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Abstract
We propose a simple modification to the iterative
hard thresholding (IHT) algorithm, which recov-
ers asymptotically sparser solutions as a function
of the condition number. When aiming to mini-
mize a convex function f(x ) with condition num-
ber κ subject to x being an s-sparse vector, the
standard IHT guarantee is a solution with relaxed
sparsity O(sκ2), while our proposed algorithm,
regularized IHT, returns a solution with sparsity
O(sκ). Our algorithm significantly improves over
ARHT (Axiotis & Sviridenko, 2021b) which also
finds a solution of sparsity O(sκ), as it does not
require re-optimization in each iteration (and so
is much faster), is deterministic, and does not re-
quire knowledge of the optimal solution value
f(x ∗) or the optimal sparsity level s. Our main
technical tool is an adaptive regularization frame-
work, in which the algorithm progressively learns
the weights of an `2 regularization term that will
allow convergence to sparser solutions. We also
apply this framework to low rank optimization,
where we achieve a similar improvement of the
best known condition number dependence from
κ2 to κ.

1. Introduction
Sparse optimization is the task of optimizing a function f
over s-sparse vectors, i.e. those with at most s non-zero
entries. Examples of such optimization problems arise in
machine learning, with the goal to make models smaller
for efficiency, generalization, or interpretability reasons,
and compressed sensing, where the goal is to recover an
s-sparse signal from a small number of measurements. A
closely related problem is low rank optimization, where
the sparsity constraint is instead placed on the spectrum of
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the solution (which is a matrix). This problem is central in
matrix factorization, recommender systems, robust principal
components analysis, among other tasks. More generally,
structured sparsity constraints have the goal of capturing the
special structure of a particular task by restricting the set of
solutions to those that are “simple” in an appropriate sense.
Examples include group sparsity, tree- and graph-structured
sparsity. For more on generalized sparsity measures see
e.g. (Schmidt, 2018).

Among the huge number of algorithms that have been de-
veloped for the sparse optimization problems, three stand
out as the most popular ones:

• The LASSO (Tibshirani, 1996), which works by relax-
ing the `0 (sparsity) constraint to an `1 constraint, thus
convexifying the problem.

• Orthogonal matching pursuit (OMP) (Pati et al.,
1993), which works by building the solution greedily
in an incremental fashion.

• Iterative hard thresholding (IHT) (Blumensath &
Davies, 2009), which performs projected gradient de-
scent on the set of sparse solutions.

Among these, IHT is generally the most efficient, since
it has essentially no overhead over plain gradient descent,
making it the tool of choice for large-scale applications.

1.1. Iterative Hard Thresholding (IHT)

Consider the sparse convex optimization problem

min
‖x‖0≤s

f(x ) , (1)

where f is convex and ‖x‖0 is the number of non-zero
entries in the vector x , i.e. the sparsity of x . IHT works by
repeatedly performing the following iteration

x t+1 = Hs′
(
x t − η · ∇f(x t)

)
, (2)

where Hs′ is the hard thresholding operator that zeroes
out all but the top s′ entries, for some (potentially relaxed)
sparsity level s′, and η > 0 is the step size.
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As (1) is known to be NP-hard (Natarajan, 1995) and even
hard to approximate (Foster et al., 2015), an extra assump-
tion needs to be made for the performance of the algorithm
to be theoretically evaluated in a meaningful way. The
most common assumption is that the (restricted) condition
number of f is bounded by κ (or the restricted isometry
property constant is bounded by δ (Candes, 2008)), but
other assumptions have been studied as well, such as inco-
herence (Donoho & Elad, 2003) and weak supermodular-
ity (Liberty & Sviridenko, 2017). The performance is then
measured in terms of the sparsity s′ of the returned solution,
as well as its error (value of f ).

As it is known (Jain et al., 2014), IHT is guaranteed to
return an s′ = O(sκ2)-sparse solution x with f(x ) ≤
f(x ∗) + ε. In fact, as we show in Section E, the κ2 factor
cannot be improved in the analysis. Recently, (Axiotis &
Sviridenko, 2021b) presented an algorithm called ARHT,
which improves the sparsity to s′ = O(sκ). However, their
algorithm is much less efficient than IHT, for many reasons.
So the question emerges:

Is there a sparse convex optimization algorithm that returns
O(sκ)-sparse solutions, but whose runtime efficiency is
comparable to IHT?

The main contribution of our work is to show that this goal
can be achieved, and done so by a surprisingly simple tweak
to IHT.

1.2. Reconciling Sparsity and Efficiency: Regularized
IHT

Our main result is the following theorem, which states that
running IHT on an adaptively regularized objective function
returnsO(sκ)-sparse solutions that are ε-optimal in function
value, while having no significant runtime overhead over
plain gradient descent.

Theorem 1.1 (Regularized IHT). Let f ∈ Rn → R be a
convex function that is β-smooth and α-strongly convex1,
with condition number κ = β/α, and x ∗ be an (unknown)
s-sparse solution. Then, running Algorithm 1 with η =
(2β)−1 and c = s′/(4T ) for

T = O

(
κ log

f(x 0) + (β/2)
∥∥x 0

∥∥2

2
− f(x ∗)

ε

)

iterations starting from an arbitrary s′ = O(sκ)-sparse
solution x 0, the algorithm returns an s′-sparse solution xT

such that f(xT ) ≤ f(x ∗) + ε. Furthermore, each iteration
requires O(1) evaluations of f , ∇f , and O(n) additional
time.

1The theorem also holds if the smoothness and strong convexity
constants are replaced by (s′+s)-restricted smoothness and strong
convexity constants.

To achieve this result, we significantly refine and gener-
alize the adaptive regularization technique of (Axiotis &
Sviridenko, 2021b). This refined version fixes many of
the shortcomings of the original, by (i) not requiring re-
optimization in every iteration (a relic of OMP-style algo-
rithms), (ii) taking Õ (κ) instead of Õ (sκ) iterations, (iii)
being deterministic, (iv) not requiring knowledge of the op-
timal function value f(x∗) thus avoiding the overhead of an
outer binary search, and (v) being more easily generalizable
to other settings, like low rank minimization.

In short, our main idea is to run IHT on a regularized func-
tion

g(x ) = f(x ) + (β/2) ‖x‖2w ,2 ,

where ‖x‖2w ,2 =
∑n
i=1 wix

2
i and w are non-negative

weights. These weights change dynamically during the
algorithm, in a way that depends on the value of x . The
effect is that now the IHT step will instead be given by

x t+1 = Hs′
((

1− 0.5w t
)

x t − η · ∇f(x t)
)
,

which is almost the same as (2), except that it has an extra
term that biases the solution towards 0. Additionally, in
each step the weights w t are updated based on the current
solution as

wt+1
i =

(
wti ·

(
1− c · w

t
i(x

t
i)

2

‖x t‖2wt,2

))
≥1/2

for some parameter c > 0, where (·)≥1/2 denotes zeroing
out all the entries that are < 1/2 and keeping the others
intact.

In Section 3, we will go over the central ideas of our re-
fined adaptive regularization technique, and also explain
how it can be extended to deal with more general sparsity
measures.

1.3. Beyond Sparsity: Low Rank Optimization

As discussed, our new techniques transfer to the problem of
minimizing a convex function under a rank constraint. In
particular, we prove the following theorem:

Theorem 1.2 (Adaptive Regularization for Low Rank Opti-
mization). Let f ∈ Rm×n → R be a convex function with
condition number κ and consider the low rank minimization
problem

min
rank(A)≤r

f(A) . (3)

For any error parameter ε > 0, there exists a polynomial
time algorithm that returns a matrix A with rank(A) ≤
O
(
r
(
κ+ log f(O)−f(A∗)

ε

))
and f(A) ≤ f(A∗) + ε,

where O is the all-zero matrix and A∗ is any rank-r matrix.
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This result can be compared to the Greedy algorithm of (Ax-
iotis & Sviridenko, 2021a), which works by incrementally
adding a rank-1 component to the solution and achieves rank
O(rκ log f(O)−f(A∗)

ε ), as well as their Local Search algo-
rithm, which works by simultaneously adding a rank-1 com-
ponent and removing another, and achieves rank O(rκ2).
In contrast, our Theorem 1.2 returns a solution with rank
O
(
r
(
κ+ log f(O)−f(A∗)

ε

))
.

1.4. Related Work

The sparse optimization and compressed sensing literature
has a wealth of different algorithms and analyses. Exam-
ples include the seminal paper of (Candes, 2008) on recov-
ery with LASSO and followup works (Foucart, 2010), the
CoSaMP algorithm (Needell & Tropp, 2009), orthogonal
matching pursuit and variants (Natarajan, 1995; Shalev-
Shwartz et al., 2010; Jain et al., 2011; Axiotis & Sviridenko,
2021b) iterative hard thresholding (Blumensath & Davies,
2009; Jain et al., 2014), hard thresholding pursuit (Foucart,
2011; Yuan et al., 2016; Shen & Li, 2017a;b), partial hard
thresholding (Jain et al., 2017), and message passing algo-
rithms (Donoho et al., 2009). For a survey on compressed
sensing, see (Boche et al., 2015; Foucart & Rauhut, 2017).

A family of algorithms that is closely related to IHT are
Frank-Wolfe (FW) methods (Frank et al., 1956), which
have been used for dealing with generalized sparsity con-
straints (Jaggi, 2013). The basic version can be viewed as
a variant of OMP without re-optimization in each iteration.
Block-FW methods are more resemblant of IHT without
the projection step, see e.g. (Allen-Zhu et al., 2017) for an
application to the low rank minimization problem.

(Liu & Foygel Barber, 2020) presented an interesting con-
nection between hard and soft thresholding algorithms by
studying a concavity property of the thresholding operator,
and proposed new thresholding operators.

Recently it has been shown (Peste et al., 2021) that IHT can
be guaranteed to work for sparse optimization of non-convex
functions, under appropriate assumptions. In particular,
(Peste et al., 2021) studies a stochastic version of IHT for
sparse deep learning problems, from both a theoretical and
practical standpoint.

2. Background
Notation. We denote [n] = {1, 2, . . . , n}. We will use
bold to refer to vectors or matrices. We denote by 0 the
all-zero vector, 1 the all-one vector, O the all-zero matrix,
and by I the identity matrix (with dimensions understood
from the context). Additionally, we will denote by 1i the
i-th basis vector, i.e. the vector that is 0 everywhere except
at position i.

In order to ease notation and where not ambiguous for two
vectors x ,y ∈ Rn, we denote by xy ∈ Rn a vector with
elements (xy)i = xiyi, i.e. the element-wise multiplication
of two vectors x and y . In contrast, we denote their inner
product by 〈x ,y〉 or x>y . Similarly, x 2 ∈ Rn will be the
element-wise square of vector x .

Restrictions and Thresholding. For any vector x ∈ Rn
and set S ⊆ [n], we denote by xS the vector that results
from x after zeroing out all the entries except those in po-
sitions given by indices in S. For any t ∈ R and x ∈ Rn,
we denote by x≥t the vector that results from setting all
the entries of x that are less than t to 0. For a function
f ∈ Rn → R, its gradient ∇f(x ), and a set of indices
S ⊆ [n], we denote ∇Sf(x ) = (∇f(x ))S . We define
the thresholding operator Hs(x ) for any vector x as xS ,
where S are the s entries of x with largest absolute value
(breaking ties arbitrarily). We override the thresholding op-
erator Hr(A) when the argument is a matrix A, defining
Hr(A) = U diag (Hr(λ)) V>, where U diag(λ)V> is
the singular value decomposition of A, i.e. Hr(A) only
keeps the top r singular components of A.

Norms and Inner Products. For any p ∈ (0,∞) and
weight vector w ≥ 0, we define the weighted `p norm of a
vector x ∈ Rn as:

‖x‖p,w =

(∑
i

wix
p
i

)1/p

.

For p = 0, we denote ‖x‖0 = |{i | xi 6= 0}| to be the
sparsity of x . For p =∞, we denote ‖x‖∞ = maxi |xi| to
be the maximum absolute value of x .

For a matrix A ∈ Rm×n, we let ‖A‖2 be its spectral norm,
‖A‖F be its Frobenius norm, and ‖A‖∗ be its nuclear norm
(i.e. sum of singular values). For any B ∈ Rm×n, we de-
note the Frobenius inner product as 〈A,B〉 = Tr

[
A>B

]
.

Smoothness, strong convexity, condition number. A
differentiable function f : Rn → R is called convex if for
any x ,y ∈ Rn we have f(y) ≥ f(x ) + 〈∇f(x ),y − x 〉.
Furthermore, f is called β-smooth for some real number
β > 0 if for any x ,y ∈ Rn we have f(y) ≤ f(x ) +

〈∇f(x ),y − x 〉+ (β/2) ‖y − x‖22 and α-strongly convex
for some real number α > 0 if for any x ,y ∈ Rn we have
f(y) ≥ f(x )+〈∇f(x ),y−x 〉+(α/2) ‖y − x‖22. We call
κ := β/α the condition number of f . If f is only β-smooth
along s-sparse directions (i.e. only for x ,y ∈ Rn such
that ‖y − x‖0 ≤ s), then we call f β-smooth at sparsity
level s and denote the smallest such β by βs and call it the
restricted smoothness constant (at sparsity level s). We anal-
ogously define the restricted strong convexity constant αs,
as well as the s-restricted condition number κs := βs/αs.
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Projections. Given a subspace V , we will denote the or-
thogonal projection onto V as Π V . In particular, for any ma-
trix A ∈ Rm×n we denote by im(A) = {Ax | x ∈ Rn}
the image of A and by ker(A) = {x | A>x = 0} the

kernel of A. Therefore, Π im(A) = A
(

A>A
)+

A>

is the orthogonal projection onto the image of A and
Π ker(A>) = I −Π im(A) the orthogonal projection onto
the kernel of A>, where (·)+ denotes the matrix pseudoin-
verse.

3. The Adaptive Regularization Method
Consider the sparse optimization problem

min
‖x‖0≤s

f(x ) (4)

on a convex function f with condition number at most κ,
and an optimal solution x ∗ that is supported on the set of
indices S∗ ⊆ [n].

The main hurdle towards solving this problem is that it is
NP hard. Therefore, it is common to relax it by a factor
depending on κ. In fact, IHT requires relaxing the sparsity
constraint by a factor of O(κ2) (i.e. ‖x‖0 ≤ O(sκ2)), in
order to return a near-optimal solution. Also, the κ2 factor
is tight for IHT (see Appendix E).

Remark We state all our results in terms of the condition
number κ, even though the statements can be strengthened
to depend on the restricted condition number κs′+s, specif-
ically the condition number restricted on (s′ + s)-sparse
directions. We state our results in this weaker form for
clarity of presentation.

3.1. Regularized IHT

Perhaps surprisingly, there is a way to regularize the objec-
tive by a weighted `2 norm so that running IHT on the new
objective will only require relaxing the sparsity by O(κ):

min
‖x‖0≤s

f(x ) + (β/2) ‖x‖2w ,2 . (5)

One way to do this is by setting the weights w to be 1
everywhere except in the indices from S∗, where it is set to
0. An inquisitive reader will protest that this is not a very
useful statement, since it requires knowledge of S∗, which
was our goal to begin with. In fact, we could just as easily
have used the regularizer (β/2) ‖x − x ∗‖22, thus penalizing
everything that is far from the optimum!

3.2. Learning Weights

Our main contribution is to show that the optimal weights
w can in fact be learned in the duration of the algorithm2.
More precisely, consider running IHT starting from the
setting of w = 1. The regularized objective (5) is now
O(1)-conditioned, which is great news. On the other hand,
(5) is not what we set out to minimize. In other words, even
though this approach might work great for minimizing (5), it
might (and generally will) fail to achieve sufficient decrease
in (4)—one could view this as the algorithm getting trapped
in a local minimum.

Our main technical tool is to characterize these local minima,
by showing that they can only manifest themselves if the
current solution x satisfies the following condition:

‖xS∗‖2w ,2 ≥ Ω(κ−1) ‖x‖2w ,2 . (6)

In words, this means that a significant fraction of the mass
of the current solution lies in the support S∗ of the optimal
solution. Interestingly, this gives us enough information
based on which to update the regularization weights w in
a way that the sum of weights in S∗ drops fast enough
compared to the total sum of weights. This implies that
the vector w moves in a direction that correlates with the
direction of the optimal weight vector.

These are the core ideas needed to bring the sparsity over-
head of IHT from O(κ2) down to O(κ).

3.3. Beyond Sparsity: Learning Subspaces

One can summarize the approach of the previous section
in the following more general way: If we know that the
optimal solution x ∗ lies in a particular low-dimensional
subspace (in our case this was the span of 1i for all i ∈ S∗),
then we can define a regularization term that penalizes all
the solutions based on their distance to that subspace. Of
course, this subspace is unknown to us, but we can try to
adaptively modify the regularization term every time the
algorithm gets stuck, just as we did in the previous section.

More concretely, given a collection A of unit vectors from
Rn (commonly called atoms), we define the following prob-
lem:

min
rankA(x)≤r

f(x ) , (7)

where rankA(x ) is the smallest number of vectors from
A such that x can be written as their linear combination.

2The idea of adaptively learning regularization weights looks
on the surface similar to adaptive gradient algorithms such as
AdaGrad (Duchi et al., 2011). An important difference is that these
algorithms regularize the function around the current solution,
while we regularize it around the origin. Still, this is a potentially
intriguing connection that deserves to be investigated further.
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We can pick A = {11,12, . . . ,1n} to obtain the sparse
optimization problem, A = {vec(uv>) | ‖u‖2 = ‖v‖2 =
1} for the low rank minimization problem, and other choices
of A can capture more sophisticated problem constraints
such as graph structure. Defining an IHT variant for these
more general settings is usually straightforward, although
the analysis for even obtaining a rank overhead of O(κ2)
does not trivially follow and depends on the structure of A.

So, how would a regularizer look in this more general set-
ting? Given our above discussion, it is fairly simple to
deduce it. Consider a decomposition of x as the sum of
rank-1 components from A = {a1,a2, . . . ,a |A|}:

x =
∑
i∈S

a i ,

where rankA(a i) = 1, and let L∗ = span({a i | i ∈ S∗})
be a low-dimensional subspace that contains the optimal
solution and L∗⊥ is its complement. We can then define the
regularizer

Φ∗(x ) = (β/2)
∑
i∈S

∥∥Π L∗⊥
a i
∥∥2

2
,

where Π L∗⊥
is the orthogonal projection onto the subspace

perpendicular to L∗—in other words
∥∥Π L∗⊥

a i
∥∥

2
is the `2

distance from a i to L∗. An equivalent but slightly more
concise way is to write:

Φ∗(x ) = (β/2)

〈
Π L∗⊥

,
∑
i∈S

a ia
>
i

〉
.

Then, we can replace the unknown projection matrix Π L∗⊥
by a weight matrix W initialized at I , and proceed by
adaptively modifying W as we did in the previous section.

It should be noted that the full analysis of this framework
is not automatic for general A, and there are several techni-
cal challenges that arise depending on the choice of A. In
particular, it does not directly apply to the low rank mini-
mization case, and we end up using a different choice of
regularizer. However, the discussion in this section should
serve as a basic framework for improving the IHT analysis
in more general settings, as in particular it did to motivate
the low rank optimization analysis that we will present in
Section 5.

4. Sparse Optimization Using Regularized
IHT

The main result of this section is an efficient algorithm for
sparse optimization of convex functions that, even though
is a slight modification of IHT, improves the sparsity by an
O(κ) factor, where κ is the condition number. The regu-
larized IHT algorithm is presented in Algorithm 1 and its

Algorithm 1 Regularized IHT
x 0: initial s′-sparse solution
w0 = 1: initial regularization weights
η: step size, T : #iterations
c: weight step size
for t = 0 . . . T − 1 do

x t+1 = Hs′ ((1− 0.5w t)x t − η · ∇f(x t))

w t+1 =
(

w t − c · (w tx t)2/ ‖x t‖2wt,2

)
≥1/2

if f(x t+1) + (4η)−1
∥∥x t+1

∥∥2

wt+1,2
> f(x t) +

(4η)−1 ‖x t‖2wt+1,2 then
x t+1 = x t {In practice there is no need to perform
this step.}

end if
end for

analysis is in Theorem 1.1, whose proof can be found in
Appendix B.
Theorem 1.1 (Regularized IHT). Let f ∈ Rn → R be a
convex function that is β-smooth and α-strongly convex,
with condition number κ = β/α, and x ∗ be an (unknown)
s-sparse solution. Then, running Algorithm 1 with η =
(2β)−1 and c = s′/(4T ) for

T = O

(
κ log

f(x 0) + (β/2)
∥∥x 0

∥∥2

2
− f(x ∗)

ε

)
iterations starting from an arbitrary s′ = O(sκ)-sparse so-
lution x 0, the algorithm returns an s′-sparse solution xT

such that f(xT ) ≤ f(x ∗) + ε. Furthermore, each iteration
requires O(1) evaluations of f , ∇f , and O(n) additional
time.

The main ingredient for proving Theorem 1.1 is Lemma 4.1,
which states that each step of the algorithm either makes
substantial (multiplicative) progress in an appropriately reg-
ularized function f(x ) + (β/2) ‖x‖2w ,2, or a significant
fraction of the mass of x 2 lies in S∗, which is the support
of the target solution. This latter condition allows us to
adapt the weights w in order to obtain a new regularization
function that penalizes the target solution less. The proof of
the lemma can be found in Appendix C.
Lemma 4.1 (Regularized IHT step progress). Let f ∈
Rn → R be a convex function that is β-smooth and α-
strongly convex, κ = β/α be its condition number, and x ∗

be any s-sparse solution.

Given any s′-sparse solution x ∈ Rn where

s′ ≥ (128κ+ 2)s

and a weight vector w ∈ ({0} ∪ [1/2, 1])
n such that

‖w‖1 ≥ n− s′/2, we make the following update:

x ′ = Hs′
(
(1− 0.5w)x − (2β)−1∇f(x )

)
.
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Then, at least one of the following two conditions holds:

• Updating x makes regularized progress:

g(x ′) ≤ g(x )− (16κ)−1(g(x )− f(x ∗)) ,

where
g(x ) := f(x ) + (β/2) ‖x‖2w ,2

is the `2-regularized version of f with weights given
by w . Note: The regularized progress statement is
true as long as x is suboptimal, i.e. g(x ) > f(x ∗).
Otherwise, we just have g(x ′) ≤ g(x ).

• x is significantly correlated to the optimal support
S∗ := supp(x ∗):

‖xS∗‖2w2,2 ≥ (4κ+ 6)−1 ‖x‖2w ,2 ,

and the regularization term restricted to S∗ is non-
negligible:

(β/2) ‖xS∗‖2w2,2 ≥ (8κ+ 8)−1 (g(x )− f(x ∗)) .

Comparison to ARHT. The ARHT algorithm of (Axio-
tis & Sviridenko, 2021b) is also able to achieve a sparsity
bound of O(sκ). However, their algorithm is not practically
desirable for a variety of reasons.

• First of all, it follows the OMP (more accurately, OMP
with Removals) paradigm, which makes local changes
to the support of the solution by inserting or remov-
ing a single element of the support, and then fully re-
optimizing the function on its restriction to this support.
Even though the support will generally be very small
compared to the ambient dimension n, this is still a
significant runtime overhead. In contrast, regularized
IHT does not require re-optimization.

Additionally, the fact that in the ARHT only one new
element is added at a time leads to an iteration count
that scales with sκ, instead of the κ of regularized IHT.
This is a significant speedup, since both algorithms
have to evaluate the gradient in each iteration. There-
fore, regularized IHT will require O(s) times fewer
gradient evaluations.

• When faced with the non-progress condition, in which
the regularized function value does not decrease suf-
ficiently, ARHT moves by selecting a random index
i with probability proportional to x2

i , and proceeds to
unregularize this element, i.e. remove it from the sum
of regularization terms. Instead, our algorithm is com-
pletely deterministic. This is achieved by allowing a
weighted regularization term, and gradually reducing
the regularization weights instead of dropping terms.

• ARHT requires knowledge of the optimal function
value f(x ∗). The reason is that in each iteration they
need to gauge whether enough progress was made in
reducing the value of the regularized function g, com-
pared to how far it is from the optimal function value.
If so, they would perform the unregularization step.
In contrast, our analysis does not require these two
cases (updates to x or w ) to be exclusive, and in fact
simultaneously updates both, regardless of how much
progress was made in g. Thus, our algorithm avoids
the expensive overhead of an outer binary search over
the optimal value f(x ∗).

For all these reasons, as well as its striking simplicity, we be-
lieve that regularized IHT can prove to be a useful practical
sparse optimization tool.

5. Low Rank Optimization Using Regularized
Local Search

In this section we present a regularized local search
algorithm for low rank optimization of convex func-
tions, that returns an ε-optimal solution with rank
O
(
r
(
κ+ log f(O)−f(A∗)

ε

))
, where r is the target rank.

The algorithm is based on the Local Search algorithm of (Ax-
iotis & Sviridenko, 2021a), but also uses adaptive regular-
ization, which leads to a lot new technical hurdles that are
addressed in the analysis. This is presented in Theorem 1.2
and proved in Appendix D.
Theorem 1.2 (Adaptive Regularization for Low Rank Opti-
mization). Let f ∈ Rm×n → R be a convex function with
condition number κ and consider the low rank minimization
problem

min
rank(A)≤r

f(A) . (8)

For any error parameter ε > 0, there exists a polynomial
time algorithm that returns a matrix A with rank(A) ≤
O
(
r
(
κ+ log f(O)−f(A∗)

ε

))
and f(A) ≤ f(A∗) + ε,

where O is the all-zero matrix and A∗ is any rank-r matrix.

Discussion about ε dependence. Some of the techni-
cal issues in the rank case have to do with operator non-
commutativity and thus pose no issue in the sparsity case.
In particular, the extra log f(O)−f(A∗)

ε dependence in the
rank comes exactly because of these issues. However, we
think that it should be possible to completely remove this
dependence in the future by a more careful analysis.

Discussion about computational efficiency. We note
that the goal of this section is to show an improved rank
bound, and not to argue about the computational efficiency
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of such an algorithm. It might be possible to derive an effi-
cient algorithm by transforming the proof in Theorem 1.2
into a proof for a matrix IHT algorithm, which might be sig-
nificantly more efficient, as it will not require solving linear
systems in each iteration. Still, there are a lot of remain-
ing issues to be tackled, as currently the algorithm requires
computing multiple singular value decompositions and or-
thogonal projections in each iteration. Therefore working
on a computationally efficient algorithm that can guarantee
a rank of O(rκ) is a very interesting direction for future
research.

Matrix regularizer Getting back into the main ingredi-
ents of Theorem 1.2, we describe the choice of our regular-
izer. As we are working over general rectangular matrices,
we use two regularizers, one for the left singular vectors
and one for the right singular vectors of A. Concretely,
given two weight matrices Y ,W such that O � Y � I ,
O �W � I , we define

Φ(A) = (β/4)
(
〈W ,AA>〉+ 〈Y ,A>A〉

)
,

where β is a bound on the smoothness of f . The gradient of
the regularized function is

∇g(A) = ∇f(A) + (β/2) (W A + AY ) ,

and the new solution A is defined as

A = Hs′−1 (A)− ηH1 (∇g(A)) ,

where we remind that the thresholding operator Hr :
Rm×n → Rm×n that is used in the algorithm returns the
top r components of the singular value decomposition of a

matrix, i.e. given M =
k∑
i=1

λiu iv
>
i , where λ1 ≥ · · · ≥ λk

are the singular values and r ≤ k, Hr(M ) =
r∑
i=1

λiu iv
>
i .

In other words, we drop the bottom rank-1 component of A
and add the top rank-1 component of the gradient.

After taking a step, we re-optimize over matrices with the
current left and right singular space, also known as perform-
ing a fully corrective step, as in (Shalev-Shwartz et al., 2011;
Axiotis & Sviridenko, 2021a). To do this, we first compute
the SVD U ΣV> of A and then solve the optimization
problem min

A=U X V>
gt(A). For simplicity we assume that

this optimization problem can be solved exactly, but the
analysis can be modified to account for the case when we
have an approximate solution and we are only given a bound
on the norm of the gradient (projected onto the relevant sub-
space), i.e.

∥∥Π im(U )∇gt(A)Π im(V )

∥∥
F

.

Whenever there is not enough progress, we make the follow-

ing updates on the weight matrices W and Y :

W ′ = W −W AA>W /〈W ,AA>〉
Y ′ = Y −Y A>AY /〈Y ,A>A〉 .

The full algorithm description is in Algorithm 2, Ap-
pendix D. In the algorithm description we assume that
f(A∗) is known. This assumption can be removed by per-
forming binary search over this value, as in (Axiotis &
Sviridenko, 2021b).

6. Experiments
Introduction. In this section we present numerical exper-
iments in order to compare the performance of IHT and reg-
ularized IHT (Algorithm 1) in training sparse linear models.
In particular, we will look at the tasks of linear regression
and logistic regression using both real and synthetic data. In
the former, we are given a matrix A ∈ Rm×n, where each
row represents an example and each column a feature, and a
vector b ∈ Rm that represents the ground truth outputs, and
our objective is to minimize the `2 loss

(1/2) ‖Ax − b‖22 .

In logistic regression, b has binary instead of real entries,
and our objective is to minimize the logistic loss

−
m∑
i=1

(bi log σ(Ax )i + (1− bi) log(1− σ(Ax )i))︸ ︷︷ ︸
l(x)

,

where σ(z) = (1 + e−z)
−1 is the sigmoid function. As

is common, we look at the regularized logistic regression
objective:

l(x ) + (ρ/2) ‖x‖22 ,

for some ρ > 0. For our experiments we use ρ = 0.1.

Preprocessing and choice of parameters. The only pre-
processing we perform is to center the columns of A, i.e.
we subtract the mean of each column from each entry of the
column, and then scale the columns to unit `2 norm. This
ensures that for any sparsity parameter s′ ∈ [n], the function
f is s′-smooth when restricted to s′-sparse directions, or in
other words the s′-restricted smoothness constant of f is at
most s′. Thus we set our smoothness estimate to β := s′.
Our smoothness estimate β influences the (regularized) IHT
algorithm in two ways. First, as the step size of the algo-
rithm is given by 1/β, a value of β that is too large can slow
down the algorithm, or even get it stuck to a local minimum.
Second, the strength of the regularization term in regularized
IHT should be close to the (s+ s′)-restricted smoothness
constant, as shown in the analysis of Theorem 1.1.
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Even though having a perfectly accurate estimate of the
smoothness constant is not necessary, a more accurate es-
timate improves the performance of the algorithm. In fact,
the estimate 1/s′ for the step size is generally too conser-
vative. When used in practice, one should either tune this
parameter or use a variable/adaptive step size to achieve the
best results.

For the weight step size of regularized IHT, we set the
weight step size to c = s′/T , but we also experiment with
how changing c affects the performance of the algorithm.
The downside of this setting is that it requires knowing the
number of iterations a priori. However, in practice one could
tune c and then run the algorithm for O(s′/c) iterations.
Note that ideally, based on the theoretical analysis, T would
be proportional to the restricted condition number of f ,
however this quantity is hard to compute in general. Another
idea to avoid this in practice could be to let c be a variable
step size.

Implementation. Both the IHT and regularized IHT algo-
rithms are incredibly simple, and can be described in a few
lines of python code, as can be seen in Figure 2, Appendix A.
Note that in comparison to Algorithm 1 we do not perform
the conditional assignment. All the experiments were run
on a single 2.6GHz Intel Core i7 core of a 2019 MacBook
Pro with 16GB DDR4 RAM using Python 3.9.10.

6.1. Real data

We first experiment with real data, specifically the year re-
gression dataset from UCI (Dua & Graff, 2017) and the
rcv1 binary classification dataset (Lewis et al., 2004), which
have been previously used in the literature. Performance
on other datasets was similar. In Figure 1 (a)-(b) we have
a comparison between the error of the solution returned by
IHT and regularized IHT for a fixed sparsity level. Specif-
ically, if we let x ∗∗ be the (dense) global minimizer of
f , we plot the logarithm of the (normalized) excess loss
(f(x ) − f(x ∗∗))/f(0) against the number of iterations.
Note that f(x ∗∗) will typically be considerably lower than
the loss of the sparse optimum f(x ∗). In order to make a
fair comparison, for each algorithm we pick the best fixed
step size of the form 2i/s for integer i ≥ 0, where s is
the fixed sparsity level. The best step sizes of IHT and
regularized IHT end up being 2/s, 4/s respectively for the
linear regression example, and 8/s, 16/s respectively for
the logistic regression example.

We notice that initially regularized IHT has a much higher
error than IHT, but after some iterations it is lower than IHT.
This phenomenon is to be expected, because the algorithm
runs on a regularized function, and so tries to keep not just
f(x ) but also ‖x‖22 small. After some iterations, when the
algorithm has learnt regularization weights that are closer to

the optimal ones, it converges to sparser solutions than IHT
(equivalently, lower error solutions with the same sparsity,
which is what is shown in the plot).

In Figure 1 (c) we compare IHT and regularized IHT for dif-
ferent sparsity levels on the year dataset. If e1 and e2 are the
excess errors of IHT and regularized IHT respectively, we
plot e2/e1, which is the relative excess error of regularized
IHT with respect to that of IHT. We notice a reduction of up
to 40% on the excess error. In Figure 1 (d) we examine the
effect of the choice of the weight step size c. We conclude
that c can give a tradeoff between runtime and accuracy, as
setting it to a large value will lead to faster weight decay
and thus resemble IHT, while a small value of c will lead to
slow weight decrease, which will lead to more iterations but
also potentially recover an improved solution. Here we can
see an interesting tradeoff between the number of iterations
and the error of the solution that is eventually returned. In
particular, the larger c is, the faster the degradation of regu-
larization weights. Thus, for c→∞, the algorithm tends to
be the same as IHT. On the other hand, with smaller values
of c, one can get an improved error rate, but at the cost of a
larger number of iterations. This is because the regulariza-
tion weights decrease slowly, and so in the early iterations
of the algorithm the regularization term will account for a
significant fraction of the objective function value.

6.2. Synthetic data

We now turn to synthetically generated linear regression
instances. The first result presented in Figure 1 (e) is the
hard IHT instance that we derived in our lower bound in
Appendix E. This experiment shows that there exist exam-
ples where, with bad initialization, IHT cannot decrease the
objective at all (i.e. is stuck at a local minimum), while reg-
ularized IHT with the same initialization manages to reduce
the loss by more than 70%.

The second result is a result in the well known setting of
sparse signal recovery from linear measurements. We gen-
erate a matrix A with entries that are sampled i.i.d. from
the standard normal distribution, an s-sparse signal x again
with entries sampled i.i.d. from the standard normal distri-
bution, and an observed vector b := Ax . The goal is to
recover x by minimizing the objective

f(x ) = (1/2) ‖Ax − b‖22 .

In Figure 1 (f), we plot the normalized value of this objec-
tive, after running both IHT and regularized IHT for the
same number of iterations. Here we pick the best step size
per instance, starting from η = 1/s and increasing in multi-
ples of 1.2. Also, for each fixed value of s and algorithm,
we run the experiments 20 times in order to account for the
variance. The results show a superiority in the performance
of regularized IHT for the sparse signal recovery task.
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(a) (b)

(c) (d)

(e) (f)

Figure 1. (a)-(b): IHT vs Regularized IHT performance on the year and rcv1 datasets with fixed sparsity levels s = 11 and s = 10
respectively. On the x axis we have number of iterations and on the y axis we have the normalized excess loss (compared to the dense
global optimum), in log scale. The excess loss of regularized IHT is less than that of IHT, specifically 17.3% and 17.2% respectively less
in the two experiments. (c): Excess error of regularized IHT relative to IHT in the year dataset, where sparsity values range from 1 to 30.
Both algorithms are run for T = 800 iterations. (d): Error rate vs number of iterations of regularized IHT on the year dataset with fixed
sparsity s = 11 and step size η = 4/s, using different values for the weight step size c. (e): A demonstration of a 80% decrease in loss
by using regularized IHT instead of IHT on the hard instance for IHT presented in Section E. We have generated the data with a condition
number of κ = 20, and a planted sparse solution with sparsity s = 2. The dimension is n = 842. It can be observed that, for the given
initialization vector, IHT never makes any progress on decreasing the error. In contrast, regularized IHT is able to decrease it by almost a
factor of 5. (f): Sparse signal recovery, where A is an 100× 800 measurement matrix, the sparsity level ranges from 1 to 100, and each
algorithm is run for 240 iterations. Bands of 1 standard error are shown, after running each data point 20 times independently.
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A. Python implementation
In Figure 2 we have python implementations of the IHT and
regularized IHT algorithms that we use for our experiments.
As can be seen, both implementations are pretty short.

B. Proof of Theorem 1.1
Theorem 1.1 (Regularized IHT). Let f ∈ Rn → R be a
convex function that is β-smooth and α-strongly convex,
with condition number κ = β/α, and x ∗ be an (unknown) s-
sparse solution with support S∗. Then, running Algorithm 1
with η = (2β)−1 and c = s′/(4T ) for

T = O

(
κ log

f(x 0) + (β/2)
∥∥x 0

∥∥2

2
− f(x ∗)

ε

)

iterations starting from an arbitrary s′ = O(sκ)-sparse so-
lution x 0, the algorithm returns an s′-sparse solution xT

such that f(xT ) ≤ f(x ∗) + ε. Furthermore, each iteration
requires O(1) evaluations of f , ∇f , and O(n) additional
time.

Proof. We repeatedly apply Lemma 4.1 for

T = 64(κ+ 1) log
f(x 0) + (β/2)

∥∥x 0
∥∥2

2
− f(x ∗)

ε

iterations. We define the regularized function

gt(x ) := f(x ) + (β/2) ‖x‖2wt,2 ,

where w t are the weights before iteration t ∈ [0, T − 1].
Specifically, for each t we apply Lemma 4.1 on the current
solution x t and obtain the solution x t+1.

Before moving forward, we give an intuitive summary of
the proof and the role of Lemma 4.1. As long as IHT makes
“sufficient” progress on the regularized function gt, this is
satisfactory for the original function f as well, because
f(x ) ≤ gt(x ) for all x . This is the case of the first bullet
of Lemma 4.1. If it stops making sufficient progress, this
means we are at an (approximate) sparse optimum for gt,
although it is not necessarily a good sparse solution for f ,
which is the objective we are aiming to minimize. This
is where the second bullet of Lemma 4.1 comes in, which
gives necessary conditions for the above non-progress phe-
nomenon (in other words, a partial characterization of the
local minima encountered when running IHT on a regu-
larized function). Specifically, the following condition is
central to our approach:∥∥x tS∗∥∥2

(wt)2,2
≥ (4κ+ 6)−1

∥∥x t∥∥2

wt,2
.

We use this condition in the second part of the proof (after
Case 2) to motivate a weight update from w t to w t+1, and

http://hdl.handle.net/1721.1/118098
http://hdl.handle.net/1721.1/118098
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import numpy as np

def IHT(n, s):
x = np.zeros(n)
for _ in range(T):

x_new = x - eta * grad(x)
x_new[np.argsort(np.abs(x_new))[:-s]] = 0
x = x_new

return x

def RegIHT(n, s):
x, w = np.zeros(n), np.ones(n)
for _ in range(T):

x_new = (1 - 0.5 * w) * x - 0.5 * eta * grad(x)
x_new[np.argsort(np.abs(x_new))[:-s]] = 0
reg = np.sum(w * x**2)
if reg != 0:

w = w * (1 - c * w * x**2 / reg)
w[w <= round_th] = 0

x = x_new
return x

Figure 2. Our python implementations of IHT, RegIHT, where grad is the gradient function, n is the total number of features, s is the
desired sparsity level, eta is the step size, c is the weight step size, and round_th is the weight rounding threshold, which we set to 0.5.
Note that grad(x) = np.dot(A.T, np.dot(A, x) - b) for linear regression and grad(x) = np.dot(A.T, expit(np.dot(A,x)) - b) for logistic
regression, where expit is the sigmoid function.

show that, exactly because of this condition, a lot of the
weight decrease is concentrated inside the optimal support
S∗. As the total weight decrease in S∗ is bounded by s,
this gives a bound on the total number of iterations with
insufficient decrease of gt. If not for this condition, we
would not be able to bound the number of such iterations
and would have potentially remained forever stuck at a local
minimum.

Now we are ready to move to the technical proof. In order
to make sure that gt+1(x t+1) ≤ gt+1(x t), we revert to the
previous solution if the one returned by Lemma 4.1 has a
larger value of gt+1. This is exactly what the conditional
in Algorithm 1 is for. The property that gt+1(x t+1) ≤
gt+1(x t) is only used in the very last part of the proof.

Let us assume that gt(x t) > f(x ∗) at all times, as otherwise
the statement holds by the fact that gt(x t) is non-increasing
as a function of t and upper bounds f(x t) for all t. We
have gt+1(x t+1) ≤ gt(x t) by the fact that w t+1 ≤ w t and
gt(x t+1) ≤ gt(x t) by the guarantees of Lemma 4.1.

If the first bullet of Lemma 4.1 holds, we have that the value
of g decreases considerably on iteration t, i.e.

gt+1(x t+1)

≤ gt(x t+1)

≤ gt(x t)− (16κ)−1(gt(x t)− f(x ∗)) .

Let us call these iterations progress iterations, and the other
ones (where the second bullet of Lemma 4.1 holds) weight

iterations. Now, since gt(x t) is non-increasing as a function
of t, after 16κ log g0(x0)−f(x∗)

ε progress iterations we will
have

f(x t) ≤ gt(x t) ≤ f(x ∗) + ε ,

and so we will be done. From now on let us assume this is
not the case, so there are at least

T − 16κ log
g0(x 0)− f(x ∗)

ε
≥ 3T/4

weight iterations.

We remind that in each weight iteration, we have∥∥x tS∗∥∥2

(wt)2,2
≥ (4κ+ 6)−1

∥∥x t∥∥2

wt,2
(9)

(β/2)
∥∥x tS∗∥∥2

(wt)2,2
≥ (8κ+ 8)−1

(
gt(x t)− f(x ∗)

)
.

(10)

In words, (9) roughly implies that at least an Ω(1/κ) fraction
of the mass of (w tx t)2 lies inside S∗. Therefore, if we
decrease w t by a quantity proportional to (w tx t)2, the
total sum of weights will decrease at most O(κ) times faster
than the sum of weights inside S∗. As the latter quantity
can only decrease by s overall, the total decrease of weights
will be O(sκ).

Concretely, after each iteration we update the regularization
weights as follows:

w t+1 =
(

w t − c · (w tx t)2/
∥∥x t∥∥2

wt,2

)
≥1/2

,
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for some c > 0 to be determined later. First of all, note
that the weights are non-increasing. Now, if not for the
thresholding operation, it is easy to see that the total weight
decrease is at most c. The thresholding operation can only
double this weight decrease to 2c. Concretely, for all t we
define a vector w̄ t such that

w̄ti =

{
wti if wti ≥ 1/2

1/2 if wti = 0 .

Clearly, 1
2 (1−w t) ≤ 1− w̄ t ≤ 1−w t. Now, we have∥∥w̄ t

∥∥
1
−
∥∥w̄ t+1

∥∥
1

≤ c
∥∥x t∥∥2

(wt)2,2
/
∥∥x t∥∥2

wt,2

≤ c ,

and, summing up for all t we get∥∥1− w̄T
∥∥

1
=
∥∥w̄0

∥∥
1
−
∥∥w̄T

∥∥
1
≤ cT .

Therefore,∥∥1−wT
∥∥

1
≤ 2

∥∥1− w̄T
∥∥

1
≤ 2cT ,

and so
∥∥wT

∥∥
1
≥ n− 2cT .

Therefore, the condition ‖w t‖1 ≥ n−s′/2 of Lemma 4.1 is
satisfied for all t as long as c ≤ s′/(4T ). In order to bound
the number of iterations, we distinguish two cases for the
sum of weights inside S∗.

Case 1: The sum of weights inside S∗ decreases by ≥
4s/T .

This case cannot happen more than T/4 times since the
sum of weights inside S∗ can only decrease by s in total.
Therefore, case 2 below happens at least T/2 times.

Case 2: The sum of weights inside S∗ decreases by <
4s/T .

Note that the decrease in the sum of weights in S∗ is exactly
equal to∑

i∈S∗

{
c · (wtixti)2/ ‖x t‖2wt,2 if this is ≤ wti − 1/2

wti otherwise .

Let T ∗ be the set of indices i ∈ S∗ for which the second
case is true, i.e.

c · (wtixti)2/
∥∥x t∥∥2

wt,2
> wti − 1/2 .

The total weight decrease from elements in S∗\T ∗ is then∑
i∈S∗\T∗

c · (wtixti)2/
∥∥x t∥∥2

wt,2

= c
∥∥∥x tS∗\T∗∥∥∥2

(wt)2,2
/
∥∥x t∥∥2

wt,2

≥ c

4κ+ 6

∥∥∥x tS∗\T∗∥∥∥2

(wt)2,2
/
∥∥x tS∗∥∥2

(wt)2,2
,

where we used (9). As we have assumed that this decrease
is less than 4s/T , we have that

∥∥x tT∗∥∥2

(wt)2,2
=
∥∥x tS∗∥∥2

(wt)2,2
−
∥∥∥x tS∗\T∗∥∥∥2

(wt)2,2

≥
(

1− 4s(4κ+ 6)

cT

)∥∥x tS∗∥∥2

(wt)2,2

≥ (1/2)
∥∥x tS∗∥∥2

(wt)2,2
,

(11)

as long as c ≥ 8s(4κ+ 6)/T . We can pick such a c as long
as

8s(4κ+ 6)/T ≤ c ≤ s′/(4T )⇔ s′ ≥ 32(4κ+ 6)s .

Now, to deal with the fact that the sum weights in T ∗ might
not decrease sufficiently, note that all the weights in T ∗

are being set to 0, i.e. wt+1
i = 0 for all i ∈ T ∗. Together

with (11) and (10) this means that we can make significant
progress in function value. To see this, note that

gt+1(x t+1)

≤ gt+1(x t)

≤ gt(x t)− (β/2)
∥∥x tT∗∥∥2

wt,2

≤ gt(x t)− (β/2)
∥∥x tT∗∥∥2

(wt)2,2

≤ gt(x t)− (β/4)
∥∥x tS∗∥∥2

(wt)2,2

≤ gt(x t)− (16κ+ 16)−1
(
gt(x t)− f(x ∗)

)
,

which can happen at most

16(κ+ 1) log
g0(x 0)− f(x ∗)

ε
≤ T/4

times.

C. Proof of Lemma 4.1
Lemma 4.1 (Regularized IHT step progress). Let f ∈
Rn → R be a convex function that is β-smooth and α-
strongly convex, κ = β/α be its condition number, and x ∗

be any s-sparse solution.

Given any s′-sparse solution x ∈ Rn where

s′ ≥ (128κ+ 2)s

and a weight vector w ∈ ({0} ∪ [1/2, 1])
n such that

‖w‖1 ≥ n− s′/2, we make the following update:

x ′ = Hs′
(
(1− 0.5w)x − (2β)−1∇f(x )

)
.

Then, at least one of the following two conditions holds:
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• Updating x makes regularized progress:

g(x ′) ≤ g(x )− (16κ)−1(g(x )− f(x ∗)) ,

where
g(x ) := f(x ) + (β/2) ‖x‖2w ,2

is the `2-regularized version of f with weights given
by w . Note: The regularized progress statement is
true as long as x is suboptimal, i.e. g(x ) > f(x ∗).
Otherwise, we just have g(x ′) ≤ g(x ).

• x is significantly correlated to the optimal support
S∗ := supp(x ∗):

‖xS∗‖2w2,2 ≥ (4κ+ 6)−1 ‖x‖2w ,2 ,

and the regularization term restricted to S∗ is non-
negligible:

(β/2) ‖xS∗‖2w2,2 ≥ (8κ+ 8)−1 (g(x )− f(x ∗)) .

Proof. By using the fact that f is β-smooth, and so g is
2β-smooth due to w ≤ 1, for any x ′ we obtain

g(x ′)− g(x ) ≤ 〈∇g(x ),x ′ − x 〉+ β ‖x ′ − x‖22 . (12)

We let S be the support of x and S′ the support of x ′, i.e.
the set of s′ indices of the largest magnitude entries of the
vector. Since ∇g(x ) = ∇f(x ) + βwx , we have

x̄ = x − η∇g(x ) = (1− 0.5w)x − η∇f(x ) ,

where η = (2β)−1. We let A = S′\S be the newly inserted
entries and B = S\S′ be the entries that were just removed
from the support. Note that

x ′ = [x − η∇g(x )]S′

= x − η∇S′g(x )− xB

= x − η∇S′∪Bg(x )− x̄B .

Using (12), we have

g(x ′)− g(x )

≤ 〈∇g(x ),−η∇S′∪Bg(x )− x̄B〉

+ β ‖−η∇S′∪Bg(x )− x̄B‖22
= −(4β)−1 ‖∇S′∪Bg(x )‖22 + β ‖x̄B‖22
= −β ‖η∇S∪Ag(x )‖22 + β ‖x̄B‖22
≤ −β ‖η∇S∪A′g(x )‖22 + β ‖x̄B′‖22 ,

(13)

for any two sets A′ ∈ [n]\S and B′ ⊆ S with |A′| = |B′|.
The latter inequality follows because of the following lemma
about IHT:

Lemma C.1. Suppose that we run one step of IHT on vector
x supported on S for some function g, and let the updated
solution vector be x ′ = x̄ (S∪A)\B , where x̄ = x−η∇g(x ).
Then, for any A′ ⊆ [n]\S and B′ ⊆ S with |A′| = |B′|, we
have

−‖η∇Ag(x )‖22 + ‖x̄B‖22 ≤ −‖η∇A′g(x )‖22 + ‖x̄B′‖22 .
(14)

Proof. If we denote |A| = |B| = t and |A′| = |B′| = t′,
then note that by definition of IHT,A are the t largest entries
in ∣∣x̄ [n]\S

∣∣ = η
∣∣∇[n]\Sg(x )

∣∣ ,
and B are the t smallest entries in |x̄S |. Similarly, we can
assume that A′ are the t′ largest entries in η

∣∣∇[n]\Sg(x )
∣∣

and B′ are the t′ smallest entries in |x̄S |, since this way the
right hand side of (14) takes its minimum value. If t′ = t,
we are done. We consider two cases:

1. t′ > t: In this case we have A′ ⊇ A, B′ ⊇ B, so

− ‖η∇A′g(x )‖22 + ‖x̄B′‖22 + ‖η∇Ag(x )‖22 − ‖x̄B‖
2
2

= −
∥∥η∇A′\Ag(x )

∥∥2

2
+
∥∥x̄B′\B∥∥2

2

= −
∥∥x̄A′\A∥∥2

2
+
∥∥x̄B′\B∥∥2

2

≥ (t′ − t)
(
− max
i∈A′\A

(x̄i)
2 + min

j∈B′\B
(x̄j)

2

)
≥ 0 ,

where the last inequality follows since, by definition
of the IHT step, |x̄i| ≤ |x̄j | for any i ∈ A′\A and
j ∈ B′\B. Otherwise, i would have taken j’s place in
S′.

2. t′ < t: In this case we have A′ ⊆ A, B′ ⊆ B. Simi-
larly to the previous case,

− ‖η∇A′g(x )‖22 + ‖x̄B′‖22 + ‖η∇Ag(x )‖22 − ‖x̄B‖
2
2

=
∥∥η∇A\A′g(x )

∥∥2

2
−
∥∥x̄B\B′∥∥2

2

=
∥∥x̄A\A′∥∥2

2
−
∥∥x̄B\B′∥∥2

2

≥ (t− t′)
(

min
i∈A\A′

(x̄i)
2 − max

j∈B\B′
(x̄j)

2

)
≥ 0 ,

where the last inequality follows since, by definition
of the IHT step, |x̄i| ≥ |x̄j | for any i ∈ A\A′ and
j ∈ B\B′. Otherwise i wouldn’t have taken j’s place
in S′.
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Now, let us assume that the first bullet in the lemma state-
ment is false, i.e.

g(x ′)− g(x ) > −(16κ)−1(g(x )− f(x ∗)) .

Setting A′ = B′ = ∅ in (13), we get that

g(x ′)− g(x ) ≤ −β ‖η∇Sg(x )‖22 ,

so we conclude that

‖∇Sg(x )‖22 <
1

16κβη2
(g(x )− f(x ∗)) =

α

4
(g(x )− f(x ∗)) .

(15)

Now, we again use (13) but we set A′ to be the s entries
from [n]\S on which∇g(x ) has the largest magnitude, and
B′ to be the s entries from S on which x̄ has the smallest
magnitude. Also, let R be an arbitrary subset of S\S∗ with
size r ≥ 2s. We then have

g(x ′)− g(x )

≤ −(4β)−1 ‖∇S∪A′g(x )‖22 + β ‖x̄B′‖22
≤ −(4β)−1 ‖∇S∪S∗g(x )‖22 + β ‖x̄B′‖22

≤ −(4β)−1 ‖∇S∪S∗g(x )‖22 +
βs

|R\S∗|
∥∥x̄R\S∗∥∥2

2

≤ −(4β)−1 ‖∇S∪S∗g(x )‖22 +
βs

r − s
∥∥x̄R\S∗∥∥2

2
,

(16)

where we used the fact that

‖∇A′g(x )‖22 ≥
∥∥∇S∗\Sg(x )

∥∥2

2

by definition of A′ (and since |S∗\S| ≤ s), and the fact that,
by definition of B′ (and since |R\S∗| ≥ 2s− s = |B′|),

1

|B′|
‖x̄B′‖22 ≤

1

|R\S∗|
∥∥x̄R\S∗∥∥2

2
.

In fact, we will let R = {i ∈ S | wi > 0} be the set of
elements that are being regularized. To lower bound the
size r of this set, note that by the guarantee of the lemma
statement,

n− s′/2 ≤ ‖w‖1
≤ n− |{i ∈ S | wi = 0}|
= n− (s′ − r) ,

so r ≥ s′/2. We conclude that r ≥ 2s since s′ ≥ 4s.

Now, because of the fact that f is α-strongly convex, we
have

f(x ∗)− f(x )

≥ 〈∇f(x ),x ∗ − x 〉+ (α/2) ‖x ∗ − x‖22
= 〈∇g(x ),x ∗ − x 〉 − β〈wx ,x ∗ − x 〉+ (α/2) ‖x ∗ − x‖22
≥ −α−1 ‖∇S∪S∗g(x )‖22
− β〈wx ,x ∗ − x 〉+ (α/4) ‖x ∗ − x‖22 ,

(17)

where we used the inequality

〈a , b〉+ (α/4) ‖b‖22 ≥ −α
−1 ‖a‖22 .

By re-arranging and plugging (17) into (16), we get

g(x ′)− g(x )

≤ −(4κ)−1
(
f(x )− f(x ∗)

− β〈wx ,x ∗ − x 〉+ (α/4) ‖x ∗ − x‖22
)

+
βs

r − s
∥∥x̄R\S∗∥∥2

2

= −(4κ)−1
(
g(x )− f(x ∗)

− β〈wx ,x ∗ − x 〉 − (β/2) ‖x‖2w ,2

+ (α/4) ‖x ∗ − x‖22 −
4κβs

r − s
∥∥x̄R\S∗∥∥2

2

)
.

(18)

Now, note that by definition of x̄ we have

∥∥x̄R\S∗∥∥2

2

≤ 2
∥∥xR\S∗∥∥2

2
+ 2(2β)−2

∥∥∇R\S∗g(x )
∥∥2

2

and, since wi ≥ 1/2 for each i ∈ R,

∥∥xR\S∗∥∥2

2
≤ 2

∥∥xR\S∗∥∥2

w ,2
≤ 2

∥∥xS\S∗∥∥2

w ,2
.

Therefore,

4κβs

r − s
∥∥x̄R\S∗∥∥2

2

≤ 16κβs

r − s
∥∥xS\S∗∥∥2

w ,2
+

2κs

β(r − s)
∥∥∇R\S∗g(x )

∥∥2

2

≤ 16κβs

r − s
∥∥xS\S∗∥∥2

w ,2
+

s

2(r − s)
(g(x )− f(x ∗)) ,

where the last inequality follows from (15) sinceR\S∗ ⊆ S.
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Plugging this back into (18), we get

g(x ′)− g(x )

≤ −(4κ)−1
((

1− s

2(r − s)

)
(g(x )− f(x ∗))

− β〈wx ,x ∗ − x 〉 − (β/2) ‖x‖2w ,2

+ (α/4) ‖x ∗ − x‖22 −
16κβs

r − s
∥∥xS\S∗∥∥2

w ,2

)
= −(4κ)−1

((
1− s

2(r − s)

)
(g(x )− f(x ∗))

−β〈wxS∩S∗ ,x
∗ − x 〉+ (α/4) ‖x ∗ − x‖22︸ ︷︷ ︸

≥−(κβ)‖xS∩S∗‖2w2,2

+ β
∥∥xS\S∗∥∥2

w ,2
− (β/2) ‖x‖2w ,2−

16κβs

r − s
∥∥xS\S∗∥∥2

w ,2︸ ︷︷ ︸
≥−(β/4)‖xS\S∗‖2w,2

)

≤ −(4κ)−1
((

1− s

2(r − s)

)
(g(x )− f(x ∗))

− (κβ) ‖xS∩S∗‖2w2,2 − (β/2) ‖xS∩S∗‖2w ,2
+ (β/4)

∥∥xS\S∗∥∥2

w ,2

)
≤ −(4κ)−1

(
0.5 (g(x )− f(x ∗))

− (κ+ 1)β ‖xS∩S∗‖2w2,2 + (β/4)
∥∥xS\S∗∥∥2

w ,2

)
,

(19)
where we used the fact that

s

2(r − s)
≤ 1/2 ,

which holds as long as s′ ≥ 4s, and

16κβs

r − s
≤ β/4 ,

which holds as long as r ≥ s′/2 and s′ ≥ (128κ+ 2)s. In
the last inequality we also used the property w/2 ≤ w2,
which is by definition of w .

Now, note that, because we have assumed that the first bullet
of the statement doesn’t hold, it has to be the case that

(1/4) (g(x )− f(x ∗))

− (κ+ 1)β ‖xS∩S∗‖2w2,2 + (β/4)
∥∥xS\S∗∥∥2

w ,2
≤ 0 .

This immediately implies that

(κ+ 1)β ‖xS∩S∗‖2w2,2 ≥ (β/4)
∥∥xS\S∗∥∥2

w ,2

⇒ (4κ+ 4) ‖xS∩S∗‖2w2,2 ≥
∥∥xS\S∗∥∥2

w ,2

⇒ (4κ+ 6) ‖xS∩S∗‖2w2,2 ≥ ‖x‖
2
w ,2 ,

so

‖xS∩S∗‖2w2,2 ≥ (4κ+ 6)−1 ‖x‖2w ,2 .

Similarly we also have

(κ+ 1)β ‖xS∩S∗‖2w2,2 ≥ (1/4) (g(x )− f(x ∗))

⇒ (β/2) ‖xS∩S∗‖2w2,2 ≥ (8κ+ 8)−1(g(x )− f(x ∗)) .

Therefore the second bullet of the statement is true, and we
are done.

D. Low Rank Minimization

Algorithm 2 Regularized Local Search

A0: initial rank-r′ solution
W 0 = Y 0 = I : initial regularization weights
η: step size, T : #iterations
c: weight step size
for t = 0, . . . , T − 1 do

Φ(A) := (β/4)
(〈

W t,AA>
〉

+
〈

Y t,A>A
〉)

g(A) := f(A) + Φ(A)
A = Hs′−1

(
At
)
− 0.5H1

(
η∇g(At)

)
P = (W t)1/2At(At)>(W t)1/2

Q = (Y t)1/2(At)>At(Y t)1/2

∆ = g(At)− f(A∗)

if g(At)− g(A) ≥ (r′)−1∆ then
Let U ΣV> be the SVD of A
At+1 = argmin

A=U X V>
g(A)

W t+1,Y t+1 = W t,Y t

else if

max {Tr [Hr (P)] ,Tr [Hr (Q)]} ≥ (0.4/β)∆

then
At+1 = At

W t+1 = (W t)1/2
(
I − r−1Π im(P)

)
(W t)1/2

Y t+1 = (Y t)1/2
(
I − r−1Π im(Q)

)
(Y t)1/2

else
At+1 = At

W t+1 = W t − W tAt(At)>W t

〈W t,At(At)>〉

Y t+1 = Y t − Y t(At)>AtY t

〈Y t,(At)>At〉
end if

end for

D.1. Preliminaries

We will use the following simple lemma about Frobenius
products between low-rank projections and symmetric PSD
matrices. We remind the reader that Hr (A) is the matrix
consisting of the top r components from the singular value
decomposition of A.
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Lemma D.1. For any two symmetric PSD matrices Π ,A ∈
Rn×n, where rank(Π ) ≤ r and ‖Π ‖2 ≤ 1, we have that

|〈Π ,A〉| ≤ Tr [Hr(A)] .

Proof. We will use the following inequality for singular
values

k∑
i=1

σi(AB) ≤
k∑
i=1

σi(A)σi(B)

for k = 1, . . . , n, A,B ∈ Rn×n and σ1(A) ≥ · · · ≥ σn(A)
are singular values of matrix A (see page 177 in (Horn &
Johnson, 1991)). Then

|〈Π ,A〉| = Tr
[
Π A>

]
= Tr [Π A]

=

n∑
i=1

σi(Π A)

≤
n∑
i=1

σi(Π )σi(A)

=

r∑
i=1

σi(Π )σi(A)

≤
r∑
i=1

σi(A)

= Tr [Hr(A)] .

D.2. Analysis

This section is devoted to proving Theorem 1.2, which an-
alyzes an algorithm for low rank optimization that uses
adaptive regularization.
Theorem 1.2 (Adaptive Regularization for Low Rank Opti-
mization). Let f ∈ Rm×n → R be a convex function with
condition number κ and consider the low rank minimization
problem

min
rank(A)≤r

f(A) . (20)

For any error parameter ε > 0, there exists a polynomial
time algorithm that returns a matrix A with rank(A) ≤
O
(
r
(
κ+ log f(O)−f(A∗)

ε

))
and f(A) ≤ f(A∗) + ε,

where A∗ is any rank-r matrix.

Proof of Theorem 1.2. Let the smoothness and strong con-
vexity parameters of f be β, α. We repeatedly apply

Lemma D.2 T ≥ O

(
rκ log

f(A0)+(β/2)‖A0‖2
F
−f(A∗)

ε

)

times starting from solution A0 = O and weight matrices
W 0 = I , Y 0 = I . Thus, we obtain solutions A0, . . . ,AT ,
and weights W 0,W 1, . . . ,W T and Y 0,Y 1, . . . ,Y T .
We let

gt(A)

= f(A) + (β/4)
(
〈W t,At(At)>〉+ 〈Y t, (At)>A>〉

)
be the regularized function at iteration t.

We denote by Ti the total number of iterations for which
item i ∈ {1, 2, 3} from the statement of Lemma D.2 holds.

Consider the T2 iterations for which item 2 from the state-
ment of Lemma D.2 holds. Without loss of generality, W
is updated at least T2/2 times. Letting A∗ = U ∗Σ∗V ∗>

be the singular value decomposition of A∗, for each such
iteration we have

Tr
[
Π im(U ∗)W

t+1Π im(U ∗)

]
≤ Tr

[
Π im(U ∗)W

tΠ im(U ∗)

]
− (10κ)−1 ,

and for all other types of iterations we have W t+1 �W t.
Therefore,

Tr
[
Π im(U ∗)W

TΠ im(U ∗)

]
≤ Tr

[
Π im(U ∗)W

0Π im(U ∗)

]
− T2

2
(10κ)−1 .

However, note that by the guarantee of Lemma D.2 that
W T � O , we have

Tr
[
Π im(U ∗)W

TΠ im(U ∗)

]
≥ 0 ,

and because W 0 = I we also know that

Tr
[
Π im(U ∗)W

0Π im(U ∗)

]
= Tr

[
Π im(U ∗)

]
≤ r .

This implies that T2 ≤ 20κr.

Now, if T1 ≥ 16rκ log g0(A0)−f(A∗)
ε , and since gt(At) is

non-increasing for all t, we have

gT (AT )− f(A∗)

≤
(
1− (16rκ)−1

)T1
(g0(A0)− f(A∗))

≤ ε ,

so T1 ≤ 16rκ log g0(A0)−f(A∗)
ε .

Similarly, if T3 ≥ 10r log g0(A0)−f(A∗)
ε we have

gT (AT )− f(A∗)

≤
(
1− (10r)−1

)T4
(g0(A0)− f(A∗))

≤ ε ,
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so T3 ≥ 10r log g0(A0)−f(A∗)
ε .

Overall, we have that the total number of iterations is

T =
∑

Ti ≤ 36r(κ+ 1) log
g0(A0)− f(A∗)

ε
.

The only thing left is to ensure that the conditions

Tr
[
I −W t

]
≤ r′/2

Tr
[
I −Y t

]
≤ r′/2

of Lemma D.2 are satisfied for all t. By the guarantees of
Lemma D.2, if one of items 2, 3 holds, then

Tr
[
I −W t+1

]
≤ Tr

[
I −W t

]
+ 1 ,

and if item 1 holds, then

Tr
[
I −W t+1

]
= Tr

[
I −W t

]
.

As Tr
[
I −W 0

]
= 0, we have

Tr
[
I −W T

]
≤ T2 + T3

≤ 20κr + 10r log
g0(A0)− f(A∗)

ε
≤ r′/2 ,

where the last inequality holds as long as

r′ ≥ 20r

(
2κ+ log

g0(A0)− f(A∗)

ε

)
.

Lemma D.2 (Low rank minimization step analysis). Let
f : Rm×n → R be a β-smooth and α-strongly convex
function with condition number κ = β/α, and W ∈
Rm×m,Y ∈ Rn×n be symmetric positive semi-definite
weight matrices with spectral norm bounded by 1 and such
that Tr [I −W ] ≤ r′/2 and Tr [I −Y ] ≤ r′/2 for fixed
parameter r′ ≥ 256r. We define the regularized function

g(A) := f(A) + (β/4)
(
〈W ,AA>〉+ 〈Y ,A>A〉

)
︸ ︷︷ ︸

Φ(A)

.

Now, consider a rank-r′ matrix A ∈ Rm×n with singular
value decomposition

A = U ΛV> =
∑
j∈S

λjujv
>
j

and with the property that

Π im(U ) · ∇g(A) ·Π im(V ) = O .

For any rank-r solution A∗ where r′ ≥ 256r, there is a
procedure that updates A,W ,Y , and for which exactly
one of the following scenarios holds:

1. A is updated to a rank-r′ matrix A′, and W ,Y are
not updated. We have sufficient progress in the regular-
ized function:

g(A′) ≤ g(A)− (16κr)−1 (g(A)− f(A∗)) .

2. Exactly one of W or Y is updated (wlog W ) to a
symmetric PSD W ′ �W , and A is not updated. We
have

Tr
[
I −W ′] ≤ Tr[I −W ] + 1

and

Tr
[
Π im(U ∗)W

′Π im(U ∗)

]
≤ Tr

[
Π im(U ∗)W Π im(U ∗)

]
− (10κ)−1 .

Respectively, for Y :

Tr
[
Π im(V ∗)Y

′Π im(V ∗)

]
≤ Tr

[
Π im(V ∗)Y Π im(V ∗)

]
− (10κ)−1 .

3. Exactly one of W or Y is updated (wlog W ) to a sym-
metric PSD W ′ �W , and A is not updated. We have
sufficient progress in the regularized function, where
g′ is the regularized function with the new weights:

g′(A) ≤ g(A)− (10r)−1 (g(A)− f(A∗)) .

Additionally,

Tr
[
I −W ′] ≤ Tr[I −W ] + 1

Proof. We attempt to make the update A→ A′ as defined
in Lemma D.3. If it makes enough progress, i.e.

g(A′) ≤ g(A)− (16κr)−1 (g(A)− f(A∗)) ,

we are done. Otherwise, one of the items 2-5 in the state-
ment of Lemma D.3 must hold. Let us take them one by
one.

Item 2:

〈Π im(U ∗),W AA>W 〉 ≥ (10κ)
−1 〈W ,AA>〉 .

We update W as

W ′ = W − c ·W AA>W ,

where c = 〈W ,AA>〉−1. Note that this update preserves
symmetry, and

O �W ′ �W .
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This is because

cW 1/2AA>W 1/2 � c〈W ,AA>〉 · I � I ,

so

W ′ = W 1/2
(

I − cW 1/2AA>W 1/2
)

W 1/2 � O

and
W ′ = W − cW AA>W �W .

Now, note that

Tr
[
I −W ′] = Tr [I −W ] + c〈W 2,AA>〉

≤ Tr [I −W ] + c〈W ,AA>〉
= Tr [I −W ] + 1 ,

where we used the fact that W 2 �W , and (letting Π ∗ =
Π im(U ∗) for convenience),

Tr
[
Π ∗W ′Π ∗

]
= Tr [Π ∗W Π ∗]− c〈Π ∗,W AA>W 〉
≤ Tr [Π ∗W Π ∗]− c/(10κ)〈W ,AA>〉
= Tr [Π ∗W Π ∗]− (10κ)−1 ,

(21)

Item 3:

〈Π im(V ∗),Y A>AY 〉 ≥ (10κ)
−1 〈Y ,A>A〉 .

This is entirely analogous to the previous case.

Item 4:

(β/4) Tr
[
Hr

(
A>W A

)]
≥ 10−1 (g(A)− f(A∗)) .

(22)

After considering the eigendecomposition

W 1/2AA>W 1/2 =
∑
i∈[r′]

λ̄iv̄ iv̄
>
i

with λ̄1 ≥ λ̄2 ≥ · · · ≥ λ̄r′ ≥ 0, (22) can be re-phrased as

(β/4)
∑
i∈[r]

λ̄i > (1/10) (g(A)− f(A∗)) .

We update W as

W ′ = W 1/2

I − r−1
∑
i∈[r]

v̄ iv̄
>
i

W 1/2

and let g′ be the new regularized objective. First of all,
note that this operation preserves symmetry, and that O �
W ′ � I , since

∑
i∈[r]

v̄ iv̄
>
i � I . Additionally,

Tr
[
I −W ′] = Tr [I −W ] + r−1

∑
i∈[r]

v̄>i W v̄ i

≤ Tr [W ] + 1

and

g′(A)− g(A)

= (β/4)〈W ′,AA>〉 − (β/4)〈W ,AA>〉

= −(β/(4r))

〈
W 1/2

∑
i∈[r]

v̄ iv̄
>
i

W 1/2,AA>

〉

= −(β/(4r))
∑
i∈[r]

λ̄i

≤ −(10r)−1(g(A)− f(A∗)) ,

Item 5:

(β/4) Tr
[
Hr

(
AY A>

)]
≥ 10−1 (g(A)− f(A∗)) .

This is entirely analogous to the previous case.

Lemma D.3. Let f : Rm×n → R be a β-smooth and α-
strongly convex function with condition number κ = β/α,
and W ∈ Rm×m,Y ∈ Rn×n be symmetric positive semi-
definite weight matrices with spectral norm bounded by 1
and such that Tr [I −W ] ,Tr [I −Y ] ≤ r′/2 for some
parameter r′ ≥ 0. We define the regularized function

g(A) := f(A) + (β/4)
(
〈W ,AA>〉+ 〈Y ,A>A〉

)
︸ ︷︷ ︸

Φ(A)

.

Now, consider a rank-r′ matrix A ∈ Rm×n with singular
value decomposition

A = U ΛV> =
∑
j∈S

λjujv
>
j

and with the property that

Π im(U ) · ∇g(A) ·Π im(V ) = O .

We define an updated solution

A′ = A− η ·H1(∇g(A))− λjujv>j ,

where η = (2β)−1, H1(·) returns the top singular compo-
nent, and j ∈ S is picked to minimize λj .

Then, for any rank-r solution A∗, where r′ ≥ 256r, and its
singular value decomposition A∗ = U ∗Λ∗V ∗>, at least
one of the following conditions holds:

1. We have sufficient progress in the regularized function:

g(A′) ≤ g(A)− (16κr)−1 (g(A)− f(A∗)) .

2. W AA>W is significantly correlated to U ∗:

〈Π im(U ∗),W AA>W 〉 ≥ (10κ)
−1 〈W ,AA>〉 .
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3. Y A>AY is significantly correlated to V ∗:

〈Π im(V ∗),Y A>AY 〉 ≥ (10κ)
−1 〈Y ,A>A〉 .

4. The spectrum of A>W A is highly concentrated and
responsible for a constant fraction of the error:

(β/4) Tr
[
Hr

(
A>W A

)]
≥ 10−1 (g(A)− f(A∗)) .

and

5. The spectrum of AY A> is highly concentrated and
responsible for a constant fraction of the error:

(β/4) Tr
[
Hr

(
AY A>

)]
≥ 10−1 (g(A)− f(A∗)) .

Proof. Note that g is a 2β-smooth function. This follows
because

∇g(A) = ∇f(A) + (β/2) (W A + AY ) ,

and so for any two matrices A,A′,∥∥∇g(A′)−∇g(A)
∥∥
F

≤
∥∥∇f(A′)−∇f(A)

∥∥
F

+ (β/2)
∥∥W (A′ −A)

∥∥
F

+ (β/2)
∥∥(A′ −A)Y

∥∥
F

≤ 2β
∥∥A′ −A

∥∥
F
,

which is known to imply 2β-smoothness of g. Here we
used the triangle inequality and the fact that W ,Y � I .
Therefore, we have

g(A′)− g(A)

≤ 〈∇g(A),A′ −A〉+
∥∥∇g(A′)−∇g(A)

∥∥
F

∥∥A′ −A
∥∥
F

≤ 〈∇g(A),A′ −A〉+ β
∥∥A′ −A

∥∥2

F

≤ −η ‖∇g(A)‖22 + 2βη2 ‖∇g(A)‖22 + 2βλ2
j

= −(8β)−1 ‖∇g(A)‖22 + 2βλ2
j ,

(23)
where in the second inequality we used the facts that

〈∇g(A),−λjujv>j 〉
= 〈Π im(U )∇g(A)Π im(V ),−λjujv>j 〉
= 0

and that, for any two matrices B ,C ,

‖B + C‖2F ≤ 2 ‖B‖+ 2 ‖C‖2F .

The last equality follows by our choice of η. In order to
lower bound ‖∇g(A)‖22, we use the strong convexity of f

as follows:

f(A∗)− f(A)

≥ 〈∇f(A),A∗ −A〉+ (α/2) ‖A∗ −A‖2F
= 〈∇g(A),A∗ −A〉

− 〈∇Φ(A),A∗ −A〉+ (α/2) ‖A∗ −A‖2F
= 〈∇g(A),A∗ −A〉+ (α/4) ‖A∗ −A‖2F︸ ︷︷ ︸

P

− 〈∇Φ(A),A∗ −A〉+ (α/4) ‖A∗ −A‖2F .

(24)

Bounding P . We let Π im(U ), Π im(V ) be the orthogonal
projections onto the images of U and V respectively, so
we can write

A∗ −A

= Π im(U ) (A∗ −A) Π im(V )

+
(
I −Π im(U )

)
(A∗ −A) Π im(V )

+ (A∗ −A)
(
I −Π im(V )

)
= Π im(U ) (A∗ −A) Π im(V )

+
(
I −Π im(U )

)
A∗Π im(V )

+ A∗
(
I −Π im(V )

)
.

Now, note that

〈∇g(A),A∗ −A〉
= 〈∇g(A),

(
I −Π im(U )

)
A∗Π im(V )〉

+ 〈∇g(A),A∗
(
I −Π im(V )

)
〉 ,

where we used the fact that

〈∇g(A),Π im(U )(A
∗ −A)Π im(V )〉

= 〈Π im(U )∇g(A)Π im(V ),A
∗ −A〉

= 0 ,

and

(α/4) ‖A∗ −A‖2F
≥ (α/4)

∥∥(I −Π im(U )

)
A∗Π im(V )

∥∥2

F

+ (α/4)
∥∥A∗ (I −Π im(V )

)∥∥2

F
.

Additionally, note that for any rank-r matrix B , we have

〈∇g(A),B〉+ (α/4) ‖B‖2F
≥ −α−1 ‖Hr (∇g(A))‖2F
≥ −α−1r ‖∇g(A)‖22 ,

a proof of which can be found e.g. in Lemma A.6 of (Axiotis
& Sviridenko, 2021a). Applying this inequality with

B =
(
I −Π im(U )

)
A∗Π im(V )
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and
B = A∗

(
I −Π im(V )

)
and summing them up, we obtain

P = 〈∇g(A),A∗ −A〉+ (α/4) ‖A∗ −A‖2F
≥ −2α−1r ‖∇g(A)‖22 .

Plugging this into (24) and re-arranging, we get

‖∇g(A)‖22
≥ α/(2r)

(
f(A)− f(A∗)

− 〈∇Φ(A),A∗ −A〉+ (α/4) ‖A∗ −A‖2F
)

= α/(2r)
(
g(A)− f(A∗)− Φ(A)

−〈∇Φ(A),A∗ −A〉+ (α/4) ‖A∗ −A‖2F︸ ︷︷ ︸
Q

)
.

(25)

Bounding Q. We know that

−〈∇Φ(A),A∗ −A〉 = −(β/2)〈W A + AY ,A∗ −A〉 .

If we let

A∗ = U ∗Λ∗V ∗>

be the SVD of A∗ and Π im(U ∗), Π im(V ∗) be the orthogo-
nal projections onto the images of U ∗ and V ∗ respectively,
then we have

− (β/2)〈W A,A∗ −A〉
= −(β/2)〈W A,Π im(U ∗)(A

∗ −A)Π im(V ∗)〉
+ (β/2)〈W ,AA>〉 − (β/2)〈W A,Π im(U ∗)AΠ im(V ∗)〉 .

Looking at the first term of this, we have

− (β/2)〈W A,Π im(U ∗)(A
∗ −A)Π im(V ∗)〉

+ (α/8) ‖A∗ −A‖2F
= −(β/2)〈Π im(U ∗)W AΠ im(V ∗),A

∗ −A〉

+ (α/8) ‖A∗ −A‖2F
≥ −β2/(2α)

∥∥Π im(U ∗)W AΠ im(V ∗)

∥∥2

F
.

Similarly for the terms containing Y , we get

− (β/2)〈AY ,A∗ −A〉
= −(β/2)〈AY ,Π im(U ∗)(A

∗ −A)Π im(V ∗)〉
+ (β/2)〈Y ,A>A〉 − (β/2)〈AY ,Π im(U ∗)AΠ im(V ∗)〉 .

and

− (β/2)〈AY ,Π im(U ∗)(A
∗ −A)Π im(V ∗)〉

+ (α/8) ‖A∗ −A‖2F
≥ −β2/(2α)

∥∥Π im(U ∗)AY Π im(V ∗)

∥∥2

F
.

In summary, we have

Q = −〈∇Φ(A),A∗ −A〉+ (α/4) ‖A∗ −A‖2F
≥ −β2/(2α)

∥∥Π im(U ∗)W AΠ im(V ∗)

∥∥2

F

− β2/(2α)
∥∥Π im(U ∗)AY Π im(V ∗)

∥∥2

F

+ (β/2)〈W ,AA>〉+ (β/2)〈Y ,A>A〉
− (β/2)〈W A,Π im(U ∗)AΠ im(V ∗)〉
− (β/2)〈AY ,Π im(U ∗)AΠ im(V ∗)〉 .

(26)

Now, let us assume that all items 2-5 from the lemma state-
ment are false. For the first term of (26), we have

− β2/(2α)
∥∥Π im(U ∗)W AΠ im(V ∗)

∥∥2

F

≥ −β2/(2α)
∥∥Π im(U ∗)W A

∥∥2

F

= −β2/(2α)〈Π im(U ∗),W AA>W 〉
≥ −(β/20)〈W ,AA>〉 ,

where we used item 2 from the lemma statement, and simi-
larly for the second term of (26),

− β2/(2α)
∥∥Π im(U ∗)AY Π im(V ∗)

∥∥2

F

≥ −(β/20)〈Y ,A>A〉 .

Now we look at the second to last term of (26), i.e.

− (β/2)〈W A,Π im(U ∗)AΠ im(V ∗)〉
= −(β/2)〈W AΠ im(V ∗)A

>,Π im(U ∗)〉 .

Now, we use the matrix Holder inequality

− (β/2)〈W AΠ im(V ∗)A
>,Π im(U ∗)〉

≥ −(β/2)
∥∥∥W AΠ im(V ∗)A

>
∥∥∥
∗

∥∥Π im(U ∗)

∥∥
2

≥ −(β/2)
∥∥∥W AΠ im(V ∗)A

>
∥∥∥
∗
,

which can be proved by applying von Neumann’s trace in-
equality and then the classical Holder inequality. Now,
note that the matrix W AΠ im(V ∗)A

> is similar to
W 1/2AΠ im(V ∗)A

>W 1/2, and so they have the same
eigenvalues. Furthermore, the latter is a symmetric PSD
matrix, and so the former has real positive eigenvalues as
well. This means that its singular values are the same as its
eigenvalues, and as a result the nuclear norm is equal to the
trace, i.e.

− (β/2)
∥∥∥W AΠ im(V ∗)A

>
∥∥∥
∗

= −(β/2) Tr
(

W AΠ im(V ∗)A
>
)

= −(β/2)〈Π im(V ∗),A
>W A〉

≥ −(β/2) Tr
[
Hr

(
A>W A

)]
≥ −(1/5) (g(A)− f(A∗)) .
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where we also used Lemma D.1 and item 4 from the lemma
statement. So we derived that

− (β/2)〈W A,Π im(U ∗)AΠ im(V ∗)〉
≥ −(1/5) (g(A)− f(A∗)) ,

and similarly for the last term of (26),

− (β/2)〈AY ,Π im(U ∗)AΠ im(V ∗)〉
≥ −(1/5) (g(A)− f(A∗)) .

Plugging the four inequalities that we derived back into (26),
we get

Q ≥ (β/2− β/20)〈W ,AA>〉
+ (β/2− β/20)〈Y ,A>A〉
− (2/5) (g(A)− f(A∗))

= (9/5)Φ(A)− (2/5) (g(A)− f(A∗))

> (3/2)Φ(A)− (2/5) (g(A)− f(A∗)) .

Finally, combining this with the smoothness inequality (23)
and the lower bound on ‖∇g(A)‖22 (25), we derive

g(A′)− g(A)

≤ −(16κr)−1
(
g(A)− f(A∗) + (1/2)Φ(A)

)
+ 2βλ2

j

= −(16κr)−1
(
g(A)− f(A∗)

)
− (32κr)−1Φ(A) + 2βλ2

j .

What remains is the bound the sum of the last two terms.
We remind the reader that A = U ΛV>. Now, letting z
equal to the vectorized diagonal of U>W U and λ to the
vectorized diagonal of Λ, note that

‖λ‖2z = 〈Λ2,U>W U 〉 = 〈W ,AA>〉 ,

using which we derive

λ2
j = min

j∈S
λ2
j ≤
‖λ‖2z
‖z‖1

=
〈W ,AA>〉

Tr[U>W U ]

=
〈W ,AA>〉

Tr[U>U ]− Tr[U>(I −W )U ]

≤ 〈W ,AA>〉
r′ − Tr[I −W ]

≤ 〈W ,AA>〉
r′/2

≤ 〈W ,AA>〉
128rκ

,

where we used the fact that

Tr[U>(I −W )U ]

= Tr
[
(I −W )1/2U U>(I −W )1/2

]
≤ Tr[I −W ] ,

because the columns of U are orthonormal. We also used
the property that Tr[I −W ] ≤ r′/2 and the fact that r′ ≥
256rκ by the lemma statement.

Similarly, we derive that

λ2
j ≤
〈Y ,A>A〉

128rκ
,

and, adding these two inequalities, we have

2βλ2
j ≤ (32rκ)−1Φ(A) ,

finally concluding that

g(A′)− g(A) ≤ −(16κr)−1
(
g(A)− f(A∗)

)
.

E. Lower Bounds
Lemma E.1 (IHT lower bound). Let f(x ) :=

(1/2) ‖Ax − b‖22. For any κ, s ≥ 1, s′ ≤ 0.6sκ2, there
exists a (diagonal) matrix A ∈ Rn×n and a vector b ∈ Rn
where n = s(κ2 + κ + 1), f is 1-strongly convex and κ-
smooth, as well as an s-sparse solution x ∗ and an s′-sparse
solution x , such that

f(x ) ≥ f(x ∗) + 0.1sκ2

but
x = Hs′

(
x − β−1∇f(x )

)
,

i.e. x is a fixpoint for IHT.

Proof. We use the same example as in (Axiotis & Sviri-
denko, 2021b), Section 5.2: A is diagonal with

Aii =


1 if i ∈ I1√
κ if i ∈ I2

1 if i ∈ I3 ,

where I1 = [s], I2 = [s + 1, s(κ + 1)], I3 = [s(κ + 1) +
1, s(κ2 + κ+ 1)], and b is defined as

bi =


κ
√

1− 4δ if i ∈ I1√
κ
√

1− 2δ if i ∈ I2
1 if i ∈ I3 ,

for some sufficiently small δ > 0 used for tie-breaking. We
define

x∗i =

{
κ
√

1− 4δ if i ∈ I1
0 otherwise
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and, for some arbitrary s′-sized S ⊆ I3

xi =

{
0 if i ∈ I1 ∪ I2 ∪ I3\S
1 otherwise .

Note that f(x )−f(x ∗) = 0.5sκ2(1−4δ)−0.5s′ ≥ 0.1sκ2.
Furthermore, the gradient is equal to

∇f(x ) = A> (Ax − b)

=


−κ
√

1− 4δ if i ∈ I1
−κ
√

1− 2δ if i ∈ I2
−1 if i ∈ I3\S
0 if i ∈ S ,

and since we have β = κ,

x − β−1∇f(x ) =


√

1− 4δ if i ∈ I1√
1− 2δ if i ∈ I2

1/κ if i ∈ I3\S
1 if i ∈ S ,

implying that Hs′
(
x − β−1∇f(x )

)
= x .


