1
10εy(1)

QuadraticDGP Xi,k = 2βk − 1, k ∈ {1, 2} µ0 + 1
10εy(0) 1 + µ0 + 1

10εy(1)
µ0 = X1 −X2 +X2

1 +X2
2 − 2X1X2

CubicDGP Xi,k = 2βk − 1, k ∈ {1, 2} µ0 + 1
10εy(0) 1 + µ0 + 1

10εy(1)
µ0 = X1 −X2 +X2

1 +X2
2 − 2X1X2

+X3
1 −X3

2 − 3X2
1X2 + 3X1X

2
2

SinusoidalDGP Xi,k = 2βk − 1, k ∈ {1, 2} µ0 + 1
10εy(0) 1 + µ0 + 1

10εy(1)
µ0 = sin

(
π
3 + πX1

3 −
2πX2

3

)
−6 sin(πX1

3 + πX2

4 ) + 6 sin(πX1

3 + πX2

6 )

Table A1. Data generating processes used in simulations. All εs indicate a standard normal variate and all βs indicate a standard uniform
variate. i indicates a unit’s index. Covariate vectors are row-normalized to unit norm, except for the QuickBlock simulation which just
normalized relative to the maximum row norm.
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SinusoidalDGP

LinearSeasonDGP QuadraticDGP QuickBlockDGP

CubicDGP LinearDGP LinearDriftDGP
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Figure A1. Bias

B.2. Binary Treatments

Bias. Figure A1 shows that none of the examined methods are biased (but that does not imply that they are robust (Efron,
1971; Harshaw et al., 2020)).

Imbalance. To measure linear imbalance, we calculate the L2 norm of the difference in covariate means. While this is
far from the only measure of imbalance, it serves as an effective metric to demonstrate how well various metrics serve to
eliminate linear imbalances, a common diagnostic used my experimenters. We further normalize across sample-size by
multiplying by the sample size. Since all methods are unbiased, this has the effect of showing parametric convergence
rates as a flat line in the graph. Unsurprisingly, methods which directly optimize for linear imbalance perform very well in
Figure A2. Our proposed algorithm has better finite sample imbalance minimization than does the algorithm of (Alweiss
et al., 2020) due to the finite sample improvements of (Dwivedi and Mackey, 2021).

B.3. Non-uniform assignment

MSE. Figure A3 shows the resulting mean squared-error attained by methods which support marginal probabilities not
equal to one-half. All methods perform well, with DM performing effectively on nearly linear processes, and QuickBlock
performing slightly better when the true process is highly non-linear.

Marginal probability. The evaluation in Figure A4 examines how closely each method hews to the desired marginal
probability of treatment. All methods do a good job of ensuring the appropriate marginal distribution.

B.4. Multiple Treatments

Entropy. To ensure that treatment is being assigned with the correct marginal probability, we can measure the normalized
entropy of the empirical marginal treatment probabilities. If the values are perfectly uniform, then the value will be exactly
one. As the normalized entropy decreases, the marginal probabilities are more uneven, indicating a failure to match the
desired marginal distribution. BWD performs very similarly to complete randomization (which almost exactly matches
the desired marginal probabilities), slightly out-performing (Smith, 1984). Note that while Smith (1984) only seeks to
optimize the marginal probability of treatment for each unit, BWD additionally balances covariates.
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SinusoidalDGP

LinearSeasonDGP QuadraticDGP QuickBlockDGP

CubicDGP LinearDGP LinearDriftDGP
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Figure A2. Imbalance. BWD is highly effective at eliminating linear imbalance between groups.
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Figure A4. Marginal probability of treatment
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