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Abstract

Noisy labels are inevitable yet problematic in ma-
chine learning society. It ruins the generalization
of a classifier by making the classifier over-fitted
to noisy labels. Existing methods on noisy label
have focused on modifying the classifier during
the training procedure. It has two potential prob-
lems. First, these methods are not applicable to
a pre-trained classifier without further access to
training. Second, it is not easy to train a classifier
and regularize all negative effects from noisy la-
bels, simultaneously. We suggest a new branch
of method, Noisy Prediction Calibration (NPC)
in learning with noisy labels. Through the intro-
duction and estimation of a new type of transi-
tion matrix via generative model, NPC corrects
the noisy prediction from the pre-trained classi-
fier to the true label as a post-processing scheme.
We prove that NPC theoretically aligns with the
transition matrix based methods. Yet, NPC em-
pirically provides more accurate pathway to es-
timate true label, even without involvement in
classifier learning. Also, NPC is applicable to
any classifier trained with noisy label methods, if
training instances and its predictions are available.
Our method, NPC, boosts the classification perfor-
mances of all baseline models on both synthetic
and real-world datasets. The implemented code is
available at https://github.com/BacHeeSun/NPC.

1. Introduction

The success of deep neural networks heavily relies on large-
scale datasets with annotations (Yao et al., 2020). Whereas
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the importance of large-size dataset is unanimous, creating
such large-scale dataset is arduous and often prone to human
errors in their label annotations (Cheng et al., 2021). For
instance, the recent utilization of crowd-sourcing (Welinder
et al., 2010) or search engines (Xiao et al., 2015) in build-
ing the datasets potentially results in the problem of noisy
label (Han et al., 2018b; Yi & Wu, 2019; Xia et al., 2020a;
Liu et al., 2020; Wang et al., 2021). The model training
with noisy label could be detrimental given the fitness of
over-parameterized neural network to the training dataset,
because such networks are even ready to fit the mislabeled
training instances, a.k.a memorization (Arpit et al., 2017;
Zhang et al., 2021a; Xia et al., 2020a) problem.

Several studies have suggested resolutions on memoriza-
tion from noisy labels. First, noise-cleansing approaches
(Malach & Shalev-Shwartz, 2017; Han et al., 2018a; Tanaka
et al., 2018; Han et al., 2018b; Yu et al., 2019; Han et al.,
2020; Wei et al., 2020; Zheng et al., 2020; 2021; Wang et al.,
2021; Kim et al., 2021) focus on segregating the clean data
pairs from the corrupted dataset, based on the outputs of
noisy classifier, i.e. loss, entropy, and feature alignment.
Second, noise-robust approaches utilize explicit regulariza-
tions (Liu et al., 2020; Xia et al., 2020a) or robust loss
functions (Zhang & Sabuncu, 2018; Wang et al., 2019; Ma
et al., 2020) to design a robust classifier. Yet, their modeling
and structures mostly originate from either heuristics or hard
assumptions. Another line of researches suggest an explicit
formulation on noise patterns, i.e. transition matrix T from
a true label to a noisy one (Patrini et al., 2017; Yao et al.,
2020; Zhang et al., 2021b; Xia et al., 2020b; Berthon et al.,
2021). While methods with T provide rigorous formulation
on the label modifications, accurate estimation of 7" heavily
depends on the inference of true label y, which is assumed
latent from observations (Yao et al., 2021).

With the unsolved challenges above, classifiers trained by
existing methods are still not robust to label noises, depend-
ing on the various noise characteristics (Song et al., 2020).
It necessitates the modelling of reducing the gap between
the prediction of trained classifier and the true latent label.
Post-processing can be effective for this objective, in that it
is easily applicable to any trained classifier without access
to training. Motivated by this spirit, we introduce another
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branch of solutions on the problem of noisy labels. We
propose the algorithm, coined Noisy Prediction Calibration
(NPC), which estimates the explicit transition from a noisy
prediction to a true latent class via utilizing a deep gener-
ative model. NPC operates as a post-processing module
to a black-box classifier trained on noisy labels, while pre-
vious transition models were applied during the training
procedures. Therefore, NPC can expand the scalability of
transition models in terms of learning time by far, and NPC
inherits wider usability with its post-processing nature.

For theoretical aspect, we prove that NPC is interchangeable
with the transition matrix, which generalizes the modeling
framework of NPC. For empirical aspect, NPC significantly
boosts the accuracy of classifiers trained with various type
of noisy labels without any access to noise ratio. More-
over, NPC captures potentially noisy data instances from
the learning with benchmark datasets, i.e. MNIST and
Fashion-MNIST, which have been believed to be clean.

2. Problem Definition
2.1. Problem Setup

Assuming a classification task of ¢ classes, let ¥ C R?
and Y = {1,2,...,c} be a input space and a label set, re-
spectively. Given the input and the label spaces, the i.i.d.
samples from the joint probability distribution P over X’ x ),
D = {(x;,y;)}._,, becomes a classification dataset. Unlike
traditional supervised learning, our assumption on the noisy
label dictates that only observables are D = {(z;,7i)}1,,
which are samples from P, potentially different from P.

The training objective of a classifier f is to minimize the
true risk, R.(f) := Ep [L (f (z),y)], yet the only accessi-
ble risk function is the noisy empirical risk of RS (f) :=
L5 L L(f(xi),9:). Hence, when learning with noisy
labels, the objective becomes finding a function that mini-
mizes Ry, (f) via the learning procedure with RS (f).

2.2. Previous Research on Noisy Label Classification

Neural networks trained with gradient descent can easily
fit even random labels (Zhang et al., 2021a). To tackle this
issue, various works have been introduced for learning with
noisy labels. One directional approaches include the ex-
traction of reliable clean samples (Han et al., 2018b; Yu
et al., 2019; Wei et al., 2020), label modification (Tanaka
et al., 2018; Yi & Wu, 2019; Zheng et al., 2020; Li et al.,
2020; Zheng et al., 2021; Wang et al., 2021), introducing
noise-robust losses (Zhang & Sabuncu, 2018; Wang et al.,
2019), and additive regularization (Liu et al., 2020; Xia
et al., 2020a). ' These works usually hinge upon heuris-
tics or assumptions, such as the phenomenon of learning

'A detailed description of each method is in Appendix A.1.

simple pattern at the early stage of learning (Arpit et al.,
2017). These experimentally justified heuristics require
hand-picked hyper-parameters, such as noise ratio, early
stopping time, and noisy indication threshold, which are
critical for their performance improvements.

Other type of approaches estimate the true class probability
by formulating a transition matrix, 7, as follows:

Tkj(‘r) :p(zj:.ﬂy:kax) for all.]vk: 17~'~7C (1)

Transition matrix, T', provides a probabilistic formulation
on label transition from true class y to noisy label y. Since
p(glz) = Yioy p(ily = k,x)p(y = kl|z), T provides a
pathway to the true loss from observable y and x as follows:

Ep[L(T(f(x)),9)] = Rr(f) 2)
The benefit of transition matrix methods is the explicit for-
mulation of label distribution modifications. However, esti-
mating 7" with a latent variable y is not an easy problem.

2.3. Previous Studies on Transition Matrix Estimation

p(g = jly = i,x) has a large support space if the input
space has a large dimension. As an initial solution, (Patrini
et al., 2017; Yao et al., 2020; Zhang et al., 2021b) suggested
the transition matrix as p(y = jly = i,z) = p(§ = jly =)
assuming the instance independence. Yet, the estimation
gap exists with this assumption because x influences on the
transition to ¥, i.e. an image of 3 resembling to 5 in MNIST
and its potential mislabeling (Chen et al., 2020). Various
models have appeared to estimate an instance-dependent T'
(Chen et al., 2020; Xia et al., 2020b; Berthon et al., 2021;
Yao et al., 2021), but they still have limitations since they
rely on either assumption of part-dependent label noise (Xia
et al., 2020b) or access to additional information on confi-
dence score (Berthon et al., 2021).

Emphasizing the importance on estimating latent y, a recent
study (Yao et al., 2021) proposes an estimation of 7' by
maximizing the likelihood of observable variables, p(x, 3),
through a generative model with the latent y. They model
a noisy data generative process as Figure 2a. Their model,
CausalNL introduces an auxiliary latent variable of z that
is another source of information to generate z, other than y
so that z and y jointly generate x. Eventually, this model
learns the generation process of x by Variational Autoen-
coder (VAE) (Kingma & Welling, 2013), and this serves
the maximization of p(z, §), which leaves p(z, z,y,§) as
a side-product that becomes an ingredient to formulate 7.
This generation is inferred via maximizing Evidence Lower
Bound (ELBO) of Eq. 3.

ELBO(2,9) = E (2 y)~q, (2,y/2) [l0g Po 2]y, 2)]
+ Ey~q¢(y\x)[logp9(g|yv 1‘)} - KL(Q¢(y|$)||p(y)) (3)
= Eyg, (gl [(KL(g0 2]y, 2)[[p(2))]
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This estimation framework may have two shortcomings.
First, the generation of x, whose data resolution can be high,
would not be an appropriate objective for a noisy classifi-
cation task. This model would infer the generation process
with sub-optimal reconstruction, a well-known problem of
VAE (Dosovitskiy & Brox, 2016). Therefore, inference on
T with VAE would lead to sub-optimal, as well. Second,
CausalNL assumes that there is an additional cause of z
from z, so z and y jointly generate z. Given the observed
z, z and y become dependent by V-structure as in Figure
2a. For classification, the correlation between 2 and y needs
to be disentangled from z because y needs to model only
the pure label information. This disentanglement can be a
burden particularly given that the generation of z is not the
main goal of classification with noisy label.

Deep generative models for classification with noisy labels
have not yet been actively studied. However, the importance
of estimating the true class y as latent motivates us to utilize
a deep generative model. Having said that, there are dif-
ferences between CausalNL and our model, NPC, in terms
of generative model design and modeling purpose. From
the perspective of generative model design, our method dif-
fers from CausalNL because we remove the unnecessary
generation of x without any auxiliary latent variables. For
modelling purposes, CausalNL improves the classifier learn-
ing through identifiable estimation of 7. On the contrary,
we introduce and estimate a new type of transition matrix,
H, which is mainly utilized to post-process the outputs of
classifiers trained on noisy datasets. We discuss the advan-
tageous properties of post-processing for noisy classifiers in
Section 3.1. Also, we claim that our introduced transition,
H, is interchangeable with T in Section 3.3.

3. Method

This section presents our model, Noisy Prediction Cali-
bration (NPC), by going through its theoretic formulation,
probabilistic model structure, and its inference procedure.
Additionally, we discuss the relation between NPC and the
original transition matrix 7.

3.1. Motivational Comparison with Transition Matrix

Before we present our approach, we first explain our abstract
view of noisy label classification in this section. Let ¢ be
a set of model parameters of a classifier. Then, there are
three cases of : 1) 1[) which composes the function that
explains the noisy labelled dataset perfectly; 2) zﬁ which is
equivalent to classifiers trained with algorithms for learning
with noisy labels; and 3) ¢* is from the optimal classifier
that best explains the true joint distribution of x and y.

Traditional methodologies for dealing with noisy labels have
focused on finding ¥* with observation of (x,y). Without
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Figure 1. Overview. Existing methods shift the function ¥ to esti-
mate the mapping from x to y during the learning procedure. On
the contrary, our method, NPC, formulates a prediction calibration
procedure which reduces the gap between noisy prediction ¢ and
true label y under the post-processing framework. NPC success-
fully boosts the pre-trained classifier performances by leveraging
the classifier predictions as noise-reduced inputs.

any access to the true joint distribution between x and y,
it results in 7,21 Corresponding to the definition of 1[1, a
classifier f maps x to ¢, a prediction at the current training.
Figure 1 shows these mappings from z to y, g, and .

Previously, there was no explicit modelling on g because
4 was considered as a transient state converging to y. This
transience is modelled with 7" in the previous research in-
stead of articulating . T is merged into the learning process
as Eq. 2, so T becomes a force to converge on y with only
RS, which we represents as a purple texts in Figure 1.

We hypothesize that there could be also a chance of calibra-
tion at the label space of y, instead of the parameter space
of b. We call this procedure as Noisy Prediction Calibration
(NPC) because 1/; is assumed to be fixed and to produce .
The calibration will transform § — y by H as a prediction
adjustment, and it is formulated as Eq. 4.

pyle) = p(yls, 2)p(jlx)
{ “4)
Hyj(z) = p(y = jlg = k,x) forj,k=1,...c

The predicted label § from the classifier trained by algo-
rithms for managing noisy labels has the potential to reduce
the noise-level compared to the original noisy label . Then,
by explicitly mentioning ¢ from the post-processing stage,
we find a novel opportunity to adjust g. If there is a trained
classifier f 2, the previous methods with 7" are not appli-
cable to calibrate noisy labels to manage the relation from
g to y. With post-processing mechanism, however, an ad-
justment y — y without altering ’(/AJ can be applied to the
pre-trained classifier as the red text in Figure 1.

2Such black-box classifiers include deep neural networks with
too many parameters (Brown et al., 2020; Dosovitskiy et al., 2020)
for training given a user’s computing environment.
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Figure 2. Structure. Bayesian network of (a) CausalNL and (b) NPC. Arrows with solid lines and dashed lines denote generative process
and inference process, respectively; illustrations of (c) Neural Network structure (upper) and inference (under) of NPC, respectively.

The most critical difference between 1) a classifier training
with noisy labels with 7" and 2) a noisy prediction calibration
with H in post-processing is whether influencing on vfz or
calibrating ¢. Surely, the calibration quality of H depends
upon the quality of ¢ and the structure of H, the estimation
of H. Section 3.2 describes our probabilistic estimation on
H with minimal introduction of latent variables. Then, we
show whether T' and H can be analytically aligned with
different formulation. Section 3.3 provides a theoretic claim
that 7" and H are potentially interchangeable with some
implementable weighting variables.

3.2. NPC : Noisy Prediction Calibration Algorithm

As described in Eq. 4, we need to estimate p(y|¢, «) and
p(4|z). Since p(§|x) can be obtained by training a classifier,
we focus on the estimation of p(y|7, z).

3.2.1. PROBABILISTIC MODEL STRUCTURE

We model a generative process of data instances with label
noise as Figure 2b. This generative process expresses the
probabilistic relation of ¢ and y given input x.

1. Choose a latent vector 3 ~ Dir(a)

2. Choose a noisy label § ~ Multi(7 )
a, is the instance-dependent parameter of the prior proba-
bility distribution given a sample z, o, € RS. Dir(a,) is a

Dirichlet distribution, a conjugate prior of the corresponding
multinomial distribution. 7% y 18 the probablllty for select-

ingaclass k =1, ..., cfor the noisy label, § 3. Multi(7 )
is the multinomial distribution.

This generative process describes the following scenario of

3 c c k
Tx,y € R+’ Ek:l 7Tz,y =1

noisy labelling. Given an input z, there is a prior distribution
of its true label y with a Dirichlet distribution. Then, the
input content and its prior information on true label dictates
a noisy label g.

According to the generative process above, the joint proba-
bility p(y, 4, «) can be factorized as follows:

p(y, 9, ) < p(ylx)p(gly, =) (5)

Here, as p(y|z) is unknown from our training state, we
approximate it with our pre-trained classifier parameterized
by . The probabilities are defined as:

= Dir(ay), = Multi(m,,)  (6)

py(ylz) p(Jly, x)

3.2.2. PARAMETER INFERENCE

Our main estimation target is the posterior probability
p(y|g, ), which is intractable. Accordingly, we follow the
variational inference (Kingma & Welling, 2013) framework
to minimize the KL divergence between the inference distri-
bution and the target distribution. We introduce a variational
distribution, ¢(y|J, ), and we parametrize the variational
and the remaining model distributions with ¢ and 6. These
formulations result in the KL divergence as Eq. 7.

KL (g4 (Y19, =)l|p(yl9, x))

. 9|7, x)
= [ q4(y|§, x) log ————"dy
/¢(| ) p(yly, z)

) a5 (y|9, x)p(glz)
q ,x)log ———"—"—""~d
/¢(y|y ) & p(ily, 2)pylz) Y
= log p(J|2) — Eymq,(ylg.2) 108 po(9]y, x)]

+ KL(g4(y[9, 2)|Ip(y|z)) = log p(glz) — ELBO(7)
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With a latent variable y following the Dirichlet distribu-
tion, the direct reparameterization is difficult unlike a case
with normal distribution prior (Kingma & Welling, 2013).
Therefore, we utilize the reparametrization trick from (Joo
et al., 2020), which decomposes Dirichlet distribution into
Gamma distributions with their inverse CDF*. Finally, Eq.
8 presents ELBO in Eq. 7 as a objective function.

~ Kk . ~k
ELBO:§:yZ logy*" + (1 —9%)log(1 —y*")
k=1

- Zlog IN(e
k=1
c
— Z(dk o
k=1

Here, y* is the reconstruction output; I' and 1) are the
gamma and digamma function, respectively.

)+ > logT(a} ;) ®)
=1

3.2.3. IMPLEMENTATION

Figure 2c¢ shows the illustration of a neural network structure
for NPC. Since we are interested in p(y|g, =), we adopted
the structure of Variational Autoencoder (VAE) to generate
the parameter of variational posterior distribution.

We design a prior distribution of the latent variable y to
be dependent on x, which is enabled by utilizing the pre-
trained classifier 1& We apply K-Nearest Neighbor (KNN)
algorithm (Wang et al., 2018; Bahri et al., 2020) to samples
with high confidence in the classifier output, p,; (§|z). The
most selected label from k neighbours is referred as ¢, and
we differentiate the parameter values of the prior Dirichlet
distribution of y by 4 as Eq. 9.

k_ | 0 k#y _
az_{é—kp k=g fork=1,..,c 9

Here, § and p are hyper-parameters to setup « of the Dirich-
let distribution. Throughout the paper, we fixed 6 = 1.

While setting the prior parameters as above, we obtain the
posterior distribution from the encoder. We select the soft
plus function as the activation function of the encoder to
make the posterior distribution parameter non-negative. The
resulting posterior distribution provides a parameter sam-
ple of the posterior multinomial distribution H. We set the

parameter of H to be the mode of the posterior Dirichlet dis-
-1

y
tribution, which becomes H = p(y|g, z) = s Z —
With the definition of H, we calibrate the noisy prediction
described as in Figure 1, indicating § — y. This is an
transition from the prediction of noisy classifier (p(g|x)) to

the true probability of label distribution (p(y|z)), which we

“we describe the reparameterization details in Appendix B.

will calculate as Eq. 10.

p(ylz) = Zpyly—k z)p(§ = k|z)

(10
~ Z%(y\ﬁ = k,2)p(j) = k|z)
k

3.3. Alignment of 7" and H

When we utilize NPC as a post-processing algorithm, the
classifier p;(j|z) becomes a fixed model in Figure 2c.
Therefore, training H does not affect v, the classifier pa-
rameters, unlike training 7". Nevertheless, we can relate our
modeling with T as stated in Proposition 3.1 (full proof in
Appendix C.1). This alignment shows that our methodology
provides a same pathway to correct the noisy classifier as in
the previous studies on 7.

Proposition 3.1. Assume that 4y and y are conditionally
independent given y, and p(j = k|x) # Oforallk =1, ..
Then, Hyj(x) = B4 57 p(§ = k| = i,2) T (w )for
allj k=1,...,c

The assumption of § 1l y|g is natural because § is con-
ditionally independent to y when Qﬁ is trained only with
3. Proposition 3.1 shows that [ can be formulated by T'
with weighting variables, which are observable or can be
easily computed from our framework. It implies that we
can also infer 7" from the inference procedure of H, which
suggests the possibility of relating the framework of NPC
to the transition matrix based approaches.
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Figure 3. (a) Average of the true transition matrix T of CIFAR-10
with instance dependent noise 40%, (b)-(e) the estimated transition
matrix of each algorithm. Values in parentheses are the mean
squared error between estimated T and true T.

Figure 3 shows (a) true transition matrix 7" and the em-
pirically estimated 7' (b)-(e) from various algorithms for
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CIFAR-10 dataset with 40% instance dependent noise. We
calculate the mean squared error between true 7" and es-
timated 7' from each method. It should be noted that the
estimated 7" is an aggregated matrix from the input-wisely
estimated matrix. Although the main inference target of
NPC is not 1" but H, NPC shows lowest estimation error of
T, even without any access to the noise ratio. Details of the
experiment and more results of transition matrix estimation
on other noise conditions are provided in Appendix C.2.

4. Experiments

In this section, we first introduce implementation details
and baselines for experiments in 4.1. Afterwards, we pro-
vide quantitative performance results in 4.2 and qualitative
analyses in 4.3. We also compare our method with other
post-processing methods in 4.4, with CausalNL in 4.5. Fi-
nally, we provide NPC’s ability as a detector of potentially
noisy samples in the benchmark dataset in 4.6.

4.1. Datasets and Baselines

To verify the efficacy of our proposed method, NPC, we first
experiment on three benchmark datasets: MNIST (LeCun,
1998), Fashion-MNIST (Xiao et al., 2017), and CIFAR-10
(Krizhevsky et al., 2009). We inject synthetic label noises
following the previous setups of existing works (Patrini
et al., 2017; Han et al., 2018b; Xia et al., 2020a; Berthon
et al., 2021; Yao et al., 2021). Four different types of arti-
ficial label noise are generated as below. More details on
each noise type are provided in Appendix D.1.1. We also
consider the clean setting without any noise to analyze the
generalization ability of NPC.

* Symmetric Noise (SN) flips labels uniformly to all
other classes (Patrini et al., 2017; Han et al., 2018b;
Xia et al., 2020a).

* Asymmetric Noise (ASN) flips labels within a set of
semantically similar classes (Tanaka et al., 2018; Han
et al., 2018b; Xia et al., 2020a).

* Instance Dependent Noise (IDN) flips labels by the
probability that a data instance is mislabeled. This
probability is computed based on the corresponding
feature of the data instance (Xia et al., 2020b; Cheng
etal., 2021; Yao et al., 2021).

e Similarity Reflected Instance Dependent Noise
(SRIDN) not only considers instance-wise similarity,
but also takes into account of inter-class similarity of
each data instance when flipping the labels not (Chen
et al., 2020; Berthon et al., 2021).

Also, we compute experiments on two real-world datasets:
Clothing-IM (Xiao et al., 2015) and Food101 (Bossard et al.,

2014). Details of datasets and implementations are provided
in Appendix D.1.2 and D.1.3, respectively.

We demonstrate the performance of NPC as a post-processor,
by applying NPC to a classifier pre-trained with baseline
methods. The selected algorithms include: (1) CE (Cross
Entropy), (2) Joint (Tanaka et al., 2018), (3) Coteach-
ing (Han et al., 2018b), (4) JoCoR (Wei et al., 2020), (5)
CORES2 (Cheng et al., 2021), (6) SCE (Wang et al., 2019),
(7) ES (EarlyStop), (8) LS (Label Smoothing) (Lukasik
et al., 2020), (9) REL (Xia et al., 2020a), (10) Forward
(Patrini et al., 2017), (11) DualT (Yao et al., 2020), (12)
TVR (Zhang et al., 2021b), and (13) CausalNL (Yao et al.,
2021). More details are explained in Appendix D.1.4.

4.2. Classification Performance on Noisy Datasets

Table 1 shows the experimental results on three synthetic
datasets with the four types of noisy types of various noisy
ratios. By applying NPC to the selected 13 baselines as a
post-processing model, we have total of 351 experimental
cells including the clean cases. With five replications with
different seeds, we got 341 cells with statistically significant
improvement by NPC.

This result demonstrates that NPC is widely applicable to
any type of pre-trained classifiers; and that NPC effectively
calibrates any types of noisy labels without any access to
noise information, i.e. noise ratio and noise type. It is
noteworthy that NPC achieves impressive performances on
IDN conditions on average, and we conjecture that with
its generative modelling structure, NPC successfully cali-
brates instance dependent noise, which is quite a realistic
noisy label generation process. Moreover, we observe that
there are consistent performance enhancements in the clean
cases. These clean-case improvements state that NPC also
improves the generalization of the applied classifier.

While the previous results originate from synthetic datasets,
Table 2 shows the experimental results on Food-101 and
ClothingIM, which are datasets with real world noisy la-
bels with its test dataset containing human-annotated la-
bels. Again, NPC improves the performance of baseline
classifiers on their classification accuracy with statistical
significance in 13 out of 16 experimental cells.

4.3. Qualitative Analysis of ¢, (y|y, )

Figure 4 shows t-SNE mapping views and confusion matri-
ces of our samples from variational posterior, g4(y|7, z)°.
Each dot is colored by the original classifier output g (Figure
4a) or y* = argmax, P(y|z) calibrated with NPC (Figure
4b), respectively. Comparing two t-SNE views, we can ob-
serve that the latent variable ¥ is well clustered to reflect the

>The analysis is based on MNIST dataset with 40% IDN.
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MNIST Fashion-MNIST CIFAR-10

Model Clean IDN Clean SN ASN IDN SRIDN Clean SN ASN IDN SRIDN
- 40% - 20% 80% 20% 40% 20% 40% 20% 40% - 20% 80% 20% 40% 20% 40% 20% 40%
CE 978 663 87.1 740 270 810 773 684 521 810 673 8.9 731 151 802 714 729 539 726 618
w/ NPC 982 89.0 884 84.0 358 859 862 825 745 818 694 89.0 808 17.0 847 788 809 599 743 643
Joint 93.0 936 828 8.0 6.0 821 823 827 824 806 746 8.0 789 83 815 768 804 645 70.6 622
w/ NPC 940 946 836 827 6.0 89 829 834 830 811 755 844 80.2 83 830 77.7 807 691 72.0 63.6
Coteaching  98.0 875 87.0 825 642 882 73.6 818 754 840 750 885 825 297 865 76.6 815 752 753 66.6
w/ NPC 983 906 883 858 660 885 73.6 851 787 842 753 892 8.3 321 871 768 848 785 761 672
JoCoR 97.8 933 887 8.0 276 889 794 863 832 819 713 8.1 836 248 826 733 828 753 752 66.1
w/ NPC 983 961 89.8 88.0 315 892 827 880 857 822 723 893 8.0 270 851 79.0 858 80.1 759 66.7
CORES2 97.0 488 872 746 89 776 743 800 581 813 712 871 701 312 790 712 703 509 728 62.0
w/ NPC 98.0 672 885 843 102 825 81.0 840 69.6 822 749 882 804 307 842 804 804 656 742 64.1
SCE 9777 66.6 870 740 270 820 774 683 520 8l.1 675 8.9 731 151 802 714 729 539 726 618
w/ NPC 98.2 887 883 837 355 864 867 820 752 818 697 874 750 152 815 752 754 556 729 625
Early Stop  96.5 733 875 836 495 841 766 795 554 833 726 830 791 180 809 706 77.1 625 714 60.6
w/ NPC 979 908 887 859 629 876 871 843 753 840 760 840 825 182 812 72.0 794 651 721 63.0
LS 978 662 875 739 278 815 770 690 525 8l.1 675 8.9 731 151 802 714 729 539 726 618
w/ NPC 982 886 88.6 837 352 860 864 822 747 816 695 89.0 80.8 155 847 788 809 599 743 643
REL 98.0 907 881 84.6 70.1 828 762 846 755 837 781 807 749 212 728 699 755 518 693 638
w/ NPC 979 955 869 8.0 703 853 830 838 801 89 783 834 786 260 759 761 785 512 70.7 64.2
Forward 98.0 679 885 774 243 833 792 752 569 824 695 8.3 718 169 782 70.1 702 545 732 635
w/ NPC 984 911 89.6 8.3 330 872 868 868 80.5 833 737 887 815 172 838 745 803 633 748 650
DualT 967 943 863 845 100 869 831 851 685 827 732 843 793 76 806 77.1 7186 712 687 63.1
w/ NPC 978 96.6 882 859 100 876 843 863 723 834 749 860 830 84 830 775 810 773 701 64.0
TVR 977 644 870 726 249 806 764 663 517 814 677 8.7 719 152 785 712 723 536 722 622
w/ NPC 981 845 883 823 319 849 853 798 73.6 821 703 883 808 157 841 765 80.8 60.7 745 64.5
CausalNL  98.1 852 881 840 515 888 874 834 752 820 712 896 799 170 846 748 799 604 746 635
w/ NPC 98.6 945 894 87.0 589 893 887 876 833 833 741 897 812 188 850 748 812 719 753 639

Table 1. Test accuracies for MNIST, Fashion MNIST and CIFAR-10 datasets with their labels corrupted by four types of noisy label
conditions. We demonstrate averaged performances computed by baselines and the post-hoc performances after applying NPC. The
experimental results are averaged values over five trials. Bolded text denotes the one with better performance. For MNIST, experiment

results on other noise conditions are provided in Appendix D.2.

Food-101 Clothing1M

Method w.o/ NPC ~ w/NPC w.o/NPC w/NPC
CE 78.37 80.21+02 68.14 70.83+0.1
Early Stop 73.22 76.80+03 67.07 70.21+0.1
SCE 75.23 78.26+03 67.77 70.36+0.1
REL 78.96 78.95+04 62.53 64.83+0.1
Forward 83.76 83.77+03 66.86 70.0240.1
DualT 57.46 61.82+0.7 70.18 69.9940.4
TVR 77.34 79.37+0.1 67.18 69.44+0.1
CausalNL 86.08 86.29+0.0 68.31 69.90+0.2

Table 2. Classification accuracy on Food-101 and ClothingIM. w.o.
means without and w. means with. Experiments are replicated
over 5 times. Bolded text denotes improved performance with
statistical significance.

class information of a sample.

Figure 4c and 4d illustrates the confusion matrix, each com-
paring the prediction of a classifier and the result after cal-
ibration with NPC to the true label. Comparing the two
figures, we can see the intrusion cases of ¢ in a cluster of
y, which indicates the misclassified result from the original

| "-.

™
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| —
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Dy" =y

b y*

@7y ©y—=vy

Figure 4. t-SNE mapping view of our latent ¢4 (y|4, ) (a, b) and
corresponding confusion matrix (c, d). Colors of t-SNE views and
columns of the confusion matrix represent ¢ and y*, respectively.

classifier®, become fewer with the calibrated y* from NPC.
In other words, with darker diagonal colours, we analyze
that y* is more similar to true y than 4.

By relating t-SNE figures and the confusion matrix together,
we can implicitly find out the meaning of color change of
dots from Figure 4a to Figure 4b. Black dashed boxes show
visible differences between y and y*. For example, red dots
(g = 0) of the right side in Figure 4a is wrongly classified as
the confusion matrix in Figure 4c. On the contrary, the labels

8 Another thing to focus is that the average of the diagonal terms
of the confusion matrix is larger than 0.6, indicating that ¢ is at
least better than the original noisy label, 3.
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of those samples have changed to orange color (y* = 1), its
true labels. These calibrations of classifier outputs are the
reason behind the performance gain in Table 1 and 2.

4.4. NPC as a Post-processor

Our method, NPC, modifies predictions from the classifier
after training. In this section, we first analyze the efficacy
of NPC compared to other post-processing methods (4.4.1).
Second, we discuss the similarities and differences between
label correction framework and post-processing (4.4.2), We
further discuss the empirical convergence of NPC from the
iterative application (in the Appendix D.5).

4.4.1. COMPARISON WITH POST-PROCESSORS

MNIST
95
>
o
©90
3
3
<85
80
Early Stop Forward CORES JOCOR DualT
FMNIST
>
9
© 80
3
o
O
<
70
Early Stop Forward CORES JOCOR
CIFAR-10
85
.80
9
e
575
S
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65 4/
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Baseline [ w/KNN [ w/RoG [EEE w/NPC

Figure 5. Classification accuracy comparison applied on various
baseline methods. Results are averaged over five trials with stan-
dard deviations. We denote the baseline as the algorithm utilized
for training classifier.

In this paper, we do not recognize the methods which opti-
mize or re-train classifier parameters during the inference,
as post-processors. In other words, we treat the the methods
as a post-processors only when they manage the relationship
between input features and labels, without modifying the
classifier parameters.

KNN Prior KNN prior, which we utilize as a prior for
inference of our posterior, could be recognized as a post-
processor itself. Therefore, we compare the performance of
KNN with NPC.

RoG (Lee et al., 2019) is a well-known post processing
method for noisy label classification, as well. RoG assumes
that samples with wrong labels are mostly outliers, so RoG
removes outliers from the measured mahalanobis-distance

(Lee et al., 2018), hypothesizing a classifier to be more
robust to noisy labels.

Figure 5 indicates that NPC performs better than KNN and
RoG on several baselines. Particularly, there is a signifi-
cant gap between KNN and NPC, which emphasizes the
importance of modeling posterior distribution via generative
model, other than the prior setting on y. We also report the
result on Food-101 and Clothing1M in Appendix D.3.

4.4.2. LABEL CORRECTION AND POST-PROCESSING

Label correction method, such as Joint (Tanaka et al., 2018),
LRT (Zheng et al., 2020) and MLC (Zheng et al., 2021) have
similarity with post-processing methods in that both utilizes
the prediction of a given classifier to correct the noisy label.
They are different, however, considering the classifier train-
ing: label correction methods iteratively correct the labels
and train the classifier, which requires access to the classi-
fier parameters. Post-processing methods are different from
them because it does not entail classifier training. Having
said that, by replacing noisy label y with prediction g of a
pre-trained classifier and training a new classifier, existing
methods can be utilized as post-processor. Therefore, we
focus on label correction methods and the utility of these
methods as post-processor.

Method ‘
Noise | Joint LRT MLC
SN | 80.0+06 829402 7l.I+io
IDN | 78.6+13 825402 722+26

Label Correction |
CauseNL | LRT*  MLC*
772415 | 827401 82.2+19
784+17 | 829+02 821404

Post-processing

CauseNL* NPC
83.5+05  85.3+03
833+05  84.8401

Table 3. Test accuracy on CIFAR-10 with different noise types.
Noise ratio are 20%. Experiments are repeated over 5 times. For
post-processing models, we utilize the prediction trained with Co-
teaching method for fair comparison with CausalNL.

Table 3 shows the model performance of label correction
methods and their applicability as post-processors. Base-
lines without and with an asterisk mean the original version
and the post-processor of models, respectively. NPC shows
best performance with statistical significance.

4.5. NPC as a Generative Model

4.5.1. WHAT CAUSALNL AND NPC FOCUS FROM X

Ceviche

Cannolli

Ceasar salad

Churros

Carrot cake Cheese plate

CausalNL

NPC

Figure 6. GradCAM results on Food-101. CausalNL tends to cap-
ture the whole image, while NPC focuses on the class-related
features. Texts on each Column denotes the label of each image.
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To understand what information each model focuses on
from X to predict Y, we utilize GradCAM (Selvaraju et al.,
2017). Figure 6 shows that NPC focuses on the class-related
features while CausalNL also pays attention to other parts,
which is driven by the generation of X. For example, to
classify an image of Churros correctly, NPC mainly under-
stands the part of features largely related to the Churros
itself, while CausalNL captures both the Churros part and
the Chocolate part to generate the image itself also well.

4.5.2. FAILURE CASE ANALYSIS

Clean Label (y = ) Noisy Label (y # ¥)
(y+#y &y#3 (e)yvty*&yatﬁ

(b) (d) (h)
—y& (©) —y& @
y +y y:‘ty y b yiy

Figure 7. Venn diagram by relation between true class (y), noisy
label (y), classifier model prediction () and model prediction after
post-processing (y™)

Figure 7 is a Venn-Diagram to illustrate the count on
gains and losses from post-processing. An analysis on
four cases are required to evaluate the performance of a
post-processor; 1) miss from classifier and miss from post-
processor ((a), (€)), 2) miss from classifier and hit from
post-processor ((b), (f)), 3) hit from classifier and hit from
post-processor ((¢), (g)), and 4) hit from classifier and miss
from post-processor ((d), (h)). Reducing case 4) as small
as possible while increasing case 2) would indicate the
best case for post-processors. Table 4 shows the results
on NPC and CausalNL*, which is the post-processor ver-
sion of CausalNL.

| @ ® (© @ | ©@ ©O @ M0

NPC 8§ 89 39799 86 | 9035 949 15 19
CausalNL* | 39 58 32459 7426 | 2446 7538 31 3

Table 4. The number of samples on each region for Venn diagram
in Figure 7. Results from CIFAR-10 with Symmetric Noise (20%)

Computing {(b)+(f)} —{(d)+ (h)}, NPC and CausalNL*
each shows 933, 167 counts, making NPC 5.59 times more
effective than CausalNL*. Comparing cases on NPC and
CausalNL* explains the difference of modeling nature be-
tween two methods. With NPC managing the relation of
noisy prediction and the true label given X, NPC becomes
a cautious corrector. However, CausalNL explores wider
range of Y with X generation included in training objective,
making CausalNL* a risk taking corrector.

4.6. NPC Identifies Potential Noises in Benchmarks

In this section, we provide the detection results of potentially
noisy instances from the learning of NPC on benchmark
datasets. We first capture all test samples whose label anno-
tations and predictions from NPC are different. From them,
we select 50 samples with highest prediction confidences
and show 20 human-picked samples with marks of origi-
nal annotations and predictions. From MNIST, we found
out that images, which were captured by NPC, could be
written differently from the original intention of annotators.
Moreover, the samples from Fashion-MNIST are observed
to have a possibility to be wrongly labeled, e.g. confusing
features between Sneaker and Ankle boot.

HObGGENRRGSA

1->7  8->9 4->9 5->6 7->2 4->9 9->4 4->9 5->6 9->7

EBNRAZENEAER

6->0 3->5 6->1 6->8 2->7 9->0 7->3 7->1 9->7 7->2

= LR 22 1

C->P A->SN S->D C->P S->D SA->SN S->P S->P S->P A->SN

AN inniEL

C->D TS->D T->D SN->A S->TS T->D S->D TS->D P->TS S->TS

Figure 8. The selected samples of MNIST (upper two rows) and
FMNIST (under two rows) from the set of instances whose anno-
tations and predictions from NPC are different. The marks below
images denote (label — prediction). The abbreviation for Fashion-
MNIST means as follows: {C: Coat, P: Pullover, A: Ankle boot,
SN: Sneaker, D: Dress, SA: Sandal, S: Shirt, TS: T-shirt/top}

5. Conclusion

In this paper, motivated by the possible failure of the classi-
fier trained with noisy labels, we provide a novel method,
Noisy Prediction Calibration (NPC), to calibrate noisy pre-
diction from a classifier to a true label. By explicitly mod-
elling the relation between the output of a classifier and the
true label, NPC opens up new possibilities for formulating
noisy label problems. With the provided experiments on
several types of noise settings, NPC proves its effectiveness
to improve the robustness of a classifier’s prediction in var-
ious situations. Also, we believe that our methodological
framework, which calibrates the prediction of given clas-
sifier, can be actively utilized on other fields of machine
learning, e.g., long tailed recognition, domain adaptation.
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A. Previous Researches

Here, we explain the details on the previous researches for learning with noisy labels which were not included in the main
paper.

A.1. Previous Researches for Learning With Noisy Labels
A.1.1. EXTRACTION OF RELIABLE CLEAN SAMPLES

(Han et al., 2018Db) is one of the studies which assumed that samples with small losses are to be clean. The problem of
small loss criteria is that, however, the deep neural network will overfit to small loss samples in earlier learning stage, and it
will cause learning bias. To prevent this problem, (Han et al., 2018b) use two identical structured networks with different
initial point. Then it chooses small loss samples from each network and exchanges them with peer network for updating
the parameters. With the increase of training epochs, however, two networks have converged to a consensus gradually.
Therefore, (Yu et al., 2019) has been proposed. In this study, a sample can only be selected when its output from two
different networks disagree and it has small loss. Although it solves the problem of two different networks’ convergence to a
same point, it selects very few examples to train classifiers, especially when the noise ratio is high. This phenomenon is
reported in (Wei et al., 2020), and they relieve these limitations by updating two networks together, making the result of two
networks become closer to true labels and peer network’s.

A.1.2. LABEL MODIFICATION

(Tanaka et al., 2018) jointly optimizes both model parameter and label data, initialize network parameters and train with
modified labels again. (Yi & Wu, 2019) adopts label probability distributions to supervise network learning and to update
these distributions through back-propagation end-to-end in each epoch. (Li et al., 2020) removes labels of samples with
large loss, considering the samples as unlabeled, and applying semi-supervised learning strategies. (Zheng et al., 2020)
takes the likelihood ratio between the classifier’s confidence on noisy label and its confidence on its own label prediction as
its threshold to configure clean labeled dataset, and corrects the label into the prediction for samples with low likelihood
ratio iteratively. (Zheng et al., 2021) uses meta learning and reweights samples depending on the cleanness of its label.
(Wang et al., 2021) analyzes several types of label modification approaches and suggests label correction regularization
hyperparameter depending both on learning time stage and confidence of a sample.

A.1.3. ROBUST LOSS AND REGULARIZATION

(Ghosh et al., 2017) propose that the mean absolute loss (MAE) is more robust to the noisy label. However, it can cause
underfitting, meaning a classifier converge to a bad sub-optimal. (Zhang & Sabuncu, 2018) combine the advantages of the
mean absolute loss (MAE) and the cross entropy loss (CE) to obtain a better loss function and presents a theoretical analysis
of the proposed loss functions in the context of noisy labels. (Wang et al., 2019) analyze CE, propose that CE fail to learn all
classes uniformly well when learning with noisy labels. They suggest that adding reverse cross entropy term to original
cross entropy term makes more robust loss to noisy label.

(Liu et al., 2020) is based on the phenomenon that the deep neural networks trained with noisy labels make progress during
the early learning stage before memorization occurs. Therefore, they added a regularization term that seeks to maximize the
inner product between the model output and the targets, with the target same as the weighted results of previous epochs.
(Xia et al., 2020a) distinguishes critical parameters from non-critical parameters by gradient value and use only critical
parameters for fitting true labels, hoping to solve overparameterization problem.

A.2. Explanation on Recent Instance-dependent Transition Matrix Studies
A.2.1. PDN

(Xia et al., 2020b) approximates 7'(z) by a weighted combination of part-dependent transition matrices, {P*}7_,. This
estimation is elaborated as follows:

T;j(x) = hi(x)PF (11)
k=1

Here, hy () is a input-dependent scalar weight for P*. However, this estimation requires another estimation of P* relying
on anchor points, whose discrete selection becomes heuristic, i.e. selecting an instance with a confident output from noisy
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classifier f .

A.2.2. CSIDN

(Berthon et al., 2021) introduces a new method based on confidence score, p(y = i|§ = i, x), and this method assumes that
the confidence score is given. With observed p(y = i|§ = 4, x), T is transformed as Eq. 12.

P(y = ilj = i,x) BI=12) ifj=i
T (2) — Ply=1ly ") P(y=i|z) e, 12
o) {P(yzﬂy#hyzl)(l—Ti,i(ﬂﬁ)) ifi#i ()

Whereas this method provides an input-dependent 7', an assumption of observing p(y = i|g = 4, 2) may be unrealistic and
potentially annotation intensive.

B. Reparameterization Trick for Dirichlet Distribution

Following (Joo et al., 2020), we consider the dirichlet distribution as a composition of gamma random variables as follows:

Ly ar) 2o
TIT(ax)

where oy, o, 8 > 0. In other words, if there are K independent random variables X ~ Gamma(ay, §) with ag, 8 > 0
fork =1,---, K, we have Y ~ Dirichlet(a) where Y3, = X}/ > X;. Note that 5 should be same for all X}. In this
way, we can calculate the kl divergence of two dirichlet distributions as kl divergence of two multi-gamma distributions,
where X = (X1, -+, Xg) ~ MultiGamma(a, 8 - 1x) represents vector of K independent gamma random variables
Xj ~ Gamma(ay, 8) with a, 8 > O0fork =1,--- | K.

L(a)
ﬂa

, Gamma(z; a, f) = anflefﬁz (13)

Dirichlet(z; ) = (@)
e

Note that the derivative of a Gamma-like function can be derived as follows:

d T(a)
da e

=B"I"(a) —T'(a)log B) = /OO 2% te P logx da . (14)
0

Using Eq. 14, the KL divergence can be written as follows:

S an [T~ (@) ? = [Tapk ™"

B
KL(Q||P) = / q(x)log Ez; / / HGamma (&g, )IOgﬁZakl‘[rfl(ak)e*f’ZwkHm:’“’l dx
/ / HGamma G, B) X {Z(dk—ak)logﬂ+210gf(ak)—ZlogF(@k)+Z(é¢k—ak)loga¢k dx
:Z 0 — oy 1ogﬁ+ZlogF o —Zlogf(dk)
L e L (S oven

= (61 — ax)log B + ZlogI‘ ag) = Y logT(éx) + > (ék — ) BT (ax) B~ (I (4x) — T'(dx) log B)
= (6 —ax)log B+ logT(ax) — > logT(dx) + (G — ax)(eh(dx) — log B)
=) logT(ay) = Y logT(ax) + Y _(Gx — ax)i(dx)

Now we can calculate the kl divergence of two multi-gamma distributions as follows:

15)

L(Q||P) = Zlogl" (o) Zlog T(ay) + Z(dk — ag)(ay) , (16)

where P = MultiGamma(«, 8 - 1x) and Q = MultiGamma(&, § - 1).
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C. Alignment of 7" and H
C.1. Proof of Proposition 3.1

Proposition C.1. Assume that yj and y are conditional independent given ¥, and p(y = k|z) # Oforallk = 1,..,c. Then,
Hij(w) = ZYEIE S p(§ = k[ = i, 2) Ty () for all j,k = 1, .

Proof.
ply=jli=ka)=> ply=jj=ilj=kx) (17)
ply=4,§ =19 = klz)
= - (18)
Z p(§ = klz)
_ o p@ =klg =iy =j,2)p( = ily = j,x)p(y = j|z)
> ’ (19)
- p(§ = klz)
p(y = jlz) N o _ . _
= —— =kly=1i,x =iy =j,x Lyl (20)
(5 = i) Xi:p(y g =ia)pG=ily=j.x) (-7Lyly)
(21)
Therefore, Hy;(z) = p(g il‘z) Y.p(y=kly=1i,2)T;;(x)forall j,k=1,..,c
O

The assumption of § L y|§ is natural because § is conditionally independent to y when 1/3 is trained only with g. Proposition
3.1 shows that H can be formulated by 7" with weighting variables, which are observable or can be easily computed from
our framework. It implies that we can also infer 7" from the inference procedure of H, which reduces the framework of NPC
to the transition-based approaches.

C.2. Experiment on the Relation between 7" and

C.2.1. EXPERIMENT DETAILS

For p(g|z), we use same network as in Section 4. For finding p(y|x), we use our model output, whichis >~} _, p(y|y =
k,x)p(g = k|x). What is left is then p(y|@, =) term. Since all variables for the probability calculation is given as datasets,
we can make a function that approximates this probability with another deep neural network. This network has similar
structure with the networks used in Section 4. The only difference is ¥ is to be concatenated with feature of x. For other
implementation details, such as batch size, learning rate, we utilize same condition as in Section 4.

In the concept of instance-dependent noisy label generation model, each transition matrix of all different samples is assumed
not to be identical. As a method to merge instance-wise different transition matrices as a single representative value, we
approximate the class-wise transition matrix with monte-carlo estimation, which is calculated as Eq. 22.

Ti; = P(y = jly =1)
=Y P(j

=3P = jly =i,x)P(aly = i) (22)

Jrxly = 1)

1
~ N ZP(@] = jly = i,x), where N; = total number of samples of class i
x

C.2.2. ADDITIONAL RESULTS ON TRANSITION MATRIX ESTIMATION

We report MSE between the transition matrix approximated from each algorithm and the true transition matrix in Table 5 for
CIFAR-10 dataset with various noisy label conditions. The result shows that NPC approximates the transition matrix as
good as the traditional algorithms.
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Noise | Ratio | Forward DualT ~ TVR  CausalNL ~ NPC
20 ‘ 0.0018 0.0012 0.0018 0.0035 0.0015

SN‘

| 80 | 0.0004 0.0576 0.0005  0.0195  0.0005
N |20 | 00038 00021 00024 00034  0.0035
| 40 | 0.0041 0.0043 0.0032  0.0049  0.0018

Table 5. MSE between the approximated transition matrix and the true one.

D. Experiment

Here, we manage dataset explanation, noise label generation process, experiment settings and additional result.

D.1. Implementation Details and Baseline Description
D.1.1. SYNTHETIC NOISY LABEL GENERATION PROCESS

MNIST (LeCun, 1998) and Fashion-MNIST (Xiao et al., 2017) are both 28 x 28 grayscale image datasets with 10 classes,
which include 60,000 training samples and 10,000 test samples. CIFAR-10 (Krizhevsky et al., 2009) is 32 x 32 x 3 color
image dataset with 10 classes, which includes 50,000 training samples and 10,000 test samples. Since these datasets are
assumed to have no noisy labels, we manage four types of noisy label for noisy label injection. Here, we explain details of
those noisy label generation processes. Since we explain enough for symmetric noise in Section 4, we pass explanation on it.

Asymmetric Noise (ASN) (Han et al., 2018b; Tanaka et al., 2018; Xia et al., 2020a) For this type of noise, we flipped label
class as below, following the previous researches.

e MNIST:2=7,3=28,5< 6
e FMNIST : T — shirt = Shirt, Pullover = Coat, Sandals = Sneaker

¢ CIFAR-10 : Truck = Automobile, Bird = Airplane, Deer = Horse, Cat < Dog

Instance Dependent Noise (IDN) We followed noise generation process as utilized at (Xia et al., 2020b; Cheng et al., 2021;
Yao et al., 2021).

Algorithm 1 Instance Dependent Noise Generation Process

Require: Clean samples (z;,y; )7 1;, Noise rate T
1: Sample instance flip rates ¢ € R™ from the truncated normal distribution N(7,0.12, [0, 1]);
2: Independently sample w1, ws, ..., w,. from the standard normal distribution N(0, 12);
3: fori=1,2,....,ndo

4: P =T; X Wy,

5:  py, = —inf;

6:  p=q; X softmax(p);
T py=1—qi;

8:  Randomly choose a label from the label space according to the possibilities p as noisy label ¥;;
9: end for

Output: Noisy samples (z;, §;)

Similarity Reflected Instance Dependent Noise (SRIDN) We followed noise generation process as utilized at (Chen et al.,
2020; Berthon et al., 2021).

We only perform normalization for CIFAR-10.
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Algorithm 2 Similarity Reflected Instance Dependent Noise Generation Process

Require: Clean samples (z;, y;)_;;, Noise rate T
1: Train a classifier;
2: Get output from a classifier f; € R forall ¢ = 1, ..., n and sort by f}*;
3: Set Nnoisy = 0;
4: while N,y <n x 7 do
5 From the least confident sample, choose noisy label §; = max -y, je1,....c fij ;
6 Nnaisy = iVnoisy +1;
7: end while
Output: Noisy samples (z;, §; )1

D.1.2. REAL DATASETS WITH NOISY LABELS

Food101 (Bossard et al., 2014) is color image datasets with 101 food categories, each category having 1,000 samples each.
For each class, 250 images are annotated by humans, consisting of test dataset and 750 images are provided with real-world
label noise. Clothing-1M (Xiao et al., 2015) is another real-world noisy label dataset collected from several online shopping
websites. The data contains 1 million training images with 14 classes. We use the total 75,000 human annotated images only
for testing. All datasets have been widely used in the previous researches (Wei et al., 2020; Xia et al., 2020a; Cheng et al.,
2021; Yao et al., 2021). For Food101 and Clothing1 M, we resize the image to 256 x 256, crop the middle 224 x 224 as
input, and perform normalization.

D.1.3. IMPLEMENTATION DETAILS

For fair comparison, we implement same network structures for all baseline methods. In details, we use network with two
convolution layers for MNIST and Fashion-MNIST, 9-layered convolutional neural network for CIFAR-10 as in (Han et al.,
2018b; Yu et al., 2019). For real-world dataset, Food101 and Clothing-1M, we use a ResNet-50 network pre-trained on
ImageNet (Deng et al., 2009).

CNN on MNIST & Fashion-MNIST CNN on CIFAR-10
28 x 28 32x32x3
3 x 3 conv, 128 LRELU
3 x 3 conv, 128 LRELU
3 x 3 conv, 128 LRELU
2 x 2 max-pool, stride 2
dropout, p = 0.25

3 x 3 conv, SRELU 3 x 3 conv, 256LRELU

3 x 3 conv, 16Tanh 3 x 3 conv, 256LRELU
dense 16 x 28 x 28 — 28 x 28 3 x 3 conv, 256LRELU
dense 28 x 28 — 256 2 x 2 max-pool, stride 2

dropout, p = 0.25
3 x 3 conv, 512LRELU
3 x 3 conv, 256LRELU
3 x 3 conv, 128 LRELU
avg-pool
dense 256 — 10 dense 128 — 10

Table 6. Convolutional Neural Network Structure for MNIST, Fashion-MNIST and CIFAR-10 datasets.

We train all synthetic datasets with batch size 128 and all real-world datasets with batch size 32. For all datasets, we use
Adam optimizer with learning rate of 10~2 and no learning rate decay is applied. All methods are implemented by PyTorch.

D.1.4. BASELINE DESCRIPTION

We compare the proposed method with the following approaches.
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CE It trains the deep neural networks with the cross entropy loss on noisy datasets.

Joint (Tanaka et al., 2018) It jointly optimizes the network parameters and the sample labels. We set « and 3 as 1.0
and 0.5 respectively.

Coteaching (Han et al., 2018b) It trains two different networks and the samples with small loss are only fed to the
other network for learning.

JoCoR (Wei et al., 2020) It also trains two networks and selects the samples, for which the sum of the losses from
two networks is small, as clean samples. Following authors of the original paper, we set A as 0.5, and set other
hyperparameter settings as cited on the paper.

CORES?2 (Cheng et al., 2021) Regarding the prediction output of a network, which is trained on noisy dataset, as a
confidence of each instance, it selects data instances with high confidence as clean instances. We follow hyperparameter
settings as cited on the paper.

SCE (Wang et al., 2019) It trains network based on the specialized loss function, which is sum of cross entropy and
reverse cross entropy. We follow hyperparameter settings as cited on the paper.

ES (EarlyStop) Splitting a part of noisy training dataset as validation dataset, it only learns network until the validation
performance continues to decrease.

LS (Label Smoothing) (Lukasik et al., 2020) It trains network based on the noisy dataset where each label is expressed
as a smoothed label by a given label smoothing factor rather than one-hot encoding. We set smoothing factor as 0.1.

REL (Xia et al., 2020a) To avoid the over-parameterization of the network, it only trains critical parameters, whose
gradients are high, of network.

Forward (Patrini et al., 2017) It trains network based on the loss function, which is modified by the estimated transition
probability matrix.

DualT (Yao et al., 2020) In order to reduce the estimation error of the transition probability matrix, the corresponding
matrix is expressed as a product of two matrices, and each matrix is estimated.

TVR (Zhang et al., 2021b) To solve the problem of infinitely many possible solutions of the transition probability
matrix, it minimizes the total variance distance.

CausalNL (Yao et al., 2021) We already explained on this research previously in Section 2.3.
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D.2. Performance on MNIST Dataset

Due to space issue, we show test accuracy on MNIST dataset with several noise conditions here. In most noise settings, our
proposed method increases model performance, calibrating noisy prediction to true label.

Model Clean SN ASN IDN SRIDN
- 20 80 20 40 20 40 20 40

CE 97.8 863 297 892 813 805 663 829 654
w/NPC 982 953 36.6 963 923 94.6 89.1 852 70.3
Joint 93.0 939 220 938 932 93.1 936 87.1 8l.1
w/NPC 945 955 219 952 949 948 955 89.1 844
Coteaching 98.0 91.8 69.6 979 975 90.7 875 89.0 81.3
w/NPC 983 950 748 982 979 949 933 91.0 844
JoCoR 97.8 950 36.6 975 953 946 933 902 822
w/NPC 983 964 363 973 946 969 96.1 919 85.2
CORES2 97.0 753 166 885 98 805 488 865 68.5
w/NPC 979 869 239 945 98 90.7 674 894 785
SCE 97.7 857 305 894 813 80.6 666 833 658
w/NPC 982 951 385 962 925 945 888 853 70.7
Early Stop 965 959 57.8 949 844 90.1 733 858 714
w/NPC 979 971 750 974 899 96.6 90.6 88.6 76.5
LS 97.8 858 326 889 824 B80.6 662 843 653
w/NPC 982 951 40.6 960 928 944 88.7 862 70.8
REL 98.0 966 794 938 942 955 90.7 904 86.2
w/NPC 979 969 849 968 964 968 955 917 88.7
Forward 98.0 881 27.8 91.8 821 829 679 845 67.7
w/NPC 984 956 394 979 969 96.1 91.1 869 744
DualT 96.7 936 98 959 89.7 930 943 86.6 728
w/NPC 978 963 98 977 931 959 965 893 773
TVR 977 847 31.8 867 80.0 752 644 837 663
w/NPC 98.1 944 389 954 91.0 91.6 845 857 713
CausalNL ~ 98.1 941 57.1 983 974 927 852 845 68.9
w/NPC 984 969 635 983 981 97.0 945 89.0 759

Table 7. MNIST test accuracy on all noise conditions trained by several baseline classifiers and after post-processed with NPC. Bolded
with accuracy gain. Similar to the main paper, all experiments are replicated over five times with different random seeds. Reported results
are mean value.

D.3. Comparison with Post-processors: Results on Real Dataset

We compare the test accuracy of NPC and other post-processing method applicable after finishing training a classifier on
Food-101 and Clothing-1M. We show NPC works best of all at Table 8.

Dataset | Food101 ‘ ClothinglM
Method ‘ Classifier KNN RoG NPC ‘ Classifier KNN RoG NPC
CE 78.37 67.254+02 78.38+01 80.21%02 68.14 69.384+01 68.05+01 70.83=+0.1
Early Stop 73.22 68.37+02 75.87+02 76.80+03 67.07 68.76+00 68.25+01 70.21%0.1
SCE 75.23 64.72+03 77.49+01 78.26+03 67.77 69.34+01 67.69+02 70.36+0.1
REL 78.96 78.904+01 83.79+0.1 78.95404 62.53 63.49+00 66.12+03 64.8340.1
Forward 83.76 83.68+00 82.02+0.1 83.77+403 66.86 69.40+01 66.71+02 70.0240.1
DualT 57.46 52.874+02 60.82+01 61.82+07 70.18 69.054+01 69.46+01 69.99+04
TVR 77.34 65.984+03 77.20+01 79.37+0.1 67.18 68.27+02 67.55+01 69.4440.1
CausalNL 86.08 85.14401 8593401 86.29+0.0 68.31 68.084+0.1 68.37+01 69.90+02

Table 8. Test accuracy after training the classifier with cross entropy loss, training KNN algorithm on representations, applying RoG, and

applying NPC for Food101 (Food) and Clothing-1M (Clothing).



From Noisy Prediction to True Label: Noisy Prediction Calibration via Generative Model

D.4. Flexibility of Prior Modeling for NPC

As mentioned in Section 3.2.3 of the main paper, we designed a prior distribution of the latent variable y depending on x as
Eq. 9 using predictions from KNN algorithm. However, the shape of a prior distribution does not have to be one-specific
dimension sharp and all other dimensions flat. In this section, we report experiment results with more flexible modeling of a
prior distribution as Eq. 23. Here, unlike the main page, we define Y as the subset of the label set with |Y'| possible to be
larger than 1 and p as the prediction probability from KNN.

4 k#y _
k
ax—{(s pxplg) k=g forye¥, k=1,...c (23)

Increasing flexibility of the prior may result in either accuracy increase or decrease; it can implicitly model information on
the relations of classes by specifying the probability of a sample being assigned to each class, or inject noise and lose class
information. We experiment the difference of a prior distribution for CIFAR-10 dataset with several noise conditions. Table
9 reports the test accuracy of NPC with its original prior and with the flexible version. We find out that TOP2 prior tends
to work better than the original one with more severe noises or ASN or IDN noise condition. Since the prior distribution
represents the information given from the input (z) for classification, we see the possibility of model development by
modeling improved prior.

Model Clean SN ASN IDN SRIDN
- 20 80 20 40 20 40 20 40
CE 89.0 80.8 170 847 788 809 599 743 643
w/ TOP2 80.0 792 18.0 853 804 803 646 741 634
Joint 844 802 83 830 77.7 80.7 69.1 72.0 63.6

w/ TOP2 839 800 84 824 773 811 770 713 6238

Coteaching  89.2 853 321 87.1 768 848 785 761 67.2
w/ TOP2 89.3 839 320 873 774 838 785 759 67.0

JoCoR 89.3 86.0 270 851 79.0 858 80.1 759 66.7
w/ TOP2 89.3 853 274 850 80.0 855 805 76.1 66.9

SCE 874 750 152 815 752 754 556 729 625
w/ TOP2 89.0 792 18.0 853 804 803 646 741 634

Early Stop  84.0 825 18.2 812 720 794 651 721 63.0
w/ TOP2 784 827 179 813 725 179.7 657 717 628

LS 89.0 808 155 847 788 809 599 743 643
w/ TOP2 89.0 792 18.0 853 804 803 646 741 634
REL 834 786 260 759 761 785 512 707 642

w/ TOP2 81.6 770 256 746 756 770 51.1 702 64.3

Forward 88.7 815 172 838 745 803 633 748 65.0
w/ TOP2 8.9 828 208 852 783 830 764 739 653

DualT 86.0 830 84 830 775 810 773 701 64.0
w/ TOP2 86.0 831 83 820 781 811 773 700 638

TVR 883 80.8 157 84.1 765 808 60.7 745 645
w/ TOP2 884 785 17.0 843 793 797 650 743 63.6

CausalNL 89.7 812 188 850 748 812 719 753 639
w/ TOP2 90.6 814 19.0 857 754 815 725 758 64.0

Table 9. Test accuracy for CIFAR-10 datasets with various noisy label types. We demonstrate average performances with NPC of one-
dimension sharp prior and its smoothed version (w/TOP2). TOP2 represents the dimension with largest probability and the second-best
one become sharp with its value. The experimental results are averaged value over five trials. Bolded text denotes better performance.
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D.5. Repetitive Application of NPC
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Figure 9. Iterative learning of NPC on CE for several datasets.

NPC calibrates the classifier prediction toward the true label as a post-processor. Having said that, It arises a new question :
With the repetitive application of NPC, would the performance of given model gradually improve and finally torch the 100%
test accuracy, or the performance would converge to some extent? If it converges, when will it do? We implemented this
experimental setting by designing the repetitive application of NPC, which iteratively utilizes calibrated prediction of NPC
from previous iterations. Figure 9 shows that the NPC performance converges after the first deployment. It implies that NPC
with a single iteration has already utilized enough information from the classifier to model latent true label.

D.6. Extensive Comparison between CausalNL and NPC

Ratio | CausalNL NPC

20% 81.81 8291 £0.1
40% 77.01 78.83 £ 0.4

Table 10. Test accuracy on CIFAR-10 with IDN noise

On the main page, we reported model accuracy of CausalNL lower than the one reported in the original paper (Yao et al.,
2021). We analyzed why this gap happened, found out that 1) the difference of backbone structure (9-layer CNN for ours,
Resnet34 for the original paper) and 2) the difference of data normalization have affected the performance. we experiment
CausalNL model under the same condition as the original authors did, and reproduce the performance as table 10. Still,
NPC shows better performance than CausalNL.

D.7. Time Complexity Comparison on 7" and H

Our next question is: How long does it take on estimation of 7" and H to converge? We experimented it on MNIST Instance
dependent 20 % noise label dataset, and report the running time of each method on Table 11.

Model Time

Forward | 636.4425
DualT 3004.905
TVR 468.7727
CausalNL 4165
NPC 28.2169

Table 11. Model and Time spent to converge



