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Abstract

We present a detailed study of estimation er-
rors in terms of surrogate loss estimation errors.
We refer to such guarantees as H-consistency
bounds, since they account for the hypothesis set
H adopted. These guarantees are significantly
stronger than H-calibration or H-consistency.
They are also more informative than similar ex-
cess error bounds derived in the literature, when
H is the family of all measurable functions.
We prove general theorems providing such guar-
antees, for both the distribution-dependent and
distribution-independent settings. We show that
our bounds are tight, modulo a convexity assump-
tion. We also show that previous excess error
bounds can be recovered as special cases of our
general results. We then present a series of ex-
plicit bounds in the case of the zero-one loss, with
multiple choices of the surrogate loss and for both
the family of linear functions and neural networks
with one hidden-layer. We further prove more fa-
vorable distribution-dependent guarantees in that
case. We also present a series of explicit bounds
in the case of the adversarial loss, with surrogate
losses based on the supremum of the ρ-margin,
hinge or sigmoid loss and for the same two gen-
eral hypothesis sets. Here too, we prove several
enhancements of these guarantees under natural
distributional assumptions. Finally, we report the
results of simulations illustrating our bounds and
their tightness.

1. Introduction
Most learning algorithms rely on optimizing a surrogate loss
function distinct from the target loss function tailored to the
task considered. This is typically because the target loss
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function is computationally hard to optimize or because it
does not admit favorable properties, such as differentiability
or smoothness, crucial to the convergence of optimization
algorithms. But, what guarantees can we count on for the
target loss estimation error, when minimizing a surrogate
loss estimation error?

A desirable property of a surrogate loss function, often re-
ferred to in that context is Bayes-consistency. It requires
that asymptotically, nearly optimal minimizers of the surro-
gate excess error also nearly optimally minimize the target
excess error (Steinwart, 2007). This property holds for a
broad family of convex surrogate losses of the standard bi-
nary and multi-class classification losses (Zhang, 2004a;
Bartlett et al., 2006; Tewari & Bartlett, 2007; Steinwart,
2007). But, Bayes-consistency is not relevant when learn-
ing with a hypothesis set H distinct from the family of all
measurable functions. Instead, the hypothesis set-dependent
notion of H-consistency should be adopted, as argued by
Long & Servedio (2013) (see also (Kuznetsov et al., 2014)
and (Zhang & Agarwal, 2020)). More recently, Awasthi et al.
(2021a) further studied H-consistency guarantees for the ad-
versarial loss (Goodfellow et al., 2014; Madry et al., 2017;
Tsipras et al., 2018; Carlini & Wagner, 2017). Nevertheless,
consistency and H-consistency are both asymptotic proper-
ties and thus do not provide any guarantee for approximate
minimizers learned from finite samples.

Instead, we will consider upper bounds on the target esti-
mation error expressed in terms of the surrogate estimation
error, which we refer to as H-consistency bounds, since
they account for the hypothesis set H adopted. These guar-
antees are significantly stronger than H-calibration or H-
consistency (Section 6) or some margin-based properties
of convex surrogate losses for linear predictors studied by
Ben-David et al. (2012) and Long & Servedio (2011). They
are also more informative than similar excess error bounds
derived in the literature, which correspond to the special
case where H is the family of all measurable functions
(Zhang, 2004a; Bartlett et al., 2006) (see also (Mohri et al.,
2018)[section 4.7]). We prove general theorems providing
such guarantees, which could be used in both distribution-
dependent and distribution-independent settings (Section 4).
We show that our bounds are tight, modulo a convexity as-
sumption (Section 5.2 and 6.1). We also show that previous
excess error bounds can be recovered as special cases of our
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general results (Section 5.1).

We then present a series of explicit bounds in the case of
the 0/1 loss (Section 5), with multiple choices of the surro-
gate loss and for both the family of linear functions (Sec-
tion 5.3) and that of neural networks with one hidden-layer
(Section 5.4). We further prove more favorable distribution-
dependent guarantees in that case (Section 5.5).

We also present a detailed analysis of the adversarial loss
(Section 6). We show that there can be no non-trivial ad-
versarial H-consistency bound for supremum-based convex
loss functions and supremum-based sigmoid loss function,
under mild assumptions that hold for most hypothesis sets
used in practice (Section 6.2). These results imply that
the loss functions commonly used in practice for optimiz-
ing the adversarial loss cannot benefit from any useful H-
consistency bound guarantee! These are novel results that
go beyond the negative ones given for convex surrogates by
Awasthi et al. (2021a).

We present new H-consistency bounds for the adversarial
loss with surrogate losses based on the supremum of the
ρ-margin loss, for linear hypothesis sets (Section 6.3) and
the family of neural networks with one hidden-layer (Sec-
tion 6.4). Here too, we prove several enhancements of these
guarantees under some natural distributional assumptions
(Section 6.5).

Our results help compare different surrogate loss functions
of the zero-one loss or adversarial loss, given the specific
hypothesis set used, based on the functional form of their
H-consistency bounds. These results, combined with ap-
proximation error properties of surrogate losses, can help
select the most suitable surrogate loss in practice. In addi-
tion to several general theorems, our study required a careful
inspection of the properties of various surrogate loss func-
tions and hypothesis sets. Our proofs and techniques could
be adopted for the analysis of many other surrogate loss
functions and hypothesis sets.

In Section 7, we report the results of simulations illustrating
our bounds and their tightness. We give a detailed discus-
sion of related work in Appendix A. We start with some
preliminary definitions and notation.

2. Preliminaries
Let X denote the input space and Y = {−1,+1} the binary
label space. We will denote by D a distribution over X × Y,
by P a set of such distributions and by H a hypothesis set
of functions mapping from X to R. The generalization
error and minimal generalization error for a loss function
`(h,x, y) are defined as R`(h) = E(x,y)∼D[`(h,x, y)] and
R∗
`,H = infh∈HR`(h). Let Hall denote the hypothesis set of

all measurable functions. The excess error of a hypothesis

h is defined as the difference R`(h)−R∗
`,Hall

, which can be
decomposed into the sum of two terms, the estimation error
and approximation error:

R`(h)−R∗
`,Hall

= (R`(h) −R∗
`,H)+(R∗

`,H −R∗
`,Hall

). (1)

Given two loss functions `1 and `2, a fundamental question
is whether `1 is consistent with respect to `2 for a hypothesis
set H and a set of distributions P (Bartlett et al., 2006;
Steinwart, 2007; Long & Servedio, 2013; Bao et al., 2021;
Awasthi et al., 2021a).

Definition 1 ((P,H)-consistency). We say that `1 is
(P,H)-consistent with respect to `2, if, for all distributions
D ∈ P and sequences {hn}n∈N ⊂H, we have

lim
n→+∞

R`1(hn)−R∗
`1,H = 0⇒ lim

n→+∞
R`2(hn)−R∗

`2,H = 0. (2)

We will denote by Φ a margin-based loss if a loss function
` can be represented as `(h,x, y) = Φ(yh(x)) and by Φ̃∶ =
supx′∶∥x−x′∥p≤γ Φ(yh(x′)), p ∈ [1,+∞], the supremum-
based counterpart. In the standard binary classification,
`2 is the 0/1 loss `0−1∶ = 1sign(h(x))≠y, where sign(α) =
1α≥0 − 1α<0 and `1 is the margin-based loss for some
function Φ∶R → R+, typically convex. In the adver-
sarial binary classification, `2 is the adversarial 0/1 loss
`γ ∶ = supx′∶∥x−x′∥p≤γ 1yh(x′)≤0, for some γ ∈ (0,1) and `1
is the supremum-based margin loss Φ̃.

Let Bdp(r) denote the d-dimensional `p-ball with radius r:
Bdp(r) = {z ∈ Rd ∣ ∥z∥p ≤ r}. Without loss of generality,
we consider X = Bdp(1). Let p, q ∈ [1,+∞] be conjugate
numbers, that is 1

p
+ 1
q
= 1. We will specifically study the

family of linear hypotheses Hlin = {x↦ w ⋅ x + b ∣ ∥w∥q ≤
W, ∣b∣ ≤ B} and one-hidden-layer ReLU networks HNN =
{x↦ ∑nj=1 uj(wj ⋅x+ b)+ ∣ ∥u∥1 ≤ Λ, ∥wj∥q ≤W, ∣b∣ ≤ B},
where (⋅)+ = max(⋅,0). Finally, for any ε > 0, we will
denote by ⟨t⟩ε the ε-truncation of t ∈ R defined by t1t>ε.

3. H-consistency bound definitions
(P,H)-Consistency is an asymptotic relation between two
loss functions. However, we are interested in a more quan-
titative relation in many applications. This motivates the
study of H-consistency bound.

Definition 2 (H-consistency bound). If for some non-
decreasing function f ∶R+ → R+, a bound of the following
form holds for all h ∈H and D ∈ P:

R`2(h) −R∗
`2,H ≤ f(R`1(h) −R∗

`1,H
), (3)

then, we call it an H-consistency bound. Furthermore, if
P consists of all distributions over X × Y, we say that the
bound is distribution-independent.
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When H = Hall and P is the set of all distributions, a
bound of the form (3) is also called a consistency excess
error bound. Note when f(0) = 0 and f is continuous at
0, the H-consistency bound (3) implies H-consistency (2).
Thus, H-consistency bounds provide stronger quantitative
results than consistency and calibration. Furthermore, there
is a fundamental reason to study such bounds from the
statistical learning point of view: they can be turned into
more favorable generalization bounds for the target loss `2
than the excess error bound. For example, when P is the set
of all distributions, by (1), relation (3) implies that, for all
h ∈H, the following inequality holds:

R`2(h)−R∗
`2,Hall

≤f(R`1(h)−R∗
`1,H

)+R∗
`2,H−R

∗
`2,Hall

. (4)

Similarly, the excess error bound can be written as follows:

R`2(h)−R∗
`2,Hall

≤f(R`1(h)−R∗
`1,H +R∗

`l,H
−R∗

`l,Hall
).(5)

If we further bound the estimation error [R`1(h) −R∗
`1,H

]
by the empirical error plus a complexity term, (4) and (5)
both turn into generalization bounds. However, the general-
ization bound obtained by (4) is linearly dependent on the
approximation error of target loss `2, while the one obtained
by (5) depends on the approximation error of the surrogate
loss `1 and can potentially be worse than linear dependence.
Moreover, (4) can be easily used to compare different sur-
rogates by directly comparing the corresponding mapping
f . However, only comparing the mapping f for different
surrogates in (5) is not sufficient since the approximation
errors of surrogates may differ as well.

Minimizability gap. We will adopt the standard nota-
tion for the conditional distribution of Y given X =
x: η(x) = D(Y = 1 ∣ X = x) and will also use
the shorthand ∆η(x) = η(x) − 1

2
. It is useful to

write the generalization error as R`(h) = EX[C`(h,x)],
where C`(h,x) is the conditional `-risk defined by
C`(h,x) = η(x)`(h,x,+1) + (1 − η(x))`(h,x,−1). The
minimal conditional `-risk is denoted by C∗`,H(x) =
infh∈H C`(h,x). We also use the following short-
hand for the gap ∆C`,H(h,x) = C`(h,x) − C∗`,H(x).
We call ⟨∆C`,H(h,x)⟩ε = ∆C`,H(h,x)1∆C`,H(h,x)>ε

the conditional ε-regret for `. To simplify the nota-
tion, we also define for any t ∈ [0,1], C`(h,x, t) =
t`(h,x,+1) + (1 − t)`(h,x,−1) and ∆C`,H(h,x, t) =
C`(h,x, t)−infh∈H C`(h,x, t). Thus, ∆C`,H(h,x, η(x)) =
∆C`,H(h,x).

A key quantity that appears in our bounds is the (`,H)-
minimizability gap M`,H, which is the difference of the best-
in class error and the expectation of the minimal conditional
`-risk:

M`,H = R∗
`,H −EX[C∗`,H(x)].

This is an inherent property of the hypothesis set H and
distribution D that we cannot hope to estimate or minimize.

As an example, the minimizability gap for the 0/1 loss and
adversarial 0/1 loss with Hall can be expressed as follows:

M`0−1,Hall
= R∗

`0−1,Hall
−EX[min{η(x),1 − η(x)}] = 0,

M`γ ,Hall
= R∗

`γ ,Hall
−EX[min{η(x),1 − η(x)}].

Steinwart (2007, Lemma 2.5) shows that the minimizability
gap vanishes when the loss ` is minimizable. Awasthi et al.
(2021a) point out that the minimizability condition does
not hold for adversarial loss functions, and therefore that,
in general, M`γ ,Hall

is strictly positive, thereby presenting
additional challenges for adversarial robust classification.
Thus, the minimizability gap is critical in the study of adver-
sarial surrogate loss functions. The minimizability gaps for
some common loss functions and hypothesis sets are given
in Table 1 in Section 5.2 for completeness.

4. General theorems
We first introduce two main theorems that provide a general
H-consistency bound between any target loss and surrogate
loss. These bounds are H-dependent, taking into consid-
eration the specific hypothesis set used by a learning algo-
rithm. To the best of our knowledge, no such guarantee
has appeared in the past. For both theoretical and practical
computational reasons, learning algorithms typically seek
a good hypothesis within a restricted subset of Hall. Thus,
in general, H-dependent bounds can provide more relevant
guarantees than excess error bounds. Our proposed bounds
are also more general in the sense that Hall can be used as
a special case. Theorems 1 and 2 are counterparts of each
other, while the latter may provide a more explicit form of
bounds as in (3).

Theorem 1 (Distribution-dependent Ψ-bound). Assume
that there exists a convex function Ψ∶R+ → R with Ψ(0) ≥ 0
and ε ≥ 0 such that the following holds for all h ∈ H and
x ∈ X:

Ψ(⟨∆C`2,H(h,x)⟩ε) ≤ ∆C`1,H(h,x). (6)

Then, the following inequality holds for any h ∈H:

Ψ(R`2(h) −R∗
`2,H +M`2,H)

≤ R`1(h) −R∗
`1,H +M`1,H +max{Ψ(0),Ψ(ε)}. (7)

Theorem 2 (Distribution-dependent Γ-bound). Assume
that there exists a concave function Γ∶R+ → R and ε ≥ 0
such that the following holds for all h ∈H and x ∈ X:

⟨∆C`2,H(h,x)⟩ε ≤ Γ(∆C`1,H(h,x)). (8)

Then, the following inequality holds for any h ∈H:

R`2(h)−R∗
`2,H≤Γ(R`1(h)−R∗

`1,H+M`1,H)−M`2,H+ε. (9)
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The proofs of Theorems 1 and 2 are included in Appendix D,
where we make use of the convexity of Ψ and concavity of
Γ. Below, we will mainly focus on the case where Ψ(0) = 0
and ε = 0. Note that if `2 is upper bounded by `1 and R∗

`1,H
−

M`1,H = R∗
`2,H

−M`2,H, then, the following inequality
automatically holds for any h ∈H:

R`2(h) −R∗
`2,H +M`2,H ≤ R`1(h) −R∗

`1,H +M`1,H.

This is a special case of Theorems 1 and 2. Indeed, since
R∗
`1,H

− M`1,H = R∗
`2,H

− M`2,H, we have C∗`2,H(x) ≡
C∗`1,H(x) and thus ∆C`2,H(h,x) ≤ ∆C`1,H(h,x). There-
fore, Φ and Γ can be the identity function. We refer to such
cases as “trivial cases”. They occur when M`1,H and M`2,H

respectively coincide with the corresponding approximation
errors and R∗

`1,Hall
= R∗

`2,Hall
. We will later see such cases

for specific loss functions and hypothesis sets (See (38) in
Appendix K.1.6 and (56) in Appendix L.1.1). Let us point
out, however, that the corresponding H-consistency bounds
are still valid and worth studying since they can be shown
to be the tightest (Theorems 4 and 6).

Theorem 1 is distribution-dependent, in the sense that, for a
fixed distribution, if we find a Ψ that satisfies condition (6),
then the bound (7) only gives guarantee for that same dis-
tribution. Since the distribution D of interest is typically
unknown, to obtain guarantees for D, if the only informa-
tion given is that D belongs to a set of distributions P, we
need to find a Ψ that satisfies condition (6) for all the distri-
butions in P. The choice of Ψ is critical, since it determines
the form of the bound obtained.

We say that Ψ is optimal if any function that makes the
bound (7) hold for all distributions in P is everywhere
no larger than Ψ. The optimal Ψ leads to the tightest H-
consistency bound (7) uniform over P. Specifically, when
P consists of all distributions, we say that the bound is
distribution-independent. The above also applies to Theo-
rem 2, except that Γ is optimal if any function that makes
the bound (9) hold for all distributions in P is everywhere
no less than Γ.

When `2 is the 0/1 loss or the adversarial 0/1 loss, the
conditional ε-regret that appears in condition (6) has ex-
plicit forms for common hypothesis sets as characterized
later in Lemma 1 and 2, establishing the basis for intro-
ducing non-adversarial and adversarial H-estimation error
transformation in Section 5.2 and 6.1. We will see later in
these sections that the transformations introduced are of-
ten the optimal Ψ we are seeking for, which respectively
leads to tight non-adversarial and adversarial distribution-
independent guarantees. In Section 5 and 6, we also apply
our general theorems and tools to loss functions and hy-
pothesis sets widely used in practice. Each case requires a
careful analysis that we present in detail.

5. Guarantees for the zero-one loss `2 = `0−1
In this section, we discuss guarantees in the non-adversarial
scenario where `2 is the zero-one loss, `0−1. The lemma
stated next characterizes the minimal conditional `0−1-risk
and the conditional ε-regret, which will be helpful for intro-
ducing the general tools in Section 5.2. The proof is given in
Appendix E. For convenience, we will adopt the following
notation: H(x) = {h ∈H∶ sign(h(x))∆η(x) ≤ 0}.

Lemma 1. Assume that H satisfies the following condition
for any x ∈ X: {sign(h(x))∶h ∈H} = {−1,+1}. Then, the
minimal conditional `0−1-risk is

C∗`0−1,H(x) = C∗`0−1,Hall
(x) = min{η(x),1 − η(x)}.

The conditional ε-regret for `0−1 can be characterized as

⟨∆C`0−1,H(h,x)⟩ε = ⟨2∣∆η(x)∣⟩ε1h∈H(x) .

5.1. Hypothesis set of all measurable functions

Before introducing our general tools, we will consider the
case where H = Hall and will show that previous excess
error bounds can be recovered as special cases of our re-
sults. As shown in (Steinwart, 2007), both M`0−1,Hall

and
MΦ,Hall

vanish. Thus by Lemma 1, we obtain the following
corollary of Theorem 1 by taking ε = 0.

Corollary 1. Assume that there exists a convex function
Ψ∶R+ → R with Ψ(0) = 0 such that for any x ∈ X,
Ψ(2∣∆η(x)∣) ≤ infh∈Hall(x)

∆CΦ,Hall
(h,x). Then, for any

hypothesis h ∈Hall, the following inequality holds:

Ψ(R`0−1(h) −R∗
`0−1,Hall

) ≤ RΦ(h) −R∗
Φ,Hall

.

Furthermore, Corollary 2 follows from Corollary 1 by taking
the convex function Ψ(t) = (t/(2c))s.
Corollary 2. Assume there exist s ≥ 1 and c > 0 such that
for any x ∈ X, ∣∆η(x)∣ ≤ c infh∈Hall(x)

(∆CΦ,Hall
(h,x))

1
s .

Then, for any hypothesis h ∈Hall,

R`0−1(h) −R∗
`0−1,Hall

≤ 2c (RΦ(h) −R∗
Φ,Hall

)
1
s .

The excess error bound results in the literature are all cov-
ered by the above corollaries. As shown in Appendix F,
Theorem 4.7 in (Mohri et al., 2018) is a special case of
Corollary 2 and Theorem 1.1 in (Bartlett et al., 2006) is a
special case of Corollary 1.

5.2. General hypothesis sets H

In this section, we provide general tools to study H-
consistency bounds when the target loss is the 0/1 loss. We
will then apply them to study specific hypothesis sets and
surrogates in Section 5.3 and 5.4. Lemma 1 characterizes
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Figure 1: Left: surrogates. Right: Hlin-est. error trans. inv.

the conditional ε-regret for `0−1 with common hypothesis
sets. Thus, Theorems 1 and 2 can be instantiated as The-
orems 8 and 9 in these cases (see Appendix C). They are
powerful distribution-dependent bounds and, as discussed
in Section 4, the bounds become distribution-independent
if the corresponding conditions can be verified for all the
distributions with some Ψ, which is equivalent to verifying
the condition in the following theorem.

Theorem 3 (Distribution-independent Ψ-bound). As-
sume that H satisfies the condition of Lemma 1. Assume
that there exists a convex function Ψ∶R+ → R with Ψ(0) = 0
and ε ≥ 0 such that for any t ∈ [1/2,1],

Ψ(⟨2t − 1⟩ε) ≤ inf
x∈X,h∈H∶h(x)<0

∆CΦ,H(h,x, t).

Then, for any hypothesis h ∈H and any distribution,

Ψ(R`0−1(h) −R∗
`0−1,H +M`0−1,H)

≤ RΦ(h) −R∗
Φ,H +MΦ,H +max{0,Ψ(ε)}. (10)

The counterpart of Theorem 3 is Theorem 12 (distribution-
independent Γ-bound), deferred to Appendix C due to space
limitations. The proofs for both theorems are included in
Appendix G. Theorem 3 provides the general tool to derive
distribution-independent H-consistency bounds. They are
in fact tight if we choose Ψ to be the H-estimation error
transformation defined as follows.

Definition 3 (H-estimation error transformation). The
H-estimation error transformation of Φ is defined on t ∈
[0,1] by TΦ(t) = T(t)1t∈[ε,1] + (T(ε)/ε) t1t∈[0,ε), where
T(t) ∶= infx∈X,h∈H∶h(x)<0 ∆CΦ,H(h,x, t+1

2
).

When ε = 0, TΦ(t) coincides with T(t). Observe that for
any t ∈ [(1 + ε)/2,1], the following equality holds:

TΦ(2t − 1) = inf
x∈X,h∈H∶h(x)<0

∆CΦ,H(h,x, t).

Taking Ψ = TΦ satisfies the condition in Theorem 3 if TΦ

is convex with TΦ(0) = 0. Moreover, as mentioned earlier,
it actually leads to the tightest H-consistency bound (10)
when ε = 0.

Theorem 4 (Tightness). Suppose that H satisfies the con-
dition of Lemma 1 and that ε = 0. If TΦ is convex with
TΦ(0) = 0, then, for any t ∈ [0,1] and δ > 0, there ex-
ist a distribution D and a hypothesis h ∈ H such that

Table 1: Loss functions and their minimizability gaps.
Loss Functions Definitions M`,Hlin

M`,HNN

Hinge Φhinge(t) = max{0,1 − t} (25) (40)
Logistic Φlog(t) = log2(1 + e

−t
) (27) (42)

Exponential Φexp(t) = e
−t (29) (44)

Quadratic Φquad(t) = (1 − t)21t≤1 (31) (31)
Sigmoid Φsig(t) = 1 − tanh(kt), k > 0 (33) (48)
ρ-Margin Φρ(t) = min{1,max{0,1 − t

ρ
}}, ρ > 0 (36) (40)

Sup-ρ-Margin Φ̃ρ = supx′ ∶∥x−x′∥p≤γ Φρ(yh(x
′
)) (53) (58)

Zero-One `0−1 = 1sign(h(x))≠y (24) (39)
Adversarial Zero-One `γ = supx′ ∶∥x−x′∥p≤γ 1yh(x′)≤0 (52) (57)

Table 2: Hlin-estimation error transformation and Hlin-
consistency bounds with ε = 0.

Surrogates TΦ(t), t ∈ [0,1] Bound

Hinge min{B,1} t (26)

Logistic
⎧
⎪⎪
⎨
⎪⎪
⎩

t+1
2

log2(t + 1) + 1−t
2

log2(1 − t), t ≤ eB−1
eB+1

,

1 − t+1
2

log2(1 + e
−B

) −
1−t
2

log2(1 + e
B
), t > eB−1

eB+1
.

(28)

Exponential
⎧
⎪⎪
⎨
⎪⎪
⎩

1 −
√

1 − t2, t ≤ e2B−1
e2B+1

,

1 − t+1
2
e−B −

1−t
2
eB , t > e2B−1

e2B+1
.

(30)

Quadratic {
t2, t ≤ B,

2B t −B2, t > B.
(32)

Sigmoid tanh(kB) t (34)
ρ-Margin min{B,ρ}

ρ
t (37)

R`0−1(h) − R∗
`0−1,H

+M`0−1,H = t and TΦ(t) ≤ RΦ(h) −
R∗

Φ,H +MΦ,H ≤ TΦ(t) + δ.

The proof is included in Appendix I. In other words, when
ε = 0, if TΦ is convex with TΦ(0) = 0, it is optimal for the
distribution-independent bound (10). Moreover, if TΦ is ad-
ditionally invertible and non-increasing, T−1

Φ is the optimal
function for the distribution-independent bound in Theo-
rem 12 (Appendix C) and the two bounds are equivalent.

In the following sections, we will see that all these assump-
tions hold for common loss functions with linear and neural
network hypothesis sets. Next, we will apply Theorems 3
and 4 to the linear models (Section 5.3) and neural networks
(Section 5.4). Each case requires a detailed analysis (See
Appendix K.1 and K.2).

The loss functions considered below and their minimiz-
ability gaps are defined in Table 1. In some cases, the
minimizability gap coincides with the approximation
error. For example, MΦsig,Hlin

= R∗
Φsig,Hlin

− EX[1 −
∣1 − 2η(x)∣ tanh(k(W ∥x∥p +B))] coincides with the
(Φsig,Hlin)-approximation error R∗

Φsig,Hlin
− EX[1 −

∣1 − 2η(x)∣] for B = +∞; MΦhinge,HNN
= R∗

Φhinge,HNN
−

EX[1 − ∣2η(x) − 1∣min{ΛW ∥x∥p +ΛB,1}] coin-
cides with the (Φhinge,HNN)-approximation error
R∗

Φhinge,HNN
− EX[1 − ∣1 − 2η(x)∣] for ΛB ≥ 1. The

detailed derivation is included in Appendix K, L.

5.3. Linear hypotheses

By applying Theorems 3 and 4, we can derive Hlin-
consistency bounds for common loss functions defined
in Table 1. Table 2 supplies the Hlin-estimation error
transformation TΦ and the corresponding bounds for those
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Table 3: HNN-estimation error transformation and HNN-
consistency bounds with ε = 0.

Surrogates TΦ(t), t ∈ [0,1] Bound

Hinge min{ΛB,1} t (41)

Logistic
⎧
⎪⎪
⎨
⎪⎪
⎩

t+1
2

log2(t + 1) + 1−t
2

log2(1 − t), t ≤ eΛB−1
eΛB+1

,

1 − t+1
2

log2(1 + e
−ΛB

) −
1−t
2

log2(1 + e
ΛB

), t > eΛB−1
eΛB+1

.
(43)

Exponential
⎧
⎪⎪
⎨
⎪⎪
⎩

1 −
√

1 − t2, t ≤ e2ΛB−1
e2ΛB+1

,

1 − t+1
2
e−ΛB

−
1−t
2
eΛB , t > e2ΛB−1

e2ΛB+1
.

(45)

Quadratic {
t2, t ≤ ΛB,

2ΛBt − (ΛB)
2, t > ΛB.

(47)

Sigmoid tanh(kΛB) t (49)
ρ-Margin min{ΛB,ρ}

ρ
t (51)

loss functions. The inverse T−1
Φ is given in Table 5 of

Appendix B. Surrogates Φ and their corresponding T−1
Φ

(B = 0.8) are visualized in Figure 1. Theorems 3 and 4
apply to all these cases since TΦ is convex, increasing,
invertible and satisfies that TΦ(0) = 0. More precisely,
taking Ψ = TΦ and ε = 0 in (10) and using the inverse
function T−1

Φ directly give the tightest bound. As an exam-
ple, for the sigmoid loss, T−1

Φsig
(t) = t

tanh(kB)
. Then the

bound (10) becomes R`0−1(h) − R∗
`0−1,Hlin

≤ (RΦsig
(h) −

R∗
Φsig,Hlin

+ MΦsig,Hlin
)/ tanh(kB) − M`0−1,Hlin

, which
is (34) in Table 2. Furthermore, after plugging in the
minimizability gaps concluded in Table 1, we will obtain
the novel bound R`0−1(h) − R∗

`0−1,Hall
≤ (RΦsig

(h) −
EX[1 − ∣1 − 2η(x)∣ tanh(k(W ∥x∥p +B))])/ tanh(kB)
((35) in Appendix K.1.5). The bounds for other surrogates
are similarly derived in Appendix K.1. For the logistic loss
and exponential loss, to simplify the expression, the bounds
are obtained by plugging in an upper bound of T−1

Φ .

Let us emphasize that these H-consistency bounds are novel
in the sense that they are all hypothesis set-dependent and, to
our knowledge, no such guarantee has been presented before.
More precisely, the bounds of Table 2 depend directly on the
parameter B in the linear models and parameters of the loss
function (e.g., k in sigmoid loss). Thus, for a fixed hypothe-
sis h ∈Hlin, we may give the tightest bound by choosing the
best parameter B. As an example, Appendix K.1.5 shows
that the bound (35) with B = +∞ coincides with the ex-
cess error bound known for the sigmoid loss (Bartlett et al.,
2006). However, for a fixed hypothesis h, by varying B
(hypothesis set) and k (loss function), we may obtain a finer
bound! Thus studying hypothesis set-dependent bounds
can guide us to select the most suitable hypothesis set and
loss function. Moreover, as shown by Theorem 4, all the
bounds obtained by directly using T−1

Φ are tight and cannot
be further improved.

5.4. One-hidden-layer ReLU neural networks

In this section, we give H-consistency bounds for one-
hidden-layer ReLU neural networks HNN. Table 3 is the
counterpart of Table 2 for HNN. Different from the bounds
in the linear case, all the bounds in Table 3 not only depend
on B, but also depend on Λ, which is a new parameter in

HNN. This further illustrates that our bounds are hypothesis
set-dependent and that, as with the linear case, adequately
choosing the parameters Λ and B in HNN would give us
better hypothesis set-dependent guarantees than standard
excess error bounds. The inverse T−1

Φ is given in Table 6
of Appendix B. Our proofs and techniques could also be
adopted for the analysis of multi-layer neural networks.

5.5. Guarantees under Massart’s noise condition

The distribution-independent H-consistency bound (10) can-
not be improved, since they are tight as shown in Theo-
rem 4. However, the bounds can be further improved in the
distribution-dependent setting. Indeed, we will study how
H-consistency bounds can be improved under low noise
conditions, which impose the restrictions on the conditional
distribution η(x). We consider Massart’s noise condition
(Massart & Nédélec, 2006) which is defined as follows.

Definition 4 (Massart’s noise). The distribution D over
X × Y satisfies Massart’s noise condition if ∣∆η(x)∣ ≥
β for almost all x ∈ X , for some constant β ∈ (0,1/2].

When it is known that the distribution D satisfies Massart’s
noise condition with β, in contrast with the distribution-
independent bounds, we can require the bounds (7) and
(9) to hold uniformly only for such distributions. With
Massart’s noise condition, we introduce a modified H-
estimation error transformation in Proposition 1 (Ap-
pendix M), which verifies condition (13) of Theorem 8 (the
finer distribution dependent guarantee mentioned before,
deferred to Appendix C) for all distributions under the noise
condition. Then, using this transformation, we can obtain
more favorable distribution-dependent bounds. As an exam-
ple, we consider the quadratic loss Φquad, the logistic loss
Φlog and the exponential loss Φexp with Hall. For all distri-
butions and h ∈ Hall, as shown in (Zhang, 2004a; Bartlett
et al., 2006; Mohri et al., 2018), the following holds:

R`0−1(h) −R∗
`0−1,Hall

≤
√

2(RΦ(h) −R∗
Φ,Hall

)1/2
,

when the surrogate loss Φ is Φlog or Φexp. If Φ = Φquad,
then the constant multiplier

√
2 can be removed. For dis-

tributions that satisfy Massart’s noise condition with β,
as proven in Appendix M, for any h ∈ Hall such that
RΦ(h) ≤ R∗

Φ,Hall
+ T(2β), the consistency excess error

bound is improved from the square-root dependency to a
linear dependency:

R`0−1
(h) −R∗

`0−1,Hall
≤2β(RΦ(h) −R∗

Φ,Hall
)/T(2β), (11)

where T(t) equals to t2, t+1
2

log2(t+1)+ 1−t
2

log2(1−t) and
1 −

√
1 − t2 for Φquad, Φlog and Φexp respectively. These

linear dependent bounds are tight, as illustrated in Section 7.
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6. Guarantees for the adversarial loss `2 = `γ
In this section, we discuss the adversarial scenario where
`2 is the adversarial 0/1 loss `γ . We consider symmetric
hypothesis sets, which satisfy: h ∈H if and only if −h ∈H.
For convenience, we will adopt the following definitions:

hγ(x) = inf
x′∶∥x−x′∥p≤γ

h(x′) hγ(x) = sup
x′∶∥x−x′∥p≤γ

h(x′).

We also define Hγ(x) = {h ∈H ∶ hγ(x) ≤ 0 ≤ hγ(x)}.
The following characterization of the minimal conditional
`γ-risk and conditional ε-regret is based on (Awasthi et al.,
2021a, Lemma 27) and will be helpful in introducing the
general tools in Section 6.1. The proof is similar and is
included in Appendix E for completeness.

Lemma 2. Assume that H is symmetric. Then, the minimal
conditional `γ-risk is

C∗`γ ,H(x) = min{η(x),1 − η(x)}1
Hγ(x)≠H

+ 1
Hγ(x)=H

.

The conditional ε-regret for `γ can be characterized as

⟨∆C`γ ,H(h,x)⟩
ε
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⟨∣∆η(x)∣ + 1
2
⟩
ε

h ∈Hγ(x) ⫋H

⟨2∆η(x)⟩ε hγ(x) < 0

⟨−2∆η(x)⟩ε hγ(x) > 0

0 otherwise

6.1. General hypothesis sets H

As with the non-adversarial case, we begin by providing
general theoretical tools to study H-consistency bounds
when the target loss is the adversarial 0/1 loss. Lemma 2
characterizes the conditional ε-regret for `γ with symmetric
hypothesis sets. Thus, Theorems 1 and 2 can be instan-
tiated as Theorems 10 and 11 (See Appendix C) in these
cases. These results are distribution-dependent and can
serve as general tools. For example, we can use these tools
to derive more favorable guarantees under noise conditions
(Section 6.5). As in the previous section, we present their
distribution-independent version in the following theorem.

Theorem 5 (Adversarial distribution-independent
Ψ-bound). Suppose that H is symmetric. Assume there
exist a convex function Ψ∶R+ → R with Ψ(0) = 0 and ε ≥ 0
such that the following holds for any t ∈ [1/2,1] ∶

Ψ(⟨t⟩ε) ≤ inf
x∈X,h∈Hγ(x)⫋H

∆CΦ̃,H(h,x, t),

Ψ(⟨2t − 1⟩ε) ≤ inf
x∈X,h∈H∶hγ(x)<0

∆CΦ̃,H(h,x, t).

Then, for any hypothesis h ∈H and any distribution,

Ψ(R`γ (h) −R∗
`γ ,H +M`γ ,H)

≤ RΦ̃(h) −R∗

Φ̃,H
+MΦ̃,H +max{0,Ψ(ε)}. (12)

The counterpart of Theorem 5 is Theorem 13 (adversarial
distribution-independent Γ-bound), deferred to Appendix C
due to space limitations. The proofs for both theorems are in-
cluded in Appendix H. As with the non-adversarial scenario,
the tightest distribution-independent H-consistency bounds
obtained by Theorem 5 can be achieved by the optimal Ψ,
which is the adversarial H-estimation error transformation
defined as follows.
Definition 5 (Adversarial H-estimation error transfor-
mation). The adversarial H-estimation error transformation
of Φ̃ is defined on t ∈ [0,1] by TΦ̃(t) = min{T1(t),T2(t)},

where T1(t) ∶= T̂1(t)1t∈[1/2,1] + 2 T̂1(1/2) t1t∈[0,1/2),
T2(t) ∶= T̂2(t)1t∈[ε,1] + (T̂2(ε)/ε) t1t∈[0,ε),

with T̂1(t) ∶= inf
x∈X,h∈Hγ(x)⫋H

∆CΦ̃,H(h,x, t),

T̂2(t) ∶= inf
x∈X,h∈H∶hγ(x)<0

∆CΦ̃,H(h,x, t + 1

2
).

It is clear that TΦ̃ satisfies assumptions in Theorem 5. The
next theorem shows that it gives the tightest H-consistency
bound (12) under certain conditions.
Theorem 6 (Adversarial tightness). Suppose that H is
symmetric and that ε = 0. If TΦ̃ = min{T1,T2} is convex
with TΦ̃(0) = 0 and T2 ≤ T1, then, for any t ∈ [0,1] and
δ > 0, there exist a distribution D and a hypothesis h ∈ H
such that R`γ (h)−R∗

`γ ,H
+M`γ ,H = t and TΦ̃(t) ≤ RΦ̃(h)−

R∗

Φ̃,H
+MΦ̃,H ≤ TΦ̃(t) + δ.

The proof is included in Appendix I. In other words, when
ε = 0, if T2 ≤ T1 and TΦ̃ is convex with TΦ̃(0) = 0, TΦ̃

is the optimal function for the distribution-independent
bound (12). Moreover, if TΦ̃ is additionally invert-
ible and non-increasing, T−1

Φ̃
is the optimal function for

the distribution-independent bound in Theorem 13 (Ap-
pendix C) and the two bounds will be equivalent.

We will see that all these assumptions hold for cases consid-
ered in Section 6.3 and 6.4. Next, we will apply Theorem 5
along with the tightness guarantee Theorem 6 to study spe-
cific hypothesis sets and adversarial surrogate loss functions
in Section 6.2 for negative results and Section 6.3 and 6.4
for positive results. A careful analysis is presented in each
case (See Appendix L).

6.2. Negative results for adversarial robustness

Awasthi et al. (2021a) show that supremum-based convex
loss functions of the type Φ̃ = supx′∶∥x−x′∥p≤γ Φ(yh(x′)),
where Φ is convex and non-increasing, are not H-calibrated
with respect to `γ for H containing 0, that is regular for
adversarial calibration, e.g., Hlin and HNN.
Definition 6 (Regularity for adversarial calibration).
[Definition 5 in (Awasthi et al., 2021a)] We say that a hypoth-
esis set H is regular for adversarial calibration if there exists
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Table 4: Adversarial H-consistency bounds. They are com-
pletely new consistency bounds in the adversarial setting
and can turn into more significant ε-consistency results. The
minimizability gaps appearing in the bounds for the surro-
gates are concluded in Table 1. The detailed derivation is
included in Appendix L, N.

Surrogates Bound (Hlin) Bound (HNN) Distribution set

Φ̃ρ (54) (59) All distributions
Φ̃hinge (67) (71) Massart’s noise
Φ̃sig (69) (73) Massart’s noise

a distinguishing x in X, that is if there exist f, g ∈ H such
that inf∥x′−x∥p≤γ f(x′) > 0 and sup∥x′−x∥p≤γ g(x

′) < 0.

Similarly, we show that there are no non-trivial adversarial
H-consistency bounds with respect to `γ for supremum-
based convex loss functions and supremum-based symmetric
loss functions (see Definition 7 below) including sigmoid
loss with such hypothesis sets.

Definition 7 (Symmetric loss). We say that a margin-based
loss Φ is symmetric if there exists a constant C ≥ 0 such
that Φ(t) + Φ(−t) = C for any t ∈ R, and denote it by
Φsym. We also define its supremum-based counterpart as
Φ̃sym ∶= supx′∶∥x−x′∥p≤γ Φsym(yh(x′)) and call Φ̃sym the
supremum-based symmetric loss.

For the sigmoid loss Φsig(t) = 1 − tanh(kt), k > 0, we
have Φsig(t) + Φsig(−t) = 2, which implies that Φsig is
symmetric. Note that Awasthi et al. (2021a) do not study the
sigmoid loss, which is non-convex. Thus, our results below
go beyond their results for convex adversarial surrogates.

Theorem 7 (Negative results for robustness). Suppose
that H contains 0 and is regular for adversarial calibration.
Let `1 be supremum-based convex loss or supremum-based
symmetric loss and `2 = `γ . Then, f(t) ≥ 1/2 for any t ≥ 0
are the only non-decreasing functions f such that (3) holds.

The proof is given in Appendix J. In other words, the
function f in bound (3) must be lower bounded by 1/2
for such adversarial surrogates. Theorem 7 implies that
the loss functions commonly used in practice for opti-
mizing the adversarial loss cannot benefit from any use-
ful H-consistency bound guarantee. Instead, we show in
Section 6.3 and 6.4 that the supremum-based ρ-margin
loss Φ̃ρ = supx′∶∥x−x′∥p≤γ Φρ(yh(x′)) proposed by Awasthi
et al. (2021a) admits favorable adversarial H-consistency
bounds. These bounds would also imply significantly
stronger results than the asymptotic H-consistency guar-
antee in (Awasthi et al., 2021a).

6.3. Linear hypotheses

In this section, by applying Theorems 10 and 11, we derive
the adversarial Hlin-consistency bound (54) in Table 4 for

supremum-based ρ-margin loss. This is a completely new
consistency bound in the adversarial setting. As with the
non-adversarial case, the bound is dependent on the param-
eter B in linear hypothesis set and ρ in the loss function.
This helps guide the choice of loss functions once the hy-
pothesis set is fixed. More precisely, if B > 0 is known,
we can always choose ρ < B such that the bound is the
tightest. Moreover, the bound can turn into more signif-
icant ε-consistency results in adversarial setting than the
H-consistency result in (Awasthi et al., 2021a).

Corollary 3. Let D be a distribution over X × Y such that
MΦ̃ρ,Hlin

≤ ε for some ε ≥ 0. Then, the following holds:

R`γ(h)−R∗
`γ ,Hlin

≤ρ(RΦ̃ρ
(h)−R∗

Φ̃ρ,Hlin
+ ε)/min{B,ρ}.

Awasthi et al. (2021a) show that Φ̃ρ is Hlin-consistent with
respect to `γ when MΦ̃ρ,Hlin

= 0. This result can be im-
mediately implied by Corollary 3. Moreover, Corollary 3
provides guarantees for more general cases where MΦ̃ρ,Hlin

can be nonzero.

6.4. One-hidden-layer ReLU neural networks

For the one-hidden-layer ReLU neural networks HNN and
Φ̃ρ, we have the HNN-consistency bound (59) in Table 4.
Note infx∈X suph∈HNN

hγ(x) does not have an explicit ex-
pression. However, (59) can be further relaxed to be (60)
in Appendix L.2, which is identical to the bound in the
linear case modulo the replacement of B by ΛB. As in
the linear case, the bound is new and also implies stronger
ε-consistency results as follows:

Corollary 4. Let D be a distribution over X × Y such that
MΦ̃ρ,HNN

≤ ε for some ε ≥ 0. Then,

R`γ(h)−R∗
`γ ,HNN

≤ρ(RΦ̃ρ
(h)−R∗

Φ̃ρ,HNN
+ε)/min{ΛB,ρ}.

Besides the bounds for Φ̃ρ, Table 4 gives a series of results
that are all new in the adversarial setting. Like the bounds
in Table 2 and 3, they are all hypothesis set dependent and
very useful. For example, the improved bounds for Φ̃hinge

and Φ̃sig under noise conditions in the table can also turn
into meaningful consistency results under Massart’s noise
condition, as shown in Section 6.5.

6.5. Guarantees under Massart’s noise condition

Section 6.2 shows that non-trivial distribution-independent
bounds for supremum-based hinge loss and supremum-
based sigmoid loss do not exist. However, under Massart’s
noise condition (Definition 4), we will show that there exist
non-trivial adversarial H-consistency bounds for the two
loss functions. Furthermore, we will see that the bounds are
linear dependent as those in Section 5.5.
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Figure 2: Left: tightness of bound (11) in Section 5.5. Right:
tightness of bounds (54), (67) and (69) in Section 6.3 and
6.5.

As with the non-adversarial scenario, we introduce a modi-
fied adversarial H-estimation error transformation in Propo-
sition 2 (Appendix N). Using this tool, we derive adversarial
H-consistency bounds for Φ̃hinge and Φ̃sig under Massart’s
noise condition in Table 4. From the bounds (67), (69), (71),
and (73), we can also obtain novel ε-consistency results for
Φ̃hinge and Φ̃sig with linear models and neural networks
under Massart’s noise condition.
Corollary 5. Let H be Hlin or HNN. Let D be a distribu-
tion over X × Y which satisfies Massart’s noise condition
with β such that MΦ̃,H ≤ ε for some ε ≥ 0. Then,

R`γ (h) −R∗
`γ ,H ≤ 1 + 2β

4β
(RΦ̃(h) −R∗

Φ̃,H
+ ε)/T(B),

where T(t) equals to min{t,1} and tanh(kt) for Φ̃hinge

and Φ̃sig respectively, B is replaced by ΛB for H =HNN.

In Section 7, we will further show that these linear depen-
dency bounds in adversarial setting are tight, along with the
non-adversarial bounds we discussed earlier in Section 5.5.

7. Simulations
Here, we present experiments on simulated data to illustrate
our bounds and their tightness. We generate data points
x ∈ R on [−1,+1]. All risks are approximated by their
empirical counterparts computed over 107 i.i.d. samples.

Non-adversarial. To demonstrate the tightness of our
non-adversarial bounds, we consider a scenario where the
marginal distribution is symmetric about x = 0 with labels
flipped. With probability 1

16
, (x, y) = (1,−1); with proba-

bility 7
16

, the label is +1 and the data follows the truncated
normal distribution on [σ,1] with both mean and standard
deviation σ. We consider Φquad, Φlog and Φexp defined
in Table 1. The distribution considered satisfies Massart’s
noise condition with β = 1

2
. Thus, our bound (11) in Sec-

tion 5.5 becomes R`0−1(h) −R∗
`0−1,Hall

≤ RΦ(h) −R∗
Φ,Hall

,
for any h ∈ Hall such that RΦ(h) ≤ R∗

Φ,Hall
+ 1. All the

minimal generalization errors vanish in this case. As shown
in Figure 2, for h(x) = −5x, the bounds corresponding to
Φquad, Φlog and Φexp are all tight as σ → 0.

Adversarial. To demonstrate the tightness of our ad-
versarial bounds, the distribution is modified as follows:

with probability 1
16

, (x, y) = (1,−1); with probability 1
16

,
(x, y) = (−1,+1); with probability 7

8
, the label is −1 and the

data follows the truncated normal distribution on [−1, γ−σ]
with mean γ − σ and standard deviation σ. We set γ = 0.1
and consider Φ̃ρ with ρ = 1, Φ̃hinge and Φ̃sig with k = 1. The
distribution considered satisfies Massart’s noise condition
with β = 1

2
. Thus, our bounds (54), (67) and (69) in Table 4

become R`γ (h) ≤ R Φ̃(h), for any h ∈ Hlin. As shown in
Figure 2, for h(x) = −5x, the bounds corresponding to Φ̃ρ,
Φ̃hinge and Φ̃sig are all tight as σ → 0.

8. Conclusion
We presented an exhaustive study of H-consistency bounds,
including a series of new guarantees for both the non-
adversarial zero-one loss function and the adversarial zero-
one loss function. Our hypothesis-dependent guarantees
are significantly stronger than the consistency or calibration
ones. Our results include a series of theoretical and con-
ceptual tools helpful for the analysis of other loss functions
and other hypothesis sets, including multi-class classifica-
tion or ranking losses. They can be further extended to the
analysis of non-i.i.d. settings such as that of drifting dis-
tributions (Helmbold & Long, 1994; Long, 1999; Barve &
Long, 1997; Bartlett et al., 2000; Mohri & Medina, 2012;
Gama et al., 2014) or, more generally, time series predic-
tion (Engle, 1982; Bollerslev, 1986; Brockwell & Davis,
1986; Box & Jenkins, 1990; Hamilton, 1994; Meir, 2000;
Kuznetsov & Mohri, 2015; 2017; 2020). Our results can
also be extended to many other loss functions, using our
general proof techniques or a similar analysis.
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Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., and
Bouchachia, H. A survey on concept drift adaptation.
ACM Computing Surveys (CSUR), 46, 04 2014.

Gao, W. and Zhou, Z.-H. On the consistency of auc pair-
wise optimization. In International Joint Conference on
Artificial Intelligence, pp. 939–945, 2015.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

Hamilton, J. D. Time series analysis. Princeton, 1994.

Helmbold, D. P. and Long, P. M. Tracking drifting concepts
by minimizing disagreements. Machine Learning, 14(1):
27–46, 1994.

Khim, J. and Loh, P.-L. Adversarial risk bounds for binary
classification via function transformation. arXiv preprint
arXiv:1810.09519, 2018.

Kuznetsov, V. and Mohri, M. Learning theory and algo-
rithms for forecasting non-stationary time series. In Pro-
ceedings of NIPS, pp. 541–549, 2015.

Kuznetsov, V. and Mohri, M. Generalization bounds for
non-stationary mixing processes. Mach. Learn., 106(1):
93–117, 2017.

Kuznetsov, V. and Mohri, M. Discrepancy-based theory
and algorithms for forecasting non-stationary time series.
Ann. Math. Artif. Intell., 88(4):367–399, 2020.

Kuznetsov, V., Mohri, M., and Syed, U. Multi-class deep
boosting. In Advances in Neural Information Processing
Systems, pp. 2501–2509, 2014.



H-Consistency Bounds for Surrogate Loss Minimizers

Long, P. and Servedio, R. Learning large-margin halfs-
paces with more malicious noise. In Advances in Neural
Information Processing Systems, pp. 91–99, 2011.

Long, P. and Servedio, R. Consistency versus realizable H-
consistency for multiclass classification. In International
Conference on Machine Learning, pp. 801–809, 2013.

Long, P. M. The complexity of learning according to two
models of a drifting environment. Machine Learning, 37:
337–354, 1999.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Massart, P. and Nédélec, É. Risk bounds for statistical learn-
ing. The Annals of Statistics, 34(5):2326–2366, 2006.

Meir, R. Nonparametric time series prediction through
adaptive model selection. Machine Learning, pp. 5–34,
2000.

Mohri, M. and Medina, A. M. New analysis and algorithm
for learning with drifting distributions. In Algorithmic
Learning Theory - 23rd International Conference, ALT
2012, Lyon, France, October 29-31, 2012. Proceedings,
volume 7568 of Lecture Notes in Computer Science, pp.
124–138. Springer, 2012.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. Founda-
tions of Machine Learning. MIT Press, second edition,
2018.

Montasser, O., Hanneke, S., and Srebro, N. Vc classes
are adversarially robustly learnable, but only improperly.
arXiv preprint arXiv:1902.04217, 2019.

Montasser, O., Hanneke, S., and Srebro, N. Reducing adver-
sarially robust learning to non-robust pac learning. arXiv
preprint arXiv:2010.12039, 2020.

Robey, A., Chamon, L., Pappas, G., Hassani, H., and
Ribeiro, A. Adversarial robustness with semi-infinite
constrained learning. In Advances in Neural Information
Processing Systems, pp. 6198–6215, 2021.

Shafahi, A., Najibi, M., Ghiasi, M. A., Xu, Z., Dickerson,
J., Studer, C., Davis, L. S., Taylor, G., and Goldstein,
T. Adversarial training for free! In Advances in Neural
Information Processing Systems, pp. 3353–3364, 2019.

Steinwart, I. How to compare different loss functions and
their risks. Constructive Approximation, 26(2):225–287,
2007.

Tewari, A. and Bartlett, P. L. On the consistency of multi-
class classification methods. Journal of Machine Learn-
ing Research, 8(36):1007–1025, 2007.

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and
Madry, A. Robustness may be at odds with accuracy.
arXiv preprint arXiv:1805.12152, 2018.

Uematsu, K. and Lee, Y. On theoretically optimal ranking
functions in bipartite ranking. Department of Statistics,
The Ohio State University, Tech. Rep, 863, 2011.

Viallard, P., VIDOT, E. G., Habrard, A., and Morvant, E. A
pac-bayes analysis of adversarial robustness. In Advances
in Neural Information Processing Systems, pp. 14421–
14433, 2021.

Wong, E., Rice, L., and Kolter, J. Z. Fast is better than
free: Revisiting adversarial training. arXiv preprint
arXiv:2001.03994, 2020.

Yin, D., Ramchandran, K., and Bartlett, P. L. Rademacher
complexity for adversarially robust generalization. In
International Conference of Machine Learning, pp. 7085–
7094, 2019.

Zhang, H., Yu, Y., Jiao, J., Xing, E. P., Ghaoui, L. E., and Jor-
dan, M. I. Theoretically principled trade-off between ro-
bustness and accuracy. arXiv preprint arXiv:1901.08573,
2019.

Zhang, M. and Agarwal, S. Bayes consistency vs. H-
consistency: The interplay between surrogate loss func-
tions and the scoring function class. In Advances in Neu-
ral Information Processing Systems, pp. 16927–16936,
2020.

Zhang, T. Statistical behavior and consistency of classifi-
cation methods based on convex risk minimization. The
Annals of Statistics, 32(1):56–85, 2004a.

Zhang, T. Statistical analysis of some multi-category large
margin classification methods. Journal of Machine Learn-
ing Research, 5(Oct):1225–1251, 2004b.



H-Consistency Bounds for Surrogate Loss Minimizers

Contents of Appendix

A Related Work 14

B Deferred Tables 15

C Deferred Theorems 16

D Proof of Theorem 1 and Theorem 2 17

E Proof of Lemma 1 and Lemma 2 18

F Comparison with Previous Results when H =Hall 19

F.1 Comparison with (Mohri et al., 2018, Theorem 4.7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

F.2 Comparison with (Bartlett et al., 2006, Theorem 1.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

G Proof of Theorem 3 and Theorem 12 20

H Proof of Theorem 5 and Theorem 13 21

I Proof of Theorem 4 and Theorem 6 21

J Proof of Theorem 7 23

K Derivation of Non-Adversarial H-Consistency Bounds 23

K.1 Linear Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

K.1.1 Hinge Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

K.1.2 Logistic Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

K.1.3 Exponential Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

K.1.4 Quadratic Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

K.1.5 Sigmoid Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

K.1.6 ρ-Margin Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

K.2 One-Hidden-Layer ReLU Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

K.2.1 Hinge Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

K.2.2 Logistic Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

K.2.3 Exponential Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

K.2.4 Quadratic Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

K.2.5 Sigmoid Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

K.2.6 ρ-Margin Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

L Derivation of Adversarial H-Consistency Bounds 42



H-Consistency Bounds for Surrogate Loss Minimizers

L.1 Linear Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

L.1.1 Supremum-Based ρ-Margin Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

L.2 One-Hidden-Layer ReLU Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

L.2.1 Supremum-Based ρ-Margin Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

M Derivation of Non-Adversarial Hall-Consistency Bounds under Massart’s Noise Condition 47

M.1 Quadratic Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

M.2 Logistic Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

M.3 Exponential Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

N Derivation of Adversarial H-Consistency Bounds under Massart’s Noise Condition 49

N.1 Linear Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

N.1.1 Supremum-Based Hinge Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

N.1.2 Supremum-Based Sigmoid Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

N.2 One-Hidden-Layer ReLU Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

N.2.1 Supremum-Based Hinge Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

N.2.2 Supremum-Based Sigmoid Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



H-Consistency Bounds for Surrogate Loss Minimizers

A. Related Work
Bayes-consistency (also known as consistency) and excess error bounds between margin-based loss functions and the
zero-one loss have been widely studied in the literature (Zhang, 2004a; Bartlett et al., 2006; Steinwart, 2007; Mohri et al.,
2018). Consistency studies the asymptotic relation between the surrogate excess error and the target excess error while
excess error bounds study the quantitative relation between them and thus is stronger. They both consider the hypothesis set
of all measurable functions. Zhang (2004a), Bartlett et al. (2006), and Steinwart (2007) studied consistency via the lens of
calibration and showed that calibration and consistency are equivalent in the standard binary classification when considering
the hypothesis set of all measurable functions.

Zhang (2004a) studied the closesenee to the optimal excess error of the zero-one loss minimizers of convex surrogates.
Bartlett et al. (2006) extended the results of Zhang (2004a) and developed a general methodology for coming up with
quantitative bounds between the excess error corresponding to the zero-one loss and that of margin-based surrogate loss
functions for all distributions. In a more recent work, Mohri et al. (2018) simplified these results and provided different
proofs for the excess error bounds of various loss functions widely used in practice. Calibration and consistency analysis
have also been extended to the multi-class settings (Zhang, 2004b; Tewari & Bartlett, 2007) and to ranking problems
(Uematsu & Lee, 2011; Gao & Zhou, 2015).

Bayes-consistency is not an appropriate notion when studying learning with a hypothesis set H that is distinct from the
family of all measurable functions. Therefore, a new hypothesis set-dependent notion namely, H-consistency, has been
proposed and explored in the more recent literature (Long & Servedio, 2013; Kuznetsov et al., 2014; Zhang & Agarwal,
2020). In particular, Long & Servedio (2013) argued that H-consistency is a more useful notion than consistency by
empirically showing that certain loss functions that are H-consistent but not Bayes consistent can perform significantly
better than a loss function known to be Bayes consistent. The work of Kuznetsov et al. (2014) extended the H-consistency
results in (Long & Servedio, 2013) to the case of structured prediction and provided positive results for H-consistency of
several multi-class ensemble algorithms.

In a recent work Zhang & Agarwal (2020) investigated the empirical phenomenon in (Long & Servedio, 2013) and designed
a class of piecewise linear scoring functions such that minimizing a surrogate that is not H-consistent over this larger class
yields H-consistency of linear models. For linear predictors, more general margin-based properties of convex surrogate
losses are also studied in (Long & Servedio, 2011; Ben-David et al., 2012). Aiming for such margin-based error guarantees,
Ben-David et al. (2012) argued that the hinge loss is optimal among convex losses.

Most recently, the notion of H-consistency along with H-calibration have also been studied in the context of adversarially
robust classification (Bao et al., 2021; Awasthi et al., 2021a). In the adversarial scenario, in contrast to standard classification,
the target loss is the adversarial zero-one loss (Goodfellow et al., 2014; Madry et al., 2017; Carlini & Wagner, 2017; Tsipras
et al., 2018; Shafahi et al., 2019; Wong et al., 2020). This corresponds to the worst zero-one loss incurred over an adversarial
perturbation of x within a γ-ball as measured in a norm, typically `p for p ∈ [1,+∞]. The adversarial loss presents new
challenges and makes the consistency analysis significantly more complex.

The work of Bao et al. (2021) initiated the study of H-calibration with respect to the adversarial zero-one loss for the linear
models. They showed that convex surrogates are not calibrated and introduced a class of nonconvex margin-based surrogate
losses. They then provided sufficient conditions for such nonconvex losses to be calibrated in the linear case. The work of
Awasthi et al. (2021a) extended the results in (Bao et al., 2021) to the general nonlinear hypothesis sets and pointed out
that although H-calibration is a necessary condition of H-consistency, it is not sufficient in the adversarial scenario. They
then proposed sufficient conditions which guarantee calibrated losses to be consistent in the setting of adversarially robust
classification.

All the above mentioned publications either studied asymptotic properties (Bayes-consistency or H-consistency) or studied
quantitative relations when H is the family of all measurable functions (excess error bounds). Instead, our work considers
a hypothesis set-dependent quantitative relation between the surrogate estimation error and the target estimation error.
This is significantly stronger than H-calibration or H-consistency and is also more informative than excess error bounds
which correspond to a special case of our results with H =Hall. As a by-product, our theory contributes more significant
consistency results for the poorly understood setting of adversarial robustness. There have also been recent works on
different theoretical aspects of adversarial robustness such as tension between the zero-one loss and the adversarial zero-one
loss (Tsipras et al., 2018; Zhang et al., 2019), computational bottlenecks for adversarial loss (Bubeck et al., 2018a;b; Awasthi
et al., 2019), adversarial examples (Bartlett et al., 2021; Bubeck et al., 2021), sample complexity of adversarial surrogate
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losses (Khim & Loh, 2018; Cullina et al., 2018; Yin et al., 2019; Montasser et al., 2019; Awasthi et al., 2020), computational
complexity of adversarially robust linear classifiers (Diakonikolas et al., 2020), connections with PAC learning (Montasser
et al., 2020; Viallard et al., 2021), perturbations beyond `p norm(Feige et al., 2015; 2018; Attias et al., 2018), adversarial
robustness optimization (Robey et al., 2021), overparametrization (Bubeck & Sellke, 2021) and Bayes optimality (Awasthi
et al., 2021b).

B. Deferred Tables

Table 5: Non-adversarial Hlin-estimation error transformation (ε = 0) and Hlin-consistency bounds. All the bounds are
hypothesis set-dependent (parameterB in Hlin) and provide novel guarantees as discussed in Section 5.3. The minimizability
gaps appearing in the bounds for the surrogates are concluded in Table 1. The detailed derivation is included in Appendix K.1.

Surrogates TΦ(t), t ∈ [0,1] T−1
Φ (t), t ∈ R+ Bound

Hinge min{B,1} t t
min{B,1} (26)

Logistic
⎧
⎪⎪
⎨
⎪⎪
⎩

t+1
2

log2(t + 1) + 1−t
2

log2(1 − t), t ≤ eB−1
eB+1

,

1 − t+1
2

log2(1 + e
−B

) −
1−t
2

log2(1 + e
B
), t > eB−1

eB+1
.

upper bounded by

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

√

2t, t ≤ 1
2
(
eB−1
eB+1

)

2
,

2( e
B+1
eB−1

) t, t > 1
2
(
eB−1
eB+1

)

2
.

(28)

Exponential
⎧
⎪⎪
⎨
⎪⎪
⎩

1 −
√

1 − t2, t ≤ e2B−1
e2B+1

,

1 − t+1
2
e−B −

1−t
2
eB , t > e2B−1

e2B+1
.

upper bounded by

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

√

2t, t ≤ 1
2
(
e2B−1
e2B+1

)

2
,

2( e
2B+1
e2B−1

) t, t > 1
2
(
e2B−1
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2
.

(30)

Quadratic {
t2, t ≤ B,

2B t −B2, t > B.
{

√

t, t ≤ B2,
t

2B
+
B
2
, t > B2.

(32)

Sigmoid tanh(kB) t t
tanh(kB) (34)

ρ-Margin min{B,ρ}
ρ

t ρ
min{B,ρ} t (37)

Table 6: Non-adversarial HNN-estimation error transformation (ε = 0) and HNN-consistency bounds. All the bounds are
hypothesis set-dependent (parameter Λ and B in HNN) and provide novel guarantees as discussed in Section 5.4. The
minimizability gaps appearing in the bounds for the surrogates are concluded in Table 1. The detailed derivation is included
in Appendix K.2.

Surrogates TΦ(t), t ∈ [0,1] T−1
Φ (t), t ∈ R+ Bound

Hinge min{ΛB,1} t t
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Logistic
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Exponential
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Sigmoid tanh(kΛB) t t
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ρ-Margin min{ΛB,ρ}
ρ
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C. Deferred Theorems
Theorem 8 (Non-adversarial distribution-dependent Ψ-bound). Suppose that H satisfies the condition of Lemma 1 and
that Φ is a margin-based loss function. Assume there exist a convex function Ψ∶R+ → R with Ψ(0) = 0 and ε ≥ 0 such that
the following holds for any x ∈ X:

Ψ(⟨2∣∆η(x)∣⟩ε) ≤ inf
h∈H(x)

∆CΦ,H(h,x). (13)

Then, for any hypothesis h ∈H,

Ψ(R`0−1(h) −R∗
`0−1,H +M`0−1,H) ≤ RΦ(h) −R∗

Φ,H +MΦ,H +max{0,Ψ(ε)}. (14)

Theorem 9 (Non-adversarial distribution-dependent Γ-bound). Suppose that H satisfies the condition of Lemma 1 and
that Φ is a margin-based loss function. Assume there exist a non-negative and non-decreasing concave function Γ∶R+ → R
and ε ≥ 0 such that the following holds for any x ∈ X:

⟨2∣∆η(x)∣⟩ε ≤ Γ( inf
h∈H(x)

∆CΦ,H(h,x)). (15)

Then, for any hypothesis h ∈H,

R`0−1(h) −R∗
`0−1,H ≤ Γ(RΦ(h) −R∗

Φ,H +MΦ,H) −M`0−1,H + ε. (16)

Theorem 10 (Adversarial distribution-dependent Ψ-bound). Suppose that H is symmetric and that Φ̃ is a supremum-
based margin loss function. Assume there exist a convex function Ψ∶R+ → R with Ψ(0) = 0 and ε ≥ 0 such that the following
holds for any x ∈ X:

Ψ(⟨∣∆η(x)∣ + 1/2⟩ε) ≤ inf
h∈Hγ(x)

∆CΦ,H(h,x),

Ψ(⟨2∆η(x)⟩ε) ≤ inf
h∈H∶hγ(x)<0

∆CΦ,H(h,x),

Ψ(⟨−2∆η(x)⟩ε) ≤ inf
h∈H∶hγ(x)>0

∆CΦ,H(h,x).

(17)

Then, for any hypothesis h ∈H,

Ψ(R`γ (h) −R∗
`γ ,H +M`γ ,H) ≤ RΦ̃(h) −R∗

Φ̃,H
+MΦ̃,H +max{0,Ψ(ε)}. (18)

Theorem 11 (Adversarial distribution-dependent Γ-bound). Suppose that H is symmetric and that Φ̃ is a supremum-
based margin loss function. Assume there exist a non-negative and non-decreasing concave function Γ∶R+ → R and ε ≥ 0
such that the following holds for any x ∈ X:

⟨∣∆η(x)∣ + 1/2⟩ε ≤ Γ( inf
h∈Hγ(x)

∆CΦ,H(h,x)),

⟨2∆η(x)⟩ε ≤ Γ( inf
h∈H∶hγ(x)<0

∆CΦ,H(h,x)),

⟨−2∆η(x)⟩ε ≤ Γ( inf
h∈H∶hγ(x)>0

∆CΦ,H(h,x)).

(19)

Then, for any hypothesis h ∈H,

R`γ (h) −R∗
`γ ,H ≤ Γ(RΦ̃(h) −R∗

Φ̃,H
+MΦ̃,H) −M`γ ,H + ε. (20)

Theorem 12 (Distribution-independent Γ-bound). Suppose that H satisfies the condition of Lemma 1 and that Φ is a
margin-based loss function. Assume there exist a non-negative and non-decreasing concave function Γ∶R+ → R and ε ≥ 0
such that the following holds for any for any t ∈ [1/2,1] ∶

⟨2t − 1⟩ε ≤ Γ( inf
x∈X,h∈H∶h(x)<0

∆CΦ,H(h,x, t)).
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Then, for any hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤ Γ(RΦ(h) −R∗

Φ,H +MΦ,H) −M`0−1,H + ε. (21)

Theorem 13 (Adversarial distribution-independent Γ-bound). Suppose that H is symmetric and that Φ̃ is a supremum-
based margin loss function. Assume there exist a non-negative and non-decreasing concave function Γ∶R+ → R and ε ≥ 0
such that the following holds for any for any t ∈ [1/2,1] ∶

⟨t⟩ε ≤ Γ
⎛
⎝

inf
x∈X,h∈Hγ(x)⫋H

∆CΦ̃,H(h,x, t)
⎞
⎠
,

⟨2t − 1⟩ε ≤ Γ( inf
x∈X,h∈H∶hγ(x)<0

∆CΦ̃,H(h,x, t)).

Then, for any hypothesis h ∈H and any distribution,

R`γ (h) −R∗
`γ ,H ≤ Γ(RΦ̃(h) −R∗

Φ̃,H
+MΦ̃,H) −M`γ ,H + ε. (22)

D. Proof of Theorem 1 and Theorem 2
Theorem 1 (Distribution-dependent Ψ-bound). Assume that there exists a convex function Ψ∶R+ → R with Ψ(0) ≥ 0
and ε ≥ 0 such that the following holds for all h ∈H and x ∈ X:

Ψ(⟨∆C`2,H(h,x)⟩ε) ≤ ∆C`1,H(h,x). (6)

Then, the following inequality holds for any h ∈H:

Ψ(R`2(h) −R∗
`2,H +M`2,H) ≤ R`1(h) −R∗

`1,H +M`1,H +max{Ψ(0),Ψ(ε)}. (7)

Proof. For any h ∈H, since Ψ(∆C`2,H(h,x)1∆C`2,H(h,x)>ε) ≤ ∆C`1,H(h,x) for all x ∈ X, we have

Ψ(R`2(h) −R∗
`2,H +M`2,H)

= Ψ(EX[C`2(h,x) − C∗`2,H(x)])
= Ψ(EX[∆C`2,H(h,x)])
≤ EX[Ψ(∆C`2,H(h,x))] (Jensen’s ineq.)
= EX[Ψ(∆C`2,H(h,x)1∆C`2,H(h,x)>ε +∆C`2,H(h,x)1∆C`2,H(h,x)≤ε)]

≤ EX[Ψ(∆C`2,H(h,x)1∆C`2,H(h,x)>ε) +Ψ(∆C`2,H(h,x)1∆C`2,H(h,x)≤ε)] (Ψ(0) ≥ 0)
≤ EX[∆C`1,H(h,x)] + sup

t∈[0,ε]

Ψ(t) (assumption)

= R`1(h) −R∗
`1,H +M`1,H +max{Ψ(0),Ψ(ε)}, (convexity of Ψ)

which proves the theorem.

Theorem 2 (Distribution-dependent Γ-bound). Assume that there exists a concave function Γ∶R+ → R and ε ≥ 0 such
that the following holds for all h ∈H and x ∈ X:

⟨∆C`2,H(h,x)⟩ε ≤ Γ(∆C`1,H(h,x)). (8)

Then, the following inequality holds for any h ∈H:

R`2(h)−R∗
`2,H≤Γ(R`1(h)−R∗

`1,H +M`1,H)−M`2,H + ε. (9)
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Proof. For any h ∈H, since ∆C`2,H(h,x)1∆C`2,H(h,x)>ε ≤ Γ(∆C`1,H(h,x)) for all x ∈ X, we have

R`2(h) −R∗
`2,H +M`2,H

= EX[C`2(h,x) − C∗`2,H(x)]
= EX[∆C`2,H(h,x)]
= EX[∆C`2,H(h,x)1∆C`2,H(h,x)>ε +∆C`2,H(h,x)1∆C`2,H(h,x)≤ε]
≤ EX[Γ(∆C`1,H(h,x))] + ε (assumption)
≤ Γ(EX[∆C`1,H(h,x)]) + ε (concavity of Γ)
= Γ(R`1(h) −R∗

`1,H +M`1,H) + ε,

which proves the theorem.

E. Proof of Lemma 1 and Lemma 2
Lemma 1. Assume that H satisfies the following condition for any x ∈ X: {sign(h(x))∶h ∈H} = {−1,+1}. Then, the
minimal conditional `0−1-risk is

C∗`0−1,H(x) = C∗`0−1,Hall
(x) = min{η(x),1 − η(x)}.

The conditional ε-regret for `0−1 can be characterized as

⟨∆C`0−1,H(h,x)⟩ε = ⟨2∣∆η(x)∣⟩ε1h∈H(x) .

Proof. By the definition, the conditional `0−1-risk is

C`0−1(h,x) = η(x)1h(x)<0 + (1 − η(x))1h(x)≥0

=
⎧⎪⎪⎨⎪⎪⎩

η(x) if h(x) < 0,

1 − η(x) if h(x) ≥ 0.

By the assumption, for any x ∈ X, there exists h∗ ∈H such that sign(h∗(x)) = sign(∆η(x)), where ∆η(x) is the Bayes
classifier such that C`0−1(∆η(x), x) = C∗`0−1,Hall

(x) = min{η(x),1 − η(x)}. Therefore, the optimal conditional `0−1-risk
is

C∗`0−1,H(x) = C`0−1(h∗, x) = C`0−1(∆η(x), x) = min{η(x),1 − η(x)}

which proves the first part of lemma. By the definition,

∆C`0−1,H(h,x) = C`0−1(h,x) − C∗`0−1,H(x)
= η(x)1h(x)<0 + (1 − η(x))1h(x)≥0 −min{η(x),1 − η(x)}

=
⎧⎪⎪⎨⎪⎪⎩

2∣∆η(x)∣, h ∈H(x),
0, otherwise.

This leads to

⟨∆C`0−1,H(h,x)⟩ε = ⟨2∣∆η(x)∣⟩ε1h∈H(x) .

Lemma 2. Assume that H is symmetric. Then, the minimal conditional `γ-risk is

C∗`γ ,H(x) = min{η(x),1 − η(x)}1
Hγ(x)≠H

+ 1
Hγ(x)=H

.
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The conditional ε-regret for `γ can be characterized as

⟨∆C`γ ,H(h,x)⟩
ε
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⟨∣∆η(x)∣ + 1
2
⟩
ε

h ∈Hγ(x) ⫋H

⟨2∆η(x)⟩ε hγ(x) < 0

⟨−2∆η(x)⟩ε hγ(x) > 0

0 otherwise

Proof. By the definition, the conditional `γ-risk is

C`γ (h,x) = η(x)1{hγ(x)≤0}
+ (1 − η(x))1

{hγ(x)≥0}

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if h ∈Hγ(x),
η(x) if hγ(x) < 0,

1 − η(x) if hγ(x) > 0.

Since H is symmetric, for any x ∈ X, either there exists h ∈ H such that hγ(x) > 0, or Hγ(x) = H. When Hγ(x) = H,
{h ∈ H ∶ hγ(x) < 0} and {h ∈ H ∶ hγ(x) > 0} are both empty sets. Thus C∗`γ ,H(x) = 1. When Hγ(x) ≠ H, there exists
h ∈H such that C`γ (h,x) = min{η(x),1 − η(x)} = C∗`γ ,H(x). Therefore, the minimal conditional `γ-risk is

C∗`γ ,H(x) =
⎧⎪⎪⎨⎪⎪⎩

1, Hγ(x) =H ,

min{η(x),1 − η(x)}, Hγ(x) ≠H .

When Hγ(x) = H, C`γ (h,x) ≡ 1, which implies that ∆C`γ ,H(h,x) ≡ 0. For h ∈ Hγ(x) ⫋ H, ∆C`γ ,H(h,x) =
1 − min{η(x),1 − η(x)} = ∣∆η(x)∣ + 1/2; for h ∈ H such that hγ(x) < 0, we have ∆C`γ ,H(h,x) = η(x) −
min{η(x),1 − η(x)} = max{0,2∆η(x)}; for h ∈ H such that hγ(x) > 0, ∆C`γ ,H(h,x) = 1 − η(x) −
min{η(x),1 − η(x)} = max{0,−2∆η(x)}. Therefore,

∆C`γ ,H(h,x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣∆η(x)∣ + 1/2 h ∈Hγ(x) ⫋H,

max{0,2∆η(x)} hγ(x) < 0,

max{0,−2∆η(x)} hγ(x) > 0,

0 otherwise.

This leads to

⟨∆C`γ ,H(h,x)⟩
ε
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⟨∣∆η(x)∣ + 1
2
⟩
ε

h ∈Hγ(x) ⫋H

⟨2∆η(x)⟩ε hγ(x) < 0

⟨−2∆η(x)⟩ε hγ(x) > 0

0 otherwise

F. Comparison with Previous Results when H =Hall

F.1. Comparison with (Mohri et al., 2018, Theorem 4.7)

Assume Φ is convex and non-increasing. For any x ∈ X, by the convexity, we have

CΦ(h,x) = η(x)Φ(h(x)) + (1 − η(x))Φ(−h(x)) ≥ Φ(2∆η(x)h(x)). (23)

Then,

inf
h∈Hall(x)

∆CΦ,Hall
(h,x) ≥ inf

h∈Hall∶2∆η(x)h(x)≤0
∆CΦ,Hall

(h,x) (h ∈Hall(x) Ô⇒ h(x)∆η(x) ≤ 0)

≥ inf
h∈Hall∶2∆η(x)h(x)≤0

Φ(2∆η(x)h(x)) − C∗Φ,Hall
(x) (eq. (23))

= CΦ(0, x) − C∗Φ,Hall
(x) (Φ is non-increasing).
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Thus the condition of Theorem 4.7 in (Mohri et al., 2018) implies the condition in Corollary 2:

∣∆η(x)∣ ≤ c [CΦ(0, x) − C∗Φ,Hall
(x)]

1
s , ∀x ∈ X Ô⇒ ∣∆η(x)∣ ≤ c inf

h∈Hall(x)
[∆CΦ,Hall

(h,x)]
1
s , ∀x ∈ X.

Therefore, Theorem 4.7 in (Mohri et al., 2018) is a special case of Corollary 2.

F.2. Comparison with (Bartlett et al., 2006, Theorem 1.1)

We show that the ψ-transform in (Bartlett et al., 2006) verifies the condition in Corollary 1 for all distributions. First, by
Definition 2 in (Bartlett et al., 2006), we know that ψ is convex, ψ(0) = 0 and ψ ≤ ψ̃. Then,

ψ(2∣∆η(x)∣) ≤ ψ̃(2∣∆η(x)∣) (ψ ≤ ψ̃)
= inf
α≤0

(max{η(x),1 − η(x)}Φ(α) +min{η(x),1 − η(x)}Φ(−α))

− inf
α∈R

(max{η(x),1 − η(x)}Φ(α) +min{η(x),1 − η(x)}Φ(−α)) (def. of ψ̃)

= inf
α∆η(x)≤0

(η(x)Φ(α) + (1 − η(x))Φ(−α)) − inf
α∈R

(η(x)Φ(α) + (1 − η(x))Φ(−α)) (symmetry)

= inf
h∈Hall∶h(x)∆η(x)≤0

∆CΦ,Hall
(h,x)

≤ inf
h∈Hall(x)

∆CΦ,Hall
(h,x) (h ∈Hall(x) Ô⇒ h(x)∆η(x) ≤ 0)

Therefore, Theorem 1.1 in (Bartlett et al., 2006) is a special case of Corollary 1.

G. Proof of Theorem 3 and Theorem 12
Theorem 3 (Distribution-independent Ψ-bound). Assume that H satisfies the condition of Lemma 1. Assume that there
exists a convex function Ψ∶R+ → R with Ψ(0) = 0 and ε ≥ 0 such that for any t ∈ [1/2,1],

Ψ(⟨2t − 1⟩ε) ≤ inf
x∈X,h∈H∶h(x)<0

∆CΦ,H(h,x, t).

Then, for any hypothesis h ∈H and any distribution,

Ψ(R`0−1(h) −R∗
`0−1,H +M`0−1,H) ≤ RΦ(h) −R∗

Φ,H +MΦ,H +max{0,Ψ(ε)}. (10)

Proof. Note the condition (13) in Theorem 8 is symmetric about ∆η(x) = 0. Thus, condition (13) uniformly holds for all
distributions is equivalent to the following holds for any t ∈ [1/2,1] ∶

Ψ(⟨2t − 1⟩ε) ≤ inf
x∈X,h∈H∶h(x)<0

∆CΦ,H(h,x, t),

which proves the theorem.

Theorem 12 (Distribution-independent Γ-bound). Suppose that H satisfies the condition of Lemma 1 and that Φ is a
margin-based loss function. Assume there exist a non-negative and non-decreasing concave function Γ∶R+ → R and ε ≥ 0
such that the following holds for any for any t ∈ [1/2,1] ∶

⟨2t − 1⟩ε ≤ Γ( inf
x∈X,h∈H∶h(x)<0

∆CΦ,H(h,x, t)).

Then, for any hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤ Γ(RΦ(h) −R∗

Φ,H +MΦ,H) −M`0−1,H + ε. (21)

Proof. Note the condition (15) in Theorem 9 is symmetric about ∆η(x) = 0. Thus, condition (15) uniformly holds for all
distributions is equivalent to the following holds for any t ∈ [1/2,1] ∶

Ψ(⟨2t − 1⟩ε) ≤ inf
x∈X,h∈H∶h(x)<0

∆CΦ,H(h,x, t),

which proves the theorem.
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H. Proof of Theorem 5 and Theorem 13
Theorem 5 (Adversarial distribution-independent Ψ-bound). Suppose that H is symmetric. Assume there exist a convex
function Ψ∶R+ → R with Ψ(0) = 0 and ε ≥ 0 such that the following holds for any t ∈ [1/2,1] ∶

Ψ(⟨t⟩ε) ≤ inf
x∈X,h∈Hγ(x)⫋H

∆CΦ̃,H(h,x, t),

Ψ(⟨2t − 1⟩ε) ≤ inf
x∈X,h∈H∶hγ(x)<0

∆CΦ̃,H(h,x, t).

Then, for any hypothesis h ∈H and any distribution,

Ψ(R`γ (h) −R∗
`γ ,H +M`γ ,H) ≤ RΦ̃(h) −R∗

Φ̃,H
+MΦ̃,H +max{0,Ψ(ε)}. (12)

Proof. Note the condition (17) in Theorem 10 is symmetric about ∆η(x) = 0. Thus, condition (17) uniformly holds for all
distributions is equivalent to the following holds for any t ∈ [1/2,1] ∶

Ψ(⟨t⟩ε) ≤ inf
x∈X,h∈Hγ(x)⫋H

∆CΦ̃,H(h,x, t),

Ψ(⟨2t − 1⟩ε) ≤ inf
x∈X,h∈H∶hγ(x)<0

∆CΦ̃,H(h,x, t),

which proves the theorem.

Theorem 13 (Adversarial distribution-independent Γ-bound). Suppose that H is symmetric and that Φ̃ is a supremum-
based margin loss function. Assume there exist a non-negative and non-decreasing concave function Γ∶R+ → R and ε ≥ 0
such that the following holds for any for any t ∈ [1/2,1] ∶

⟨t⟩ε ≤ Γ
⎛
⎝

inf
x∈X,h∈Hγ(x)⫋H

∆CΦ̃,H(h,x, t)
⎞
⎠
,

⟨2t − 1⟩ε ≤ Γ( inf
x∈X,h∈H∶hγ(x)<0

∆CΦ̃,H(h,x, t)).

Then, for any hypothesis h ∈H and any distribution,

R`γ (h) −R∗
`γ ,H ≤ Γ(RΦ̃(h) −R∗

Φ̃,H
+MΦ̃,H) −M`γ ,H + ε. (22)

Proof. Note the condition (19) in Theorem 11 is symmetric about ∆η(x) = 0. Thus, condition (19) uniformly holds for all
distributions is equivalent to the following holds for any t ∈ [1/2,1] ∶

⟨t⟩ε ≤ Γ
⎛
⎝

inf
x∈X,h∈Hγ(x)⫋H

∆CΦ̃,H(h,x, t)
⎞
⎠
,

⟨2t − 1⟩ε ≤ Γ( inf
x∈X,h∈H∶hγ(x)<0

∆CΦ̃,H(h,x, t)),

which proves the theorem.

I. Proof of Theorem 4 and Theorem 6
Theorem 4 (Tightness). Suppose that H satisfies the condition of Lemma 1 and that ε = 0. If TΦ is convex with TΦ(0) = 0,
then, for any t ∈ [0,1] and δ > 0, there exist a distribution D and a hypothesis h ∈H such that R`0−1(h)−R∗

`0−1,H
+M`0−1,H =

t and TΦ(t) ≤ RΦ(h) −R∗
Φ,H +MΦ,H ≤ TΦ(t) + δ.
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Proof. By Theorem 3, if TΦ is convex with TΦ(0) = 0, the first inequality holds. For any t ∈ [0,1], consider the distribution
that supports on a singleton {x0} and satisfies that η(x0) = 1

2
+ t

2
. Thus

inf
x∈X,h∈H∶h(x)<0

∆CΦ,H(h,x, η(x0)) = inf
h∈H∶h(x0)<0

∆CΦ,H(h,x0, η(x0)) = inf
h∈H∶h(x0)<0

∆CΦ,H(h,x0).

For any δ > 0, take h0 ∈H such that h0(x0) < 0 and

∆CΦ,H(h0, x0) ≤ inf
h∈H∶h(x0)<0

∆CΦ,H(h,x0) + δ = inf
x∈X,h∈H∶h(x)<0

∆CΦ,H(h,x, η(x0)) + δ.

Then, we have

R`0−1(h0) −R∗
`0−1,H +M`0−1,H = R`0−1(h0) −EX[C∗`0−1,H(x)]

= ∆C`0−1,H(h0, x0)
= 2η(x0) − 1

= t,
RΦ(h0) −R∗

Φ,H +MΦ,H = RΦ(h0) −EX[C∗Φ,H(x)]
= ∆CΦ,H(h0, x0)
≤ inf
x∈X,h∈H∶h(x)<0

∆CΦ,H(h,x, η(x0)) + δ

= TΦ(2η(x0) − 1) + δ
= TΦ(t) + δ,

which completes the proof.

Theorem 6 (Adversarial tightness). Suppose that H is symmetric and that ε = 0. If TΦ̃ = min{T1,T2} is convex with
TΦ̃(0) = 0 and T2 ≤ T1, then, for any t ∈ [0,1] and δ > 0, there exist a distribution D and a hypothesis h ∈ H such that
R`γ (h) −R∗

`γ ,H
+M`γ ,H = t and TΦ̃(t) ≤ RΦ̃(h) −R∗

Φ̃,H
+MΦ̃,H ≤ TΦ̃(t) + δ.

Proof. By Theorem 5, if TΦ̃ is convex with TΦ̃(0) = 0, the first inequality holds. For any t ∈ [0,1], consider the distribution
that supports on a singleton {x0}, which satisfies that η(x0) = 1

2
+ t

2
and Hγ(x0) ≠H. Thus

inf
x∈X,h∈H∶hγ(x)<0

∆CΦ̃,H(h,x, η(x0)) = inf
h∈H∶hγ(x0)<0

∆CΦ̃,H(h,x0, η(x0)) = inf
h∈H∶hγ(x0)<0

∆CΦ̃,H(h,x0).

For any δ > 0, take h ∈H such that hγ(x0) < 0 and

∆CΦ̃,H(h,x0) ≤ inf
h∈H∶hγ(x0)<0

∆CΦ̃,H(h,x0) + δ = inf
x∈X,h∈H∶hγ(x)<0

∆CΦ̃,H(h,x, η(x0)) + δ.

Then, we have

R`γ (h) −R∗
`γ ,H +M`γ ,H = R`γ (h) −EX[C∗`γ ,H(x)]

= ∆C`γ ,H(h,x0)
= 2η(x0) − 1

= t,

RΦ̃(h) −R∗

Φ̃,H
+MΦ̃,H = RΦ̃(h) −EX[C∗

Φ̃,H
(x)]

= ∆CΦ̃,H(h,x0)
≤ inf
x∈X,h∈H∶hγ(x)<0

∆CΦ̃,H(h,x, η(x0)) + δ

= T2(2η(x0) − 1) + δ
= TΦ̃(2η(x0) − 1) + δ (T2 ≤ T1)
= TΦ̃(t) + δ

which completes the proof.
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J. Proof of Theorem 7
Theorem 7 (Negative results for robustness). Suppose that H contains 0 and is regular for adversarial calibration. Let
`1 be supremum-based convex loss or supremum-based symmetric loss and `2 = `γ . Then, f(t) ≥ 1/2 for any t ≥ 0 are the
only non-decreasing functions f such that (3) holds.

Proof. Assume x0 ∈ X is distinguishing. Consider the distribution that supports on {x0}. Let η(x0) = 1/2 and h0 = 0 ∈H.
Then, for any h ∈H,

R`γ (h) = C`γ (h,x0) = 1/21hγ(x0)≤0 + 1/21hγ(x0)≥0 ≥ 1/2,

where the equality can be achieved for some h ∈H since x0 is distinguishing. Therefore,

R∗
`γ ,H = C∗`γ ,H(x0) = inf

h∈H
C`γ (h,x0) = 1/2.

Note R`γ (h0) = 1/2 + 1/2 = 1. For the supremum-based convex loss Φ̃, for any h ∈H,

RΦ̃(h) = CΦ̃(h,x0) = 1/2Φ(hγ(x0)) + 1/2Φ(−hγ(x0))

≥ Φ(1/2hγ(x0) − 1/2hγ(x0)) (convexity of Φ)
≥ Φ(0), (Φ is non-increasing)

where both equality can be achieved by h0 = 0. Therefore,

R∗

Φ̃,H
= C∗

Φ̃,H
(x0) = RΦ̃(h0) = Φ(0).

If (3) holds for some non-decreasing function f , then, we obtain for any h ∈H,

R`γ (h) − 1/2 ≤ f(RΦ̃(h) −Φ(0)).

Let h = h0, then f(0) ≥ 1/2. Since f is non-decreasing, for any t ∈ [0,1], f(t) ≥ 1/2.

For the supremum-based symmetric loss Φ̃sym, there exists a constant C ≥ 0 such that, for any h ∈H,

RΦ̃sym
(h) = CΦ̃sym

(h,x0) = 1/2Φsym(hγ(x0)) + 1/2Φsym(−hγ(x0))

≥ 1/2Φsym(hγ(x0)) + 1/2Φsym(−hγ(x0))

≥ C
2

where the equality can be achieved by h0 = 0. Therefore,

R∗

Φ̃sym,H
= C∗

Φ̃sym,H
(x0) = RΦ̃sym

(h0) =
C

2
.

If (3) holds for some non-decreasing function f , then, we obtain for any h ∈H,

R`γ (h) − 1/2 ≤ f(RΦ̃sym
(h) − C

2
).

Let h = h0, then f(0) ≥ 1/2. Since f is non-decreasing, for any t ∈ [0,1], f(t) ≥ 1/2.

K. Derivation of Non-Adversarial H-Consistency Bounds
K.1. Linear Hypotheses

Since Hlin satisfies the condition of Lemma 1, by Lemma 1 the (`0−1,Hlin)-minimizability gap can be expressed as follows:

M`0−1,Hlin
= R∗

`0−1,Hlin
−EX[min{η(x),1 − η(x)}]

= R∗
`0−1,Hlin

−R∗
`0−1,Hall

.
(24)

Therefore, the (`0−1,Hlin)-minimizability gap coincides with the (`0−1,Hlin)-approximation error. By the definition of
Hlin, for any x ∈ X, {h(x) ∣ h ∈Hlin} = [−W ∥x∥p −B,W ∥x∥p +B].
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K.1.1. HINGE LOSS

For the hinge loss Φhinge(α)∶ = max{0,1 − α}, for all h ∈Hlin and x ∈ X:

CΦhinge
(h,x, t) = tΦhinge(h(x)) + (1 − t)Φhinge(−h(x))

= tmax{0,1 − h(x)} + (1 − t)max{0,1 + h(x)}.
inf

h∈Hlin

CΦhinge
(h,x, t) = 1 − ∣2t − 1∣min{W ∥x∥p +B,1}.

Therefore, the (Φhinge,Hlin)-minimizability gap can be expressed as follows:

MΦhinge,Hlin
= R∗

Φhinge,Hlin
−EX[1 − inf

h∈Hlin

CΦhinge
(h,x, η(x))].

= R∗
Φhinge,Hlin

−EX[1 − ∣2η(x) − 1∣min{W ∥x∥p +B,1}].
(25)

Note the (Φhinge,Hlin)-minimizability gap coincides with the (Φhinge,Hlin)-approximation error R∗
Φhinge,Hlin

−
EX[1 − ∣2η(x) − 1∣] for B ≥ 1.

For 1
2
< t ≤ 1, we have

inf
h∈Hlin∶h(x)<0

CΦhinge
(h,x, t) = tmax{0,1 − 0} + (1 − t)max{0,1 + 0}

= 1.

inf
x∈X

inf
h∈Hlin∶h(x)<0

∆CΦhinge,Hlin
(h,x, t) = inf

x∈X
{ inf
h∈Hlin∶h(x)<0

CΦhinge
(h,x, t) − inf

h∈Hlin

CΦhinge
(h,x, t)}

= inf
x∈X

(2t − 1)min{W ∥x∥p +B,1}

= (2t − 1)min{B,1}
= T(2t − 1),

where T is the increasing and convex function on [0,1] defined by

∀t ∈ [0,1], T(t) = min{B,1} t.

By Definition 3, for any ε ≥ 0, the Hlin-estimation error transformation of the hinge loss is as follows:

TΦhinge
= min{B,1} t, t ∈ [0,1],

Therefore, TΦhinge
is convex, non-decreasing, invertible and satisfies that TΦhinge

(0) = 0. By Theorem 4, we can choose
Ψ(t) = min{B,1} t in Theorem 3, or, equivalently, Γ(t) = t

min{B,1}
in Theorem 12, which are optimal when ε = 0. Thus,

by Theorem 3 or Theorem 12, setting ε = 0 yields the Hlin-consistency bound for the hinge loss, valid for all h ∈Hlin:

R`0−1(h) −R∗
`0−1,Hlin

≤
RΦhinge

(h) −R∗
Φhinge,Hlin

+MΦhinge,Hlin

min{B,1}
−M`0−1,Hlin

. (26)

Since the (`0−1,Hlin)-minimizability gap coincides with the (`0−1,Hlin)-approximation error and (Φhinge,Hlin)-
minimizability gap coincides with the (Φhinge,Hlin)-approximation error for B ≥ 1, the inequality can be rewritten
as follows:

R`0−1(h) −R∗
`0−1,Hall

≤
⎧⎪⎪⎨⎪⎪⎩

RΦhinge
(h) −R∗

Φhinge,Hall
if B ≥ 1

1
B
[RΦhinge

(h) −EX[1 − ∣2η(x) − 1∣min{W ∥x∥p +B,1}]] otherwise.

The inequality for B ≥ 1 coincides with the consistency excess error bound known for the hinge loss (Zhang, 2004a; Bartlett
et al., 2006; Mohri et al., 2018) but the one for B < 1 is distinct and novel. For B < 1, we have

EX[1 − ∣2η(x) − 1∣min{W ∥x∥p +B,1}] > EX[1 − ∣2η(x) − 1∣] = 2EX[min{η(x),1 − η(x)}] = R∗
Φhinge,Hall

.
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Therefore for B < 1,

RΦhinge
(h) −EX[1 − ∣2η(x) − 1∣min{W ∥x∥p +B,1}] < RΦhinge

(h) −R∗
Φhinge,Hall

.

Note that: R∗
Φhinge,Hall

= 2R∗
`0−1,Hall

= 2EX[min{η(x),1 − η(x)}]. Thus, the first inequality (case B ≥ 1) can be
equivalently written as follows:

∀h ∈Hlin, R`0−1(h) ≤ RΦhinge
(h) −EX[min{η(x),1 − η(x)}],

which is a more informative upper bound than the standard inequality R`0−1(h) ≤ RΦhinge
(h).

K.1.2. LOGISTIC LOSS

For the logistic loss Φlog(α)∶ = log2(1 + e−α), for all h ∈Hlin and x ∈ X:

CΦlog
(h,x, t) = tΦlog(h(x)) + (1 − t)Φlog(−h(x))

= t log2(1 + e−h(x)) + (1 − t) log2(1 + eh(x)).
inf

h∈Hlin

CΦlog
(h,x, t)

=
⎧⎪⎪⎨⎪⎪⎩

−t log2(t) − (1 − t) log2(1 − t) if log∣ t
1−t

∣ ≤W ∥x∥p +B,
max{t,1 − t} log2(1 + e−(W ∥x∥p+B)) +min{t,1 − t} log2(1 + eW ∥x∥p+B) if log∣ t

1−t
∣ >W ∥x∥p +B.

Therefore, the (Φlog,Hlin)-minimizability gap can be expressed as follows:

MΦlog,Hlin
= R∗

Φlog,Hlin
−EX[ inf

h∈Hlin

CΦlog
(h,x, η(x))]

= R∗
Φlog,Hlin

−EX[−η(x) log2(η(x)) − (1 − η(x)) log2(1 − η(x))1log∣
η(x)

1−η(x)
∣≤W ∥x∥p+B

]

−EX[max{η(x),1 − η(x)} log2(1 + e−(W ∥x∥p+B))1
log∣

η(x)
1−η(x)

∣>W ∥x∥p+B
]

−EX[min{η(x),1 − η(x)} log2(1 + eW ∥x∥p+B)1
log∣

η(x)
1−η(x)

∣>W ∥x∥p+B
]

(27)

Note (Φlog,Hlin)-minimizability gap coincides with the (Φlog,Hlin)-approximation error R∗
Φlog,Hlin

−
EX[−η(x) log2(η(x)) − (1 − η(x)) log2(1 − η(x))] for B = +∞.

For 1
2
< t ≤ 1, we have

inf
h∈Hlin∶h(x)<0

CΦlog
(h,x, t) = t log2(1 + e−0) + (1 − t) log2(1 + e0)

= 1,

inf
x∈X

inf
h∈Hlin∶h(x)<0

∆CΦlog,Hlin
(h,x, t) = inf

x∈X
( inf
h∈Hlin∶h(x)<0

CΦlog
(h,x, t) − inf

h∈Hlin

CΦlog
(h,x, t))

= inf
x∈X

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 + t log2(t) + (1 − t) log2(1 − t)
if log t

1−t
≤W ∥x∥p +B,

1 − t log2(1 + e−(W ∥x∥p+B)) − (1 − t) log2(1 + eW ∥x∥p+B)
if log t

1−t
>W ∥x∥p +B.

=
⎧⎪⎪⎨⎪⎪⎩

1 + t log2(t) + (1 − t) log2(1 − t) if log t
1−t

≤ B,
1 − t log2(1 + e−B) − (1 − t) log2(1 + eB) if log t

1−t
> B.

= T(2t − 1),

where T is the increasing and convex function on [0,1] defined by

∀t ∈ [0,1], T(t) =
⎧⎪⎪⎨⎪⎪⎩

t+1
2

log2(t + 1) + 1−t
2

log2(1 − t), t ≤ eB−1
eB+1

,

1 − t+1
2

log2(1 + e−B) − 1−t
2

log2(1 + eB), t > eB−1
eB+1

.
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By Definition 3, for any ε ≥ 0, the Hlin-estimation error transformation of the logistic loss is as follows:

TΦlog
=
⎧⎪⎪⎨⎪⎪⎩

T(t), t ∈ [ε,1] ,
T(ε)
ε
t, t ∈ [0, ε) .

Therefore, when ε = 0, TΦlog
is convex, non-decreasing, invertible and satisfies that TΦlog

(0) = 0. By Theorem 4, we can
choose Ψ(t) = TΦlog

(t) in Theorem 3, or equivalently Γ(t) = T−1
Φlog

(t) in Theorem 12, which are optimal. To simplify the
expression, using the fact that

t + 1

2
log2(t + 1) + 1 − t

2
log2(1 − t) = 1 − (− t + 1

2
log2(

t + 1

2
) − 1 − t

2
log2(

1 − t
2

))

≥ 1 −
√

4
1 − t

2

t + 1

2

= 1 −
√

1 − t2

≥ t
2

2
,

1 − t + 1

2
log2(1 + e−B) − 1 − t

2
log2(1 + eB) = 1

2
log2(

4

2 + e−B + eB
) + 1/2 log2(

1 + eB

1 + e−B
) t,

TΦlog
can be lower bounded by

T̃Φlog
(t) =

⎧⎪⎪⎨⎪⎪⎩

t2

2
, t ≤ eB−1

eB+1
,

1
2
( e

B
−1

eB+1
) t, t > eB−1

eB+1
.

Thus, we adopt an upper bound of T−1
Φlog

as follows:

T̃−1
Φlog

(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
2t, t ≤ 1

2
( e

B
−1

eB+1
)

2
,

2( e
B
+1

eB−1
) t, t > 1

2
( e

B
−1

eB+1
)

2
.

Therefore, by Theorem 3 or Theorem 12, setting ε = 0 yields the Hlin-consistency bound for the logistic loss, valid for all
h ∈Hlin:

R`0−1(h) −R∗
`0−1,Hlin

+M`0−1,Hlin

≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
2 (RΦlog

(h) −R∗
Φlog,Hlin

+MΦlog,Hlin
)

1
2
, if RΦlog

(h) −R∗
Φlog,Hlin

≤ 1
2
( e

B
−1

eB+1
)

2
−MΦlog,Hlin

2( e
B
+1

eB−1
)(RΦlog

(h) −R∗
Φlog,Hlin

+MΦlog,Hlin
), otherwise

(28)

Since the (`0−1,Hlin)-minimizability gap coincides with the (`0−1,Hlin)-approximation error and (Φlog,Hlin)-
minimizability gap coincides with the (Φlog,Hlin)-approximation error for B = +∞, the inequality can be rewritten
as follows:

R`0−1(h) −R∗
`0−1,Hall

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

√
2 [RΦlog

(h) −R∗
Φlog,Hall

]
1
2 if B = +∞

⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
2 [RΦlog

(h) −R∗
Φlog,Hlin

+MΦlog,Hlin
]

1
2 if RΦlog

(h) −R∗
Φlog,Hlin

≤ 1
2
( e

B
−1

eB+1
)

2
−MΦlog,Hlin

2( e
B
+1

eB−1
)(RΦlog

(h) −R∗
Φlog,Hlin

+MΦlog,Hlin
) otherwise

otherwise

where the (Φlog,Hlin)-minimizability gap MΦlog,Hlin
is characterized as below, which is less than the (Φlog,Hlin)-
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approximation error when B < +∞:

MΦlog,Hlin
= R∗

Φlog,Hlin
−EX[−η(x) log2(η(x)) − (1 − η(x)) log2(1 − η(x))1log∣

η(x)
1−η(x)

∣≤W ∥x∥p+B
]

−EX[max{η(x),1 − η(x)} log2(1 + e−(W ∥x∥p+B))1
log∣

η(x)
1−η(x)

∣>W ∥x∥p+B
]

−EX[min{η(x),1 − η(x)} log2(1 + eW ∥x∥p+B)1
log∣

η(x)
1−η(x)

∣>W ∥x∥p+B
]

< R∗
Φlog,Hlin

−EX[−η(x) log2(η(x)) − (1 − η(x)) log2(1 − η(x))]
= R∗

Φlog,Hlin
−R∗

Φlog,Hall
.

Therefore, the inequality for B = +∞ coincides with the consistency excess error bound known for the logistic loss (Zhang,
2004a; Mohri et al., 2018) but the one for B < +∞ is distinct and novel.

K.1.3. EXPONENTIAL LOSS

For the exponential loss Φexp(α)∶ = e−α, for all h ∈Hlin and x ∈ X:

CΦexp(h,x, t) = tΦexp(h(x)) + (1 − t)Φexp(−h(x))

= te−h(x) + (1 − t)eh(x).

inf
h∈Hlin

CΦexp(h,x, t) =
⎧⎪⎪⎨⎪⎪⎩

2
√
t(1 − t) if 1/2 log∣ t

1−t
∣ ≤W ∥x∥p +B

max{t,1 − t}e−(W ∥x∥p+B) +min{t,1 − t}eW ∥x∥p+B if 1/2 log∣ t
1−t

∣ >W ∥x∥p +B.

Therefore, the (Φexp,Hlin)-minimizability gap can be expressed as follows:

MΦexp,Hlin
= R∗

Φexp,Hlin
−EX[ inf

h∈Hlin

CΦexp(h,x, η(x))]

= R∗
Φexp,Hlin

−EX[2
√
η(x)(1 − η(x))1

1/2 log∣
η(x)

1−η(x)
∣≤W ∥x∥p+B

]

−EX[max{η(x),1 − η(x)}e−(W ∥x∥p+B)1
1/2 log∣

η(x)
1−η(x)

∣>W ∥x∥p+B
]

−EX[min{η(x),1 − η(x)}eW ∥x∥p+B1
1/2 log∣

η(x)
1−η(x)

∣>W ∥x∥p+B
].

(29)

Note (Φexp,Hlin)-minimizability gap coincides with the (Φexp,Hlin)-approximation error R∗
Φexp,Hlin

−
EX[2

√
η(x)(1 − η(x))] for B = +∞.

For 1
2
< t ≤ 1, we have

inf
h∈Hlin∶h(x)<0

CΦexp(h,x, t) = te−0 + (1 − t)e0

= 1.

inf
x∈X

inf
h∈Hlin∶h(x)<0

∆CΦexp,Hlin
(h,x, t) = inf

x∈X
( inf
h∈Hlin∶h(x)<0

CΦexp(h,x, t) − inf
h∈Hlin

CΦexp(h,x, t))

= inf
x∈X

⎧⎪⎪⎨⎪⎪⎩

1 − 2
√
t(1 − t) if 1/2 log t

1−t
≤W ∥x∥p +B,

1 − te−(W ∥x∥p+B) − (1 − t)eW ∥x∥p+B if 1/2 log t
1−t

>W ∥x∥p +B.

=
⎧⎪⎪⎨⎪⎪⎩

1 − 2
√
t(1 − t), 1/2 log t

1−t
≤ B

1 − te−B − (1 − t)eB , 1/2 log t
1−t

> B

= T(2t − 1),

where T is the increasing and convex function on [0,1] defined by

∀t ∈ [0,1], T(t) =
⎧⎪⎪⎨⎪⎪⎩

1 −
√

1 − t2, t ≤ e2B−1
e2B+1

,

1 − t+1
2
e−B − 1−t

2
eB , t > e2B−1

e2B+1
.
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By Definition 3, for any ε ≥ 0, the Hlin-estimation error transformation of the exponential loss is as follows:

TΦexp =
⎧⎪⎪⎨⎪⎪⎩

T(t), t ∈ [ε,1] ,
T(ε)
ε
t, t ∈ [0, ε) .

Therefore, when ε = 0, TΦexp is convex, non-decreasing, invertible and satisfies that TΦexp(0) = 0. By Theorem 4, we can
choose Ψ(t) = TΦexp(t) in Theorem 3, or equivalently Γ(t) = T−1

Φexp
(t) in Theorem 12, which are optimal. To simplify the

expression, using the fact that

1 −
√

1 − t2 ≥ t
2

2
,

1 − t + 1

2
e−B − 1 − t

2
eB = 1 − 1/2eB − 1/2e−B + e

B − e−B

2
t,

TΦexp can be lower bounded by

T̃Φexp(t) =
⎧⎪⎪⎨⎪⎪⎩

t2

2
, t ≤ e2B−1

e2B+1
,

1
2
( e

2B
−1

e2B+1
) t, t > e2B−1

e2B+1
.

Thus, we adopt an upper bound of T−1
Φexp

as follows:

T̃−1
Φexp

(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
2t, t ≤ 1

2
( e

2B
−1

e2B+1
)

2
,

2( e
2B

+1
e2B−1

) t, t > 1
2
( e

2B
−1

e2B+1
)

2
.

Therefore, by Theorem 3 or Theorem 12, setting ε = 0 yields the Hlin-consistency bound for the exponential loss, valid for
all h ∈Hlin:

R`0−1(h) −R∗
`0−1,Hlin

+M`0−1,Hlin

≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
2 (RΦexp(h) −R∗

Φexp,Hlin
+MΦexp,Hlin

)
1
2
, if RΦexp(h) −R∗

Φexp,Hlin
≤ 1

2
( e

2B
−1

e2B+1
)

2
−MΦexp,Hlin

,

2( e
2B

+1
e2B−1

)(RΦexp(h) −R∗
Φexp,Hlin

+MΦexp,Hlin
), otherwise.

(30)

Since the (`0−1,Hlin)-minimizability gap coincides with the (`0−1,Hlin)-approximation error and (Φexp,Hlin)-
minimizability gap coincides with the (Φexp,Hlin)-approximation error for B = +∞, the inequality can be rewritten
as follows:

R`0−1(h) −R∗
`0−1,Hall

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

√
2 [RΦexp(h) −R∗

Φexp,Hall
]

1
2 if B = +∞,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
2 [RΦexp(h) −R∗

Φexp,Hlin
+MΦexp,Hlin

]
1
2 if RΦexp(h) −R∗

Φexp,Hlin
≤ 1

2
( e

2B
−1

e2B+1
)

2
−MΦexp,Hlin

,

2( e
2B

+1
e2B−1

)(RΦexp(h) −R∗
Φexp,Hlin

+MΦexp,Hlin
) otherwise.

otherwise.

where the (Φexp,Hlin)-minimizability gap MΦexp,Hlin
is characterized as below, which is less than the (Φexp,Hlin)-

approximation error when B < +∞:

MΦexp,Hlin
= R∗

Φexp,Hlin
−EX[2

√
η(x)(1 − η(x))1

1/2 log∣
η(x)

1−η(x)
∣≤W ∥x∥p+B

]

−EX[max{η(x),1 − η(x)}e−(W ∥x∥p+B)1
1/2 log∣

η(x)
1−η(x)

∣>W ∥x∥p+B
]

−EX[min{η(x),1 − η(x)}eW ∥x∥p+B1
1/2 log∣

η(x)
1−η(x)

∣>W ∥x∥p+B
]

< R∗
Φexp,Hlin

−EX[2
√
η(x)(1 − η(x))]

= R∗
Φexp,Hlin

−R∗
Φexp,Hall

.

Therefore, the inequality for B = +∞ coincides with the consistency excess error bound known for the exponential loss
(Zhang, 2004a; Mohri et al., 2018) but the one for B < +∞ is distinct and novel.
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K.1.4. QUADRATIC LOSS

For the quadratic loss Φquad(α)∶ = (1 − α)21α≤1, for all h ∈Hlin and x ∈ X:

CΦquad
(h,x, t) = tΦquad(h(x)) + (1 − t)Φquad(−h(x))

= t(1 − h(x))2
1h(x)≤1 + (1 − t)(1 + h(x))2

1h(x)≥−1.

inf
h∈Hlin

CΦquad
(h,x, t) =

⎧⎪⎪⎨⎪⎪⎩

4t(1 − t), ∣2t − 1∣ ≤W ∥x∥p +B,
max{t,1 − t}(1 − (W ∥x∥p +B))2 +min{t,1 − t}(1 +W ∥x∥p +B)2

, ∣2t − 1∣ >W ∥x∥p +B.

Therefore, the (Φquad,Hlin)-minimizability gap can be expressed as follows:

MΦquad,Hlin
= R∗

Φquad,Hlin
−EX[4η(x)(1 − η(x))1∣2η(x)−1∣≤W ∥x∥p+B

]

−EX[max{η(x),1 − η(x)}(1 − (W ∥x∥p +B))2
1∣2η(x)−1∣>W ∥x∥p+B

]

−EX[min{η(x),1 − η(x)}(1 + (W ∥x∥p +B))2
1∣2η(x)−1∣>W ∥x∥p+B

]

(31)

Note (Φquad,Hlin)-minimizability gap coincides with the (Φquad,Hlin)-approximation error R∗
Φquad,Hlin

−
EX[4η(x)(1 − η(x))] for B ≥ 1.

For 1
2
< t ≤ 1, we have

inf
h∈Hlin∶h(x)<0

CΦquad
(h,x, t) = t + (1 − t)

= 1

inf
x∈X

inf
h∈Hlin∶h(x)<0

∆CΦquad,Hlin
(h,x, t) = inf

x∈X
( inf
h∈Hlin∶h(x)<0

CΦquad
(h,x, t) − inf

h∈Hlin

CΦquad
(h,x, t))

= inf
x∈X

⎧⎪⎪⎨⎪⎪⎩

1 − 4t(1 − t), 2t − 1 ≤W ∥x∥p +B,
1 − t(1 − (W ∥x∥p +B))2 − (1 − t)(1 +W ∥x∥p +B)2

, 2t − 1 >W ∥x∥p +B.

=
⎧⎪⎪⎨⎪⎪⎩

1 − 4t(1 − t), 2t − 1 ≤ B,
1 − t(1 −B)2 − (1 − t)(1 +B)2

, 2t − 1 > B.

= T(2t − 1)

where T is the increasing and convex function on [0,1] defined by

∀t ∈ [0,1], T(t) =
⎧⎪⎪⎨⎪⎪⎩

t2, t ≤ B,
2B t −B2, t > B.

By Definition 3, for any ε ≥ 0, the Hlin-estimation error transformation of the quadratic loss is as follows:

TΦquad
=
⎧⎪⎪⎨⎪⎪⎩

T(t), t ∈ [ε,1] ,
T(ε)
ε
t, t ∈ [0, ε) .

Therefore, when ε = 0, TΦquad
is convex, non-decreasing, invertible and satisfies that TΦquad

(0) = 0. By Theorem 4, we can

choose Ψ(t) = TΦquad
(t) in Theorem 3, or equivalently Γ(t) = T−1

Φquad
(t) =

⎧⎪⎪⎨⎪⎪⎩

√
t, t ≤ B2

t
2B

+ B
2
, t > B2

, in Theorem 12, which are

optimal. Thus, by Theorem 3 or Theorem 12, setting ε = 0 yields the Hlin-consistency bound for the quadratic loss, valid for
all h ∈Hlin:

R`0−1(h) −R∗
`0−1,Hlin

+M`0−1,Hlin

≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[RΦquad
(h) −R∗

Φquad,Hlin
+MΦquad,Hlin

]
1
2 if RΦquad

(h) −R∗
Φquad,Hlin

≤ B2 −MΦquad,Hlin

RΦquad
(h)−R∗

Φquad,Hlin
+MΦquad,Hlin

2B
+ B

2
otherwise

(32)
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Since the (`0−1,Hlin)-minimizability gap coincides with the (`0−1,Hlin)-approximation error and (Φquad,Hlin)-
minimizability gap coincides with the (Φquad,Hlin)-approximation error for B ≥ 1, the inequality can be rewritten
as follows:

R`0−1(h) −R∗
`0−1,Hall

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[RΦquad
(h) −R∗

Φquad,Hall
]

1
2 if B ≥ 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[RΦquad
(h) −R∗

Φquad,Hlin
+MΦquad,Hlin

]
1
2 if RΦquad

(h) −R∗
Φquad,Hlin

≤ B2 −MΦquad,Hlin

RΦquad
(h)−R∗

Φquad,Hlin
+MΦquad,Hlin

2B
+ B

2
otherwise

otherwise

where the (Φquad,Hlin)-minimizability gap MΦquad,Hlin
is characterized as below, which is less than the (Φquad,Hlin)-

approximation error when B < 1:

MΦquad,Hlin
= R∗

Φquad,Hlin
−EX[4η(x)(1 − η(x))1∣2η(x)−1∣≤W ∥x∥p+B

]

−EX[max{η(x),1 − η(x)}(1 − (W ∥x∥p +B))2
1∣2η(x)−1∣>W ∥x∥p+B

]

−EX[min{η(x),1 − η(x)}(1 + (W ∥x∥p +B))2
1∣2η(x)−1∣>W ∥x∥p+B

]

≤ R∗
Φquad,Hlin

−EX[4η(x)(1 − η(x))]
= R∗

Φquad,Hlin
−R∗

Φquad,Hall
.

Therefore, the inequality for B ≥ 1 coincides with the consistency excess error bound known for the quadratic loss (Zhang,
2004a; Bartlett et al., 2006) but the one for B < 1 is distinct and novel.

K.1.5. SIGMOID LOSS

For the sigmoid loss Φsig(α)∶ = 1 − tanh(kα), k > 0, for all h ∈Hlin and x ∈ X:

CΦsig
(h,x, t) = tΦsig(h(x)) + (1 − t)Φsig(−h(x)),

= t(1 − tanh(kh(x))) + (1 − t)(1 + tanh(kh(x))).
inf

h∈Hlin

CΦsig
(h,x, t) = 1 − ∣1 − 2t∣ tanh(k(W ∥x∥p +B))

Therefore, the (Φsig,Hlin)-minimizability gap can be expressed as follows:

MΦsig,Hlin
= R∗

Φsig,Hlin
−EX[ inf

h∈Hlin

CΦsig
(h,x, η(x))]

= R∗
Φsig,Hlin

−EX[1 − ∣1 − 2η(x)∣ tanh(k(W ∥x∥p +B))].
(33)

Note (Φsig,Hlin)-minimizability gap coincides with the (Φsig,Hlin)-approximation error R∗
Φsig,Hlin

−EX[1 − ∣1 − 2η(x)∣]
for B = +∞.

For 1
2
< t ≤ 1, we have

inf
h∈Hlin∶h(x)<0

CΦsig
(h,x, t) = 1 − ∣1 − 2t∣ tanh(0)

= 1.

inf
x∈X

inf
h∈Hlin∶h(x)<0

∆CΦsig,Hlin
(h,x, t) = inf

x∈X
( inf
h∈Hlin∶h(x)<0

CΦsig
(h,x, t) − inf

h∈Hlin

CΦsig
(h,x, t))

= inf
x∈X

(2t − 1) tanh(k(W ∥x∥p +B))

= (2t − 1) tanh(kB)
= T(2t − 1)
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where T is the increasing and convex function on [0,1] defined by

∀t ∈ [0,1], T(t) = tanh(kB) t.

By Definition 3, for any ε ≥ 0, the Hlin-estimation error transformation of the sigmoid loss is as follows:

TΦsig
= tanh(kB) t, t ∈ [0,1],

Therefore, TΦsig
is convex, non-decreasing, invertible and satisfies that TΦsig

(0) = 0. By Theorem 4, we can choose
Ψ(t) = tanh(kB) t in Theorem 3, or equivalently Γ(t) = t

tanh(kB)
in Theorem 12, which are optimal when ε = 0. Thus, by

Theorem 3 or Theorem 12, setting ε = 0 yields the Hlin-consistency bound for the sigmoid loss, valid for all h ∈Hlin:

R`0−1(h) −R∗
`0−1,Hlin

≤
RΦsig

(h) −R∗
Φsig,Hlin

+MΦsig,Hlin

tanh(kB)
−M`0−1,Hlin

. (34)

Since the (`0−1,Hlin)-minimizability gap coincides with the (`0−1,Hlin)-approximation error and (Φsig,Hlin)-
minimizability gap coincides with the (Φsig,Hlin)-approximation error for B = +∞, the inequality can be rewritten
as follows:

R`0−1(h) −R∗
`0−1,Hall

≤
⎧⎪⎪⎨⎪⎪⎩

RΦsig
(h) −R∗

Φsig,Hall
if B = +∞

1
tanh(kB)

[RΦsig
(h) −EX[1 − ∣1 − 2η(x)∣ tanh(k(W ∥x∥p +B))]] otherwise.

(35)

The inequality for B = +∞ coincides with the consistency excess error bound known for the sigmoid loss (Zhang, 2004a;
Bartlett et al., 2006; Mohri et al., 2018) but the one for B < +∞ is distinct and novel. For B < +∞, we have

EX[1 − ∣1 − 2η(x)∣ tanh(k(W ∥x∥p +B))] > EX[1 − ∣2η(x) − 1∣] = 2EX[min{η(x),1 − η(x)}] = R∗
Φhinge,Hall

.

Therefore for B < +∞,

RΦsig
(h) −EX[1 − ∣1 − 2η(x)∣ tanh(k(W ∥x∥p +B))] < RΦsig

(h) −R∗
Φsig,Hall

.

Note that: R∗
Φsig,Hall

= 2R∗
`0−1,Hall

= 2EX[min{η(x),1 − η(x)}]. Thus, the first inequality (case B = +∞) can be
equivalently written as follows:

∀h ∈Hlin, R`0−1(h) ≤ RΦsig
(h) −EX[min{η(x),1 − η(x)}],

which is a more informative upper bound than the standard inequality R`0−1(h) ≤ RΦsig
(h).

K.1.6. ρ-MARGIN LOSS

For the ρ-margin loss Φρ(α)∶ = min{1,max{0,1 − α
ρ
}}, ρ > 0, for all h ∈Hlin and x ∈ X:

CΦρ(h,x, t) = tΦρ(h(x)) + (1 − t)Φρ(−h(x)),

= tmin{1,max{0,1 − h(x)
ρ

}} + (1 − t)min{1,max{0,1 + h(x)
ρ

}}.

inf
h∈Hlin

CΦρ(h,x, t) = min{t,1 − t} +max{t,1 − t}
⎛
⎝

1 −
min{W ∥x∥p +B,ρ}

ρ

⎞
⎠
.

Therefore, the (Φρ,Hlin)-minimizability gap can be expressed as follows:

MΦρ,Hlin
= R∗

Φρ,Hlin
−EX[ inf

h∈Hlin

CΦρ(h,x, η(x))]

= R∗
Φρ,Hlin

−EX
⎡⎢⎢⎢⎢⎣
min{η(x),1 − η(x)} +max{η(x),1 − η(x)}

⎛
⎝

1 −
min{W ∥x∥p +B,ρ}

ρ

⎞
⎠

⎤⎥⎥⎥⎥⎦
.

(36)
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Note the (Φρ,Hlin)-minimizability gap coincides with the (Φρ,Hlin)-approximation error R∗
Φρ,Hlin

−
EX[min{η(x),1 − η(x)}] for B ≥ ρ.

For 1
2
< t ≤ 1, we have

inf
h∈Hlin∶h(x)<0

CΦρ(h,x, t) = t + (1 − t)
⎛
⎝

1 −
min{W ∥x∥p +B,ρ}

ρ

⎞
⎠
.

inf
x∈X

inf
h∈Hlin∶h(x)<0

∆CΦρ,Hlin
(h,x) = inf

x∈X
( inf
h∈Hlin∶h(x)<0

CΦρ(h,x, t) − inf
h∈Hlin

CΦρ(h,x, t))

= inf
x∈X

(2t − 1)
min{W ∥x∥p +B,ρ}

ρ

= (2t − 1)min{B,ρ}
ρ

= T(2t − 1)

where T is the increasing and convex function on [0,1] defined by

∀t ∈ [0,1], T(t) = min{B,ρ}
ρ

t.

By Definition 3, for any ε ≥ 0, the Hlin-estimation error transformation of the ρ-margin loss is as follows:

TΦρ =
min{B,ρ}

ρ
t, t ∈ [0,1],

Therefore, TΦρ is convex, non-decreasing, invertible and satisfies that TΦρ(0) = 0. By Theorem 4, we can choose
Ψ(t) = min{B,ρ}

ρ
t in Theorem 3, or equivalently Γ(t) = ρ

min{B,ρ}
t in Theorem 12, which are optimal when ε = 0. Thus, by

Theorem 3 or Theorem 12, setting ε = 0 yields the Hlin-consistency bound for the ρ-margin loss, valid for all h ∈Hlin:

R`0−1
(h) −R∗

`0−1,Hlin
≤
ρ(RΦρ(h) −R∗

Φρ,Hlin
+MΦρ,Hlin

)
min{B,ρ}

−M`0−1,Hlin
. (37)

Since the (`0−1,Hlin)-minimizability gap coincides with the (`0−1,Hlin)-approximation error and (Φρ,Hlin)-
minimizability gap coincides with the (Φρ,Hlin)-approximation error for B ≥ ρ, the inequality can be rewritten as
follows:

R`0−1(h) −R∗
`0−1,Hall

≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

RΦρ(h) −R∗
Φρ,Hall

if B ≥ ρ
ρ(RΦρ(h)−EX[min{η(x),1−η(x)}+max{η(x),1−η(x)}(1−

min{W ∥x∥p+B,ρ}

ρ )])

B
otherwise.

Note that: R∗
Φρ,Hall

= R∗
`0−1,Hall

= EX[min{η(x),1 − η(x)}]. Thus, the first inequality (case B ≥ ρ) can be equivalently
written as follows:

∀h ∈Hlin, R`0−1(h) ≤ RΦρ(h). (38)

The case B ≥ ρ is one of the “trivial cases” mentioned in Section 4, where the trivial inequality R`0−1(h) ≤ RΦρ(h) can
be obtained directly using the fact that `0−1 is upper bounded by Φρ. This, however, does not imply that non-adversarial
Hlin-consistency bound for the ρ-margin loss is trivial when B > ρ since it is optimal.

K.2. One-Hidden-Layer ReLU Neural Network

As with the linear case, HNN also satisfies the condition of Lemma 1 and thus the (`0−1,HNN)-minimizability gap coincides
with the (`0−1,HNN)-approximation error:

M`0−1,HNN
= R∗

`0−1,HNN
−EX[min{η(x),1 − η(x)}]

= R∗
`0−1,HNN

−R∗
`0−1,Hall

.
(39)

By the definition of HNN, for any x ∈ X,

{h(x) ∣ h ∈HNN} = [−Λ(W ∥x∥p +B),Λ(W ∥x∥p +B)].
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K.2.1. HINGE LOSS

For the hinge loss Φhinge(α)∶ = max{0,1 − α}, for all h ∈HNN and x ∈ X:

CΦhinge
(h,x, t) = tΦhinge(h(x)) + (1 − t)Φhinge(−h(x))

= tmax{0,1 − h(x)} + (1 − t)max{0,1 + h(x)}.
inf

h∈HNN

CΦhinge
(h,x, t) = 1 − ∣2t − 1∣min{ΛW ∥x∥p +ΛB,1}.

Therefore, the (Φhinge,HNN)-minimizability gap can be expressed as follows:

MΦhinge,HNN
= R∗

Φhinge,HNN
−EX[1 − inf

h∈HNN

CΦhinge
(h,x, η(x))].

= R∗
Φhinge,HNN

−EX[1 − ∣2η(x) − 1∣min{ΛW ∥x∥p +ΛB,1}].
(40)

Note the (Φhinge,HNN)-minimizability gap coincides with the (Φhinge,HNN)-approximation error R∗
Φhinge,HNN

−
EX[1 − ∣2η(x) − 1∣] for ΛB ≥ 1.

For 1
2
< t ≤ 1, we have

inf
h∈HNN∶h(x)<0

CΦhinge
(h,x, t) = tmax{0,1 − 0} + (1 − t)max{0,1 + 0}

= 1.

inf
x∈X

inf
h∈HNN∶h(x)<0

∆CΦhinge,HNN
(h,x, t) = inf

x∈X
{ inf
h∈HNN∶h(x)<0

CΦhinge
(h,x, t) − inf

h∈HNN

CΦhinge
(h,x, t)}

= inf
x∈X

(2t − 1)min{ΛW ∥x∥p +ΛB,1}

= (2t − 1)min{ΛB,1}
= T(2t − 1),

where T is the increasing and convex function on [0,1] defined by

∀t ∈ [0,1], T(t) = min{ΛB,1} t.

By Definition 3, for any ε ≥ 0, the HNN-estimation error transformation of the hinge loss is as follows:

TΦhinge
= min{ΛB,1} t, t ∈ [0,1],

Therefore, TΦhinge
is convex, non-decreasing, invertible and satisfies that TΦhinge

(0) = 0. By Theorem 4, we can choose
Ψ(t) = min{ΛB,1} t in Theorem 3, or, equivalently, Γ(t) = t

min{ΛB,1}
in Theorem 12, which are optimal when ε = 0. Thus,

by Theorem 3 or Theorem 12, setting ε = 0 yields the HNN-consistency bound for the hinge loss, valid for all h ∈HNN:

R`0−1(h) −R∗
`0−1,HNN

≤
RΦhinge

(h) −R∗
Φhinge,HNN

+MΦhinge,HNN

min{ΛB,1}
−M`0−1,HNN

. (41)

Since the (`0−1,HNN)-minimizability gap coincides with the (`0−1,HNN)-approximation error and (Φhinge,HNN)-
minimizability gap coincides with the (Φhinge,HNN)-approximation error for ΛB ≥ 1, the inequality can be rewritten as
follows:

R`0−1(h) −R∗
`0−1,Hall

≤
⎧⎪⎪⎨⎪⎪⎩

RΦhinge
(h) −R∗

Φhinge,Hall
if ΛB ≥ 1

1
ΛB

[RΦhinge
(h) −EX[1 − ∣2η(x) − 1∣min{ΛW ∥x∥p +ΛB,1} ]] otherwise.

The inequality for ΛB ≥ 1 coincides with the consistency excess error bound known for the hinge loss (Zhang, 2004a;
Bartlett et al., 2006; Mohri et al., 2018) but the one for ΛB < 1 is distinct and novel. For ΛB < 1, we have

EX[1 − ∣2η(x) − 1∣min{ΛW ∥x∥p +ΛB,1}] > EX[1 − ∣2η(x) − 1∣] = 2EX[min{η(x),1 − η(x)}] = R∗
Φhinge,Hall

.
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Therefore for ΛB < 1,

RΦhinge
(h) −EX[1 − ∣2η(x) − 1∣min{ΛW ∥x∥p +ΛB,1}] < RΦhinge

(h) −R∗
Φhinge,Hall

.

Note that: R∗
Φhinge,Hall

= 2R∗
`0−1,Hall

= 2EX[min{η(x),1 − η(x)}]. Thus, the first inequality (case ΛB ≥ 1) can be
equivalently written as follows:

∀h ∈HNN, R`0−1(h) ≤ RΦhinge
(h) −EX[min{η(x),1 − η(x)}],

which is a more informative upper bound than the standard inequality R`0−1(h) ≤ RΦhinge
(h).

K.2.2. LOGISTIC LOSS

For the logistic loss Φlog(α)∶ = log2(1 + e−α), for all h ∈HNN and x ∈ X:

CΦlog(h,x, t) = tΦlog(h(x)) + (1 − t)Φlog(−h(x)),

= t log2(1 + e−h(x)) + (1 − t) log2(1 + eh(x)).

inf
h∈HNN

CΦlog(h,x, t) = {

−t log2(t) − (1 − t) log2(1 − t) if log∣ t
1−t ∣ ≤ ΛW ∥x∥p +ΛB,

max{t,1 − t} log2(1 + e−(ΛW ∥x∥p+ΛB)
) +min{t,1 − t} log2(1 + eΛW ∥x∥p+ΛB

) if log∣ t
1−t ∣ > ΛW ∥x∥p +ΛB.

Therefore, the (Φlog,HNN)-minimizability gap can be expressed as follows:

MΦlog,HNN
= R∗

Φlog,HNN
−EX[ inf

h∈HNN

CΦlog
(h,x, η(x))]

= R∗
Φlog,HNN

−EX[−η(x) log2(η(x)) − (1 − η(x)) log2(1 − η(x))1log∣
η(x)

1−η(x)
∣≤ΛW ∥x∥p+ΛB

]

−EX[max{η(x),1 − η(x)} log2(1 + e−(ΛW ∥x∥p+ΛB))1
log∣

η(x)
1−η(x)

∣>ΛW ∥x∥p+ΛB
]

−EX[min{η(x),1 − η(x)} log2(1 + eΛW ∥x∥p+ΛB)1
log∣

η(x)
1−η(x)

∣>ΛW ∥x∥p+ΛB
]

(42)

Note (Φlog,HNN)-minimizability gap coincides with the (Φlog,HNN)-approximation error R∗
Φlog,HNN

−
EX[−η(x) log2(η(x)) − (1 − η(x)) log2(1 − η(x))] for ΛB = +∞.

For 1
2
< t ≤ 1, we have

inf
h∈HNN∶h(x)<0

CΦlog
(h,x, t) = t log2(1 + e−0) + (1 − t) log2(1 + e0)

= 1,

inf
x∈X

inf
h∈HNN∶h(x)<0

∆CΦlog,HNN
(h,x, t) = inf

x∈X
( inf
h∈HNN∶h(x)<0

CΦlog
(h,x, t) − inf

h∈HNN

CΦlog
(h,x, t))

= inf
x∈X

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 + t log2(t) + (1 − t) log2(1 − t)
if log t

1−t
≤ ΛW ∥x∥p +ΛB,

1 − t log2(1 + e−(ΛW ∥x∥p+ΛB)) − (1 − t) log2(1 + eΛW ∥x∥p+ΛB)
if log t

1−t
> ΛW ∥x∥p +ΛB.

=
⎧⎪⎪⎨⎪⎪⎩

1 + t log2(t) + (1 − t) log2(1 − t) if log t
1−t

≤ ΛB,

1 − t log2(1 + e−ΛB) − (1 − t) log2(1 + eΛB) if log t
1−t

> ΛB.

= T(2t − 1),

where T is the increasing and convex function on [0,1] defined by

∀t ∈ [0,1], T(t) =
⎧⎪⎪⎨⎪⎪⎩

t+1
2

log2(t + 1) + 1−t
2

log2(1 − t), t ≤ eΛB−1
eΛB+1

,

1 − t+1
2

log2(1 + e−ΛB) − 1−t
2

log2(1 + eΛB), t > eΛB−1
eΛB+1

.
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By Definition 3, for any ε ≥ 0, the HNN-estimation error transformation of the logistic loss is as follows:

TΦlog
=
⎧⎪⎪⎨⎪⎪⎩

T(t), t ∈ [ε,1] ,
T(ε)
ε
t, t ∈ [0, ε) .

Therefore, when ε = 0, TΦlog
is convex, non-decreasing, invertible and satisfies that TΦlog

(0) = 0. By Theorem 4, we can
choose Ψ(t) = TΦlog

(t) in Theorem 3, or equivalently Γ(t) = T−1
Φlog

(t) in Theorem 12, which are optimal. To simplify the
expression, using the fact that

t + 1

2
log2(t + 1) + 1 − t

2
log2(1 − t) = 1 − (− t + 1

2
log2(

t + 1

2
) − 1 − t

2
log2(

1 − t
2

))

≥ 1 −
√

4
1 − t

2

t + 1

2

= 1 −
√

1 − t2

≥ t
2

2
,

1 − t + 1

2
log2(1 + e−ΛB) − 1 − t

2
log2(1 + eΛB) = 1

2
log2(

4

2 + e−ΛB + eΛB
) + 1/2 log2(

1 + eΛB

1 + e−ΛB
) t,

TΦlog
can be lower bounded by

T̃Φlog
(t) =

⎧⎪⎪⎨⎪⎪⎩

t2

2
, t ≤ eΛB−1

eΛB+1
,

1
2
( e

ΛB
−1

eΛB+1
) t, t > eΛB−1

eΛB+1
.

Thus, we adopt an upper bound of T−1
Φlog

as follows:

T̃−1
Φlog

(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
2t, t ≤ 1

2
( e

ΛB
−1

eΛB+1
)

2
,

2( e
ΛB

+1
eΛB−1

) t, t > 1
2
( e

ΛB
−1

eΛB+1
)

2
.

Therefore, by Theorem 3 or Theorem 12, setting ε = 0 yields the HNN-consistency bound for the logistic loss, valid for all
h ∈HNN:

R`0−1(h) −R∗
`0−1,HNN

+M`0−1,HNN

≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
2 (RΦlog

(h) −R∗
Φlog,HNN

+MΦlog,HNN
)

1
2
, if RΦlog

(h) −R∗
Φlog,HNN

≤ 1
2
( e

ΛB
−1

eΛB+1
)

2
−MΦlog,HNN

2( e
ΛB

+1
eΛB−1

)(RΦlog
(h) −R∗

Φlog,HNN
+MΦlog,HNN

), otherwise
(43)

Since the (`0−1,HNN)-minimizability gap coincides with the (`0−1,HNN)-approximation error and (Φlog,HNN)-
minimizability gap coincides with the (Φlog,HNN)-approximation error for ΛB = +∞, the inequality can be rewritten as
follows:

R`0−1(h) −R∗
`0−1,Hall

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

√
2 [RΦlog

(h) −R∗
Φlog,Hall

]
1
2 if ΛB = +∞

⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
2 [RΦlog

(h) −R∗
Φlog,HNN

+MΦlog,HNN
]

1
2 if RΦlog

(h) −R∗
Φlog,HNN

≤ 1
2
( e

ΛB
−1

eΛB+1
)

2
−MΦlog,HNN

2( e
ΛB

+1
eΛB−1

)(RΦlog
(h) −R∗

Φlog,HNN
+MΦlog,HNN

) otherwise
otherwise

where the (Φlog,HNN)-minimizability gap MΦlog,HNN
is characterized as below,which is less than the (Φlog,HNN)-
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approximation error when ΛB < +∞:

MΦlog,HNN
= R∗

Φlog,HNN
−EX[−η(x) log2(η(x)) − (1 − η(x)) log2(1 − η(x))1log2∣

η(x)
1−η(x)

∣≤ΛW ∥x∥p+ΛB
]

−EX[max{η(x),1 − η(x)} log2(1 + e−(ΛW ∥x∥p+ΛB))1
log2∣

η(x)
1−η(x)

∣>ΛW ∥x∥p+ΛB
]

− [min{η(x),1 − η(x)} log2(1 + eΛW ∥x∥p+ΛB)1
log2∣

η(x)
1−η(x)

∣>ΛW ∥x∥p+ΛB
]

< R∗
Φlog,HNN

−EX[−η(x) log2(η(x)) − (1 − η(x)) log2(1 − η(x))]
= R∗

Φlog,HNN
−R∗

Φlog,Hall
.

Therefore, the inequality for ΛB = +∞ coincides with the consistency excess error bound known for the logistic loss (Zhang,
2004a; Mohri et al., 2018) but the one for ΛB < +∞ is distinct and novel.

K.2.3. EXPONENTIAL LOSS

For the exponential loss Φexp(α)∶ = e−α, for all h ∈HNN and x ∈ X:

CΦexp(h,x, t) = tΦexp(h(x)) + (1 − t)Φexp(−h(x))

= te−h(x) + (1 − t)eh(x).

inf
h∈HNN

CΦexp(h,x, t) =
⎧⎪⎪⎨⎪⎪⎩

2
√
t(1 − t) if 1/2 log∣ t

1−t
∣ ≤ ΛW ∥x∥p +ΛB

max{t,1 − t}e−(ΛW ∥x∥p+ΛB) +min{t,1 − t}eΛW ∥x∥p+ΛB if 1/2 log∣ t
1−t

∣ > ΛW ∥x∥p +ΛB.

Therefore, the (Φexp,HNN)-minimizability gap can be expressed as follows:

MΦexp,HNN
= R∗

Φexp,HNN
−EX[ inf

h∈HNN

CΦexp(h,x, η(x))]

= R∗
Φexp,HNN

−EX[2
√
η(x)(1 − η(x))1

1/2 log∣
η(x)

1−η(x)
∣≤ΛW ∥x∥p+ΛB

]

−EX[max{η(x),1 − η(x)}e−(ΛW ∥x∥p+ΛB)1
1/2 log∣

η(x)
1−η(x)

∣>ΛW ∥x∥p+ΛB
]

−EX[min{η(x),1 − η(x)}eΛW ∥x∥p+ΛB1
1/2 log∣

η(x)
1−η(x)

∣>ΛW ∥x∥p+ΛB
].

(44)

Note (Φexp,HNN)-minimizability gap coincides with the (Φexp,HNN)-approximation error R∗
Φexp,HNN

−
EX[2

√
η(x)(1 − η(x))] for ΛB = +∞.

For 1
2
< t ≤ 1, we have

inf
h∈HNN∶h(x)<0

CΦexp(h,x, t) = te−0 + (1 − t)e0

= 1.

inf
x∈X

inf
h∈HNN∶h(x)<0

∆CΦexp,HNN
(h,x, t) = inf

x∈X
( inf
h∈HNN∶h(x)<0

CΦexp(h,x, t) − inf
h∈HNN

CΦexp(h,x, t))

= inf
x∈X

⎧⎪⎪⎨⎪⎪⎩

1 − 2
√
t(1 − t) if 1/2 log t

1−t
≤ ΛW ∥x∥p +ΛB,

1 − te−(ΛW ∥x∥p+ΛB) − (1 − t)eΛW ∥x∥p+ΛB if 1/2 log t
1−t

> ΛW ∥x∥p +ΛB.

=
⎧⎪⎪⎨⎪⎪⎩

1 − 2
√
t(1 − t), 1/2 log t

1−t
≤ ΛB

1 − te−ΛB − (1 − t)eΛB , 1/2 log t
1−t

> ΛB

= T(2t − 1),

where T is the increasing and convex function on [0,1] defined by

∀t ∈ [0,1], T(t) =
⎧⎪⎪⎨⎪⎪⎩

1 −
√

1 − t2, t ≤ e2ΛB
−1

e2ΛB+1
,

1 − t+1
2
e−ΛB − 1−t

2
eΛB , t > e2ΛB

−1
e2ΛB+1

.
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By Definition 3, for any ε ≥ 0, the Hlin-estimation error transformation of the exponential loss is as follows:

TΦexp =
⎧⎪⎪⎨⎪⎪⎩

T(t), t ∈ [ε,1] ,
T(ε)
ε
t, t ∈ [0, ε) .

Therefore, when ε = 0, TΦexp is convex, non-decreasing, invertible and satisfies that TΦexp(0) = 0. By Theorem 4, we can
choose Ψ(t) = TΦexp(t) in Theorem 3, or equivalently Γ(t) = T−1

Φexp
(t) in Theorem 12, which are optimal. To simplify the

expression, using the fact that

1 −
√

1 − t2 ≥ t
2

2
,

1 − t + 1

2
e−ΛB − 1 − t

2
eΛB = 1 − 1/2eΛB − 1/2e−ΛB + e

ΛB − e−ΛB

2
t,

TΦexp can be lower bounded by

T̃Φexp(t) =
⎧⎪⎪⎨⎪⎪⎩

t2

2
, t ≤ e2ΛB

−1
e2ΛB+1

,
1
2
( e

2ΛB
−1

e2ΛB+1
) t, t > e2ΛB

−1
e2ΛB+1

.

Thus, we adopt an upper bound of T−1
Φexp

as follows:

T̃−1
Φexp

(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
2t, t ≤ 1

2
( e

2ΛB
−1

e2B+1
)

2
,

2( e
2ΛB

+1
e2ΛB−1

) t, t > 1
2
( e

2ΛB
−1

e2ΛB+1
)

2
.

Therefore, by Theorem 3 or Theorem 12, setting ε = 0 yields the HNN-consistency bound for the exponential loss, valid for
all h ∈HNN:

R`0−1(h) −R∗
`0−1,HNN

+M`0−1,HNN

≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
2 (RΦexp(h) −R∗

Φexp,HNN
+MΦexp,HNN

)
1
2
, if RΦexp(h) −R∗

Φexp,HNN
≤ 1

2
( e

2ΛB
−1

e2ΛB+1
)

2
−MΦexp,HNN

,

2( e
2ΛB

+1
e2ΛB−1

)(RΦexp(h) −R∗
Φexp,HNN

+MΦexp,HNN
), otherwise.

(45)

Since the (`0−1,HNN)-minimizability gap coincides with the (`0−1,HNN)-approximation error and (Φlog,HNN)-
minimizability gap coincides with the (Φlog,HNN)-approximation error for ΛB = +∞, the inequality can be rewritten as
follows:

R`0−1(h) −R∗
`0−1,Hall

≤
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

√
2 [RΦexp(h) −R∗

Φexp,Hall
]

1
2

B = ∞
⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
2 [RΦexp(h) −R∗

Φexp,HNN
+MΦexp,HNN

]
1
2 if RΦexp(h) −R∗

Φexp,HNN
≤ 1

2
( e

2ΛB
−1

e2ΛB+1
)

2
−MΦexp,HNN

2( e
2ΛB

+1
e2ΛB−1

)(RΦexp(h) −R∗
Φexp,HNN

+MΦexp,HNN
) o/w

o/w

where the (Φexp,HNN)-minimizability gap MΦexp,HNN
is characterized as below, which is less than the (Φexp,HNN)-

approximation error when ΛB < +∞:

MΦexp,HNN
= R∗

Φexp,HNN
−EX[2

√
η(x)(1 − η(x))1

1/2 log2∣
η(x)

1−η(x)
∣≤ΛW ∥x∥p+ΛB

]

−EX[max{η(x),1 − η(x)}e−(ΛW ∥x∥p+ΛB)1
1/2 log2∣

η(x)
1−η(x)

∣>ΛW ∥x∥p+ΛB
]

− [min{η(x),1 − η(x)}eΛW ∥x∥p+ΛB1
1/2 log2∣

η(x)
1−η(x)

∣>ΛW ∥x∥p+ΛB
]

< R∗
Φexp,HNN

−EX[2
√
η(x)(1 − η(x))]

= R∗
Φexp,HNN

−R∗
Φexp,Hall

.

Therefore, the inequality for ΛB = +∞ coincides with the consistency excess error bound known for the exponential loss
(Zhang, 2004a; Mohri et al., 2018) but the one for ΛB < +∞ is distinct and novel.
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K.2.4. QUADRATIC LOSS

For the quadratic loss Φquad(α)∶ = (1 − α)21α≤1, for all h ∈HNN and x ∈ X:

CΦquad
(h,x, t)

= tΦquad(h(x)) + (1 − t)Φquad(−h(x))

= t(1 − h(x))2
1h(x)≤1 + (1 − t)(1 + h(x))2

1h(x)≥−1.

inf
h∈HNN

CΦquad
(h,x, t)

=
⎧⎪⎪⎨⎪⎪⎩

4t(1 − t), ∣2t − 1∣ ≤ ΛW ∥x∥p +ΛB,

max{t,1 − t}(1 − (ΛW ∥x∥p +ΛB))2 +min{t,1 − t}(1 +ΛW ∥x∥p +ΛB)2
, ∣2t − 1∣ > ΛW ∥x∥p +ΛB.

Therefore, the (Φquad,HNN)-minimizability gap can be expressed as follows:

MΦquad,HNN
= R∗

Φquad,HNN
−EX[4η(x)(1 − η(x))1∣2η(x)−1∣≤ΛW ∥x∥p+ΛB]

−EX[max{η(x),1 − η(x)}(1 − (ΛW ∥x∥p +ΛB))2
1∣2η(x)−1∣>ΛW ∥x∥p+ΛB]

−EX[min{η(x),1 − η(x)}(1 + (ΛW ∥x∥p +ΛB))2
1∣2η(x)−1∣>ΛW ∥x∥p+ΛB]

(46)

Note (Φquad,HNN)-minimizability gap coincides with the (Φquad,HNN)-approximation error R∗
Φquad,HNN

−
EX[4η(x)(1 − η(x))] for ΛB ≥ 1.

For 1
2
< t ≤ 1, we have

inf
h∈HNN ∶h(x)<0

CΦquad(h,x, t)

= t + (1 − t)

= 1

inf
x∈X

inf
h∈HNN ∶h(x)<0

∆CΦquad,HNN
(h,x, t)

= inf
x∈X

( inf
h∈HNN ∶h(x)<0

CΦquad(h,x, t) − inf
h∈HNN

CΦquad(h,x, t))

= inf
x∈X

⎧
⎪⎪
⎨
⎪⎪
⎩

1 − 4t(1 − t), 2t − 1 ≤ ΛW ∥x∥p +ΛB,

1 − t(1 − (ΛW ∥x∥p +ΛB))
2
− (1 − t)(1 +ΛW ∥x∥p +ΛB)

2
, 2t − 1 > ΛW ∥x∥p +ΛB.

= {
1 − 4t(1 − t), 2t − 1 ≤ ΛB,

1 − t(1 −ΛB)
2
− (1 − t)(1 +ΛB)

2, 2t − 1 > ΛB.

= T(2t − 1)

where T is the increasing and convex function on [0,1] defined by

∀t ∈ [0,1], T(t) =
⎧⎪⎪⎨⎪⎪⎩

t2, t ≤ ΛB,

2ΛB t − (ΛB)2, t > ΛB.

By Definition 3, for any ε ≥ 0, the HNN-estimation error transformation of the quadratic loss is as follows:

TΦquad
=
⎧⎪⎪⎨⎪⎪⎩

T(t), t ∈ [ε,1] ,
T(ε)
ε
t, t ∈ [0, ε) .

Therefore, when ε = 0, TΦquad
is convex, non-decreasing, invertible and satisfies that TΦquad

(0) = 0. By Theorem 4, we

can choose Ψ(t) = TΦquad
(t) in Theorem 3, or equivalently Γ(t) = T−1

Φquad
(t) =

⎧⎪⎪⎨⎪⎪⎩

√
t, t ≤ (ΛB)2

t
2ΛB

+ ΛB
2
, t > (ΛB)2

, in Theorem 12,

which are optimal. Thus, by Theorem 3 or Theorem 12, setting ε = 0 yields the HNN-consistency bound for the quadratic
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loss, valid for all h ∈HNN:

R`0−1(h) −R∗
`0−1,HNN

+M`0−1,HNN

≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[RΦquad
(h) −R∗

Φquad,HNN
+MΦquad,HNN

]
1
2 if RΦquad

(h) −R∗
Φquad,HNN

≤ (ΛB)2 −MΦquad,HNN

RΦquad
(h)−R∗

Φquad,HNN
+MΦquad,HNN

2ΛB
+ ΛB

2
otherwise

(47)

Since the (`0−1,HNN)-minimizability gap coincides with the (`0−1,HNN)-approximation error and (Φquad,HNN)-
minimizability gap coincides with the (Φquad,HNN)-approximation error for ΛB ≥ 1, the inequality can be rewritten as
follows:

R`0−1(h) −R∗
`0−1,Hall

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[RΦquad
(h) −R∗

Φquad,Hall
]

1
2 if ΛB ≥ 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[RΦquad
(h) −R∗

Φquad,HNN
+MΦquad,HNN

]
1
2 if RΦquad

(h) −R∗
Φquad,HNN

≤ (ΛB)2 −MΦquad,HNN

RΦquad
(h)−R∗

Φquad,HNN
+MΦquad,HNN

2ΛB
+ ΛB

2
otherwise

otherwise

where the (Φquad,HNN)-minimizability gap MΦquad,HNN
is characterized as below, which is less than the (Φquad,HNN)-

approximation error when ΛB < 1:

MΦquad,HNN
= R∗

Φquad,HNN
−EX[4η(x)(1 − η(x))1∣2η(x)−1∣≤ΛW ∥x∥p+ΛB]

−EX[max{η(x),1 − η(x)}(1 − (ΛW ∥x∥p +ΛB))2
1∣2η(x)−1∣>ΛW ∥x∥p+ΛB]

−EX[min{η(x),1 − η(x)}(1 + (ΛW ∥x∥p +ΛB))2
1∣2η(x)−1∣>ΛW ∥x∥p+ΛB]

< R∗
Φquad,HNN

−EX[4η(x)(1 − η(x))]
= R∗

Φquad,HNN
−R∗

Φquad,Hall
.

Therefore, the inequality for ΛB ≥ 1 coincides with the consistency excess error bound known for the quadratic loss (Zhang,
2004a; Bartlett et al., 2006) but the one for ΛB < 1 is distinct and novel.

K.2.5. SIGMOID LOSS

For the sigmoid loss Φsig(α)∶ = 1 − tanh(kα), k > 0, for all h ∈HNN and x ∈ X:

CΦsig
(h,x, t) = tΦsig(h(x)) + (1 − t)Φsig(−h(x)),

= t(1 − tanh(kh(x))) + (1 − t)(1 + tanh(kh(x))).
inf

h∈HNN

CΦsig
(h,x, t) = 1 − ∣1 − 2t∣ tanh(k(ΛW ∥x∥p +ΛB))

Therefore, the (Φsig,HNN)-minimizability gap can be expressed as follows:

MΦsig,HNN
= R∗

Φsig,HNN
−EX[ inf

h∈HNN

CΦsig
(h,x, η(x))]

= R∗
Φsig,HNN

−EX[1 − ∣1 − 2η(x)∣ tanh(k(ΛW ∥x∥p +ΛB))].
(48)

Note (Φsig,HNN)-minimizability gap coincides with the (Φsig,HNN)-approximation error R∗
Φsig,HNN

−
EX[1 − ∣1 − 2η(x)∣] for ΛB = +∞.
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For 1
2
< t ≤ 1, we have

inf
h∈HNN∶h(x)<0

CΦsig
(h,x, t) = 1 − ∣1 − 2t∣ tanh(0)

= 1.

inf
x∈X

inf
h∈HNN∶h(x)<0

∆CΦsig,HNN
(h,x, t) = inf

x∈X
( inf
h∈HNN∶h(x)<0

CΦsig
(h,x, t) − inf

h∈HNN

CΦsig
(h,x, t))

= inf
x∈X

(2t − 1) tanh(k(ΛW ∥x∥p +ΛB))

= (2t − 1) tanh(kΛB)
= T(2t − 1)

where T is the increasing and convex function on [0,1] defined by

∀t ∈ [0,1], T(t) = tanh(kΛB) t.

By Definition 3, for any ε ≥ 0, the HNN-estimation error transformation of the sigmoid loss is as follows:

TΦsig
= tanh(kΛB) t, t ∈ [0,1],

Therefore, TΦsig
is convex, non-decreasing, invertible and satisfies that TΦsig

(0) = 0. By Theorem 4, we can choose
Ψ(t) = tanh(kΛB) t in Theorem 3, or equivalently Γ(t) = t

tanh(kΛB)
in Theorem 12, which are optimal when ε = 0. Thus,

by Theorem 3 or Theorem 12, setting ε = 0 yields the HNN-consistency bound for the sigmoid loss, valid for all h ∈HNN:

R`0−1(h) −R∗
`0−1,HNN

≤
RΦsig

(h) −R∗
Φsig,HNN

+MΦsig,HNN

tanh(kΛB)
−M`0−1,HNN

. (49)

Since the (`0−1,HNN)-minimizability gap coincides with the (`0−1,HNN)-approximation error, and since (Φsig,HNN)-
minimizability gap coincides with the (Φsig,HNN)-approximation error for ΛB = +∞, the inequality can be rewritten as
follows:

R`0−1(h) −R∗
`0−1,Hall

≤
⎧⎪⎪⎨⎪⎪⎩

RΦsig
(h) −R∗

Φsig,Hall
if ΛB = +∞

1
tanh(kΛB)

[RΦsig
(h) −EX[1 − ∣1 − 2η(x)∣ tanh(k(ΛW ∥x∥p +ΛB)) ]] otherwise.

The inequality for ΛB = +∞ coincides with the consistency excess error bound known for the sigmoid loss (Zhang, 2004a;
Bartlett et al., 2006; Mohri et al., 2018) but the one for ΛB < +∞ is distinct and novel. For ΛB < +∞, we have

EX[1 − ∣1 − 2η(x)∣ tanh(k(ΛW ∥x∥p +ΛB))] > EX[1 − ∣2η(x) − 1∣] = 2EX[min{η(x),1 − η(x)}] = R∗
Φhinge,Hall

.

Therefore for ΛB < +∞,

RΦsig
(h) −EX[1 − ∣1 − 2η(x)∣ tanh(k(ΛW ∥x∥p +ΛB))] < RΦsig

(h) −R∗
Φsig,Hall

.

Note that: R∗
Φsig,Hall

= 2R∗
`0−1,Hall

= 2EX[min{η(x),1 − η(x)}]. Thus, the first inequality (case ΛB = +∞) can be
equivalently written as follows:

∀h ∈HNN, R`0−1(h) ≤ RΦsig
(h) −EX[min{η(x),1 − η(x)}],

which is a more informative upper bound than the standard inequality R`0−1(h) ≤ RΦsig
(h).

K.2.6. ρ-MARGIN LOSS

For the ρ-margin loss Φρ(α)∶ = min{1,max{0,1 − α
ρ
}}, ρ > 0, for all h ∈HNN and x ∈ X:

CΦρ(h,x, t) = tΦρ(h(x)) + (1 − t)Φρ(−h(x)),

= tmin{1,max{0,1 − h(x)
ρ

}} + (1 − t)min{1,max{0,1 + h(x)
ρ

}}.

inf
h∈HNN

CΦρ(h,x, t) = min{t,1 − t} +max{t,1 − t}
⎛
⎝

1 −
min{ΛW ∥x∥p +ΛB,ρ}

ρ

⎞
⎠
.
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Therefore, the (Φρ,HNN)-minimizability gap can be expressed as follows:

MΦρ,HNN
= R∗

Φρ,HNN
−EX[ inf

h∈HNN

CΦρ(h,x, η(x))]

= R∗
Φρ,HNN

−EX
⎡⎢⎢⎢⎢⎣
min{η(x),1 − η(x)} +max{η(x),1 − η(x)}

⎛
⎝

1 −
min{ΛW ∥x∥p +ΛB,ρ}

ρ

⎞
⎠

⎤⎥⎥⎥⎥⎦
.

(50)

Note the (Φρ,HNN)-minimizability gap coincides with the (Φρ,HNN)-approximation error R∗
Φρ,HNN

−
EX[min{η(x),1 − η(x)}] for ΛB ≥ ρ.

For 1
2
< t ≤ 1, we have

inf
h∈HNN∶h(x)<0

CΦρ(h,x, t) = t + (1 − t)
⎛
⎝

1 −
min{ΛW ∥x∥p +ΛB,ρ}

ρ

⎞
⎠
.

inf
x∈X

inf
h∈HNN∶h(x)<0

∆CΦρ,HNN
(h,x) = inf

x∈X
( inf
h∈HNN∶h(x)<0

CΦρ(h,x, t) − inf
h∈HNN

CΦρ(h,x, t))

= inf
x∈X

(2t − 1)
min{ΛW ∥x∥p +ΛB,ρ}

ρ

= (2t − 1)min{ΛB,ρ}
ρ

= T(2t − 1)

where T is the increasing and convex function on [0,1] defined by

∀t ∈ [0,1], T(t) = min{ΛB,ρ}
ρ

t.

By Definition 3, for any ε ≥ 0, the HNN-estimation error transformation of the ρ-margin loss is as follows:

TΦρ =
min{ΛB,ρ}

ρ
t, t ∈ [0,1],

Therefore, TΦρ is convex, non-decreasing, invertible and satisfies that TΦρ(0) = 0. By Theorem 4, we can choose
Ψ(t) = min{ΛB,ρ}

ρ
t in Theorem 3, or equivalently Γ(t) = ρ

min{ΛB,ρ}
t in Theorem 12, which are optimal when ε = 0. Thus,

by Theorem 3 or Theorem 12, setting ε = 0 yields the HNN-consistency bound for the ρ-margin loss, valid for all h ∈HNN:

R`0−1(h) −R∗
`0−1,HNN

≤
ρ(RΦρ(h) −R∗

Φρ,HNN
+MΦρ,HNN

)
min{ΛB,ρ}

−M`0−1,HNN
. (51)

Since the (`0−1,HNN)-minimizability gap coincides with the (`0−1,HNN)-approximation error and (Φρ,HNN)-
minimizability gap coincides with the (Φρ,HNN)-approximation error for ΛB ≥ ρ, the inequality can be rewritten
as follows:

R`0−1(h) −R∗
`0−1,Hall

≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

RΦρ(h) −R∗
Φρ,Hall

if ΛB ≥ ρ
ρ(RΦρ(h)−EX[min{η(x),1−η(x)}+max{η(x),1−η(x)}(1−

min{ΛW ∥x∥p+ΛB,ρ}

ρ )])

ΛB
otherwise.

Note that: R∗
Φρ,Hall

= R∗
`0−1,Hall

= EX[min{η(x),1 − η(x)}]. Thus, the first inequality (case ΛB ≥ ρ) can be equivalently
written as follows:

∀h ∈HNN, R`0−1(h) ≤ RΦρ(h).

The case ΛB ≥ ρ is one of the “trivial cases” mentioned in Section 4, where the trivial inequality R`0−1(h) ≤ RΦρ(h) can
be obtained directly using the fact that `0−1 is upper bounded by Φρ. This, however, does not imply that non-adversarial
HNN-consistency bound for the ρ-margin loss is trivial when ΛB > ρ since it is optimal.
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L. Derivation of Adversarial H-Consistency Bounds
L.1. Linear Hypotheses

By the definition of Hlin, for any x ∈ X,

hγ(x) = w ⋅ x − γ∥w∥q + b

∈
⎧⎪⎪⎨⎪⎪⎩

[−W ∥x∥p − γW −B,W ∥x∥p − γW +B] ∥x∥p ≥ γ
[−W ∥x∥p − γW −B,B] ∥x∥p < γ

,

hγ(x) = w ⋅ x + γ∥w∥q + b

∈
⎧⎪⎪⎨⎪⎪⎩

[−W ∥x∥p + γW −B,W ∥x∥p + γW +B] ∥x∥p ≥ γ
[−B,W ∥x∥p + γW +B] ∥x∥p < γ

.

Note Hlin is symmetric. For any x ∈ X, there exist w = 0 and any 0 < b ≤ B such that w ⋅ x − γ∥w∥q + b > 0. Thus by
Lemma 2, for any x ∈ X, C∗`γ ,Hlin

(x) = min{η(x),1 − η(x)}. The (`γ ,Hlin)-minimizability gap can be expressed as
follows:

M`γ ,Hlin
= R∗

`γ ,Hlin
−EX[min{η(x),1 − η(x)}]. (52)

L.1.1. SUPREMUM-BASED ρ-MARGIN LOSS

For the supremum-based ρ-margin loss

Φ̃ρ∶ = sup
x′∶∥x−x′∥p≤γ

Φρ(yh(x′)), where Φρ(α) = min{1,max{0,1 − α
ρ
}}, ρ > 0,

for all h ∈Hlin and x ∈ X:

CΦ̃ρ
(h,x, t) = tΦ̃ρ(h(x)) + (1 − t)Φ̃ρ(−h(x))

= tΦρ(hγ(x)) + (1 − t)Φρ(−hγ(x))

= tmin{1,max{0,1 −
hγ(x)
ρ

}} + (1 − t)min{1,max{0,1 +
hγ(x)
ρ

}}.

inf
h∈Hlin

CΦ̃ρ
(h,x, t) = max{t,1 − t}

⎛
⎝

1 −
min{W max{∥x∥p, γ} − γW +B,ρ}

ρ

⎞
⎠
+min{t,1 − t}.

Therefore, the (Φ̃ρ,Hlin)-minimizability gap can be expressed as follows:

MΦ̃ρ,Hlin
= R∗

Φ̃ρ,Hlin
−EX[ inf

h∈Hlin

CΦ̃ρ
(h,x, η(x))]

= R∗

Φ̃ρ,Hlin
−EX

⎡⎢⎢⎢⎢⎣
max{η(x),1 − η(x)}

⎛
⎝

1 −
min{W max{∥x∥p, γ} − γW +B,ρ}

ρ

⎞
⎠

⎤⎥⎥⎥⎥⎦
−EX[min{η(x),1 − η(x)}].

(53)
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For 1
2
< t ≤ 1, we have

inf
h∈Hlin∶hγ(x)≤0≤hγ(x)

CΦ̃ρ
(h,x, t) = t + (1 − t)

= 1

inf
x∈X

inf
h∈Hlin∶hγ(x)≤0≤hγ(x)

∆CΦ̃ρ,Hlin
(h,x, t) = inf

x∈X

⎧⎪⎪⎨⎪⎪⎩
inf

h∈Hlin∶hγ(x)≤0≤hγ(x)
CΦ̃ρ

(h,x, t) − inf
h∈Hlin

CΦ̃ρ
(h,x, t)

⎫⎪⎪⎬⎪⎪⎭

= inf
x∈X

min{W max{∥x∥p, γ} − γW +B,ρ}
ρ

t

= min{B,ρ}
ρ

t

= T1(t),

where T1 is the increasing and convex function on [0,1] defined by

∀t ∈ [0,1], T1(t) =
min{B,ρ}

ρ
t ;

inf
h∈Hlin∶hγ(x)<0

CΦ̃ρ
(h,x, t) = t + (1 − t)

⎛
⎝

1 −
min{W max{∥x∥p, γ} − γW +B,ρ}

ρ

⎞
⎠

inf
x∈X

inf
h∈Hlin∶hγ(x)<0

∆CΦ̃ρ,Hlin
(h,x, t) = inf

x∈X
{ inf
h∈Hlin∶hγ(x)<0

CΦ̃ρ
(h,x, t) − inf

h∈Hlin

CΦ̃ρ
(h,x, t)}

= inf
x∈X

(2t − 1)
min{W max{∥x∥p, γ} − γW +B,ρ}

ρ

= (2t − 1)min{B,ρ}
ρ

= T2(2t − 1),

where T2 is the increasing and convex function on [0,1] defined by

∀t ∈ [0,1], T2(t) =
min{B,ρ}

ρ
t ;

By Definition 5, for any ε ≥ 0, the adversarial Hlin-estimation error transformation of the supremum-based ρ-margin loss is
as follows:

TΦ̃ρ
= min{B,ρ}

ρ
t, t ∈ [0,1],

Therefore, T1 = T2 and TΦ̃ρ
is convex, non-decreasing, invertible and satisfies that TΦ̃ρ

(0) = 0. By Theorem 6, we can

choose Ψ(t) = min{B,ρ}
ρ

t in Theorem 5, or equivalently Γ(t) = ρ
min{B,ρ}

t in Theorem 13, which are optimal when ε = 0.
Thus, by Theorem 5 or Theorem 13, setting ε = 0 yields the adversarial Hlin-consistency bound for the supremum-based
ρ-margin loss, valid for all h ∈Hlin:

R`γ (h) −R∗
`γ ,Hlin

≤
ρ(RΦ̃ρ

(h) −R∗

Φ̃ρ,Hlin
+MΦ̃ρ,Hlin

)

min{B,ρ}
−M`γ ,Hlin

. (54)

Since

M`γ ,Hlin
= R∗

`γ ,Hlin
−EX[min{η(x),1 − η(x)}],

MΦ̃ρ,Hlin
= R∗

Φ̃ρ,Hlin
−EX

⎡⎢⎢⎢⎢⎣
max{η(x),1 − η(x)}

⎛
⎝

1 −
min{W max{∥x∥p, γ} − γW +B,ρ}

ρ

⎞
⎠

⎤⎥⎥⎥⎥⎦
−EX[min{η(x),1 − η(x)}],
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inequality (54) can be rewritten as follows:

R`γ (h) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RΦ̃ρ
(h) −EX[max{η(x),1 − η(x)}(1 −

min{W max{∥x∥p,γ}−γW+B,ρ}

ρ
)] if B ≥ ρ

ρ(RΦ̃ρ
(h)−EX[max{η(x),1−η(x)}(1−

min{W max{∥x∥p,γ}−γW+B,ρ}

ρ )])

min{B,ρ}

+(1 − ρ
min{B,ρ}

)EX[min{η(x),1 − η(x)}] otherwise.

(55)

Note that: min{W max{∥x∥p, γ} − γW +B,ρ} = ρ if B ≥ ρ. Thus, the first inequality (case B ≥ ρ) can be equivalently
written as follows:

∀h ∈Hlin, R`γ (h) ≤ RΦ̃ρ
(h). (56)

The case B ≥ ρ is one of the “trivial cases” mentioned in Section 4, where the trivial inequality R`γ (h) ≤ RΦ̃ρ
(h)

can be obtained directly using the fact that `γ is upper bounded by Φ̃ρ. This, however, does not imply that adversarial
Hlin-consistency bound for the supremum-based ρ-margin loss is trivial when B > ρ since it is optimal.

L.2. One-Hidden-Layer ReLU Neural Networks

By the definition of HNN, for any x ∈ X,

hγ(x) = inf
x′∶∥x−x′∥p≤γ

n

∑
j=1

uj(wj ⋅ x′ + b)+

hγ(x) = sup
x′∶∥x−x′∥p≤γ

n

∑
j=1

uj(wj ⋅ x′ + b)+

Note HNN is symmetric. For any x ∈ X, there exist u = ( 1
Λ
, . . . , 1

Λ
), w = 0 and any 0 < b ≤ B satisfy that hγ(x) > 0. Thus

by Lemma 2, for any x ∈ X, C∗`γ ,HNN
(x) = min{η(x),1 − η(x)}. The (`γ ,HNN)-minimizability gap can be expressed as

follows:

M`γ ,HNN
= R∗

`γ ,HNN
−EX[min{η(x),1 − η(x)}]. (57)

L.2.1. SUPREMUM-BASED ρ-MARGIN LOSS

For the supremum-based ρ-margin loss

Φ̃ρ = sup
x′∶∥x−x′∥p≤γ

Φρ(yh(x′)), where Φρ(α) = min{1,max{0,1 − α
ρ
}}, ρ > 0,

for all h ∈HNN and x ∈ X:

CΦ̃ρ
(h,x, t) = tΦ̃ρ(h(x)) + (1 − t)Φ̃ρ(−h(x))

= tΦρ(hγ(x)) + (1 − t)Φρ(−hγ(x))

= tmin{1,max{0,1 −
hγ(x)
ρ

}} + (1 − t)min{1,max{0,1 +
hγ(x)
ρ

}}.

inf
h∈HNN

CΦ̃ρ
(h,x, t) = max{t,1 − t}

⎛
⎝

1 −
min{suph∈HNN

hγ(x), ρ}
ρ

⎞
⎠
+min{t,1 − t}.

Therefore, the (Φ̃ρ,HNN)-minimizability gap can be expressed as follows:

MΦ̃ρ,HNN
= R∗

Φ̃ρ,HNN
−EX[ inf

h∈HNN

CΦ̃ρ
(h,x, η(x))]

= R∗

Φ̃ρ,HNN
−EX

⎡⎢⎢⎢⎢⎣
max{η(x),1 − η(x)}

⎛
⎝

1 −
min{suph∈HNN

hγ(x), ρ}
ρ

⎞
⎠

⎤⎥⎥⎥⎥⎦
−EX[min{η(x),1 − η(x)}].

(58)
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For 1
2
< t ≤ 1, we have

inf
h∈HNN∶hγ(x)≤0≤hγ(x)

CΦ̃ρ
(h,x, t) = t + (1 − t)

= 1

inf
x∈X

inf
h∈HNN∶hγ(x)≤0≤hγ(x)

∆CΦ̃ρ,HNN
(h,x, t) = inf

x∈X

⎧⎪⎪⎨⎪⎪⎩
inf

h∈HNN∶hγ(x)≤0≤hγ(x)
CΦ̃ρ

(h,x, t) − inf
h∈HNN

CΦ̃ρ
(h,x, t)

⎫⎪⎪⎬⎪⎪⎭

= inf
x∈X

min{suph∈HNN
hγ(x), ρ}

ρ
t

=
min{infx∈X suph∈HNN

hγ(x), ρ}
ρ

t

= T1(η(x)),

where T1 is the increasing and convex function on [0,1] defined by

∀t ∈ [0,1], T1(t) =
min{infx∈X suph∈HNN

hγ(x), ρ}
ρ

t ;

inf
h∈HNN∶hγ(x)<0

CΦ̃ρ
(h,x, t) = t + (1 − t)

⎛
⎝

1 −
min{suph∈HNN

hγ(x), ρ}
ρ

⎞
⎠

inf
x∈X

inf
h∈HNN∶hγ(x)<0

∆CΦ̃ρ,HNN
(h,x, t) = inf

x∈X
{ inf
h∈HNN∶hγ(x)<0

CΦ̃ρ
(h,x, t) − inf

h∈HNN

CΦ̃ρ
(h,x, t)}

= inf
x∈X

(2t − 1)
min{suph∈HNN

hγ(x), ρ}
ρ

= (2t − 1)
min{infx∈X suph∈HNN

hγ(x), ρ}
ρ

= T2(2t − 1),

where T2 is the increasing and convex function on [0,1] defined by

∀t ∈ [0,1], T2(t) =
min{infx∈X suph∈HNN

hγ(x), ρ}
ρ

t ;

By Definition 5, for any ε ≥ 0, the adversarial HNN-estimation error transformation of the supremum-based ρ-margin loss is
as follows:

TΦ̃ρ
=

min{infx∈X suph∈HNN
hγ(x), ρ}

ρ
t, t ∈ [0,1],

Therefore, T1 = T2 and TΦ̃ρ
is convex, non-decreasing, invertible and satisfies that TΦ̃ρ

(0) = 0. By Theorem 6, we

can choose Ψ(t) =
min{infx∈X suph∈HNN

hγ(x),ρ}

ρ
t in Theorem 5, or equivalently Γ(t) = ρ

min{infx∈X suph∈HNN
hγ(x),ρ}

t in

Theorem 13, which are optimal when ε = 0. Thus, by Theorem 5 or Theorem 13, setting ε = 0 yields the adversarial
HNN-consistency bound for the supremum-based ρ-margin loss, valid for all h ∈HNN:

R`γ (h) −R∗
`γ ,HNN

≤
ρ(RΦ̃ρ

(h) −R∗

Φ̃ρ,HNN
+MΦ̃ρ,HNN

)

min{infx∈X suph∈HNN
hγ(x), ρ}

−M`γ ,HNN
. (59)
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Observe that

inf
x∈X

sup
h∈HNN

hγ(x) ≥ sup
h∈HNN

inf
x∈X

hγ(x)

= sup
∥u∥1≤Λ, ∥wj∥q≤W, ∣b∣≤B

inf
x∈X

inf
∥s∥p≤γ

n

∑
j=1

uj(wj ⋅ x +wj ⋅ s + b)+

≥ sup
∥u∥1≤Λ, ∣b∣≤B

inf
x∈X

inf
∥s∥p≤γ

n

∑
j=1

uj(0 ⋅ x + 0 ⋅ s + b)+

= sup
∥u∥1≤Λ, ∣b∣≤B

n

∑
j=1

uj(b)+

= ΛB.

Thus, the inequality can be relaxed as follows:

R`γ (h) −R∗
`γ ,HNN

≤
ρ(RΦ̃ρ

(h) −R∗

Φ̃ρ,HNN
+MΦ̃ρ,HNN

)

min{ΛB,ρ}
−M`γ ,HNN

. (60)

Since

M`γ ,HNN
= R∗

`γ ,HNN
−EX[min{η(x),1 − η(x)}],

MΦ̃ρ,HNN
= R∗

Φ̃ρ,HNN
−EX

⎡⎢⎢⎢⎢⎣
max{η(x),1 − η(x)}

⎛
⎝

1 −
min{suph∈HNN

hγ(x), ρ}
ρ

⎞
⎠

⎤⎥⎥⎥⎥⎦
−EX[min{η(x),1 − η(x)}],

inequality (59) can be rewritten as follows:

R`γ (h) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RΦ̃ρ
(h) −EX[max{η(x),1 − η(x)}(1 −

min{suph∈HNN
hγ(x),ρ}

ρ
)] if ΛB ≥ ρ

ρ
⎛

⎝
RΦ̃ρ

(h)−EX
⎡
⎢
⎢
⎢
⎢
⎣

max{η(x),1−η(x)}
⎛

⎝
1−

min{suph∈HNN
hγ (x),ρ}

ρ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠

min{ΛB,ρ}

+(1 − ρ
min{ΛB,ρ}

)EX[min{η(x),1 − η(x)}] otherwise.

Observe that

sup
h∈HNN

hγ(x) = sup
∥u∥1≤Λ, ∥wj∥q≤W, ∣b∣≤B

inf
x′∶∥x−x′∥p≤γ

n

∑
j=1

uj(wj ⋅ x′ + b)+

≤ inf
x′∶∥x−x′∥p≤γ

sup
∥u∥1≤Λ, ∥wj∥q≤W, ∣b∣≤B

n

∑
j=1

uj(wj ⋅ x′ + b)+

= inf
x′∶∥x−x′∥p≤γ

Λ(W ∥x′∥p +B)

=
⎧⎪⎪⎨⎪⎪⎩

Λ(W ∥x∥p − γW +B) if ∥x∥p ≥ γ
ΛB if ∥x∥p < γ

= Λ(W max{∥x∥p, γ} − γW +B).

Thus, the inequality can be further relaxed as follows:

R`γ (h) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RΦ̃ρ
(h) −EX[max{η(x),1 − η(x)}(1 −

min{Λ(W max{∥x∥p,γ}−γW+B),ρ}

ρ
)] if ΛB ≥ ρ

ρ(RΦ̃ρ
(h)−EX[max{η(x),1−η(x)}(1−

min{Λ(W max{∥x∥p,γ}−γW+B),ρ}

ρ )])

min{ΛB,ρ}

+(1 − ρ
min{ΛB,ρ}

)EX[min{η(x),1 − η(x)}] otherwise.

(61)

Note the relaxed adversarial HNN-consistency bounds (59) and (61) for the supremum-based ρ-margin loss are identical to
the bounds (54) and (55) in the linear case respectively modulo the replacement of B by ΛB.
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M. Derivation of Non-Adversarial Hall-Consistency Bounds under Massart’s Noise Condition
With Massart’s noise condition, we introduce a modified H-estimation error transformation. We assume that ε = 0 throughout
this section.
Proposition 1. Under Massart’s noise condition with β, the modified H-estimation error transformation of Φ for ε = 0 is
defined on t ∈ [0,1] by,

TMΦ (t) = T(t)1t∈[2β,1] + (T(2β)/2β) t1t∈[0,2β),

with T(t) defined in Definition 3. Suppose that H satisfies the condition of Lemma 1 and T̃MΦ is any lower bound of TMΦ
such that T̃MΦ ≤ TMΦ . If T̃MΦ is convex with T̃MΦ (0) = 0, then, for any hypothesis h ∈H and any distribution under Massart’s
noise condition with β,

T̃MΦ (R`0−1(h) −R∗
`0−1,H +M`0−1,H) ≤ RΦ(h) −R∗

Φ,H +MΦ,H.

Proof. Note the condition (13) in Theorem 8 is symmetric about ∆η(x) = 0. Thus, condition (13) uniformly holds for all
distributions is equivalent to the following holds for any t ∈ [1/2 + β,1] ∶

Ψ(⟨2t − 1⟩ε) ≤ inf
x∈X,h∈H∶h(x)<0

∆CΦ,H(h,x, t), (62)

It is clear that any lower bound T̃MΦ of the modified H-estimation error transformation verified condition (62). Then by
Theorem 8, the proof is completed.

M.1. Quadratic Loss

For the quadratic loss Φquad(α)∶ = (1 − α)21α≤1, for all h ∈Hall and x ∈ X:

CΦquad
(h,x, t) = tΦquad(h(x)) + (1 − t)Φquad(−h(x))

= t(1 − h(x))2
1h(x)≤1 + (1 − t)(1 + h(x))2

1h(x)≥−1.

inf
h∈Hall

CΦquad
(h,x, t) = 4t(1 − t)

MΦquad,Hall
= R∗

Φquad,Hall
−EX[ inf

h∈Hall

CΦquad
(h,x, η(x))]

= R∗
Φquad,Hall

−EX[4η(x)(1 − η(x))]
= 0

Thus, for 1
2
< t ≤ 1, we have

inf
h∈Hall∶h(x)<0

CΦquad
(h,x, t) = t + (1 − t)

= 1

inf
x∈X

inf
h∈Hall∶h(x)<0

∆CΦquad,Hall
(h,x, t) = inf

x∈X
( inf
h∈Hall∶h(x)<0

CΦquad
(h,x, t) − inf

h∈Hall

CΦquad
(h,x, t))

= inf
x∈X

(1 − 4t(1 − t))

= 1 − 4t(1 − t)
= T(2t − 1)

where T is the increasing and convex function on [0,1] defined by

∀t ∈ [0,1], T(t) = t2.

By Proposition 1, for ε = 0, the modified Hall-estimation error transformation of the quadratic loss under Massart’s noise
condition with β is as follows:

TMΦquad
(t) =

⎧⎪⎪⎨⎪⎪⎩

2β t, t ∈ [0,2β] ,
t2, t ∈ [2β,1] .
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Therefore, TMΦquad
is convex, non-decreasing, invertible and satisfies that TMΦquad

(0) = 0. By Proposition 1, we obtain the
Hall-consistency bound for the quadratic loss, valid for all h ∈Hall such that RΦquad

(h) −R∗
Φquad,Hall

≤ T(2β) = 4β2 and
distributions D satisfies Massart’s noise condition with β:

R`0−1(h) −R∗
`0−1,Hall

≤
RΦquad

(h) −R∗
Φquad,Hall

2β
(63)

M.2. Logistic Loss

For the logistic loss Φlog(α)∶ = log2(1 + e−α), for all h ∈Hall and x ∈ X:

CΦlog
(h,x, t) = tΦlog(h(x)) + (1 − t)Φlog(−h(x)),

= t log2(1 + e−h(x)) + (1 − t) log2(1 + eh(x)).
inf

h∈Hall

CΦlog
(h,x, t) = −t log2(t) − (1 − t) log2(1 − t)

MΦlog,Hall
= R∗

Φlog,Hall
−EX[ inf

h∈Hall

CΦlog
(h,x, η(x))]

= R∗
Φlog,Hall

−EX[−η(x) log2(η(x)) − (1 − η(x)) log2(1 − η(x))]
= 0

Thus, for 1
2
< t ≤ 1, we have

inf
h∈Hall∶h(x)<0

CΦlog
(h,x, t) = t log2(1 + e−0) + (1 − t) log2(1 + e0)

= 1,

inf
x∈X

inf
h∈Hall∶h(x)<0

∆CΦlog,Hall
(h,x, t) = inf

x∈X
( inf
h∈Hall∶h(x)<0

CΦlog
(h,x, t) − inf

h∈Hall

CΦlog
(h,x, t))

= inf
x∈X

(1 + t log2(t) + (1 − t) log2(1 − t)

= 1 + t log2(t) + (1 − t) log2(1 − t)
= T(2t − 1),

where T is the increasing and convex function on [0,1] defined by

∀t ∈ [0,1], T(t) = t + 1

2
log2(t + 1) + 1 − t

2
log2(1 − t)

By Proposition 1, for ε = 0, the modified Hall-estimation error transformation of the logistic loss under Massart’s noise
condition with β is as follows:

TMΦlog
=
⎧⎪⎪⎨⎪⎪⎩

T(t), t ∈ [2β,1] ,
T(2β)

2β
t, t ∈ [0,2β) .

Therefore, TMΦlog
is convex, non-decreasing, invertible and satisfies that TMΦlog

(0) = 0. By Proposition 1, we obtain
the Hall-consistency bound for the logistic loss, valid for all h ∈ Hall such that RΦlog

(h) − R∗
Φlog,Hall

≤ T(2β) =
2β+1

2
log2(2β + 1) + 1−2β

2
log2(1 − 2β) and distributions D satisfies Massart’s noise condition with β:

R`0−1(h) −R∗
`0−1,Hall

≤
2β(RΦlog

(h) −R∗
Φlog,Hall

)
2β+1

2
log2(2β + 1) + 1−2β

2
log2(1 − 2β)

(64)
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M.3. Exponential Loss

For the exponential loss Φexp(α)∶ = e−α, for all h ∈Hall and x ∈ X:

CΦexp(h,x, t) = tΦexp(h(x)) + (1 − t)Φexp(−h(x))

= te−h(x) + (1 − t)eh(x).

inf
h∈Hall

CΦexp(h,x, t) = 2
√
t(1 − t)

MΦexp,Hall
= R∗

Φexp,Hall
−EX[ inf

h∈Hall

CΦexp(h,x, η(x))]

= R∗
Φexp,Hall

−EX[2
√
η(x)(1 − η(x))]

= 0.

Thus, for 1
2
< t ≤ 1, we have

inf
h∈Hall∶h(x)<0

CΦexp(h,x, t) = te−0 + (1 − t)e0

= 1.

inf
x∈X

inf
h∈Hall∶h(x)<0

∆CΦexp,Hall
(h,x) = inf

x∈X
( inf
h∈Hall∶h(x)<0

CΦexp(h,x) − inf
h∈Hall

CΦexp(h,x))

= inf
x∈X

(1 − 2
√
t(1 − t))

= 1 − 2
√
t(1 − t)

= T(2t − 1),

where T is the increasing and convex function on [0,1] defined by

∀t ∈ [0,1], T(t) = 1 −
√

1 − t2.

By Proposition 1, for ε = 0, the modified Hall-estimation error transformation of the exponential loss under Massart’s noise
condition with β is as follows:

TMΦexp
=
⎧⎪⎪⎨⎪⎪⎩

T(t), t ∈ [2β,1] ,
T(2β)

2β
t, t ∈ [0,2β) .

Therefore, TMΦexp
is convex, non-decreasing, invertible and satisfies that TMΦexp

(0) = 0. By Proposition 1, we obtain the Hall-

consistency bound for the exponential loss, valid for all h ∈Hall such that RΦexp(h) −R∗
Φexp,Hall

≤ T(2β) = 1 −
√

1 − 4β2

and distributions D satisfies Massart’s noise condition with β:

R`0−1(h) −R∗
`0−1,Hall

≤
2β(RΦexp(h) −R∗

Φexp,Hall
)

1 −
√

1 − 4β2
(65)

N. Derivation of Adversarial H-Consistency Bounds under Massart’s Noise Condition
As with the non-adversarial scenario in Section 5.5, we introduce a modified adversarial H-estimation error transformation.
We assume that ε = 0 throughout this section.

Proposition 2. Under Massart’s noise condition with β, the modified adversarial H-estimation error transformation of Φ̃
for ε = 0 is defined on t ∈ [0,1] by

TM
Φ̃

(t) = min{TM1 (t),TM2 (t)},
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where

TM1 (t) ∶= T̂1(t)1t∈[ 1
2+β,1]

+ 2/(1 + 2β) T̂1(
1

2
+ β) t1t∈[0, 12+β),

TM2 (t) ∶= T̂2(t)1t∈[2β,1] +
T̂2(2β)

2β
t1t∈[0,2β),

with T̂1(t) and T̂2(t) defined in Definition 5. Suppose that H is symmetric and T̃M
Φ̃

is any lower bound of TM
Φ̃

such that
T̃M

Φ̃
≤ TM

Φ̃
. If T̃M

Φ̃
is convex with T̃M

Φ̃
(0) = 0, then, for any hypothesis h ∈ H and any distribution under Massart’s noise

condition with β,

T̃M
Φ̃

(R`γ (h) −R∗
`γ ,H +M`γ ,H) ≤ RΦ̃(h) −R∗

Φ̃,H
+MΦ̃,H.

Proof. Note the condition (17) in Theorem 10 is symmetric about ∆η(x) = 0. Thus, condition (17) uniformly holds for all
distributions under Massart’s noise condition with β is equivalent to the following holds for any t ∈ [1/2 + β,1] ∶

Ψ(⟨t⟩ε) ≤ inf
x∈X,h∈Hγ(x)⫋H

∆CΦ̃,H(h,x, t),

Ψ(⟨2t − 1⟩ε) ≤ inf
x∈X,h∈H∶hγ(x)<0

∆CΦ̃,H(h,x, t),
(66)

It is clear that any lower bound T̃M
Φ̃

of the modified adversarial H-estimation error transformation verified condition (66).
Then by Theorem 10, the proof is completed.

N.1. Linear Hypotheses

By the definition of Hlin, for any x ∈ X,

hγ(x) = w ⋅ x − γ∥w∥q + b

∈
⎧⎪⎪⎨⎪⎪⎩

[−W ∥x∥p − γW −B,W ∥x∥p − γW +B] ∥x∥p ≥ γ
[−W ∥x∥p − γW −B,B] ∥x∥p < γ

,

hγ(x) = w ⋅ x + γ∥w∥q + b

∈
⎧⎪⎪⎨⎪⎪⎩

[−W ∥x∥p + γW −B,W ∥x∥p + γW +B] ∥x∥p ≥ γ
[−B,W ∥x∥p + γW +B] ∥x∥p < γ

.

Note Hlin is symmetric. For any x ∈ X, there exist w = 0 and any 0 < b ≤ B such that w ⋅ x − γ∥w∥q + b > 0. Thus by
Lemma 2, for any x ∈ X, C∗`γ ,Hlin

(x) = min{η(x),1 − η(x)}. The (`γ ,Hlin)-minimizability gap can be expressed as
follows:

M`γ ,Hlin
= R∗

`γ ,Hlin
−EX[min{η(x),1 − η(x)}].

N.1.1. SUPREMUM-BASED HINGE LOSS

For the supremum-based hinge loss

Φ̃hinge∶ = sup
x′∶∥x−x′∥p≤γ

Φhinge(yh(x′)), where Φhinge(α) = max{0,1 − α},
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for all h ∈Hlin and x ∈ X:

CΦ̃hinge
(h,x, t)

= tΦ̃hinge(h(x)) + (1 − t)Φ̃hinge(−h(x))

= tΦhinge(hγ(x)) + (1 − t)Φhinge(−hγ(x))

= tmax{0,1 − hγ(x)} + (1 − t)max{0,1 + hγ(x)}

≥ [tmax{0,1 − hγ(x)} + (1 − t)max{0,1 + hγ(x)}] ∧ [tmax{0,1 − hγ(x)} + (1 − t)max{0,1 + hγ(x)}]

inf
h∈Hlin

CΦ̃hinge
(h,x, t)

≥ inf
h∈Hlin

[tmax{0,1 − hγ(x)} + (1 − t)max{0,1 + hγ(x)}] ∧ inf
h∈Hlin

[tmax{0,1 − hγ(x)} + (1 − t)max{0,1 + hγ(x)}]

= 1 − ∣2t − 1∣min{W max{∥x∥p, γ} − γW +B,1}

inf
h∈Hlin

CΦ̃hinge
(h,x, t)

= inf
h∈Hlin

[tmax{0,1 − hγ(x)} + (1 − t)max{0,1 + hγ(x)}]

= inf
h∈Hlin

[tmax{0,1 −w ⋅ x + γ∥w∥q − b} + (1 − t)max{0,1 +w ⋅ x + γ∥w∥q + b}]

≤ inf
b∈[−B,B]

[tmax{0,1 − b} + (1 − t)max{0,1 + b}]

= 1 − ∣2t − 1∣min{B,1}

MΦ̃hinge,Hlin

= R
∗
Φ̃hinge,Hlin

− E[ inf
h∈Hlin

CΦ̃hinge
(h,x, η(x))]

≤ R
∗
Φ̃hinge,Hlin

− E[1 − ∣2η(x) − 1∣min{W max{∥x∥p, γ} − γW +B,1}]

Thus, for 1
2
< t ≤ 1, we have

inf
h∈Hlin∶hγ(x)≤0≤hγ(x)

CΦ̃hinge
(h,x, t) = t + (1 − t)

= 1

inf
x∈X

inf
h∈Hlin∶hγ(x)≤0≤hγ(x)

∆CΦ̃hinge,Hlin
(h,x, t) = inf

x∈X
{1 − inf

h∈Hlin

CΦ̃hinge
(h,x, t)}

≥ inf
x∈X

(2t − 1)min{B,1}

= (2t − 1)min{B,1}
= T1(t),

where T1 is the increasing and convex function on [0,1] defined by

T1(t) =
⎧⎪⎪⎨⎪⎪⎩

min{B,1} (2t − 1), t ∈ [1/2 + β,1],
min{B,1} 4β

1+2β
t, t ∈ [0,1/2 + β) .

inf
h∈Hlin∶hγ(x)<0

CΦ̃hinge
(h,x, t) ≥ inf

h∈Hlin∶hγ(x)<0
[tmax{0,1 − hγ(x)} + (1 − t)max{0,1 + hγ(x)}]

= tmax{0,1 − 0} + (1 − t)max{0,1 + 0}
= 1

inf
x∈X

inf
h∈Hlin∶hγ(x)<0

∆CΦ̃hinge,Hlin
(h,x, t) = inf

x∈X
{ inf
h∈Hlin∶hγ(x)<0

CΦ̃hinge
(h,x, t) − inf

h∈Hlin

CΦ̃hinge
(h,x, t)}

≥ inf
x∈X

(2t − 1)min{B,1}

= (2t − 1)min{B,1}
= T2(2t − 1),
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where T2 is the increasing and convex function on [0,1] defined by

∀t ∈ [0,1], T2(t) = min{B,1} t.

By Proposition 2, for ε = 0, the modified adversarial Hlin-estimation error transformation of the supremum-based hinge loss
under Massart’s noise condition with β is lower bounded as follows:

TM
Φ̃hinge

≥ T̃M
Φ̃hinge

∶= min{T1,T2} =
⎧⎪⎪⎨⎪⎪⎩

min{B,1} (2t − 1), t ∈ [1/2 + β,1],
min{B,1} 4β

1+2β
t, t ∈ [0,1/2 + β) .

Note T̃M
Φ̃hinge

is convex, non-decreasing, invertible and satisfies that T̃M
Φ̃hinge

(0) = 0. By Proposition 2, using the fact that

T̃M
Φ̃hinge

≥ min{B,1} 4β
1+2β

t yields the adversarial Hlin-consistency bound for the supremum-based hinge loss, valid for all
h ∈Hlin and distributions D satisfies Massart’s noise condition with β:

R`γ (h) −R∗
`γ ,Hlin

≤ 1 + 2β

4β

RΦ̃hinge
(h) −R∗

Φ̃hinge,Hlin
+MΦ̃hinge,Hlin

min{B,1}
−M`γ ,Hlin

(67)

Since

M`γ ,Hlin
= R∗

`γ ,Hlin
−EX[min{η(x),1 − η(x)}],

MΦ̃hinge,Hlin
≤ R∗

Φ̃hinge,Hlin
−E[1 − ∣2η(x) − 1∣min{W max{∥x∥p, γ} − γW +B,1}],

the inequality can be relaxed as follows:

R`γ (h) ≤
1 + 2β

4β

RΦ̃hinge
(h)

min{B,1}
+EX[min{η(x),1 − η(x)}] − 1 + 2β

4β

E[1 − ∣2η(x) − 1∣min{W max{∥x∥p, γ} − γW +B,1}]
min{B,1}

Note that: min{W max{∥x∥p, γ} − γW +B,1} ≤ 1 and 1 − ∣1 − 2η(x)∣ = 2 min{η(x),1 − η(x)}. Thus the inequality can
be further relaxed as follows:

R`γ (h) ≤
1 + 2β

4β

RΦ̃hinge
(h)

min{B,1}
− ( 1 + 2β

2βmin{B,1}
− 1)EX[min{η(x),1 − η(x)}].

When B ≥ 1, it can be equivalently written as follows:

R`γ (h) ≤
1 + 2β

4β
RΦ̃hinge

(h) − 1

2β
EX[min{η(x),1 − η(x)}]. (68)

N.1.2. SUPREMUM-BASED SIGMOID LOSS

For the supremum-based sigmoid loss

Φ̃sig∶ = sup
x′∶∥x−x′∥p≤γ

Φsig(yh(x′)), where Φsig(α) = 1 − tanh(kα), k > 0,
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for all h ∈Hlin and x ∈ X:

CΦ̃sig
(h,x, t) = tΦ̃sig(h(x)) + (1 − t)Φ̃sig(−h(x))

= tΦsig(hγ(x)) + (1 − t)Φsig(−hγ(x))

= t(1 − tanh(khγ(x))) + (1 − t)(1 + tanh(khγ(x)))

≥ max{1 + (1 − 2t) tanh(khγ(x)),1 + (1 − 2t) tanh(khγ(x))}

inf
h∈Hlin

CΦ̃sig
(h,x, t) ≥ max{ inf

h∈Hlin

[1 + (1 − 2t) tanh(khγ(x))], inf
h∈Hlin

[1 + (1 − 2t) tanh(khγ(x))]}

= 1 − ∣1 − 2t∣ tanh(k(W max{∥x∥p, γ} − γW +B))
inf

h∈Hlin

CΦ̃sig
(h,x, t) = inf

h∈Hlin

[t(1 − tanh(k(w ⋅ x − γ∥w∥q + b))) + (1 − t)(1 + tanh(k(w ⋅ x + γ∥w∥q + b)))]

≤ inf
b∈[−B,B]

[t(1 − tanh(kb)) + (1 − t)(1 + tanh(kb))]

= max{t,1 − t}(1 − tanh(kB)) +min{t,1 − t}(1 + tanh(kB))
= 1 − ∣1 − 2t∣ tanh(kB)

MΦ̃sig,Hlin
= R∗

Φ̃sig,Hlin
−E[ inf

h∈Hlin

CΦ̃sig
(h,x, η(x))]

≤ R∗

Φ̃sig,Hlin
−E[1 − ∣1 − 2η(x)∣ tanh(k(W max{∥x∥p, γ} − γW +B))]

Thus, for 1
2
< t ≤ 1, we have

inf
h∈Hlin∶hγ(x)≤0≤hγ(x)

CΦ̃sig
(h,x, t) = t + (1 − t)

= 1

inf
x∈X

inf
h∈Hlin∶hγ(x)≤0≤hγ(x)

∆CΦ̃sig,Hlin
(h,x, t) = inf

x∈X
{1 − inf

h∈Hlin

CΦ̃sig
(h,x, t)}

≥ inf
x∈X

(2t − 1) tanh(kB)

= (2t − 1) tanh(kB)
= T1(t),

where T1 is the increasing and convex function on [0,1] defined by

T1(t) =
⎧⎪⎪⎨⎪⎪⎩

tanh(kB) 4β
1+2β

t, t ∈ [0,1/2 + β],
tanh(kB) (2t − 1), t ∈ [1/2 + β,1].

inf
h∈Hlin∶hγ(x)<0

CΦ̃sig
(h,x, t) ≥ inf

h∈Hlin∶hγ(x)<0
[1 + (1 − 2t) tanh(khγ(x))]

= 1

inf
x∈X

inf
h∈Hlin∶hγ(x)<0

∆CΦ̃sig,Hlin
(h,x, t) = inf

x∈X
{ inf
h∈Hlin∶hγ(x)<0

CΦ̃sig
(h,x, t) − inf

h∈Hlin

CΦ̃sig
(h,x, t)}

≥ inf
x∈X

(2t − 1) tanh(kB)

= (2t − 1) tanh(kB)
= T2(2t − 1),

where T2 is the increasing and convex function on [2β,1] defined by

∀t ∈ [0,1], T2(t) = tanh(kB) t ;
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By Proposition 2, for ε = 0, the modified adversarial Hlin-estimation error transformation of the supremum-based sigmoid
loss under Massart’s noise condition with β is lower bounded as follows:

TM
Φ̃sig

≥ T̃M
Φ̃sig

= min{T1,T2} =
⎧⎪⎪⎨⎪⎪⎩

tanh(kB) 4β
1+2β

t, t ∈ [0,1/2 + β],
tanh(kB) (2t − 1), t ∈ [1/2 + β,1].

Note T̃M
Φ̃sig

is convex, non-decreasing, invertible and satisfies that T̃M
Φ̃sig

(0) = 0. By Proposition 2, using the fact that

T̃M
Φ̃sig

≥ tanh(kB) 4β
1+2β

t yields the adversarial Hlin-consistency bound for the supremum-based sigmoid loss, valid for all
h ∈Hlin and distributions D satisfies Massart’s noise condition with β:

R`γ (h) −R∗
`γ ,Hlin

≤ 1 + 2β

4β

RΦ̃sig
(h) −R∗

Φ̃sig,Hlin
+MΦ̃sig,Hlin

tanh(kB)
−M`γ ,Hlin

. (69)

Since

M`γ ,Hlin
= R∗

`γ ,Hlin
−EX[min{η(x),1 − η(x)}],

MΦ̃sig,Hlin
≤ R∗

Φ̃sig,Hlin
−E[1 − ∣1 − 2η(x)∣ tanh(k(W max{∥x∥p, γ} − γW +B))],

the inequality can be relaxed as follows:

R`γ (h)

≤ 1 + 2β

4β

RΦ̃sig
(h)

tanh(kB)
+EX[min{η(x),1 − η(x)}] − 1 + 2β

4β

E[1 − ∣1 − 2η(x)∣ tanh(k(W max{∥x∥p, γ} − γW +B))]
tanh(kB)

Note that: tanh(k(W max{∥x∥p, γ} − γW +B)) ≤ 1 and 1 − ∣1 − 2η(x)∣ = 2 min{η(x),1 − η(x)}. Thus the inequality
can be further relaxed as follows:

R`γ (h) ≤
1 + 2β

4β

RΦ̃sig
(h)

tanh(kB)
− ( 1 + 2β

2β tanh(kB)
− 1)EX[min{η(x),1 − η(x)}].

When B = +∞, it can be equivalently written as follows:

R`γ (h) ≤
1 + 2β

4β
RΦ̃sig

(h) − 1

2β
EX[min{η(x),1 − η(x)}]. (70)

N.2. One-Hidden-Layer ReLU Neural Networks

By the definition of HNN, for any x ∈ X,

hγ(x) = inf
x′∶∥x−x′∥p≤γ

n

∑
j=1

uj(wj ⋅ x′ + b)+

hγ(x) = sup
x′∶∥x−x′∥p≤γ

n

∑
j=1

uj(wj ⋅ x′ + b)+

Note HNN is symmetric. For any x ∈ X, there exist u = ( 1
Λ
, . . . , 1

Λ
), w = 0 and any 0 < b ≤ B satisfy that hγ(x) > 0. Thus

by Lemma 2, for any x ∈ X, C∗`γ ,HNN
(x) = min{η(x),1 − η(x)}. The (`γ ,HNN)-minimizability gap can be expressed as

follows:

M`γ ,HNN
= R∗

`γ ,HNN
−EX[min{η(x),1 − η(x)}].

N.2.1. SUPREMUM-BASED HINGE LOSS

For the supremum-based hinge loss

Φ̃hinge∶ = sup
x′∶∥x−x′∥p≤γ

Φhinge(yh(x′)), where Φhinge(α) = max{0,1 − α},
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for all h ∈HNN and x ∈ X:

CΦ̃hinge
(h,x, t)

= tΦ̃hinge(h(x)) + (1 − t)Φ̃hinge(−h(x))

= tΦhinge(hγ(x)) + (1 − t)Φhinge(−hγ(x))

= tmax{0,1 − hγ(x)} + (1 − t)max{0,1 + hγ(x)}

≥ [tmax{0,1 − hγ(x)} + (1 − t)max{0,1 + hγ(x)}] ∧ [tmax{0,1 − hγ(x)} + (1 − t)max{0,1 + hγ(x)}]

inf
h∈HNN

CΦ̃hinge
(h,x, t)

≥ inf
h∈HNN

[tmax{0,1 − hγ(x)} + (1 − t)max{0,1 + hγ(x)}] ∧ inf
h∈HNN

[tmax{0,1 − hγ(x)} + (1 − t)max{0,1 + hγ(x)}]

= 1 − ∣2t − 1∣min{ sup
h∈HNN

hγ(x),1}

inf
h∈HNN

CΦ̃hinge
(h,x, t)

≤ inf
h∈HNN∶w=0

CΦ̃hinge
(h,x, t)

= 1 − ∣2t − 1∣min{ΛB,1}

MΦ̃hinge,HNN

= R
∗
Φ̃hinge,HNN

− E[ inf
h∈HNN

CΦ̃hinge
(h,x, η(x))]

≤ R
∗
Φ̃hinge,HNN

− E[1 − ∣2η(x) − 1∣min{ sup
h∈HNN

hγ(x),1}]

Thus, for 1
2
< t ≤ 1, we have

inf
h∈HNN∶hγ(x)≤0≤hγ(x)

CΦ̃hinge
(h,x, t) = t + (1 − t)

= 1

inf
x∈X

inf
h∈HNN∶hγ(x)≤0≤hγ(x)

∆CΦ̃hinge,HNN
(h,x, t) = inf

x∈X
{1 − inf

h∈HNN

CΦ̃hinge
(h,x, t)}

≥ inf
x∈X

(2t − 1)min{ΛB,1}

= (2t − 1)min{ΛB,1}
= T1(t),

where T1 is the increasing and convex function on [0,1] defined by

T1(t) =
⎧⎪⎪⎨⎪⎪⎩

min{ΛB,1} 4β
1+2β

t, t ∈ [0,1/2 + β],
min{ΛB,1} (2t − 1), t ∈ [1/2 + β,1].

inf
h∈HNN∶hγ(x)<0

CΦ̃hinge
(h,x, t) ≥ inf

h∈HNN∶hγ(x)<0
[tmax{0,1 − hγ(x)}t + (1 − t)max{0,1 + hγ(x)}]

= tmax{0,1 − 0} + (1 − t)max{0,1 + 0}
= 1

inf
x∈X

inf
h∈HNN∶hγ(x)<0

∆CΦ̃hinge,HNN
(h,x, t) = inf

x∈X
{ inf
h∈HNN∶hγ(x)<0

CΦ̃hinge
(h,x, t) − inf

h∈HNN

CΦ̃hinge
(h,x, t)}

≥ inf
x∈X

(2t − 1)min{ΛB,1}

= (2t − 1)min{ΛB,1}
= T2(2t − 1),
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where T2 is the increasing and convex function on [0,1] defined by

∀t ∈ [0,1], T2(t) = min{ΛB,1} t ;

By Proposition 2, for ε = 0, the modified adversarial HNN-estimation error transformation of the supremum-based hinge
loss under Massart’s noise condition with β is lower bounded as follows:

TM
Φ̃hinge

≥ T̃M
Φ̃hinge

∶= min{T1,T2} =
⎧⎪⎪⎨⎪⎪⎩

min{ΛB,1} (2t − 1), t ∈ [1/2 + β,1],
min{ΛB,1} 4β

1+2β
t, t ∈ [0,1/2 + β) .

Note T̃M
Φ̃hinge

is convex, non-decreasing, invertible and satisfies that T̃M
Φ̃hinge

(0) = 0. By Proposition 2, using the fact that

T̃M
Φ̃hinge

≥ min{ΛB,1} 4β
1+2β

t yields the adversarial HNN-consistency bound for the supremum-based hinge loss, valid for
all h ∈HNN and distributions D satisfies Massart’s noise condition with β

R`γ (h) −R∗
`γ ,HNN

≤ 1 + 2β

4β

RΦ̃hinge
(h) −R∗

Φ̃hinge,HNN
+MΦ̃hinge,HNN

min{ΛB,1}
−M`γ ,HNN

(71)

Since

M`γ ,HNN
= R∗

`γ ,HNN
−EX[min{η(x),1 − η(x)}],

MΦ̃hinge,HNN
≤ R∗

Φ̃hinge,HNN
−E[1 − ∣2η(x) − 1∣min{ sup

h∈HNN

hγ(x),1}],

the inequality can be relaxed as follows:

R`γ (h) ≤
1 + 2β

4β

RΦ̃hinge
(h)

min{ΛB,1}
+EX[min{η(x),1 − η(x)}] − 1 + 2β

4β

E[1 − ∣2η(x) − 1∣min{suph∈HNN
hγ(x),1}]

min{ΛB,1}

Observe that

sup
h∈HNN

hγ(x) = sup
∥u∥1≤Λ, ∥wj∥q≤W, ∣b∣≤B

inf
x′∶∥x−x′∥p≤γ

n

∑
j=1

uj(wj ⋅ x′ + b)+

≤ inf
x′∶∥x−x′∥p≤γ

sup
∥u∥1≤Λ, ∥wj∥q≤W, ∣b∣≤B

n

∑
j=1

uj(wj ⋅ x′ + b)+

= inf
x′∶∥x−x′∥p≤γ

Λ(W ∥x′∥p +B)

=
⎧⎪⎪⎨⎪⎪⎩

Λ(W ∥x∥p − γW +B) if ∥x∥p ≥ γ
ΛB if ∥x∥p < γ

= Λ(W max{∥x∥p, γ} − γW +B).

Thus, the inequality can be further relaxed as follows:

R`γ (h)

≤ 1 + 2β

4β

RΦ̃hinge
(h)

min{ΛB,1}
+EX[min{η(x),1 − η(x)}] − 1 + 2β

4β

E[1 − ∣2η(x) − 1∣min{Λ(W max{∥x∥p, γ} − γW +B),1}]
min{ΛB,1}

Note that: min{Λ(W max{∥x∥p, γ} − γW +B),1} ≤ 1 and 1 − ∣1 − 2η(x)∣ = 2 min{η(x),1 − η(x)}. Thus the inequality
can be further relaxed as follows:

R`γ (h) ≤
1 + 2β

4β

RΦ̃hinge
(h)

min{ΛB,1}
− ( 1 + 2β

2βmin{ΛB,1}
− 1)EX[min{η(x),1 − η(x)}]. (72)

When ΛB ≥ 1, it can be equivalently written as follows:

R`γ (h) ≤
1 + 2β

4β
RΦ̃hinge

(h) − 1

2β
EX[min{η(x),1 − η(x)}].
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N.2.2. SUPREMUM-BASED SIGMOID LOSS

For the supremum-based sigmoid loss

Φ̃sig∶ = sup
x′∶∥x−x′∥p≤γ

Φsig(yh(x′)), where Φsig(α) = 1 − tanh(kα), k > 0,

for all h ∈HNN and x ∈ X:

CΦ̃sig
(h,x, t) = tΦ̃sig(h(x)) + (1 − t)Φ̃sig(−h(x))

= tΦsig(hγ(x)) + (1 − t)Φsig(−hγ(x))

= t(1 − tanh(khγ(x))) + (1 − t)(1 + tanh(khγ(x)))

≥ max{1 + (1 − 2t) tanh(khγ(x)),1 + (1 − 2t) tanh(khγ(x))}

inf
h∈HNN

CΦ̃sig
(h,x, t) ≥ max{ inf

h∈HNN

[1 + (1 − 2t) tanh(khγ(x))], inf
h∈HNN

[1 + (1 − 2t) tanh(khγ(x))]}

= 1 − ∣1 − 2t∣ tanh(k sup
h∈HNN

hγ(x))

inf
h∈HNN

CΦ̃sig
(h,x, t) ≤ max{t,1 − t}(1 − tanh(kΛB)) +min{t,1 − t}(1 + tanh(kΛB))

= 1 − ∣1 − 2t∣ tanh(kΛB)

MΦ̃sig,HNN
= R∗

Φ̃sig,HNN
−E[ inf

h∈HNN

CΦ̃sig
(h,x, η(x))]

≤ R∗

Φ̃sig,HNN
−E[1 − ∣1 − 2η(x)∣ tanh(k sup

h∈HNN

hγ(x))]

For 1
2
< t ≤ 1, we have

inf
h∈HNN∶hγ(x)≤0≤hγ(x)

CΦ̃sig
(h,x, t) = t + (1 − t)

= 1

inf
x∈X

inf
h∈HNN∶hγ(x)≤0≤hγ(x)

∆CΦ̃sig,HNN
(h,x, t) = inf

x∈X
{1 − inf

h∈HNN

CΦ̃sig
(h,x, t)}

≥ inf
x∈X

(2t − 1) tanh(kΛB)

= (2t − 1) tanh(kΛB)
= T1(t),

where T1 is the increasing and convex function on [0,1] defined by

T1(t) =
⎧⎪⎪⎨⎪⎪⎩

tanh(kΛB) 4β
1+2β

t, t ∈ [0,1/2 + β],
tanh(kΛB) (2t − 1), t ∈ [1/2 + β,1].

inf
h∈HNN∶hγ(x)<0

CΦ̃sig
(h,x, t) ≥ inf

h∈HNN∶hγ(x)<0
1 + (1 − 2t) tanh(khγ(x))

= 1

inf
x∈X

inf
h∈HNN∶hγ(x)<0

∆CΦ̃sig,HNN
(h,x) = inf

x∈X
{ inf
h∈HNN∶hγ(x)<0

CΦ̃sig
(h,x, t) − inf

h∈HNN

CΦ̃sig
(h,x, t)}

≥ inf
x∈X

(2t − 1) tanh(kΛB)

= (2t − 1) tanh(kΛB)
= T2(2t − 1),
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where T2 is the increasing and convex function on [0,1] defined by

∀t ∈ [0,1], T2(t) = tanh(kΛB) t ;

By Proposition 2, for ε = 0, the modified adversarial HNN-estimation error transformation of the supremum-based sigmoid
loss under Massart’s noise condition with β is lower bounded as follows:

TM
Φ̃sig

≥ T̃M
Φ̃sig

= min{T1,T2} =
⎧⎪⎪⎨⎪⎪⎩

tanh(kΛB) 4β
1+2β

t, t ∈ [0,1/2 + β],
tanh(kΛB) (2t − 1), t ∈ [1/2 + β,1].

Note T̃M
Φ̃sig

is convex, non-decreasing, invertible and satisfies that T̃M
Φ̃sig

(0) = 0. By Proposition 2, using the fact that

T̃M
Φ̃sig

≥ tanh(kΛB) 4β
1+2β

t yields the adversarial HNN-consistency bound for the supremum-based sigmoid loss, valid for
all h ∈HNN and distributions D satisfies Massart’s noise condition with β:

R`γ (h) −R∗
`γ ,HNN

≤ 1 + 2β

4β

RΦ̃sig
(h) −R∗

Φ̃sig,HNN
+MΦ̃sig,HNN

tanh(kΛB)
−M`γ ,HNN

(73)

Since

M`γ ,HNN
= R∗

`γ ,HNN
−EX[min{η(x),1 − η(x)}],

MΦ̃sig,HNN
≤ R∗

Φ̃sig,HNN
−E[1 − ∣1 − 2η(x)∣ tanh(k sup

h∈HNN

hγ(x))],

the inequality can be relaxed as follows:

R`γ (h) ≤
1 + 2β

4β

RΦ̃sig
(h)

tanh(kΛB)
+EX[min{η(x),1 − η(x)}] − 1 + 2β

4β

E[1 − ∣1 − 2η(x)∣ tanh(k suph∈HNN
hγ(x))]

tanh(kΛB)

Observe that

sup
h∈HNN

hγ(x) = sup
∥u∥1≤Λ, ∥wj∥q≤W, ∣b∣≤B

inf
x′∶∥x−x′∥p≤γ

n

∑
j=1

uj(wj ⋅ x′ + b)+

≤ inf
x′∶∥x−x′∥p≤γ

sup
∥u∥1≤Λ, ∥wj∥q≤W, ∣b∣≤B

n

∑
j=1

uj(wj ⋅ x′ + b)+

= inf
x′∶∥x−x′∥p≤γ

Λ(W ∥x′∥p +B)

=
⎧⎪⎪⎨⎪⎪⎩

Λ(W ∥x∥p − γW +B) if ∥x∥p ≥ γ
ΛB if ∥x∥p < γ

= Λ(W max{∥x∥p, γ} − γW +B).

Thus, the inequality can be further relaxed as follows:

R`γ (h)

≤ 1 + 2β

4β

RΦ̃sig
(h)

tanh(kΛB)
+EX[min{η(x),1 − η(x)}] − 1 + 2β

4β

E[1 − ∣1 − 2η(x)∣ tanh(kΛ(W max{∥x∥p, γ} − γW +B))]
tanh(kΛB)

Note that: tanh(kΛ(W max{∥x∥p, γ} − γW +B)) ≤ 1 and 1 − ∣1 − 2η(x)∣ = 2 min{η(x),1 − η(x)}. Thus the inequality
can be further relaxed as follows:

R`γ (h) ≤
1 + 2β

4β

RΦ̃sig
(h)

tanh(kΛB)
− ( 1 + 2β

2β tanh(kΛB)
− 1)EX[min{η(x),1 − η(x)}]. (74)

When ΛB = +∞, it can be equivalently written as follows:

R`γ (h) ≤
1 + 2β

4β
RΦ̃sig

(h) − 1

2β
EX[min{η(x),1 − η(x)}].


	Related Work
	Deferred Tables
	Deferred Theorems
	Proof of Theorem 1 and Theorem 2
	Proof of Lemma 1 and Lemma 2
	Comparison with Previous Results when all
	Comparison with ref
	Comparison with ref

	Proof of Theorem 3 and Theorem 12
	Proof of Theorem 5 and Theorem 13
	Proof of Theorem 4 and Theorem 6 
	Proof of Theorem 7
	Derivation of Non-Adversarial H-Consistency Bounds
	Linear Hypotheses
	Hinge Loss
	Logistic Loss
	Exponential Loss
	Quadratic Loss
	Sigmoid Loss
	rho-Margin Loss

	One-Hidden-Layer ReLU Neural Network
	Hinge Loss
	Logistic Loss
	Exponential Loss
	Quadratic Loss
	Sigmoid Loss
	rho-Margin Loss


	Derivation of Adversarial H-Consistency Bounds
	Linear Hypotheses
	Supremum-Based rho-Margin Loss

	One-Hidden-Layer ReLU Neural Networks
	Supremum-Based rho-Margin Loss


	Derivation of Non-Adversarial all-Consistency Bounds under Massart's Noise Condition
	Quadratic Loss
	Logistic Loss
	Exponential Loss

	Derivation of Adversarial H-Consistency Bounds under Massart's Noise Condition
	Linear Hypotheses
	Supremum-Based Hinge Loss
	Supremum-Based Sigmoid Loss

	One-Hidden-Layer ReLU Neural Networks
	Supremum-Based Hinge Loss
	Supremum-Based Sigmoid Loss



