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Abstract
In non-private stochastic convex optimization,
stochastic gradient methods converge much faster
on interpolation problems—namely, problems
where there exists a solution that simultaneously
minimizes all of the sample losses—than on non-
interpolating ones; similar improvements are not
known in the private setting. In this paper, we
investigate differentially private stochastic opti-
mization in the interpolation regime. First, we
show that without additional assumptions, inter-
polation problems do not exhibit an improved
convergence rates with differential privacy. How-
ever, when the functions exhibit quadratic growth
around the optimum, we show (near) exponential
improvements in the private sample complexity.
In particular, we propose an adaptive algorithm
that improves the sample complexity to achieve
expected error α from d

ε
√
α

to 1
αρ + d

ε log
(
1
α

)
for any fixed ρ > 0, while retaining the stan-
dard minimax-optimal sample complexity for non-
interpolation problems. We prove a lower bound
that shows the dimension-dependent term in the
expression above is tight. Furthermore, we pro-
vide a superefficiency result which demonstrates
the necessity of the polynomial term for adaptive
algorithms: any algorithm that has a polylogarith-
mic sample complexity for interpolation problems
cannot achieve the minimax-optimal rates for the
family of non-interpolation problems.

1. Introduction
In this paper, we study the problem of differentially private
stochastic convex optimization (DP-SCO) where given a
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dataset S = Sn
1

iid∼ P we wish to solve

minimize f(x) = EP [F (x;S)] =

∫
Ω

F (x; s)dP (s)

subject to x ∈ X ,
(1)

under the constraint of differential privacy. In problem (1),
X ⊂ Rd is the parameter space, S is a sample space, and
{F (·; s) : s ∈ S} is a collection of convex losses. In
particular, we study the interpolation setting where there
exists a solution that simultaneously minimizes all of the
sample losses.

Interpolation problems are ubiquitous in machine learning
applications: for example, least squares problems with con-
sistent solutions (Strohmer & Vershynin, 2009; Needell
et al., 2014), and problems with over-parametrized models
where a perfect predictor exists (Ma et al., 2018; Belkin
et al., 2018; 2019). This has led to a great deal of work
on the advantages and implications of interpolation (Srebro
et al., 2010; Cotter et al., 2011; Belkin et al., 2018; 2019).

Interpolation problems for non-private SCO are well un-
derstood, demonstrating significant improvements in rates
over non-interpolation problems (Srebro et al., 2010; Cotter
et al., 2011; Ma et al., 2018; Vaswani et al., 2019; Wood-
worth & Srebro, 2021). For general convex functions, Sre-
bro et al. (2010) developed algorithms that obtain O( 1n )
sub-optimality, improving over the minimax-optimal rate
O( 1√

n
) for non-interpolation problems. Even more dra-

matic improvements are possible when the functions exhibit
growth around the minimizer, as Vaswani et al. (2019) show
that SGD achieves exponential rates in this setting compared
to polynomial rates without interpolation.

Despite the recent progress and increased interest in inter-
polation problems, they remain poorly understood in the
private setting. Current work in DP-SCO has made sub-
stantial progress in characterizing tight rates for private
optimization in a variety of settings (Bassily et al., 2014;
2019; Feldman et al., 2020; Asi et al., 2021b;c). However,
none of the existing works, to our knowledge, in private
optimization study interpolation problems.

Given (i) the importance of differential privacy and interpo-
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lation problems in modern machine learning, (ii) the (often)
paralyzing rates of private optimization algorithms, and
(iii) the faster rates possible for non-private interpolation
problems, the interpolation setting provides a reasonable
opportunity for significant speedups in the private setting.
This motivates the following two questions: first, is it pos-
sible to improve the rates for DP-SCO in the interpolation
regime? and, what are the optimal rates for this setting?

1.1. Our contributions

In this work, we investigate DP-SCO in the interpolation
regime and provide answers for the above questions. In
particular, we show that

1. No improvements in general (Section 3): our first
result is a hardness result demonstrating that the rates
cannot be improved for DP-SCO in the interpolation
regime with general convex functions. More precisely,
we prove a lower bound of Ω( d

nε ) on the excess loss
for pure differentially private algorithms. This shows
that existing algorithms achieve optimal private rates
for this setting.

2. Faster rates with growth (Section 4): when the
functions exhibit quadratic growth around the mini-
mizer, that is, f(x)− f(x⋆) ≥ λ∥x− x⋆∥22 for some
λ > 0, we propose an algorithm that achieves near-
exponential excess loss, improving over the polyno-
mial rates in the non-interpolation setting. Specifi-
cally, we show that the sample complexity to achieve
expected excess loss α > 0 is O

(
1
αρ + d

ε log
(
1
α

))
for pure DP and O

(
1
αρ +

√
d log(1/δ)

ε log
(
1
α

))
for

(ε, δ)-DP, for any fixed ρ > 0. This improves over
the sample complexity for non-interpolation problems
with growth which is O

(
1
α + d

ε
√
α

)
. We also present

new algorithms that improve the rates for interpolation
problems with the weaker κ-growth assumption (Asi
et al., 2021c) for κ > 2 where we achieve excess

loss O
((

1√
n
+ d

nε

) κ
κ−2

)
, compared to the previous

bound O

((
1√
n
+ d

nε

) κ
κ−1

)
without interpolation.

3. Adaptivity to interpolation (Section 4.3): While these
improvements for the interpolation regime are impor-
tant, practitioners using these methods in practice can-
not identify whether the dataset they are working with
is an interpolating one or not. Thus, it is crucial
that these algorithms do not fail when given a non-
interpolating dataset. In other words, the algorithm
should be adaptive to whether or not it is an interpola-
tion problem. We show that our algorithms are adaptive

to interpolation, obtaining these better rates for inter-
polation while simultaneously retaining the standard
minimax optimal rates for non-interpolation problems.

4. Tightness results (Section 5): finally, we provide a
lower bound and a super-efficiency result that demon-
strate the tightness of our upper bounds. First, we prove
a lower bound of Ω(dε log

(
1
α

)
) on the sample complex-

ity for interpolation problems with pure DP. Moreover,
we prove a super-efficiency result that shows that the
polynomial dependence on 1/α in the sample complex-
ity is necessary for adaptive algorithms: any algorithm
that has a polylogarithmic sample complexity for inter-
polation problems cannot achieve the minimax-optimal
rates for the family of non-interpolation problems.

1.2. Related work

The problem of private convex optimization has been exten-
sively over the past decade (Chaudhuri et al., 2011; Duchi
et al., 2013; Smith & Thakurta, 2013; Bassily et al., 2014;
Abadi et al., 2016; Bassily et al., 2019; Feldman et al., 2020;
Asi et al., 2021b;a; Bassily et al., 2020). Chaudhuri et al.
(2011) and (Bassily et al., 2014) study the closely related
problem of differentially private empirical risk minimization
(DP-ERM) where the goal is to minimize the empirical loss,
and obtain (minimax) optimal rates of d/nε for pure DP and√

d log(1/δ)/nε for (ε, δ)-DP. Recently, more papers have
moved beyond DP-ERM to privately minimizing the popu-
lation loss (DP-SCO) (Bassily et al., 2019; Feldman et al.,
2020; Asi et al., 2021b;a; Bassily et al., 2021; Asi et al.,
2021c). Bassily et al. (2019) was the first paper to obtain
the optimal rate 1/

√
n+
√
d log(1/δ)/nε for (ε, δ)-DP, and

subsequent papers develop more efficient algorithms that
achieve the same rates (Feldman et al., 2020; Bassily et al.,
2020). Moreover, other papers study DP-SCO under differ-
ent settings including non-Euclidean geometry (Asi et al.,
2021b;a), heavy-tailed data (Wang et al., 2020), and func-
tions with growth (Asi et al., 2021c). However, to the best
of our knowledge, there has not been any work in private
optimization that studies the problem in the interpolation
regime.

On the other hand, the optimization literature has witnessed
numerous papers on the interpolation regime (Srebro et al.,
2010; Cotter et al., 2011; Ma et al., 2018; Vaswani et al.,
2019; Liu & Belkin, 2020; Woodworth & Srebro, 2021).
Srebro et al. (2010) propose algorithms that roughly achieve
the rate 1/n +

√
f⋆/n for smooth and convex functions

where f⋆ = minx∈X f(x). In the interpolation regime with
f⋆ = 0, this result obtains loss 1/n improving over the stan-
dard 1/

√
n rate for non-interpolation problems. Moreover,

Vaswani et al. (2019) studied the interpolation regime for
functions with growth and show that SGD enjoys linear con-
vergence (exponential rates). More recently, several papers
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investigated and developed acceleration-based algorithms in
the interpolation regime (Liu & Belkin, 2020; Woodworth
& Srebro, 2021).

2. Preliminaries
We begin with notation that will be used throughout the
paper and provide some standard definitions from convex
analysis and differential privacy.

Notation We let n denote the sample size and d the di-
mension. We let x denote the optimization variable and
X ⊂ Rd the constraint set. s are samples from Ω, and S
is a Ω-valued random variable. For each sample s ∈ Ω,
F (·; s) : Rd → R∪{+∞} is a closed convex function. Let
∂F (x; s) denote the subdifferential of F (·; s) at x. We let
Ωn denote the collection of datasets S = (s1, . . . , sn) with
n data points from Ω. We let fS(x) := 1

n

∑
s∈S F (x, s)

denote the empirical loss and f(x) := E[F (x;S)] de-
note the population loss. We define the distance of a
point to a set as dist (x, Y ) = miny∈Y ∥x− y∥2. We use
Diam(X ) = supx,y∈X ∥x− y∥2 to denote the diameter of
parameter space X and use D as a bound on the diameter
of our parameter space.

We recall the definition of (ε, δ)-differential privacy.

Definition 2.1. A randomized mechanism M is (ε, δ)-
differentially private ((ε, δ)-DP) if for all datasets S,S ′ ∈
Ωn that differ in a single data point and for all events O in
the output space of M , we have

P (M(S) ∈ O) ≤ eεP (M(S ′) ∈ O) + δ.

We define ε-differential privacy (ε-DP) to be (ε, 0)-
differential privacy.

We now recall a couple of standard convex analysis defini-
tions.

Definition 2.2. A function h : X → R is L-Lipschitz con-
tinuous if for all x, y ∈ X

|h(x)− h(y)| ≤ L ∥x− y∥2 .

Equivalently, a function is L-Lipschitz if ∥∇f(x)∥2 ≤ L
for all x ∈ X .

Definition 2.3. A function h is H-smooth (i.e., H-Lipschitz
continuous gradients) if for all x, y ∈ X

∥∇h(x)−∇h(y)∥2 ≤ H ∥x− y∥2

Definition 2.4. A function h is λ-strongly convex if for all
x, y ∈ X

h(y) ≥ h(x) +∇h(x)T (y − x) +
λ

2
∥y − x∥22

We formally define what an interpolation problem is.

Definition 2.5 (Interpolation Problem). Let X ⋆ :=
argminx∈X f(x). Then problem (1) is an interpolation
problem if there exists x⋆ ∈ X ⋆ such that for P -almost all
s ∈ Ω, we have 0 ∈ ∂F (x⋆; s).

Interpolation problems are common in modern machine
learning, where models are overparameterized. One simple
example is overparameterized linear regression: there exists
a solution that minimizes each individual sample function.
Classification problems with margin are another example.

Crucial to our results in the interpolation setting is the fol-
lowing quadratic growth assumption which says that the
function grows quadratically around the optimal set.

Assumption 1. We say that a function f satisfies the
quadratic growth condition if for all x ∈ X

f(x)− inf
x′∈X⋆

f(x′) ≥ λ

2
dist (x,X ⋆)

2
.

This assumption is natural with interpolation and holds for
many important applications such as noiseless linear regres-
sion (Strohmer & Vershynin, 2009; Needell et al., 2014), and
has been studied in the non-private setting as well (Vaswani
et al., 2019; Woodworth & Srebro, 2021).

Finally, the adaptivity of our algorithms will crucially de-
pend on an innovation leveraging Lipchitizian extensions,
defined as follows.

Definition 2.6 (Lipschitzian extension (Hiriart-Urruty &
Lemaréchal, 1993)). The Lipschitzian extension with Lips-
chitz constant L of a function f(x) is defined as the infimal
convolution

fL(x) = inf
y∈Rd
{f(y) + L ∥x− y∥2}. (2)

The Lipschitzian extension (2) essentially transforms a gen-
eral convex function into an L-Lipschitz convex function.
We now present a few properties of the Lipschitzian exten-
sion that are relevant to our development.

Lemma 2.1. Let f : X → R be a convex function. Then
the Lipschitzian extension (Definition 2.6) satisfies the fol-
lowing:

1. fL(x) is L-Lipschitz.

2. fL(x) is convex.

3. If f(x) is L-Lipschitz, then fL(x) = f(x).

4. Let y(x) = argminy∈Rd{f(y)+L ∥x− y∥2}. If y(x)
is at a finite distance from x, we have

∇fL(x) =

{
∇f(x), if ∥∇f(x)∥2 ≤ L

L x−y(x)
∥x−y(x)∥2

, otherwise.
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We use the Lipschitzian extension as a substitute for gradi-
ent clipping to ensure differential privacy. Unlike gradient
clipping, which may alter the geometry of a convex problem
to a non-convex one, the Lipschitzian extension of a func-
tion remains convex and thus retains other nice properties
that we leverage in our algorithms in Section 4.

3. Hardness of private interpolation
In non-private stochastic convex optimization, for smooth
functions it is well known that interpolation problems enjoy
the fast rate O(1/n) (Srebro et al., 2010) compared to the
minimax-optimal O(1/

√
n) without interpolation (Duchi,

2018). In this section, we show that such an improvement is
not possible in the private setting in general. Specifically, we
show that the same lower bound of private non-interpolation
problems, that is d/nε, holds for interpolation problems.

To state our lower bounds, we present some notation that we
will use throughout of the paper. We let S denote the family
of function F and dataset S pairs such that F : X ,Ω→ R
is convex, H-smooth with respect to the first argument,
|S| = n, and fS(y) = 1

n

∑
s∈S F (y, s) is an interpola-

tion problem (Definition 2.5). We define the constrained
minimax risk to be

M(X ,S, ε, δ) :=

inf
M∈M(ε,δ)

sup
(F,Sn)∈S

E[fSn(M(Sn))]− inf
x′∈X

fSn(x′).

whereM(ε,δ) be the collection of (ε, δ)-differentially pri-
vate mechanisms from Ωn to X . We useM(ε,0) to denote
the collection of ε-DP mechanisms from Ωn to X . Here, the
expectation is taken over the randomness of the mechanism
where the dataset Sn is fixed.

We have the following lower bound for private interpolation
problems; the proof is deferred to Appendix C

Theorem 1. Suppose X ⊂ Rd contains a d-dimensional ℓ2
ball of diameter D. Then the following lower bound holds
for δ = 0

M(X ,S, ε, 0) ≥ HD2d

96e2nε
.

Moreover, if 0 < δ < ε/6 and d = 1, the following lower
bound holds

M(X ,S, ε, δ) ≥ HD2

16(e+ 1)nε
.

Recalling that the optimal rate for pure DP optimiza-
tion problems without interpolation is O(d/nε), the lower
bounds of Theorem 1 show that it is not possible to improve
that rate for interpolation problems in general. Similarly, for

approximate (ε, δ)-DP, the lower bound shows that improve-
ments are not possible for d = 1. For completeness, as we
alluded to earlier, we do acknowledge that the non-private
component of the convergence rate could be improved from
O(1/

√
n) to O(1/n).

Despite this pessimistic result, in the next section we show
that substantial improvements are possible for private inter-
polation problems with additional growth conditions.

4. Faster rates for interpolation with growth
Having established our hardness result for general inter-
polation problems, in this section we show that when the
functions satisfy additional growth conditions, the rates for
private interpolation can be significantly improved to get
(nearly) exponential rates.

Our algorithms use recent localization techniques that yield
optimal algorithms for DP-SCO (Feldman et al., 2020; Asi
et al., 2021c) where the algorithm iteratively shrinks the
diameter of the domain. However, to obtain faster rates
for interpolation, we crucially build on the observation that
the norm of the gradients is decreasing as we approach
the optimal solution, since ∥∇F (x;S)∥2 ≤ H ∥x− x⋆∥2.
Hence, by carefully localizing the domain and shrinking the
Lipschitz constant accordingly, our algorithms improve the
rates for interpolating datasets.

However, this technique alone yields an algorithm that may
not be private for non-interpolation problems, violating the
desiderata that privacy must holds for all inputs. This hap-
pens since the reduction in the Lipschitz constant may not
hold for non-interpolation problems, and thus, the amount
of noise added may not be enough to ensure privacy. To
solve this issue, we use the Lipschitzian extension (Defini-
tion 2.6) to transform our potentially non-Lipschitz sample
functions into Lipschitz ones and guarantee privacy even for
non-interpolation problems.

We begin in Section 4.1 by presenting our Lipschitzian
extension based algorithm, which recovers the standard
optimal rates for (non-interpolation) L-Lipschitz functions
while still guaranteeing privacy when the function is not Lip-
schitz. Then in Section 4.2 we build on this algorithm to de-
velop a localization-based algorithm that obtains faster rates
for interpolation-with-growth problems. Finally, in Sec-
tion 4.3 we present our final adaptive algorithm which ob-
tains the fast rates for interpolation-with-growth problems
while also achieving optimal rates for non-interpolation
growth problems.

4.1. Lipschitzian-extension based algorithms

Existing algorithms for DP-SCO with L-Lipschitz func-
tions may not be private if the input function is not L-
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Lipschitz (Bassily et al., 2020; Feldman et al., 2020; Asi
et al., 2021c). Given any DP-SCO algorithm ML

(ε,δ), which
is private for L-Lipschitz functions, we present a framework
that transforms ML

(ε,δ) to an algorithm which is (i) private
for all functions, even ones which are not L-Lipschitz func-
tions and (ii) has the same utility guarantees as ML

(ε,δ) for L-
Lipschitz functions. In simpler terms, our algorithm essen-
tially feeds ML

(ε,δ) the Lipschitzian-extension of the sample
functions as inputs. Algorithm 1 describes our Lipschitzian-
extension based framework.

Algorithm 1 Lipschitzian-Extension Algorithm
Require: Dataset S = (s1, . . . , sn) ∈ Sn;

1: Let FL(x; si) be the Lipschitzian extension of F (x; si)
for all i.

FL(x; si) = inf
y
{F (y; si) + L ∥x− y∥2}

2: Run ML
(ε,δ) over the functions FL(·; si).

3: Let xpriv denote the output of ML
(ε,δ).

4: return xpriv

For this paper we consider ML
(ε,δ) to be Algorithm 2 of

(Asi et al., 2021c) (reproduced in Appendix A.2 as Algo-
rithm 5). The following proposition summarizes our guar-
antees for Algorithm 1.

Proposition 1. Let LL denote the set of sample function-
dataset pair (F, S) such that F is L-Lipschitz and let F
denote the set of sample function-dataset pair (F,S) such
that ML

(ε,δ) is (ε, δ)-DP for any (F,S) ∈ LL ∩ F . Then

1. For any (F,S) ∈ F , Algorithm 1 is (ε, δ)-DP.

2. For any (F,S) ∈ LL ∩ F , Algorithm 1 achieves the
same optimality guarantees as ML

(ε,δ).

Proof For the first item, note that Lemma 2.1 implies that
FL is L-Lipschitz, i.e. (FL,S) ∈ LL ∩ F . Since ML

(ε,δ) is
(ε, δ)-DP when applied over Lipschitz functions in F , we
have that Algorithm 1 is (ε, δ)-DP.

For the second item, Lemma 2.1 implies that FL = F when
F is L-Lipschitz. Thus, in Algorithm 1, we apply ML

(ε,δ)

over F itself.

While clipped DP-SGD does ensure privacy for input func-
tions which are not L-Lipschitz, our algorithm has some
advantages over clipped DP-SGD: first, clipping does not
result in optimal rates for pure DP, and second, clipped
DP-SGD results in time complexity O(n3/2). In contrast,
our Lipschitzian extension approach is amenable to existing
linear time algorithms (Feldman et al., 2020) allowing for

almost linear time complexity algorithms for interpolation
problems. Finally, while clipping the gradients and using
the Lipschitzian extension both alter the effective function
being optimized, only the Lipschitzian extension is able to
preserve the convexity of said effective function (see item 2
in Lemma 2.1). We make a note about the computational ef-
ficiency of Algorithm 1. Recall that when the objective is in
fact L-Lipschitz, computing gradients for the Lipschitzian
extension (say in the context of a first-order method) is only
as expensive as computing the gradients for the original
function. In particular, one can first compute the gradi-
ent of the original function and use item 4 of Lemma 2.1;
when the problem is L-Lipschitz, ∥∇f(x)∥2 is always less
than or equal to L and thus the gradient of the Lipschitzian
extension is just the gradient of the original function.

4.2. Faster non-adaptive algorithm

Building on the Lipschitzian-extension framework of the
previous section, in this section, we present our epoch based
algorithm which obtains faster rates in the interpolation-
with-growth regime. It uses Algorithm 1 with ML

(ε,δ) as
Algorithm 5 (reproduced in Appendix A.2) as a subroutine
in each epoch, to localize and shrink the domain as the it-
erates get closer to the true minimizer. Simultaneously, the
algorithm also reduces the Lipschitz constant, as the inter-
polation assumption implies that the norm of the gradient
decreases for iterates near the minimizer. The detailed algo-
rithm is given in Algorithm 2 where Di denotes the effective
diameter and Li denotes the effective Lipschitz constant in
epoch i.

The following theorem provides our upper bounds for Algo-
rithm 2, demonstrating near-exponential rates for interpola-
tion problems; the proof is deferred to Appendix C.

Theorem 2. Assume each sample function F is L-Lipschitz
and H-smooth, and let the population function f satisfy
quadratic growth (Assumption 1). Let Problem (1) be an
interpolation problem. Then, Algorithm 2 is (ε, δ)-DP. For
δ = 0, Algorithm 2 with β = 1

nµ for any µ > 0, m =

256 log2 nH log(1/β)
λ max

{
256H

λ , d
ε
√
logn

}
and T = n/m

returns xT such that

E[f(xT )− f(x⋆)] ≤ LD

(
1

nµ
+ exp

(
Θ̃

(
nλ2

H2

))
+

exp

(
−Θ̃

(
λnε

Hd

)))
. (3)

For δ > 0, Algorithm 2 with β = 1
nµ for any µ > 0,

m = 256 log2 nH log(1/β)
λ max

{
256H

λ ,
√
d log(1/δ)

ε
√
logn

}
and
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Algorithm 2 Domain and Lipschitz Localization algorithm
Require: Dataset S = (s1, . . . , sn) ∈ Sn, Lipschitz con-

stant L, domainX , probability parameter β, initial point
x0

1: Set L1 = L, D1 = Diam(X ) and X1 = X
2: Partition the dataset into T partitions (denoted by
{Sk}Tk=1) of size m each; Sk = (s(k−1)m+1, . . . , skm)

3: for i = 1 to T do
4: xi ← Run Algorithm 1 with dataset Si, constraint

set Xi, Lipschitz constant Li, probability parameter
β/T , privacy parameters (ε, δ), initial point xi−1,

5: Shrink the diameter

Di+1 = 256

(
Li

λ
max

{√
log(T/β) log3/2 m√

m
,

min(d,
√
d log(1/δ)) log(T/β) logm

mε

})

6: Set Xi+1 = {x : ∥x− xi∥2 ≤ Di+1/2}
7: Set Li+1 = HDi+1

8: end for
9: return the final iterate xT

T = n/m returns xT such that

E[f(xT )− f(x⋆)] ≤ LD

(
1

nµ
+ exp

(
Θ̃

(
nλ2

H2

))
+

exp

(
−Θ̃

(
λnε

H
√
d log(1/δ)

)))
.

(4)

The exponential rates in Theorem 2 show a significant im-
provement in the interpolation regime over the minimax-

optimal O
((

1√
n
+ d

nε

)2)
without interpolation (Feldman

et al., 2020; Asi et al., 2021c). To get the linear convergence
rates, we run roughly n/ log n epochs with log n samples
each. Thus, each call of the subroutine runs the algorithm
on only logarithmic number of samples compared to the
number of epochs. Intuitively, growth conditions improves
the performance of the sub-algorithm, while growth and
interpolation conditions serve to reduce the search space.
This in tandem leads to faster rates.

To better illustrate the improvement in rates compared to
the non-private setting, the next corollary states the private
sample complexity required to achieve error α in the inter-
polation regime.

Corollary 4.1. Let the conditions of Theorem 2 hold. For

δ = 0 , Algorithm 2 is ε-DP and requires

n = Õ

(
1

αρ
+

d

ε
log

(
1

α

))
samples to ensure E[f(xT ) − f(x⋆)] ≤ α for any fixed
ρ > 0, where Õ ignores polylog factors in log(1/α).
Moreover, for δ > 0, Algorithm 2 is (ε, δ)-DP and requires

n = O

(
1

αρ
+

√
d log(1/δ)

ε
log

(
1

α

))
samples to ensure E[f(xT ) − f(x⋆)] ≤ α, for any fixed
ρ > 0, where Õ ignores polylog factors in log(1/α).

Recall that the sample complexity of DP-SCO to achieve
expected error α on non-interpolation quadratic growth prob-
lems is (Asi et al., 2021c)

Θ

(
1

α
+

d

ε
√
α

)
.

Hence, Corollary 4.1 shows that we are able to improve the
polynomial dependence on 1/α in the sample complexity
to a logarithmic one for interpolation problems.

Remark 1. In contrast to Corollary 4.1, we can tune the
failure probability parameter β to get the sample com-
plexity d

ε log
2
(
1
α

)
. Even though this sample complexity

does not have the polynomial factor, it may be worse than
1
αρ + d

ε log
(
1
α

)
, because generally the dimension term is

the dominant one.

We end this section by considering growth conditions that
are weaker than quadratic growth.

Remark 2. (interpolation with κ-growth) We can extend
our algorithms to work for the weaker κ-growth condition
(Asi et al., 2021c), i.e., f(x) − f(x⋆) ≥ λ

κ∥x− x⋆∥κ2 . We
present the full details of these algorithms in Appendix C.1
(see Algorithm 6). In this setting, we obtain excess loss

O

((
1√
n
+

d

nε

) κ
κ−2

)
,

for interpolation problems, improving over the minimax-
optimal loss for non-interpolation problems which is

O

((
1√
n
+

d

nε

) κ
κ−1

)
.

As an example, when κ = 3, this corresponds to an improve-
ment from roughly (d/nε)3/2 to (d/nε)3. Like our previous
results, we are again able to show similar improvements for
(ε, δ)-DP with better dependence on the dimension. Finally,
we note that we have not provided lower bounds for the
interpolation-with-κ-growth setting for κ > 2. We leave
this question as a direction for future research.
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Even though Algorithm 3 is private and enjoys faster rates of
convergence in the interpolation regime, it is not necessarily
adaptive to interpolation, i.e. it may perform poorly given
a non-interpolation problem. In fact, since the shrinkage
of the diameter and Lipschitz constants at each iteration
hinges squarely on the interpolation assumption, the new
domain may not include the optimizing set X ⋆ in the non-
interpolation setting, hence our algorithm might give vacu-
ous rates of convergence. Since in general we do not know
a priori whether a dataset is interpolating, it is important to
have an algorithm which adapts to whether or not we are in
the interpolation setting.

4.3. Adaptive algorithm

In this section, we present our final adaptive algorithm that
achieves faster rates for interpolation-with-growth problems
while also obtaining the standard optimal rates for non-
interpolating growth problems. The algorithm consists of
two steps. In the first step, our algorithm privately mini-
mizes the objective without assuming it is an interpolation
problem. Next, we run our non-adaptive interpolation al-
gorithm of Section 4.2 over the localized domain returned
by the first step. If our problem was an interpolating one,
the second step recovers the faster rates we showed in Sec-
tion 4.2. If our problem was not an interpolating one, the
first localization step ensures that we at least recover the
non-interpolating convergence rate. We stress that the pri-
vacy of Algorithm 3 requires that the call to Algorithm 2
remains private even if the problem is non-interpolating.
This is ensured by using our Lipschitzian extension based
algorithm with ML

(ε,δ) as Algorithm 5. The Lipschitzian ex-
tension allows us to continue preserving privacy. We present
the full details of this algorithm in Algorithm 3.

The following theorem (Theorem 3) states the convergence
guarantees of our adaptive algorithm (Algorithm 3) in both
the interpolation and non-interpolation regimes for the pure
DP setting. The results for approximate DP are similar and
can be obtained by replacing d with

√
d log(1/δ); we give

the full details in Appendix C.

Theorem 3. Assume each sample function F be L-Lipschitz
and H-smooth, and let the population function f satisfy
quadratic growth (Assumption 1) with coefficient λ. Let
xadapt be the output of Algorithm 3. Then,

1. Algorithm 3 is ε-DP.

2. Without any additional interpolation assumption, we
have that the expected error of the xadapt is upper
bounded by

E[f(xT )− f(x⋆)] ≤ LD · Õ
(

1√
n
+

d

nε

)2

.

Algorithm 3 Algorithm that adapts to interpolation
Require: Dataset S = (s1, . . . , sn) ∈ Sn, Lipschitz con-

stant L, domainX , probability parameter β, initial point
x0

1: Partition the dataset into 2 partitions S1 =
(s1, . . . , sn/2) and S2 = (s(n/2)+1, . . . , sn)

2: x1 ← Run Algorithm 1 with dataset S1, constraint set
Xi, Lipschitz constant Li, probability parameter β/2,
privacy parameters (ε, δ), initial point xi−1,

3: Shrink the diameter

Dint =
128L

λ
·

(√
log(2/β) log3/2 n√

n
+

min{d,
√
d log(1/δ)} log(2/β) log n

nε

)

4: Xint = {x : ∥x− x1∥2 ≤ Dint/2}
5: xadapt ← Run Algorithm 2 with dataset S2, diameter

Dint, Lipschitz constant L, domain Xint, smoothness
parameter H , tail probability parameter β/2, growth
parameter λ, initial point x1

6: return the final iterate xadapt.

3. Let problem (1) be an interpolation problem. Then, the
expected error of the xadapt is upper bounded by

E[f(xT )− f(x⋆)] ≤ LD

(
1

nµ
+ exp

(
−Θ̃

(
nλ2

H2

))
+ exp

(
−Θ̃

(
λnε

Hd

)))
.

Proof First, we note that the privacy of Algorithm 3 fol-
lows from the privacy of Algorithm 2 and Algorithm 1 and
post-processing.

To prove the convergence guarantees, we first need to show
that the optimal set X ⋆ is included in the shrinked domain
Xint. Using the high probability guarantees of Algorithm 1,
we know that with probability 1− β/2, we have

f(x1)− f(x⋆)

≤ 212L

λ
·

(√
log(2/β) log3/2 n√

n
+√

d log(1/δ) log(2/β) log n

nε

)
Using the quadratic growth condition, we immediately have
∥x⋆ − x1∥2 ≤ Dint/2 and hence X ⋆ ⊂ Xint.

Using smoothness, we have that for any x ∈ Xint,

f(x)− f(x⋆) ≤ HD2
int

2
.
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Since Algorithm 2 always outputs a point in its input domain
(in this case Xint), even in the non-interpolation setting that

E[f(xT )− f(x⋆)] ≤ LD · Õ
(

1√
n
+

d

nε

)2

.

In the interpolation setting, the guarantees of Algorithm 2
hold and result is immediate.

5. Optimality and Superefficiency
We conclude this paper by providing a lower bound and a
super-efficiency result that demonstrate the tightness of our
upper bounds. Recall that our upper bound from Section 4
is roughly (up to constants)

1

nc
+ exp

(
−Θ̃

(nε
d

))
. (5)

We begin with an exponential lower bound showing that the
second term in (5) is tight. We then prove a superefficiency
result that demonstrates that any private algorithm which
avoids the first term in (5) cannot be adaptive to interpola-
tion, that is, it does not achieve the minimax optimal rate
for the family of non-interpolation problems.

The following theorem presents our exponential lower
bounds for private interpolation problems with growth. We
use the notation and proof structure as that of Theorem 1.
We let Sλ ⊂ S be the subcollection of function, data set
pairs which also have functions fSn that have λ-quadratic
growth (Assumption 1).

Theorem 4. Suppose X ⊂ Rd contains a d-dimensional
ℓ2 ball of diameter D. Then the following minimax lower
bound holds

M(X ,Sλ, ε, 0) ≥ λD2

96
exp

(
−2λnε

Hd

)
.

Having proved our lower bound for the second term in (5),
we now turn to our superefficiency results.

We assume that X = [−D,D] ⊂ R and F : X × Ω→ R+

is convex, H-smooth, in its first argument and has non-
negative outputs. We let S consist of n samples from Ω. We
define fS(x) :=

1
n

∑
s∈S F (x; s). For simplicity, we also

assume that infx∈X F (x; s) = 0 for all s ∈ Ω.

We slightly modify existing notation to aid the statement
of the theorem. For a fixed function F : X ,Ω→ R which
is convex, H-smooth with respect to the first argument, let
SL

λ (F ) be the set of datasets S of n data points sampled
from Ω such that fS(x) = 1

n

∑
s∈Sn F (x, s) is L-Lipschitz

and have λ-strongly convex objectives. With this setup, we
present the formal statement of our result.

Theorem 5. Suppose we have some S ∈ SL
λ (F ) with L =

2HD such that (F,S) satisfy Definition 2.5. Suppose there
is an ε-DP estimator M such that

E[fS(M(S))]− inf
x∈X

fS(x) ≤ cD2e−Θ((nε)t)

for some t > 0 and absolute constant c. Then, for suffi-
ciently large n, there exists another dataset S ′ ∈ SL

λ (F )
such that

E[fS′(M(S ′))]− inf
x∈X

fS′(x) = Ω

(
D2

(nε)2(1−t)

)
To better contextualize this result, consider an algorithm
improves the convergence rate given in (5) such that the
exponentially decaying private term dominates. Then The-
orem 5 states that the same algorithm must suffer constant
error on some strongly convex non-interpolation problem.
More generally, recall that in the non-interpolation quadratic
growth setting, the minimax error rate is on the order of
1/(nε)2 (Asi et al., 2021c); Theorem 5 shows that attain-
ing better-than-polynomial error complexity on quadratic
growth interpolation problems implies that the algorithm
is not minimax optimal in the non-interpolation quadratic
growth setting. Thus, the rates our adaptive algorithms at-
tain are the best we can hope for if we want to be adaptive
to interpolation.
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A. Results from previous work
A.1. Proof of Lemma 2.1

1. Follows from Proposition IV.3.1.4 of (Hiriart-Urruty & Lemaréchal, 1993).

2. Follows from Proposition IV.3.1.4 of (Hiriart-Urruty & Lemaréchal, 1993).

3. Follows since for L-lipschitz functions 0 ∈ ∇f(x) + LB2.

4. Follows from Section VI.4.5 of (Hiriart-Urruty & Lemaréchal, 1993).

A.2. Algorithms from (Asi et al., 2021c)

Algorithm 4 Localization based Algorithm
Require: Dataset D = (s1, . . . , sn) ∈ Sn, constraint set X , step size η, initial point x0, Lipschitz (clipping) constant L,

privacy parameters (ε, δ);
1: Set k = ⌈log n⌉ and n0 = n/k
2: for i = 1 to k do
3: Set ηi = 2−4iη
4: Solve the following ERM over Xi = {x ∈ X : ∥x− xi−1∥2 ≤ 2Lηin0}:

Fi(x) =
1

n0

in0∑
j=1+(i−1)n0

F (x; sj) +
1

ηin0
∥x− xi−1∥22

5: Let x̂i be the output of the optimization algorithm.
6: if δ = 0 then
7: Set ζi ∼ Lapd(σi) where σi = 4Lηi

√
d/εi

8: else if δ > 0 then
9: Set ζi ∼ N(0, σ2

i ) where σi = 4Lηi
√

log(1/δ)/ε
10: end if
11: Set xi = x̂i + ζi
12: end for
13: return the final iterate xk

A.3. Theoretical results from (Asi et al., 2021c)

We first reproduce the high probability guarantees of Algorithm 4 as proved in (Asi et al., 2021c).
Proposition 2. Let β ≤ 1/(n+ d), D2(X ) ≤ D and F (x; s) be convex, L-Lipschitz for all s ∈ S. Setting

η =
D

L
min

(
1√

n log(1/β)
,

ε

d log(1/β)

)
then for δ = 0, Algorithm 4 is ε-DP and has with probability 1− β

f(x)− f(x⋆) ≤ 128LD ·

(√
log(1/β) log3/2 n√

n
+

d log(1/β) log n

nε

)
.

Proposition 3. Let β ≤ 1/(n+ d), D2(X ) ≤ D and F (x; s) be convex, L-Lipschitz for all s ∈ S. Setting

η =
D

L
min

(
1√

n log(1/β)
,

ε√
d log(1/δ) log(1/β)

)
,

then for δ > 0, Algorithm 4 is (ε, δ)-DP and has with probability 1− β

f(x)− f(x⋆) ≤ 128LD ·

(√
log(1/β) log3/2 n√

n
+

√
d log(1/δ) log(1/β) log n

nε

)
.
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Algorithm 5 Epoch-based algorithms for κ-growth
Require: Dataset S = (s1, . . . , sn) ∈ Sn, constraint set X , Lipschitz (clipping) constant L, initial point x0, number of

iterations T , probability parameter β, privacy parameters (ε, δ);
1: Set n0 = n/T and D0 = diam(X )
2: if δ = 0 then
3: Set η0 = D0

2L min

(
1√

n0 log(n0) log(1/β)
, ε
d log(1/β)

)
4: else if δ > 0 then
5: Set

η0 =
D0

2L
min

{
1√

n0 log(n0) log(1/β)
,

ε√
d log(1/δ) log(1/β)

)

6: end if
7: for i = 0 to T − 1 do
8: Let Si = (s1+(i−1)n0

, . . . , sin0
)

9: Set Di = 2−iD0 and ηi = 2−iη0
10: Set Xi = {x ∈ X : ∥x− xi∥2 ≤ Di}
11: Run Algorithm 4 on dataset Si with starting point xi, Lipschitz (clipping) constant L, privacy parameter (ε, δ),

domain Xi (with diameter Di), step size ηi
12: Let xi+1 be the output of the private procedure
13: end for
14: return xT

Now, we reproduce the high probability convergence guarantees of Algorithm 5.

Theorem 6. Let β ≤ 1/(n + d), D2(X ) ≤ D and F (x; s) be convex, L-Lipschitz for all s ∈ Ω. Assume that f has

κ-growth (Assumption 1) with κ ≥ κ > 1. Setting T =
⌈
2 logn
κ−1

⌉
, Algorithm 5 is ε-DP and has with probability 1− β

f(xT )−min
x∈X

f(x) ≤ 4032

λ
1

κ−1

·

(
L
√
log(1/β) log3/2 n√

n
+

Ld log(1/β) log n

nε(κ− 1)

) κ
κ−1

.

Theorem 7. Let β ≤ 1/(n+d), D2(X ) ≤ D and F (x; s) be convex, L-Lipschitz for all s ∈ Ω. Assume that f has κ-growth

(Assumption 1) with κ ≥ κ > 1. Setting T =
⌈
2 logn
κ−1

⌉
and δ > 0, Algorithm 5 is (ε, δ)-DP and has with probability 1− β

f(xT )−min
x∈X

f(x) ≤ 4032

λ
1

κ−1

·

(
L
√
log(1/β) log3/2 n√

n
+

L
√

d log(1/δ) log(1/β) log n

nε(κ− 1)

) κ
κ−1

.

B. Proofs from Section 3
B.1. Proof of Theorem 1

Consider the following sample risk function

F (x; s) :=
H

2
∥x− s∥22

We define the following datasets Snv := {0}n−k ∪ {v}k. We define the corresponding population risk to be fv(x) :=
1
n

∑
s∈Sv

F (x; s) = kH
2n ∥x− v∥22. We select V to be a γ-packing (with respect to the ℓ2 norm) of diameter D ball contained

in X . The separation between v, v′ ∈ V with respect to the loss fv and fv′ is

inf
x∈X

fv(x)

2
+

fv′(x)

2
≥ c :=

kH

8n
γ2
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For the sake of contradiction, suppose that E[fv(M(Sv))] ≤ τ for τ < kHγ2

8n(1+ekε2dγd/Dd)
for all v ∈ X . Then we have

τ

c

(i)

≥ P(fv(M(Sv)) > c)

(ii)

≥ P(∪v′∈V\{v}fv′(M(Sv)) ≤ c)

(iii)

≥ e−kε
∑

v′∈V\{v}

P(fv′(M(Sv′)) ≤ c)

(i)

≥ e−kε(|V| − 1)
(
1− τ

c

)
,

where inequality (i) follows from Markov’s inequality, (ii) follows from the definition of the separation, and (iii) follows
from privacy and the disjoint nature of the events in the union. Rearranging, we get that

τ ≥ kHγ2

8n(1 + ekε(|V| − 1)−1)

which is a contradiction. By standard packing inequalities, we know that |V| ≥ (D/2γ)d. Setting k = d/ε and γ = D/2e
and using the fact that x/(x− 1) is decreasing in x gives

τ ≥ dHD2

32nεe2(1 + ed(ed − 1)−1)
≥ HD2d

96e2nε

We now prove the (ε, δ)-DP lower bound. Consider the following sample risk function

F (x; s) :=
H

2
(x− s)2

We define the following datasets Snv := {0}n−k ∪ {v}k. We define the corresponding population risk to be fv(x) :=
1
n

∑
s∈Sv

F (x; s) = kH
2n (x− v)2. We select two points v, v′ contained within the diameter D ball contained in X such that

|v − v′| = D. The separation between v, v′ ∈ V with respect to the loss fv and fv′ is

inf
x∈X

fv(x)

2
+

fv′(x)

2
≥ c :=

kH

8n
D2

For the sake of contradiction, suppose that E[fv(M(Sv))] ≤ τ for τ < kHD2

8n

(
e−kε−ke−εδ

1+e−kε

)
for all v ∈ X . Then we have

τ

c

(i)

≥ P(fv(M(Sv)) > c)

(ii)

≥ P(fv′(M(Sv)) ≤ c)

(iii)

≥ e−kεP(fv′(M(Sv′)) ≤ c)− ke−εδ

(i)

≥ e−kε
(
1− τ

c

)
− ke−εδ,

where inequality (i) follows from Markov’s inequality, (ii) follows from the definition of the separation, and (iii) follows
from group privacy of (ε, δ)-privacy (Dwork & Roth, 2014). Rearranging, we get that

τ ≥ kHD2

8n

(
e−kε − ke−εδ

1 + e−kε

)
which is a contradiction. Setting k = 1/ε and using the fact δ ≤ εeε−1/2 gives the first result.
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C. Proofs from Section 4
We first prove a lemma which proves that each time we shrink the domain size, the set of interpolating solutions still lies
in the new domain with high probability and the new lipschitz constant we define is a valid lipschitz constant for the loss
defined on the new domain. We prove it in generality for κ-growth.

Lemma C.1. Let X ⋆ denote the set of interpolating solutions of problem (1). Then, X ⋆ ⊂ Xi, for all i ∈ [T ] with probability
1− β and ∥∇F (y; s)∥2 ≤ Li for all y ∈ Xi.

Proof We prove this lemma for the case when δ = 0, the case when δ > 0 follows similarly. For epoch i, using Theorem
2 of (Asi et al., 2021c), we have with probability 1− β/T ,

f(x̂i)− f(x⋆) ≤ Cκ

λ
1

κ−1

max

{
Li

√
log(T/β) log3/2 m√

m
,
Lid log(T/β) logm

mε

} κ
κ−1

Using the growth condition on f(·), we have

∥x̂i − x⋆∥2 ≤
κ

√
κ(f(x̂i)− f(x⋆))

λ
≤ (Cκκ)

1/κ max

{
Li

√
log(T/β) log3/2 m

λ
√
m

,
Lid log(T/β) logm

λmε

} 1
κ−1

,

Using cκ = 2(Cκκ)
1/κ, we get ∥x̂i − x⋆∥2 ≤ Di+1/2 with probability 1− β/T . Thus, for each epoch i, with probability

1− β/T , we have that each point in set of optimizers lies in the domain Xi. Using a union bound on all epochs, we have
with probability 1− β, the optimum lies in the new domain defined at the end of all epochs.

We now prove the second part of the lemma. Using smoothness of F (·; s) and the fact that∇F (x⋆; s) = 0 for all x⋆ ∈ X ⋆,
we have

∥∇F (y; s)∥2 = ∥∇F (y; s)−∇F (x⋆; s)∥2 ≤ H ∥y − x⋆∥2 ≤ H (∥y − x̂i∥2 + ∥x̂
⋆ − x̂i∥2) ≤ HDi = Li

We now restate and prove the convergence rate of Algorithm 2

Theorem 2. Assume each sample function F is L-Lipschitz and H-smooth, and let the population function f satisfy
quadratic growth (Assumption 1). Let Problem (1) be an interpolation problem. Then, Algorithm 2 is (ε, δ)-DP. For δ = 0,

Algorithm 2 with β = 1
nµ for any µ > 0, m = 256 log2 nH log(1/β)

λ max
{

256H
λ , d

ε
√
logn

}
and T = n/m returns xT such

that

E[f(xT )− f(x⋆)] ≤ LD

(
1

nµ
+ exp

(
Θ̃

(
nλ2

H2

))
+

exp

(
−Θ̃

(
λnε

Hd

)))
. (3)

For δ > 0, Algorithm 2 with β = 1
nµ for any µ > 0, m = 256 log2 nH log(1/β)

λ max
{

256H
λ ,

√
d log(1/δ)

ε
√
logn

}
and T = n/m

returns xT such that

E[f(xT )− f(x⋆)] ≤ LD

(
1

nµ
+ exp

(
Θ̃

(
nλ2

H2

))
+

exp

(
−Θ̃

(
λnε

H
√
d log(1/δ)

)))
. (4)

Proof First we prove the privacy guarantee of the algorithm. Each samples impacts only one of the iterates x̂i, thus
Algorithm 2 satisfies the same privacy guarantee as Algorithm 5 by postprocessing.
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The utility proof can be divided into 2 main parts; first is to check the validity of the assumptions while applying Algorithm 5
and using its high probability convergence guarantees. To check this, we ensure that the optimum set lies in the new domain
defined at every step and that the lipschitz constant defined with respect to the domain is a valid lipschitz constant. This
follows from Lemma C.1.

Next, we use the high probability convergence guarantees of the subalgorithm Algorithm 5 to get convergence rates for
Algorithm 2. We prove it for the case when δ = 0, the case when δ > 0 is similar. We know that,

Li = HDi

= c2
HLi−1

λ
max

{√
log(T/β) log3/2 m√

m
,
d log(T/β) logm

mε

}
.

Thus, we have

LT =

(
c2

H

λ
max

{√
log(T/β) log3/2 m√

m
,
d log(T/β) logm

mε

})T−1

L1

Using Theorem 2 of (Asi et al., 2021c) on the last epoch, we have with probability 1− β,

f(x̂T )− f(x⋆) ≤ C2
L2
T

λ
max

{
log(T/β) log3/2 m

m
,
d2 log2(T/β) logm

m2ε2

}

=

(
c22

H2

λ2
max

{
log(T/β) log3/2 m

m
,
d2 log2(T/β) logm

m2ε2

})T
C2L

2
1λ

H2c22

=

(
c22

H2

λ2
max

{
log(T/β) log3/2 m

m
,
d2 log2(T/β) logm

m2ε2

})T
L2
1λ

8H2

Let m = k log2 n and T = n/m for some k such that(
c22

H2

λ2
max

{
log(n/(βk log2 n)) log3/2(k log2 n)

k log2 n
,
d2 log2(n/(βk log2 n)) log(k log2 n)

(k log2 n)2ε2

})
≤ 1

e
.

One such k for which this holds for sufficiently large n is given by

k = 256
H log(1/β)

λ
max

{
256H

λ
,

d

ε
√
log n

}
.

Using these values of m and T , we have

f(x̂T )− f(x⋆) ≤ C2L
2λ

H2c22
exp

(
− n

k log2 n

)
=

L2
1λ

8H2
exp

(
− n

k log2 n

)
.

To get the convergence results in expectation, let A denote the ”bad” event with tail probability β. Now,

E[f(x̂T )− f(x⋆)] ≤ β
HD2

2
+ (1− β)E[f(x̂T )− f(x⋆)|Ac]

≤ β
HD2

2
+ E[f(x̂T )− f(x⋆)|Ac]

Substituting β = 1
nµ and using Theorem 2, we get the result.
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Algorithm 6 Epoch based epoch based epoch based clipped-GD
Require: number of epochs: T , samples in each round: m = n/T , Diameter at the start: D1, lipschitz constant at the start

L1, domain X1, initial point x̂0

1: for i = 1 to T do
2: x̂i ← Output of Algorithm 5 when run on domain Xi (diameter Di), with lipschitz constant Li using m samples.
3: if δ = 0 then
4:

Set Di+1 = cκ

(
Li

λ
max

{√
log(T/β) log3/2 m√

m
,
d log(T/β) logm

mε

}) 1
κ−1

5: else if δ > 0 then
6:

Set Di+1 = cκ

(
Li

λ
max

{√
log(T/β) log3/2 m√

m
,

√
d log(1/δ) log(T/β) logm

mε

}) 1
κ−1

7: end if
8: Set Xi+1 = {x̂ : ∥x̂− x̂i∥2 ≤ Di+1/2}
9: Set Li+1 = HDi+1

10: end for
11: return the final iterate xT

C.1. Algorithm for general κ

Remark cκ is an absolute constant dependent on the high probability performance guarantees of Algorithm 5. We can
calculate that Cκ is at most 212(∼ 4000) and hence cκ ≤ 2(212κ)1/κ ≤ 4 · 212/κ.

Theorem 8. Assume each sample function F be L-Lipschitz and H-smooth, and let the population function f satisfy
quadratic growth (Assumption 1). Let Problem (1) be an interpolation problem. Then, Algorithm 6 is (ε, δ)-DP. For δ = 0,
Algorithm 6 with T = log n and m = n

logn , we have

f(x̂T )− f(x⋆) ≤ Õ

(
1√
n
+

d

nε

) κ
κ−2

,

with probability 1− β. For δ > 0, Algorithm 6 when run using T = log n and m = n/ log n achieves error

f(x̂T )− f(x⋆) ≤ Õ

(
1√
n
+

√
d log(1/δ)

nε

) κ
κ−2

,

with probability 1− β.

Proof The privacy guarantee follows from the proof of Theorem 2. The utility proof can be divided into 2 main parts; first
is to check the validity of the assumptions while applying Algorithm 5 and using its high probability convergence guarantees.
To check this, we ensure that the optimum set lies in the new domain defined at every step and that the lipschitz constant
defined with respect to the domain is a valid lipschitz constant. This follows from Lemma C.1.

Next, we use the high probability convergence guarantees of the subalgorithm Algorithm 5 to get convergence rates for
Algorithm 2.

We prove it for the case when δ = 0, the case when δ > 0 is similar. We know that,

Li = HDi

= cκH

(
Li−1

λ
max

{√
log(T/β) log3/2 m√

m
,
d log(T/β) logm

mε

}) 1
κ−1

.
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Thus, we have

LT = (cκH)
κ−1
κ−2

(
1− 1

(κ−1)T−1

)(
1

λ
max

{√
log(T/β) log3/2 m√

m
,
d log(T/β) logm

mε

}) 1
κ−2

(
1− 1

(κ−1)T−1

)
L

1

(κ−1)T−1

1 .

We note that for T ∼ log n, 1
(κ−1)T−1 ≈ 1

n and thus for large n, we ignore the terms of the form a−
1
n since they are ≈ 1.

Ignoring these terms by including an additional constant C ′ we can write,

LT = C ′(cκH)
κ−1
κ−2

(
1

λ
max

{√
log(T/β) log3/2 m√

m
,
d log(T/β) logm

mε

}) 1
κ−2

L
1

(κ−1)T−1

1 .

Using Theorem 2 of (Asi et al., 2021c) on the last epoch, we have with probability 1− β,

f(x̂T )− f(x⋆) ≤ Cκ

λ
1

κ−1

max

{
LT

√
log(T/β) log3/2 m√

m
,
LT d log(T/β) logm

mε

} κ
κ−1

=
(C ′)

κ
κ−1Cκ(cκH)

κ
κ−2

λ
2

κ−2

max

{√
log(T/β) log3/2 m√

m
,
d log(T/β) logm

mε

} κ
κ−2

L
κ

(κ−1)T

1 .

Choosing T = log n and m = n/ log n, we have

f(x̂T )− f(x⋆) ≤ (C ′)
κ

κ−1Cκ(cκH)
κ

κ−2

λ
2

κ−2

max

{√
log(log n/β) log3/2(n/ log n)√

n/ log n
,
d log(log n/β) log(n/ log n)

εn/ log n

} κ
κ−2

L
κ
n
1 .

Now we write results in terms of sample complexity required to achieve a particular error. The sufficient number of samples.
To ensure f(x̂T )− f(x⋆) < α, it is sufficient to ensure

(C ′)
κ

κ−1Cκ(cκH)
κ

κ−2

λ
2

κ−2

max

{√
log(T/β) log3/2 m√

m
,
d log(T/β) logm

mε

} κ
κ−2

L
κ

(κ−1)T

1 < α.

Choosing n = Õ
(
max{( 1

α2 )
κ−2
κ , ( d

εα )
κ−2
κ }
)

ensures error ≤ α.

Corollary C.1. Under the conditions of Theorem 8, for δ = 0, the expected error of the output of algorithm is upper
bounded by

E[f(x̂T )− f(x⋆)] ≤ Õ

(
1√
n
+

d

nε

) κ
κ−2

,

for arbitrarily large µ. For δ > 0, the expected error of the output of algorithm is upper bounded by

E[f(x̂T )− f(x⋆)] ≤ Õ

(
1√
n
+

d

nε

) κ
κ−2

,

for arbitrarily large µ.

C.2. (ε, δ) version of Theorem 3

Theorem 9. Assume each sample function F be L-Lipschitz and H-smooth, and let the population function f satisfy
quadratic growth (Assumption 1) with coefficient λ. Let xadapt be the output of Algorithm 3. Then,
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1. Algorithm 3 is ε-DP.

2. Without any additional interpolation assumption, we have that the expected error of the xadapt is upper bounded by

E[f(xT )− f(x⋆)] ≤ LD · Õ

(
1√
n
+

√
d log(1/δ)

nε

)2

.

3. Let problem (1) be an interpolation problem. Then, the expected error of the xadapt is upper bounded by

E[f(xT )− f(x⋆)] ≤ LD

(
1

nµ
+ exp

(
−Θ̃

(
nλ2

H2

))
+ exp

(
−Θ̃

(
λnε

H
√
d log(1/δ)

)))
.

Proof First, we note that the privacy of Algorithm 3 follows from the privacy of Algorithm 2 and Algorithm 1 and
post-processing.

To prove the convergence guarantees, we first need to show that the optimal set X ⋆ is included in the shrinked domain Xint.
Using the high probability guarantees of Algorithm 1, we know that with probability 1− β/2, we have

f(x1)− f(x⋆)

≤ 212L

λ
·

(√
log(2/β) log3/2 n√

n
+√

d log(1/δ) log(2/β) log n

nε

)
Using the quadratic growth condition, we immediately have ∥x⋆ − x1∥2 ≤ Dint/2 and hence X ⋆ ⊂ Xint.

Using smoothness, we have that for any x ∈ Xint,

f(x)− f(x⋆) ≤ HD2
int

2
.

Since Algorithm 2 always outputs a point in its input domain (in this case Xint), even in the non-interpolation setting that

E[f(xT )− f(x⋆)] ≤ LD · Õ

(
1√
n
+

√
d log(1/δ)

nε

)2

.

In the interpolation setting, the guarantees of Algorithm 2 hold and result is immediate.

D. Proofs from Section 5
D.1. Proof of Theorem 4

The proof is exactly the same as Theorem 1, except we set k = λn
H to ensure that fv(x) for any v ∈ X has λ-quadratic

growth. Finally we set γ = D
2 exp(−λnε

Hd ) and use the fact that e
λnε
H ≥ 2 and the fact that x/(x− 1) is decreasing in x to

give the desired lower bound.

D.2. Proof of Theorem 5

The proof of this result hinges on the two following supporting propositions. We first copy Proposition 2.2 from (Asi &
Duchi, 2020) (listed as Proposition 4 below) in our notation for convenience. We then state Proposition 5 which gives upper
and lower bounds on the modulus of continuity (defined in Proposition 4). We will first assume this to be true and prove
Theorem 5 before returning prove its correctness.
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Proposition 4. For some fixed F : X ,Ω → R which is convex and H-smooth with respect to its first argument, let
S ∈ SL

λ (F ) for L = 2HD. Let x⋆
S = argminx′∈X fS(x

′). The corresponding modulus of continuity is defined as

ω(S, 1/ε) := sup
S′∈SL

λ (F )

{|x⋆
S − x⋆

S′ | : dham(S,S ′) ≤ 1/ε}.

Assume the mechanism M is ε-DP and for some γ ≤ 1
2e achieves

E[|M(S)− x⋆
S |] ≤ γ

(
ω(S; 1/ε)

2

)
.

Then there exists a sample S ′ ∈ SL
λ (F ) where dham(S,S ′) ≤ log(1/2γ)

2ε such that

E[|M(S ′)− x⋆
S′ |] ≥

1

4
ℓ

(
1

4
ω

(
S ′; log(1/2γ)

2ε

))
.

Proposition 5. For some fixed F : X ,Ω→ R which is convex and H-smooth with respect to its first argument such that
infx∈X F (x; s) = 0 for all s ∈ Ω, suppose we have some S ∈ SL

λ (F ) with L = 2HD which also induces an interpolation
problem (a problem which satisfies Definition 2.5). With respect to the dataset S, the modulus of continuity ω(S, 1/ε)
satsifies

D

nε
≤ ω(S, 1/ε) ≤ 8HD

λnε

With these two results, we can now prove Theorem 5. Restating the conditions of the theorem formally, suppose for some
constant c0 and c1 there is an ε-DP estimator M such that

E[fS(M(S))]− inf
x∈X

fS(x) ≤ c0D
2e−c1(nε)

t

.

If t > 1, set t = min(1, t), then the bound certainly still holds for large enough n. If we let x⋆
S = argminx∈X fS(x), using

the definition of strong convexity, we have that there exists some c2 and c3 such that

E[|M(S)− x⋆
S |] ≤ c2De−c3(nε)

t

In order to satisfy the expression from Proposition 4, we select γ such that

γω(S; 1/ε)
2

= c2De−c3(nε)
t

.

Using Proposition 5 we must have λnε
4H c2 exp(−c3(nε)t) ≤ γ ≤ 2nεc2 exp(−c3(nε)t). Using Proposition 4, we have that

E[|M(S ′)− x⋆
S′ |] ≥ ω

(
S ′; log(1/2γ)

2ε

)
Before performing a further lower bound on this quantity, we first verify that log(1/2γ)

2ε does not exceed the total size of the
dataset, n. Using our bounds on γ, we see that

log(1/2γ)

2ε
≤ 1

2ε

(
c3(nε)

t − log c2 − log

(
λnε

2H

))
For any t ∈ (0, 1] For sufficiently large n, this quanitity is less than n. We now lower bound the modulus of continuity by
using the fact that it is a non-decreasing function in its second argument:

E[|M(S ′)− x⋆
S′ |] ≥ ω

(
S ′; log(1/2γ)

2ε

)
≥ ω

(
S ′; c3(nε)

t − log c2 − log(4nε)

2ε

)
≥ D

2nε

[
c3(nε)

t − log c2 − log(4nε)
]
.

This is the desired result; the last inequality comes from another application of Proposition 5 but with c3(nε)
t−log c2−log(4nε)

2ε
in place of 1/ε. This is the desired result.
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D.2.1. PROOF OF PROPOSITION 5

To aid our proof of the Proposition 5 result, we use several supporting lemmas. This first lemma ensures that the minimizing
set does not change upon the removal of a constant number of samples.

Lemma D.1. Assume that infx∈X F (x; s) = 0 for all s ∈ Ω. Suppose fS satisfies Definition 2.5 and has λ-quadratic growth.
LetX ⋆ := argminx∈X fS(x). Let Sε ⊂ S consist of any constant 1/ε > 0 data points. Then, for f\ε

S := 1
n

∑
s∈S\Sε

F (x; s)

we have that X ⋆
\ε := argminx∈X f

\ε
S (x) = X ⋆.

Proof Suppose for the sake of contradiction that X ⋆ ̸= X ⋆
\ε Since fS is an interpolation problem, the removal of samples

can only increase the size of X ⋆
\ε. This means that there must be a line segment [a, b] ⊂ X ⋆

\ε \ X
⋆ where b > a. This means

that there exists only ε points in S that have non-zero error on [a, b]. However, by smoothness of each sample function (and
the fact that f(x⋆) = 0 and f ′(x⋆) = 0 by construction), we have that for x ∈ [a, b]

fS(x) ≤
Hε

n
dist(x,X ⋆)2.

Since limn→∞
Hε
n = 0, this contradicts λ-quadratic growth.

This second lemma ensures that deleting a constant number of samples does not affect the growth or strong convexity of the
population function by too much.

Lemma D.2. Assume that infx∈X F (x; s) = 0 for all s ∈ Ω. Suppose fS satisfies Definition 2.5 and has λ-quadratic
growth (λ-strong convexity). Let f\ε

S be defined as it is in Lemma D.1. Then f
\ε
S has γ-quadratic growth (γ-strong convexity)

for any γ ≤ λ− H
nε .

Proof By Lemma D.1, that the minimizing set of f\ε
S is the same as fS . Suppose for the sake of contradiction that f\ε

S
does not have γ-quadratic growth. Then there must exist x1 such that

f
\ε
S (x1)− f

\ε
S (x⋆) <

γ

2
∥x1 − x⋆∥22

By smoothness and growth we have

H

2nε
∥x1 − x⋆∥22 +

γ

2
∥x1 − x⋆∥22 > fS(x1)− fS(x

⋆) ≥ λ

2
∥x1 − x⋆∥22

However, this implies that γ > λ− H
nε which is a contradiction.

Suppose for the sake of contradiction that f\ε
S does not have γ-strong convexity. Then there must exist x1 and x2 such that

f
\ε
S (x1)− f

\ε
S (x2) <

γ

2
∥x1 − x⋆∥22 + ⟨∇f

\ε
S (x2), x1 − x2⟩

By smoothness and strong convexity we have

H

2nε
∥x1 − x2∥22 +

γ

2
∥x1 − x2∥22 + ⟨∇fS(x2), x1 − x2⟩ > fS(x1)− fS(x2) ≥

λ

2
∥x1 − x2∥22 + ⟨∇fS(x2), x1 − x2⟩

However, this implies that γ > λ− H
nε which is a contradiction.

The next lemma is a standard result on the closure under addition of strongly convex functions.

Lemma D.3. Let functions h1 and h2 be λ and γ strongly convex respectively, then h1 + h2 is λ+ γ strongly convex.

This lemma provides some growth conditions on the gradient under smoothness, strong convexity and quadratic growth.

Lemma D.4. Let g : X → R+ be a convex function with X ⋆ = argminx∈X g(x) such that for x⋆ ∈ X ⋆, g(x⋆) = 0.
Suppose g has λ-quadratic growth, then

|g′(x)| ≥ λ

2
dist(x,X ⋆).
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If instead g has λ-strong convexity, then

|g′(x)| ≥ λ dist(x,X ⋆).

Alternatively, suppose g has H-smoothness, then

|g′(x)| ≤ H dist(x,X ⋆).

Proof We note that by first order optimality conditions, for all x⋆ ∈ X ⋆, ∇g(x⋆) = 0. To prove the first inequality, we
have that for any x⋆ ∈ X ⋆, the following is true:

λ

2
dist(x,X ⋆)2 ≤ g(x)− g⋆ ≤ |g′(x)||x− x⋆|.

In particular, minimizing over x⋆ on the right hand side and rearranging gives the desired result. To prove the second result,
we know that by strong convexity for any x⋆ ∈ X ⋆

|g′(x)| = |g′(x)− g′(x⋆)| ≥ λ|x− x⋆|.

To prove the last result, we know that by smoothness for any x⋆ ∈ X ⋆

|g′(x)| = |g′(x)− g′(x⋆)| ≤ H|x− x⋆|.

Minimizing over x⋆ on the right hand side gives the desired result.

This lemma controls how much the minimizers of a function can change if another function is added. This will directly be
useful in lower bounding the modulus of continuity.

Lemma D.5. Suppose h(x) : [−D,D]→ R+ and g(x) : [−D,D]→ R+. Let x⋆
h be the largest minimizer of h and x⋆

g be
the smallest minimizer of g. Assume that h(x⋆

h) = 0 and g(x⋆
g) = 0.

If h has λh-quadratic growth and g is Hg-smooth, then

x⋆ − x⋆
h ≤

Hg(x
⋆
g − x⋆

h)
λh

2 +Hg

.

If h is Hh-smooth and g has λg-quadratic growth, then

λg

2 (x⋆
g − x⋆

h)
λg

2 +Hh

≤ x⋆ − x⋆
h.

The same relation holds with λg/2 and λh/2 replaced with λg and λh respectively if the above statement is modified such
that g and h are λg and λh strongly convex instead.

Proof If x⋆
h ̸= D, then the first order condition for optimality implies

h′(x⋆
h) + g′(x⋆

h) = g′(x⋆
h) < 0 h′(x⋆

g) + g′(x⋆
g) = h′(x⋆

g) > 0

Thus, we know that x⋆ ∈ (x⋆
h, x

⋆
g). We also know by the monotonicty of the first derivative of convex functions that for

x⋆ ∈ (x⋆
h, x

⋆
g), g

′(x⋆) < 0 and h′(x⋆) > 0. Combining this fact with Lemma D.4, we get that

λh

2
(x⋆ − x⋆

h) ≤ h′(x⋆) ≤ Hh(x
⋆ − x⋆

h)

Hg(x
⋆ − x⋆

g) ≤ g′(x⋆) ≤ λg

2
(x⋆ − x⋆

g)

Combining these facts we get that

λh

2
(x⋆ − x⋆

h) +Hg(x
⋆ − x⋆

g) ≤ h′(x⋆) + g(′x⋆) = 0 ≤ Hh(x
⋆ − x⋆

h) +
λg

2
(x⋆ − x⋆

g)
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Rearranging these two inequalities gives the desired result. We note that the lower bound only requires h is Hh-smooth
and g has λg-quadratic growth, and the upper bound only requires h has λh-quadratic growth and g is Hg-smooth. The
last statement about strong convexity follows from the same reasoning, except using the strong convexity inequality in
Lemma D.4 instead of the quadratic growth inequality.

The following lemma is a slight modification of Claim 6.1 from (Shalev-Shwartz et al., 2009) and will be helpful for us to
upper bound the modulus of continuity.

Lemma D.6. Let S ′ consist of n data points, and suppose it differs from S on k of them. Suppose that fS is λ-strongly
convex and satisfies Definition 2.5. Suppose the sample function F : X × Ω → R+ is L-Lipschitz in its first argument.
Assume that infx∈X F (x; s) = 0 for all s ∈ Ω. For xS ∈ argminx∈X fS(x) and xS′ ∈ argminx∈X fS′(x), we have that

∥xS − xS′∥2 ≤
4kL

λn

Proof By strong convexity, we have that

fS(xS′)− fS(xS) ≥
λ

2
∥xS′ − xS∥22 ,

since by first order optimality conditions, we know that∇fS(xS) = 0 as a consequence of Definition 2.5. We also have the
following

fS(xS′)− fS(xS) =
1

n

∑
s∈S\S′

[F (xS′ ; s)− F (xS ; s)] +
1

n

∑
s∈S∩S′

[F (xS′ ; s)− F (xS ; s)]

=
1

n

∑
s∈S\S′

[F (xS′ ; s)− F (xS ; s)]−
1

n

∑
s∈S′\S

[F (xS′ ; s)− F (xS ; s)] + fS′(xS′)− fS′(xS)

≤ 2kL

n
∥xS′ − xS∥2 ,

where the last inequality comes from the Lipschitzness of F and the fact that xS′ ∈ argminx∈X fS′(x).

Armed with these supporting lemmas, we can now bound the modulus of continuity.

Without loss of generality, we assume that x⋆
0 ≤ 0. If x⋆

0 > 0, by symmetry, it suffices to consider the problem mirrored
across the y-axis or alternatively replacing H

2 (x−D)2 with H
2 (x+D)2 in the following proof. By Lemma D.1, f\ε

S has
the same minimizing set as fS . By Lemma D.2, f\ε

S has λ − H
nε -strong convexity. Replace the 1/ε datapoints removed

with samples that have the loss function H
2 (x−D)2; we note that it is clear that H

2 (x−D)2 satisifies the desired Lipschitz
condition. The population function is

f
\ε
S (x) +

H

2nε
(x−D)2

which is λ-strongly convex by Lemma D.2 and Lemma D.3. This means that the S ′ this function corresponds to belongs to
S.

By triangle inequality, we have f
\ε
S is

(
n−1/ε

n

)
H-smooth. H

2nε (x−D)2 is H
nε - strongly convex. Thus, by Lemma D.5, we

have that

|x⋆ − x⋆
0| = x⋆ − x⋆

0 ≥
H
nε (D − x⋆

0)(
n−1/ε

n

)
H + H

nε

=
D − x⋆

0

nε
=

D + |x⋆
0|

nε
≥ D

nε

The upper bound follows from Lemma D.6 with k = 1/ε and L = 2HD.


