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Abstract

Deep learning experiments by Cohen et al. (2021)
using deterministic Gradient Descent (GD) re-
vealed an Edge of Stability (EoS) phase when
learning rate (LR) and sharpness (i.e., the largest
eigenvalue of Hessian) no longer behave as in tra-
ditional optimization. Sharpness stabilizes around
2/LR and loss goes up and down across iterations,
yet still with an overall downward trend. The cur-
rent paper mathematically analyzes a new mecha-
nism of implicit regularization in the EoS phase,
whereby GD updates due to non-smooth loss land-
scape turn out to evolve along some deterministic
flow on the manifold of minimum loss. This is in
contrast to many previous results about implicit
bias either relying on infinitesimal updates or
noise in gradient. Formally, for any smooth func-
tion L with certain regularity condition, this effect
is demonstrated for (1) Normalized GD, i.e., GD
with a varying LR ηt = η

‖∇L(x(t))‖ and loss L; (2)

GD with constant LR and loss
√
L−minx L(x).

Both provably enter the Edge of Stability, with
the associated flow on the manifold minimizing
λ1(∇2L). The above theoretical results have been
corroborated by an experimental study.

1. Introduction
Traditional convergence analyses of gradient-based algo-
rithms assume learning rate η is set according to the basic
relationship η < 2/λwhere λ is the largest eigenvalue of the
Hessian of the objective, called sharpness. Descent Lemma
says that if this relationship holds along the trajectory of
Gradient Descent, loss drops during each iteration. In deep
learning where objectives are nonconvex and have multiple
optima, similar analyses can show convergence towards sta-
tionary points and local minima. In practice, sharpness is
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unknown and η is set by trial and error. Since deep learning
works, it has been generally assumed that this trial and error
allows η to adjust to sharpness so that the theory applies.
But recent empirical studies (Cohen et al., 2021; Ahn et al.,
2022) showed compelling evidence to the contrary. On a va-
riety of popular architectures and training datasets, GD with
fairly small values of η displays following phenomena that
they termed Edge of Stability (EoS): (a) Sharpness rises be-
yond 2/η, thus violating the above-mentioned relationship.
(b) Thereafter sharpness stops rising but hovers noticeably
above 2/η and even decreases a little. (c) Training loss
behaves non-monotonically over individual iterations, yet
consistently decreases over long timescales.

Note that (a) was already pointed out by Li et al. (2020b).
Specifically, in modern deep nets, which use some form
of normalization combined with weight decay, training to
near-zero loss must lead to arbitrarily high sharpness. (How-
ever, Cohen et al. (2021) show that the EoS phenomenon
appears even without normalization.) Phenomena (b), (c)
are more mysterious, suggesting that GD with finite η is
able to continue decreasing loss despite violating η < 2/λ,
while at the same time regulating further increase in value
of sharpness and even causing a decrease. These striking
inter-related phenomena suggest a radical overhaul of our
thinking about optimization in deep learning. At the same
time, it appears mathematically challenging to analyze such
phenomena, at least for realistic settings and losses (as op-
posed to toy examples with 2 or 3 layers). The current paper
introduces frameworks for doing such analyses.

We start by formal definition of stableness, ensuring that
if a point + LR combination is stable then a gradient step
is guaranteed to decrease the loss by the local version of
Descent Lemma.

Definition 1.1 (Stableness). Given a loss function L, a pa-
rameter x ∈ Rd and LR η > 0 we define the stableness
of L at (x, η) be SL(x, η) := η · sup0≤s≤η λ1(∇2L(x −
s∇L(x))). We say L is stable at (x, η) iff the stableness of
L at (x, η) is smaller than or equal to 2; otherwise we say L
is unstable at (x, η).

The above defined stableness is a better indicator for EoS
than only using the sharpness at a specific point x, i.e.
ηλ1(∇2L(x)) < 2, because the loss can still oscillate in the
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Figure 1: GD operating on EoS oscillates around the zero
loss manifold Γ = {(x, y) | y = 0} while slowly moving
towards flatter local minima. Here L(x, y) = (1 + x2)y2

and the sharpness of L decreases as |x| decreases.

latter case. 1 A concrete example is L(x) = |x|, x ∈ R. For
any c ∈ (0, 1) and LR η > 0, the GD iterates x(2k) = cη
and x(2k+1) = −(1− c)η, always have zero sharpness for
all k]inN, but Descent Lemma doesn’t apply because the
gradient is not continuous around x = 0 (i.e. the sharpness
is infinity when x = 0). As a result, the loss is not stable
and oscillates between c and 1− c.

1.1. Two Provable Mechanisms for Edge of Stability:
Non-smoothness and Adaptivity

In this paper we identify two settings where GD provably
operates on Edge of Stability. The intuition is from Defi-
nition 1.1, which suggests that either sharpness or learning
rate has to increase to avoid convergence and to ensure that
GD stays on Edge of Stability.

The first setting, which is simple yet quite general, is to
consider a modified training loss f(L) where f : R→ R is
a monotone increasing but non-smooth function. For con-
creteness, assume GD is performed on L̃ :=

√
L where

L is a smooth loss function with minx L(x) = 0 and
∇2L 6= 0 at its minimizers. Note that ∇L̃ = ∇L

2
√
L

and

∇2L̃ = 2L∇2L−∇L∇L>

4
√
L

3 , which implies ∇2L̃ must diverge

whenever x converges to any minimizer where ∇2L has
rank at least 2, since ∇L∇L> is rank-1. (An analysis is
also possible when ∇2L is rank-1, which is the reason for
Definition 1.1.)

The second setting assumes that the loss is smooth but learn-
ing rate is effectively adaptive. We focus a concrete exam-
ple, Normalized Gradient Descent, x← x− η∇L/‖∇L‖,
which exhibits EoS behavior as ∇L → 0. We can view
Normalized GD as GD with a varying LR ηt = η

‖∇L(x(t))‖ ,
which goes to infinity when∇L→ 0.

These analyses will require (1) Γ = {x | L(x) = 0} 2

1See such experiments (e.g., ReLU CNN (+BN), Figure 75) in
Appendix of in Cohen et al. (2021).

2Without loss of generality, we assume minx′ L(x′) = 0

is a (D −M) dimensional submanifold of RD for some
1 ≤ M ≤ D and (2) ∇2L(x) is rank-M for any x ∈ Γ.
Note that while modern deep learning evolved using non-
differentiable losses, the recent use of activations such as
Swish (Ramachandran et al., 2017) instead of ReLU has
allowed differentiable losses without harming performance.

Our Contribution: We show that Normalized GD on L
(Section 4.3) and GD on

√
L (Section 4.4) exhibit similar

two-phase dynamics with sufficiently small LR η. In the first
phase, GD tracks gradient flow (GF), with a monotonic de-
crease in loss until getting O(η)-close to the manifold (The-
orems 4.3 and 4.5) and the stableness becomes larger than 2.
In the second phase, GD no longer tracks GF and loss is not
monotone decreasing due to the high stableness. Repeatedly
overshooting, GD iterate jumps back and forth across the
manifold while moving slowly along the direction in the
tangent space of the manifold which decreases the sharp-
ness. (See Figure 1 for a graphical illustration) Formally, we
prove when η → 0, the trajectory of GD converges to some
limiting flow on the manifold (Theorems 4.4 and 4.6). We
further prove that in both settings GD in the second phase
operates on EOS, and loss decreases in a non-monotone
manner. Formally, we show that the average stableness over
any two consecutive steps is at least 2 and that the average
of
√
L/η over two consecutive is proportional to sharpness

or square root of sharpness (Theorems 4.7 and 4.8).

Though many works have suggested (primarily via experi-
ments and some intuition) that the training algorithm in deep
learning implicitly selects out solutions of low sharpness in
some way, we are not aware of a formal setting where this
had ever been made precise. Note that our result requires no
stochasticity as in SGD (Li et al., 2022), though we need to
inject tiny noise (e.g., of magnitudeO(η100) ) to GD iterates
occasionally (Algorithms 1 and 3). We believe that this is
due the technical limitation of our current analysis and can
be relaxed with a more advanced analysis. Indeed, in exper-
iments, our theoretical predictions hold for the deterministic
GD directly without any perturbation.

Novelty of Our Analysis: Our analysis is inspired by the
mathematical framework of studying limiting dynamics of
SGD around manifold of minimizers by Li et al. (2022),
where the high-level idea is to introduce a projection func-
tion Φ mapping the current iterate xt to the manifold and it
suffices to understand the dynamics of Φ(xt). It turns out
that the one-step update of Φ(xt) depends on the second mo-
ment of (stochastic) gradient at xt, E[∇L(xt)(∇L(xt))

>].
While for SGD the second moment converges to the co-
variance matrix of stochastic gradient (Li et al., 2022) as

throughout the paper. The main results for Normalized GD still
hold if we relax the assumption and only assume Γ to be a mani-
fold of local minimizers. For GD on

√
L, we need to replace

√
L

by
√
L− Lmin where Lmin is the local minimum.
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xt gets close to the manifold when η → 0, for GD operat-
ing on EOS, ∇

√
L(xt) or ∇L(xt)

‖∇L(xt)‖ is non-smooth and not
even defined at the manifold of the minimizers! To show
Φ(xt) moves in the direction which decreases the sharp-
ness, the main technical difficulty is to show that ∇

√
L(xt)

or ∇L(xt)
‖∇L(xt)‖ aligns to the top eigenvector of the Hessian

∇2L(xt) and then the analysis follows from the framework
by Li et al. (2022).

To prove the alignment between the gradient and the top
eigenvector of Hessian, it boils down to analyzing Normal-
ized GD on quadratic functions (2), which to the best of our
knowledge has not been studied before. The dynamics is
like chaotic version of power iteration, and we manage to
show that the iterate will always align to the top eigenvector
of Hessian of the quadratic loss. The proof is based on
identifying a novel potential (Section 3) and might be of
independent interest.

2. Related Works
Sharpness: Low sharpness has long been related to flat
minima and thus to good generalization (Hochreiter &
Schmidhuber, 1997; Keskar et al., 2016). Recent study
on predictors of generalization (Jiang* et al., 2020) does
show sharpness-related measures as being good predictors,
leading to SAM algorithm that improves generalization by
explicitly controlling a parameter related to sharpness (Foret
et al., 2021). However, Dinh et al. (2017) show that due
to the positive homogeneity in the network architecture,
networks with rescaled parameters can have very different
sharpness yet be the same to the original one in function
space. This observation weakens correlation between sharp-
ness and and generalization gap and makes the definition
of sharpness ambiguous. In face of this challenge, multiple
notions of scale-invariant sharpness have been proposed (Yi
et al., 2019a;b; Tsuzuku et al., 2020; Rangamani et al., 2021).
Especially, Yi et al. (2021); Kwon et al. (2021) derived new
algorithms with better generalization by explicitly regular-
izing new sharpness notions aware of the symmetry and
invariance in the network. He et al. (2019) goes beyond
the notion of sharpness/flatness and argues that the local
minima of modern deep networks can be asymmetric, that
is, sharp on one side, but flat on the other side.

Limiting Diffusion/Flow around Manifold of Minimiz-
ers: The idea of analyzing the behavior of SGD with small
LR along the the manifold originates from (Blanc et al.,
2020), which gives a local analysis on a special noise type
named label noise, i.e. noise covariance is equal to Hessian
at minimizers. Damian et al. (2021) extends this analysis
and show SGD with label noise finds approximate stationary
point for original loss plus some Hessian-related regularizer.
The formal mathematical framework of approximating the
limiting dynamics of SGD with arbitrary noise by Stochastic

Differential Equations is later established by Li et al. (2022),
which is built on the convergence result for solutions of SDE
with large-drift (Katzenberger, 1991).

Implicit Bias: The notion that training algorithm plays an
active role in selecting the solution (when multiple optima
exist) has been termed the implicit bias of the algorithm (Gu-
nasekar et al., 2018c) and studied in a large number of pa-
pers (Soudry et al., 2018; Li et al., 2018; Arora et al., 2018;
2019a; Gunasekar et al., 2018b;a; Lyu & Li, 2020; Li et al.,
2020a; Woodworth et al., 2020; Razin & Cohen, 2020; Lyu
et al., 2021; Azulay et al., 2021; Gunasekar et al., 2021). In
the infinite width limit, the implicit bias of Gradient Descent
is shown to be the solution with the minimal RKHS norm
with respect to the Neural Tangent Kernel (NTK) (Jacot
et al., 2018; Li & Liang, 2018; Du et al., 2019; Arora et al.,
2019b;c; Allen-Zhu et al., 2019b;a; Zou et al., 2020; Chizat
et al., 2019; Yang, 2019). The implicit bias results from
these papers are typically proved by performing a trajec-
tory analysis for (Stochastic) Gradient Descent. Most of
the results can be directly extended to the continuous limit
(i.e., GD infinitesimal LR) and even some heavily relies
on the conservation property which only holds for the con-
tinuous limit. In sharp contrast, the implicit bias shown in
this paper – reducing the sharpness along the minimizer
manifold – requires finite LR and doesn’t exist for the corre-
sponding continuous limit. Other implicit bias results that
fundamentally relies on the finiteness of LR includes stabil-
ity analysis (Wu et al., 2017; Ma & Ying, 2021) and implicit
gradient regularization (Barrett & Dherin, 2021), which is a
special case of approximation results for stochastic modified
equation by Li et al. (2017; 2019).

3. Warm-up: Quadratic Loss Functions
To introduce ideas that will be used in the main results, we
sketch analysis of Normalized GD (1) on quadratic loss
function L(x) = 1

2x
>Ax where A ∈ RD×D is positive def-

inite with eigenvalues λ1 > λ2 ≥ . . . ≥ λD and v1, . . . , vD
are the corresponding eigenvectors.

x(t+1) = x(t)−η ∇L(x(t))

‖∇L(x(t))‖
= x(t)−η Ax(t)

‖Ax(t)‖
. (1)

Our main result (3.1) is that the iterates of Normalized GD
x(t) will converge to v1 in direction, from which the loss
oscillation (3.2) follows. Define x̃(t) = Ax(t)

η , and the
following update rule (2) holds. The convergence of x̃t to
v1 in direction implies the convergence of xt as well.

x̃(t+ 1) = x̃(t)−A x̃(t)

‖x̃(t)‖
. (2)

Theorem 3.1. If |〈v1, x̃(t)〉| 6= 0, ∀t ≥ 0, then there exists
0 < C < 1 and s ∈ {±1} such that limt→∞ x̃(2t) =
Csλ1v1 and limt→∞ x̃(2t+ 1) = (C − 1)sλ1v1.
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Figure 2: Visualization of key concepts and lemmas in the analysis for Normalized GD on a 2D quadratic loss with
λ1 = 1, λ2 = 0.4. Left: invariant sets (defined in Lemma 3.3). Middle: ‖x̃(t)‖ drops below λ1

2 in the next step whenever it
is above λ1

2 (Lemma 3.5). Right: |〈v1, x̃(t)〉| monotone increases among all the steps with norm below λ1

2 . (Lemma 3.6)

As a direct corollary, the loss oscillates as between time
step 2t and time step 2t+ 1 as t→∞. This shows that the
behavior of loss is not monotonic and hence indicates the
edge of stability phenomena for the quadratic loss.

Corollary 3.2. If |〈v1, x̃(t)〉| 6= 0, ∀t ≥ 0, then there exists
0 < C < 1 such that limt→∞ L(x(2t)) = 1

2C
2λ1η

2 and
limt→∞ L(x(2t+ 1)) = 1

2 (C − 1)2λ1η
2.

We analyse the trajectory of the iterate x̃(t) in two phases.
For convenience, we define P (j:D) as the projection ma-
trix into the space spanned by {vi}Di=j , i.e., P (j:D) :=∑D
i=j viv

>
i . In the first preparation phase, x̃(t) enters the

intersection of D invariant sets {Ij}Dj=1 around the origin.
(Lemma 3.3) In the second alignment phase, the projection
of x̃(t) on the top eigenvector, | 〈x̃(t), v1〉 |, is shown to
increase monotonically among the steps among the steps
{t ∈ N | ‖x̃(t)‖ ≤ 0.5λ1}. Since it is bounded, it must
converge. The vanishing increment over steps turns out to
suggest the x̃(t) must converge to v1 in direction.

Lemma 3.3 (Preparation Phase). For any j ∈ [D] and
t ≥ λ1

λj
ln λ1

λj
+ max{‖x̃(0)‖−λ1

λD
, 0}, it holds that x̃(t) ∈ Ij ,

where Ij := {x̃ |
∥∥P (j:D)x̃

∥∥ ≤ λj}.
Proof of Lemma 3.3. First, we show for any j ∈ [D], Ij is
indeed an invariant set for update rule (2) via Lemma A.1.
With straightforward calculation, one can show that for

any j ∈ [D],
∥∥P (j:D)x̃(t)

∥∥ decreases by
λD‖P (j:D)x̃(t)‖

‖x̃(t)‖ if∥∥P (j:D)x̃(t)
∥∥ ≥ λj (Lemma A.2). Setting j = 1, we have

‖x̃(t)‖ decreases by λD if ‖x̃(t)‖ ≥ λ1 (Corollary A.3).
Thus for all t ≥ max{‖x̃(0)‖−λ1

λD
, 0}, x̃(t) ∈ I1. Finally

once x̃(t) ∈ I1, we can upper bound ‖x̃(t)‖ by λ1, and
thus

∥∥P (j:D)x̃(t)
∥∥ shrinks at least by a factor of λD

λ1
per

step, which implies x̃(t) will be in Ij in another λ1

λj
ln λ1

λj

steps.(Corollary A.4)

Once the component of x̃(t) on an eigenvector becomes 0,
it stays 0. So without loss of generality we can assume that

after the preparation phase, the projection of x̃(t) along the
top eigenvector v1 is non-zero, otherwise we can study the
problem in the subspace excluding the top eigenvector.

Lemma 3.4 (Alignment Phase). If x̃(T ) ∈ ∩Dj=1Ij holds
for some T , then for any t′, t such that T ≤ t ≤ t′ and
‖x̃(t)‖ ≤ 0.5λ1, it holds |〈v1, x̃(t)〉| ≤ |〈v1, x̃(t′)〉|.

Proof of Lemma 3.4. First, Lemma 3.5 (proved in Ap-
pendix A) shows that the norm of the iterate x̃(t) remains
above 0.5λ1 for only one time-step.

Lemma 3.5. For any t with x̃(t) ∈ ∩Dj=1Ij , if ‖x̃(t)‖ >
λ1/2, then ‖x̃(t+ 1)‖ ≤ max

(
λ1

2 −
λ2
D

2λ1
, λ1 − ‖x̃(t)‖

)
.

Thus, for any t with x̃(t) ∈ ∩Dj=1Ij and ‖x̃(t)‖ ≤ λ1

2 ,
either ‖x̃(t+ 1)‖ ≤ λ1

2 , or ‖x̃(t+ 1)‖ > λ1

2 , which in turn
implies that ‖x̃(t+ 2)‖ ≤ λ1

2 by Lemma 3.5. The proof of
Lemma 3.4 is completed by induction on Lemma 3.6.

Lemma 3.6. For any step t with ‖x̃(t)‖ ≤ λ1/2, for any
k ∈ {1, 2}, |〈v1, x̃(t+ k)〉| ≥ |〈v1, x̃(t)〉|.

For simplicity, we defer the proof of Lemma 3.6 into Ap-
pendix A. Proof of case k = 1 in Lemma 3.6 follows directly
from plugging the assumption ‖x̃(t)‖ ≤ λ1

2 into (2) (See
Lemma A.5). The case of k = 2 in Lemma 3.6 follows from
Lemma A.7.

To complete the proof for Theorem 3.1, we relate the in-
crease in the projection along v1 at any step t, |〈v1, x̃(t)〉|,
to the magnitude of the angle between x̃(t) and the top
eigenspace, θt. Briefly speaking, we show that if ‖x̃(t)‖ ≤
λ1

2 , |〈v1, x̃(t)〉| has to increase by a factor of Θ(θ2
t ) in two

steps. Since |〈v1, x̃(t)〉| is bounded and monotone increases
among {t | ‖x̃(t)‖ ≤ λ1

2 } by Lemma 3.4, we conclude
that θt gets arbitrarily small for sufficiently large t with
‖x̃(t)‖ ≤ λ1

2 , ‖x̃(t+ 2)‖ ≤ λ1

2 satisfied. Since the one-step
normalized GD update ((2)) is continuous when bounded
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away from origin, with a careful analysis, we conclude
θt → 0 for all iterates. Please see Appendix A.3 for details.

Equivalence to GD on
√

1
2x
>Ax: We can show that GD

on loss
√
L(x) =

√
1
2x
>Ax, follows the same update rule

as Normalized GD on L(x) = 1
2x
>Ax, up to a linear trans-

formation, because x(t + 1) = x(t) − η∇
√
L(x(t)) =

x(t)− η Ax(t)√
2x(t)>Ax(t)

. Denoting x̃(t) = 1
η (2A)1/2x(t), we

can easily check x̃(t) also satisfies update rule (2).

4. Main Results
In this section we present the main results of this paper.
Section 4.1 is for preliminary and notations. In Section 4.2,
we make two key assumptions for our analysis.

4.1. Preliminary and Notations

For any integer k, we denote Ck as the set of the k times
continuously differentiable functions. For any mapping
F , we use ∂F (x)[u] and ∂2F (x)[u, v] to denote the first
and second order directional derivative of F at x along the
derivation of u (and v). Given the loss function L, the
gradient flow (GF) governed by L can be described through
a mapping φ : RD×[0,∞)→ RD satisfying φ(x, τ) = x−∫ τ

0
∇L(φ(x, s))ds. We further define the limiting map of

gradient flow as Φ : RD → RD, Φ(x) = limτ→∞ φ(x, τ).
We define Bx(r) for any r ∈ R and x ∈ RD as the uniform
distribution over the set {y ∈ RD | ‖x− y‖2 ≤ r}.

For a matrix A ∈ RD×D, we denote its eigenvalue-
eigenvector pairs by {λi(A), vi(A))}i∈[D]. For sim-
plicity, whenever Φ is defined at point x, we use
{(λi(x), vi(x))}Di=1 to denote the eigenvector-eigenvalue
pairs of ∇2L(Φ(x)), with λ1(x) > λ2(x) ≥ λ3(x) . . . ≥
λD(x). When the iterates x(t) is clear in the context,
we also use shorthand λi(t) := λi(x(t)), vi(t) :=
vi(x(t)), and θt ∈ [0, π2 ] to denote the angle between
∇2L(Φ(x(t)))(x(t) − Φ(x(t))) and top eigenspace of
∇2L(Φ(x(t))). Given a differentiable submanifold Γ of
RD and point x ∈ Γ, we use Px,Γ : RD → RD to denote
the projection operator onto the normal space of Γ at x, and
P⊥x,Γ := ID − Px,Γ. As before, for convenience, we use the
shorthand Pt,Γ := PΦ(x(t)),Γ and P⊥t,Γ := P⊥Φ(x(t)),Γ.

In this section, we focus on the setting where LR η goes to
0 and we fix the initialization xinit and the loss function L
throughout this paper. We use O(·) to hide constants about
xinit and L.

4.2. Key Assumptions on Manifold of Local Minimizers

Following Fehrman et al. (2020); Li et al. (2022), we make
the following two assumptions throughout the paper.

Assumption 4.1. Assume that the loss L : RD → R is

a C4 function, and that Γ is a (D −M) dimensional C2-
submanifold of RD for some integer 1 ≤ M ≤ D, where
for all x ∈ Γ, x is a local minimizer of L with L(x) = 0
and rank

(
∇2L(x)

)
= M .

Assumption 4.2. Assume that U is an open neighborhood
of Γ satisfying that gradient flow w.r.t. L starting in U
converges to some point in Γ, i.e. for all x ∈ U , Φ(x) ∈ Γ.
(Then Φ is C3 on U (Falconer, 1983)).

The smoothness assumption is satisfied for networks with
smooth activation functions like tanh and GeLU. The ex-
istence of manifold is due to the vast overparametrization
in modern deep networks and preimage theorem. (See a
discussion in section 3.1 of Li et al. (2022)) We also assume
U is an open neighborhood of Γ such that gradient flow
starting from every point in U converges to Γ.

4.3. Results for Normalized GD

We first denote the iterates of Normalized GD with LR η by
xη(t), with xη(0) ≡ xinit for all η:

Normalized GD: xη(t+1) = xη(t)−η ∇L(xη(t))

‖∇L(xη(t))‖
. (3)

The first theorem demonstrates the movement in the
manifold, when the iterate travels from xinit to a po-
sition that is O(η) distance closer to the manifold
(more specifically, Φ(xinit)). Moreover, just like the re-
sult in the quadratic case, we have more fine-grained
bounds on the projection of xη(t) − Φ(xη(t)) into the
bottom-k eigenspace of ∇2L(Φ(xη(t))) for every k ∈
[D]. For convenience, we will denote the quantity√∑M

i=j λ
2
i (x)〈vi(x), x− Φ(x)〉2 − λj(x)η by Rj(x) for

all j ∈ [M ] and x ∈ U . In the quadratic case, Lemma 3.3
shows that Rj(x) will eventually become non-positive for
normalized GD iterates. Similarly, for the general loss,
the following theorem shows that Rj(xη(t)) eventually be-
comes approximately non-positive (smaller than O(η2)) in
O( 1

η ) steps.

Theorem 4.3 (Phase I). Let {xη(t)}t∈N be the iterates of
Normalized GD (3) with LR η and xη(0) = xinit ∈ U .
There is T1 > 0 such that for any T ′1 > T1, it holds that for
sufficiently small η that (1) max

T1≤ηt≤T ′1
‖xη(t)− Φ(xinit)‖ ≤

O(η) and (2) max
T1≤ηt≤T ′1,j∈[D]

Rj(xη(t)) ≤ O(η2).

Our main contribution is the analysis for the second
phase (Theorem 4.4), which says just like the quadratic case,
the angle between ∇2L(Φ(xη(t)))(xη(t)− Φ(xη(t))) and
the top eigenspace of∇2L(Φ(xη(t))), will beO(η) on aver-
age. As a result, the dynamics of Normalized GD tracks the
riemannian gradient flow with respect to log(λ1(∇2L(·)))
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Algorithm 1 Perturbed Normalized Gradient Descent

Input: loss function L : RD → R, initial point xinit, max-
imum number of iteration T , LR η, frequency parameter
Tfreq = Θ(η−0.1), noise parameter r = Θ(η100).
for t = 1 to T do

Generate n(t) ∼ B0(r) if t mod Tfreq = 0, else set
n(t) = 0.
x(t)← x(t− 1)− η ∇L(x(t))

‖∇L(x(t))‖ + n(t).

end for

on manifold, that is, the unique solution of (4).

X(τ) = Φ(xinit)−
1

4

∫ τ

s=0

P⊥X(s),Γ∇ log λ1(X(s))ds (4)

Note (4) is not guaranteed to have a well-defined solution
for all t ≥ 0, for the following two reasons: (1) if the
multiplicity of top eigenvalue is larger than 1, λ1(∇2L(·))
may not be differentiable and (2) the projection matrix is
only defined on Γ and the equation becomes undefined
when the solution leaves Γ. We define T fav

2 as the set of
all time T2 > 0 such that for any T2 ∈ T fav

2 , (4) satisfies:
for any 0 ≤ τ ≤ T2, we have (1) X(τ) ∈ U , and (2)
λ1(∇2L(X(τ)))− λ2(∇2L(X(τ))) > 0.

For a rigorous characterization of the dynamics in the second
phase, we need to make the following modifications: (1).
we add negligible noise of magnitude O(η100) every η−0.1

steps; (2). we assume for each η > 0, there exist some step
t = Θ(1/η) in phase I, except the guaranteed condition (1)
and (2) (by Theorem 4.3), the additional condition (3) also
holds. This assumption is mild because we only require
(3) to hold for one step among Θ(1/η) steps from T1

η to
T ′1
η , where T1 is the constant given by Theorem 4.3 and T ′1

is arbitrary constant larger than T1. This assumption also
holds empirically for all our experiments in Section 6.

Theorem 4.4 (PhaseII). Let {xη(t)}t∈N be the iterates of
perturbed Normalized GD (Algorithm 1) with LR η. If the
initialization xη(0) satisfy that
(1) ‖xη(0)− Φ(xinit)‖ ≤ O(η),
(2) maxj∈[D]Rj(xη(0)) ≤ O(η2), and additionally
(3) min{|〈v1(xη(0)), xη(0)− Φ(xη(0))〉| ,−R1(xη(0))} ≥
Ω(η), then for any time T2 ∈ T fav

2 , it holds for suffi-
ciently small η, with probability at least 1 − O(η10),
that

∥∥Φ(xη(bT2/η
2c))−X(T2)

∥∥ = O(η) and
1

bT2/η2c
∑bT2/η

2c
t=0 θt ≤ O(η).

4.4. Results for GD on
√
L

In this subsection, we denote the iterates of GD on
√
L with

LR η by xη(t), with xη(0) ≡ xinit for all η:

GD on
√
L: xη(t+ 1) = xη(t)− η∇

√
L(xη(t)) (5)

Similar to Normalized GD, we will have two phases. The
first theorem demonstrates the movement in the manifold,
when the iterate travels from xinit to a position that is O(η)
distance closer to the manifold. For convenience, we will
denote the quantity

√∑M
i=j λi(x)〈vi(x), x− Φ(x)〉2 −

η
√

1/2λj(x) by Rj(x) for all j ∈ [d] and x ∈ U .

Theorem 4.5 (Phase I). Let {xη(t)}t∈N be the iterates of
Normalized GD (5) with LR η and xη(0) = xinit ∈ U .
There is T1 ∈ R+ such that for any T ′1 ∈ R+, it holds for
sufficiently small η that (1) max

T1≤ηt≤T ′1
‖xη(t)− Φ(xinit)‖ ≤

O(η) and (2) max
T1≤ηt≤T ′1,j∈[D]

Rj(xη(t)) ≤ O(η2).

The next result demonstrates that close to the manifold,
the trajectory implicitly minimizes sharpness. We have an
equivalent definition of T fav

2 for (6).

Theorem 4.6 (Phase II). Let {xη(t)}t∈N be the iterates
of perturbed GD on

√
L (Algorithm 3) . If the initial-

ization xη(0) satisfy that (1) ‖xη(0)− Φ(xinit)‖ ≤ O(η),
(2) maxj∈[D]Rj(xη(t)) ≤ O(η2), and additionally (3)
min{|〈v1(xη(0)), xη(0)− Φ(xη(0))〉| ,−R1(xη(t))} ≥
Ω(η), then for any time T2 ∈ T fav

2 , it holds for
sufficiently small η, with probability at least 1 −
O(η10), that

∥∥Φ(xη(bT2/η
2c))−X(T2)

∥∥ = O(η1/2) and
1

bT2/η2c
∑bT2/η

2c
t=0 θt ≤ O(η1/2).

X(τ) = Φ(xinit)−
1

8

∫ τ

s=0

P⊥X(s),Γ∇λ1(X(s))ds. (6)

4.5. Operating on the Edge of Stability

We can show that both Normalized GD on L and GD on√
L is on Edge of Stability in their phase II, that is, at least

in one of every two consecutive steps, the stableness is
at least 2 and the loss oscillates in every two consecutive
steps. Interestingly, the average loss over two steps still
monotonically decreases, even when operating on the edge
of Stability (see Figure 1 for illustration), as indicated by
the following theorems. Note that Theorems 4.4 and 4.6
ensures that the average of θt are O(η) and O(

√
η).

Theorem 4.7 (Stableness, Normalized GD). Under the
setting of Theorem 4.4, by viewing Normalized GD as
GD with time-varying LR ηt := η

‖∇L(xη(t))‖ , we have
[SL(xη(t), ηt)]

−1 + [SL(xη(t+ 1), ηt+1)]−1 = 1 +O(θt+

η). Moreover, we have
√
L(xη(t)) +

√
L(xη(t+ 1)) =

η
√

λ1(∇2L(xη(t)))
2 +O(ηθt).

Theorem 4.8 (Stableness, GD on
√
L). Under the set-

ting of Theorem 4.6, we have [S√L(xη(t), ηt)] ≥ Ω( 1
ηθt

).

Moreover, we have
√
L(xη(t)) +

√
L(xη(t+ 1)) =

ηλ1(∇2L(xη(t))) +O(ηθt).
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5. Proof Overview
We sketch the proof of the Normalized GD in phase I and
II respectively in Section 5.2. Then we briefly discuss how
to prove the results for GD with

√
L with same analysis in

Section 5.3. We start by introducing the properties of limit
map of gradient flow Φ in Section 5.1, which plays a very
important role in the analysis.

5.1. Properties of Φ

The limit map of gradient flow Φ lies at the core of our
analysis. When LR η is small, one can show xη(t) will be
O(η) close to manifold and Φ(xη(t)). Therefore, Φ(xη(t))
captures the essential part of the implicit regularization of
Normalized GD and characterization of the trajectory of
Φ(xη(t)) immediately gives us that of Φ(xη(t)) up toO(η).
Below we first recap a few important properties of Φ that
will be used later this section, which makes the analysis of
Φ(xη(t)) convenient.

Lemma 5.1. [Lemmas B.15, B.17 and B.19] Under As-
sumptions 4.1 and 4.2, Φ satisfies the following two prop-
erties: (1) ∂Φ(x)∇L(x) = 0 for any x ∈ U , and (2) for
any x ∈ Γ, if λ1(x) > λ2(x), ∂2Φ(x)[v1(x), v1(x)] =
− 1

2P
⊥
x,Γ∇ log λ1(x) .

With the Normalized GD update (3) for xη(t+ 1)− xη(t),
using a second order taylor expansion of Φ, we have

Φ(xη(t+ 1))− Φ(xη(t)) (7)

=
η2

2
∂2Φ(xη(t))

[
∇L(xη(t))

‖∇L(xη(t))‖
,
∇L(xη(t))

‖∇L(xη(t))‖

]
+O(η3),

where we use the first claim of Lemma 5.1 in the final step.
Therefore, we have Φ(xη(t + 1)) − Φ(xη(t)) = O(η2),
which means Φ(xη(t)) moves slowly along the manifold, at
a rate of at most O(η2) step. The Taylor expansion of Φ,
(7), plays a crucial role in our analysis for both Phase I and
II and will be used repeatedly.

5.2. Analysis for Normalized GD

Analysis for Phase I, Theorem 4.3: The Phase I itself
can be divided into two subphases: (A). Normalized GD
iterate xη(t) gets O(η) close to manifold; (B). counterpart
of preparation phase in the quadratic case: local movement
in the O(η)-neighborhood of the manifold which decreases
Rj(xη(t)) to O(η2). Below we sketch their proofs:

Subphase (A): First, with a very classical result in ODE
approximation theory, normalized GD with small LR will
track the normalized gradient flow, which is a time-rescaled
version of standard gradient flow, with O(η) error, and en-
ter a small neighborhoods of the manifold where Polyak-
Łojasiewicz (PL) condition holds. Since then, Normalized
GD decreases the fast loss with PL condition and the gra-
dient has to be O(η) small in O( 1

η ) steps. (See details in

Appendix C.1).

Subphase (B): The result in subphase (B) can be
viewed as a generalization of Lemma 3.3 when
the loss function is O(η)-approximately quadratic, in
both space and time. More specifically, it means∥∥∇2L(Φ(xη(t)))−∇2L(x)

∥∥ ≤ O(η) for all x which
is O(η)-close to some Φ(xη(t′)) with t′ − t ≤
O(1/η). This is because by Taylor expansion (7),
‖Φ(xη(t))− Φ(xη(t′))‖ = O(η2(t′ − t)) = O(η),
and again by Taylor expansion of ∇2L, we know∥∥∇2L(x)−∇2L(Φ(xη(t)))

∥∥=O(‖x− Φ(xη(t))‖)=O(η).

With a similar proof technique, we show xη(t) enters an
invariant set around the manifold Γ, that is, {x ∈ U |
Rj(x) ≤ O(η2),∀j ∈ [D]}. Formally, we show the follow-
ing analog of Lemma 3.3:

Lemma 5.2 (Preparation Phase, Informal version of
Lemma C.1). Let {xη(t)}t≥0 be the iterates of Nor-
malized GD (3) with LR η. If for some step t0,
‖xη(t0)− Φ(xη(t0))‖ = O(η), then for sufficiently small
LR η and all steps t ∈ [t0 +Θ(1),Θ(η−2)] steps, the iterate
xη(t) satisfy maxj∈[M ]Rj(xη(t)) ≤ O(η2).

Analysis for Phase II, Theorem 4.4: Similar to the sub-
phase (B) in the Phase I, the high-level idea here is again that
xη(t) locally evolves like normalized GD with quadratic
loss around Φ(xη(t)) and with an argument similar to
the alignment phase of quadratic case (though technically
more complicated), we show xη(t) − Φ(xη(t)) approxi-
mately aligns to the top eigenvector of ∇2L(Φ(xη(t))),
denoted by v1(t) and so does ∇L(xη(t)). Plugging the
second claim of Lemma 5.1 into the Taylor expansion of
Φ (7), we immediately get that Φ(xη(t+ 1))−Φ(xη(t)) ≈
−η

2

4 P
⊥
Φ(xη(t)),Γ∇ log λ1(t).

We now have a more detailed look at the move-
ment in Φ. Since Φ(xη(t)) belongs to the manifold,
we have ∇L(Φ(xη(t))) = 0 and so ∇L(xη(t)) =
∇2L(Φ(xη(t)))(xη(t)−Φ(xη(t)))+O(η2) using a Taylor
expansion. This helps us derive a relation between the Nor-
malized GD update and the top eigenvector of the hessian
(simplified version of Lemma B.10):

∃s ∈ {±1}, ∇L(xη(t))

‖∇L(xη(t))‖
= sv1(t) +O(θt + η). (8)

Incorporating the above into the movement in Φ(xη(t))
from (7) gives: Φ(xη(t + 1)) − Φ(xη(t)) =
η2

2 ∂
2Φ(xη(t))[v1(t), v1(t)] +O(η2θt + η3). Using the sec-

ond property of Lemma 5.1 yields Lemma 5.3.

Lemma 5.3 (Movement in the manifold, Informal version
of Lemma B.13). Under the setting in Theorem 4.4, for suffi-
ciently small η, we have at any step t ≤ bT2/η

2c, Φ(xη(t+

1))− Φ(xη(t)) = −η
2

4 P
⊥
t,Γ∇ log λ1(t) +O(η3 + η2θt).
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To complete the proof of Theorem 4.4, we show that
for small enough η, the trajectory of Φ(xη(τ/η2)) is

O(η3bT2/η
2c + η2

∑bT2/η
2c

t=0 θt)-close to X(τ) for any
τ ≤ T2, where X(·) is the flow given by (4). This
error is O(η), since

∑bT2/η
2c

t=0 θt = O(bT2/η
2cη).

One technical difficulty towards showing the aver-
age of θt is only O(η) is that our current analy-
sis requires |〈v1(xη(t)), xη(t)− Φ(xη(t))〉| doesn’t van-
ish, that is, remains Ω(η) large throughout the entire
training process. This is guaranteed by Lemma 3.4
in quadratic case, but the analysis breaks when the
loss is only approximately quadratic and the alignment
|〈v1(xη(t)), xη(t)− Φ(xη(t))〉|could decrease by O(θtη

2)
per step. Once the alignment becomes too small, even if
the angle θt is small, the normalized GD dynamics become
chaotic and super sensitive to any perturbation. Our current
proof technique cannot deal with this case, which is why we
have to make the additional assumptions in Theorem 4.4.

Role of η100 noise. With the additional assumption
that the initial alignment is Ω(η), we can show adding
any poly(η) perturbation (even as small as Ω(η100)) suf-
fices to prevent the aforementioned bad case, that is,
|〈v1(xη(t)), xη(t)− Φ(xη(t))〉| stays Ω(η) large. The in-
tuition why Ω(η100) perturbation works again comes from
quadratic case – it’s clear that x̃ = cv1 for any |c| ≤ 1 is
a stationary point for two-step normalized GD updates for
quadratic loss under the setting of Section 3. But if c is
smaller than critical value determined by the eigenvalues of
the hessian, the stationary point is unstable, meaning any de-
viation away from the top eigenspace will be amplified until
the alignment increases above the critical threshold. Based
on this intuition, the formal argument, Lemma E.11 uses the
techniques from the ‘escaping saddle point’ analysis (Jin
et al., 2017). Adding noise is not necessary in experiments
to observe the predicted behavior (see ‘Alignment’ in Fig-
ure 5 where no noise is added). On one hand, it might be
because the floating point errors served the role of noise.
On the other hand, we suspect it’s not necessary even for
theory, just like GD gets stuck at saddle point only when
initialized from a zero measure set even without noise (Lee
et al., 2016; 2017).

5.3. Analysis for GD on
√
L

In this subsection we will make an additional assumption
that L(x) = 0 for all x ∈ Γ. The analysis then will follow
a very similar strategy as the analysis for Normalized GD.
However, the major difference from the analysis for Nor-
malized GD comes from the update rule for xη(t) when it
is O(η)-close to the manifold:

∃s ∈ {±1}, ∇
√
L(xη(t)) = s

√
λ1(t)v1(t) +O(η + θt).

Thus, the effective learning rate is
√
λ1(t)η at any step t.

This shows up, when we compute the movement in Φ.
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Figure 3: Normalized GD and Riemannian flow have almost
the same behavior under proper time scalings, for a 2-layer
network on MNIST initialized with tiny loss.
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Figure 4: The trajectory of Normalized GD is close to that of
the limiting flow minimizing the sharpness on manifold, as
predicted by our theory. Relative parameter difference is the
ratio of the norm of the difference between the parameters of
the two trajectories to the norm of parameters of Normalized
GD trajectory at the same continuous time.

Lemma 5.4 (Movement in the manifold, Informal version
of Lemma G.1). Under the setting in Theorem 4.6, for suffi-
ciently small η, we have at any step t ≤ bT2/η

2c, Φ(xη(t+

1))− Φ(xη(t)) = −η
2

8 P
⊥
t,Γ∇λ1(t) +O(η3 + η2θt).

6. Experiments
Verifying convergence to limiting flow on MNIST: We
first verify the closeness between the Riemannian gradi-
ent flow w.r.t. the top eigenvalue and Normalized GD, as
predicted by Theorem 4.4, on a 1 hidden-layer fully con-
nected network on MNIST (LeCun & Cortes, 2010). The
network had 784 hidden units, with GeLU activation func-
tion (Hendrycks & Gimpel, 2016). We used the loss func-
tion L as the mean squared loss to ensure the existence of
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minimizers and thus the manifold. For efficient training
on a single GPU, we consider a sample of 1000 randomly
selected points from the training data.

We first trained the model with Gradient Descent to reach
loss of order 10−3. Starting from this checkpoint, we make
two different runs, one for Normalized GD and another for
Riemannian gradient flow w.r.t. the top eigenvalue (see
Appendix H for details). We plot the behavior of the net-
work w.r.t. continuous time defined for Normalized GD
as #GradientSteps × η2/4, and for Riemannian flow as
#GradientSteps×η, where η is the learning rate. We track
the behavior of Test Loss, Test accuracy, the top eigenvalue
of the Hessian and also the trace of the Hessian in Figure 3.
We see that there is an exact match between the behavior
of the four functions, which supports our theory. Moreover,
Figure 4 computes the norm of the difference in the parame-
ters between the two runs, and shows that the runs stay close
to each other in the parameter space throughout training.

Verification for Predicted Phenomena on Real-life Mod-
els: Details in Appendix H show that it is very inefficient to
simulate the Riemannian gradient flows for Real-life Models.
Hence, we observe the behavior of different test functions
throughout the training to verify our theoretical findings. We
perform our experiments on a VGG-16 model (Simonyan &
Zisserman, 2014) trained on CIFAR-10 dataset (Krizhevsky
et al.) with Normalized GD and GD with

√
L. For efficient

full-batch training, we trained the model on a sample of
randomly chosen 5000 examples from the training dataset.
To meet the smoothness requirement by our theory, we
modified our network in two ways, (a) we used GeLU acti-
vation in place of the non-smooth ReLU activation, and (b)
we used average pooling in place of the non-smooth max-
pooling (Boureau et al., 2010). We used `2 loss instead
of softmax loss to ensure the existence of minimizers and
thus the manifold. We plot the behavior of the following
four functions in Figure 5: Top eigenvalue of the Hessian,
Alignment, Stableness, and Test accuracy. Alignment is
defined as 1

λ1‖g‖2
g>(∇2L)g, where∇2L is the Hessian, g

is the gradient and λ1 is the top eigenvalue of the Hessian.
To check the behavior for Stableness, we plot η

‖g‖ × λ1 for

Normalized GD and η

2
√
L
× λ1 for GD with

√
L, which

are lower bounds on the Stableness of the Hessian (1.1).
We observe that the alignment function reaches close to 1,
towards the end of training. The top eigenvalue decreases
over time (as predicted by Theorems 4.4 and 4.6), and the
stableness hovers around 2 at the end of training.

7. Conclusion
The recent discovery of Edge of Stability phenomenon in
Cohen et al. (2021) calls for a reexamination of how we
understand optimization in deep learning. The current paper
gives two concrete settings with fairly general loss functions,
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Figure 5: We verify our theoretical claims in the second
phase —(a) the sharpness decreases; (b) gradient aligns
with the top eigenvector of Hessian; (c) stableness will be
higher than 2 — under the setting of training VGG-16 on
CIFAR-10 dataset with Normalized GD on L and GD with√
L loss respectively.

where gradient updates can be shown to decrease loss over
many iterations even after stableness is lost. Furthermore,
in one setting the trajectory is shown to amount to reduce
the sharpness (i.e., the maximum eigenvalue of the Hessian
of the loss), thus rigorously establishing an effect that has
been conjectured for decades in deep learning literature and
was definitively documented for GD in Cohen et al. (2021).
Our analysis crucially relies upon learning rate η being
finite, in contrast to many recent results on implicit bias that
required an infinitesimal LR. Even the alignment analysis
of Normalized GD to the top eigenvector for quadratic loss
in Section 3 appears to be new.

One limitation of our analysis is that it only applies close
to the manifold of local minimizers. By contrast, in ex-
periments, the EoS phenomenon, including the control of
sharpness, begins much sooner. Addressing this gap, as well
as analysing the EoS for the loss L itself (as opposed to

√
L

as done here) is left for future work. Very likely this will
require novel understanding of properties of deep learning
losses, which we were able to circumvent by looking at√
L instead. Exploration of EoS-like effects in SGD setting

would also be interesting, although we first need definitive
experiments analogous to Cohen et al. (2021).
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A. Omitted Proofs for Results for Quadratic Loss Functions
We first recall the settings and notations. Let A be a positive definite matrix. Without loss of generality, we can assume
A is diagonal, i.e., A = diag(λ1, λ2, . . . , λD) ∈ RD×D, where λ1 > λ2 ≥ λ3 ≥ . . . ≥ λD > 0 and the eigenvectors are
the standard basis vectors e1, · · · , eD of the D-dimensional space. We will denote P (j:D) =

∑D
i=j eie

>
i as the projection

matrix onto the subspace spanned by ej , . . . , eD.

Recall the loss function L is defined as L(x) = 1
2x
>Ax. The Normalized GD update (LR= η )is given by x(t + 1) =

x(t)− η Ax(t)
‖Ax(t)‖ . A substitution x̃(t) := Ax(t)

η gives the following update rule:

x̃(t+ 1) = x̃(t)−A x̃(t)

‖x̃(t)‖
. (2)

Note Normalized GD (2) is not defined at ‖x̃(t)‖ = 0. Moreover, it’s easy to check that if at some time step t |〈v1, x̃(t)〉| = 0,
|〈v1, x̃(t′)〉| = 0 holds for any t′ ≥ t. Thus it’s necessary to assume |〈v1, x̃(t)〉| 6= 0 for all t ∈ N in order to prove alignment
to the top eigenvector of A for Normalized GD (2).

Now we recall the main theorem for Normalized GD on quadratic loss functions:

Theorem 3.1. If |〈v1, x̃(t)〉| 6= 0, ∀t ≥ 0, then there exists 0 < C < 1 and s ∈ {±1} such that limt→∞ x̃(2t) = Csλ1v1

and limt→∞ x̃(2t+ 1) = (C − 1)sλ1v1.

We also note that GD on
√
L with any LR η can also be reduced to update rule (2), as shown in the discussion at the end of

Section 3.

A.1. Proofs for Preparation Phase

In this subsection, we show (1). Ij is indeed an invariant set for normalized GD ∀j ∈ [D] and (2). from any initialization,
normalized GD will eventually go into their intersection ∩Dj=1Ij .

Lemma A.1. For any t ∈ N and j ∈ [D],
∥∥P (j:D)x̃(t)

∥∥ ≤ λj =⇒
∥∥P (j:D)x̃(t+ 1)

∥∥ ≤ λj . In other words, {Ij}Dj=1 are
invariant sets of update rule Equation (2).

Proof of Lemma A.1. Note P (j:D)A = P (j:D)AP (j:D), by definition of Normalized GD (2), we have

P (j:D)x̃(t+ 1) = P (j:D)x̃(t)− P (j:D)A
x̃(t)

‖x̃(t)‖
=

(
I − P (j:D)A

‖x̃(t)‖

)
P (j:D)x̃(t),

which implies ∥∥∥P (j:D)x̃(t+ 1)
∥∥∥ ≤ ∥∥∥∥I − P (j:D)A

‖x̃(t)‖

∥∥∥∥ ∥∥∥P (j:D)x̃(t)
∥∥∥ . (9)

Note that P (j:D)A 4 λjI ,
∥∥P (j:D)x̃(t)

∥∥ ≤ ‖x̃(t)‖ and
∥∥P (j:D)x̃(t)

∥∥ ≤ λj by assumption, we have

− λj∥∥P (j:D)x̃(t)
∥∥I 4 −P

(j:D)A

‖x̃(t)‖
4 I − P (j:D)A

‖x̃(t)‖
4 I 4

λj∥∥P (j:D)x̃(t)
∥∥I.

Therefore
∥∥∥I − P (j:D)A

‖x̃(t)‖

∥∥∥ ≤ λj

‖P (j:D)x̃(t)‖ and thus we conclude
∥∥P (j:D)x̃(t+ 1)

∥∥ ≤ λj .
Lemma A.2. For any t ∈ N and j ∈ [D], if

∥∥P (j:D)x̃(t)
∥∥ ≥ λj , then

∥∥P (j:D)x̃(t+ 1)
∥∥ ≤ (1− λD

‖x̃(t)‖ )
∥∥P (j:D)x̃(t)

∥∥.

Proof of Lemma A.2. Since λj ≤
∥∥P (j:D)x̃(t)

∥∥ ≤ ‖x̃(t)‖, we have 0 4 I − P (j:D)A
‖x̃(t)‖ 4 1 − λD

‖x̃(t)‖ . Therefore∥∥∥I − P (j:D)A
‖x̃(t)‖

∥∥∥ ≤ 1− λD
‖x̃(t)‖ . The proof is completed by plugging this into Equation (9).

Lemma A.2 has the following two direct corollaries.
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Corollary A.3. For any initialization x̃(0) and t ≥ ‖x̃(0)‖−λ1

λD
, ‖x̃(t)‖ ≤ λ1, that is, x̃(t) ∈ I1.

Proof of Corollary A.3. Set j = 1 in Lemma A.2, it holds that ‖x̃(t+ 1)‖ ≤ ‖x̃(t)‖ − λD whenever ‖x̃(t)‖ ≥ λ1. Thus∥∥∥x̃(
⌈‖x̃(0)‖−λ1

λD

⌉
)
∥∥∥ ≤ λ1. The proof is completed as I1 is an invariant set by Lemma A.1.

Corollary A.4. For any coordinate j ∈ [D] and initial point x̃(0) ∈ I1, if t ≥ λ1

λD
ln λ1

λj
then

∥∥P (j:D)x̃(t)
∥∥ ≤ λj .

Proof of Corollary A.4. Since I1 is an invariant set, we have ‖x̃(t)‖ ≤ λ1 for all t ≥ 0. Thus let T = b λ1

λD
ln λ1

λj
c, we have

∥∥∥P (j:D)x̃(T )
∥∥∥ ≤ e−T λDλ1

∥∥∥P (j:D)x̃(0)
∥∥∥ ≤ λj

λ1
‖x̃(0)‖ ≤ λj .

The proof is completed since Ij is a invariant set for any j ∈ [D] by Lemma A.1.

A.2. Proofs for Alignment Phase

In this subsection, we analyze how normalized GD align to the top eigenvector once it goes through the preparation phase,
meaning x̃(t) ∈ ∩Dj=1Ij for all t in alignment phase.

Lemma 3.5. For any t with x̃(t) ∈ ∩Dj=1Ij , if ‖x̃(t)‖ > λ1/2, then ‖x̃(t+ 1)‖ ≤ max
(
λ1

2 −
λ2
D

2λ1
, λ1 − ‖x̃(t)‖

)
.

Proof. The update at step t as:

x̃(t+ 1) =
1

‖x̃(t)‖
(‖x̃(t)‖ I −A) x̃(t) =

1

‖x̃(t)‖


(‖x̃(t)‖ − λ1)x̃1(t)
(‖x̃(t)‖ − λ2)x̃2(t)

...
(‖x̃(t)‖ − λD)x̃D(t)

 .

Let the index k be the smallest integer such that λk+1 < 2 ‖x̃(t)‖ − λ1. If no such index exists, then one can observe that
‖x̃(t+ 1)‖ ≤ λ1 − ‖x̃(t)‖. Assuming that such an index exists in [D], we have λk ≥ 2 ‖x̃(t)‖ − λ1 and ‖x̃(t)‖ − λj ≤
λ1 − ‖x̃(t)‖, ∀j ≤ k. Now consider the following vectors:

v(1)(t) := (λ1 − ‖x̃(t)‖)x̃(t),

v(2)(t) := (2 ‖x̃(t)‖ − λ1 − λk)P (k:D)x̃(t),

v(2+j)(t) := (λk+j−1 − λk+j)P
(k+j:D)x̃(t),∀1 ≤ j ≤ D − k.

By definition of k, | ‖x̃(t)‖ − λj | ≤ | ‖x̃(t)‖ − λ1|. Thus

‖x̃(t+ 1)‖ ≤ 1

‖x̃(t)‖

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



(‖x̃(t)‖ − λ1)x̃1(t)
...

(‖x̃(t)‖ − λ1)x̃k(t)
(‖x̃(t)‖ − λk+1)x̃k+1(t)

...
(‖x̃(t)‖ − λD)x̃D(t)



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
=

1

‖x̃(t)‖

∥∥∥v(1)(t) + v(2)(t) + . . .+ v(D−k+2)(t)
∥∥∥

≤ 1

‖x̃(t)‖

(∥∥∥v(1)(t)
∥∥∥+

∥∥∥v(2)(t)
∥∥∥+ . . .+

∥∥∥v(D−k+2)(t)
∥∥∥) .
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By assumption, we have x̃(t) ∈ ∩Dj=1Ij . Thus∥∥∥v(1)(t)
∥∥∥ = (λ1 − ‖x̃(t)‖) ‖x̃(t)‖∥∥∥v(2)(t)
∥∥∥ ≤ (2 ‖x̃(t)‖ − λ1 − λk)λk∥∥∥v(2+j)(t)
∥∥∥ ≤ (λk−1+j − λk+j)λk+j , for all j ≥ 1.

Hence, ∑
j≥2

∥∥∥v(j)(t)
∥∥∥ = (2 ‖x̃(t)‖ − λ1 − λk)λk +

∑
j≥k

(λj − λj+1)λj+1

= (2 ‖x̃(t)‖ − λ1)λk +
∑
j≥k

λjλj+1 −
∑
j≥k

λ2
j

≤ (2 ‖x̃(t)‖ − λ1)2 + λ2
k

2
+
∑
j≥k

λ2
j + λ2

j+1

2
−
∑
j≥k

λ2
j

≤ (2 ‖x̃(t)‖ − λ1)2

2
− λ2

D

2
,

where we applied AM-GM inequality multiple times in the pre-final step.

Thus,

‖x̃(t+ 1)‖ ≤ 1

‖x̃(t)‖

(∥∥∥v(1)(t)
∥∥∥+

∥∥∥v(2)(t)
∥∥∥+ . . .+

∥∥∥v(D−k+1)(t)
∥∥∥)

≤ (2 ‖x̃(t)‖ − λ1)2

2 ‖x̃(t)‖
− λ2

D

2 ‖x̃(t)‖
+ λ1 − ‖x̃(t)‖

= ‖x̃(t)‖+
λ2

1 − λ2
D

2 ‖x̃(t)‖
− λ1

≤ λ1

2
− λ2

D

2λ1
,

where the final step is because λ1

2 ≤ ‖x̃(t)‖ ≤ λ1 and that the maximal value of a convex function is attained at the boundary
of an interval.

Lemma A.5. At any step t and i ∈ [D], if ‖x̃(t)‖ T λi
2 , then |x̃i(t+ 1)| S |x̃i(t)|, where T denotes larger than, equal to

and smaller than respectively. (Same for S, but in the reverse order)

Proof. From the Normalized GD update rule, we have x̃i(t+ 1) = x̃i(t)
(

1− λi
‖x̃(t)‖

)
, for all i ∈ [D]. Thus

λ1

‖x̃(t)‖
S 2⇐⇒

∣∣∣∣1− λ1

‖x̃(t)‖

∣∣∣∣ S 1⇐⇒ |x̃i(t+ 1)| S |x̃i(t)| ,

which completes the proof.

Lemma A.6. At any step t, if ‖x̃(t)‖ ≤ λ1

2 , then

(λ1 − ‖x̃(t)‖) cos θt ≤ ‖x̃(t+ 1)‖ ≤ λ1 − ‖x̃(t)‖ − λ

2λ1

(
1− λ

λ1

)
λ1 sin2 θt,

where θt = arctan
‖P (2:D)x̃(t)‖
|e>1 x̃(t)| and λ = min(λ1 − λ2, λD).
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Proof. We first show that the left side inequality holds by the following update rule for 〈e1, x̃(t)〉:

〈e1, x̃(t+ 1)〉 = (‖x̃(t)‖ − λ1)
〈e1, x̃(t)〉
‖x̃(t)‖

.

Since ‖x̃(t+ 1)‖ ≥ |〈e1, x̃(t+ 1)〉| and θt denotes the angle between e1 and x̃(t+ 1), we get the left side inequality.

Now, we focus on the right hand side inequality. First of all, the update in the coordinate j ∈ [2, D] is given by

〈ej , x̃(t+ 1)〉 = (‖x̃(t)‖ − λj)
〈ej , x̃(t)〉
‖x̃(t)‖

.

Then, we have

‖x̃(t+ 1)‖2 =

D∑
j=1

〈ej , x̃(t+ 1)〉2

=

D∑
j=1

(‖x̃(t)‖ − λj)2

(
〈ej , x̃(t)〉
‖x̃(t)‖

)2

= (‖x̃(t)‖ − λ1)2 cos2 θt +

D∑
j=2

(‖x̃(t)‖ − λj)2

(
〈ej , x̃(t)〉
‖x̃(t)‖

)2

≤ (‖x̃(t)‖ − λ1)2 cos2 θt + (‖x̃(t)‖ − λ)2
D∑
j=2

(
〈ej , x̃(t)〉
‖x̃(t)‖

)2

= (‖x̃(t)‖ − λ1)2 cos2 θt + (‖x̃(t)‖ − λ)2 sin2 θt

= (‖x̃(t)‖ − λ1)2 + (λ1 − λ)(2 ‖x̃(t)‖ − λ− λ1) sin2 θt

≤ (‖x̃(t)‖ − λ1)2 − λ(λ1 − λ) sin2 θt,

where in the fourth step, we have used λ = argmaxλi|2≤i≤D |‖x̃(t)‖ − λi| . The final step uses ‖x̃(t)‖ < λ1

2 . Hence, using
the fact that

√
1− y ≤ 1− y/2 for any y ≤ 1, we have

‖x̃(t+ 1)‖ ≤ λ1 − ‖x̃(t)‖ − 1

2(λ1 − ‖x̃(t)‖)
λ(λ1 − λ) sin2 θt

≤ λ1 − ‖x̃(t)‖ − λ

2λ1

(
− λ

λ1

)
λ1 sin2 θt,

where again in the final step, we have used ‖x̃(t)‖ < λ1

2 . The above bound can be further bounded by

‖x̃(t+ 1)‖ ≤ λ1 − ‖x̃(t)‖ − λ

2λ1

(
1− λ

λ1

)
λ1 sin2 θt

≤ λ1 − ‖x̃(t)‖ − 1

2

(
min

λ′∈{λ2,λD}

λ′

λ1

(
1− λ′

λ1

))
λ1 sin2 θt

= λ1 − ‖x̃(t)‖ − 1

2

(
λ

λ1

(
1− λ

λ1

))
λ1 sin2 θt,

where we have used λ = min(λ1 − λ2, λD).

Lemma A.7. If at some step t, ‖x̃(t+ 1)‖+ ‖x̃(t)‖ ≤ λ1, then |x̃1(t+ 2)| ≥ |x̃1(t)|, where the equality holds only when
‖x̃(t+ 1)‖+ ‖x̃(t)‖ = λ1. Therefore, by Lemma A.6, we have :

‖x̃(t)‖ ≤ λ1

2
=⇒ |x̃1(t+ 2)| ≥ |x̃1(t)| (1 + 2

λ

λ1
(1− λ

λ1
) sin2 θt),

where θt = arctan
‖P (2:D)x̃(t)‖
|e>1 x̃(t)| , and λ = min(λ1 − λ2, λD).
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Proof of Lemma A.7. Using the Normalized GD update rule, we have

x̃1(t+ 1) =

(
1− λ1

‖x̃(t)‖

)
x̃1(t), x̃1(t+ 2) =

(
1− λ1

‖x̃(t+ 1)‖

)
x̃1(t+ 1).

Combining the two updates, we have

|x̃1(t+ 2)| =
∣∣∣∣(1− λ1

‖x̃(t)‖

)(
1− λ1

‖x̃(t+ 1)‖

)∣∣∣∣ |x̃1(t)|

=

∣∣∣∣1 +
λ2

1 − λ1(‖x̃(t)‖ − ‖x̃(t+ 1)‖)
‖x̃(t)‖ ‖x̃(t+ 1)‖

∣∣∣∣ |x̃1(t)|

≥ |x̃1(t)| ,

where the equality holds only when ‖x̃(t+ 1)‖+ ‖x̃(t)‖ = λ1.

Moreover, with the additional condition that ‖x̃(t)‖ < λ1

2 , we have from Lemma A.6, ‖x̃(t+ 1)‖ ≤ λ1 − ‖x̃(t)‖ − λ(λ1 −
λ) sin2 θt, where λ = min(λ1 − λ2, λD).

Hence, retracing the steps we followed before, we have

|x̃1(t+ 2)| =
∣∣∣∣1 +

λ2
1λ1(−‖x̃(t)‖ − ‖x̃(t+ 1)‖)
‖x̃(t)‖ ‖x̃(t+ 1)‖

∣∣∣∣ |x̃1(t)|

≥
∣∣∣∣1 +

λ(λ1 − λ) sin2 θt
‖x̃(t)‖ ‖x̃(t+ 1)‖

∣∣∣∣ |x̃1(t)|

≥
∣∣∣∣1 + 2

λ

λ1
(1− λ

λ1
) sin2 θt

∣∣∣∣ |x̃1(t)| ,

where the final step follows from using ‖x̃(t)‖ ≤ λ1

2 and ‖x̃(t+ 1)‖ ≤ λ1 − ‖x̃(t)‖ ≤ λ1.

A.3. Proof of Main theorems for Quadratic Loss

Proof of Theorem 3.1. The analysis will follow in two phases:

1. Preparation phase: x̃(t) enters and stays in an invariant set around the origin, that is, ∩Dj=1Ij , where Ij := {x̃ |∑D
i=j〈ei, x̃(t)〉2 ≤ λ2

j}. (See Lemma 3.3, which is a direct consequence of Lemma A.1 and Corollary A.3.)

2. Alignment phase: The projection of x̃(t) on the top eigenvector, | 〈x̃(t), e1〉 |, is shown to increase monotonically
among the steps among the steps {t | ‖x̃(t)‖ ≤ 0.5}, up until convergence, since it’s bounded. (Lemma 3.4)

By Lemma A.7, the convergence of | 〈x̃(t), e1〉 | would imply the convergence of x̃(t) to e1 in direction.

Below we elaborate the convergence argument in the alignment phase. For convenience, we will use θt to denote the angle
between e1 and x̃(t) and we assume (̃0) ∈ ∩Dj=1Ij without loss of generality. We first define S := {t ∈ N | ‖x̃(t)‖ ≤ λ1

2 }
and S′ := {t ∈ S | t+ 2 ∈ S}. The result in alignment phase says that 1

λ1
|x̃1(t)| monotone increases and converges to

some constant C ∈ (0, 1
2 ] among all t ∈ S, thus lim

t→∞,t∈S′
|x̃1(t+2)|
|x̃1(t)| = 1. By Lemma A.7, we have lim

t→∞,t∈S′
θt = 0. Since

the one-step update function F (x̃) = x̃ − A x̃
‖x̃‖ is uniformly lipschitz when ‖x̃‖ is bounded away from zero, we know

lim
t→∞,t∈S′

θt+k = 0, ∀k ∈ N.

Now we claim ∀t ≥ 3, there is some k ∈ {0, 1, 3} such that t − k ∈ S′. This is because Lemma 3.5 says that if t /∈ S,
then both t − 1, t + 1 ∈ S. Thus for any t /∈ S, t − 1 ∈ S′. Therefore, for any t ∈ S/S′, if t − 2 /∈ S, then t − 3 ∈ S′.
Thus we conclude that ∀t ≥ 3, there is some k ∈ {0, 1, 3} such that t − k ∈ S′, which implies lim

t→∞
θt = 0. Hence

lim
t→∞

‖x̃(t+ 1)− x̃(t)‖ = λ1, meaning for sufficiently large t, x̃1(t) flips its sign per step and thus lim
t→∞

x̃(t+2)− x̃(t) = 0,

lim
t→∞

‖x̃(t+ 1)‖+ ‖x̃(t)‖ = λ1.
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If C = 1
2 , then we must have lim

t→∞
‖x̃(t)‖ = λ1

2 and we are done in this case. If C < 1
2 , note that lim

t→∞,t∈S′
|x̃1(t)| = Cλ1,

it must hold that lim
t→∞,t∈S′

‖x̃(t+ 1)‖ = (1 − C)λ1, thus there is some large T ∈ S such that for all t ∈ S, t ≥ T ,

t + 1 /∈ S. By Lemma 3.5, t + 2 ∈ S. Thus we conclude lim
t→∞

x̃(T + 2t) = Cλse1 for some s ∈ {−1, 1} and thus

lim
t→∞

x̃(T + 2t+ 1) = (C − 1)λse1. This completes the proof.

A.4. Some Extra Lemmas (only used in the general loss case)

For a general loss function L satisfying Assumption 4.1, the loss landscape looks like a strongly convex quadratic function
locally around its minimizer. When sufficient small learning rate, the dynamics will be sufficiently close to the manifold and
behaves like that in quadratic case with small perturbations. Thus it will be very useful to have more refined analysis for the
quadratic case, as they allow us to bound the error in the approximate quadratic case quantitatively. Lemmas A.8 to A.11 are
such examples. Note that they are only used in the proof of the general loss case, but not in the quadratic loss case.

Lemma A.8 is a slightly generalized version of Lemma 3.5.

Lemma A.8. Suppose at time t,
∥∥P (j:D)x̃(t)

∥∥ ≤ λj(1 +
λ2
D

λ2
1

), for all j ∈ [D], if ‖x̃(t)‖ > λ1

2 , then ‖x̃(t+ 1)‖ ≤ λ1

2 .

Proof of Lemma A.8. The proof is similar to the proof of Lemma 3.5. Let the index k be the smallest integer such that
λk+1 < 2 ‖x̃(t)‖ − λ1. If no such index exists, then one can observe that ‖x̃(t+ 1)‖ ≤ λ1 − ‖x̃(t)‖. Assuming that such
an index exists in [D], we have λk ≥ 2 ‖x̃(t)‖−λ1 and ‖x̃(t)‖−λj ≤ λ1−‖x̃(t)‖, ∀j ≤ k. With the same decomposition

and estimation, since x̃(t) ∈ ∩Dj=1(1 +
λ2
D

λ2
1

)Ij , we have∥∥∥v(1)(t)
∥∥∥ = (λ1 − ‖x̃(t)‖) ‖x̃(t)‖∥∥∥v(2)(t)
∥∥∥ ≤ (1 +

λ2
D

λ2
1

)(2 ‖x̃(t)‖ − λ1 − λk)λk∥∥∥v(2+j)(t)
∥∥∥ ≤ (1 +

λ2
D

λ2
1

)(λk−1+j − λk+j)λk+j , for all j ≥ 1.

Thus we conclude

‖x̃(t+ 1)‖ ≤ 1

‖x̃(t)‖

(∥∥∥v(1)(t)
∥∥∥+

∥∥∥v(2)(t)
∥∥∥+ . . .+

∥∥∥v(D−k+1)(t)
∥∥∥)

≤λ1

2
(1− λ2

D

λ2
1

)(1 +
λ2

1

λ2
D

) ≤ λ1

2
,

which completes the proof.

Lemma A.9. Consider the function g : R → R, with g(λ) = λ1

2

(
1−

√
1− 2 λ

λ1

(
1− λ

λ1

))
. For any small constant

c > 0, consider any t with x̃(t) ∈ ∩Dj=1Ij , with x̃(t) satisfying

• |〈e1, x̃(t)〉| ≤ (1− 2c)g(λk).

• θt ≤
√
c |〈e1, x̃(t)〉|,

where θt = arctan
‖P (2:D)(x̃(t))‖
|〈e1,x̃(t)〉| .

Then, for any coordinate 1 ≤ k ≤ D, ∣∣∣∣ 〈ek, x̃(t+ 2)〉
〈e1, x̃(t+ 2)〉

∣∣∣∣ ≥ (1 + c)

∣∣∣∣ 〈ek, x̃(t)〉
〈e1, x̃(t)〉

∣∣∣∣ .
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Proof of Lemma A.9. From the quadratic update, we have the update rule as:

x̃k(t+ 1) = x̃k(t)

(
1− λk
‖x̃(t)‖

)
, for all k ∈ {1, . . . , D}.

Thus, we have for any 1 ≤ k ≤ d,∣∣∣∣ 〈ek, x̃(t+ 2)〉
〈e1, x̃(t+ 2)〉

∣∣∣∣ =

∣∣∣∣(1− λ1 − λk
λ1 − ‖x̃(t)‖

)(
1− λ1 − λk

λ1 − ‖x̃(t+ 1)‖

)
〈ek, x̃(t)〉
〈e1, x̃(t)〉

∣∣∣∣
=

∣∣∣∣(1− (λ1 − λk)(λ1 + λk − ‖x̃(t)‖ − ‖x̃(t+ 1)‖)
(λ1 − ‖x̃(t+ 1)‖)(λ1 − ‖x̃(t)‖)

)
〈ek, x̃(t)〉
〈e1, x̃(t)〉

∣∣∣∣ .
Thus, as long as, the following holds true:

(λ1 − λk)(λ1 + λk − ‖x̃(t)‖ − ‖x̃(t+ 1)‖)
(λ1 − ‖x̃(t+ 1)‖)(λ1 − ‖x̃(t)‖)

≥ 2 + c,

we must have ∣∣∣∣ 〈ek, x̃(t+ 2)〉
〈e1, x̃(t+ 2)〉

∣∣∣∣ ≥ (1 + c)

∣∣∣∣ 〈ek, x̃(t)〉
〈e1, x̃(t)〉

∣∣∣∣ .
We can use (λ1 − ‖x̃(t)‖) cos θt ≤ ‖x̃(t+ 1)‖ ≤ λ1 − ‖x̃(t)‖ − λ

2λ1

(
1− λ

λ1

)
λ1 sin2 θt, where λ = min(λ1 − λ2, λD)

from Lemma A.6 to show the following with additional algebraic manipulation:

(λ1 − λk)(λ1 + λk − ‖x̃(t)‖ − ‖x̃(t+ 1)‖)
(λ1 − ‖x̃(t+ 1)‖)(λ1 − ‖x̃(t)‖)

≥ (λ1 − λk)λk
(λ1 − (λ1 − ‖x̃(t)‖) cos θt)(λ1 − ‖x̃(t)‖)

.

Hence, it suffices to show that

(λ1 − λk)λk
(λ1 − (λ1 − ‖x̃(t)‖) cos θt)(λ1 − ‖x̃(t)‖)

≥ 2 + c.

The left hand side can be simplified as

(λ1 − λk)λk
(λ1 − (λ1 − ‖x̃(t)‖) cos θt)(λ1 − ‖x̃(t)‖)

=
(λ1 − λk)λk

(2λ1 sin2(θt/2) + |〈e1, x̃(t)〉|)(λ1 − ‖x̃(t)‖)

≥ (λ1 − λk)λk
λ1θ2

t /2 + |〈e1, x̃(t)〉|)(λ1 − |〈e1, x̃(t)〉|)

≥ (λ1 − λk)λk
|〈e1, x̃(t)〉| (λ1 + c

2λ1 − |〈e1, x̃(t)〉|)
,

where the last step we use that |θt| ≤
√
c |〈e1, x̃(t)〉|, we only need

(2 + c) |〈e1, x̃(t)〉|2 − 2λ1(1 + c/2)(2 + c) |〈e1, x̃(t)〉|+ (λ1 − λk)λk ≥ 0.

The above inequality is true when |〈e1, x̃(t)〉| ≤ (1− 2c) g(λk).

Lemma A.10. Consider the function g : R→ R, with g(λ) = λ1

2

(
1−

√
1− 2 λ

λ1

(
1− λ

λ1

))
. Consider any coordinate

2 ≤ k ≤ D. For any constant 0 < c < 4λkλ1
(1− λk

λ1
), consider any t with x̃(t) ∈ ∩Dj=1Ij , with x̃(t) satisfying

0.5λ1 ≥ ‖x̃(t)‖ ≥ (1 + c)g(λk).

Then, the following must hold true at time t.∣∣∣∣ 〈ek, x̃(t+ 2)〉
〈e1, x̃(t+ 2)〉

∣∣∣∣ ≤ (1− 0.5c)

∣∣∣∣ 〈ek, x̃(t)〉
〈e1, x̃(t)〉

∣∣∣∣ ,
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Proof. By the Normalized GD update, we have:∣∣∣∣ 〈ek, x̃(t+ 2)〉
〈e1, x̃(t+ 2)〉

∣∣∣∣ =

∣∣∣∣∣
(

1− λk
‖x̃(t+1)‖

1− λk
‖x̃(t+1)‖

)(
1− λ1

‖x̃(t)‖

1− λ1

‖x̃(t)‖

)∣∣∣∣∣
∣∣∣∣ 〈ek, x̃(t)〉
〈e1, x̃(t)〉

∣∣∣∣
=

∣∣∣∣(1− (λ1 − λk)(λ1 + λk − ‖x̃(t)‖ − ‖x̃(t+ 1)‖)
(λ1 − ‖x̃(t+ 1)‖)(λ1 − ‖x̃(t)‖)

)
〈ek, x̃(t)〉
〈e1, x̃(t)〉

∣∣∣∣ . (10)

Now, we focus on the term (λ1−λk)(λ1+λk−‖x̃(t)‖−‖x̃(t+1)‖)
(λ1−‖x̃(t+1)‖)(λ1−‖x̃(t)‖) . For simplicity, we will denote the term as

ratio(λ1, λk, ‖x̃(t)‖ , ‖x̃(t+ 1)‖). The term behaves differently, depending on whether ‖x̃(t)‖ ≥ λk or ‖x̃(t)‖ ≤ λk:

1. If ‖x̃(t)‖ ≥ λk, which is only possible when λk ≤ λ1

2 , we find that ratio(λ1, λk, ‖x̃(t)‖ , ‖x̃(t+ 1)‖) is a monotoni-
cally decreasing function w.r.t. ‖x̃(t+ 1)‖, keeping other terms fixed. Using the fact that ‖x̃(t+ 1)‖ ≤ λ1 − ‖x̃(t)‖
from Lemma A.6, we can bound the term as:

min
λk≤a≤0.5λ1

ratio(λ1, λk, a, λ1 − a) ≤ ratio(λ1, λk, ‖x̃(t)‖ , ‖x̃(t+ 1)‖)

≤ max
λk≤a≤0.5λ1

ratio(λ1, λk, a, 0).

We can simplify ratio(λ1, λk, a, 0) as (λ1+λk−a)(λ1−λk)
λ1(λ1−a) for any a, and can be shown to be atmost 1 + λk

λ1
(≤ 3/2) for

any a in the range (λk, 0.5λ1). Furthermore, ratio(λ1, λk, a, λ1 − a) simplifies as λk(λ1−λk)
a(λ1−a) for any a, and can be

shown to be atleast 4λkλ1
(1− λk/λ1) in the range (λk, 0.5λ1), which it attains at a = λk.

2. If ‖x̃(t)‖ ≤ λk, we find that ratio(λ1, λk, ‖x̃(t)‖ , ‖x̃(t+ 1)‖) is a monotonically increasing function w.r.t. ‖x̃(t+ 1)‖,
keeping other terms fixed. Using the fact that ‖x̃(t+ 1)‖ ≤ λ1 − ‖x̃(t)‖ from Lemma A.6, we can bound the term as:

min
(1+c)g(λk)≤a≤min(0.5λ1,λk)

ratio(λ1, λk, a, 0) ≤ ratio(λ1, λk, ‖x̃(t)‖ , ‖x̃(t+ 1)‖)

≤ max
(1+c)g(λk)≤a≤min(0.5λ1,λk)

ratio(λ1, λk, a, λ1 − a).

Continuing in the similar way as the previous case, we show that ratio(λ1, λk, a, 0) is at least 1−(λk/λ1)2 in the range
((1 + c)g(λk),min(0.5λ1, λk)). ratio(λ1, λk, a, λ1 − a) is maximized in the range ((1 + c)g(λk),min(0.5λ1, λk))
at a = (1 + c)g(λk) and is atmost (2− 0.5c)g(λk).

Thus, we have shown that

2
λk
λ1

(1− λk
λ1

) ≤ min

(
4
λk
λ1

(1− λk
λ1

), 1− (
λk
λ1

)2

)
≤ (λ1 − λk)(λ1 + λk − ‖x̃(t)‖ − ‖x̃(t+ 1)‖)

(λ1 − ‖x̃(t+ 1)‖)(λ1 − ‖x̃(t)‖)
≤ 2− 0.5c.

The result follows after substituting this bound in Equation (10).

Lemma A.11. At any step t, if ‖x̃(t)‖ ≤ λ1

2 , |tan(∠(x̃(t+ 1), e1))| ≤ max(λ2

λ1
, 1− 2λDλ1

) |tan(∠(x̃(t), e1))|.

Proof of Lemma A.11. From the Normalized GD update rule, we have

x̃i(t+ 1) = x̃i(t)

(
1− λi
‖x̃(t)‖

)
, for all i ∈ [D],

implying |x̃i(t+ 1)| <
∣∣∣(1− 1

‖x̃(t)‖

)∣∣∣ |x̃i(t)| for all i ∈ [2, D], since λi < 1.

Since λi < λ1 and ‖x̃(t)‖ ≤ λ1

2 , it holds that

|x̃i(t+ 1)|
|x̃1(t+ 1)|

=

∣∣∣∣∣1−
λi
‖x̃(t)‖

1− λ1

‖x̃(t)‖

∣∣∣∣∣ |x̃i(t)||x̃1(t)|
=

∣∣∣∣1− λ1 − λi
λ1 − ‖x̃(t)‖

∣∣∣∣ |x̃i(t)||x̃1(t)|
≤ max(

λi
λ1
, 1− 2

λi
λ1

)
|x̃i(t)|
|x̃1(t)|

.
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Finally we conclude ∥∥P (2:D)x̃(t+ 1)
∥∥

|x̃1(t+ 1)|
≤ max(

λ2

λ1
, 1− 2

λD
λ1

)

∥∥P (2:D)x̃(t)
∥∥

|x̃1(t)|
.

Recall |tan(∠(v, e1))| = ‖P
(2:D)v‖
|〈e1,v〉| for any vector v, the claim follows from re-arranging the terms.

B. Setups for General Loss Functions
Before we start the analysis for Normalized GD for general loss functions in Appendix C, we need to introduce some new
notations and terminologies to complete the formal setup. We will start by first recapping some core assumptions and
definitions in the main paper.

Assumption 4.1. Assume that the loss L : RD → R is a C4 function, and that Γ is a (D − M) dimensional C2-
submanifold of RD for some integer 1 ≤ M ≤ D, where for all x ∈ Γ, x is a local minimizer of L with L(x) = 0 and
rank

(
∇2L(x)

)
= M .

Assumption 4.2. Assume that U is an open neighborhood of Γ satisfying that gradient flow w.r.t. L starting in U converges
to some point in Γ, i.e. for all x ∈ U , Φ(x) ∈ Γ. (Then Φ is C3 on U (Falconer, 1983)).

Notations: We define Φ : U → Γ as the limit map of gradient flow below. We summarize various properties of Φ from
(Li et al., 2022) in Appendix B.2.

Φ(x) = lim
τ→∞

φ(x, τ), where φ(x, τ) = x−
∫ τ

0

∇L(φ(x, s))ds. (11)

For a matrix A ∈ RD×D, we denote its eigenvalue-eigenvector pairs by {λi(A), vi(A))}i∈[D]. For simplicity, whenever Φ
is defined and C2 at point x, we use {(λi(x), vi(x))}Di=1 to denote the eigenvector-eigenvalue pairs of ∇2L(Φ(x)), with
λ1(x) > λ2(x) ≥ λ3(x) . . . ≥ λD(x). Given a differentiable submanifold Γ of RD and point x ∈ Γ, we use NxΓ and TxΓ
to denote the normal space and the tangent space of the manifold Γ for any point x ∈ Γ. We use Px,Γ : RD → RD to
denote the projection operator onto the normal space of Γ at x, and P⊥x,Γ := ID − Px,Γ. Similar to quadratic case, for any
x ∈ U , we use x̃ to denote ∇2L(Φ(x))(x− Φ(x)) for notational convenience. Additionally, for any x ∈ U , we use θ(x)

to denote the angle between x̃ and the top eigenspace of the hessian at Φ(x), i.e. θ(x) = arctan

∥∥∥P (2:M)

Φ(x),Γ
x̃
∥∥∥

|〈v1(x),x̃〉| . Furthermore,
when the iterates x(t) is clear in the context, we use shorthand λi(t) := λi(x(t)), vi(t) := vi(x(t)), Pt,Γ := PΦ(x(t)),Γ,
P⊥t,Γ := P⊥Φ(x(t)),Γ and θt to denote θ(x(t)) when x(t) is clear in the context. We define the function gt : R→ R for every
t ∈ N as

gt(λ) =
1

2

(
1−

√
1− 2

λ

λ1(t)

(
1− λ

λ1(t)

))
.

Given any two points x, y, we use xy to denote the line segment between x and y, i.e., {z | ∃λ ∈ [0, 1], z = (1−λ)x+λy}.

The main result of this paper focuses on the trajectory of Normalized GD from fixed initialization xinit with LR η converges
to 0, which can be roughly split into two phases. In the first phase, Theorem 4.3 shows that the normalized GD trajectory
converges to the gradient flow trajectory, φ(xinit, ·). In second phase, Theorem 4.4 shows that the normalized GD trajectory
converges to the limiting flow which decreases sharpness on Γ, (4). Therefore, for sufficiently small η, the entire trajectory
of normalized GD will be contained in a small neighbourhood of gradient flow trajectory Z and limiting flow trajectory Y .
The convergence rate given by our proof depends on the various local constants like smoothness of L and Φ in this small
neighbourhood, which intuitively can be viewed as the actual ”working zone” of the algorithm. The constants are upper
bounded or lower bounded from zero because this ”working zone” is compact after fixing the stopping time of (4), which is
denoted by T2.

X(τ) = Φ(xinit)−
1

4

∫ τ

s=0

P⊥X(s),Γ∇ log λ1(X(s))ds (4)
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Below we give formal definitions of the ”working zones” and the corresponding properties. For any point y ∈ RD and
positive number r, we define Br(y) := {x ∈ RD | ‖y − x‖ < r} as the open `2 norm ball centered at y and Br(y) as its
closure. For any set S and positive number r, we define Sr := ∪y∈SBr(y) and Br(S) := ∪y∈SBr(y). Given any stopping
time T2 > 0, we denote the trajectory of limiting flow Equation (4) {X(τ)}T2

τ=0 by Y and we define Y ε := ∪y∈YBy(ε)
where ε is some sufficiently small constant determined later in Lemma B.3. Y ε will be the ”working zone” of Normalized
GD in the second phase. By definition, Y ε are compact. To ensure Equation (4) is well-defined, we have to make T2 small
enough such that (1) Y ∈ U , with Φ(·) being well-defined along Y , and (2) λ1(∇2L(·)) is differentiable, which yields the
following definition of T fav

2 .

Definition B.1. T fav
2 is the set of all time T2 such that for any T2 ∈ T fav

2 , (4) is well-defined up to time T2, i.e., for any
0 ≤ τ ≤ T2, we have

1. X(τ) ∈ U ;

2. λ1(∇2L(X(τ)))− λ2(∇2L(X(τ))) > 0.

For convenience, we define ∆ := 1
2 infx∈Y

(
λ1(∇2L(x)) − λ2(∇2L(x)))

)
and µ := 1

4 infx∈Y ρ λM (∇2L(x)). By
Assumption 4.1 and the first bullet of Definition B.1, we have µ > 0. By the second bullet of Definition B.1, ∆ > 0.

Below we construct the ”working zone” of the second phase, Y ρ and Y ε, where 0 < ε < ρ, implying Y ε ⊂ Y ρ. The
reason that we need the two-level nested ”working zones” is that even though we can ensure all the points in Y ρ have nice
properties as listed in Lemma B.3, we cannot ensure the trajectory of gradient flow from x ∈ Y ρ to Φ(x) or the line segment
xΦ(x) is in Y ρ, which will be crucial for the geometric lemmas (in Appendix B.1) that we will heavily use in the trajectory
analysis around the manifold. For this reason we further define Y ε and Lemma B.6 guarantees the trajectory of gradient
flow from x to Φ(x) or the line segment xΦ(x) whenever x ∈ Y ρ.

Definition B.2 (PL condition). A function L is said to be µ-PL in a set U iff for all x ∈ U ,

‖∇L(x)‖2 ≥ 2µ(L(x)− inf
x∈U

L(x)).

Lemma B.3. Given Y , there are sufficiently small ρ > 0 such that

1. Y ρ ∩ Γ is compact;
2. Y ρ ⊂ U ;
3. L is µ-PL on Y ρ; (see Definition B.2)
4. infx∈Y ρ

(
λ1(∇2L(x))− λ2(∇2L(x)))

)
≥∆ > 0;

5. infx∈Y ρ λM (∇2L(x)) ≥ µ > 0.

Proof of Lemma B.3. We first claim for every y ∈ Y , for all sufficiently small ρy > 0 (i.e. for all ρy smaller than some
threshold depending on y), the following three properties hold (1) By(ρy) ∩ Γ is compact; (2) By(ρy) ∩ Γ ⊂ U and (3) L
is µ-PL on By(ρy ∩ Γ).

Among the above three claims, (2) is immediate. (1) holds becauseBy(ρy)∩Γ is bounded and we can make ρy small enough
to ensure By(ρy) ∩ Γ is closed. For (3), by Proposition 7 of (Fehrman et al., 2020), we define p(y) := argminx∈Γ ‖x− y‖
which is uniquely defined and C1 in By(ρy) for sufficiently small ρy. Moreover, Lemma 14 in (Fehrman et al., 2020)
shows that

∥∥∇L(x)−∇2L(p(x))(x− p(x))
∥∥ ≤ c ‖x− p(x)‖22 for all x in By(ρy) uniformly and some constant c. Thus

for small enough ρy ,

‖∇L(x)‖2 ≥(x− p(x))>(∇2L(p(x)))2(x− p(x))−O(‖x− p(x)‖3) (12)

Furthermore, by Lemma 10 in (Fehrman et al., 2020), it holds that x − p(x) ∈ Np(x)Γ = span({vi(p(x))}Mi=1), which
implies

(x− p(x))>(∇2L(p(x)))2(x− p(x)) ≥ λM (∇2L(p(x)))(x− p(x))>∇2L(p(x))(x− p(x)), (13)

and that

(x− p(x))>∇2L(p(x))(x− p(x)) ≥ λM (∇2L(p(x))) ‖x− p(x)‖22 .
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Thus for any c′ > 0, for sufficiently small ρy, (x − p(x))>∇2L(p(x))(x − p(x)) ≥ c′ ‖x− p(x)‖3. Combining Equa-
tions (12) and (13), we conclude that for sufficiently small ρy ,

‖∇L(x)‖2 ≥ λM (∇2L(p(x)))(x− p(x))>∇2L(p(x))(x− p(x))−O(‖x− p(x)‖32)

Again for sufficiently small ρy , by Taylor expansion of L at p(x), we have

1

2
(x− p(x))>∇2L(p(x))(x− p(x)) ≥ L(x)−O(‖x− p(x)‖3).

Thus we conclude

‖∇L(x)‖2 ≥ 2λM (∇2L(p(x)))L(x)−O(‖x− p(x)‖3) ≥ λM (∇2L(p(x)))L(x) ≥ 2µL(x).

Meanwhile, since λM (∇2L(p(x))) and λ1(∇2L(p(x)))−λ2(∇2L(p(x))) are continuous functions in x, we can also choose
a sufficiently small ρy such that for all x ∈ By(ρy), λM (∇2L(p(x))) ≥ 1

2λM (∇2L(p(y))) = 1
2λM (∇2L(y)) > ∆ and

λ1(∇2L(p(x))) − λ2(∇2L(p(x))) ≥ 1
2

(
λ1(∇2L(p(y))) − λ2(∇2L(p(y)))

)
= 1

2

(
λ1(∇2L(y)) − λ2(∇2L(y))

)
≥ µ.

Further note Y ⊂ ∪y∈YBy(ρy) and Y is a compact set, we can take a finite subset of Y , Y ′, such that Y ⊂ ∪y∈Y ′By(ρy).
Taking ρ := miny∈Y ′

ρy
2 completes the proof.

Definition B.4. The spectral 2-norm of a k-order tensor T = (ti1i2···ik) ∈ Rd1×d2×···dk is defined as the maximum of the
following constrained multilinear optimization problem:

‖T ‖ = max
{
T
(
x(1), · · · , x(k)

)
:
∥∥∥x(i)

∥∥∥
2

= 1, x(i) ∈ Rdi , i = 1, 2, . . . , k
}
.

Here, T
(
x1, · · · , x(k)

)
=
∑d1

i1=1

∑d2

i2=1 . . .
∑dk
ik=1 ti1i2...idx

(1)
i1
x

(2)
i2
. . . x

(k)
ik

.

Definition B.5. We define the following constants regarding smoothness of L and Φ of various orders over Y ρ.

ζ = sup
x∈Y ρ

∥∥∇2L(x)
∥∥ , ν = sup

x∈Y ρ

∥∥∇3L(x)
∥∥ , Υ = sup

x∈Y ρ

∥∥∇4L(x)
∥∥ ,

ξ = sup
x∈Y ρ

∥∥∇2Φ(x)
∥∥ , χ = sup

x∈Y ρ

∥∥∇3Φ(x)
∥∥ ,

We assume each of the constants ζ,ν,Υ, ξ,χ are at least 1 for simplicity (otherwise we can set them to be 1 and our bound
still holds)

Lemma B.6. Given ρ as defined in Lemma B.3, there is an ε ∈ (0,ρ) such that

1. supx∈Y ε L(x)− inf
x∈Y ε

L(x) < µρ2

8 ;

2. ∀x ∈ Y ε, Φ(x) ∈ Y
ρ
2 ;

3. ε ≤ 2µ2

νζ .

Proof of Lemma B.6. For every y ∈ Y , there is an εy, such that ∀x ∈ By(εy), it holds that L(x) < µρ2

8 , Φ(x) ∈ Y
ρ
2

and λ1(∇2L(x)) − λ2(∇2L(x))) ≥ ∆, as both L(x), Φ(x) and eigenvalue functions are continuous. Further note
Y ⊂ ∪y∈YBy(εy) and Y is a compact set, we can take a finite subset of Y , Y ′, such that Y ⊂ ∪y∈Y ′By(εy). Taking
ε := min{miny∈Y ′

εy
2 ,

2µ2

νζ } completes the proof.

Summary for Setups: The initial point xinit is chosen from an open neighborhood of manifold Γ, U , where the infinite-
time limit of gradient flow Φ is well-defined and for any x ∈ U , Φ(x) ∈ Γ. We consider normalized GD with sufficiently
small LR η such that the trajectory enters a small neighborhood of limiting flow trajectory, Y ρ. Moreover, L is µ-PL on Y ρ

and the eigengaps and smallest eigenvalues are uniformly lower bounded by positive ∆,µ respectively on Y ρ. Finally, we
consider a proper subset of Y ρ, Y ε, as the final ”working zone” in the second phase (defined in Lemma B.6), which enjoys
more properties than Y ρ, including Lemmas B.8 to B.11.
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B.1. Geometric Lemmas

In this subsection we present several geometric lemmas which are frequently used in the trajectory analysis of normalized
GD. Below is a brief summary:

• Lemma B.7: Inequalities connecting various terms: the distance between x and Φ(x), the length of GF trajectory from
x to Φ(x), square root of loss and gradient norm;

• Lemma B.8: For any x ∈ Y ε, the gradient flow trajectory from x to Φ(x) and the line segment between x and Φ(x)
are all contained in Y ρ, so it’s ”safe” to use Taylor expansions along GF trajectory or xΦ(x) to derive properties;

• Lemmas B.9 to B.11: for any x ∈ Y ε, the normalized GD dynamics at x can be roughly viewed as approximately
quadratic around Φ(x) with positive definite matrix∇2L(Φ(x)).

• Lemma B.12: In the ”working zone”, Y ρ, one-step normalized GD update with LR η only changes Φ(xt) by O(η2).

• Lemma B.14: In the ”working zone”, Y ρ, one-step normalized GD update with LR η decreases
√
L(x)−miny∈Y L(y)

by η
√

2µ
4 if ‖∇L(x)‖ ≥ ζ

η .

Lemma B.7. If the trajectory of gradient flow starting from x, φ(x, t), stays in Y ρ for all t ≥ 0, then we have

‖x− Φ(x)‖ ≤
∫ ∞
t=0

∥∥∥∥dφ(x, t)

dt

∥∥∥∥dt ≤

√
2(L(x)− L(Φ(x)))

µ
≤ ‖∇L(x)‖

µ
.

Proof of Lemma B.7. Since Φ(x) is defined as limt→∞ φ(x, t) and φ(x, 0) = x, the left-side inequality follows immediately
from triangle inequality. The right-side inequality is by the definition of PL condition. Below we prove the middle inequality.

Since ∀t ≥ 0, φ(x, t) ∈ Y ρ, it holds that ‖∇L(φ(x, t))‖2 ≥ 2µ(L(φ(x, t))− L(Φ(x))) by the choice of ρ in Lemma B.3.
Without loss of generality, we assume L(y) = 0,∀y ∈ Γ. Thus we have∫ ∞

t=0

‖∇L(φ(x, t))‖ dt ≤
∫ ∞
t=0

‖∇L(φ(x, t))‖2√
2µL(φ(x, t))

dt.

Since dφ(x, t) = −∇L(φ(x, t))dt, if holds that

∫ ∞
t=0

‖∇L(φ(x, t))‖2√
2µL(φ(x, t))

dt ≤
∫ ∞
t=0

−dL(φ(x, t))√
2µL(φ(x, t))

=

∫ ∞
t=0

√
2

µ
d
√
L(φ(x, t)) =

√
2L(φ(x, 0))

µ
.

The proof is complete since φ(x, 0) = x and we assume L(Φ(x)) is 0.

Lemma B.8. Let ρ, ε be defined in Lemmas B.3 and B.6. For any x ∈ Y ε, we have

1. The entire trajectory of gradient flow starting from x is contained in Y ρ, i.e., φ(x, t) ∈ Y ρ, ∀t ≥ 0;

2. For any t ≥ 0, line segment Φ(x)φ(x, t) is contained in Y ρ, i.e., ‖Φ(x)− φ(x, t)‖ ≤ ρ, ∀t ≥ 0.

Proof of Lemma B.8. Let time τ∗ > 0 be the smallest time after which the trajectory of GF is completely contained in Y ρ,
that is, τ∗ := inf{t ≥ 0 | ∀t′ ≥ t, φ(x, t′) ∈ Y ρ}. Since Y ρ is closed and φ(x, ·) is continuous, we have φ(x, τ∗) ∈ Y ρ.

Since ∀τ ≥ τ∗, φ(x, τ) ∈ Y ρ, by Lemma B.7, it holds that ‖φ(x, τ∗)− Φ(x)‖ ≤
√

2(L(φ(x,τ∗))−L(Φ(x)))
µ .

Note that loss doesn’t increase along GF, we have L(φ(x, τ∗))− L(Φ(x)) ≤ L(x)− L(Φ(x)) ≤ µρ2

8 , which implies that
‖φ(x, τ∗)− Φ(x)‖ ≤ ρ

2 .

Now we prove the first claim. Suppose GF trajectory starting from x leaves Y ρ, or equivalently τ∗ > 0, since
limτ→∞ φ(x, τ) = Φ(x) ∈ Y

ρ
2 , there must exist a time τ∗ > 0 such that φ(x, τ∗) is on the boundary of Y ρ, that is,

infy∈Y ‖y − φ(x, τ∗)‖ = ρ. By triangle inequality, this implies that ‖Φ(x)− φ(x, τ∗)‖ ≥ ρ
2 . Contradiction!
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The second claim also follows from the same estimation. Since τ∗ = 0, for any t ≥ 0, ‖φ(x, t)− Φ(x)‖ ≤∫∞
τ=t
‖∇L(φ(x, τ))‖ dτ ≤

∫∞
τ=τ∗

‖∇L(φ(x, τ))‖ dτ ≤ ρ
2 .

The following theorem shows that the projection of x in the tangent space of Φ(x) is small when x is close to the manifold.
In particular if we can show that in a discrete trajectory with a vanishing learning rate η, the iterates {xη(t)} stay in Y ε,
we can interchangeably use ‖xη(t)− Φ(xη(t))‖ with ‖Pt,Γ(xη(t)− Φ(xη(t)))‖, with an additional error of O(η3), when
‖Pt,Γ(xη(t)− Φ(xη(t)))‖ ≤ O(η).

Lemma B.9. For all x ∈ Y ε, we have∥∥∥P⊥Φ(x),Γ(x− Φ(x))
∥∥∥ ≤ νζ

4µ2
‖x− Φ(x)‖2 ,

and ∥∥PΦ(x),Γ(x− Φ(x))
∥∥ ≥ ‖x− Φ(x)‖

(
1− ν

2ζ2

16µ4
‖x− Φ(x)‖2

)
≥ 3

4
‖x− Φ(x)‖ .

Proof. First of all, we can track the decrease in loss along the Gradient flow trajectory starting from x. At any time τ , we
have

d

dτ
L(φ(x, τ)) = 〈∇L(φ(x, τ)),

d

dτ
φ(x, τ)〉 = −‖∇L(φ(x, τ))‖2 ,

where φ(x, 0) = x. Without loss of generality, we assume L(y) = 0,∀y ∈ Γ. Using the fact that L is µ-PL on Y ρ and the
GF trajectory starting from any point in Y ε stays inside Y ρ (from Lemma B.8), we have

d

dτ
L(φ(x, τ)) ≤ −2µL(φ(x, τ)),

which implies

L(φ(x, τ)) ≤ L(φ(x, 0))e−2µτ

By Lemma B.7, we have

‖φ(x, τ)− Φ(x)‖ ≤
√

2

µ

√
L(φ(x, τ)) ≤

√
2L(φ(x, 0))e−2µτ

µ
. (14)

Moreover, we can relate L(φ(x, 0) with ‖Φ(x)− x‖ with a second order taylor expansion:

L(x) = L(Φ(x)) + 〈∇L(Φ(x)), x− Φ(x)〉+

∫ 1

s=0

(1− s)(x− Φ(x))>∇2L(sx+ (1− s)Φ(x))(x− Φ(x))ds

where in the final step, we have used the fact that L(Φ(x)) = 0 and∇L(Φ(x)) = 0. By Lemma B.8, we have xΦ(x) ⊂ Y ρ.
Thus maxs∈[0,1]

∥∥∇2L(sx+ (1− s)Φ(x))
∥∥ ≤ ζ from Definition B.5 and it follows that

L(x) ≤
∫ 1

s=0

(1− s)ζ ‖x− Φ(x)‖2 ds =
ζ

2
‖Φ(x)− x‖2 , (15)

Finally we focus on the movement in the tangent space. It holds that∥∥∥P⊥Φ(x),Γ(φ(x,∞)− φ(x, 0))
∥∥∥ ≤ ∥∥∥∥P⊥Φ(x),Γ

∫ ∞
0

∇L(φ(x, τ))

∥∥∥∥ dτ ≤ ∫ ∞
0

∥∥∥P⊥Φ(x),Γ∇L(φ(x, τ))
∥∥∥ dτ. (16)
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By Lemma B.8, we have φ(x, τ)Φ(x) ⊂ Y ρ for all τ ≥ 0 and thus∥∥∇L(φ(x, τ))−∇2L(Φ(x))
(
Φ(x)

)(
φ(x, τ)− Φ(x)

)∥∥ ≤ ν
2
‖φ(x, τ)− Φ(x)‖2 .

Since P⊥Φ(x),Γ is the projection matrix for the tangent space, P⊥Φ(x),Γ∇
2L(Φ(x)) = 0 and thus by Equation (14)∥∥∥P⊥Φ(x),Γ∇L(φ(x, τ))

∥∥∥ ≤ ν
2
‖φ(x, τ)− Φ(x)‖2 ≤ νL(φ(x, 0))e−2µτ

µ
(17)

Plug Equation (17) into Equation (16), we conclude that∥∥∥P⊥Φ(x),Γ(φ(x,∞)− x)
∥∥∥ ≤ ∫ ∞

τ=0

νL(φ(x, 0))e−2µτ

µ
=
νL(x)

2µ2
≤ νζ ‖x− Φ(x)‖2

4µ2
(18)

For the second claim, simply note that∥∥∥P⊥Φ(x),Γ(x− Φ(x))
∥∥∥ =

√
‖x− Φ(x)‖2 −

∥∥PΦ(x),Γ(x− Φ(x))
∥∥2 ≥ ‖x− Φ(x)‖ −

∥∥PΦ(x),Γ(x− Φ(x))
∥∥2

‖x− Φ(x)‖

The left-side inequality of the second inequality is proved by plugging the first claim into the above inequality. Note by the
property (3) in Lemma B.6, ν

2ζ2

16µ4 ‖x− Φ(x)‖2 ≤ 1
4 , the right-side inequality is also proved.

Lemma B.10. At any point x ∈ Y ε, we have∥∥∇L(x)−∇2L(Φ(x))(x− Φ(x))
∥∥ ≤ 1

2
ν ‖x− Φ(x)‖2 .

and ∣∣∣∣ ‖∇L(x)‖
‖∇2L(Φ(x))(x− Φ(x))‖

− 1

∣∣∣∣ ≤ 4ν

3µ
‖x− Φ(x)‖ ,

Moreover, the normalized gradient of L can be written as

∇L(x)

‖∇L(x)‖
=
∇2L(Φ(x))(x− Φ(x))

‖∇2L(Φ(x))(x− Φ(x))‖
+O(

ν

µ
‖x− Φ(x)‖). (19)

Proof of Lemma B.10. Using taylor expansion at x, we have using∇L(Φ(x)) = 0:

∥∥∇L(x)−∇2L(Φ(x))(x− Φ(x))
∥∥ =

∥∥∥∥∫ 1

0

(1− s)∂2(∇L)(sx+ (1− s)Φ(x))[x− Φ(x), x− Φ(x)]ds

∥∥∥∥
≤
∥∥∥∥∫ 1

0

(1− s)ds
∥∥∥∥ max

0≤s≤1

∥∥∂2(∇L)(sx+ (1− s)Φ(x))
∥∥ ‖x− Φ(x)‖2

≤ 1

2
ν ‖x− Φ(x)‖2 .

Further note
∥∥∇2L(Φ(x))(x− Φ(x))

∥∥ ≥ ∥∥PΦ(x),Γ∇2L(Φ(x))(x− Φ(x))
∥∥ =

∥∥∇2L(Φ(x))PΦ(x),Γ(x− Φ(x))
∥∥ ≥

µ
∥∥PΦ(x),Γ(x− Φ(x))

∥∥, we have∣∣∣∣ ‖∇L(x)‖
‖∇2L(Φ(x))(x− Φ(x))‖

− 1

∣∣∣∣ ≤ ν ‖x− Φ(x)‖2

µ
∥∥PΦ(x),Γ(x− Φ(x))

∥∥ ≤ 4ν

3µ
‖x− Φ(x)‖ ,

where we use Lemma B.9 since x ∈ Y ε. Thus, the normalized gradient at any step t can be written as

∇L(x)

‖∇L(x)‖
=

∇2L(Φ(x))[x− Φ(x)] +O(ν ‖x− Φ(x)‖2)

‖∇2L(Φ(x))(x− Φ(x))‖
(

1 +O
(
ν
µ ‖x− Φ(x)‖

)) .
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= − ∇
2L(Φ(x))[x− Φ(x)]

‖∇2L(Φ(x))[x− Φ(x)]‖
+O(

ν

µ
‖x− Φ(x)‖),

which completes the proof.

Lemma B.11. Consider any point x ∈ Y ε. Then,∣∣∣∣〈v1(x),
∇L(x)

‖∇L(x)‖

〉∣∣∣∣ ≥ cos θ −O(
ν

µ
‖x− Φ(x)‖),

where θ = arctan

∥∥∥P (2:M)

Φ(x),Γ
x̃
∥∥∥

|〈v1(x),x̃〉| , with x̃ = ∇2L(Φ(x))(x− Φ(x)).

Proof of Lemma B.11. From Lemma B.10, we have that

∇L(x)

‖∇L(x)‖
=
∇2L(Φ(x))(x− Φ(x))

‖∇2L(Φ(x))(x− Φ(x))‖
+O(

ν

µ
‖x− Φ(x)‖).

Hence,

|〈v1(x),∇L(x)〉|
‖∇L(x)‖

=

∣∣〈v1(x),∇2L(Φ(x))(x− Φ(x))〉
∣∣

‖∇2L(Φ(x))(x− Φ(x))‖
+O(

ν

µ
‖x− Φ(x)‖)

≥ cos θ −O(
ν

µ
‖x− Φ(x)‖).

Lemma B.12. For any xy ∈ Y ε where y = x− η ∇L(x)
‖∇L(x)‖ is the one step Normalized GD update from x, we have

‖Φ(y)− Φ(x)‖ ≤ 1

2
ξη2.

Moreover, we must have for every 1 ≤ k ≤M ,∣∣λk(∇2L(Φ(x)))− λk(∇2L(Φ(y)))
∣∣ ≤ 1

4
νξη2,

and ∥∥v1(∇2L(Φ(x)))− v1(∇2L(Φ(y)))
∥∥ ≤ 1

2

νξη2

∆− 1
4νξη

2
=
νξη2

2∆
+O(

ν2ξ2η4

∆
).

Proof. By Lemma B.15, we have ∂Φ(x)∇L(x) = 0 for all x ∈ U . Thus we have

‖Φ(y)− Φ(x)‖ =η

∥∥∥∥∫ 1

s=0

∂Φ

(
x− sη ∇L(x)

‖∇L(x)‖

)
∇L(x)

‖∇L(x)‖
ds

∥∥∥∥
=η

∥∥∥∥∫ 1

s=0

(
∂Φ

(
x− sη ∇L(x)

‖∇L(x)‖

)
− ∂Φ(x)

)
∇L(x)

‖∇L(x)‖
ds

∥∥∥∥
≤η
∫ 1

s=0

∥∥∥∥∂Φ

(
x− sη ∇L(x)

‖∇L(x)‖

)
− ∂Φ(x)

∥∥∥∥ds

≤η2

∫ 1

s=0

s sup
s′∈[0,s]

∥∥∇2Φ((1− s′)x+ s′y)
∥∥ds

=
η2

2
sup

s′∈[0,1]

∥∥∇2Φ((1− s′)x+ s′y)
∥∥

≤1

2
ξη2,
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where the final step follows from using Definition B.5.

For the second claim, we have for every 1 ≤ k ≤M ,∣∣λk(∇2L(Φ(x)))− λk(∇2L(Φ(y)))
∣∣ ≤ ∥∥∇2L(Φ(x))−∇2L(Φ(y))

∥∥
=

∥∥∥∥∫ 1

s=0

(1− s)∂2(∇L)(Φ(sx+ (1− s)y))(Φ(x)− Φ(y))ds

∥∥∥∥
≤
∣∣∣∣∫ 1

s=0

(1− s)ds
∣∣∣∣ max
s∈[0,1]

∥∥∂2(∇L)(Φ(sx+ (1− s)y))
∥∥ ‖Φ(x)− Φ(y))‖

≤ 1

4
νξη2,

where the first step involves Theorem F.2.

The third claim follows from using Theorem F.4. Again,

∥∥v1(∇2L(Φ(x)))− v1(∇2L(Φ(y)))
∥∥ ≤ ∥∥∇2L(Φ(x))−∇2L(Φ(y))

∥∥
λ1(∇2LΦ(x))− λ2(∇2L(Φ(y)))

≤ 1

2

νξη2

λ1(∇2L(Φ(x)))− λ2(∇2L(Φ(y))

≤ 1

2

νξη2

λ1(∇2L(Φ(x)))− λ2(∇2L(Φ(x))− 1
4νξη

2

≤ 1

2

νξη2

∆− 1
4νξη

2
,

where we borrow the bound on
∥∥∇2L(Φ(x))−∇2L(Φ(y))

∥∥ from our previous calculations. The final step follows from
the constants defined in Definition B.5.

Lemma B.13. For any xy ∈ Y ε where y = x− η ∇L(x)
‖∇L(x)‖ is the one step Normalized GD update from x, we have that

Φ(y)− Φ(x) = −η
2

4
P⊥Φ(x),Γ∇(log λ1(∇2L(Φ(x))))

+O(η2ξθ) +O(
νξ ‖x− Φ(x)‖ η2

µ
) +O(χ ‖x− Φ(x)‖ η2) +O(χη3).

Here θ = arctan

∥∥∥P (2:M)

Φ(x),Γ
x̃
∥∥∥

|〈v1(x),x̃〉| , with x̃ = ∇2L(Φ(x))(x− Φ(x)). Additionally, we have that

∥∥PΦ(x),Γ(Φ(y)− Φ(x))
∥∥ ≤ O(χ ‖x− Φ(x)‖ η2) +O(χη3) +O(

νξ

µ
‖x− Φ(x)‖ η2).

Proof of Lemma B.13. By Taylor expansion for Φ at x, we have

Φ(y)− Φ(x) =∂Φ(x) (y − x) +
1

2
∂2Φ(x)[y − x, y − x] +O(χ ‖y − x‖3)

=∂Φ(x)

(
−η ∇L(x)

‖∇L(x)‖

)
+
η2

2
∂2Φ(x)

[
∇L(x)

‖∇L(x)‖
,
∇L(x)

‖∇L(x)‖

]
+O(χη3)

=
η2

2
∂2Φ(x)

[
∇L(x)

‖∇L(x)‖
,
∇L(x)

‖∇L(x)‖

]
+O(χη3),

where in the pre-final step, we used the property of Φ from Lemma B.15. In the final step, we have used a second order
taylor expansion to bound the difference between ∂2Φ(x) and ∂2Φ(Φ(x)). Additionally, we have used y − x = η ∇L(x)

‖∇L(x)‖
from the Normalized GD update rule.
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Applying Taylor expansion on Φ again but at Φ(x), we have that

Φ(y)− Φ(x) =
η2

2
∂2Φ(Φ(x))

[
∇L(x)

‖∇L(x)‖
,
∇L(x)

‖∇L(x)‖

]
+O(χ ‖x− Φ(x)‖ η2) +O(χη3) (20)

Also, at Φ(x), since v1(x) is the top eigenvector of the hessian∇2L, we have that from Corollary B.22,

∂2Φ(Φ(x))
[
v1(x)v1(x)>

]
= − 1

2λ1(x)
∂Φ(Φ(x))∂2(∇L)(Φ(x))[v1(x), v1(x)]. (21)

By Lemma B.11, it holds that∥∥∥∥sign

(〈
∇L(x)

‖∇L(x)‖
, v1(x)

〉)
∇L(x)

‖∇L(x)‖
− v1(x)

∥∥∥∥ ≤ 2 sin
θ

2
+O(

ν ‖x− Φ(x)‖
µ

) ≤ θ +O(
ν ‖x− Φ(x)‖

µ
). (22)

Plug Equations (21) and (22) into Equation (20), we have that

Φ(y)− Φ(x) = −η
2

2

1

2λ1(x)
∂Φ(Φ(x))∂2(∇L)(Φ(x))[v1(x), v1(x)]

+O(η2ξθ) +O(
νξ ‖x− Φ(x)‖ η2

µ
) +O(χ ‖x− Φ(x)‖ η2) +O(χη3).

By Lemma B.17, for any x ∈ Γ, ∂Φ(x) is the projection matrix onto the tangent space TΦ(x)Γ. Thus, ∂Φ(Φ(x)) =

P⊥Φ(x),Γ. Thus the proof of the first claim is completed by noting that ∂Φ(Φ(x))∂2(∇L)(Φ(x))[v1(x), v1(x)] =

P⊥Φ(x),Γ∇(log λ1(∇2L(Φ(x)))) by Corollary B.23.

For the second claim, continuing from Equation (20), we have that

Φ(y)− Φ(x) =
η2

2
∂2Φ(Φ(x))

[
∇L(x)

‖∇L(x)‖
,
∇L(x)

‖∇L(x)‖

]
+O(χ ‖x− Φ(x)‖ η2) +O(χη3)

=
η2

2
∂2Φ(Φ(x)) [Σ] +O(χ ‖x− Φ(x)‖ η2) +O(χη3) +O(

νξ

µ
‖x− Φ(x)‖ η2),

where Σ = PΦ(x),Γ
∇L(x)
‖∇L(x)‖

(
PΦ(x),Γ

∇L(x)
‖∇L(Φ(x))‖

)>
and the last step is by Lemma B.10. Here PΦ(x),Γ denotes the projection

matrix of the subspace spanned by v1(x), . . . , vM (x).

By Lemmas B.17, B.18 and B.21, we have that PΦ(x),Γ∂
2Φ(Φ(x)) [Σ] = −PΦ(x),Γ∂Φ(x)∂2(∇L)(x)[L−1

∇2L(x)Σ] = 0, we
conclude that ∥∥PΦ(x),Γ(Φ(y)− Φ(x))

∥∥ ≤ O(χ ‖x− Φ(x)‖ η2) +O(χη3) +O(
νξ

µ
‖x− Φ(x)‖ η2),

which completes the proof.

Lemma B.14. Let Lmin = miny∈U L(y). For any xy ∈ Y ε where y = x − η ∇L(x)
‖∇L(x)‖ is the one step Normalized GD

update from x, if ‖∇L(xη(t))‖ ≥ ζη, we have that

√
L(y)− Lmin ≤

√
L(x)− Lmin − η

√
2µ

4
.

Proof of Lemma B.14. By Taylor expansion, we have that

L(y) ≤ L(x)− η ‖∇L(x)‖+
ζη2

2
.
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Thus for ‖∇L(xη(t))‖ ≥ ζη, we have that

L(y)− L(x) ≤ −η
2
‖∇L(x)‖ ≤ −η

√
2µ

2

√
L(x)− Lmin ≤ 0,

where the last step is because L is µ-PL on Y ε. In other words, we have that

√
L(y)− Lmin −

√
L(x)− Lmin ≤ −η

√
L(x)− Lmin√

L(y)− Lmin +
√
L(x)− Lmin

√
2µ

2
≤ −η

√
2µ

4
,

where in the last step we use L(y)− L(x) ≤ 0. This completes the proof.

B.2. Properties of limiting map of gradient flow, Φ

All the following Lemmas B.15 to B.19 and B.21 and Definition B.20 have been taken from (Li et al., 2022).

Lemma B.15. For any x ∈ U , it holds that (1). ∂Φ(x)∇L(x) = 0 and (2). ∂2Φ(x)[∇L(x),∇L(x)] =
−∂Φ(x)∇2L(x)∇L(x).

Lemma B.16. For any x ∈ Γ and any v ∈ TxΓ, it holds that∇2L(x)v = 0.

Lemma B.17. For any x ∈ Γ, ∂Φ(x) ∈ RD×D is the projection matrix onto the tangent space TxΓ, i.e. ∂Φ(x) = P⊥x,Γ.

Lemma B.18. For any x ∈ Γ, if v1, . . . , vM denotes the non-zero eigenvectors of the hessian ∇2L(Φ(x)), then
v1, . . . , vM ∈ NxΓ.

Lemma B.19. For any x ∈ Γ and u ∈ NxΓ, it holds that

∂2Φ(x)
[
uu> +∇2L(x)†uu>∇2L(x)

]
= −∂Φ(x)∂2(∇L)(x)

[
∇2L(x)†uu>

]
.

Definition B.20 (Lyapunov Operator). For a symmetric matrix H , we define WH =
{

Σ ∈ RD×D |
Σ = Σ>, HH†Σ = Σ = ΣHH†

}
and Lyapunov Operator LH : WH → WH as LH(Σ) = H>Σ + ΣH . It’s easy to

verify L−1
H is well-defined on WH .

Lemma B.21. For any x ∈ Γ and Σ = span{uu> | u ∈ NxΓ},

〈∂2Φ(x),Σ〉 = −∂Φ(x)∂2(∇L)(x)[L−1
∇2L(x)Σ].

We will also use the following two corollaries of Lemma B.21.

Corollary B.22. For any x ∈ Γ, if u denotes the top eigenvector of∇2L(x), then

∂2Φ(x)[uu>] = − 1

2λ1(∇2L(x))
∂Φ(x)∂2(∇L)(x)[u, u]

Corollary B.23. For any x ∈ Γ and any eigenvector u of∇2L(x), then

∂2Φ(x)[uu>] = −1

2
P⊥x,Γ∇ log(λ1(∇2L(x))).

Proof of Corollary B.23. The proof follows from using Corollary B.22 and the derivative of λ1 from Theorem F.1.

C. Analysis of Normalized GD on General Loss Functions
C.1. Phase I, Convergence

We restate the theorem concerning Phase I for the Normalized GD algorithm. Recall the following notation for each
1 ≤ j ≤M :

Rj(x) :=

√√√√ M∑
i=j

λ2
i (x)〈vi(x), x− Φ(x)〉2 − λj(x)η, for all x ∈ U.
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Figure 6: Illustration for two-phase dynamics of Normalized GD and GD on
√
L on a 1D zero loss manifold Γ. For

sufficiently small LR η, Phase I is close to Gradient Flow and lasts for Θ(η−1) steps, while Phase II is close to the limiting
flow which decreases the sharpness of the loss and lasts for Θ(η−2) steps. GD iterate oscillates along the top eigenvector of
the Hessian with the period equal to two steps. (cf. Figure 2 in (Li et al., 2022))

Theorem 4.3 (Phase I). Let {xη(t)}t∈N be the iterates of Normalized GD (3) with LR η and xη(0) = xinit ∈ U . There is
T1 > 0 such that for any T ′1 > T1, it holds that for sufficiently small η that (1) max

T1≤ηt≤T ′1
‖xη(t)− Φ(xinit)‖ ≤ O(η) and (2)

max
T1≤ηt≤T ′1,j∈[D]

Rj(xη(t)) ≤ O(η2).

The intuition behind the above theorem is that for sufficiently small LR η, xη(t) will track the normalized gradient flow
starting from xinit, which is a time-rescaled version of the standard gradient flow. Thus the normalized GF will enter Y ε and
so does normalized GD. Since L satisfies PL condition in Y ε, the loss converges quickly and the iterate xη(t) gets η to
manifold. To finish, we need the following theorem, which is the approximately-quadratic version of Lemma 3.3 when the
iterate is O(η) close to the manifold.

Lemma C.1. Suppose {xη(t)}t≥0 are iterates of Normalized GD (3) with a learning rate η and xη(0) = xinit. There are

constants C > 0, such that for any constant ς > 0, if at some time t′, xη(t′) ∈ Y ε and satisfies ‖xη(t′)−Φ(xη(t′))‖
η ≤ ς , then

for all t̄ ≥ t′ + C ζςµ log ςζµ , the following must hold true for all 1 ≤ j ≤M :√√√√ M∑
i=j

〈vi(t̄), x̃(t̄)〉2 ≤ ηλj(t̄) +O(νξη2) +O(
νζ2ς

µ2
η2) +O(

√
Dξζςνη2) +O(η2D), (23)

provided η ≤ O( µ3

ζ3ς2ξν
√
D

) and that for all steps t ∈ {t, . . . , t̄− 1}, xη(t)xη(t+ 1) ⊂ Y ε.

The proof of the above theorem is in Appendix D.1.

Proof of Theorem 4.3. We define the Normalized gradient flow as φ(x, τ) = x−
∫ τ

0
∇L(φ(x,s))

‖∇L(φ(x,s))‖ds. Since φ(x, ·) is only

a time rescaling of φ(x, ·), they have the same limiting mapping, i.e., Φ(x) = limτ→Tx φ(x, τ), where Tx is the length of
the trajectory of the gradient flow starting from x.

Let Tx be the length of the GF trajectory starting from x, and we know limτ→Tx φ(x, τ) = Φ(x), where φ(x, τ) is defined
as the Normalized gradient flow starting from x. In Lemmas B.3 and B.6 we show there is a small neighbourhood around
Φ(xinit), Y ε such that L is µ-PL in Y ε. Thus we can take some time T0 < Txinit such that φ(xinit, T0) ∈ Y ε/2 and
L(φ(xinit), T0) ≤ 1

2Lcritical, where Lcritical := ε2µ
8 . (Without loss of generality, we assume miny∈Y L(y) = 0) By standard

ODE approximation theory, we know there is some small η0, such that for all η ≤ η0,
∥∥xη(dT0/ηe)− φ(xinit, T0)

∥∥ = O(η),
where O(·) hides constants depending on the initialization xinit and the loss function L.

Without loss of generality, we can assume η0 is small enough such that xη(dT0/ηe) ∈ Y ε and L(xη(dT0/ηe)) ≤ Lcritical.
Now let tη be the smallest integer (yet still larger than dT0/ηe) such that xη(tη)xη(tη − 1) 6⊂ Y ε and we claim that there
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is t ∈ {dT0/ηe, . . . , tη}, ‖∇L(xη(t))‖ < ζη. By the definition of tη, we know for any t ∈ {dT0/ηe+ 1, . . . , tη − 1}, by
Lemma B.12 we have ‖Φ(xη(t))− Φ(xη(t− 1))‖ ≤ ξη2, and by Lemma B.14,

√
L(xη(t))−

√
xη(t− 1) ≤ −η

√
2µ
4 if

‖∇L(xη(t))‖ ≥ ζη. If the claim is not true, since
√
L(xη(t)) decreases η

√
2µ
4 per step, we have

0 ≤
√
L(xη(tη − 1)) ≤

√
L(xη(dT0/ηe))− (tη − dT0/ηe − 1)η

√
2µ

4
,

which implies that tη − dT0/ηe − 1 ≤ ε
η , and therefore by Lemma B.12,

‖Φ(xη(tη − 1))− Φ(xη(dT0/ηe))‖ ≤ (tη − dT0/ηe − 1)
ξη2

2
=
ξηε

2

Thus we have

‖Φ(xη(tη − 1))− Φ(xinit)‖ ≤ ‖Φ(xη(tη − 1))− Φ(xη(dT0/ηe))‖+
∥∥Φ(xη(dT0/ηe)− Φ(φ(xinit, T0)))

∥∥ = O(η).

Meanwhile, by Lemma B.7, we have ‖Φ(xη(tη − 1))− xη(tη − 1)‖ ≤
√

2L(xη(tη−1))
µ ≤

√
2L(xη(dT0/ηe))

µ = ε
2 . Thus for

any κ ∈ [0, 1], we have ‖κxη(tη) + (1− κ)xη(tη − 1)− Φ(xinit)‖ is upper bounded by

κ ‖xη(tη)− xη(tη − 1)‖+ ‖Φ(xη(tη − 1))− xη(tη − 1)‖+ ‖Φ(xη(tη − 1))− Φ(xinit)‖ = κη +
ε

2
+O(η),

which is smaller than ε since we can set η0 sufficiently small. In other words, Φ(xη(tη))Φ(xη(tη − 1)) ⊂ Y ε, which
contradicts with the definition of tη . So far we have proved our claim that there is t′η ∈ {dT0/ηe, . . . , tη},

∥∥∇L(xη(t′η))
∥∥ <

ζη. Moreover, since
√
L(xη(t)) decreases η

√
2µ
4 per step before t′η , we know t′η − dT0/ηe ≤ ε

η . By Lemma B.7, we know∥∥xη(t′η)− Φ(xη(t′η))
∥∥ ≤ ζη

µ .

Now we claim that for any T ′1, tη ≥ T ′1
η + 1 for sufficiently small threshold η0 and η ≤ η0. Below we prove this

claim by contradiction. If the claim is not true, that is, tη <
T ′1
η + 1, if tη ≤ C ζςµ log ςζµ + t′η with ς = ζ

µ , we
know ‖xη(tη)− Φ(xinit)‖ ≤

∥∥xη(tη)− xη(t′η)
∥∥ +

∥∥xη(t′η)− Φ(xη(t′η))
∥∥ +

∥∥Φ(xη(t′η))− Φ(xinit)
∥∥ = O(η), which

implies that xη(tη)xη(tη − 1) ∈ Y . If tη ≥ C ζςµ log ςζµ + t′η, by Lemma C.1, we have ‖xη(tη)− Φ(xη(tη))‖ =

O(η). By Lemma B.12, we have ‖Φ(xη(tη))− Φ(xη(dT0/ηe))‖ ≤ O(η). Thus again ‖xη(tη)− Φ(xinit)‖ ≤
‖xη(tη)− Φ(xη(tη))‖ + ‖Φ(xη(tη))− Φ(xη(dT0/ηe))‖ + ‖Φ(xη(dT0/ηe))− Φ(xinit)‖ = O(η), which implies that
xη(tη)xη(tη − 1) ∈ Y .

Thus for any T ′1, tη ≥ T ′1
η + 1 for sufficiently small threshold η0 and η ≤ η0. To complete the proof of Theorem 4.3, we

pick T1 to be any real number strictly larger than ε+ T0, as T1

η > C ζςµ log ςζµ + ε
η + dT0/ηe ≥ C ζςµ log ςζµ + t′η when η is

sufficiently small with ς = ζ
µ . By Lemma C.1 the second claim of Theorem 4.3 is proved. Using the same argument again,

we know ∀T1

η ≤ t ≤
T ′1
η , it holds that ‖Φ(xη(t))− Φ(xinit)‖ ≤ O(η).

C.2. Phase II, Limiting Flow

We first restate the main theorem that demonstrates that the trajectory implicitly minimizes sharpness.

Theorem 4.4 (Phase II). Let {xη(t)}t∈N be the iterates of perturbed Normalized GD (Algorithm 1) with LR η. If the
initialization xη(0) satisfy that
(1) ‖xη(0)− Φ(xinit)‖ ≤ O(η),
(2) maxj∈[D]Rj(xη(0)) ≤ O(η2), and additionally
(3) min{|〈v1(xη(0)), xη(0)− Φ(xη(0))〉| ,−R1(xη(0))} ≥ Ω(η), then for any time T2 ∈ T fav

2 , it holds for sufficiently

small η, with probability at least 1−O(η10), that
∥∥Φ(xη(bT2/η

2c))−X(T2)
∥∥ = O(η) and 1

bT2/η2c
∑bT2/η

2c
t=0 θt ≤ O(η).

To prove the above lemma, we first show the movement in the manifold for the discrete trajectory for Algorithm 1 with
some learning rate η.
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To simplify presentation in the upcoming lemmas, we will introduce few novel notations and their desired values/upper
bounds.

Definition C.2. For ease of notation in the upcoming lemmas and proofs, we define the following notations and their desired
values or upper bounds. Here, O, Ω and Θ hide numerical constants.

tescape = Θ(
Mζ2

µ∆
log

1

η
)

cescape = Θ(
β6µ6

Mζ6ν3
)

% = Θ(ζ2 + ν)

α = Θ(
νζ2

µ3β
)

Ψ = Θ

(
Υζ2ξνχ

µ3∆
+
νζ2

µ3

α

β2

)
r = η100

Ψnorm = Θ

(
νζ2ς

µ2
+
√
Dξζςν +D

)
ΨG = Θ

(
Υζ3ξν2χ

µ5β3∆

)
.

To recall, the limiting flow is given by

X(τ) = Φ(xinit)−
1

4

∫ τ

s=0

P⊥X(s),Γ∇ log λ1(X(s))ds (4)

Let T2 be the time up until which solution to the limiting flow exists.

Lemma B.13 shows the movement in Φ, which can be informally given as follows: in each step t,

Φ(xη(t+ 1))− Φ(xη(t)) = −η
2

4
P⊥Φ(xη(t)),Γ∇ log λ1(xη(t)) +O((θt + ‖xη(t)− Φ(xη(t))‖)η2), (24)

provided Φ(xη(t))Φ(xη(t+ 1)) ∈ Y ε.

Motivated by this update step, we show that the trajectory of Φ(xη(·)) is close to the limiting flow, for a small enough
learning rate η. This isn’t trivial, because even though the trajectories look similar, we introduce a noise in Equation (24) at
each step, which can exponentially blow up over time. One of the major facts that helped us to bound the error between
the two trajectories is that the error introduced in Equation (24) is at most O(η2) at each step. Furthermore, the total error
across the trajectory is given by

∑t2
t=0O(η2θt + η3), which is of the order O(η) using the result from Lemma E.1.

Proof of Theorem 4.4. Without loss of generality, we can change assumption (3) in the theorem statement into ‖x̃η(0)‖ ≤
ηλ1(0)/2 +O(Ψnormη

2) and |〈v1(xη(0)), xη(0)− Φ(xη(0))〉| ≥ Ω(η). This is because we know from Lemma D.1, that
the norm can’t stay above λ1(·)

2 η+ Ω(Ψnormη
2) for two consecutive steps. Moreover, if |v1(0), xη(0)− Φ(xη(0))| ≥ Ω(η)

but ηλ1(0)/2 + Ω(Ψnormη
2) ≤ ‖x̃η(0)‖ ≤ ηλ1(0)− Ω(η), we can further show that |v1(1), xη(1)− Φ(xη(1))| ≥ Ω(η)

from the update rule of Normalized GD (Lemma B.10). Thus, we can shift our analysis by one time-step if our assumption
isn’t true at step 0. This simplification of assumption helps us to prove the second claim using Lemma E.1.

We will follow an inductive analysis to prove two major claims. Suppose we denote diff(t2) as the quantity∥∥Φ(xη(t2))−X(t2η
2)
∥∥ at any step t2. At t2 = 0, we have diff(0) = ‖Φ(xη(0))−X(0)‖ = ‖Φ(xη(0))− Φ(xinit)‖ ≤

O(η), using the fact that we start from xη(0) which is O(η)-close to Φ(xinit) ( i.e. ‖xη(0)− Φ(xinit)‖ ≤ O(η) ), and is also
O(η)-close to the manifold ( i.e. ‖xη(0)− Φ(xη(0))‖ ≤ O(η) ).

Our inductive hypothesis is then for all step 1 ≤ t2 ≤
⌊
T2/η

2
⌋
, the following holds true with probability at least 1− η10:
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1. diff(t2) ≤ (1 + βlipη
2)diff(t2 − 1) + βlipγubη

4 +
(
O(η2ξθt) +O(ζνξη

3

µ2 ) +O(χζη
3

µ ) +O(Υη3)
)
.

2. xη(t)xη(t+ 1) ∈ Y ε.

Here is our inductive argument, suppose the hypothesis is true till some step t2. We can extend the hypothesis to step t2 + 1
as follows:

1. First, we focus on diff(·). Using Lemma B.13 to quantify the movement in Φ(·), and Equation (4) to quantify the
movement in X(·), we have

diff(t2 + 1) =
∥∥Φ(xη(t2 + 1))−X((t2 + 1)η2)

∥∥
≤
∥∥Φ(xη(t2))−X(t2η

2)
∥∥

+

∥∥∥∥∥η2

4
P⊥Φ(xη(t2)),Γ∇ log λ1(xη(t2))− 1

4

∫ (t2+1)η2

τ=(t2)η2

P⊥X(τ),Γ∇ log λ1(X(τ))dτ

∥∥∥∥∥
+O(η2ξθt2) +O(

νξ ‖xη(t2)− Φ(xη(t2))‖ η2

µ
) +O(χ ‖xη(t2)− Φ(xη(t2))‖ η2) +O(χη3)

≤
∥∥Φ(xη(t2))−X(t2η

2)
∥∥

+

∥∥∥∥∥η2

4
P⊥Φ(xη(t2)),Γ∇ log λ1(xη(t2))− 1

4

∫ (t2+1)η2

τ=(t2)η2

P⊥X(τ),Γ∇ log λ1(X(τ))dτ

∥∥∥∥∥
+

(
O(η2ξθt2) +O(

ζνξη3

µ2
) +O(

χζη3

µ
) +O(Υη3)

)
. (25)

Under the assumption that we have started from a point that has max1≤j≤M Rj(xη(0)) ≤ O(η2), we have from
Lemma C.1, that the iterate should satisfy the condition max1≤j≤M Rj(xη(t2)) ≤ O(η2) at step t2 as well. This helps
us bound ‖xη(t2)− Φ(xη(t2))‖ ≤ O(ζη/µ) in the second step.

We now focus on the second term in the R.H.S. of the above inequality. First of all, we can simplify∫ (t2+1)η2

τ=t2η2 P⊥X(τ),Γ∇ log λ1(X(τ))dτ using

∥∥∥∥∥
∫ (t2+1)η2

τ=t2η2

P⊥X(τ),Γ∇ log λ1(X(τ))dτ −
∫ (t2+1)η2

τ=t2η2

P⊥X(t2η2),Γ∇ log λ1(X(t2η
2))dτ

∥∥∥∥∥
≤
∫ (t2+1)η2

τ=t2η2

∥∥∥P⊥X(τ),Γ∇ log λ1(X(τ))− P⊥X(t2η2),Γ∇ log λ1(X(t2η
2))
∥∥∥ dτ

≤
∫ (t2+1)η2

τ=t2η2

βlip

∥∥X(τ)−X(t2η
2)
∥∥ dτ

=

∫ (t2+1)η2

τ=t2η2

βlip

∥∥∥∥∫ τ

s=t2η2

P⊥X(s),Γ∇ log λ1(X(s)ds

∥∥∥∥ dτ
≤
∫ (t2+1)η2

τ=t2η2

∫ τ

s=t2η2

βlip

∥∥∥P⊥X(s),Γ∇ log λ1(X(s)
∥∥∥ dsdτ

≤
∫ (t2+1)η2

τ=t2η2

∫ τ

s=t2η2

βlipγubdsdτ

≤βlipγubη
4.

Here, we use the upper bounds on the magnitude (γub) and the lipschitz constant (βlip) of the function
P⊥Φ(x),Γ∇ log λ1(x) in the domain x ∈ Y ε from Lemma F.5.
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Moreover using the same strategy, we have∥∥∥∥∥η2

4
P⊥Φ(xη(t2)),Γ∇ log λ1(xη(t2))− 1

4

∫ (t2+1)η2

τ=t2η2

P⊥X(t2η2),Γ∇ log λ1(X(t2η
2))dτ

∥∥∥∥∥
=
η2

4

∥∥∥P⊥Φ(xη(t2)),Γ∇ log λ1(xη(t2))− P⊥X(t2η2),Γ∇ log λ1(X(t2η
2))
∥∥∥

=
η2

4

∥∥∥P⊥Φ(Φ(xη(t2))),Γ∇ log λ1(Φ(xη(t2)))− P⊥X(t2η2),Γ∇ log λ1(X(t2η
2))
∥∥∥

≤η
2

4
βlip

∥∥Φ(xη(t2))−X(t2η
2)
∥∥ .

In the pre-final step, we have used the fact that Φ(Φ(x)) = Φ(x) for any x ∈ Γ, which follows from the definition of Φ
itself. Moreover, from the notations that we use, λ1(x) = λ1(Φ(x)).

Thus, we have ∥∥∥∥∥η2

4
P⊥Φ(xη(t2)),Γ∇ log λ1(xη(t2))− 1

4

∫ (t2+1)η2

τ=(t2)η2

P⊥X(τ),Γ∇ log λ1(X(τ))dτ

∥∥∥∥∥
≤

∥∥∥∥∥
∫ (t2+1)η2

τ=t2η2

P⊥X(τ),Γ∇ log λ1(X(τ))dτ −
∫ (t2+1)η2

τ=t2η2

P⊥X(t2η2),Γ∇ log λ1(X(t2η
2))dτ

∥∥∥∥∥
+

1

4

∥∥∥∥∥η2

4
P⊥Φ(xη(t2)),Γ∇ log λ1(xη(t2))− 1

4

∫ (t2+1)η2

τ=t2η2

P⊥X(t2η2),Γ∇ log λ1(X(t2η
2))dτ

∥∥∥∥∥
≤η

2

4
βlip

∥∥Φ(xη(t2))−X(t2η
2)
∥∥+ βlipγubη

4.

Continuing from Equation (25), we have

diff(t2 + 1) ≤(1 +
η2

4
βlip)

∥∥Φ(xη(t2))−X(t2η
2)
∥∥+ βlipγubη

4

+

(
O(η2ξθt2) +O(

ζνξη3

µ2
) +O(

χζη3

µ
) +O(Υη3)

)
=(1 +

η2

4
βlip)diff(t2) + βlipγubη

4

+

(
O(η2ξθt2) +O(

ζνξη3

µ2
) +O(

χζη3

µ
) +O(Υη3)

)
.

Thus, we have shown that we can extend the first hypothesis claim to step t2 + 1.

2. To show the second hypothesis claim, note that we have assumed that both the claims hold true till time t2. We can
then bound diff(t2) as follows:

diff(t2) ≤(1 + βlipη
2)t2diff(0)

+

t2∑
t=0

(1 + βlipη
2)t
(
βlipγubη

4 +

(
O(η2ξθt) +O(

ζνξη3

µ2
) +O(

χζη3

µ
) +O(Υη3)

))
≤(1 + βlipη

2)t2diff(0)

+ (1 + βlipη
2)t2

t2∑
t=0

(
βlipγubη

4 +O(η2ξθt) +O(
ζνξη3

µ2
) +O(

χζη3

µ
) +O(Υη3)

)
≤ O(eT2βlip

Υζ2ξ3ν2χ

µ3β3∆
T2η),
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In the final step, we have used the sum of the angles θt from Lemma E.1, which requires ‖xη(t+ 1)− xη(t)‖ ∈ Y ε
for all 1 ≤ t ≤ t2 − 1 and is true by the inductive hypothesis. To give a rough upper bound, we have also used
t2 ≤ T2

η2 . Since, diff(t2) ≤ O(η), we have for sufficiently small learning rate η, Φ(xη(t2)) ∈ Y ε. Moreover, under the
assumption that we have started from a point that has max1≤j≤M Rj(xη(0)) ≤ O(η2), we have from Lemma C.1,
that the iterate should satisfy the condition max1≤j≤M Rj(xη(t2)) ≤ O(η2) at step t2 as well. This helps us bound
‖xη(t2)− Φ(xη(t2))‖ ≤ O(ζη/µ). Furthermore, ‖xη(t2 + 1)− xη(t2)‖ ≤ O(η) from the update step of (perturbed)
Normalized GD (Algorithm 1). Thus, we must have for sufficiently small learning rate η, ‖xη(t2 + 1)− xη(t2)‖ ∈ Y ε.

Thus, we have shown that our inductive hypothesis is true. The first claim follows from using diff(bT2/η
2c). The second

claim will follow from using Lemma E.1.

D. Phase I, OmittedProof of the main lemmas
D.1. Proof of Lemma C.1

Proof of Lemma C.1. The Normalized GD update at any step t can be written as (from Lemma B.10)

xη(t+ 1)− xη(t) = −η ∇
2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]

‖∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]‖
+O(

ν

µ
η ‖xη(t)− Φ(xη(t))‖). (26)

Thus, using the notation x̃ = ∇2L(Φ(x))(x− Φ(x)), we have

x̃η(t+ 1)− x̃η(t) = x̃η(t+ 1)−∇2L(Φ(xη(t)))(xη(t+ 1)− Φ(xη(t)))

+∇2L(Φ(xη(t)))(xη(t+ 1)− Φ(xη(t)))− x̃η(t)

= ∇2L(Φ(xη(t+ 1)))(Φ(xη(t))− Φ(xη(t+ 1)))

+ (∇2L(Φ(xη(t+ 1)))−∇2L(Φ(xη(t))))(xη(t+ 1)− Φ(xη(t)))

+∇2L(Φ(xη(t)))(xη(t+ 1)− xη(t))

= ∇2L(Φ(xη(t+ 1)))(Φ(xη(t))− Φ(xη(t+ 1)))

+ (∇2L(Φ(xη(t+ 1)))−∇2L(Φ(xη(t))))(xη(t+ 1)− Φ(xη(t)))

+∇2L(Φ(xη(t)))
[
− η ∇

2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]

‖∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]‖

+O(
ν

µ
η ‖xη(t)− Φ(xη(t))‖))

]
= −η∇2L(Φ(xη(t)))

x̃η(t)

‖x̃η(t)‖
+ err +O(

νζ

µ
η ‖xη(t)− Φ(xη(t))‖),

where err denotes∇2L(Φ(xη(t+ 1)))(Φ(xη(t))−Φ(xη(t+ 1))) + (∇2L(Φ(xη(t+ 1)))−∇2L(Φ(xη(t))))(xη(t+ 1)−
Φ(xη(t))). From Lemma B.12, we have ‖Φ(xη(t))− Φ(xη(t+ 1))‖ ≤ O(ξη2), which further implies,∥∥∇2L(Φ(xη(t+ 1)))−∇2L(Φ(xη(t)))

∥∥ ≤ O(νξη2). Hence,

‖err‖ ≤
∥∥∇2L(Φ(xη(t+ 1)))

∥∥ ‖Φ(xη(t))− Φ(xη(t+ 1))‖
+
∥∥∇2L(Φ(xη(t+ 1)))−∇2L(Φ(xη(t)))

∥∥ ‖xη(t+ 1)− Φ(xη(t))‖
≤
∥∥∇2L(Φ(xη(t+ 1)))

∥∥ ‖Φ(xη(t))− Φ(xη(t+ 1))‖
+
∥∥∇2L(Φ(xη(t+ 1)))−∇2L(Φ(xη(t)))

∥∥ (‖xη(t+ 1)− Φ(xη(t+ 1))‖+ ‖Φ(xη(t+ 1))− Φ(xη(t))‖)
≤ O(νξη2).

Hence,

x̃η(t+ 1) =

(
I − η∇

2L(Φ(xη(t)))

‖x̃η(t)‖

)
x̃η(t) +O(νξη2) +O(

νζ

µ
η ‖xη(t)− Φ(xη(t))‖). (27)
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Since ‖xη(t)− Φ(xη(t))‖ ≤ O(η), the trajectory is similar to the trajectory in the qudratic model with anO(η2) error, with
the hessian fixed at∇2L(Φ(xη(t))), and hence we can apply the same techniques from Corollary A.4 and Lemma A.1.

First, we consider the norm of the vector x̃η(t) for t′ + 1 ≤ t ≤ t. We will show the following induction hypothesis:

‖x̃η(t)‖ ≤ 1.01ηζς.

1. Base case: (t = t′). We have ‖x̃η(t′)‖ =
∥∥∇2L(Φ(xη(t′)))[xη(t′)− Φ(xη(t′))]

∥∥ ≤ ηλ1(t)ς ≤ ηζς .

2. Induction case:(t > t′). Suppose the hypothesis holds true for t− 1. Then,

‖xη(t− 1)− Φ(xη(t− 1))‖ ≤ 1

λM (t)
‖x̃η(t− 1)‖ ≤ 1.01ηςζ

µ
.

We consider the following two cases:

(a) If ‖x̃η(t− 1)‖ ≥ ηλ1(t). We can directly apply Corollary A.3 on (27) to show that

‖x̃η(t)‖ ≤
(

1− ηλM (t− 1)

2 ‖x̃η(t− 1)‖

)
‖x̃η(t− 1)‖+O(νξη2) +O(

νζ

µ
η ‖xη(t− 1)− Φ(xη(t− 1))‖)

≤ ‖x̃η(t− 1)‖ − ηλM (t− 1)

2
+O(νξη2) +O(

νζ

µ2
ςη2)

≤ ‖x̃η(t− 1)‖ − ηλM (t− 1)

4
,

where the final step follows if η ≤ O( µ3

ζςνξ ). Hence, ‖x̃η(t)‖ < ‖x̃η(t− 1)‖ ≤ ηζς .
(b) If ‖x̃η(t− 1)‖ ≤ ηλ1(t). Then, we can directly apply Lemma A.1 on (27) to show that

‖x̃η(t)‖ ≤ ηλ1(t) +O(νξη2) +O(
νζ

µ
η ‖xη(t− 1)− Φ(xη(t− 1))‖)

≤ ηλ1(t) +O(νξη2) +O(
νζς

µ2
η2)

≤ 1.01ηλ1(t),

where the last step follows from using η ≤ O(λ1(t)µ2

νξζς ).

Hence, we have shown that, ‖xη(t)− Φ(xη(t))‖ ≤ 1
λM (t) ‖x̃η(t)‖ ≤ 1.01ηςζ

µ for all time t′ ≤ t ≤ t.

We complete the proof of Lemma C.1 with a similar argument as that for the quadratic model (see Corollary A.4 and
Lemma A.1). The major difference from the quadratic model is that here the hessian changes over time, along with its
eigenvectors and eigenvalues. Hence, we need to take care of the errors introduced in each step by the change of hessian.

We will divide the eigenvalues at time t′ into groups such that eigenvalues in different groups are differed by at least η. i.e.,
we divide [M ] into disjoint subsets S1, · · · , Sp (with 1 ≤ p ≤M ) such that for any i, j ∈ [p] with i 6= j,

min
k∈Si,`∈Sj

|λk(t′)− λ`(t′)| ≥ η.

From Lemma B.12, we have ‖Φ(xη(t))− Φ(xη(t+ 1))‖ ≤ ξη2, which further implies,∥∥∇2L(Φ(xη(t+ 1)))−∇2L(Φ(xη(t)))
∥∥ ≤ O(νξη2). That implies, using Theorem F.2, |λj(t)− λj(t+ 1)| ≤ O(νξη2)

for any j ∈ [M ]. Hence, after time t, we must have for any i, j ∈ [p] with i 6= j,

min
k∈Si,`∈Sj

|λk(t)− λ`(t)| ≥ η −O(νξη2(t− t′)).

Thus, for time t′ + 1 ≤ t ≤ t′ +O( ςζµ log ζςµ ), we have

min
k∈Si,`∈Sj

|λk(t)− λ`(t)| ≥ 0.99η,
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provided η ≤ O( µ

ζςνξ log ζςµ
).

For all 1 ≤ j ≤M , we consider the following two cases for any time t′ + 1 ≤ t ≤ t′ +O( ςζµ log ζςµ ):

1. If
√∑M

i=j〈vi(t), x̃η(t)〉2 > ηλj(t), then we can apply Corollary A.4 on (27) to show that√√√√ M∑
i=j

〈vi(t), x̃η(t+ 1)〉2

≤
(

1− ηλM (t)

2 ‖x̃η(t)‖

)√√√√ M∑
i=j

〈vi(t), x̃η(t)〉2 +O(νξη2) +O(
νζ

µ
η ‖xη(t)− Φ(xη(t))‖)

≤
(

1− λM (t)

2ζς

)√√√√ M∑
i=j

〈vi(t), x̃η(t)〉2 +O(νξη2) +O(
νζ

µ
η ‖xη(t)− Φ(xη(t))‖)

≤
(

1− λM (t)

2ζς

)√√√√ M∑
i=j

〈vi(t), x̃η(t)〉2 +O(νξη2) +O(
νζ2ς

µ2
η2).

2. If
√∑M

i=j〈vi(t), x̃η(t)〉2 ≤ ηλj(t), then we can apply Lemma A.1 on (27) to show that√√√√ M∑
i=j

〈vi(t), x̃η(t+ 1)〉2 ≤ ηλj(t) +O(νξη2) +O(
νζ

µ
η ‖xη(t)− Φ(xη(t))‖)

≤ ηλj(t) +O(νξη2) +O(
νζςζ

µ2
η2).

Denote by P (t)
Si

the projection matrix at time t onto the subspace spanned by {vk(t)}k∈Si . Reconciling with the eigen
subspaces, we have for any j ∈ [p],

1. If

√∑p
i=j

∥∥∥P (t)
Si
x̃η(t)

∥∥∥2

> ηmaxk∈Sj λk(t), then

√√√√ p∑
i=j

∥∥∥P (t)
Si
x̃η(t+ 1)

∥∥∥2

≤
(

1− λM (t)

2ζς

)√√√√ p∑
i=j

∥∥∥P (t)
Si
x̃η(t)

∥∥∥2

+O(νξη2) +O(
νζ2ς

µ2
η2).

2.

√∑p
i=j

∥∥∥P (t)
Si
x̃η(t)

∥∥∥2

≤ ηmaxk∈Sj λk(t),

√√√√ p∑
i=j

∥∥∥P (t)
Si
x̃η(t+ 1)

∥∥∥2

≤ ηmax
k∈Sj

λk +O(νξη2) +O(
νζςζ

µ2
η2).

From Lemma B.12, we have ‖Φ(xη(t))− Φ(xη(t+ 1))‖ ≤ O(ξη2), which further implies,∥∥∇2L(Φ(xη(t+ 1)))−∇2L(Φ(xη(t)))
∥∥ ≤ O(νξη2).
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That implies, |λj(t)− λj(t+ 1)| ≤ O(νξη2) for any j ∈ [M ]. Furthermore, we can use Theorem F.4 to have for any

i ∈ [p]
∥∥∥P (t)

Si
− P (t+1)

Si

∥∥∥ ≤ O(νξη), since we have created the eigen subspaces such that the eigenvalue gap between any
two distinct eigen subspaces is at least 0.99η in the desired interval.

Reconciling the additional error terms due to the movement in the hessian, we have

1. For any subspace

√∑p
i=j

∥∥∥P (t)
Si
x̃η(t)

∥∥∥2

> ηmaxk∈Sj λk(t), we have

√√√√ p∑
i=j

∥∥∥P (t+1)
Si

x̃η(t+ 1)
∥∥∥2

≤
(

1− λM (t)

2ζς

)√√√√ p∑
i=j

∥∥∥P (t)
Si
x̃η(t)

∥∥∥2

+O(νξη2) +O(
νζ2ς

µ2
η2) +O(

√
Dξζςνη2)

≤
(

1− λM (t)

4ζς

)√√√√ p∑
i=j

∥∥∥P (t)
Si
x̃η(t)

∥∥∥2

,

where the final step follows if η ≤ O( µ3

ζ3ς2ξν
√
D

).

2. If

√∑p
i=j

∥∥∥P (t)
Si
x̃η(t)

∥∥∥2

≤ ηmaxk∈Sj λk(t), we have

√√√√ p∑
i=j

∥∥∥P (t+1)
Si

x̃η(t+ 1)
∥∥∥2

≤ ηmax
k∈Sj

λk +O(νξη2) +O(
νζ2ς

µ2
η2) +O(

√
Dξζςνη2).

Hence, if

√∑p
i=j

∥∥∥P (t)
Si
x̃η(t)

∥∥∥2

> ηmaxk∈Sj λk, its value drops by a factor
(

1− λM (t)
4ζς

)
. And if it is already below

ηmaxk∈Sj λk, it doesn’t go O(η2) beyond ηmaxk∈Sj λk.

Since, at any time t, any two eigenvalues that belong to the same group can’t be farther than ηD, we have: if for all j ∈ [p],√√√√ p∑
i=j

∥∥∥P (t)
Si
x̃η(t)

∥∥∥2

≤ ηmax
k∈Sj

λk +O(νξη2) +O(
νζ2ς

µ2
η2) +O(

√
Dξζςνη2),

then we must have for all j ∈ [M ],√√√√ M∑
i=j

|〈vi(t), x̃η(t)〉|2 ≤ ηλj(t) +O(νξη2) +O(
νζ2ς

µ2
η2) +O(

√
Dξζςνη2) +O(η2D).

Thus, at t = t′ +O(ζςµ log ςζµ ), we must have for all 1 ≤ j ≤M ,√√√√ M∑
i=j

〈vi(t), x̃η(t)〉2 ≤ ηλj(t) +O(νξη2) +O(
νζ2ς

µ2
η2) +O(

√
Dξζςνη2) +O(η2D).

To finish the argument, we need to show that the above condition continues to hold true for any t ≥ t′ +O(ζςµ log ςζµ ). We
give a proof sketch here (we aren’t rigorous here, since the argument is very much the same). Suppose the hypothesis is true
at some time t. We can repeat the above argument inductively at steps t to get the condition at step t+ 1. First, we define
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the groups S1(t), · · · , Sp(t) (for some 1 ≤ p ≤M ) on the basis of the eigenvalues at the current step t. Then, we show that
for any j ∈ [p],√√√√ p∑

i=j

∥∥∥PSi(t)x̃η(t+ 1)
∥∥∥2

≤ η max
k∈Sj(t)

λk(t) +O(νξη2) +O(
νζ2ς

µ2
η2) +O(

√
Dξζςνη2).

Taking, the movement in hessian into account, we have for any j ∈ [p],√√√√ p∑
i=j

∥∥∥PSi(t)x̃η(t+ 1)
∥∥∥2

≤ η max
k∈Sj(t)

λk(t+ 1) +O(νξη2) +O(
νζ2ς

µ2
η2) +O(

√
Dξζςνη2).

Finally, we can get back to the projection on the eigenvectors by using our construction that any two eigenvalues that belong
to the same group Sj(t) can’t be farther than ηD: for any j ∈ [M ],√√√√ M∑

i=j

〈vi(t+ 1), x̃η(t+ 1)〉2 ≤ ηλj(t+ 1) +O(νξη2) +O(
νζ2ς

µ2
η2) +O(

√
Dξζςνη2) +O(η2D).

D.2. Some interesting properties of the condition in Equation (23)

Thus, we can claim that after the initial phase, the following condition will continue to hold true for all 1 ≤ j ≤M :√√√√ M∑
i=j

〈vi(t), x̃η(t)〉2 ≤ λj(t)η +O(νξη2) +O(
νζ2ς

µ2
η2) +O(

√
Dξζςνη2) +O(η2D), (28)

where x̃η(t) = ∇2L(Φ(xη(t)))(xη(t)− Φ(xη(t))). We will call the above condition as the alignment condition from now
onwards. If η ≤ O( µ3

νξςζ2D ), we can have √√√√ M∑
i=j

〈vi(t), x̃η(t)〉2 ≤ 2λj(t)η,

for all 1 ≤ j ≤M . We will be using this bound, when the error bound can be allowed to stay loose.

From the alignment condition (28), we can derive the following property that continues to hold true throughout the trajectory,
once the condition is satisfied:
Lemma D.1. If at time t, xη(t) ∈ Y ε, and the condition (28) holds true, then if ‖x̃η(t)‖ > ηλ1(t)

2 , we have:

‖x̃η(t+ 1)‖ ≤ ηλ1(t)

2
+O(

νζ2ς

µ2
η2) +O(

√
Dξζςνη2) +O(η2D),

provided xη(t)xη(t+ 1) ∈ Y ε.

We will continue to denote the error term by Ψnormη
2, where

Ψnorm = O(
νζ2ς

µ2
+
√
Dξζςν +D).

The proof follows from applying Lemma A.8 using the alignment condition Equation (28). Hence, the iterate x̃η(t) can’t
stay at norm larger than 0.5ηλ1(t) + Ψnormη

2 for time larger than 1. Thus, we will state the remaining lemmas for time t,
s.t. ‖x̃η(t)‖ ≤ 0.5ηλ1(t) + Ψnormη

2.

Another useful lemma is to show that the magnitude along the top eigenvector increases when ‖x̃η(t)‖ ≤ ηλ1(t)
2 +

O(Ψnormη
2).
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Algorithm 2 Grouping into 1-cycles and 2-cycles

Input: Interval (t̃, t), Iterates of Algorithm 1 in the interval: {x̃η(t)}t∈(t̃,t), Top eigenvalue of the hessian∇2L(Φ(xη(t)))
for all t in the interval.
Requires:

∥∥x̃η(t̃)
∥∥ ≤ 0.5λ1(t̃)η + Ψnormη

2.

Initialize: N0, N1, N2 ← ∅, t← t̃.
while t ≤ t do

if ‖x̃η(t+ 2)‖ > 0.5λ1(t+ 2)η + Ψnormη
2 then

N0 ← N0 ∪ {t}
t← t+ 1

else if ‖x̃η(t+ 2)‖ ≤ 0.5λ1(t+ 2)η + Ψnormη
2 then

N1 ← N1 ∪ {t}
N2 ← N2 ∪ {t+ 1}
t← t+ 1

end if
end while
Return: N0, N1, N2

Lemma D.2. For any constant β > 0, consider any time t such that xη(t) ∈ Y ε, ‖x̃η(t)‖ ≤ ηλ1(t)
2 + Ψnormη

2,∣∣v1(t),∇2L(Φ(xη(t)))(xη(t)− Φ(xη(t)))
∣∣ ≥ βη, and the alignment condition (Equation (28)) holds true, then:

|v1(t+ 1), x̃η(t+ 1)| ≥ (1 +O(Ψnormη)) |v1(t), x̃η(t)|+O(
νζ

µ2
η2),

Moreover,

θt+1 ≤
(

1− ∆µ

ζ
+O(

Ψnorm

β
η) +O(

νζ

µ2β
η)

)
θt +O(

νζ

µ2β
η).

For both the results to hold true, we must have xη(t)xη(t+ 1) ∈ Y ε.

The proof follows from using the noisy quadratic update rule for Normalized GD from Equation (19) (from Lemma B.10)
and using the result for the increase in the projection along the top eigenvector for a quadratic model from Lemma A.5. For
the second claim, we use the result of the drop in angle for a quadratic model from Lemma A.11.

Corollary D.3. If for 2 ≤ k ≤M , ‖x̃η(t)‖ ≤ ηλk(t)
2 + Ψnormη

2 and alignment condition (Equation (28)) holds true, the
following must hold true:∣∣vk(t+ 1)>x̃η(t+ 1)

∣∣ ≥ (1 +O(Ψnormη))
∣∣vk(t)>x̃η(t)

∣∣+O(
νζ

µ2
η2).

The proof follows from using the noisy quadratic update for Normalized GD in Lemma B.10 (Equation (19)) and the
behavior in a quadratic model along the non-top eigenvectors in Lemma A.5.

E. Phase II, Proof of the main lemmas
E.1. Average of angle across time (Phase II)

In Phase II, we start from a point xη(0), such that (1) ‖xη(0)− Φ(xinit)‖ ≤ O(η), (2) maxj∈[D]Rj(xη(t)) ≤ O(η2), and
additionally (3) |〈v1(xη(0)), xη(0)− Φ(xη(0))〉| = Ω(η).

Formally, recall our notation on θt as θt = arctan

∥∥∥P (2:M)
t,Γ x̃η(t)

∥∥∥
|〈v1(t),x̃η(t)〉| , with our notation of x̃η(t) as ∇2L(Φ(xη(t)))(xη(t) −

Φ(xη(t))). Moreover, recall the definition of the function gt : R→ R as

gt(λ) =
1

2

(
1−

√
1− 2

λ

λ1(t)

(
1− λ

λ1(t)

))
.



GD on Edge of Stability

The condition (Equation (28)) that was shown to hold true in Phase II is:√√√√ M∑
i=j

〈vi(t), x̃η(t)〉2 ≤ λj(t)η +O(νξη2) +O(
νζ2ς

µ2
η2) +O(

√
Dξζςνη2) +O(η2D).

Further, we had proved in Lemma D.1 that if ‖x̃η(t)‖ > ηλ1(t)
2 , the following must hold true:

‖x̃η(t+ 1)‖ ≤ ηλ1(t)

2
+ Ψnormη

2.

Thus, the iterate can’t stay greater than ηλ1(t)
2 + Ω(η2) for more than 1 timestep. We will heavily use this property of the

iterate in this section.

In the first lemma, we show that the sum of the angles across the entire trajectory in any interval [0, t2] with t2 = Ω(1/η2),
is at most O(ηt2).

Lemma E.1 (Sum of the angles). For any T2 > 0 for which solution of Equation (4) exists, consider an interval [0, t2], with
Ω(1/η2) ≤ t2 ≤ bT2/η

2c. Suppose Algorithm 1 is run with learning rate η for t2 steps, starting from a point xη(0) that
satisfies (1) maxj∈[D]Rj(xη(0)) ≤ O(η2), and (2) |〈v1(0), xη(0)− Φ(xη(0))〉| ≥ βη, ‖x̃η(0)‖ ≤ ηλ1(0)

2 + Ψnormη
2 for

some constant 0 < β ≤ µ∆
8ζ2 independent of η. The following holds true with probability at least 1− η10:

t2∑
`=0

θ` ≤ O
(
Υζ2ξνχ

µ3β3∆
t2η

)
,

provided η has been set sufficiently small, and for all time 0 ≤ t ≤ t2 − 1, xη(t)xη(t+ 1) ⊂ Y ε.

Proof. Split analysis into blocks: We split the analysis of the entire trajectory along [0, t2) into different blocks in the
following inductive way. We use 0 = t(1) < t(2) < t(3) < · · · < t(k) = t2 to denote the starting points of each of these
blocks. The definition of t(d) depends on t(d−1) for all d > 0.

For each of the blocks [t(d−1), t(d)), with d > 0, we will show the following results:

1. The average angle inside the block is O(η).

2. If Gt(d−1) ≥ βη, then Gt(d) ≥ βη.

We will show the analysis for a general block [t(d−1), t(d)) for some d > 0. We define t(d) from t(d−1) as follows: at t(d−1),
we can divide [M ] \ {1} into disjoint subsets S1, · · · , Sp (with 1 ≤ p ≤M ) such that for any i, j ∈ [p] with i 6= j,

min
k∈Si,`∈Sj

∣∣∣ ∣∣∣0.5λ1(t(d−1))− λk(t(d−1))
∣∣∣− ∣∣∣0.5λ1(t(d−1))− λ`(t(d−1))

∣∣∣ ∣∣∣ ≥ 10−3λ1(t(d−1))

Then, we define

t(d) = min
t>t(d−1)

{
t | min

i,j∈[p]
min

k∈Si,`∈Sj
||0.5λ1(t)− λk(t)| − |0.5λ1(t)− λ`(t)|| ≤

1

2
× 10−3λ1(t),

‖x̃η(t)‖ ≤ 0.5λ1(t)η + Ψnormη
2
}
.

Moreover, we have the following two properties from the above definition of S1, · · · , Sp:

1. We must have from the definition of g, for any i, j ∈ [p], mink∈Si,`∈Sj
∣∣gt(d−1)(λk(t(d−1)))− gt(d−1)(λ`(t

(d−1)))
∣∣ ≥

2
3 × 10−3. Thus, we sort them as follows: for any i, j ∈ [p], min`∈Si gt(d−1)(λ`(t

(d−1))) >

max`∈Sj gt(d−1)(λ`(t
(d−1))), if i > j.



GD on Edge of Stability

2. Each eigenvalue changes by at most 1
2νξη

2 in each step using Lemma B.12. Then, we have t(d) ≥ t(d−1) +
Ω( 1

ζξνη2 ). Moreover, the order among S1, · · · , Sp w.r.t. the function g· remains the same, i.e. for any i, j ∈ [p],
min`∈Si gt(λ`(t)) > max`∈Sj gt(λ`(t)), if i > j.

At each step t, we first define different strips as Ik(t) = [(1 − 1
100M ) min`∈Sk gt(λ`(t)) − O(ΨGη

3−0.1), (1 +
1

100M ) max`∈Sk gt(λ`(t))] for all 1 ≤ k ≤ p. We further define Ip+1(t) = {βη}.

Claim 1: We argue the average of the angles in [t(d−1), t(d)) is of order O(η). We split the entire interval [t(d−1), t(d)) into
different smaller trunks in the following way. We use t(d−1) = t̃0 < t̃1 < t̃2 . . . t̃` = t(d) to denote the starting step of each
trunk. Each t̃i is defined from t̃i−1 for i > 0. The behavior of each trunk depends on the magnitude of the iterate along the
top eigenvector of hessian. We classify the trunks on the basis of 2p+ 1 possibilities: Consider a general t̃i,

A. If Gt̃i ≥ max{y ∈ I1(t̃i)}, then we define t̃i+1 as

t̃i+1 = min
t>t̃i

{t | Gt ≤ (1 +
1

200M
) max
`∈S1

gt(λ`(t)), ‖x̃(t)‖ ≤ 0.5λ1(t)η + Ψnormη
2}.

B(k). For any 1 ≤ k ≤ p, if Gt̃i ∈ Ik(t̃i), then we define t̃i+1 as

t̃i+1 = min
t>t̃i

{t | Gt ≥ max y ∈ Ik(t), ‖x̃(t)‖ ≤ 0.5λ1(t)η + Ψnormη
2}.

C(k). For any 1 ≤ k ≤ p, if max{y ∈ Ik+1(t̃i)} − O(ΨGη
3−0.1) ≤ Gt̃i ≤ min{y ∈ Ik(t̃i)}, then we define t̃i+1 as

t̃i+1 = min
t>t̃i

{t | Gt ≥ min{y ∈ Ik(t)}, ‖x̃(t)‖ ≤ 0.5λ1(t)η + Ψnormη
2}.

We analyse the behavior of a general t̃i when it falls in any of the above cases:

A. First of all, since Gt ≥ (1 + 1
200M ) maxk∈[M ] gt(λk(t)) for all t̃i ≤ t < t̃i+1 we can show from Lemma E.2 that

the angle with the top eigenvector quickly drops to O(η) in at most tescape time-steps. Moreover, the iterate’s
magnitude can only drop along the top eigenvector when the angle with the top eigenvector is smaller than
O(Υζ2ξνχ

µ3β3∆ η), and the drop is at most O(ΨGη
3) (Corollary E.9). Thus, during alignment of the iterate to the top

eigenvector, Gt never drops. Moreover, after the alignment, it takes Ω( 1
η2 ) steps for the iterate’s magnitude along

the top eignvector to drop below (1 + 1
200M ) maxk∈[M ] g·(λk(·)). Hence,

∣∣t̃i+1 − t̃i
∣∣ ≥ Ω

(
1

ΨGη2

)
,

t̃i+1∑
t=t̃i

θt ≤ O

(
Υζ2ξνχ(t̃i+1 − t̃i)

µ3β3∆
η

)
.

After Gt drops out of I1(t), it moves to case B(1).

B(k). For any 1 ≤ k ≤ p, if Gt̃i ∈ Ik(t̃i), then t̃i+1 is defined as the time at which it escapes the strip Ik. From
Lemma E.3 we have that the sum of angle over this time is

t̃i+1∑
t=t̃i

θt = O
(

ζ5

µ2∆2
+
Mζ

β3
tescape +

Υζ2ξνχ

µ3β3∆
η(t̃i+1 − t̃i)

)
.

Moreover, from Lemma E.4, we have the following two major claims about the regions to which the iterate
escapes:
i. If k > 1 and Gt̃i+1

≥ maxy∈Ik(t̃i+1) i.e. it goes above the strip Ik(t̃i+1), then it never returns back to this
strip in the future.

ii. Moreover, Gt never goes to any region below Ik(t), i.e. there exists no time t > t̃i, where Gt ≤ min{y ∈
Ik(t)}.

Hence, at time t̃i+1, we move to cases C(j) or B(j) or A, where j < k, and never return back to case B(k).
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C(k). For any 1 ≤ k ≤ p, if Gt̃i , if max{y ∈ Ik+1(t̃i)} − O(ΨGη
3−0.1) ≤ Gt̃i ≤ min{y ∈ Ik(t̃i)}, then we have

from Lemma E.4 that the iterate quickly moves beyond min{y ∈ Ik(t̃i)} within O( ζ
2

µ∆c
−2
escapeη

−0.1 log 1
η ) steps.

Thus,

t̃i+1∑
t=t̃i

θt = O(
ζ2

µ∆
c−2
escapeη

−0.1 log
1

η
).

Moreover, from the discussion on cases B(j) and C(j) for j < k, we never return back to case C(k) once we
escape it.

Thus to summarize, for each C(1), · · · , C(M), B(2), · · · , B(M), there can be at most one trunk that represents the
behavior. There are only a constant number of trunks that represent cases A and B(1), since B(1) is followed by A,
where the iterate is provably stuck for Ω

(
1
η2

)
steps.

All in all, we must have

t(d)∑
t=t(d−1)

θt = O
(
ζ5M

µ2∆2
+
M2ζ

β3
tescape

)
+O(

ζ2M

µ∆
c−2
escapeη

−0.1 log
1

η
) +O

(
Υζ2ξνχ(t(d) − t(d−1))

µ3β3∆
η

)

= O
(
Υζ2ξνχ(t(d) − t(d−1))

µ3β3∆
η

)
,

where the final step follows from setting η sufficiently small and the fact that t(d) − t(d−1) ≥ Ω( 1
η2 ).

Claim 2: For the second claim, note that from our definition of the cases, if t̃0 := t(d−1) represents case C(p), i.e.
βη ≤ Gt̃0 ≤ min{y ∈ Ip(t̃0)}, then at time t̃1, Gt̃1 must be inside or above the strip Ip(t̃1) and never returns back.
Hence, at the end of the block, we know Gt(d) must be at least

(
1− 1

100M

)
mink∈g

t(d) (λk(t(d))) η ≥ ∆µ
8ζ2 η, where the

simplification follows from the constants in Definition B.5 and the assumption that the iterate never leaves Y ε. Since,
β was chosen a constant smaller than ∆µ

8ζ2 , we have Gt(d) ≥ βη.

Combining the blocks: Thus, in summary, we have

(a) The average angle in each of the blocks is O(η).
(b) The iterate never drops the magnitude along the top eigenvector below βη.

Combining the angles over all the blocks, we will have

t2∑
`=0

θ` ≤ O
(
Υζ2ξνχ

µ3β3∆
t2η

)
.

Lemma E.2. Consider the setting of Lemma E.1. For any time t, where xη(t) ∈ Y ε, if ‖x̃η(t)‖ ≤ 0.5ηλ1(t) + Ψnormη
2,

and Gt ≥
(
1 + 1

100M

)
cthres(t)η, then

tan θt+1 ≤ max

(
1− λM (t)

λ1(t)
,
λ2(t)

λ1(t)

)
tan θt

tan θt+2 ≤
(

1− 2 min

(
1

200M
,min
i≤M

λi(t)

2λ1(t)
(1− λi(t)

λ1(t)
)

))
tan θt,

where Gt denotes the quantity |〈v1(t), xη(t)− Φ(xη(t))〉|, provided η ≤ O( µ2

Mνζ2 ) and

xη(t)xη(t+ 1), xη(t+ 1)xη(t+ 2) ⊂ Y ε. Here, cthres(t) = maxk∈[M ] gt(λk(t)).

Proof. The proof follows from using the noisy update rule for Normalized GD, as derived in Equation (27). Which says that
the Normalized GD update is very close to the update in a quadratic model with an additional O(η2) error. The result then
follows from using Lemma A.11 and Lemma A.10, that computes the convergence rate towards the top eigenvector for a
quadratic model.
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Lemma E.3. Consider the setting of Lemma E.1. Consider any time t, where xη(t) ∈ Y ε, and
∥∥x̃η(t)

∥∥ ≤ 0.5ηλ1(t) +
Ψnormη

2. Suppose we are also given p disjoint subsets of [M ], S1, · · · , Sp (with 1 ≤ p ≤ M ) and a step tstop ≥ t, such
that for any i, j ∈ [p] with i 6= j, and for any t ≤ t ≤ tstop, we can guarantee

min
k∈Si,`∈Sj

∣∣∣∣∣∣∣∣λ1

2
− λk(t)

∣∣∣∣− ∣∣∣∣λ1

2
− λ`(t)

∣∣∣∣∣∣∣∣ ≥ 1

2
× 10−3λ1(t),

and the subsets are arranged such that min`∈Si gt(λ`(t)) > max`∈Sj gt(λ`(t)), if i > j.

Consider any subset Sk for 1 ≤ k ≤ p. If (1 − 1
100M ) min`∈Sk gt(λ`(t)) ≤ Gt ≤ (1 + 1

100M ) max`∈Sk gt(λ`(t)) and
suppose there exists some time t ≤ t′ ≤ tstop such that the iterate is stuck inside this region in the interval (t, t′). I.e.
for all t ∈ (t, t′), whenever ‖x̃η(t)‖ ≤ 0.5ηλ1(t) + Ψnormη

2, we must have (1 − 1
100M ) min`∈Sk gt(λ`(t)) ≤ Gt ≤

(1 + 1
100M ) max`∈Sk gt(λ`(t)). Then,

t′∑
`=t

θ` ≤ O
(

ζ5

µ2∆2
+
Mζ

β3
tescape +

Υζ2ξνχ

µ3β3∆
η(t′ − t)

)
,

where Gt denotes the quantity |〈v1(t), xη(t)− Φ(xη(t))〉|, provided for all t ≤ ` < t′, xη(`)xη(`+ 1) ⊂ Y ε.

Proof. We will sketch the outline of the proof here. First of all, we use the noisy update rule for Normalized GD, as derived
in Lemma B.10. Which says that the Normalized GD update is very close to the update in a quadratic model with an
additional O(η2) error. Keeping this in mind, we then divide our trajectory in the interval (t, t′) as per Algorithm 2 into
three subsets N0, N1, N2. Please see Appendix E.2 for a summary on the properties of these 3 sets. To recall, they are

1. All the time steps t in N0 and N1 have the norm of the iterate x̃η(t) at most 0.5λ1(t)η + Ψnormη
2.

2. For any step t in N0, we must have the norm of the iterate x̃η(t+ 2) at least 0.5λ1(t+ 2)η + Ψnormη
2.

3. For any step t in N1, we must have the norm of the iterate x̃η(t+ 2) at most 0.5λ1(t+ 2)η + Ψnormη
2.

4. For any step t in N1, we have t+ 1 in N2. Moreover, for any time t in N2, we must have t− 1 ∈ N1.

Consider the following arguments:

1. First of all, the magnitude along all eigenvectors vi(·) for i ∈ ∪j>kSj can’t be greater than αη2 for more than tescape

number of steps from Lemma E.19.

2. Furthermore, the magnitude along all eigenvectors vi(·) for i ∈ ∪j<kSj can’t be greater than αη2 for more than

O
(
Mζ
β3 tescape

)
number of steps from Lemma E.17. Thus, we will only consider the steps at which the magnitude

along the eigenvectors vi(·) for i ∈ ∪j 6=kSj is small.

3. Consider any t ∈ N1. Using the behavior of |〈v1(t), x̃η(t)〉| from Lemma D.2 and the behavior of Gt from Lemma E.8,
we can show that in each of the time-frames, if θt > Υζ2ξνχ

µ3β3∆ η, Gt+2 ≥ (1 + µ∆
ζ2 sin2 θt)Gt.

Suppose, we divide N1 into groups, N (1)
1 and N (2)

1 , such that Gt+2 > Gt if t ∈ N (1)
1 and Gt+2 ≤ Gt if t ∈ N (2)

1 .
Since, the increase in Gt during this interval can be at most from

(
1− 1

100M

)
mini∈Sk gt(λi(t)) to ζη (using our

alignment condition from Equation (28)), we must have∑
t∈N(1)

1

θt ≤ O
(

ζ3

0.99µ∆cthres(t)

)
.

Moreover, if Gt+2 ≤ Gt at any step t, then we have θt ≤ Υζ2ξνχ
µ3β3∆ η. That implies,

∑
t∈N(2)

1

θt ≤
Υζ2ξνχ

µ3β3∆
η
∣∣∣N (2)

1

∣∣∣ ≤ Υζ2ξνχ

µ3β3∆
(t′ − t)η.
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Thus, ∑
t∈N1

θt =
∑
t∈N(1)

1

θt +
∑
t∈N(2)

1

θt ≤ O
(

ζ3

0.99µ∆cthres(t)
+

Υζ2ξνχ

µ3β3∆
(t′ − t)η

)
.

Using a very rough bound of µ∆ζ2 for cthres(t), we have the first term of the above bound as O
(

ζ5

0.99µ2∆2

)
.

4. Moreover, using the fact that the angle drops whenever the norm of the iterate is less than ηλ1(t)
2 (Lemma E.6), we

must have θt < θt−1. Furthermore, as listed before, for any time t ∈ N2, t− 1 ∈ N1. That implies,∑
t∈N1∪N2

θt ≤ O
(

ζ5

µ2∆2
+

Υζ2ξνχ

µ3β3∆
η(t′ − t)

)
.

5. We look at the angles of the remaining time-steps, which is N0. Recall that we are only looking at steps t, where the
magnitude along the eigenvectors vi(·) for i ∈ ∪j 6=kSj is less than αη2. Furthermore, the iterate is stuck inside this
thin region, where the magnitude along the top eigenvector is inside this thin strip of (1− 1

100M ) min`∈Sk gt(λ`(t)) ≤
Gt ≤ (1 + 1

100M ) max`∈Sk gt(λ`(t)). Using the difference between the subspaces as 10−3, we have that for any
i ∈ Sk, the magnitude along ith eigenvector is inside 0.99gt(λi(t)) ≤ Gt ≤ 1.01gt(λi(t)). Thus, we can use the result
from the quadratic model (Lemma A.10) that θt can be at most 1.01θt−2. This implies, the sum of the remaining angles
can be at most 1.02 times the above bound. That can be incorporated into the above bound to get∑

t∈N1∪N2∪N0

θt ≤ O
(

ζ5

µ2∆2
+

Υζ2ξνχ

µ3β3∆
η(t′ − t)

)
.

Lemma E.4. Consider the same setting as Lemma E.3. For any subset Sk with 1 ≤ k ≤ p, if at time t,
(1 − 1

100M ) min`∈Sk gt(λ`(t)) ≤ Gt ≤ (1 + 1
100M ) max`∈Sk gt(λ`(t)), then we have the following two claims that

hold with probability at least 1− η10:

1. If k > 1, and there exists some time t′ ≤ tstop such that Gt′ ≥ (1 + 1
100M ) max`∈Sk gt′(λ`(t

′)), then for all time
t′ ≤ t̃ ≤ tstop, Gt̃ ≥ (1 + 1

100M ) max`∈Sk gt̃(λ`(t̃)).

In addition, there must exist a time t̃ = t′ +O( ζ
2

µ∆c
−2
escapeη

−0.1tescape), such that

Gt̃ ≥ (1− 1

100M
) min
`∈Sk−1

gt̃(λ`(t̃)),

provided
∥∥x̃η(t̃)

∥∥ ≤ 0.5ηλ1(t̃) + Ψnormη
2.

2. There doesn’t exist a time t′ ≤ tstop such that Gt′ ≤ (1− 1
100M ) min`∈Sk gt′(λ`(t

′)) +O(ΨGη
3−0.1).

The result holds true when η ≤ Õ( µ
10β9∆

ζ10ν6Dξ ), and for all time t ≤ t < t′, xη(t)xη(t+ 1) ⊂ Y ε. Here Gt denotes the

quantity |〈v1(t), xη(t)− Φ(xη(t))〉|, cescape = Θ(β
6µ6

ζ6ν3 ), and tescape = O(Mζ
2

µ∆ log 1/η).

Proof. We outline the proof sketch here. For the first claim, we show that whenever the magnitude of the iterate along the
top eigenvector crosses above the strip, it never re-enters the strip. Moreover, in O(η−0.1tescape) time, the magnitude of
the iterate along the top eigenvector jumps to the higher strip. The second claim shows that the magnitude of the iterate
along the top eigenvector never drops below the strip. Both the claims will follow from Corollary E.9 and Corollary E.10
that shows that the drop in the magnitude along the top eigenvector can only be of order O(ΨGη

3) when the angle of the
iterate with the top eigenvector is below O

(
Υζ2ξνχ
µ3β3∆ η

)
. In that case, we can wait for η−0.1 steps to apply the result of

Lemma E.11, which shows that a minor injection of η100 noise can guarantee the increase in the magnitude along the top
eigenvector by a constant factor.
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E.2. Properties of Algorithm 2

The properties of the three sets N0, N1, N2 in an interval (t̃, t) given by the algorithm in Algorithm 2 are:

1. All the time steps t in N0 and N1 have the norm of the iterate x̃η(t) at most 0.5λ1(t)η + Ψnormη
2.

2. For any step t in N0, we must have the norm of the iterate x̃η(t+ 2) at least 0.5λ1(t+ 2)η + Ψnormη
2.

3. For any step t in N1, we must have the norm of the iterate x̃η(t+ 2) at most 0.5λ1(t+ 2)η + Ψnormη
2.

4. For any step t in N1, we have t+ 1 in N2. Moreover, for any time t in N2, we must have t− 1 ∈ N1.

Lemma E.5. For any step t in N0, t+ 1 can’t be in N0.

Proof. Suppose there exists a time t, such that t and t+ 1 are both in N0. Then, from the properties of N0 outlined before,
we must have ‖x̃η(t+ 2)‖ ≥ 0.5λ1(t + 2)η + Ψnormη

2 and ‖x̃η(t+ 3)‖ ≥ 0.5λ1(t + 3)η + Ψnormη
2. However, this

contradicts the result of Lemma D.1 which shows that the norm of the iterate can’t be over 0.5λ1(·)η + Ψnormη
2 for more

than one steps.

Lemma E.6. For any step t in N0 and N1, θt+1 ≤
(

1− ∆µ
ζ +O(Ψnorm

β η) +O( νζµ2βη)
)
θt +O( νζµ2βη).

Proof. Using the property of N0 and N1 outlined above, we have the norm of x̃η(t) at most 0.5λ1(t)η + Ψnormη
2. Then,

we can directly use the result from Lemma D.2 to show that the angle has to drop, albeit an error of O(η).

Lemma E.7. For any step t in N0 and N1,

|〈v1(t+ 1), xη(t+ 1)− Φ(xη(t+ 1))〉|

≥ (1 +O(Ψnormη)) |〈v1(t), xη(t)− Φ(xη(t))〉|+O(
νζ

µ2
η2).

Proof. Using the property of N0 and N1 outlined above, we have the norm of x̃η(t) at most 0.5λ1(t)η + Ψnormη
2. Then,

we can directly use the result from Lemma D.2 to show that the magnitude along the top eignvector has to increase, albeit an
error of O(η2).

E.3. Main Helping Lemmas for Phase II

Here, we will state the important three lemmas that we used for the proof of Lemma E.1. We have implicitly assumed in all
the lemmas, that Equation (28) holds true for the time under consideration, which we showed in Lemma C.1, and also the
fact that we start Phase II from a point where the alignment along the top eigenvector is non negligible.

The following lemma shows the behavior of the iterate along the top eigenvector.

Lemma E.8 (Behavior along the top eigenvector). Suppose η ≤ O(min( µ3

ζ3ς2ξν
√
D
, µ3

νξςζ2D ,
µ3

νξςζ2D ,
∆

Ψnorm
)). Con-

sider any time t, such that xη(t) ∈ Y ε, where ‖x̃η(t)‖ ≤ 1
2ηλ1(t) + Ψnormη

2 holds true. If Gt denotes the quantity
|〈v1(t), xη(t)− Φ(xη(t))〉| and Gt+2 denotes the quantity |〈v1(t+ 2), xη(t+ 2)− Φ(xη(t+ 2))〉|, then the following
holds true:

Gt+2 ≥ (1 +
1

4
min

2≤j≤M

λj(t)(λ1(t)− λj(t))
λ2

1(t)
sin2 θt)Gt

−O(
Υζ2ξνχ

µ3∆
η3 + (1 + η/Gt)

νζ2η3

µ2λ1(t)Gt
sin θt),

provided Gt ≥ Ω(η1.5) and xη(t)xη(t+ 1), xη(t+ 1)xη(t+ 2) ⊂ Y ε. Here θt is given by arctan(

∥∥∥P (2:M)
t,Γ x̃η(t)

∥∥∥
|〈v1(t),x̃η(t)〉| ), with

P
(2:M)
t,Γ denoting the projection matrix onto the subspace spanned by v2(t), . . . , vM (t).
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The proof of the above lemma is given in Appendix E.3.1.

A corollary of the above lemma is that when the magnitude along the top eigenvalue is Ω(η), the magnitude drops, only
when the angle of the iterate with the top eigenvector is O(η).

Corollary E.9. Consider any time t, such that xη(t) ∈ Y ε, where ‖x̃η(t)‖ ≤ 1
2ηλ1(t) + Ψnormη

2 holds true. If Gt
denotes the quantity |〈v1(t), xη(t)− Φ(xη(t))〉| and Gt+2 denotes the quantity |〈v1(t+ 2), xη(t+ 2)− Φ(xη(t+ 2))〉|,
then Gt+2 ≥ Gt for all

|θt| ≥ Ω

(
max

(√
Υζ2ξνχ

µ3∆

η3

Gt
, (1 + η/Gt)

νζ2η3

µ2λ1(t)G2
t

))
,

provided Gt ≥ Ω(η1.5), and xη(t)xη(t+ 1), xη(t+ 1)xη(t+ 2) ⊂ Y ε. Moreover, if Gt ≥ βη for some β ≥ 0, then the
above bound can be simplified as

|θt| ≥ Ω

(
Υζ2ξνχ

µ3β3∆
η

)
.

The next corollary shows that if the magnitude along the top eigenvector drops, when it is Ω(η), it can only drop by a
magnitude of O(η3).

Corollary E.10. Consider any time t, such that xη(t) ∈ Y ε and ‖x̃η(t)‖ ≤ 1
2ηλ1(t) + Ψnormη

2. Let Gt denotes the
quantity |〈v1(t), xη(t)− Φ(xη(t))〉|, then

Gt+2 ≥ Gt −O

(
Υζ2ξνχ

µ3∆
η3 + (1 + η/Gt)

νζ2η3

µ2λ1(t)Gt

√
Υζ2ξνχ

µ3∆

η3

Gt

)
,

provided Gt ≥ Ω(η1.5) and xη(t)xη(t+ 1), xη(t+ 1)xη(t+ 2) ⊂ Y ε. Therefore, there is some β > 0, such that whenever
Gt ≥ βη, we have Gt+2 ≥ Gt −O(ΨGη

3), where ΨG = Υζ3ξν2χ
µ5β3∆ .

E.3.1. BEHAVIOR ALONG TOP EIGENVALUE

Lemma E.8 (Behavior along the top eigenvector). Suppose η ≤ O(min( µ3

ζ3ς2ξν
√
D
, µ3

νξςζ2D ,
µ3

νξςζ2D ,
∆

Ψnorm
)). Con-

sider any time t, such that xη(t) ∈ Y ε, where ‖x̃η(t)‖ ≤ 1
2ηλ1(t) + Ψnormη

2 holds true. If Gt denotes the quantity
|〈v1(t), xη(t)− Φ(xη(t))〉| and Gt+2 denotes the quantity |〈v1(t+ 2), xη(t+ 2)− Φ(xη(t+ 2))〉|, then the following
holds true:

Gt+2 ≥ (1 +
1

4
min

2≤j≤M

λj(t)(λ1(t)− λj(t))
λ2

1(t)
sin2 θt)Gt

−O(
Υζ2ξνχ

µ3∆
η3 + (1 + η/Gt)

νζ2η3

µ2λ1(t)Gt
sin θt),

provided Gt ≥ Ω(η1.5) and xη(t)xη(t+ 1), xη(t+ 1)xη(t+ 2) ⊂ Y ε. Here θt is given by arctan(

∥∥∥P (2:M)
t,Γ x̃η(t)

∥∥∥
|〈v1(t),x̃η(t)〉| ), with

P
(2:M)
t,Γ denoting the projection matrix onto the subspace spanned by v2(t), . . . , vM (t).

Proof. Using the Normalized GD update, we have

〈v1(t), xη(t+ 1)− Φ(xη(t))〉 − 〈v1(t), xη(t)− Φ(xη(t))〉

= −η 〈v1(t),∇L(xη(t))〉
‖∇L(xη(t))‖

= −η
〈v1(t),∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))] + 1

2∂
2(∇L)(Φ(xη(t)))[xη(t)− Φ(xη(t)), xη(t)− Φ(xη(t))]〉∥∥∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))] + 1

2∂
2(∇L)(Φ(xη(t)))[xη(t)− Φ(xη(t)), xη(t)− Φ(xη(t))]

∥∥
+O(

Υζ2

µ3
η3) (29)
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= −η
v1(t)>∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))] + 1

2v1(t)>∂2(∇L)(Φ(xη(t)))[xη(t)− Φ(xη(t)), xη(t)− Φ(xη(t))]∥∥Pt,Γ∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))] + 1
2Pt,Γ∂

2(∇L)(Φ(xη(t)))[xη(t)− Φ(xη(t)), xη(t)− Φ(xη(t))]
∥∥

+O(
Υζ2

µ3
η3) (30)

= −η v1(t)>∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]

‖Pt,Γ∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]‖
+ err +O(

Υζ2

µ3
η3). (31)

The steps followed above are as follows:

1. In Equation (29), we use taylor expansion to expand ∇L(xη(t)) around Φ(xη(t)), with an error of
O(Υ ‖xη(t)− Φ(xη(t))‖3). Since by alignment condition Equation (28),we have ‖x̃η(t)‖ ≤ O(λ1(t)η), we have
‖xη(t)− Φ(xη(t))‖ ≤ O( λ1(t)

λM (t) ). This adds an error of magnitude O(Υζ2

µ3 η
3) to the entire term.

2. In Equation (30), we divide the vector ∇2L(Φ(xη(t)))[xη(t) − Φ(xη(t))] + 1
2∂

2(∇L)(Φ(xη(t)))[xη(t) −
Φ(xη(t)), xη(t) − Φ(xη(t))] using its projection onto the subspace S1 spanned by v1(t), . . . , vM (t) and the sub-
space S2 spanned by the rest of the eigenvectors vM+1(t), . . . , vD(t). Since ∇2L(Φ(xη(t))) only projects onto
the subspace S1, S2 can only get its component from ∂2(∇L)(Φ(xη(t)))[xη(t) − Φ(xη(t)), xη(t) − Φ(xη(t))],
which is of norm O(ν ‖xη(t)− Φ(xη(t))‖2). Thus, we can only consider the vector in S1, with an error vector
O(ν ‖xη(t)− Φ(xη(t))‖2) orthogonal to S1. Taking the norm of this vector, we get an additional error term of
magnitude O(η4).

3. In the final step (Equation (31)), we only consider∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))], which gives out an error term
err.

Now, we show that |err| ≤ O(η2θt).

First of all,
∥∥∂2(∇L)(Φ(xη(t)))[xη(t)− Φ(xη(t)), xη(t)− Φ(xη(t))]

∥∥ ≤ O(ν ‖xη(t)− Φ(xη(t))‖2) = O(νζ
2

µ2 η
2).

Suppose P
(2:M)
t,Γ denotes the projection matrix onto the subspace spanned by v2(t), . . . , vM (t), then denoting

by res(2:M) the vector P
(2:M)
t,Γ ∂2(∇L)(Φ(xη(t)))[xη(t) − Φ(xη(t)), xη(t) − Φ(xη(t))] and by res the element

v1(t)>∂2(∇L)(Φ(xη(t)))[xη(t)− Φ(xη(t)), xη(t)− Φ(xη(t))], we have

|res| ,
∥∥∥res(2:M)

∥∥∥ ≤ O(
νζ2

µ2
η2). (32)

Thus,

− 1

η
err +

v1(t)>∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]

‖Pt,Γ∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]‖

=
v1(t)>∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))] + v1(t)>∂2(∇L)(Φ(xη(t)))[xη(t)− Φ(xη(t)), xη(t)− Φ(xη(t))]∥∥Pt,Γ∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))] + 1

2Pt,Γ∂
2(∇L)(Φ(xη(t)))[xη(t)− Φ(xη(t)), xη(t)− Φ(xη(t))]

∥∥ (33)

=
v1(t)>∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))] + res∥∥Pt,Γ∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))] + res · v1(t) + res(2:M)

∥∥ (34)

=
v1(t)>∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))] + res√

(v1(t)>∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))] + res)2 +
∥∥∥P (2:M)

t,Γ ∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))] + res(2:M)
∥∥∥2

(35)

=
v1(t)>∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]

‖Pt,Γ∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]‖

[√
1 + err′

]
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where

err′ =

[∥∥∥P (2:M)
t,Γ ∇2L(Φ(xη(t)))[xη(t)−Φ(xη(t))]

∥∥∥
v1(t)>∇2L(Φ(xη(t)))[xη(t)−Φ(xη(t))]

]2

−
[∥∥∥P (2:M)

t,Γ ∇2L(Φ(xη(t)))[xη(t)−Φ(xη(t))]+res(2:M)
∥∥∥

v1(t)>∇2L(Φ(xη(t)))[xη(t)−Φ(xη(t))]+res

]2

1 +

[∥∥∥P (2:M)
t,Γ ∇2L(Φ(xη(t)))[xη(t)−Φ(xη(t))]

∥∥∥
v1(t)>∇2L(Φ(xη(t)))[xη(t)−Φ(xη(t))]

]2 .

We followed the following steps in the above set of equations:

1. In Equation (33), we just copied the term from Equation (30), which was divided into terms err and
v1(t)>∇2L(Φ(xη(t)))[xη(t)−Φ(xη(t))]
‖Pt,Γ∇2L(Φ(xη(t)))[xη(t)−Φ(xη(t))]‖ .

2. In Equation (34), we introduced the terms res and res(2:M) to represent ∂2(∇L)(Φ(xη(t)))[xη(t)−Φ(xη(t)), xη(t)−
Φ(xη(t))].

3. In Equation (35), we expanded the norm in the denominator using the projection along the vector v1(t) and the subspace
spanned by v2(t), . . . , vM (t).

The magnitude of err′ can now be bounded as follows:

|err′| =

∣∣∣∣∣∣∣∣∣
[∥∥∥P (2:M)

t,Γ ∇2L(Φ(xη(t)))[xη(t)−Φ(xη(t))]
∥∥∥

v1(t)>∇2L(Φ(xη(t)))[xη(t)−Φ(xη(t))]

]2

−
[∥∥∥P (2:M)

t,Γ ∇2L(Φ(xη(t)))[xη(t)−Φ(xη(t))]+res(2:M)
∥∥∥

v1(t)>∇2L(Φ(xη(t)))[xη(t)−Φ(xη(t))]+res

]2

1 +

[∥∥∥P (2:M)
t,Γ ∇2L(Φ(xη(t)))[xη(t)−Φ(xη(t))]

∥∥∥
v1(t)>∇2L(Φ(xη(t)))[xη(t)−Φ(xη(t))]

]2

∣∣∣∣∣∣∣∣∣
=

1

sec2 θt

∣∣∣

∥∥∥P (2:M)

t,Γ ∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]
∥∥∥

v1(t)>∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]

2

−


∥∥∥P (2:M)

t,Γ ∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))] + res(2:M)
∥∥∥

v1(t)>∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))] + res

2 ∣∣∣ (36)

≤ O

 1

Gtλ1(t) sec2 θt
(
∥∥∥res(2:M)

∥∥∥+ |res| tan θt) ·

∣∣∣∣∣∣
∥∥∥P (2:M)

t,Γ ∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]
∥∥∥

v>1 ∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]

∣∣∣∣∣∣
 (37)

≤ O
(

1

Gtλ1(t)
(
∥∥∥res(2:M)

∥∥∥+ |res| tan θt) · |sin 2θt|
)
. (38)

We followed the following steps in the above set of equations:

1. In Equation (36), we used the definition of θt to represent

∥∥∥P (2:M)
t,Γ ∇2L(Φ(xη(t)))[xη(t)−Φ(xη(t))]

∥∥∥
v>1 ∇2L(Φ(xη(t)))[xη(t)−Φ(xη(t))]

.
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2. In Equation (37), we bound the magnitude of

∥∥∥P (2:M)
t,Γ ∇2L(Φ(xη(t)))[xη(t)−Φ(xη(t))]

∥∥∥+res

v1(t)>∇2L(Φ(xη(t)))[xη(t)−Φ(xη(t))]+res(2:M) by∣∣∣∣∣∣
∥∥∥P (2:M)

t,Γ ∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]
∥∥∥+ res(2:M)

v1(t)>∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))] + res

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∥∥∥P (2:M)

t,Γ ∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]
∥∥∥

v1(t)>∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]

∣∣∣∣∣∣
+O

( 1

|v1(t)>∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]|

·
(∥∥∥res(2:M)

∥∥∥+ |res|

∥∥∥P (2:M)
t,Γ ∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]

∥∥∥
|v1(t)>∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]|

))

=

∥∥∥P (2:M)
t,Γ ∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]

∥∥∥
|v1(t)>∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]|

+O
(

1

Gtλ1(t)

(∥∥∥res(2:M)
∥∥∥+ |res| tan θt

))
.

In the final step, we have used the following steps:∣∣v1(t)>∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]
∣∣ =

∣∣λ1(t)v1(t)>[xη(t)− Φ(xη(t))]
∣∣ = λ1(t)Gt.

The pre-final step is true iff Gt > Ω(
∥∥res(2:M)

∥∥+ |res|). Since we have a bound of O(νζ
2

µ2 η
2) on |res| ,

∥∥res(2:M)
∥∥

from Equation (32), having a lower bound of Ω(η1.5) on Gt suffices, provided η ≤ O( µ4

ν2ζ4 ).

Hence, combining everything, we have

|err| ≤ η
∣∣∣√1 + err′ − 1

∣∣∣ ∣∣∣∣v1(t)>∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]

‖Pt,Γ∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]‖

∣∣∣∣
≤ ηO(|err′|)

≤ O(
νζ2η3

µ2Gtλ1(t)
sin θt),

where in the second step, we have used the fact that
∣∣∣ v1(t)>∇2L(Φ(xη(t)))[xη(t)−Φ(xη(t))]
‖Pt,Γ∇2L(Φ(xη(t)))[xη(t)−Φ(xη(t))]‖

∣∣∣ = |cos θt| < 1.

Thus, continuing from Equation (31), we have

〈v1(t), xη(t+ 1)− Φ(xη(t))〉 − 〈v1(t), xη(t)− Φ(xη(t))〉 = −η v1(t)>∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]

‖Pt,Γ∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]‖

+O(
Υζ2

µ3
η3 +

νζ2η3

µ2λ1(t)Gt
sin θt). (39)

Similarily, we can show

〈v1(t), xη(t+ 2)− Φ(xη(t))〉 − 〈v1(t), xη(t+ 1)− Φ(xη(t))〉

= −η v1(t)>∇2L(Φ(xη(t)))[xη(t+ 1)− Φ(xη(t))]

‖Pt,Γ∇2L(Φ(xη(t)))[xη(t+ 1)− Φ(xη(t))]‖

+O
(
Υζ2

µ3
η3 +

νζ2η3

µ2 |v1(t)>∇2L(Φ(xη(t)))[xη(t+ 1)− Φ(xη(t))]|
sin θ̃t

)
,

where cos θ̃t =
|v1(t)>∇2L(Φ(xη(t)))[xη(t+1)−Φ(xη(t))]|
‖Pt,Γ∇2L(Φ(xη(t)))[xη(t+1)−Φ(xη(t))]‖ . Hence, we can combine the two equations to have

〈v1(t), xη(t+ 2)− Φ(xη(t))〉 = at+1at〈v1(t), xη(t+ 2)− Φ(xη(t))〉+ err, (40)
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where

at+1 = 1− ηλ1(t)

‖Pt,Γ∇2L(Φ(xη(t)))[xη(t+ 1)− Φ(xη(t))]‖
,

at = 1− ηλ1(t)

‖Pt,Γ∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]‖
,

|err| ≤ |at+1| O(
Υζ2

µ3
η3 +

νζ2η3

µ2Gtλ1(t)
sin θt)

+O
(
Υζ2

µ3
η3 +

νζ2η3

µ2 |v1(t)>∇2L(Φ(xη(t)))[xη(t+ 1)− Φ(xη(t))]|
sin θ̃t

)
.

Using Lemma D.2 that predicts an increase (albeit an error of O(η2)) on the projection along the top eigenvector, we have

|err| ≤ |at+1| O(
Υζ2

µ3
η3 +

νζ2η3

µ2Gtλ1(t)
sin θt) +O

(
Υζ2

µ3
η3 +

νζ2η3

µ2Gtλ1(t)
sin θt

)
.

Since,∥∥Pt,Γ∇2L(Φ(xη(t)))[xη(t+ 1)− Φ(xη(t))]
∥∥ ≥ ∣∣v1(t)>∇2L(Φ(xη(t)))[xη(t+ 1)− Φ(xη(t))]

∣∣
≥ 1

2

∣∣v1(t)>∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]
∣∣ =

1

2
λ1(t)Gt,

using Lemma D.2, that predicts an increase (albeit an error of O(η2)) on the projection along the top eigenvector, in the
pre-final step, we have |at+1| ≤ 2η

Gt
. Thus, overall,

|err| ≤ O
(
Υζ2η4

µ3Gt
+

νζ2η4

µ2G2
tλ1(t)

sin θt +
Υζ2ζ

µ3
η3 +

νζ2η3

µ2Gtλ1(t)
sin θt

)
.

Using the steps used for finding the noisy quadratic update rule of Normalized GD in Lemma B.10 ( Equation (19) ), we can
show that

〈vj(t), xη(t+ 1)− Φ(xη(t))〉 − 〈vj(t), xη(t)− Φ(xη(t))〉

= −η vj(t)
>∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]

‖Pt,Γ∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]‖
+O(

νζ

µ
η2), (41)

for all 2 ≤ j ≤M . Hence, with Equation (39) and Equation (41), we can further show that∥∥Pt,Γ∇2L(Φ(xη(t)))[xη(t+ 1)− Φ(xη(t))]
∥∥ ≤ ηλ1(t)−

∥∥Pt,Γ∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]
∥∥

− 2η min
2≤j≤M

λj(t)(λ1(t)− λj(t))
λ1(t)

sin2 θt (42)

+O(
νζ

µ
η2 sin θt +

Υζ2

µ3
η3 +

νζ2η3

µ2λ1(t)Gt
sin θt). (43)

Further, from alignment condition(Equation (28)), we have∥∥Pt,Γ∇2L(Φ(xη(t)))[xη(t+ 1)− Φ(xη(t))]
∥∥,∥∥Pt,Γ∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]

∥∥
≤ λ1(t)η +O(νξη2) +O(

νζ2ς

µ2
η2)

+O(
√
Dξζςνη2) +O(η2D)

≤ 2λ1(t)η,

if η ≤ O( µ3

νξςζ2D ).
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Continuing from Equation (40), we have

|〈v1(t), xη(t+ 2)− Φ(xη(t))〉| = |at+1at〈v1(t), xη(t)− Φ(xη(t))〉|+ err

≥ (1 +
1

2
min

2≤j≤M

λj(t)(λ1(t)− λj(t))
λ2

1(t)
sin2 θt)Gt + ẽrr, (44)

where we use Equation (43) and the bounds on
∥∥Pt,Γ∇2L(Φ(xη(t)))[xη(t+ 1)− Φ(xη(t))]

∥∥,∥∥Pt,Γ∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]
∥∥ in the final step, with

|ẽrr| ≤ err +
Gt

2ηλ1(t)
O(
νζ

µ
η2 sin θt +

Υζ2

µ3
η3 +

νζ2η3

µ2λ1(t)Gt
sin θt)

≤ O(
Υζ2

µ3
η3 + (1 + η/Gt)

νζ2η3

µ2λ1(t)Gt
sin θt).

The proof now follows from Equation (44), after taking into account ‖v1(t)− v1(t+ 2)‖ and
‖Φ(xη(t+ 2))− Φ(xη(t)‖. From Lemma B.12, we have ‖Φ(xη(t))− Φ(xη(t+ 1))‖ ≤ O(ξη2), which further implies,∥∥∇2L(Φ(xη(t+ 1)))−∇2L(Φ(xη(t)))

∥∥ ≤ O(νξη2). Thus, we can use Theorem F.4 to have ‖v1(t)− v1(t+ 1)‖ ≤
O( νξη2

λ1(t)−λ2(t) ) = O(νξη
2

∆ ). From Lemma B.13, we have |〈v1(t),Φ(xη(t+ 1))− Φ(xη(t))〉| ≤ O(ξζνχη
3

µ2 ). Thus,

Gt+2 = |〈v1(t+ 2), xη(t+ 2)− Φ(xη(t+ 2))〉|

= |〈v1(t), xη(t+ 2)− Φ(xη(t))〉|+O(
νξη3

∆
+
ξζνχη3

µ2∆
)

≥ (1 +
1

2
min

2≤j≤M

λj(t)(λ1(t) +O(Ψnormη)− λj(t))
λ2

1(t)
sin2 θt)Gt

+O(
Υζ2

µ3
η3 + (1 + η/Gt)

νζ2η3

µ2λ1(t)Gt
sin θt) +O(

νξη3

∆
+
ξζνχη3

µ2
)

≥ (1 +
1

4
min

2≤j≤M

λj(t)(λ1(t) +O(Ψnormη)− λj(t))
λ2

1(t)
sin2 θt)Gt

+O(
Υζ2

µ3
η3 + (1 + η/Gt)

νζ2η3

µ2λ1(t)Gt
sin θt) +O(

νξη3

∆
+
ξζνχη3

µ2
).

The error term in the pre-final step can be further upper bounded as as O(Υζ2ξνχ
µ3∆ η3 + (1 + η/Gt)

νζ2η3

µ2λ1(t)Gt
sin θt). The

final step follows if η ≤ O( ∆
Ψnorm

).

E.3.2. MOVEMENT ALONG TOP EIGENVECTOR WHEN ITERATE DROPS BELOW THRESHOLD

In this section, we will show that the projection along the top eigenvector cannot drop below a certain threshold. Formally,
we will show the following lemma that predicts the increase in the projection along the top eigenvector in O(log 1/η) steps,
whenever the projection drops below a certain threshold cthres(t).

Lemma E.11. Denote r = η100. For any constant 0 < β < µ∆
8ζ2 , consider any time step t, with xη(t) ∈ Y ε and xη(t)

satisfying the following:

1. βη ≤ |〈v1(t), xη(t)− Φ(xη(t))〉| ≤
(
1− 1

100M

)
cthres(t)η.

2. |〈vi(t), xη(t)− Φ(xη(t))〉| ≤ αη2, for all 2 ≤ i ≤M.

Here cthres(t) is equal to maxk∈[M ] gt(λk(t)) and α = Θ( νζ
2

µ2β ).
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Then, with probability at least 1− η12, the following holds true, after one step of noise perturbation with noise generated
from B0(r) followed by tescape + 2 = Θ(log 1/η) steps of normalized gradient descent (t = t+ tescape + 2):

Gt ≥

(
1 +

µ∆

256ζ2

c2escape

c2thres(t)

)
Gt

with cescape = Θ(β
6µ6

ζ6ν3 ), provided η ≤ Õ(µ
10β9∆1/2

ζ10ν6 ) and xη(t′)xη(t′ + 1) ⊂ Y ε for all time t ≤ t′ ≤ t. Here
Gt = |〈v1(t), xη(t)− Φ(xη(t))〉| .

Proof. We argue as follows: With a small perturbation to xη(t), the magnitude along the eigenvector vk(t) is destined to
grow to at least 1

4cescapeη after tescape steps of Normalized GD with high probability (see Lemma E.12). Here, vk(t) is the
eigenvector corresponding to the eigenvalue λk(t) = argmaxλi(t)|1≤i≤M gt(λi(t)).

After we have shown that
∥∥∥P (2:M)

t,Γ (xη(t)− Φ(xη(t)))
∥∥∥ is at least Ω(η) after at most O(log 1/η) number of steps, we use

the behavior of Gt derived in Lemma E.8 to show that

Gt+tescape+2 ≥

(
1 +

µ∆

128ζ2

c2escape

c2thres(t)

)
Gt+tescape

,

provided η = O
(

min

(
µ3∆β2cescape

ζ4νcthres(t)
,
(
µ4∆2c2escapeβ

Υζ4ξνχc2thres

)1/2
))

.

We will further require the behavior of the projection along the top eigenvector from Corollary E.10 to show that the
projection along the top eigenvector can drop only when the angle is O(η), and hence, the drop in the magnitude along the
top eigenvector is at-most tescape times O(ΨGη

3), where ΨG = max
(

Υζ2ξνχ
µ3∆ , ν

2ζ4

µ6β5

)
. That is

Gt+tescape
≥ Gt +O(ΨGtescapeη

3).

The final bound will then follow using η ≤ Õ
((

µ∆
ΨGζ2

c2escape

c2thres(t)

)1/2
)
.

Lemma E.12. Consider any time t, with xη(t) ∈ Y ε. Suppose xη(t) satisfies the conditions in Lemma E.11. The constants
cescape, cthres(t), r,α, and β have been taken from Lemma E.11. Define Xstuck as the region in Bxη(t)(r) such that starting
from any point u ∈ Xstuck, the points {u(t̃)}t̃∈[tescape], with u(0) := u, obtained using tescape steps of normalized gd satisfy:∥∥∥P (2:M)

t,Γ (u(t̃)− Φ(xη(t)))
∥∥∥ ≤ αη2, for all t̃ ∈ [tescape], (45)

where P (2:M)
t,Γ denotes the subspace spanned by v2(t), . . . , vM (t).

Consider two points u and w in Bxη(t)(r), with the property w = u + η12rvk(t), where vk(t) denotes the eigenvector
corresponding to the eigenvalue λk(t) = argmaxλi(t)|1≤i≤M gt(λi(t)). Then, at least one of u and w is not present in the
region Xstuck. Moreover, ∥∥∥P (2:M)

t,Γ (u(t̃)− w(t̃))
∥∥∥ ≥ 1

4
cescapeη.

Proof. W.l.o.g. we assume u lies in the region Xstuck. Then, consider the two sequences obtained with tescape steps of
normalized gd, {u(t̃), w(t̃)}t̃∈[tescape]:

u(0) = u, w(0) = w, u(t̃) = u(t̃− 1)− η ∇L(u(t̃))∥∥∇L(u(t̃))
∥∥ , w(t̃) = w(t̃− 1)− η ∇L(w(t̃))∥∥∇L(w(t̃))

∥∥ .
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We will show the following: ∥∥∥P (2:M)
t,Γ (u(tescape)− w(tescape))

∥∥∥ ≥ Ω(η).

An important claim to note is the following:

Lemma E.13. Both the trajectories {u(t̃), w(t̃)}t̃≤tescape
satisfy a modified version of the alignment condition (Equa-

tion (28)), i.e. for all 1 ≤ j ≤M :√√√√ M∑
i=j

〈vi(t),∇2L(Φ(xη(t)))[u(t̃)− Φ(xη(t))]〉2 ≤ λj(t)η +O(Ψnormη
2),

√√√√ M∑
i=j

〈vi(t),∇2L(Φ(xη(t)))[w(t̃)− Φ(xη(t))]〉2 ≤ λj(t)η +O(Ψnormη
2).

Note that the condition has been slightly changed to use {vi(t)} as reference coordinate system and Φ(xη(t)) as reference
point. The above lemma follows from the fact that both u(0) and w(0) are r-close to xη(t), which itself satisfies the
alignment condition (Equation (28)). Thus, both u(0) and w(0) initially follow the desired condition. Since, both the
trajectories follow Normalized GD updates, the proof will follow from applying the same technique used in the proof of
Lemma C.1. Another result to keep in mind is the following modified version of Lemma D.2.

Lemma E.14. If
∥∥∇2L(Φ(xη(t)))[u(t̃)− Φ(xη(t))]

∥∥ ≤ η λ1(t)
2 + Ψnormη

2,∣∣v1(t)>∇2L(Φ(xη(t)))(u(t̃+ 1)− Φ(xη(t)))
∣∣

≥ (1 +O(Ψnormη))
∣∣v1(t)>∇2L(Φ(xη(t)))(u(t̃)− Φ(xη(t)))

∣∣+O(
νζ

µ2
η2).

Similarly, if
∥∥∇2L(Φ(xη(t)))[w(t̃)− Φ(xη(t))]

∥∥ ≤ η λ1(t)
2 + Ψnormη

2,∣∣v1(t)>∇2L(Φ(xη(t)))(w(t̃+ 1)− Φ(xη(t)))
∣∣

≥ (1 +O(Ψnormη))
∣∣v1(t)>∇2L(Φ(xη(t)))(w(t̃)− Φ(xη(t)))

∣∣+O(
νζ

µ2
η2).

If
∥∥∇2L(Φ(xη(t)))[w(t̃)− Φ(xη(t))]

∥∥ ≤ η λ1(t)
2 + Ψnormη

2,
∥∥∇2L(Φ(xη(t)))[u(t̃)− Φ(xη(t))]

∥∥ ≤ η λ1(t)
2 + Ψnormη

2,
and u(γ) denotes γu(0) + (1− γ)w(0) for any γ ∈ [0, 1],∣∣v1(t)>∇2L(Φ(xη(t)))(F (u(γ))− Φ(xη(t)))

∣∣
≥ (1 +O(Ψnormη))

∣∣v1(t)>∇2L(Φ(xη(t)))(u(γ)− Φ(xη(t)))
∣∣+O(

νζ

µ2
η2),

where F (x) = x− η ∇L(x)
‖∇L(x)‖ .

The above lemma uses {vi(t)} as reference coordinate system and Φ(xη(t)) as reference point. The above lemma follows
from showcasing Normalized GD updates of u(t̃) and w(t̃) as equivalent to the update in a quadratic model, with an
additional noise of O(νζµ η

2), similar to Equation (27).

Continuing with the proof of Lemma E.12, we first consider the behavior of u. Since u stays in the region Xstuck for tescape

steps of normalized gd, we have for any time-step t̃:

∥∥∥∥∥ u(t̃)− Φ(xη(t))∥∥u(t̃)− Φ(xη(t))
∥∥ − v1(t)

∥∥∥∥∥ ≤ αβ η,
or

∥∥∥∥∥ u(t̃)− Φ(xη(t))∥∥u(t̃)− Φ(xη(t))
∥∥ + v1(t)

∥∥∥∥∥ ≤ αβ η (46)
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Further, applying the same technique from Lemma E.8, we can show that∣∣〈v1(t), u(t̃+ 2)− Φ(xη(t))〉 − 〈v1(t), u(t̃)− Φ(xη(t))〉
∣∣

≤ O
((

Υζ2ξνχ

µ3∆
+
νζ2

µ3

α

β2

)
η3

)
= O(Ψη3), (47)

where we replace
(

Υζ2ξνχ
µ3∆ + νζ2

µ3
α
β2

)
by Ψ for simplicity of presentation.

Initially, because uwas initialized close to xη(t), we must have |〈v1(t), u(0)− Φ(xη(t))〉 − 〈v1(t), xη(t)− Φ(xη(t))〉| ≤ r.
Hence,

∣∣〈v1(t), u(t̃)− Φ(xη(t))〉 − 〈v1(t), u(0)− Φ(xη(t))〉
∣∣ ≤ O(Ψη3tescape) for all t̃ ∈ [tescape]. With tescape ∼

O(log 1/η) and with η ≤ Õ((β/MΨ)1/2), we must have(
1− 1

200M

)
cthres(t) ≥

(
1 +

1

200M

)
|〈v1(t), xη(t)− Φ(xη(t))〉| (48)

≥
∣∣〈v1(t), u(t̃)− Φ(xη(t))〉

∣∣
≥ 0.999 |〈v1(t), u(0)− Φ(xη(t))〉| ≥ 0.999(|〈v1(t), xη(t)− Φ(xη(t))〉| − r) ≥ 0.998βη, (49)

for any t ≤ t̃ ≤ t+ tescape.

Now, we consider the behavior of w(·) and u(·). Consider an even time step 0 ≤ t̃ ≤ tescape. From the update rule of w and
u, we have

w(t̃+ 2)− u(t̃+ 2) = F (F (w(t̃)))− F (F (u(t̃))),

where the function F : RD → RD, F (v) = v − η ∇L(v)
∇‖L(v)‖ is the one-step update rule of Normalized GD.

Now, we use taylor expansion of F around u(t̃) to get

w(t̃+ 2)− u(t̃+ 2) = F (F (w(t̃)))− F (F (u(t̃))) = ∇u(t̃)F (F (u(t̃)))(w(t̃)− u(t̃)) + err,

where ‖err‖ can be bounded as follows:

max
γ∈[0,1]:u(γ)=γu(t̃)+(1−γ)w(t̃)

1

2

∥∥∥∇2
u(γ)F (F (u(γ)))

∥∥∥∥∥w(t̃)− u(t̃)
∥∥2

= max
γ∈[0,1]:u(γ)=γu(t̃)+(1−γ)w(t̃)

1

2

∥∥∇u(γ)[∇F (u(γ))F (F (u(γ)))∇u(γ)F (u(γ))]
∥∥∥∥w(t̃)− u(t̃)

∥∥2

≤ max
γ∈[0,1]:u(γ)=γu(t̃)+(1−γ)w(t̃)

ηO

(
1

‖∇L(u(γ))‖2
+

1

‖∇L(F (u(γ)))‖2

)∥∥w(t̃)− u(t̃)
∥∥2

·max
(∥∥∂2(∇L)(u(γ))

∥∥ ,∥∥∇2L(u(γ))
∥∥2
,
∥∥∂2(∇L)(F (u(γ)))

∥∥ ,∥∥∇2L(F (u(γ)))
∥∥2
)

≤ max
γ∈[0,1]:u(γ)=γu(t̃)+(1−γ)w(t̃)

(
1

‖∇L(u(γ))‖2
+

1

‖∇L(F (u(γ)))‖2

)
· %η

∥∥w(t̃)− u(t̃)
∥∥2
,

where the constant % = O(ζ2 + ν). Thus we conclude∥∥w(t̃+ 2)− u(t̃+ 2)−H(u(t̃))(w(t̃)− u(t̃))
∥∥ ≤ %ηµ(t̃)

∥∥w(t̃)− u(t̃)
∥∥2
, (50)

where H(u(t̃)) is given by

H(u(t̃)) := ∂F ◦ F (u(t̃)) = ∂F (u(t̃+ 1)))∂F (u(t̃)) = At̃+1At̃,

At̃ := ∂F (u(t̃)) = I − η

[
I − ∇L(u(t̃))∇L(u(t̃))>∥∥∇L(u(t̃))

∥∥2

]
∇2L(u(t̃))∥∥∇L(u(t̃))

∥∥ ,
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and µ(t̃) is given by

µ(t̃) = max
γ∈[0,1]:u(γ)=γu(t̃)+(1−γ)w(t̃)

(
1

‖∇L(u(γ))‖2
+

1

‖∇L(F (u(γ)))‖2

)
, (51)

Now we claim At̃ can be approximated as below with ‖Bt̃‖ ≤ O( νζ
2

µ2β2 η). Furthermore, ‖At̃‖ ≤ O( 1
β ).

At̃ = I − η
[
I − v1(t)v1(t)>

] ∇2L(Φ(xη(t)))∣∣〈v1(t),∇2L(Φ(xη(t)))[u(t̃)− Φ(xη(t))]〉
∣∣ +Bt̃,

The following strategies have been used to obtain the above approximation:

1.
∥∥∇2L(u(t̃))−∇2L(Φ(xη(t)))

∥∥ ≤ O(ν
∥∥u(t̃)− Φ(xη(t))

∥∥) = O(cthres(t)νη). Here, we use
∥∥u(t̃)− Φ(xη(t))

∥∥ ≤
2cthres(t)η, since ‖u(0)− Φ(xη(t))‖ ≤ cthres(t) + r, and the conditions from Equation (47) and Equation (45) imply
that the norm stays below 2cthres(t), if η ≤ O( cthres(t)

β ). We can further bound the error by using cthres(t) ≤ λ1(t)η.

2. Using taylor expansion and the bound on
∥∥u(t̃)− Φ(xη(t))

∥∥, ∇L(u(t̃)) = ∇2L(Φ(xη(t̃)))(u(t̃) − Φ(xη(t))) +

O(νcthres(t)
2η2). Also, this further implies

∥∥∇L(u(t̃))
∥∥ ≥ λ1(t)

∣∣〈v1(t), u(t̃)− Φ(xη(t))〉
∣∣ + O(νcthres(t)

2η2).

Using the update from Equation (47) and the bound on tescape, we must have
∣∣〈v1(t), u(t̃)− Φ(xη(t))〉

∣∣ ≥ βη −
O(Ψη3tescape) ≥ 1

2βη for η ≤ Õ(( βΨ )1/2). Thus,
∥∥∇L(u(t̃))

∥∥ ≥ λ1(t) 1
2βη + O(νcthres(t)

2η2) ≥ Ω(µβη), if
η ≤ O( µβ

νcthres(t)2 ).

3. We use the condition from Equation (46) to show that ∇L(u(t̃))

‖∇L(u(t̃))‖

(
∇L(u(t̃))

‖∇L(u(t̃))‖

)>
= v1(t)v1(t)> +O(αβ η).

Similarly, we can show that:

At̃+1 = I − η
[
I − v1(t)v1(t)>

] ∇2L(Φ(xη(t)))

ηλ1(t)−
∣∣〈v1(t),∇2L(Φ(xη(t)))[u(t̃)− Φ(xη(t))]〉

∣∣ +Bt̃+1,

with
∥∥At̃+1

∥∥ ≤ O( 1
β ) and

∥∥Bt̃+1

∥∥ ≤ O( νζ
2

µ2β2 η).

Consider the following error term,

err(t̃) := w(t̃+ 2)− u(t̃+ 2)−
∏

0≤i≤t̃:i%2=0

H(u(i))(w(0)− u(0)), (52)

By Equation (50), the following property holds with function µ defined in Equation (51):∥∥err(t̃)−H(u(t̃))err(t̃− 2)
∥∥ ≤ %ηµ(t̃)

∥∥w(t̃)− u(t̃)
∥∥2

for all t̃ ≥ 0,

err(−2) = 0,

Finally, we use Lemma E.15 and Lemma E.16 to handle the main and error terms in Equation (52),

|〈vk(t), w(tescape)− u(tescape)〉| =

∣∣∣∣∣∣vk(t)>
∏

0≤t̃≤tescape:t̃%2=0

H(u(t̃))(w(0)− u(0)) + vk(t)>err(tescape)

∣∣∣∣∣∣
≥

∣∣∣∣∣∣vk(t)>
∏

0≤t̃≤tescape:t̃%2=0

H(u(t̃))(w(0)− u(0))

∣∣∣∣∣∣− ‖err(tescape)‖

≥ 1

4
cescapeη.

which completes the proof of Lemma E.12.
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Lemma E.15. ∣∣∣∣∣∣vk(t)>
∏

0≤t̃≤tescape:t̃%2=0

H(u(t̃))(w(0)− u(0))

∣∣∣∣∣∣ ≥ 1

2
cescapeη.

Lemma E.16.

‖err(tescape)‖ ≤ 1

4
cescapeη.

Proof of Lemma E.15. Recall that from Lemma E.12 where we left off,

1. xη(t) satisfies (a) βη ≤ |〈v1(t), xη(t)− Φ(xη(t))〉| ≤
(
1− 1

100M

)
cthres(t)η, and (b) |〈vi(t), xη(t)− Φ(xη(t))〉| ≤

αη2, for all 2 ≤ i ≤M.

2. vk(t) denotes the eigenvector corresponding to the eigenvalue λk(t) = argmaxλi(t)|1≤i≤M gt(λi(t)).

3. Initial condition between w and u is given by w(0)− u(0) = η3rvk(t).

4. From Equation (47),
∣∣〈v1(t), u(t̃+ 2)− u(t̃)〉

∣∣ ≤ O(Ψη3) for all t̃ ∈ [tescape].

5. The function H is defined by:

H(u(t̃)) = At̃+1At̃

At̃ = I − η

[
I − ∇L(u(t̃))∇L(u(t̃))>∥∥∇L(u(t̃))

∥∥2

]
∇2L(u(t̃))∥∥∇L(u(t̃))

∥∥ .
6. At̃ was further simplified as,

At̃ = I − η
[
I − v1(t)v1(t)>

] ∇2L(Φ(xη(t)))∣∣〈v1(t),∇2L(Φ(xη(t)))[u(t̃)− Φ(xη(t))]〉
∣∣ +Bt̃

At̃+1 = I − η
[
I − v1(t)v1(t)>

] ∇2L(Φ(xη(t)))

ηλ1(t)−
∣∣〈v1(t),∇2L(Φ(xη(t)))[u(t̃)− Φ(xη(t))]〉

∣∣ +Bt̃+1,

with ‖Bt̃‖ ,
∥∥Bt̃+1

∥∥ ≤ O( νζ
2

µ2β2 η). Further, we showed that ‖At̃‖ ,
∥∥At̃+1

∥∥ ≤ O( 1
β ).

Thus, the term under consideration can be simplified as follows,∏
0≤t̃≤tescape:t̃%2=0

H(u(t̃))(w(0)− u(0))

= η3r
∏

0≤t̃≤tescape:t̃%2=0

H(u(t̃))vk(t)

= η3r
∏

0≤t̃≤tescape:t̃%2=0

At̃+1At̃vk(t)

= η3r∏
0≤t̃≤tescape:t̃%2=0

[
I − η

[
I − v1(t)v1(t)>

] ∇2L(Φ(xη(t)))

ηλ1(t)−
∣∣〈v1(t),∇2L(Φ(xη(t)))[u(t̃)− Φ(xη(t))]〉

∣∣ +Bt̃+1

]

·

[
I − η

[
I − v1(t)v1(t)>

] ∇2L(Φ(xη(t)))∣∣〈v1(t),∇2L(Φ(xη(t)))[u(t̃)− Φ(xη(t))]〉
∣∣ +Bt̃

]
vk(t)

= η3r
∏

0≤t̃≤tescape:t̃%2=0

Mt̃vk(t) + rem,
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where using the bounds on {At̃, At̃+1, Bt̃, Bt̃+1}0≤t̃≤tescape
, we have

‖rem‖

≤ max
t̃≤tescape

(‖Bt̃‖+
∥∥Bt̃+1

∥∥) · max
t̃≤tescape

(‖At̃‖+
∥∥At̃+1

∥∥) ·
∥∥∥ ∑

0≤t̃≤tescape:t̃%2=0

∏
0≤j≤tescape:j%2=0,j 6=t̃

Mj

∥∥∥
≤ O(

νζ2

µ2β3
η4r) ·

∥∥∥ ∑
0≤t̃≤tescape:t̃%2=0

∏
0≤j≤tescape:j%2=0,j 6=t̃

Mj

∥∥∥. (53)

For simplicity of presentation, we have used Mt̃ to define
[
I − η

[
I − v1(t)v1(t)

>
] ∇2L(Φ(xη(t)))

ηλ1(t)−
∣∣〈v1(t),∇2L(Φ(xη(t)))[u(t̃)− Φ(xη(t))]〉

∣∣
] [
I − η

[
I − v1(T )v1(t)

>
] ∇2L(Φ(xη(t)))∣∣〈v1(t),∇2L(Φ(xη(t)))[u(t̃)− Φ(xη(t))]〉

∣∣
]
.

Initially, |〈v1(t), u(0)− Φ(xη(t))〉 − 〈v1(t), xη(t)− Φ(xη(t))〉| ≤ r. Also, we have∣∣〈v1(t), u(t̃+ 2)− u(t̃)〉
∣∣ ≤ O(Ψη3) for all t̃ ∈ [tescape].

From the behavior of u(t̃) from Equation (49), we have
∣∣〈v1(t), u(t̃)− Φ(xη(t))〉

∣∣ ≤ (1− 1
200M

)
cthres(t)η. Recall that

cthres(t) was chosen as max1≤k≤M gt(λk(t)). We will showcase below that for the chosen upper bound of cthres(t), vk(t)
acts as the top eigenvector of Mt̃ for any t̃ ≤ tescape. For all j ∈ [2,M ] and t̃ ∈ [tescape], we have:

Mt̃vj(t) =

[
1− η λj(t)/λ1(t)

η −
∣∣〈v1(t), u(t̃)− Φ(xη(t))〉

∣∣
] [

1− η λj(t)/λ1(t)∣∣〈v1(t), u(t̃)− Φ(xη(t))〉
∣∣
]
vj(t),

with Mt̃v1(t) = v1(t). When
∣∣〈v1(t), u(t̃)− Φ(xη(t))〉

∣∣ ≤ cthres(t), Mt̃vj(t) ≥ Mt̃v1(t), for all j ≥ 2. Furthermore,
Mt̃vj(t) maximizes when j = k. Thus, the value of cthres(t) has been strategically chosen to make vk(t) the maximum
eigenvector for the matrices {Mt̃}0≤t̃≤tescape

.

Furthermore, with vk(t) the top eigenvector of Mt̃, we can show

‖Mt̃‖ =

∣∣∣∣∣
[

1− η λk(t)/λ1(t)

η −
∣∣〈v1(t), u(t̃)− Φ(xη(t))〉

∣∣
] [

1− η λk(t)/λ1(t)∣∣〈v1(t), u(t̃)− Φ(xη(t))〉
∣∣
]∣∣∣∣∣

≥

∣∣∣∣∣
[

1− λk(t)/λ1(t)

1−
(
1− 1

200M

)
cthres(t)

][
1− λk(t)/λ1(t)(

1− 1
200M

)
cthres(t)

]∣∣∣∣∣ , for all t̃ ∈ [tescape],

since we showed before that
∣∣〈v1(t), u(t̃)− Φ(xη(t))〉

∣∣ ≤ (1− 1
200M

)
cthres(t)η, .

Now, we explain our choice of tescape. We select tescape s.t.∣∣∣∣∣∣
〈
vk(t), η3r

∏
0≤t̃≤tescape:t̃%2=0

Mt̃vk(t)

〉∣∣∣∣∣∣ = cescapeη.

That is, we select the time step t̃, where the magnitude of the useful term
∏

0≤t̃≤tescape:t̃%2=0Mt̃vk(t) along the eigenvector

vk(t) reaches cescapeη. With cthres(t) = gt(λk(t)), we have
∣∣∣∣[1− λk(t)/λ1(t)

1−(1− 1
200M )cthres(t)

] [
1− λk(t)/λ1(t)

(1− 1
200M )cthres(t)

]∣∣∣∣ ≥ 1.001

and so, we just need tescape ≤ O(log(cescape/η)).

With this choice of tescape, we must have from Equation (53),

‖rem‖ ≤ O(
νζ2

µ2β3
η4rtescape) · cescape

η2r
≤ O(

νζ2

µ2β3
tescapecescapeη

2),
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with ∣∣∣∣∣∣
〈
vk(t),

∏
0≤t̃≤tescape:t̃%2=0

H(u(t̃))(w(0)− u(0))

〉∣∣∣∣∣∣
≥ cescapeη +O(

νζ2

µ2β3
tescapecescapeη

2) ≥ 1

2
cescapeη,

where the last step follows if η ≤ Õ(µ
2β3

νζ2 ). Thus, we have shown that with the appropriate choice of tescape, the magnitude
of
∏

0≤t̃≤tescape:t̃%2=0H(u(t̃))(w(0)− u(0)) can reach at least 1
2cescapeη along the eigenvector vk(t).

Proof of Lemma E.16. Recall that from Lemma E.12 where we left off,

1. xη(t) satisfies (a) βη ≤ |〈v1(t), xη(t)− Φ(xη(t))〉| ≤
(
1− 1

100M

)
cthres(t)η, and (b) |〈vi(t), xη(t)− Φ(xη(t))〉| ≤

αη2, for all 2 ≤ i ≤M.

2. vk(t) denotes the eigenvector corresponding to the eigenvalue λk(t) = argmaxλi(t)|1≤i≤M gt(λi(t)).

3. Initial condition between w and u is given by w(0)− u(0) = η3rvk(t), where r denotes the magnitude of the noise.

4. The difference between w(t̃) and u(t̃) changes as follows (Equation (50)):∥∥w(t̃+ 2)− u(t̃+ 2)−H(u(t̃))(w(t̃)− u(t̃))
∥∥ ≤ %ηµ(t̃)

∥∥w(t̃)− u(t̃)
∥∥2
. (54)

5. The difference between err(t̃) and H(u(t̃))err(t̃− 2) is given by :∥∥err(t̃)−H(u(t̃))err(t̃− 2)
∥∥ ≤ %ηµ(t̃)

∥∥w(t̃)− u(t̃)
∥∥2

for all t̃ ≥ 0,

err(−2) = 0,

with function µ defined in Equation (51):

µ(t̃) = max
γ∈[0,1]:u(γ)=γu(t̃)+(1−γ)w(t̃)

(
1

‖∇L(u(γ))‖2
+

1

‖∇L(F (u(γ)))‖2

)
,

where the function F was defined as F (x) = x− η ∇L(x)
‖∇L(x)‖ .

6. From Equation (47), the update of u(t̃) along the top eigenvector v1(t) is given by:∣∣〈v1(t), u(t̃+ 2)− u(t̃)〉
∣∣ ≤ O(Ψη3) for all t̃ ∈ [tescape],

for t̃ ≤ tescape.

7. The function H is defined by:

H(u(t̃)) = At̃+1At̃

At̃ = I − η

[
I − ∇L(u(t̃))∇L(u(t̃))>∥∥∇L(u(t̃))

∥∥2

]
∇2L(u(t̃))∥∥∇L(u(t̃))

∥∥ .
8. At̃ was further simplified as,

At̃ = I − η
[
I − v1(t)v1(t)>

] ∇2L(Φ(xη(t)))∣∣〈v1(t),∇2L(Φ(xη(t)))[u(t̃)− Φ(xη(t))]〉
∣∣ +Bt̃

At̃+1 = I − η
[
I − v1(t)v1(t)>

] ∇2L(Φ(xη(t)))

ηλ1(t)−
∣∣〈v1(t),∇2L(Φ(xη(t)))[u(t̃)− Φ(xη(t))]〉

∣∣ +Bt̃+1,

with ‖Bt̃‖ ,
∥∥Bt̃+1

∥∥ ≤ O( νζ
2

µ2β2 η). Further, we showed that ‖At̃‖ ,
∥∥At̃+1

∥∥ ≤ O( 1
β ).
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To proceed ahead, we will need few results from the proof of Lemma E.15.

1. The function H can be further simplified for all u(t̃) as H(u(t̃)) = Mt̃ + Ct̃, where ‖Ct̃‖ = O( νζ
3

µ2β3 η) and

‖Mt̃‖ =

∣∣∣∣[1− η λk(t)/λ1(t)

η−|〈v1(t),u(t̃)−Φ(xη(t))〉|

] [
1− η λk(t)/λ1(t)

|〈v1(t),u(t̃)−Φ(xη(t))〉|

]∣∣∣∣. Further, ‖Mt̃‖ = maxj≤tescape
‖Mj‖ +

O( Ψ
β3 η

2 log 1/η) for all t̃ ≤ tescape.

2. vk(t) is the top eigenvector of Mt̃.

3. tescape is set such that ∣∣∣∣∣∣
〈
vk(t), η3r

∏
0≤t̃≤tescape:t̃%2=0

Mt̃vk(t)

〉∣∣∣∣∣∣ = cescapeη.

Also, we only need tescape = O(log 1/η).

We will use an induction procedure to bound err(tescape). Denote by ϕ = maxt̃≤tescape
‖Mt̃‖. Then, from the results listed

above, we can show that∥∥∥∥∥∥
∏

0≤i≤t̃:i%2=0

Mi

∥∥∥∥∥∥ =
∏

0≤i≤t̃:i%2=0

‖Mi‖

=
∏

0≤i≤t̃:i%2=0

max
j≤tescape

‖Mi‖+O(
Ψ

β3
tescapeη

2 log 1/η) = ϕt̃/2 +O(
Ψ

β3
η2 log2 1/η).

With tescape set such that
∥∥∥∏0≤i≤tescape:i%2=0Mi

∥∥∥ =
cescape

η2r , we must have

ϕtescape/2 ≤ cescape

η2r
+O(

Ψ

β3
η2 log2 1/η). (55)

Hence, ∥∥H(u(t̃))
∥∥ = ϕt̃/2 +O(

Ψ

β3
η2 log2 1/η) +O(

νζ3

µ2β3
η). (56)

The induction hypothesis is as follows for all t̃ ≤ tescape:

1. µ(t̃) ≤ 4
β2µ2η2 .

2.
∥∥err(t̃)

∥∥ ≤ εt̃ ( 4%
β2µ2

)3
1
η ‖w(0)− u(0)‖2.

3. 1
η

∥∥w(t̃+ 2)− u(t̃+ 2)
∥∥ ≤ 4%

β2µ2 ε
t̃/2 1

η ‖w(0)− u(0)‖ , where ε is given by ϕ+O( Ψ
β3 η

2 log2 1/η) +O( νζ
3

µ2β3 η).

Before proving the above hypothesis, we will first look at the behavior of the term
∣∣〈v1(t), u(t̃)− Φ(xη(t))〉

∣∣. From
Equation (49), we have (

1− 1

200M

)
cthres(t)η ≥

∣∣〈v1(t), u(t̃)− Φ(xη(t))〉
∣∣ ≥ 0.998βη.

Since, u is in Xstuck, we have
∥∥∥P (2:M)

t,Γ (u(t̃)− Φ(xη(t)))
∥∥∥ ≤ αη2. Carefully choosing η ≤ O(βα ), we can bound∥∥u(t̃)− Φ(xη(t))

∥∥ ≤ 1.005cthres(t)η.

We can verify that the claims hold true for t̃ = −2. Now, we prove the induction hypothesis as follows:
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1. Suppose the conditions hold true for all i ≤ t̃, where t̃ ≤ tescape. Since,
∥∥err(t̃)

∥∥ ≤ εt̃ ( 4%
β2µ2

)3
1
η ‖w(0)− u(0)‖2,

with the following set of computation, we can show that
∥∥w(t̃)− u(t̃)

∥∥ ≤ 1
2βη.

∥∥w(t̃)− u(t̃)
∥∥ ≤ 4%

β2µ2
εt̃/2 ‖w(0)− u(0)‖

≤ 4%

β2µ2
ϕt̃/2

(
1 + t̃O

(
Ψ

β3
η2 log2 1/η +

νζ3

µ2β3
η

))
‖w(0)− u(0)‖ (57)

≤ 4%

β2µ2

(
cescape

η2r
+O(

Ψ

β3
η2 log2 1/η)

)
(

1 + t̃O
(
Ψ

β3
η2 log2 1/η +

νζ3

µ2β3
η

))
‖w(0)− u(0)‖ (58)

≤ 16%

β2µ2
cescapeη (59)

≤ 1

10
βη. (60)

Here, in Equation (57), we have used the relation derived before: ε = ϕ +O
(

Ψ
β3 η

2 log2 1/η + νζ3

µ2β3 η
)
. In Equa-

tion (58), we have used t̃ ≤ tescape, and the bound on ϕ from Equation (55). In Equation (59), we simplify using

η ≤ Õ(min((β
3

Ψ )0.5, µ
2β3

νζ3 )). The final step (Equation (60)) justifies the bound on cescape = O
(
β3µ2

%

)
.

This further implies, ∣∣〈u(t̃)− w(t̃), v1(t)〉
∣∣ ≤ ∥∥u(t̃)− w(t̃)

∥∥ ≤ 0.1βη.

From the update rule for u(t̃) mentioned in Equation (49), we have
∣∣〈v1(t), u(t̃)− Φ(xη(t))〉

∣∣ ≥ 0.998βη. Thus, we
can deduce that ∣∣〈v1(t), w(t̃)− Φ(xη(t))〉

∣∣ ≥ 0.5βη, (61)

sign(〈v1(t), u(t̃)− Φ(xη(t))〉) = sign(〈v1(t), w(t̃)− Φ(xη(t))〉). (62)

If u(γ) denotes λu(t̃)+(1−λ)w(t̃) for any λ ∈ [0, 1], then we must have |〈v1(t), u(λ)− Φ(xη(t))〉| ≥ 0.5βη. Using
taylor expansion: ∇L(u(γ)) = ∇2L(Φ(xη(t)))(u(γ)−Φ(xη(t))) +O(ν ‖u(γ)− Φ(xη(t))‖2) and hence, we must
have ‖∇L(u(γ))‖ ≥ λ1(t) |〈v1(t), u(γ)− Φ(xη(t))〉|+O(ν ‖u(γ)− Φ(xη(t))‖2) ≥ 1

2λ1(t)βη.

With
∥∥u(t̃)− Φ(xη(t))

∥∥ ≤ 1.05cthres(t)η and ‖w(0)− Φ(xη(t))‖ ≤
∥∥u(t̃)− Φ(xη(t))

∥∥ +
∥∥u(t̃)− w(t̃)

∥∥ ≤
1.15cthres(t)η, we can apply Lemma E.14 to show

∣∣〈v1(t),∇2L(Φ(xη(t)))[F (u(γ))− Φ(xη(t))]〉
∣∣ ≥∣∣〈v1(t),∇2L(Φ(xη(t)))[u(γ)− Φ(xη(t))]〉

∣∣+O(νζµ η
2). That implies, ‖∇L(F (u(γ)))‖ ≥ 1

2λ1(t)βη.

Hence, µ(t̃) = maxγ
1

‖∇L(u(γ))‖2 + 1
‖∇L(F (u(γ)))‖2 ≤

4
λ2

1(t)β2η2 ≤ 4
µ2β2η2 .

2. The error term err(t̃) is recursively defined as∥∥err(t̃)−H(u(t̃))err(t̃− 2)
∥∥ ≤ %ηµ(t̃)

∥∥w(t̃)− u(t̃)
∥∥2

for all t̃ ≥ 0,

err(−2) = 0.

The norm on err(t̃) can be recursively bounded as :

∥∥err(t̃)
∥∥ ≤ t̃∑

j=0

∏
j<i≤t̃:i%2=0

‖H(u(i))‖%ηµ(j) ‖w(j)− u(j)‖2 (63)
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≤
t̃∑

j=0

∏
j<i≤t̃:i%2=0

‖H(u(i))‖ 4%

β2µ2η
‖w(j)− u(j)‖2 (64)

≤
t̃∑

j=0

∏
j<i≤t̃:i%2=0

‖H(u(i))‖ 4%

β2µ2η
·
(

4%

β2µ2
εj/2

)2

‖w(0)− u(0)‖2 (65)

≤
t̃∑

j=0

εt̃/2−j/2
4%

β2µ2η
·
(

4%

β2µ2
εj/2

)2

‖w(0)− u(0)‖2 (66)

≤
t̃∑

j=0

εt̃/2+j/2

(
4%

β2µ2

)3
1

η
‖w(0)− u(0)‖2 (67)

≤ εt̃
(

4%

β2µ2

)3
1

η
‖w(0)− u(0)‖2 (68)

The following steps have been followed in the previous set of computations:

(a) In Equation (64) and Equation (65), we use the values of µ(j) and ‖w(j)− u(j)‖ derived using induction
hypothesis for j ≤ t̃.

(b) In Equation (66), we replace ‖H(u(i))‖ by ε, which is equal to ϕ+O( Ψ
β3 η

2 log2 1/η) +O( νζ
3

µ2β3 η).

3. We have from Equation (54),

1

η

∥∥w(t̃+ 2)− u(t̃+ 2)
∥∥ ≤ 1

η

∥∥H(u(t̃))
∥∥∥∥w(t̃)− u(t̃)

∥∥+ %µ(t̃)
∥∥w(t̃)− u(t̃)

∥∥2

≤ 1

η
ε ‖w(0)− u(0)‖+

4%

β2µ2η2

∥∥w(t̃)− u(t̃)
∥∥ .

Since, the above inequality holds true for all time-steps i ≤ t̃, we can use gronwall’s inequality (Bihari, 1956) and
show that

1

η

∥∥w(t̃+ 2)− u(t̃+ 2)
∥∥ ≤ 4%

β2µ2

(εt̃+2 − εt̃/2+1) 1
η ‖w(0)− u(0)‖

(εt̃+2 − εt̃/2+1) + εt̃/2+1 1
η ‖w(0)− u(0)‖

≤ 4%

β2µ2
εt̃/2+1 1

η
‖w(0)− u(0)‖ .

Here, ε is given by ϕ+O( Ψ
β3 η

2 log2 1/η) +O( νζ
3

µ2β3 η).

The proof will follow by bounding ‖err(tescape)‖ . The steps are similar to the ones used in Equation (57)-Equation (60).
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‖err(tescape)‖ ≤ εtescape

(
4%

β2µ2

)3
1

η
‖w(0)− u(0)‖2

≤ εtescape

(
4%

β2µ2

)3
1

η
‖w(0)− u(0)‖2

≤ ϕtescape

(
1 + tescapeO

(
Ψ

β3
η2 log2 1/η +

νζ3

µ2β3
η

))(
4%

β2µ2

)3
1

η
(η3r)2

≤
(
cescape

η2r
+O(

Ψ

β3
η2 log2 1/η)

)2

(
1 + tescapeO

(
Ψ

β3
η2 log2 1/η +

νζ3

µ2β3
η

))(
4%

β2µ2

)3
1

η
(η3r)2

≤ 8c2escape

(
4%

β2µ2

)3

η.

≤ 1

4
cescapeη,

where in the final step, we use the bound on cescape = O(β
6µ6

%3 ).

Lemma E.17. Consider any coordinate 2 ≤ k ≤M . For any constants 0 < β < µ∆
8ζ2 , suppose at time step t, xη(t) is in

Y ε, and the following :

1. βη ≤ |〈v1(t), xη(t)− Φ(xη(t))〉| <
(
1− 1

100M

)
gt(λk(t)).

2. |〈vk(t), xη(t)− Φ(xη(t))〉| > αη2.

Here α = Θ( νζ
2

µ3β ).

Then, we must have some time t ≤ t+O
(
Mζ
β3 tescape

)
such that either of the above two conditions breaks, i.e. we have

either of the following two conditions hold true:

1. The magnitude along the top eigenvector grows beyond
(
1− 1

100M

)
gt(λk(t)), i.e.

∣∣〈v1(t), (xη(t)− Φ(xη(t)))〉
∣∣ ≥ (1− 1

100M

)
gt(λk(t)), (69)

when the norm of x̃η(t) is at most 0.5λ1(t)η +O(ΨGη
2).

2. The magnitude along the eigenvector vk(·) drops below αη2, i.e.∣∣〈vk(t), xη(t)− Φ(xη(t))〉
∣∣ ≤ αη2. (70)

Moreover, in this case, we must have∣∣〈v1(t), (xη(t)− Φ(xη(t)))〉
∣∣ ≥ (1 + Ω(

µ∆β3

Mζ
)

)
|〈v1(t), (xη(t)− Φ(xη(t)))〉| .

The result holds true provided η ≤ Õ(µ
3β2

ζ2ν ) and for all time t ≤ t′ < t, xη(t′)xη(t′ + 1) ⊂ Y ε.

Proof. We divide the interval (t, t) into sub-intervals using Algorithm 2 into three subsets N0, N1, and N2. We refer the
reader to Appendix E.2 for a brief on the properties of the three sets.
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Suppose, we denote the time-steps that belong to N0 or N1 by t = t1 < t2 < t3 · · · < tg = t. Then, we present our
induction argument as follows: suppose we have shown that any of the final conditions (Equation (70) and Equation (69))
aren’t true till ti. Then, if ti ∈ N0, we can directly use the property from Lemma E.5 that ti+1 = ti + 1 ∈ N1. Moreover,
from Lemma E.6, we must have |〈v1(ti+1), (xη(ti+1)− Φ(xη(ti+1)))〉| ≥ |〈v1(ti), (xη(ti)− Φ(xη(ti)))〉|+O(η2).

However, if ti ∈ N1, we will consider the following two cases, depending on how large θti is:

1. If θti ≤ O
(√

β
Mζ

)
, then from Lemma E.18 we must have some time ti < tj ≤ ti+ tescape where either Equation (69)

holds true or the angle θtj becomes greater than Ω
(√

β
Mζ

)
, along with the increase in the magnitude along the top

eigenvector as

|〈v1(tj), (xη(tj)− Φ(xη(tj)))〉| ≥
(

1 + Ω(
µ∆β3

Mζ
)

)
|〈v1(ti), (xη(ti)− Φ(xη(ti)))〉| .

2. If θti ≥ Ω
(√

β
Mζ

)
, we can use Lemma E.8 to have

|〈v1(ti + 2), (xη(ti + 2)− Φ(xη(ti + 2)))〉| ≥
(

1 + Ω(
βµ∆

Mζ
)

)
|〈v1(ti), (xη(ti)− Φ(xη(ti)))〉| .

Thus, the magnitude along the top eigenvector will keep on increasing monotonically, unless one the two conditions
(Equation (69) and Equation (70)) hold true.

Lemma E.18. Consider any coordinate 2 ≤ k ≤ M . For any constant 0 < β < µ∆
8ζ2 , suppose at time step t, xη(t) is in

Y ε, satisfies the alignment condition ( Equation (28)) and the following :

1. βη ≤ |〈v1(t), xη(t)− Φ(xη(t))〉| <
(
1− 1

100M

)
gt(λk(t)).

2. |〈vk(t), xη(t)− Φ(xη(t))〉| > αη2.

3. θt ≤ O
(√

β
Mζ

)
.

Here α = Θ( νζ
2

µ3β ). Then, we must have some time t̄ ≤ t+ tescape such that either of the two above conditions breaks, i.e.
we must have one of the two conditions hold true:

1.
∣∣〈v1(t), (xη(t)− Φ(xη(t)))〉

∣∣ ≥ (1− 1
100M

)
gt(λk(t)).

2. θt ≥ Ω(
√

β
Mζ ). Moreover, in this case, we must have

∣∣〈v1(t), (xη(t)− Φ(xη(t)))〉
∣∣ ≥ (1 + Ω(

µ∆β3

Mζ
)

)
|〈v1(t), (xη(t)− Φ(xη(t)))〉| .

The result requires η ≤ Õ(µ
3∆β2

ζ2νξ ) and for all time t ≤ t′ < t, xη(t′)xη(t′ + 1) ⊂ Y ε.

Proof. Here, α has been selected such that if xη(t) satisfies |〈vk(t), xη(t)− Φ(xη(t))〉| ≥ αη2, then
|〈vk(t+ 1), xη(t+ 1)− Φ(xη(t+ 1))〉| > |〈vk(t), xη(t)− Φ(xη(t))〉|. The proof strategy will be very similar to the
strategy used in the previous lemmas, and we outline the sketch here: Consider the eigenvector vk(t),

1. First of all, Lemma E.8 can be slightly modified to show that at any step t′ ∈ [t, t+ tescape],

|v1(t), xη(t′ + 2)− Φ(xη(t))| ≥ |v1(t), xη(t′)− Φ(xη(t))|+O(
ζ2ν

µ3β2
η2),
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provided |v1(t), xη(t′)− Φ(xη(t))| ≥ O(β). Note the difference from Lemma E.8 is that the reference point has been
changed to Φ(xη(t)) and the reference top eigenvetor is v1(t).

Thus, with tescape = O(log 1/η), we can apply mathematical induction to have

|v1(t), xη(t+ tescape)− Φ(xη(t))| ≥ 1

2
βη,

for η ≤ Õ(µ
3β2

ζ2ν ).

2. Now, we can use Equation (19) (Lemma B.10) to show that the Normalized GD update is equivalent to update in
quadratic model, with an additional O(η2) error.

xη(t+ 1)− xη(t) = −η ∇
2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]

‖∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t))]‖
+O(

ν

µ
η ‖xη(t)− Φ(xη(t))‖).

We can then consider the updates of 〈vi(t), xη(t+ 2)− Φ(xη(t))〉 − 〈vi(t), xη(t)− Φ(xη(t))〉 using the update in a
quadratic model outlined in Lemma A.9. That is,∣∣〈vk(t),∇2L(Φ(xη(t)))(xη(t+ 2)− Φ(xη(t)))〉

∣∣
|〈v1(t),∇2L(Φ(xη(t)))(xη(t+ 2)− Φ(xη(t)))〉|

=

(
1− η λ1(t)− λk(t)

λ1(t)η − ‖∇2L(Φ(xη(t)))(xη(t+ 1)− Φ(xη(t)))‖

)
·
(

1− η λ1(t)− λk(t)

λ1(t)η − ‖∇2L(Φ(xη(t)))(xη(t)− Φ(xη(t)))‖

) ∣∣〈vk(t),∇2L(Φ(xη(t)))(xη(t)− Φ(xη(t)))〉
∣∣

|〈v1(t),∇2L(Φ(xη(t)))(xη(t)− Φ(xη(t)))〉|

+O(
νζ2

µ3β
η) (71)

≥
(

1 +
1

200M

) ∣∣〈vk(t),∇2L(Φ(xη(t)))(xη(t)− Φ(xη(t)))〉
∣∣

|〈v1(t),∇2L(Φ(xη(t)))(xη(t)− Φ(xη(t)))〉|
+O(

νζ2

µ3β
η)

≥
(

1 +
1

400M

) ∣∣〈vk(t),∇2L(Φ(xη(t)))(xη(t)− Φ(xη(t)))〉
∣∣

|〈v1(t),∇2L(Φ(xη(t)))(xη(t)− Φ(xη(t)))〉|
,

where we bound ‖xη(t)− Φ(xη(t))‖ by O( ζµ ) and lower-bound
∣∣v1(t),∇2L(Φ(xη(t)))(xη(t)− Φ(xη(t)))

∣∣ by µβ
to get the second step. The third step follows from using the same argument as the one used for the quadratic update in

Lemma A.9. The final step holds true if α ≥ Ω( cthres(t)νζ
2

µ3β ), since |〈vk(t),∇2L(Φ(xη(t)))(xη(t)−Φ(xη(t)))〉|
|〈v1(t),∇2L(Φ(xη(t)))(xη(t)−Φ(xη(t)))〉| ≥

αη
cthres(t)

.

Thus, we can continue the above argument for all t′ ∈ [t, t+ tescape] to get∣∣〈vk(t),∇2L(Φ(xη(t)))(xη(t′ + 2)− Φ(xη(t)))〉
∣∣

|〈v1(t),∇2L(Φ(xη(t)))(xη(t′ + 2)− Φ(xη(t)))〉|

≥
(

1 +
1

400M

) ∣∣〈vk(t),∇2L(Φ(xη(t)))(xη(t′)− Φ(xη(t)))〉
∣∣

|〈v1(t),∇2L(Φ(xη(t)))(xη(t′)− Φ(xη(t)))〉|
,

up until we satisfy one of the two conditions:

(a)

∥∥∥P (2:M)
t,Γ x̃η(t′)

∥∥∥
|〈v1(t),x̃η(t′)〉| ≥ Ω

(√
|〈v1(t),∇2L(Φ(xη(t)))(xη(t′)−Φ(xη(t)))〉|

Mηλ1(t)

)
≥ Ω(

√
β
Mζ ).

(b) |〈v1(t), xη(t′)− Φ(xη(t))〉| ≥
(
1− 1

101M

)
gt(λk(t)).

3. We then bound ‖vk(t+ tescape)− vk(t)‖ and ‖Φ(xη(t+ tescape)− Φ(xη(t))‖ by O(ξη2tescape) using Lemma B.12.
Combining everything, we have the final bound, provided η ≤ O(µ∆βζ2ξ ).

4. Moreover, we can show from observing Equation (71) that the value of |〈vk(t),∇2L(Φ(xη(t)))(xη(t′+2)−Φ(xη(t)))〉|
|〈v1(t),∇2L(Φ(xη(t)))(xη(t′+2)−Φ(xη(t)))〉| is

at most 1
β times |〈vk(t),∇2L(Φ(xη(t)))(xη(t′)−Φ(xη(t)))〉|

|〈v1(t),∇2L(Φ(xη(t)))(xη(t′)−Φ(xη(t)))〉| . Thus, we can argue that there exists some step t′, where
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θt′ = Θ(
√

β3

Mζ ), if the initial angle is strictly less than O(
√

β3

Mζ ). We can then use the result from Lemma E.8 to

show that the magnitude along the top eigenvector has to increase by a factor
(

1 + µ∆β3

Mζ

)
, when θt′ = Θ(

√
β3

Mζ ).
Moreover, since the angle θt′ is Ω(η) in all the steps, the magnitude along the top eigenvector never drops in any other
step. Overall, we must have a increase in the magnitude along the top eigenvector by a factor

(
1 + µ∆β3

Mζ

)
.

Lemma E.19. Consider any coordinate 1 ≤ k ≤ M . Suppose at time step t, xη(t) is in Y ε, satisfies the alignment
condition ( Equation (28)) and the following :

1.
(
1 + 1

100M

)
gt(λk(t))η ≤ |〈v1(t), xη(t)− Φ(xη(t))〉| < 0.5η.

2. |〈vk(t), xη(t)− Φ(xη(t))〉| > αη2.

Here α = Θ( νζ
2

µ2β ).

Then, we have have some time t ≤ t+ tescape such that the magnitude along vk(t) drops below αη2, i.e.∣∣〈vk(t), xη(t)− Φ(xη(t))〉
∣∣ ≤ αη2,

when
∥∥∇2L(Φ(xη(t)))(xη(t)− Φ(xη(t)))

∥∥ ≤ 0.5λ1(t)η + Ψnormη
2. The results hold true when η ≤ Õ(µ

3β2

ζ2ν ) and for

all time t ≤ t′ < t, xη(t′)xη(t′ + 1) ⊂ Y ε.

The proof is going to be very similar to the proof of Lemma E.18, where the only difference will be that we need to use
Lemma A.10 in place of Lemma A.9, when we use the result for the quadratic model.

E.4. Ommited Proof for operating on Edge of Stability

Proof of Theorem 4.7. According to the proof of Theorem 4.4, we know for all t, it holds that Rj(xη(t)) ≤ O(η2).
Thus SL(xη(t), ηt) = ηt · sup0≤s≤ηt λ1(∇2L(xη(t) − s∇L(xη(t)))) = ηt(λ1(t) + O(η)), which implies that

[SL(xη(t), ηt)]
−1 =

‖∇L(xη(t))‖
ηλ1(t) + O(η) =

‖x̃η(t)‖
ηλ1(t) + O(η). The proof for the first claim is completed by noting

that 1
η (‖x̃η(t)‖+ ‖x̃η(t+ 1)‖) = λ1(t) +O(η + θt) as an analog of the quadratic case.

For the second claim, it’s easy to check that
√
L(xη(t)) =

‖x̃η(t)‖√
2λ1(t)

+O(ηθt). Thus have
√
L(xη(t)) +

√
L(xη(t+ 1)) =

‖x̃η(t)‖√
2λ1(t)

+
‖x̃η(t+1)‖√

2λ1(t+1)
+ O(η(θt + θt+1)). Note that λ1(t) − λ1(t + 1) = O(η2) and θt+1 = O(θt), we conclude that√

L(xη(t)) +
√
L(xη(t+ 1)) = η

√
λ1(∇2L(xη(t))

2 ) +O(ηθt).

F. Some Useful Lemmas About Eigenvalues and Eigenvectors
Theorem F.1 (Derivative of eigenvalues and eigenvectors of a matrix, Theorem 1 in (Magnus, 1985)). Let x0 be a real
symmetric n× n matrix. Let u0 be a normalized eigenvector associated with a simple eigenvalue λ0 of X0. Then a real
valued function λ and a vector valued function u are defined for all X in some neighborhood N(x0) ⊂ Rn×n of X0, such
that

λ(X0) = λ0, u(X0) = u0,

and

Xu = λu, u>u = 1, X ∈ N(X0).

Moreover, the functions λ and u are∞ times differentiable on N(X0) and the differentials at X0 are

dλ = u>0 (dX)u0, du = (λ0In −X0)†(dX)u0.
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In the above theorem, a simple eigenvalue is defined as an eigenvalue with multiplicity 1.
Theorem F.2. [Eigenvalue perturbation for symmetric matrices, Cor. 4.3.15 in (Horn & Johnson, 2012)] Let Σ, Σ̂ ∈ Rp×p
be symmetric, with eigenvalues λ1 ≥ . . . ≥ λp and λ̂1 ≥ . . . ≥ λ̂p respectively. Then, for any i ≤ p, we have∣∣∣λi − λ̂i∣∣∣ ≤ ∥∥∥Σ− Σ̂

∥∥∥
2
.

The next theorem is the Davis-Kahan sin(θ) theorem, that bounds the change in the eigenvectors of a matrix on perturbation.
Before presenting the theorem, we need to define the notion of unitary invariant norms. Examples of such norms include the
frobenius norm and the spectral norm.
Definition F.3 (Unitary invariant norms). A matrix norm ‖ · ‖∗ on the space of matrices in Rp×d is unitary invariant if for
any matrix K ∈ Rp×d, ‖UKW‖∗ = ‖K‖∗ for any unitary matrices U ∈ Rp×p,W ∈ Rd×d.
Theorem F.4. [Davis-Kahan sin(θ) theorem (Davis & Kahan, 1970)] Let Σ, Σ̂ ∈ Rp×p be symmetric, with eigenvalues
λ1 ≥ . . . ≥ λp and λ̂1 ≥ . . . ≥ λ̂p respectively. Fix 1 ≤ r ≤ s ≤ p, let d := s− r + 1 and let V = (vr, vr+1, . . . , vs) ∈
Rp×d and V̂ = (v̂r, v̂r+1, . . . , v̂s) ∈ Rp×d have orthonormal columns satisfying Σvj = λjvj and Σ̂v̂j = λ̂j v̂j for

j = r, r+ 1, . . . , s. Define ∆ := min
{

max{0, λs − λ̂s+1},max{0, λ̂r−1 − λr}
}

, where λ̂0 :=∞ and λ̂p+1 := −∞, we

have for any unitary invariant norm ‖ · ‖∗,

∆ · ‖ sin Θ(V̂ , V )‖∗ ≤ ‖Σ̂− Σ‖∗.

Here Θ(V̂ , V ) ∈ Rd×d, with Θ(V̂ , V )j,j = arccosσj for any j ∈ [d] and Θ(V̂ , V )i,j = 0 for all i 6= j ∈ [d]. σ1 ≥ σ2 ≥
· · · ≥ σd denotes the singular values of V̂ >V. [sin Θ]ij is defined as sin(Θij).

Lemma F.5 (Parameter bounds). The upper bound γub and lipschitz-constant βlip for the function P⊥Φ(x),Γ∇ log λ1(x) for
any point x ∈ Y ε can be given as

βlip =
νξ

µ
+
νξ2ε

µ
+

Υ + ν2∆−1 + ν2

µ2

γub =
ν

µ
.

Proof. First, we focus on the bound of the function P⊥Φ(x),Γ∇ log λ1(x). P⊥Φ(x),Γ is just a projection matrix, while

∇ log λ1(x) = ∇3L(Φ(x))[v1(x),v1(x)]
λ1(x) , using Theorem F.4. Each term can then be bounded using the definition from

Definition B.5.

Now, we look at the lipschitz constant of the function P⊥Φ(x),Γ∇ log λ1(x). Using the derivative of the function
P⊥Φ(x),Γ∇ log λ1(x) at any point x, we have∥∥∥∇xP⊥Φ(x),Γ∇ log λ1(x)

∥∥∥
≤
∥∥∥∇xP⊥Φ(x),Γ

∥∥∥ ‖∇ log λ1(x)‖+
∥∥∥P⊥Φ(x),Γ

∥∥∥∥∥∇2 log λ1(x
∥∥

≤
∥∥∥∇xP⊥Φ(x),Γ

∥∥∥ ‖∇ log λ1(x)‖+
∥∥∥P⊥Φ(x),Γ

∥∥∥∥∥∥∥∇2λ1(x)

λ1(x)2

∥∥∥∥+
∥∥∥P⊥Φ(x),Γ

∥∥∥ ‖∇λ1(x)‖2

λ1(x)2
.

We can bound
∥∥∥∇xP⊥Φ(x),Γ

∥∥∥ by
∥∥∂2Φ(x)

∥∥ ‖∂Φ(x)‖ using the equivalence between P⊥Φ(x),Γ and ∂Φ(Φ(x)) from
Lemma B.17. Moreover, using taylor expansion, we can bound ‖∂Φ(x)‖ ≤ ‖∂Φ(Φ(x))‖ + ξε, for any x ∈ Y ε. More-
over, since P⊥Φ(x),Γ = ∂Φ(Φ(x)), we must have ‖∂Φ(Φ(x))‖ = 1. Using the bound on the second derivative of Φ from

Definition B.5, we have
∥∥∥∇xP⊥Φ(x),Γ

∥∥∥ ≤ ξ + ξ2ε.

We can further use Theorem F.4 to get the desired derivatives:∥∥∇2λ1(x)
∥∥ ≤ ∥∥∇3L(Φ(x))

∥∥+ ‖x‖ ‖∇v1(x)‖

≤
∥∥∇3L(Φ(x))

∥∥+ ‖x‖2 1

λ1(x)− λ2(x)
.
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Algorithm 3 Perturbed Gradient Descent on
√
L

Input: loss function L : RD → R, initial point xinit, maximum number of iteration T , LR η, Frequency parameter
Tfreq = Θ(η−0.1), noise parameter r = Θ(η100).
for t = 1 to T do

Generate n(t) ∼ B0(r) if t mod Tfreq = 0, else set n(t) = 0.
x(t)← x(t− 1)− η∇

√
L(x(t)) + n(t).

end for

We can finally bound each of the terms using Definition B.5.

G. Analysis of
√
L

The analysis will follow the same line of proof used for the analysis of Normalized GD. Hence, we write down the main
lemmas that are different from the analysis of Normalized GD. Rest of the lemmas are nearly the same and hence, we have
omitted them.

The major difference between the results of Normalized GD and GD with
√
L is in the behavior along the manifold Γ

(for comparison, see Lemma B.13 for Normalized GD and Lemma G.11 for GD with
√
L). Another difference between

the results of Normalized GD and GD with
√
L is in the error rates mentioned in Theorem 4.4 and Theorem 4.6. The

difference comes from the stronger behavior of the projection along the top eigenvector that we showed for Normalized
GD in Lemma E.8, but doesn’t hold for GD with

√
L (see Lemma G.6). This difference shows up in the sum of angles

across the trajectory (for comparison, see Lemma E.1 for Normalized GD and Lemma G.4 for GD with
√
L), and is finally

reflected in the error rates.

G.1. Notations

The notations will be the same as Appendix B . However, here we will use x̃η(t) to denote
(
∇2L(Φ(xη(t)))

)1/2
(xη(t)−

Φ(xη(t))). We will now denote Y as the limiting flow given by Equation (6).

X(τ) = Φ(xinit)−
1

8

∫ τ

s=0

P⊥X(s),Γ∇λ1(X(s))ds. (6)

G.2. Phase I, convergence

Here, we will show a very similar stability condition for the GD update on
√
L as the one (Lemma C.1) derived for

Normalized GD. Recall our notation x̃η(t) =
√
∇2L(Φ(xη(t)))(xη(t)− Φ(xη(t))).

Lemma G.1. Suppose {xη(t)}t≥0 are iterates of GD with
√
L (5) with a learning rate η and xη(0) = xinit. There are

constants C > 0, such that for any constant ς > 0, if at some time t′, xη(t′) ∈ Y ε and satisfies ‖xη(t′)−Φ(xη(t′))‖
η ≤ ς , then

for all t̄ ≥ t′ + C ζςµ log ςζµ , the following must hold true for all 1 ≤ j ≤M :√√√√ M∑
i=j

〈vi(t̄), x̃η(t̄)〉2 ≤ η
√

1

2
λ2
j (t̄)

+O(νξζη2) +O(
ζνςη2

µ
) +O(ξζ2ςν

√
Dη2) +O(η2D), (72)

provided η ≤ O( µ3

ζ3ς2ξν
√
D

) and that for all steps t ∈ {t, . . . , t̄− 1}, xη(t)xη(t+ 1) ⊂ Y ε.

Proof. The proof exactly follows the strategy used in Lemma C.1. We will outline the major milestones in the proof to help
the interested readers.
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1. We can use the noisy update formulation from Lemma G.9 and the bound on the movement in Φ from Lemma G.11 to
get for any time t with t̄ ≥ t ≥ t0 (similar to Equation (27)):

x̃η(t+ 1) =

I − η
√

1
2∇

2L(Φ(xη(t)))

‖x̃η(t)‖

 x̃η(t) +O(νξζη2) +O(
ζ1/2ν ‖xη(t)− Φ(xη(t))‖

µ
η).

2. Secondly, we show for all t0 + 1 ≤ t ≤ t̄, ‖x̃η(t)‖ ≤ 1.01η
√
ζς using an induction argument. We require

η ≤ O( µ3

ζ2νςξ ).

3. Finally, we show the desired bound by coupling the trajectory with the quadratic model, where the quadratic update is

governed by
√

1
2∇

2L(Φ(xη(t))) at each step t. Here, we need η ≤ O( µ3

ζ3ς2ξν
√
D

).

A simple version of the above condition can be given as:√√√√ M∑
i=j

〈vi(t̄), x̃η(t̄)〉2 ≤ η
√

2λ2
j (t̄), (73)

provided η ≤ O( µ2

νζ2ξςD ). For simplicity of presentation, we have used

Ψnorm = O(νξζ +
ζνςη2

µ
ξζ2ςν

√
D +D).

Hence, we can derive the following property that continues to hold true throughout the trajectory, once the condition Equa-
tion (72) is satisfied:

Lemma G.2. If η ≤ O( µ4

Dςζ2ξν ) and condition Equation (72) holds true, then if ‖x̃η(t)‖ > η
√

0.5λ2
1(t)

2 + Ψnormη
2, the

following must hold true:

‖x̃η(t+ 1)‖ ≤ η
√

0.5λ2
1(t)

2
+ Ψnormη

2.

The proof follows from applying Lemma A.8 for a quadratic update with
√
∇2L(Φ(xη(t))), using the stability condi-

tion Equation (72).

Thus, we will consider the trajectory in cycles of length 2, with the norm of x̃η(t) ≤ η
√

0.5λ1(t)

2 at the start of the cycle.

Another useful lemma is to show that the magnitude along the top eigenvector increases when ‖x̃η(t)‖ ≤ η
√

0.5λ2
1(t)

2 .

Lemma G.3. If at time t, ‖x̃η(t)‖ ≤ η
√

0.5λ1(t)

2 +Ψnormη
2 and stability condition (Equation (72)) holds true, the following

must hold true:

∣∣v1(t+ 1)>x̃η(t+ 1)
∣∣ ≥ ∣∣v1(t)>x̃η(t)

∣∣−O(
ζ3/2ν

µ3/2
η2)−Ψnormη

2.

The proof follows from using the noisy update of GD on
√
L from Lemma G.9 and using the quadratic update result from

Lemma A.5.
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G.3. Phase II, limiting flow

To recall, the limiting flow given by

X(τ) = Φ(xinit)−
1

8

∫ τ

s=0

P⊥X(s),Γ∇λ1(X(s))ds. (6)

Let T2 be the time up until which solution to the limiting flow exists.

Lemma G.11 shows the movement in Φ, which can be informally given as follows: in each step t,

Φ(xη(t+ 1))− Φ(xη(t)) = −η
2

8
P⊥t,Γ∇λ1(∇2L(Φ(xη(t)))) +O(η2(θt +

∥∥xη(t)− Φ(xη(t))
∥∥)), (74)

provided Φ(xη(t))Φ(xη(t+ 1)) ∈ Y ε.

Motivated by this update rule, we show that the trajectory of Φ(xη(·)) is close to the limiting flow in Equation (6), for a
small enough learning rate η. The major difference from Theorem 4.4 comes from the fact that the total error introduced in
Equation (74) over an interval [0, t2] is

∑t2
t=0O(η2θt + η3), which is of the order O(η1/2) using the result of Lemma G.4.

G.3.1. AVERAGE OF THE ANGLES

The first lemma shows that the sum of the angles in an interval [0, t2] of length Ω(1/η2) is atmost O(t2η
1/2).

Lemma G.4. For any T2 > 0 for which solution of Equation (6) exists, consider an interval [0, t2], with t2 ≤
bT2/η

2c. Suppose Algorithm 3 is run with learning rate η for t2 steps, starting from a point xη(0) that satisfies (1)
maxj∈[D]Rj(xη(0)) ≤ O(η2), and (2) |v1(0), xη(0)− Φ(xη(0))| ≥ βη for some constant 0 < β ≤ µ∆

8ζ2 independent of η,

with ‖x̃η(0)‖ ≤
√

0.5λ2
1(0)

2 η+Ψnormη
2. For any T2 > 0 for which solution to Equation (6) exists, and any integer t2 ≤ T2

η2 ,
the following holds true with probability at least 1− η10:

t2∑
`=0

θ` ≤ O

(√
ζ4νξ

µ5/2∆β2
η

)
,

provided η is sufficiently small and for all time 0 ≤ t ≤ t2 − 1, xη(t)xη(t+ 1) ⊂ Y ε.

Proof. The proof is very similar to the proof of Lemma E.1. The only difference shows up from the result of Lemma G.5,
and hence we show that the sum of the angles when the iterate is stuck in any of the regions satisfying conditions B(k)/C(k)

for the interval (t̃i, t̃i+1) is O
(

ζ5

µ2∆2 + Mζ
β3 tescape + (t̃i+1 − t̃i)

√
ζ4νξ

µ5/2∆β2 η
)

.

Lemma G.5. Consider any time t, where xη(t) ∈ Y ε, where
∥∥x̃η(t)

∥∥ ≤ 0.5ηλ1(t) +Ψnormη
2. Suppose we are also given

p disjoint subsets of [M ], S1, · · · , Sp (with 1 ≤ p ≤ M ) and a step tstop ≥ t, such that for any i, j ∈ [p] with i 6= j, and
for any t ≤ t ≤ tstop, we can guarantee

min
k∈Si,`∈Sj

∣∣∣∣∣∣∣∣12 − λk(t)

∣∣∣∣− ∣∣∣∣12 − λ`(t)
∣∣∣∣∣∣∣∣ ≥ 1

2
× 10−3λ1(t),

min
`∈Si

gt(λ`(t)) > max
`∈Sj

gt(λ`(t)), if i > j.

Consider any subset Sk for 1 ≤ k ≤ p. If (1 − 1
100M ) min`∈Sk gt(λ`(t)) ≤ Gt ≤ (1 + 1

100M ) max`∈Sk gt(λ`(t)) and
suppose there exists some time t ≤ t′ ≤ tstop such that the iterate is stuck inside this region in the interval (t, t′). I.e.
for all t ∈ (t, t′), whenever ‖x̃η(t)‖ ≤ 0.5ηλ1(t) + Ψnormη

2, we must have (1 − 1
100M ) min`∈Sk gt(λ`(t)) ≤ Gt ≤

(1 + 1
100M ) max`∈Sk gt(λ`(t)). Then,

t′∑
`=t

θ` ≤ O

(
ζ5

µ2∆2
+
Mζ

β3
tescape + (t′ − t)

√
ζ4νξ

µ5/2∆β2
η

)
,

where Gt denotes the quantity |〈v1(t), xη(t)− Φ(xη(t))〉|, provided for all t ≤ ` < t′, xη(`)xη(`+ 1) ⊂ Y ε.
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Proof. The proof will follow exactly as Lemma E.3. The only difference is that Gt is bound to increase when θt ≥
Ω
(√

ζ4νξ
µ5/2∆β2 η

)
from Corollary G.7. Thus, at step 3, when we take the sum of the angle over the steps where Gt is bound

to decrease, we must have
∑
t∈N(2)

2
θt ≤ O

(√
ζ4νξ

µ5/2∆β2 η(t′ − t)
)

.

G.3.2. BEHAVIOR ALONG THE TOP EIGENVECTOR

Lemma G.6. Suppose η ≤ O( µ4

Dςζ2ξν ). Consider any time t, such that xη(t) ∈ Y ε, where ‖x̃η(t)‖ ≤
1
2η
√

0.5λ2
1(t) +Ψnormη

2 holds true. If Gt denotes the quantity |〈v1(t), xη(t)− Φ(xη(t))〉| and Gt+2 denotes the quantity
|〈v1(t+ 2), xη(t+ 2)− Φ(xη(t+ 2))〉|, then the following holds true:

Gt+2 ≥ (1 +
1

2
min

2≤j≤M

λj(t)(λ1(t)− λj(t))
λ2

1(t)
sin2 θt)Gt −O(

η

Gt

ζ2ν

µ3/2
η2)−O(ξζη2),

provided Gt ≥ Ω(η1.5) and xη(t)xη(t+ 1), xη(t+ 1)xη(t+ 2) ⊂ Y ε. Here θt is given by cos−1(
|〈v1(t),x̃η(t)〉|
‖x̃η(t)‖ ), with

Pt,Γ denoting the projection matrix onto the subspace spanned by v1(t), . . . , vM (t), and x̃η(t) = ∇2L(Φ(xη(t)))(xη(t)−
Φ(xη(t))).

Proof. Here, we will follow a much simpler approach than Lemma E.8 to have a weaker error bound. The stronger error
bounds in Lemma E.8 were due to the very specific update rule of Normalized GD.

From Lemma G.9, we have

∇L(xη(t))√
L(xη(t))

=
∇2L(Φ(xη(t)))(xη(t)− Φ(xη(t)))√

1
2∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t)), xη(t)− Φ(xη(t))]

+O(
ζ3/2ν

µ3/2
η),

where we have used the fact that xη(t) − Φ(xη(t)) satisfies the stability condition from Equation (72) and hence,

‖xη(t)− Φ(xη(t))‖ ≤ O(

√
ζ2

√
µ ).

Thus, we have

xη(t+ 1)− Φ(xη(t))

= xη(t)− Φ(xη(t))− η ∇2L(Φ(xη(t)))(xη(t)− Φ(xη(t)))√
1
2∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t)), xη(t)− Φ(xη(t))]

+O(
ζ3/2ν

µ3/2
η2).

Similarly,

xη(t+ 2)− Φ(xη(t))

= xη(t+ 1)− Φ(xη(t))− η ∇2L(Φ(xη(t)))(xη(t+ 1)− Φ(xη(t)))√
1
2∇2L(Φ(xη(t)))[xη(t+ 1)− Φ(xη(t)), xη(t+ 1)− Φ(xη(t))]

+O(
ζ3/2ν

µ3/2
η2).

Thus, √
∇2L(Φ(xη(t)))(xη(t+ 2)− Φ(xη(t)))

=

I − η 2−1/2∇2L(Φ(xη(t)))√
1
2∇2L(Φ(xη(t)))[xη(t+ 1)− Φ(xη(t)), xη(t+ 1)− Φ(xη(t))]


·

I − η 2−1/2∇2L(Φ(xη(t)))√
1
2∇2L(Φ(xη(t)))[xη(t)− Φ(xη(t)), xη(t)− Φ(xη(t))]

√∇2L(Φ(xη(t)))(xη(t)− Φ(xη(t)))

+O(
η

Gt

ζ2ν

µ3/2
η2).
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The final error appears due to the possible blow-up from
(
I − η 2−1/2∇2L(Φ(xη(t)))√

1
2∇2L(Φ(xη(t)))[xη(t+1)−Φ(xη(t)),xη(t+1)−Φ(xη(t))]

)
,

which has been bounded by η
√
ζ

Gt+1
≤ O(η

√
ζ

Gt
), using the value of Gt+1 from Lemma G.3.

Hence, the update is similar to the update in a quadratic model, with∇2L(Φ(xη(t))) guiding the updates. The final bound
comes from using Lemma A.7, and then reconciling the errors introduced by the changes in the top eigenvector and the
function Φ from Lemma G.11.

A corollary of the above lemma is that when the magnitude along the top eigenvalue is Ω(η), the magnitude drops, only
when the angle of the iterate with the top eigenvector is O(η1/2).

Corollary G.7. Consider any time t, such that xη(t) ∈ Y ε, where ‖x̃η(t)‖ ≤ 1
2η
√

0.5λ2
1(t) + Ψnormη

2 holds true. If Gt
denotes the quantity |〈v1(t), xη(t)− Φ(xη(t))〉| and Gt+2 denotes the quantity |〈v1(t+ 2), xη(t+ 2)− Φ(xη(t+ 2))〉|,
then Gt+2 ≥ Gt for all

|θt| ≥ Ω

(√
ζ2

µ∆

η

G2
t

ζ2ν

µ3/2
η2 + ξζ

η2

Gt

)
,

provided Gt ≥ Ω(η1.5), and xη(t)xη(t+ 1), xη(t+ 1)xη(t+ 2) ⊂ Y ε. Moreover, if Gt ≥ βη for some β ≥ 0, then the
above bound can be simplified as

|θt| ≥ Ω

(√
ζ4νξ

µ5/2∆β2
η

)
.

The next corollary shows that if the magnitude along the top eigenvector drops, when it is Ω(η), it can only drop by a
magnitude of O(η2) at any step.

Corollary G.8. Consider any time t, such that xη(t) ∈ Y ε, where ‖x̃η(t)‖ ≤ 1
2η
√

0.5λ2
1(t) + Ψnormη

2 holds true. If Gt
denotes the quantity |〈v1(t), xη(t)− Φ(xη(t))〉| and Gt+2 denotes the quantity |〈v1(t+ 2), xη(t+ 2)− Φ(xη(t+ 2))〉|,
then

Gt+2 ≥ Gt −O(
η

Gt

ζ2ν

µ3/2
η2)−O(ξζη2),

provided Gt ≥ Ω(η1.5) and xη(t)xη(t+ 1), xη(t+ 1)xη(t+ 2) ⊂ Y ε. Moreover, if Gt ≥ βη for some β ≥ 0, then the
above bound can be simplified as

Gt+2 ≥ Gt −O(ΨGη
2),

where ΨG = ζ2νξ
βµ3/2 .

G.4. Ommited Proof for operating on Edge of Stability

This proof is similar to that of Theorem 4.7.

Proof of Theorem 4.8. If M = 1, that is, the dimension of manifold Γ is D − 1, we know xη(t)xη(t+ 1) will cross
Γ, making the ∇2

√
L diverges at the intersection and the first claim becomes trivial. If M ≥ 2, we have ∇2

√
L =

2L∇2L−∇L∇L>

4
√
L

3 diverges at the rate of 1
‖∇L‖ . It turns out that using basic geometry, one can show that the distance from

Φ(xη(t)) to xη(t)xη(t+ 1) isO(η(θt+θt+1)), thus sup0≤s≤η λ1(∇2
√
L(xη(t)−s∇

√
L(xη(t)))) = Ω( 1

η(θt+θt+1) ). The
proof of the first claim is completed by noting that θt+1 = O(θt).

For the second claim, it’s easy to check that
√
L(xη(t)) = ‖x̃η(t)‖+O(η). The proof for the first claim is completed by

noting that ‖x̃η(t)‖+ ‖x̃η(t+ 1)‖ = ηλ1(t) +O(η + θt) as an analog of the quadratic case.
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G.5. Geometric Lemmas for
√
L

Lemma G.9. At any point x ∈ Y ε, we have

∇L(x)√
L(x)

=
∇2L(Φ(x))(x− Φ(x))√

1
2∇2L(Φ(x))[x− Φ(x), x− Φ(x)]

+O(
ζ1/2ν

µ
‖x− Φ(x)‖).

Also, ∥∥∥∥∥∇L(x)√
L(x)

∥∥∥∥∥ ≤√2λ1(x) +O(
ζ1/2ν

√
D

µ
‖x− Φ(x)‖).

Proof. Using taylor expansion around Φ(x), we have

∇L(x) = ∇L(Φ(x)) +∇2L(Φ(x))(x− Φ(x)) + err,

where ‖err‖ = O(ν ‖x− Φ(x)‖2) Similarly

L(x) = L(Φ(x)) + 〈∇L(Φ(x)), (x− Φ(x))〉+
1

2
∇2L(Φ(x))[x− Φ(x), x− Φ(x)] + err′,

where ‖err′‖ = O(ν ‖x− Φ(x)‖3). Since Φ(x) is a local minimizer, we have L(Φ(x)) = 0 and ∇L(Φ(x)) = 0.

∇L(x)√
L(x)

=
∇2L(Φ(x))(x− Φ(x))√

1
2∇2L(Φ(x))[x− Φ(x), x− Φ(x)]

+O(
ζ1/2ν

µ
‖x− Φ(x)‖).

In the above result, we have bounded the following terms:

1. We can bound
∥∥∥∥ ∇2L(Φ(x))(x−Φ(x))√

1
2∇2L(Φ(x))[x−Φ(x),x−Φ(x)]

∥∥∥∥, as

∥∥∥∥∥∥ ∇2L(Φ(x))(x− Φ(x))√
1
2∇2L(Φ(x))[x− Φ(x), x− Φ(x)]

∥∥∥∥∥∥ =

∥∥∥∥√2∇2LΦ(x)
x̃

‖x̃‖

∥∥∥∥ ≤√2λ1(x),

where x̃ =
√
∇2L(Φ(x))(x− Φ(x)).

2. Also, using the assumptions on the eignvalues of∇2L, µ ‖x− Φ(x)‖ ≤
∥∥∇2L(Φ(x))(x− Φ(x))

∥∥ ≤ ζ ‖x− Φ(x)‖ .

Lemma G.10. Consider any point x ∈ Y ε. Then,∣∣∣∣∣
〈
v1(x),

∇L(x)√
L(x)

〉∣∣∣∣∣ ≥ cos θ −O(
ζ1/2ν

µ3/2
‖x− Φ(x)‖),

where θ = arctan

∥∥∥P (2:M)

Φ(x),Γ
x̃
∥∥∥

|〈v1(x),x̃〉| , with x̃ = ∇2L(Φ(x))(x− Φ(x)).

Proof. From Lemma G.9, we have

∇L(x)√
L(x)

=
∇2L(Φ(x))(x− Φ(x))√

1
2∇2L(Φ(x))[x− Φ(x), x− Φ(x)]

+O(
ζ1/2ν

µ
‖x− Φ(x)‖).
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Also, with x̃ =
√
∇2LΦ(x)(x− Φ(x)).∥∥∥∥∥∥ ∇2L(Φ(x))(x− Φ(x))√

1
2∇2L(Φ(x))[x− Φ(x), x− Φ(x)]

∥∥∥∥∥∥ =

∥∥∥∥∥
√

1

2
∇2L(Φ(x))

x̃

‖x̃‖

∥∥∥∥∥ ≤√2λ1(x).

Since, PΦ(x),Γ is the projection matrix onto the non-zero eigenvector subspace of∇2L(Φ(x)), we have

|〈v1(x),∇L(x)〉|√
L(x)

=
〈v1(x),∇2L(Φ(x))(x− Φ(x))〉√

1
2∇2L(Φ(x))[PΦ(x),Γ(x− Φ(x)), PΦ(x),Γ(x− Φ(x))]

+O(
ζ1/2ν

µ
‖x− Φ(x)‖)

≥
√

2λ1(Φ(x)) cos θ −O(
ζ1/2ν

µ
‖x− Φ(x)‖).

Hence, combining the above two equations, we must have∥∥∥∥∥v1(x)−

√
1

2λ1(Φ(x))
sign

(〈
v1(x),

∇L(x)√
L(x)

〉)
∇L(x)√
L(x)

∥∥∥∥∥ ≤ θ +O(
ζ1/2ν

µ3/2
‖x− Φ(x)‖).

Lemma G.11. For any xy ∈ Y ε where y = x− η∇
√
L(x) is the one step update on

√
L loss from x, we have

Φ(y)− Φ(x) = −η
2

8
P⊥Φ(x),Γ∇λ1(∇2L(Φ(x))) +O(η2ξθ) +O(

ζ3/2νξ ‖x− Φ(x)‖
µ3/2

η2) +O(χ ‖x− Φ(x)‖ η2)

+O(Υζ3/2(1 +
ν
√
D

µ
‖x− Φ(x)‖+

ν3D3/2

µ3
‖x− Φ(x)‖3)η3).

Here θ = arctan

∥∥∥P (2:M)

Φ(x),Γ
x̃
∥∥∥

|〈v1(x),x̃〉| , with x̃ = ∇2L(Φ(x))(x− Φ(x)). That implies, we have

‖Φ(y)− Φ(x)‖ ≤ O((ν + ξ)η2) +O(
ζ3/2νξ ‖x− Φ(x)‖

µ3/2
η2) +O(χ ‖x− Φ(x)‖ η2),

for sufficiently small η.

Proof. We outline the major difference from the proof of Lemma B.13. Using taylor expansion for the function Φ, we have

Φ(y)− Φ(x)

= ∂Φ(x) (y − x) +
1

2
∂2Φ(x)[y − x, y − x] + err

= ∂Φ(x)

(
−η ∇L(x)

2
√
L(x)

)
+
η2

2
∂2Φ(x)

[
∇L(x)

2
√
L(x)

,
∇L(x)

‖∇L(x)‖

]
+ err

=
η2

2
∂2Φ(x)

[
∇L(x)

2
√
L(x)

,
∇L(x)

2
√
L(x)

]
+ err,

where in the final step, we used the property of Φ from Lemma B.15. We can bound the error term, using the bound on
∇L(x)√
L(x)

from Lemma G.9:

‖err‖ ≤ O(Υζ3/2(1 +
ν
√
D

µ
‖x− Φ(x)‖+

ν3D3/2

µ3
‖x− Φ(x)‖3)η3).
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First of all, the function Φ ∈ C3, hence:

∂2Φ(x) = ∂2Φ(Φ(x)) +O(χ ‖x− Φ(x)‖) = ∂2Φ(Φ(x)) +O(χ ‖x− Φ(x)‖).

Also, at Φ(x), since v1(x) is the top eigenvector of the hessian∇2L, we have from Corollary B.22,

∂2Φ(Φ(x))
[
v1(x)v1(x)>

]
= − 1

2λ1(x)
∂Φ(Φ(x))∂2(∇L)(Φ(x))[v1(x), v1(x)].

From Lemma G.10, we have∥∥∥∥∥v1(x)−

√
1

2λ1(x)
sign

(〈
v1(x),

∇L(x)√
L(x)

〉)
∇L(x)√
L(x)

∥∥∥∥∥ ≤ θ +O(
ζ1/2ν

µ3/2
‖x− Φ(x)‖),

where recall our notation of θ = arctan

∥∥∥P (2:M)

Φ(x),Γ
(x−Φ(x))

∥∥∥
|〈v1(x),x−Φ(x)〉| .

With further simplification, it turns out that

Φ(y)− Φ(x) = −η
2

8
∂Φ(Φ(x))∂2(∇L)(Φ(x))[v1(x), v1(x)] + err′ + err,

with

‖err′‖ ≤ O(η2ζξθ) +O(
ζ3/2νξ

µ3/2
‖x− Φ(x)‖ η2) +O(ζχ ‖x− Φ(x)‖ η2).

The rest of the proof will follow the same strategy as Lemma B.13.

H. Additional Experimental Details
H.1. Experimental details

For Figure 1: For running GD on
√
L, we start from (x, y) = (14.7, 3.), and use a learning rate η = 0.5. For running

Normalized GD on L, we start from (x, y) = (14.7,−3), and use a learning rate η = 5.

For Figure 2: We start Normalized GD from 〈v1, x̃(0)〉 = 10−4, 〈v2, x̃(0)〉 = 0.45. We use a learning rate of 1 for the
optimization updates.

H.2. Code for the riemannian flow corresponding to Normalized GD

We provide the code for running a single step of the riemannian flow (Equation (4)) corresponding to Normalized GD. Each
update comprises of three major steps: a) computing ∇3L(x)[v1(x), v1(x)], b) a projection onto the tangent space of the
manifold, and c) few steps of gradient descent with small learning rate to drop back to manifold (if error induced by the first
2 operations).

As we are running deterministic updates, all of the steps are pretty expensive, as they scale with the number of data points
in the training set. Moreover, computing ∇3L(x)[v1(x), v1(x)] requires 3 backpropagations through the entire network.
Finally, we need to run few steps of full batch GD with small learning rate, to make sure we fall back to the manifold, if we
go out of the manifold with the discrete riemannian updates. Thus, running each step is several times more expensive than
running a full batch gradient descent.

The pseudocodeAlgorithm 4. The loss L is equal to the average of n loss functions `i : RD → R. We can alternatively think
as having n training data and each `i computes the loss of the parameters x with respect to a sample from the training set.
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Algorithm 4 Riemannian Update for Normalized GD

Input: n loss functions `i : RD → R, initial point xinit, maximum number of iteration T , LR η, Projection LR ηproj,
maximum number of projection iterations Tproj.
x(0)← xinit.
for t = 1 to T do
L(x(t− 1))← 1

n

∑n
i=1 `i(x(t− 1)).

Compute v1, the top eigenvector of ∇2L(x(t− 1)).
Compute∇λ1(x(t− 1)) = ∇3L(x(t− 1))[v1, v1].
Compute Px(t−1),Γ∇λ1(x(t− 1)) as the projection of∇λ1(x(t− 1)) on the space spanned by∇`1(x), · · · ,∇`n(x).

Compute P⊥x(t−1),Γ∇λ1(x(t− 1)) = ∇λ1(x(t− 1))− Px(t−1),Γ∇λ1(x(t− 1)).

y(0)← x(t− 1)− η
λ1(x(t−1))P

⊥
x(t−1),Γ∇λ1(x(t− 1)).

for t̃ = 1 to Tproj do
{The next few steps involve GD to move back to the manifold.}
L(y(t̃− 1))← 1

n

∑n
i=1 `i(y(t̃− 1)).

y(t̃) = y(t̃− 1)− ηproj∇(L(y(t̃− 1))).
end for
x(t)← y(Tproj).

end for


