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Abstract

We study the problem of observational causal in-
ference with continuous treatment. We focus on
the challenge of estimating the causal response
curve for infrequently-observed treatment values.
We design a new algorithm based on the frame-
work of entropy balancing which learns weights
that directly maximize causal inference accuracy
using end-to-end optimization. Our weights can
be customized for different datasets and causal in-
ference algorithms. We propose a new theory for
consistency of entropy balancing for continuous
treatments. Using synthetic and real-world data,
we show that our proposed algorithm outperforms
the entropy balancing in accuracy of treatment
effect estimation.

1. Introduction

In many applications in business, social, and health sciences,
we wish to infer the effect of a continuous treatment such as
drug dosage or administration duration on a health outcome
variable. Often, several confounding factors are common
factors of influencing both treatment and response variable,
therefore for accurate causal estimation of the treatment
in view, we must appropriately account for their potential
impact. Unlike binary treatments, causal inference with
continuous treatments is largely understudied and far more
challenging than binary treatments. (Galagate, 2016; Ai
et al., 2021). This is primarily because continuous treat-
ments induce uncountably many potential outcomes per
unit, only one of which is observed for each unit and across
units, a sparse coarsening of the underlying information
needed to infer causal effects without uncertainty.

Propensity score weighting (Robins et al., 2000; Imai &
Van Dyk, 2004), stand-alone or combined with regression-
based models to achieve double robustness (Diaz & van der
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Laan, 2013; Kennedy et al., 2017), has quickly become the
state of the art for causal inference. If the weights, inversely
proportional to the conditional distribution of the treatment
given the confounders, are correctly modeled, the weighted
population will appear to come from a randomized study.
However, this approach faces several challenges: (1) The
weights only balance the confounders in expectation, not
necessarily in the given data (Zubizarreta et al., 2011). (2)
The weights can be very large for some of units, leading to
unstable estimation and uncertain inference. As a possible
remedy, entropy balancing (Hainmueller, 2012) estimates
the weights such that they balance confounders subject to
a measure of dispersion on the weights to prevent extreme
weights.

In this work, we note that low-entropy weights do not di-
rectly optimize the quality of subsequent weighted regres-
sion, and we introduce an alternative approach that does.
We propose End-to-End Balancing (E2B) to improve the ac-
curacy of the weighted regression used for causal inference.
E2B uses end-to-end training to estimate the base weights
in the entropy balancing framework. The E2B weights are
thus customized for different datasets and causal inference
algorithms that are based on weighting. Because we do
not know the true treatment response function in real data,
we propose a new approach to generate synthetic training
datasets for end-to-end training.

To theoretically analyze end-to-end balancing, we define
Generalized Stable Weights (GSW) for causal inference as
a generalization of the stable weights proposed by Robins
et al. (2000). We prove that weights learned by entropy
balancing for continuous treatments, including E2B weights,
are unbiased estimators of generalized stable weights. We
also show that E2B weights are asymptotically consistent
and efficient estimators of the population weights.

We perform three sets of experiments to demonstrate accu-
racy improvements by E2B. Two experiments with synthetic
data, one with linear and another with non-linear response
functions show that the E2B is more accurate than the base-
line entropy balancing and inverse propensity score tech-
niques. We also study the impact of mis-specification in
synthetic data generation process. In the experiments on
real-world data, we qualitatively evaluate the average treat-
ment effect function learned by E2B. We also show that
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the base weights learned by E2B follow our intuition about
up-weighting low frequency treatments.

2. Problem Definition and Related Work

Problem Statement. Suppose we have the triplet of
(x,a,y), wherex € X CR",a € A C Randy € R denote
the confounders, treatments, and response variables, respec-
tively, from an observational causal study. In our continuous
treatment setting (Galagate, 2016, Ch. 1.2.6), we denote po-
tential outcomes as y(*), which means the value of y after in-
tervention in the treatment a and setting its value to a. Given
an 1.i.d. sample of size n, {(x;, a;, y;) }I_,, our objective is
to eliminate the impact of the confounders and identify the
average treatment effect function y(a) = E[y(®)], which is
also called the response function. We make the two classic
assumptions: (1) Strong ignorability: y(®) 1l a | x. (i.e., no
hidden confounders) and (2) Positivity: 0 < P(alx) < 1.

General Causal Inference Literature. The literature on
causal inference is vast and we refer the reader to the books
for the general inquiry (Pearl, 2009; Imbens & Rubin, 2015;
Spirtes et al., 2000; Peters et al., 2017). Instead, we fo-
cus on reviewing the inference techniques for continuous
treatments. In particular, we narrow down our focus on
propensity score weighting approaches (Robins et al., 2000;
Imai & Van Dyk, 2004), because they can either be used
alone or combined with the regression algorithms to create
doubly robust algorithms.

Causal Inference via Weighting. A popular approach
for causal inference is to create a pseudo-population by
weighting data points such that in the pseudo-population the
confounders and treatments are independent. Thus, regular
regression algorithms can estimate the causal response curve
using the pseudo-population, which resembles data from
randomized trials. Throughout this paper, we will denote
the parameters of the pseudo-population with a tilde mark.
Multiple forms of propensity scores have been proposed
for continuous treatments (Hirano & Imbens, 2004; Imai
& Van Dyk, 2004). The commonly-used stablized weights
(Robins et al., 2000; Zhu et al., 2015) are defined as the
ratio of marginal density over the conditional density of the
treatments: sw = f(a)/f(alx).

Problems with Propensity Scores. Zubizarreta et al.
(2011) list two challenges with the propensity scores: (1)
The weights only balance the confounders in expectation,
not necessarily in the given data. (2) The weights can be
very large for some of the data points, leading to unstable
estimations. The challenges are amplified in the continuous
setting because computing the stabilized weights requires
correctly choosing two models, one for the marginal and
one for the conditional distributions of the treatments. Kang

et al. (2007) and Smith & Todd (2005) provide multiple
evidence that the propensity score methods can lead to large
biases in the estimations. While Robins et al. (2007) propose
techniques to fix the large weights problems in the binary
treatment examples discussed by Kang et al. (2007), learn-
ing more accurate, bounded, and stable weights has been
an active research area. Further techniques have proposed
techniques to learn more robust propensity scores for binary
treatments (Li et al., 2018; Zhao, 2019) too, however, the
case of continuous treatments have received considerably
less attention.

Entropy Balancing. To address the problem of extreme
weights, Entropy Balancing (EB) (Hainmueller, 2012) esti-
mates weights such that they balance the confounders sub-
ject to a measure of dispersion on the weights to prevent
extremely large weights. Other loss functions using different
dispersion metrics have been proposed for balancing (Zu-
bizarreta, 2015; Chan et al., 2016). Zhao & Percival (2016)
show that the entropy balancing is doubly robust. Entropy
balancing has been extended to the continuous treatment
setting (Fong et al., 2018; Vegetabile et al., 2021), where the
balancing condition ensures that the weighted correlation
between the confounders and the treatment is zero. Ai et al.
(2021) propose a method for estimating the counterfactual
distribution in the continuous treatment setting.

3. Methodology

To describe our end-to-end balancing algorithm, we first
need to describe entropy balancing for continuous treat-
ments with base weights.

3.1. Entropy Balancing for Continuous Treatments

Causal Inference via Entropy Balancing. Entropy bal-
ancing creates a pseudo-population using instance weights
w;, 1 = 1,...,n, in which the treatment a and the con-
founders x are independent from each other. The indepen-
dence is enforced by first selecting a set of functions on
the confounders ¢ (-) : X — R, for k = 1,..., K, that
are dense and complete in L? space. Given the ¢ func-
tions, we approximate the independence relationship by
E,lapr(x)] = 0, for k& = 1,..., K, where the empir-
ical expectation I@n is performed on the pseudo popula-
tion. Hereafter, we will denote the mapped data points as
d(x;) = [p1(xi), ..., dx(x;)]. The ¢i(-) functions can
be chosen based on prior knowledge or defined by the penul-
timate layer of a neural network that predicts (a, y) from x.
Our contributions in this paper are orthogonal to the choice
of the ¢ (+) functions and can benefit from ideas on learning
these functions (Zeng et al., 2020). The data-driven choice
of the number of bases K is beyond the scope of current
paper and left to future work.
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Balancing Constraint for the Continuous Treatments.
Following (Fong et al., 2018; Vegetabile et al., 2021), in
the case of continuous treatments, we first de-mean the con-
founders ¢(x;) and treatments a such that without loss of
generality they are taken to have mean zero. The balanc-
ing objective is to learn a set of weights w;,t = 1,...,n
that satisfy >, w;¢(x;) = 0, >i" wsa; = 0, and
S wia;¢(x;) = 0. We can write these three constraints
in a compact form by defining a (2K + 1)-dimensional
vector g; = [@(x;), ai, a;p(x;)]. The constraints become
i wigi = 0. We stack the g vectors ina (2K + 1) x n
dimensional matrix G for compact notation. In this work,
without loss of generality, we will present our idea with the
first order balancing, without higher order moments (Gala-
gate, 2016) or balancing in the kernel space (Wong & Chan,
2018; Kallus & Santacatterina, 2019; Hazlett, 2020).

Primal and Dual EB. A variety of dispersion metrics
have been proposed as objective function for minimization
such as entropy or variance of the weights (Wang & Zu-
bizarreta, 2020). Hainmueller (2012) originally proposed
minimizing the KL-divergence between the weights and
a set of base weights ¢;,¢ = 1,...,n. Details on choice
of base weights is discussed below, however, we note that
q; = const. leads to minimization of the entropy of weights.
Using this dispersion function and the balancing constraints,
entropy balancing optimization is as follows:

W = argmin Zwi log <wl> , (D
P

w i—=1 3
s.t. () Gw =0,
()1Tw=1,

(i) w; > 0fore=1,...,n.

The above optimization problem can be solved efficiently
using its Lagrangian dual:

~

A = argmin log (1—r exp (—)\TG + é)) , )
b

where {; = loggq; are the log-base-weights. Given the
solution A, the balancing weights can be computed as w =

softmax (fXTG + E). The softmax function is defined

as softmax(v) = v/ (17 expv) for any vector v. The
log base weight is a degree of freedom that we have in
the Eq. (2) to improve the quality of causal estimation.
We select the mapping dimension K such that problem
(2) is well-conditioned and leave the analysis of the high
dimensional setting K ~ n to future work. We can also add
an L, penalty term to the dual objective in Eq. (2), which
corresponds to approximate balancing (Wang & Zubizarreta,
2020).

In the next section we propose to parameterize the log-base-
weights and learn them. Our analysis in Section 4 shows

that with any arbitrary base weights, causal estimation using
the weights learned in Eq. (2) will be consistent.

3.2. Learning the Base Weights

Hainmueller (2012) suggests two approaches for choosing
base weights: (1) weights obtained from a conventional
propensity score model and (2), in the context of survey
design, using knowledge about the sampling design. We
argue that a data-driven approach that learns customized
base weights for each pair of dataset and weighted causal
regression algorithm can further improve performance. For
example, when we use weighted linear regression for causal
inference, appropriate base weights can decrease the con-
dition number of the design matrix and thus improve the
quality of the regression. From another point of view, mini-
mizing the KL-divergence between our weights and the base
weights can act as a regularizer and improve the accuracy
of weight estimation.

To address this problem, we define the log-base-weights £
as a parametric function (e.g., a neural network) of the treat-
ment variable; i.e. £g(-). We learn the base weights with the
goal of improving the accuracy of the subsequent weighted
regression. This is challenging because simply optimizing
the weighted regression loss (e.g., weighted MSE) leads to
degenerate results. That is, learning £ to minimize the re-
gression loss will lead to exclusion of the difficult-to-predict
data points from the regression, which is undesirable. Thus,
we need to find another loss function to optimize, ideally a
loss function that directly minimizes the error in estimation
of the response function p(a).

Our idea for learning the parameters of the base weights
is to generate multiple pseudo-responses y with randomly
generated response functions 7i(a). Now that we know the
true response function fi(a) in the randomly generated data,
we can perform causal inference and obtain the estimation
of the known response curve fi(a) using our weights. Algo-
rithm 1 outlines our stochastic training of the base weight
function. First, in Step 2, we estimate the distribution of
noise using the residuals of regressing y over (a, x), cap-
turing the possible heteroskedasticity in the noise. Then,
in each iteration, we draw a batch of possible datasets. To
generate each dataset, we randomly choose a response func-
tion 7Z(a) and use it to generate the entire dataset (see Sec-
tion 5.1 for examples of random functions). For the entire
batch, we use /g to learn the log-base-weights, and subse-
quently learn the weights in lines 7-8. In line 9 we use a
weighted regression algorithm to find our estimation fi(a)
of the randomly-generated 7i(a). Our loss function is the
mean squared error between the latter quantities. While we
call our algorithm End-to-End Balancing (E2B) because of
our end-to-end optimization.
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Algorithm 1 Stochastic Training of ¢g for End-to-End Bal-
ancing

Require: Data tuples (x;, a;,y;) fori = 1,...,n with an
unknown response function y(a).

Require: Representation functions ¢(-) and 4 (-), split size
n1 < n and batch size B.

1: Generate a random set of indexes I, |I| = n; and its
complement /¢ and split the data to .S and S¢ using
them.

2: Estimate the distribution of noise in y given (a, x) as
F..

3: Compute G by stacking g; = [¢(x;), a;, a;¢p(x;)], for
i1=1,...,n.

4: for Number of Iterations do

5. Generate B datasets {(x;,a;,y;;)}j=, for b =

1,...,Busing ¢ ~ F., and randomly selected (a)p
response functions.

6: gz %69(’(&(&1‘,1’1‘)).

7: X< argmin, {log (17 exp (-ATG +£)) + 7| Al }

using only S data.

8  w « softmax (—ATG + Z) using only S¢ data.

9:  i(a), + weighting-based causal estimates using

(ai,Y;p,wi) in S¢forb=1,...,B.
10:  Take a step in 0 to
£ Yy (fia), — 7i(a)s)’.
11: end for
12: return The /5 function.

minimize

Sample Splitting. The E2B procedure involves estimation
of two sets of parameters € in the ¢g and A for entropy
balancing. The joint estimation of 8, A on a single sample
will result in bias (Chernozhukov et al., 2018). Thus, we
split the sample to two mutually exclusive parts and perform
the optimizations on separate partitions of data.

Choice of Random Response Functions. Ideally, we
should rely on domain experts for choosing the random
set of response functions fi(a) that includes the true re-
sponse function. Alternatively, we can choose broad func-
tion classes such as random piecewise smooth functions or
polynomial functions with random coefficients. We can also
use generative adversarial networks to generate data that is
more similar to our sample (Athey et al., 2021).

Features Fed to /9. We can feed the raw values of
the treatments and any handcrafted features, denoted
by ¥ (a;,x;). We empirically find that (a;, ;) =
(log p(a;), log p(a;|x;)) makes training the ¢g easier. These
features are the logarithms of the nominator and denomina-
tor of the stable weights. Given this choice, we can visualize
the g function and find its relationship to the marginal and
conditional distributions of the treatment. We describe the

details of our neural network model for ¢ and our tech-
niques for training in Appendix B.

Weighted Regression Algorithms. To be able to differen-
tiate the loss function with respect to €, we need weighted
regression algorithms whose estimates are differentiable
with respect to the weights. In the linear average treatment
effect function we choose weighted linear regression and
in the non-linear setting we use the weighted polynomial
regression and the local kernel regression, as used by Flores
etal. (2012).

Double Robustness. Zhao & Percival (2016) show that in
the binary case, the entropy balancing is doubly robust. We
do not attempt to show double robustness for E2B because
we see E2B as a meta algorithm that learns customized
weights for each dataset and algorithm. We can either (1)
plug-in the E2B weights in the doubly robust algorithm
and expect improved accuracy, or (2) learn weights that di-
rectly minimize the error of doubly robust algorithms such
as (Diaz & van der Laan, 2013; Kennedy et al., 2017). How-
ever, if we use an outcome regression model for generating
the random response functions 7i(a), the E2B weights may
no longer provide significant improvements to the doubly
robust techniques.

4. Analysis

We prove that for any arbitrary choice of the log-base-weight
function /g, our approach consistently estimates causal ef-
fects. Before proving the consistency results, we charac-
terize the quantity that our solution converges to. All long
proofs are relegated to Appendix A.

Definition 1. Generalized Stable Weights. Suppose f(a, x)
denote the joint probability density function of treatments
and confounders in a population. Suppose f(a) and f(x)
denote two arbitrary density functions, possibly different
with the marginal density functions in our population, that
satisfy B, 5 . [x] = 0 and E, o [a] = 0. We define the
Generalized Stable Weights as follows

3)

Remark.  Our definition generalizes the stabilized weights
defined by Robins et al. (2000), where f(a) and f(a) match
the marginal probability density functions in the original

population.

Proposition 1. The generalized stable weights wasw sat-
isfy E [wgswax] = 0.
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Proof.

E [WGSWaX] =E

Fa i
f(a,%)

//JmamdFa,x(aax)

_ /a~(a)da/w~(w)dw ~0,

where the last equation is because of zero mean assumption

for the f(a) and f(«) distributions. O

Now, we can show that with an appropriate choice of the ¢
functions, the solution of Eq. (2) approximates the general-
ized stable weights. Consider the population version of Eq.
2):
A* = argminlog (E [exp(gT)\ +0)]). 4)
Py

The weights corresponding to A* can be calcu-
lated as w* = Cexp(g'A* + ¢), where C =

([exp(g" A* + O)dF (a,x))
stant.

1. ..
is the normalization con-

Assumptions.

1. f(a,z) > c¢>0forall (a,x) € A x X pairs, where ¢
is a constant.

2. Suppose the basis functions are dense and rich enough
such for some small values of ¢4, that they satisfy:

Elag(x)] = 0 onlyif sup|f(a,@) = /(a) (@) = 0.

3. Suppose the population problem in Eq. (4) has a unique
solution A* and the corresponding weights are denoted
by w*.

The following theorem shows that the solution to Eq. (4)
converges to wgsw :

Theorem 1. Given the assumptions, the solution to the
population problem satisfies:

sup |w*(a, ) — wasw (@, )| < dg,. /c. 5)

a,x

If we select the function set ¢x such that 64, = o(1),
the theorem shows that w*(a, x) is an unbiased estimator
of wgsw (a, x). Notice that Assumption 1 is only slightly
stronger than the common positivity assumption. Assump-
tion 2 requires us to select the mapping functions such that
zero the correlation between the mapped confounders and
the treatment implies their independence. We provide the
proof in Appendix A.1.

Note that the quality of the v/ features and neural network
training does not affect the unbiasedness of the E2B because
of the balancing constraint is still satisfied. The flexibility in
choice of fdistributions in the definition of wggw is due
to the fact that we require only first order balancing. If we
enforce higher order balancing constraints in the form of
E[w*¢1(a)p2(x)] = E[p1(a)] - E[p2(x)] for any suitable
functions ¢ and ¢5, Theorem 1 in (Ai et al., 2021) shows
that w* = f(a)/f(a|@). The more flexible form of weights in
Eq. (3) allows us to pick the marginals f(a) and f(:c) with
more freedom. In this work, we have chosen a data-driven
way to learn them.

Finally, the following theorem establishes the asymptotic
consistency and normality result for each individual weight
estimated by E2B, under the common regularity conditions
for problem (2).

Theorem 2. Suppose A C R2K +1Ais an open subset of
Euclidean space and the solution A, € A to Eq. (2) is
within the subset. The weights estimated by Eq. (2) are
asymptotically normal fori =1, ... ,n:

—w*(a;, x;)) 4 N0, o?(a;, x;)).
(6)

Vn (W (a;, x;)

We provide the population form of o*(a;, x;) and an unbi-
ased sample estimate for it in Appendix A.2.

5. Experiments

We use two synthetic and one real-world datasets to show
that E2B outperforms the baselines. In the synthetic datasets,
we have access to the true treatment effects; thus we mea-
sure accuracy of the algorithms in recovering the treatment
effects. In the real-world data, we qualitatively evaluate
the estimated causal treatment effect curve and inspect the
learned log-base-weight function.

Baselines. A key baseline in our study is the Inverse
Propensity score Weighting (IPW) with Stable Weights
(Robins et al., 2000) as the most commonly used tech-
nique. To avoid extreme weights and prevent instability,
we trim (Winsorize) the weights by [5, 95] percentiles (Cole
& Hernan, 2008; Crump et al., 2009; Chernozhukov et al.,
2018). However, the main baseline in our experiments is
Entropy Balancing (Vegetabile et al., 2021), which is equal
to E2B with £ = const, corresponding to the constant base
weights. EB allows us to do an ablation study and see the
exact amount of improvement by learning a customized /g
function. We also include EB with the stabilized weights
(SW) as base weights (/g = log p(a) — log p(a|x)). For fair
comparison to the entropy balancing methods, we only in-
clude first order balancing methods, as our idea of learning
the base-weights can be combined with the higher order and



End-to-End Balancing

kernel-based balancing methods. Finally, we also include
the permutation weighting algorithm (Arbour et al., 2021)
that proposes to compute the weights using permutation
of the treatments and a classifier that predict the probabil-
ity of being permuted. We provide further details on this
algorithm in Appendix B.4.

Training Details. We provide the details of the neural
networks used for the /g and propensity score estimation for
IPW in Appendix B. All neural networks are trained using
Adam (Kingma & Ba, 2014) with early stopping based on
validation error. The learning rate and architectural param-
eters of the neural networks are tuned via hyperparameter
search on the validation data.

5.1. Synthetic Data Experiments

Linear. We use the following steps to generate 100
datasets, each with 1000 data points.

1. Generate confounders x € R®, x ~ N (0, X), where
3 is a tridiagonal covariance matrix with diagonal and
off-diagonal elements equal to 1.0 and 0.2, respec-
tively.

2. a ~ N(11a,0.3%), where pu, = sin(8,],x) and
Baak ~ Unif(—1,1)fork=1,...,5.

3.y ~ N(uy,0.5%), where i, = B x + Saya, where
Bazs Bay.k ~ N(0,1) fork =1,...,5.

We use weighted least squares as the regression algorithm
and report the average |3, — Bay| over all 100 datasets.

Nonlinear We first generate confounders x and treatments
a similar to steps 1 and 2 of the linear case. Then, we gener-
ate the response variable according to y ~ N (u,, 0.5%),
where 1, = B],x + hy,,(a), where By ~ N(0,1)
for k = 1,...,5. The Hermit polynomials are defined
as hy(2) = v0 + 7112 +72(2% — 1) +v3(2® — 3). Similar
to the linear case, we generate 100 samples of size 1000.
We use the weighted polynomial regression as the regres-
sion algorithm to estimate 5 and report the average RMSE
between true v and 4. We report the mean and standard
error of errors on 100 datasets in Table 1.

As seen in Table 1, in both linear and non-linear datasets,
the E2B is significantly more accurate in uncovering the true
treatment response functions. Both constant and IPW base
weights perform worse than the base-weights learned by end-
to-end balancing. As Robins et al. (2007) caution, synthetic
data evaluation might exacerbate the extreme weights issues
because unlike real data, usually no manual inspection of
weights are done.

To gain more insights, in Figure 1, we plot the log-base
weight function that we learn as a function of log(p(a)) and
log(p(a|x)). We align all curves at their starting point and
plot the median of 100 runs. Both figures, show more varia-
tions in the log(p(a))—axis, rather than the log(p(a|x))-axis.
Not that, especially in the linear case, the smaller conditional
probability leads to larger base-weights, inline with the IPW
base-weights. Finally, the complexity of the plots empha-
sizes the need for end-to-end methods for learning weights.
Given the results in Figure 1, the learned log-base-weight
does not seem to be a convex combination of uniform and
SW base weight.

5.2. Real Data Experiments

We study the impact of PM, 5 particle level on the car-
diovascular mortality rate (CMR) in 2132 counties in the
US using the data provided by the National Studies on Air
Pollution and Health (Rappold, 2020). The data is publicly
available under U.S. Public Domain license. The PM5 5
particle level and the mortality rate are measured by j1g/m?
and the number of annual deaths due to cardiovascular con-
ditions per 100,000 people, respectively. We use only the
data for 2010 to simplify the experiment setup; thus we mea-
sure the same year impact of P, 5 particle level. Other
than the treatment and response variables, the data includes
10 variables such as poverty rate, population, and household
income, which we use as confounders. We provide the de-
scriptive statistics and the histograms for the treatment and
effect in Appendix C.

To train E2B, we create the random dataset (Line 5 in Al-
gorithm 1) using Hermite polynomials of max degree 3,
iy = [T, (B1,%/1181,x]12) + iy, ()] We use abso-
lute value to capture the positivity of our response vari-
able. The data also shows heteroskedasticity; we model
the noise as a zero mean Gaussian variable with variance
o2(%) = 6.007. For regression, we use the non-parametric
local kernel regression algorithm. We measure the uncer-
tainty in the curves using the deep ensembles technique
(Lakshminarayanan et al., 2017) with 100 random ensem-
bles. That means, in each experiment, we initialize the
neural network with different random values. To further
improve the uncertainty estimation, in each training, we
resample the dataset too.

Figure 2a shows the average treatment effect curve for the
impact of PM5 5 on CMR. We show the one standard de-
viation interval using the shaded areas. Starting around
PM, 5 = 5.3ug/m? the curve increases with a steep slope;
confirming the previous studies that increased P M5 5 levels
increase the probability of cardiovascular mortality. Our
results are generally aligned with the results reported in (Wu
et al., 2020). We can see that after PMs 5 = 6.4ug/m3
the curve plateaus and mortality rate stays at elevated lev-
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Table 1: Average RMSE for estimation of the response functions. The results are in the form of “mean (std. err.)” from 100

runs.
Algorithm Linear ‘ Non-linear
Inverse Propensity Weighting (SW) | 2.057 (0.437) | 0.530 (0.025)
Permutation Weighting 1.1543 (6.580) | 0.525 (0.250)
Entropy Balancing (Const.) 0.880 (0.072) | 0.335 (0.022)
Entropy Balancing (SW) 0.652 (0.059) | 0.403 (0.025)
End-to-End Balancing 0.383 (0.035) | 0.276 (0.014)
05 ta) —05 e
e 3.60 1.92
; 3.15 Lol 1.68
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2.25 ~ ..
% —151 18; % 151 1.20
- . 5]
(% L = 0.96
EY ' & -20 0.72
r0.90
045 r0.48
—2.51 ’ —=2.5 I
r0.00 0-24
r0.00
~3.0 : =045 3.0 : L
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(a) Linear Design

(b) Non-linear Design

Figure 1: The estimated log-base-weight function /g as a function of logarithms of the empirical density of the treatment
log(p(a)) and conditional distribution log(p(a|x)). We perform the experiment 100 times and report the median and the
inter-quantile range. We align all curves by normalizing their value at the beginning to zero.

els. Looking at the histogram of the treatments in Figure
3a in the appendix, we observed that most counties have
P M, 5 between 6 and 8. This might justify the fluctuations
that we see in this interval and may allude about potential
unmeasured confounders.

Figure 2b shows the log-base-weight function that we learn
in this data. Similar to the synthetic experiments, we show
the median of 100 runs. While the plot shows smaller varia-
tions, it is generally inline with the observations we had in
the synthetic data.

6. Discussion

Causal inference is a well-studied problem; its main goal
is to remove biases due to confounding by balancing the
population to look similar to randomized controlled trials.
Removing the impact of confounders can play a critical
role in reducing and possibly eliminating bias in our deci-

sion making leading to potentially positive societal impacts.
Our results rely on two classical assumptions: (1) uncon-
foundedness and (2) positivity. While these assumptions
are sometimes reasonable in practice, their violations might
lead to biased causal inferences. For example, the positivity
assumption might be violated if we do not collect any data
for a sub-population. Overall, the debiasing property of
causal inference should not relieve us from rigorous data
collection and analysis setup. In our experiments, we have
been careful to quantify uncertainty in our causal estimation
and be wary of over-confidence in our results. We performed
our experiments on a CPU machine with 16 cores from a
cloud provider that uses hydroelectric power.

7. Conclusion

We observed that in the entropy balancing framework, the
base weights provide an extra degree of freedom to optimize
the accuracy of causal inference. We propose end-to-end
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Figure 2: (a) The average treatment effect curve for measuring the impact of PM, 5 concentration on the cardiovascular
mortality rate. We perform the experiment 100 times and report the mean and +std range. (b) The estimated log-base-weight
function £g as a function of logarithm of the empirical density of the treatment log(p(a)).

balancing (E2B) as a technique to learn the base weight such
that they directly improve the accuracy of causal inference
using end-to-end optimization. In our theoretical analysis
we find the quantity that E2B weights are approximating and
discuss E2B’s statistical consistency. Using synthetic and
real-world data, we show that our proposed algorithm out-
performs the entropy balancing in terms of causal inference
accuracy.
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A. Proofs of the Theorems

Whenever the context of an expectation operation is not clear, we disambiguate it by specifying the variable that the
expectation is taken over and its distribution Ey . (2 [x].

A.1. Proof of Theorem 1

Proof. Given that the logarithm function is a strictly increasing function, we can omit it in the optimization; i.e., A\* =
argminy E [exp(gT)\ + E)] . Because this is an unconstrained optimization, the optimal solution occurs when the gradient
is equal to zero.

E[gexp (gT)\* + )] =0,
Elgw”(a,x)] =0, @)

where the last equation is due to the equation of the weights in the population optimization problem.

Using the definition for the g vector, Eq. (7) implies that E[w*(a, x)a¢(x)] = 0. Thus, we conclude that in the weighted
population (with distribution F'), the a and ¢(x) are uncorrelated:

E ox~plao(x)] =0 (8)

For every set B C A x X, we can write:
F(B) = / w*(a, z)dF(a, x). )
B

The Radon-Nikodym theorem implies that w*(a, «) is the Radon-Nikodym derivative:

« _dF(z,a) _ [f(x,a)
w(@,a) dF(z,a) f(x,a) (10)
@) (@) + { fl@,a) - f@) )}
= , 1D
f(,a)
— wgaw(o,2) + 12O S (12)
Thus, using Eq. (8) and Assumptions 1 and 3 we can write
sup |[w*(a, z) — wasw (a, )| < dg, /c.
O

A.2. Theorem 2

Proof. Given that the logarithm function is a strictly increasing function, we can omit it in the optimizations. Thus the
sample and population solutions are:

~ 1 &
A, = argmin — exp g;r)\ +4;),
min . 3 explal A+ )
A" = argmin E [exp(gT)\ + 6)} .
b
The estimator is an M-estimator and given our sample-splitting, the proof follows the asymptotic normality of the estimator
(Van der Vaart, 2000, Chapter 5.3).

Jn (Xn _ )\*) 4 N0, V), (13)

To obtain the value of V7, note that the optimal sample solution occurs at the solution of the following equation (Z-estimator

equation):
> giexp (giTAn) =0.
i=1
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Thus, the score function is ¥y = g; exp (glT )\). We denote the matrix of derivatives of the score function by ¢ A Whose
elements are defined as 1@\7;@;« = 9¥x.k /ox,,. Using the theorem in (Van der Vaart, 2000, Chapter 5.3), we can write:

V = E[x ] Elpa- L B[] 7 (14)
In the above equation we have assumed that IE[zp A+] matrix is invertable. An unbiased sample estimation of V' can be
obtained by substituting \,, in place of A* and taking empirical expectations.
An application of the delta method on Eq. (13) yields:

vn _ —— 4 N(0,02), (15)
+ Z?=1 exp (Qi-r)\n + EZ—) % D i1 €Xp (giT’\* + Ei)

exp (g;r)\* + Ei) d 9
E[exp(gTA* + )\)]) - N(ng )1 (16)

\/ﬁ <ﬁ7n(ai,mi) -

V(@ (ai, ;) — w*(as, 2;)) > N(0,02), (17)

where Eq. (16) is due to Slutsky’s theorem and Eq. (17) is obtained by substitution of the definition for w*(a;, ;). The

exp(g;r A+li)
w2t exp(g Athi)
function by Vs(A). We can write (Van der Vaart, 2000, Chapter 3):

variance is obtained by defining the Softmax function s(A) = . We denote the gradient of the Softmax

o?(ai, ;) = Vs(A*) T V Vs(A*).

Substituting the value of V' from (14), we conclude:

o?(ai, ;) = Vs(A*) T Elthas] "Elpa-x. JE[thas] " Vs(A).

Note that the value of the softmax function depends on the value of (a;, x;) at each point. O

B. Neural Network and Training Details
B.1. Details of the /y Neural Network

The /¢ network is defined as follows:
lo(z) = cz + dense3( elu(layer_norm( dense2( tanh(densel(z))))))
The linear term cz acts as a skip connection. The input and output dimensions for the dense linear layers are as follows:

densel :1 — h,
dense2 :h — h,
dense3 :h — 1,

where h denotes the hidden dimension. Because the softmax function is invariant to the constant shifts, we do not have
any bias terms for dense3 and the skip connection. dense2 also does not have the bias because of the proceeding layer
normalization. The dimension / has been tuned as a hyperparameter on a validation data and set to 10.

B.2. Details of the Propensity Score Computation for IPW

We model both f(a) and f(a|x) as univariate normal distributions. This is the correct assumption in our synthetic data.
The marginal distribution f(a) is estimated by simply finding the mean and standard deviation of the observed treatment
values. For the conditional distribution, we write a|x ~ N (uq (%), 02‘ »)» Where j1,(x) is modeled using a feedforward
neural network with two layers and az‘m is estimated using the residuals of the neural network predictions. The dimension
of the neural network has been tuned as a hyperparameter on validation data and set to 30.
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B.3. Further Training Details

We used PyTorch to implement E2B. For reproducibility purposes, we provide the final settings used for training:

* Learning algorithm: Adam with learning rate 0.001, no AMSGrad.
* Batch size: 100

* Max epochs: 400

+ Weight decay: 2.5 x 1075,

* Validation on a dataset of size 400, every 10 steps.

B.4. Detail of Permutation Weighting

We created a stacked data by stacking {(x;, a;, a; © x;)}; and {(x;, a;, a; ® x;)}"_,, where @ are permutations of the
original treatments. We trained a random forest classifier to predict whether each data is from the permuted or the original
set. We tried both random forests and neural networks and obtained better results with the former. We also calibrated the
predicted probabilities of the classifier before computation of the weights.

C. Data and Preprocessing Description
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