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Abstract

This paper resolves the open question of
designing near-optimal algorithms for learn-
ing imperfect-information extensive-form games
from bandit feedback. We present the first line of
algorithms that require only Õ((XA+ Y B)/ε2)
episodes of play to find an ε-approximate Nash
equilibrium in two-player zero-sum games, where
X,Y are the number of information sets andA,B
are the number of actions for the two players.
This improves upon the best known sample com-
plexity of Õ((X2A + Y 2B)/ε2) by a factor of
Õ(max{X,Y }), and matches the information-
theoretic lower bound up to logarithmic factors.
We achieve this sample complexity by two new
algorithms: Balanced Online Mirror Descent, and
Balanced Counterfactual Regret Minimization.
Both algorithms rely on novel approaches of in-
tegrating balanced exploration policies into their
classical counterparts. We also extend our results
to learning Coarse Correlated Equilibria in multi-
player general-sum games.

1. Introduction
Imperfect Information Games—games where players can
only make decisions based on partial information about
the true underlying state of the game—constitute an impor-
tant challenge for modern artificial intelligence. The cel-
ebrated notion of Imperfect-Information Extensive-Form
games (IIEFGs) (Kuhn, 1953) offers a formulation for
games with both imperfect information and sequential play.
IIEFGs have been widely used for modeling real-world im-
perfect information games such as Poker (Heinrich et al.,
2015; Moravčı́k et al., 2017; Brown & Sandholm, 2018),
Bridge (Tian et al., 2020), Scotland Yard (Schmid et al.,
2021), etc, and achieving strong performances therein.
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A central question in IIEFGs is the problem of finding a
Nash equilibrium (NE) (Nash, 1950) in a two-player zero-
sum IIEFG with perfect recall. There is an extensive line
of work for solving this problem with full knowledge of the
game (or full feedback), by either reformulating as a lin-
ear program (Koller & Megiddo, 1992; Von Stengel, 1996;
Koller et al., 1996), first-order optimization methods (Hoda
et al., 2010; Kroer et al., 2015; 2018; Munos et al., 2020; Lee
et al., 2021), or Counterfactual Regret Minimization (Zinke-
vich et al., 2007; Lanctot et al., 2009; Johanson et al., 2012;
Tammelin, 2014; Schmid et al., 2019; Burch et al., 2019).

However, in the more challenging bandit feedback setting
where the game is not known and can only be learned from
random observations by repeated playing, the optimal sam-
ple complexity (i.e., the number of episodes required to
play) for learning an NE in IIEFGs remains open. Vari-
ous approaches have been proposed recently for solving
this, including model-based exploration (Zhou et al., 2019;
Zhang & Sandholm, 2021), Online Mirror Descent with
loss estimation (Farina et al., 2021c; Kozuno et al., 2021),
and Monte-Carlo Counterfactual Regret Minimization (MC-
CFR) (Lanctot et al., 2009; Farina et al., 2020b; Farina &
Sandholm, 2021). In a two-player zero-sum IIEFG with
X , Y information sets (infosets) and A, B actions for the
two players respectively, the current best sample complexity
for learning an ε-approximate NE is Õ((X2A+ Y 2B)/ε2)
achieved by a sample-based variant of Online Mirror De-
scent with implicit exploration (Kozuno et al., 2021). How-
ever, this sample complexity scales quadratically in X , Y
and still has a gap from the information-theoretic lower
bound Ω((XA+ Y B)/ε2) which only scales linearly. This
gap is especially concerning from a practical point of view
as the number of infosets is often the dominating measure of
the game size in large real-world IIEFGs (Johanson, 2013).

In this paper, we resolve this open question by presenting
the first line of algorithms that achieve Õ((XA+ Y B)/ε2)
sample complexity for learning ε-NE in an IIEFG.

Our contributions can be summarized as follows.

• We design a new algorithm Balanced Online Mirror De-
scent (Balanced OMD) that achieves Õ(

√
XAT ) regret for

the max player against adversarial opponents, and learns
an ε-NE within Õ((XA+ Y B)/ε2) episodes of play when
run by both players in a self-play fashion (Section 3). These
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Algorithm Model-based OMD CFR Sample Complexity
Zhang & Sandholm (2021) X Õ

(
S2AB/ε2

)
Farina & Sandholm (2021) X Õ(poly (X,Y,A,B) /ε4)

Farina et al. (2021c) X Õ
((
X4A3 + Y 4B3

)
/ε2
)

Kozuno et al. (2021) X Õ
((
X2A+ Y 2B

)
/ε2
)

Balanced OMD (Algorithm 1) X Õ
(
(XA+ Y B) /ε2

)
Balanced CFR (Algorithm 2) X Õ

(
(XA+ Y B) /ε2

)
Lower bound (Theorem 6) - - - Ω

(
(XA+ Y B) /ε2

)
Table 1. Sample complexity (number of episodes required) for learning ε-NE in IIEFGs from bandit feedback. Here the “Model-
based” category refers to any algorithm (including variations of OMD/CFR algorithms) with the component of estimating the transition
probabilities. By contrast, typical OMD/CFR algorithms do not have such a component.

improve over the best existing results by a factor of
√
X

and max{X,Y } respectively, and match the information-
theoretic lower bounds (Section 3.3) up to poly(H) and log-
arithmic factors. The main feature within Balanced OMD
is a new balanced dilated KL as the distance function in its
mirror descent step.

• We design another new algorithm Balanced Counterfac-
tual Regret Minimization (Balanced CFR) that also achieves
Õ((XA + Y B)/ε2) sample complexity for learning an ε-
NE (Section 4). Balanced CFR can be seen as an instantia-
tion of the MCCFR framework that integrates the balanced
exploration policies within both the sampling and the local
regret minimization steps.

• We extend our results to multi-player general-sum IIEFGs,
where we show that both Balanced OMD and Balanced CFR
can learn an approximate Normal-Form Coarse Correlated
Equilibrium (NFCCE) sample-efficiently when run by all
players simultaneously via self-play (Section 5).

1.1. Related work

Computing NE from full feedback When the full game
(transitions and rewards) is known, the problem of find-
ing the NE is a min-max optimization problem over the
two policies. Early works consider casting this min-max
problem over the sequence-form policies as a linear pro-
gram (Koller & Megiddo, 1992; Von Stengel, 1996; Koller
et al., 1996). First-order algorithms are later proposed for
solving the min-max problem directly, in particular by using
proper regularizers such as the dilated KL distance (Gilpin
et al., 2012; Hoda et al., 2010; Kroer et al., 2015; Lee et al.,
2021). Another prevalent approach is Counterfactual Regret
Minimization (CFR) (Zinkevich et al., 2007), which works
by minimizing (local) counterfactual regrets at each infoset
separately using any regret minimization algorithm over the
probability simplex such as Regret Matching or Hedge (Tam-
melin, 2014; Burch et al., 2019; Zhou et al., 2020; Farina
et al., 2021b). As each CFR iteration involves traversing the
entire game tree which can be slow or memory-inefficient,

techniques based on sampling or approximation have been
proposed to address this, such as Monte-Carlo CFR (MC-
CFR) (Lanctot et al., 2009; Gibson et al., 2012b;a; Johanson
et al., 2012; Lisỳ et al., 2015; Schmid et al., 2019), function
approximation of counterfactual values (Waugh et al., 2015;
Brown et al., 2019), and pruning (Brown & Sandholm, 2015;
Brown et al., 2017; Brown & Sandholm, 2017).

A related line of work considers learning stronger notions of
equilibria in IIEFGs such as the Extensive-Form Correlated
Equilibrium, e.g. (Gordon et al., 2008; Celli et al., 2020;
Farina et al., 2021a; Morrill et al., 2021a;b).

Learning NE from bandit feedback The MCCFR
framework (Lanctot et al., 2009) provides a first line of
approaches for learning an ε-NE in IIEFGs from bandit
feedback, by feeding in sample-based unbiased loss estima-
tors to CFR algorithms. This framework is then generalized
by Farina et al. (2020b) to any regret minimization algorithm
(not necessarily CFR). They analyze the concentration be-
tween the true regret and the regret on loss estimators, and
propose to sample with a “balanced strategy” (equivalent to
a special case of our balanced exploration policy) to enable
a small concentration term. However, they do not bound
the regret on loss estimators or give an end-to-end sample
complexity guarantee. Farina & Sandholm (2021) instanti-
ate this framework to give a sample complexity guarantee
of Õ(poly(X,Y,A,B)/ε4), by using an exploration rule
that favors larger sub-games (similar to our balanced explo-
ration policy but defined through the number of terminal
states instead of infosets). Our Balanced CFR algorithm
(Section 4) can be seen as an instantiation of this framework
using a more general balanced exploration policy in both
the sampling and the local regret minimization steps.

Another line of work considers sample-based variants of On-
line Mirror Descent (OMD) algorithms. Farina et al. (2021c)
provide an algorithm with Õ((X4A3 + Y 4B3)/ε2) sample
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complexity1 by OMD with an unbiased loss estimator and
the dilated KL distance. Kozuno et al. (2021) propose the
IXOMD algorithm that achieves Õ((X2A+Y 2B)/ε2) sam-
ple complexity using an implicit-exploration loss estimator.
Our Balanced OMD (Section 3) can be seen as a variant of
the IXOMD algorithm by using a new variant of the dilated
KL distance.

Finally, Zhou et al. (2019); Zhang & Sandholm (2021) pro-
pose model-based exploration approaches combined with
planning on the estimated models. Specifically, Zhou et al.
(2019) use posterior sampling to obtain an Õ(SAB/ε2)
sample complexity under the Bayesian setting assum-
ing a correct prior. Zhang & Sandholm (2021) achieve
Õ(S2AB/ε2) sample complexity by constructing confi-
dence bounds for the transition model. Both sample com-
plexities are polynomial in S (the number of underlying
states) due to their need of estimating the full model, which
could be much higher than poly(X,Y ). A comparison be-
tween the above existing results and ours is given in Table 1.

Markov games without tree structure A related line
of work considers learning equilibria in Markov Games
(MGs) (Shapley, 1953) with perfect information, but with-
out the tree structure assumed in IIEFGs. Sample-efficient
algorithms for learning MGs from bandit feedback have
been designed for learning NE in two-player zero-sum MGs
either assuming access to a “simulator” or certain reacha-
bility assumptions, e.g. (Sidford et al., 2020; Zhang et al.,
2020; Daskalakis et al., 2020; Wei et al., 2021) or in the
exploration setting, e.g. (Wei et al., 2017; Bai & Jin, 2020;
Xie et al., 2020; Bai et al., 2020; Liu et al., 2021; Chen
et al., 2022; Jin et al., 2021b; Huang et al., 2022), as well
as learning (Coarse) Correlated Equilibria in multi-player
general-sum MGs, e.g. (Liu et al., 2021; Song et al., 2021;
Jin et al., 2021a; Mao & Başar, 2022). As the settings of
MGs in these work do not allow imperfect information,
these results do not imply results for learning IIEFGs.

2. Preliminaries
We consider two-player zero-sum IIEFGs using the formu-
lation via Partially Observable Markov Games (POMGs),
following (Kozuno et al., 2021). In the following, ∆(A)
denotes the probability simplex over a set A.

Partially observable Markov games We consider finite-
horizon, tabular, two-player zero-sum Markov Games with
partial observability, which can be described as a tuple
POMG(H,S,X ,Y,A,B,P, r), where

1By plugging in an Õ(X) upper bound for the dilated KL dis-
tance and optimizing the regret bound by setting η = 1/

√
X2A3T

in their Theorem 3.

• H is the horizon length;

• S =
⋃
h∈[H] Sh is the (underlying) state space with

|Sh| = Sh and
∑H
h=1 Sh = S;

• X =
⋃
h∈[H] Xh is the space of information sets (hence-

forth infosets) for the max-player with |Xh| = Xh and
X :=

∑H
h=1Xh. At any state sh ∈ Sh, the max-player only

observes the infoset xh = x(sh) ∈ Xh, where x : S → X
is the emission function for the max-player;

• Y =
⋃
h∈[H] Yh is the space of infosets for the min-player

with |Yh| = Yh and Y :=
∑H
h=1 Yh. An infoset yh and the

emission function y : S → Y are defined similarly.

• A, B are the action spaces for the max-player and min-
player respectively, with |A| = A and |B| = B2.

• P = {p0(·) ∈ ∆(S1)} ∪ {ph(·|sh, ah, bh) ∈
∆(Sh+1)}(sh,ah,bh)∈Sh×A×B, h∈[H−1] are the transition
probabilities, where p1(s1) is the probability of the initial
state being s1, and ph(sh+1|sh, ah, bh) is the probability of
transitting to sh+1 given state-action (sh, ah, bh) at step h;

• r = {rh(sh, ah, bh) ∈ [0, 1]}(sh,ah,bh)∈Sh×A×B are the
(random) reward functions with mean rh(sh, ah, bh).

Policies, value functions As we consider partially observ-
ability, each player’s policy can only depend on the infoset
rather than the underlying state. A policy for the max-
player is denoted by µ = {µh(·|xh) ∈ ∆(A)}h∈[H],xh∈Xh

,
where µh(ah|xh) is the probability of taking action ah ∈ A
at infoset xh ∈ Xh. Similarly, a policy for the min-
player is denoted by ν = {νh(·|yh) ∈ ∆(B)}h∈[H],yh∈Yh

.
A trajectory for the max player takes the form
(x1, a1, r1, x2, . . . , xH , aH , rH), where ah ∼ µh(·|xh),
and the rewards and infoset transitions depend on the (un-
seen) opponent’s actions and underlying state transition.

The overall game value for any (product) policy (µ, ν) is
denoted by V µ,ν := Eµ,ν

[∑H
h=1 rh(sh, ah, bh)

]
. The max-

player aims to maximize the value, whereas the min-player
aims to minimize the value.

Tree structure and perfect recall We use a POMG
with tree structure and the perfect recall assumption as
our formulation for IIEFGs, following (Kozuno et al.,
2021)3. We assume that our POMG has a tree struc-

2While this assumes the action space at each infoset have equal
sizes, our results can be extended directly to the case where each
infoset has its own action space with (potentially) unequal sizes.

3The class of tree-structured, perfece-recall POMGs is able
to express all perfect-recall IIEFGs (defined in (Osborne & Ru-
binstein, 1994)) that additionally satisfy the timeability condi-
tion (Jakobsen et al., 2016), a mild condition that roughly requires
that infosets for all players combinedly could be partitioned into
ordered “layers”, and is satisfied by most real-world games of
interest (Kovařı́k et al., 2022). Further, our algorithms can be
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ture: For any h and sh ∈ Sh, there exists a unique his-
tory (s1, a1, b1, . . . , sh−1, ah−1, bh−1) of past states and
actions that leads to sh. We also assume that both
players have perfect recall: For any h and any infoset
xh ∈ Xh for the max-player, there exists a unique history
(x1, a1, . . . , xh−1, ah−1) of past infosets and max-player
actions that leads to xh (and similarly for the min-player).
We further define Ch′(xh, ah) ⊂ Xh′ to be the set of all
infosets in the h′-the step that are reachable from (xh, ah),
and define Ch′(xh) = ∪ah∈ACh′(xh, ah). Finally, define
C(xh, ah) := Ch+1(xh, ah) as a shorthand for immediately
reachable infosets.

With the tree structure and perfect recall, under any prod-
uct policy (µ, ν), the probability of reaching state-action
(sh, ah, bh) at step h takes the form

Pµ,ν(sh, ah, bh) = p1:h(sh)µ1:h(xh, ah)ν1:h(yh, bh),
(1)

where we have defined the sequence-form transition proba-
bility as

p1:h(sh) := p0(s1)
∏

h′≤h−1

ph′(sh′+1|sh′ , ah′ , bh′),

where {sh′ , ah′ , bh′}h′≤h−1 are the histories uniquely deter-
mined from sh by the tree structure, and the sequence-form
policies as

µ1:h(xh, ah) :=
∏h
h′=1 µh′(ah′ |xh′),

ν1:h(yh, bh) :=
∏h
h′=1 νh′(bh′ |yh′).

where xh′ = x(sh′) and yh′ = y(sh′) are the infosets
for the two players (with {xh′ , ah′}h≤h−1 are uniquely
determined by xh by perfect recall, and similar for
{yh′ , bh′}h≤h−1).

We let Πmax denote the set of all possible policies for
the max player (Πmin for the min player). In the se-
quence form representation, Πmax is a convex compact sub-
set of RXA specified by the constraints µ1:h(xh, ah) ≥
0 and

∑
ah∈A µ1:h(xh, ah) = µ1:h−1(xh−1, ah−1) for

all (h, xh, ah), where (xh−1, ah−1) is the unique pair of
prior infoset and action that reaches xh (understanding
µ0(x0, a0) = µ0(∅) = 1).

Regret and Nash Equilibrium We consider two standard
learning goals: Regret and Nash Equilibrium. For the regret,
we focus on the max-player, and assume there is an arbitrary
(potentially adversarial) opponent as the min-player who

directly generalized to any perfect-recall IIEFG (not necessarily
timeable), as we only require each player’s own game tree to be
timeable (which holds for any perfect-recall IIEFG), similar as
existing OMD/CFR type algorithms (Zinkevich et al., 2007; Farina
et al., 2020b). .

may determine her policy νt based on all past information
(including knowledge of µt) before the t-th episode starts.
Then, the two players play the t-th episode jointly using
(µt, νt). The goal for the max-player’s is to design policies
{µt}Tt=1 that minimizes the regret against the best fixed
policy in hindsight:

RT := max
µ†∈Πmax

T∑
t=1

(
V µ
†,νt

− V µ
t,νt
)
. (2)

We say a product policy (µ, ν) is an ε-approximate Nash
equilibrium (ε-NE) if

NEGap(µ, ν) := max
µ†∈Πmax

V µ
†,ν − min

ν†∈Πmin

V µ,ν
†
≤ ε,

i.e. µ and ν are each other’s ε-approximate best response.

Using online-to-batch conversion, it is a standard result that
sublinear regret for both players ensures that the pair of aver-
age policies (µ, ν) is an approximate NE (see e.g. (Kozuno
et al., 2021, Theorem 1)):

Proposition 1 (Regret to Nash conversion). For any se-
quence of policies {µt}Tt=1 ∈ Πmax and {νt}Tt=1 ∈ Πmin,
the average policies µ := 1

T

∑T
t=1 µ

t and ν := 1
T

∑T
t=1 ν

t

(averaged in the sequence form, cf. (17)) satisfy

NEGap(µ, ν) =
RT

max + RT
min

T
,

where RT
max := maxµ†∈Πmax

∑T
t=1(V µ

†,νt − V µt,νt

) and
RT

min := maxν†∈Πmin

∑T
t=1(V µ

t,νt − V µt,ν†) denote the
regret for the two players respectively.

Therefore, an approximate NE can be learned by letting
both players play some sublinear regret algorithm against
each other in a self-play fashion.

Bandit feedback Throughout this paper, we consider the
interactive learning (exploration) setting with bandit feed-
back, where the max-player determines the policy µt, the
opponent determines νt (either adversarially or by run-
ning some learning algorithm, depending on the context)
unknown to the max-player, and the two players play an
episode of the game using policy (µt, νt). The max player
observes the trajectory (xt1, a

t
1, r

t
1, . . . , x

t
H , a

t
H , r

t
H) of her

own infosets and rewards, but not the opponent’s infosets,
actions, or the underlying states.

2.1. Conversion to online linear regret minimization

The reaching probability decomposition (1) implies that
the value function V µ,ν is bilinear in (the sequence form
of) (µ, ν). Thus, fixing a sequence of opponent’s policies
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{νt}Tt=1, we have the linear representation

V µ,ν
t

=

H∑
h=1

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)×

∑
sh∈xh,bh∈B

p1:h(sh)νt1:h(y(sh), bh)rh(sh, ah, bh).

Therefore, defining the loss function for round t as

`th(xh, ah) (3)

:=
∑

sh∈xh,bh∈B

p1:h(sh)νt1:h(y(sh), bh)(1− rh(sh, ah, bh)),

the regret RT (2) can be written as

RT = max
µ†∈Πmax

T∑
t=1

〈
µt − µ†, `t

〉
, (4)

where the inner product 〈·, ·〉 is over the sequence form:
〈µ, `t〉 :=

∑H
h=1

∑
xh,ah

µ1:h(xh, ah)`th(xh, ah) for any
µ ∈ Πmax.

2.2. Balanced exploration policy

Our algorithms make crucial use of the following balanced
exploration policies.
Definition 2 (Balanced exploration policy). For any 1 ≤
h ≤ H , the (max-player’s) balanced exploration policy for
layer h, denoted as µ?,h ∈ Πmax, is defined as

µ?,hh′ (ah′ |xh′) :=


|Ch(xh′ , ah′)|
|Ch(xh′)|

, h′ ∈ {1, . . . , h− 1},

1/A, h′ ∈ {h, . . . ,H}.
(5)

In words, at time steps h′ ≤ h− 1, the policy µ?,h plays ac-
tions proportionally to their number of descendants within
the h-th layer of the game tree. Then at time steps h′ ≥ h,
it plays the uniform policy.

Note that there are H such balanced policies, one for each
layer h ∈ [H]. The balanced policy for layer h = H is
equivalent to the balanced strategy of Farina et al. (2020b)
(cf. their Section 4.2 and Appendix A.3) which plays actions
proportionally to their number descendants within the last
(terminal) layer. The balanced policies for layers h ≤ H−1
generalize theirs by also counting the number of descendants
within earlier layers.

We remark in passing that the key feature of µ?,h

for our analyses is its balancing property: We have∑
(xh,ah)∈Xh×A

µ1:h(xh,ah)

µ?,h
1:h (xh,ah)

= XhA for any policy µ ∈
Πmax and any h ∈ [H] (formal statement in Lemma C.4).
This property ensures that the “distribution mismatch” be-
tween µ?,h and any other policy µ has a bounded L1 norm.

Requirement on knowing the tree structure The con-
struction of µ?,h requires knowing the number of descen-
dants |Ch(xh′ , ah′)|, which depends on the structure4 of the
game tree for the max player. Therefore, our algorithms that
use µ?,h requires knowing this tree structure beforehand.
Although there exist algorithms that do not require knowing
such tree structure beforehand (Zhang & Sandholm, 2021;
Kozuno et al., 2021), this requirement is relatively mild as
the structure can be extracted efficiently from just one tree
traversal. We also remark our algorithms using the balanced
policies do not impose any additional requirements on the
game tree, such as the existence of a policy with lower
bounded reaching probabilities at all infosets.

3. Online Mirror Descent
We now present our first algorithm Balanced Online Mirror
Descent (Balanced OMD) and its theoretical guarantees.

3.1. Balanced dilated KL

At a high level, OMD algorithms work by designing loss es-
timators (typically using importance weighting) and solving
a regularized optimization over the constraint set in each
round that involves the loss estimator and a distance function
as the regularizer. OMD has been successfully deployed for
solving IIEFGs by using various dilated distance generating
functions over the policy set Πmax (Kroer et al., 2015).

The main ingredient of our algorithm is the balanced dilated
KL, a new distance measure between policies in IIEFGs.

Definition 3 (Balanced dilated KL). The balanced dilated
KL distance between two policies µ, ν ∈ Πmax is defined as

Dbal(µ‖ν) :=

H∑
h=1

∑
xh,ah

µ1:h(xh, ah)

µ?,h1:h(xh, ah)
log

µh(ah|xh)

νh(ah|xh)
.

(6)

The balanced dilated KL is a reweighted version of
the dilated KL (a.k.a. the dilated entropy distance-
generating function) that has been widely used for solving
IIEFGs (Hoda et al., 2010; Kroer et al., 2015):

D(µ‖ν) =

H∑
h=1

∑
xh,ah

µ1:h(xh, ah) log
µh(ah|xh)

νh(ah|xh)
. (7)

Compared with (7), our balanced dilated KL (6) introduces
an additional reweighting term 1/µ?,h1:h(xh, ah) that depends
on the balanced exploration policy µ?,h (5). This reweight-
ing term is in general different for each (xh, ah), which at

4By this “structure” we refer to the parenting structure of the
game tree only (which xh+1 is reachable from which (xh, ah)),
not the transition probabilities and rewards.
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Algorithm 1 Balanced OMD (max-player)
Input: Learning rate η > 0; IX parameter γ > 0.
1: Initialize µ1

h(ah|xh)← 1/Ah for all (h, xh, ah).
2: for Episode t = 1, . . . , T do
3: Play an episode using µt, observe a trajectory

(xt1, a
t
1, r

t
1, . . . , x

t
H , a

t
H , r

t
H).

4: for h = H, . . . , 1 do
5: Construct loss estimator

{˜̀t
h(xh, ah)

}
(xh,ah)∈Xh×A

by

˜̀t
h(xh, ah)←

1
{

(xth, a
t
h) = (xh, ah)

}
· (1− rth)

µt1:h(xh, ah) + γµ?,h1:h(xh, ah)
.

6: Update policy

µt+1 ← arg min
µ∈Πmax

〈
µ, ˜̀t〉+

1

η
Dbal(µ‖µt) (9)

using the efficient implementation in Algorithm 5.

a high level will introduce a balancing effect into our algo-
rithm. An alternative interpretation of the balanced dilated
KL can be found in Appendix C.3.1.

3.2. Algorithm and theoretical guarantee

We now describe our Balanced OMD algorithm in Algo-
rithm 1. Our algorithm is a variant of the IXOMD algorithm
of Kozuno et al. (2021) by using the balanced dilated KL.
At a high level, it consists of the following steps:

• Line 3 & 5 (Sampling): Play an episode using policy µt

(against the opponent νt) and observe the trajectory. Then
construct the loss estimator using importance weighting and
IX bonus (Neu, 2015):

˜̀t
h(xh, ah) :=

1 {(xth, ath) = (xh, ah)} · (1− rth)

µt1:h(xh, ah) + γµ?,h1:h(xh, ah)
. (8)

Note that the IX bonus γµ?,h1:h(xh, ah) on the denominator
makes (8) a slightly downward biased estimator of the true
loss `th(xh, ah) defined in (3).

• Line 6 (Update policy): Update µt+1 by OMD with loss
estimator ˜̀t and the balanced dilated KL distance function.
Due to the sparsity of ˜̀t, this update admits an efficient im-
plementation that updates the conditional form µth(·|xh) at
the visited infoset xh = xth only (described in Algorithm 5).

We are now ready to present the theoretical guarantees for
the Balanced OMD algorithm.

Theorem 4 (Regret bound for Balanced OMD). Algo-
rithm 1 with learning rate η =

√
XA logA/(H3T ) and

IX parameter γ =
√
XAι/(HT ) achieves the following

regret bound with probability at least 1− δ:

RT ≤ O
(√

H3XATι
)
,

where ι := log(3HXA/δ) is a log factor.

Letting both players run Algorithm 1, the following corol-
lary for learning NE follows immediately from the regret-
to-Nash conversion (Proposition 1).
Corollary 5 (Learning NE using Balanced OMD). Sup-
pose both players run Algorithm 1 (and its min player’s
version) against each other for T rounds, with choices of
η, γ specified in Theorem 4. Then, for any ε > 0, the av-
erage policy (µ, ν) = ( 1

T

∑T
t=1 µ

t, 1
T

∑T
t=1 ν

t) achieves
NEGap(µ, ν) ≤ ε with probability at least 1− δ, as long
as the number of episodes

T ≥ O
(
H3(XA+ Y B)ι/ε2

)
,

where ι := log(3H(XA+ Y B)/δ) is a log factor.

Theorem 4 and Corollary 5 are the first to achieve
Õ(poly(H) ·

√
XAT ) regret and Õ(poly(H) · (XA +

Y B)/ε2) sample complexity for learning an ε-approximate
NE for IIEFGs. Notably, the sample complexity scales only
linearly in X , Y and improves significantly over the best
known Õ((X2A+ Y 2B)/ε2)) achieved by the IXOMD al-
gorithm of (Kozuno et al., 2021) by a factor of max {X,Y }.

Overview of techniques The proof of Theorem 4 (de-
ferred to Appendix D.2) follows the usual analysis of OMD
algorithms where the key is to bound a distance term and an
algorithm-specific “stability” like term (cf. Lemma D.4 and
its proof). Compared with existing OMD algorithms using
the original dilated KL (Kozuno et al., 2021), our balanced
dilated KL creates a “balancing effect” that preserves the
distance term (Lemma C.7) and shaves off an X factor in
the stability term (Lemma D.11 & D.12), which combine
to yield a

√
X improvement in the final regret bound. This

X factor improvement in the stability term is the techni-
cal crux of the proof, which we do by bounding a certain
log-partition function logZt1 using an intricate second-order
Taylor expansion argument in lack of a closed-form formula
(Lemma D.11 & Appendix D.6).

3.3. Lower bound

We accompany our results with information-theoretic
lower bounds showing that our Õ(

√
H3XAT ) regret and

Õ(H3(XA + Y B)/ε2) sample complexity are both near-
optimal modulo poly(H) and log factors.
Theorem 6 (Lower bound for learning IIEFGs). For any
A ≥ 2, H ≥ 1, we have (c > 0 is an absolute constant)

(a) (Regret lower bound) For any algorithm that controls
the max player and plays policies {µt}Tt=1 where T ≥ XA,
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there exists a game with B = 1 on which

E
[
RT
]

= E

[
max

µ†∈Πmax

T∑
t=1

〈
µt − µ†, `t

〉]
≥ c ·

√
XAT.

(b) (PAC lower bound for learning NE) For any algo-
rithm that controls both players and outputs a final pol-
icy (µ̂, ν̂) with T episodes of play, and any ε ∈ (0, 1],
there exists a game on which the algorithm suffers from
E[NEGap(µ̂, ν̂)] ≥ ε, unless

T ≥ c · (XA+ Y B)/ε2.

The proof of Theorem 6 (deferred to Appendix D.7) con-
structs a hard instance with X = Θ(XH) = Θ(AH−1) that
is equivalent to AH -armed bandit problems, and follows by
a reduction to standard bandit lower bounds5. We remark
that our lower bounds are tight in X but did not explicitly
optimize the H dependence (which is typically lower-order
compared to X).

4. Counterfactual Regret Minimization
Counterfactual Regret Minimization (CFR) (Zinkevich et al.,
2007) is another widely used class of algorithms for solving
IIEFGs. In this section, we present a new variant Balanced
CFR that also achieves sharp sample complexity guarantees.

Different from OMD, CFR-type algorithms maintain a “lo-
cal” regret minimizer at each infoset xh that aims to mini-
mize the immediate counterfactual regret at that infoset:

Rimm,T
h (xh) := max

µ∈∆(A)

T∑
t=1

〈
µth(·|xh)− µ(·), Lth(xh, ·)

〉
,

where Lth(xh, ah) is the counterfactual loss function

Lth(xh, ah) := `th(xh, ah) +

H∑
h′=h+1

· · ·

∑
(xh′ ,ah′ )∈Ch′ (xh,ah)×A

µt(h+1):h′(xh′ , ah′)`
t
h′(xh′ , ah′).

(10)

Controlling all the immediate counterfactual regrets
Rimm,T
h (xh) will also control the overall regret of the game

RT , as guaranteed by the counterfactual regret decomposi-
tion (Zinkevich et al., 2007) (see also our Lemma E.1).

5Alternatively, a lower bound like Theorem 6 can also be
shown by expressing stochastic contextual bandits (for the max-
player) with X contexts and A actions as IIEFGs, and using the
Ω(
√
XAT ) regret lower bound for stochastic contextual bandits

e.g. (Lattimore & Szepesvári, 2020, Chapter 19.1). This provides
hard IIEFG instances with H = 1 and any value of X,A ≥ 1.

4.1. Algorithm description

Our Balanced CFR algorithm, described in Algorithm 2,
can be seen as an instantiation of the Monte-Carlo CFR
(MCCFR) framework (Lanctot et al., 2009) that incorporates
the balanced policies in its sampling procedure. Algorithm 2
requires regret minimization algorithms Rxh

for each xh as
its input, and performs the following steps in each round:

• Line 4-6 (Sampling): Play H episodes using policies{
µt,(h)

}
h∈[H]

, where each µt,(h) = (µ?,h1:hµ
t
h+1:H) is a con-

catenation of the balanced exploration policy µ?,h with the
current maintained policy µt over time steps. Then, compute
L̃th(xh, ah) by (12) that are importance-weighted unbiased
estimators of the true counterfactual loss Lth(xh, ah) in (10).

• Line 8 (Update regret minimizers): For each (h, xh), send
the loss estimators {L̃th(xh, a)}a∈A to the local regret mini-
mizer Rxh

, and obtain the updated policy µt+1
h (·|xh).

Similar as existing CFR-type algorithms, Balanced CFR has
the flexibility of allowing different choices of regret mini-
mization algorithms as Rxh

. We will consider two concrete
instantiations of Rxh

as Hedge and Regret Matching in the
following subsection.

4.2. Theoretical guarantee

To obtain a sharp guarantee for Balanced CFR, we first
instantiate Rxh

as the Hedge algorithm (a.k.a. Exponential
Weights, or mirror descent with the entropic regularizer; cf.
Algorithm 3). Specifically, we let each Rxh

be the Hedge
algorithm with learning rate ηµ?,h1:h(xh, a)6. With this choice,
Line 8 of Algorithm 2 takes the following explicit form:

µt+1
h (a|xh) ∝a µth(a|xh) · e−ηµ

?,h
1:h (xh,a)·L̃t

h(xh,a). (11)

We are now ready to present the theoretical guarantees for
the Balanced CFR algorithm.

Theorem 7 (“Regret” bound for Balanced CFR). Suppose
the max player plays Algorithm 2 where eachRxh

is instanti-
ated as the Hedge algorithm (11) with η =

√
XAι/(H3T ).

Then, the policies µt achieve the following “regret” bound
with probability at least 1− δ:

R̃T := max
µ†∈Πmax

T∑
t=1

〈
µt − µ†, `t

〉
≤ O(

√
H3XATι),

where ι = log(10XA/δ) is a log factor.

The Õ(
√
H3XAT ) “regret” achieved by Balanced CFR

matches that of Balanced OMD. However, we emphasize
that the quantity R̃T is not strictly speaking a regret, as
it measures performance of the policy {µt} maintained
in the Balanced CFR algorithm, not the sampling policy

6Note that this quantity depends on xh but not a.
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Algorithm 2 Balanced CFR (max-player)
Input: Regret minimization algorithm Rxh for all (h, xh).
1: Initialize policy µ1

h(ah|xh)← 1/A for all (h, xh, ah).
2: for round t = 1, . . . , T do
3: for h = 1, . . . , H do
4: Set policy µt,(h) ← (µ?,h1:hµ

t
h+1:H).

5: Play an episode using µt,(h) × νt, observe a trajectory

(x
t,(h)
1 , a

t,(h)
1 , r

t,(h)
1 , · · · , xt,(h)

H , a
t,(h)
H , r

t,(h)
H ).

6: Compute loss estimators for all (h, xh, ah):

L̃th(xh, ah) :=
1
{

(x
t,(h)
h , a

t,(h)
h ) = (xh, ah)

}
µ?,h1:h(xh, ah)

×

(
H − h+ 1−

H∑
h′=h

r
t,(h)

h′

)
.

(12)

7: for all h ∈ [H] and xh ∈ Xh do
8: Update the regret minimizer at xh and obtain policy:

µt+1
h (·|xh)← Rxh .UPDATE({L̃th(xh, a)}a∈A). (13)

µt,(h) that the Balanced CFR algorithm have actually played.
Nevertheless, we remark that such a form of “regret” bound
is the common type of guarantee for all existing MCCFR
type algorithms (Lanctot et al., 2009; Farina et al., 2020b).

Self-play of Balanced CFR Balanced CFR can also be
turned into a PAC algorithm for learning ε-NE, by letting
the two players play Algorithm 2 against each other for
T rounds of self-play using the following protocol: Within
each round, the max player plays policies

{
µt,(h)

}H
h=1

while
the min player plays the fixed policy νt; then symmetrically
the min player plays

{
νt,(h)

}H
h=1

while the max player plays
the fixed µt. Overall, each round plays 2H episodes.

Theorem 7 directly implies the following corollary for the
above self-play algorithm on learning ε-NE, by the regret-
to-Nash conversion (Proposition 1).
Corollary 8 (Learning NE using Balanced CFR). Let both
players play Algorithm 2 in a self-play fashion against
each other for T rounds, where each Rxh

is instantiated
as the Hedge algorithm (11) with η specified in Theo-
rem 7. Then, for any ε > 0, the average policy (µ, ν) =

( 1
T

∑T
t=1 µ

t, 1
T

∑T
t=1 ν

t) achieves NEGap(µ, ν) ≤ ε with
probability at least 1− δ, as long as

T ≥ O(H3(XA+ Y B)ι/ε2),

where ι := log(10(XA+ Y B)/δ) is a log factor. The total
amount of episodes played is at most

2H · T = O(H4(XA+ Y B)ι/ε2).

Corollary 8 shows that Balanced CFR requires Õ(H4(XA+
Y B)/ε2) episodes for learning an ε-NE, which is H times
larger than Balanced OMD but otherwise also near-optimal
with respect to the lower bound (Theorem 6) modulo an
Õ(poly(H)) factor. This improves significantly over the
current best sample complexity achieved by CFR-type al-
gorithms, which are either poly(X,Y,A,B)/ε4 (Farina &
Sandholm, 2021), or potentially poly(X,Y,A,B)/ε2 using
the MCCFR framework of (Lanctot et al., 2009; Farina et al.,
2020b) but without any known such instantiation.

Overview of techniques The proof of Theorem 7 (de-
ferred to Appendix E.2) follows the usual analysis pipeline
for MCCFR algorithms that decomposes the overall regret
R̃T into combinations of immediate counterfactual regrets
Rimm,T
h (xh), and bounds each by regret bounds (of the re-

gret minimizer Rxh
) plus concentration terms. We adopt

a sharp application of this pipeline by using a tight coun-
terfactual regret decomposition (Lemma E.1), as well as
using the balancing property of µ?,h to bouund both the re-
gret and concentration terms (Lemma E.2-E.4). We remark
that the way Algorithm 2 uses the balanced policy µ?,h in
both the sampling step (by concatenating with the current
policy µt) and as the learning rate (for the Hedge regret
minimizer Rxh

(11)) is novel, and required for the above
sharp analysis.

We remark that our techniques can also be used for analyz-
ing CFR type algorithms in the full-feedback setting. Con-
cretely, we provide a sharp O(

√
H3 ‖Πmax‖1 logA · T )

regret bound for a “vanilla” CFR algorithm in the full-
feedback setting, matching the result of (Zhou et al., 2020,
Lemma 2). For completeness, we provide a statement and
proof of this result under our notation in Appendix F.

Balanced CFR with Regret Matching Many real-world
applications of CFR-type algorithms use Regret Match-
ing (Hart & Mas-Colell, 2000) instead of Hedge as the regret
minimizer, due to its practical advantages such as learning-
rate free and pruning effects (Tammelin, 2014; Burch et al.,
2019). In Appendix G, we show that Balanced CFR in-
stantiated with Regret Matching enjoys Õ(

√
H3XA2T )

“regret” and Õ((H4(XA2 + Y B2)/ε2) sample complexity
for learning ε-NE (Theorem G.1 & Corollary G.2). The
sample complexity is also sharp in X,Y , though is A (or
B) times worse than the Hedge version, which is expected
due to the difference between the regret minimizers.

5. Extension to multi-player games
In this section, we show that our Balanced OMD and Bal-
anced CFR generalize directly to learning Coarse Correlated
Equilibria in multi-player general-sum games.

We consider an m-player general-sum IIEFG with Xi in-



Near-Optimal Learning of Extensive-Form Games with Imperfect Information

fosets and Ai actions for the i-th player. Let Vi denote the
game value (expected cumulative reward) for the i-th player.
(More formal definitions can be found in Appendix H.1.)
Definition 9 (NFCCE). A joint policy π (for all players) is
an ε-approximate Normal-Form Coarse Correlated Equilib-
rium (NFCCE) if

CCEGap(π) := max
i∈[m]

(
max
π†i∈Πi

V
π†i ,π−i

i − V πi
)
≤ ε,

i.e., no player can gain more than ε in her own reward by
deviating from π and playing some other policy on her own.

We remark that the NFCCE differs from other types of
Coarse Correlated Equilibria in the literature such as the
EFCCE7 (Farina et al., 2020a). Using the known connec-
tion between no-regret and NFCCE (Celli et al., 2019), we
can learn an ε-NFCCE in an multi-player IIEFG sample-
efficiently by letting all players run either Balanced CFR or
Balanced OMD in a self-play fashion. In the following, we
let {πti}

T
t=1 denote the policies maintained by player i, and

πt :=
∏m
i=1 π

t
i denote their joint policy in the t-th round.

Theorem 10 (Learning NFCCE sample-efficiently using
Balanced OMD / Balanced CFR). We have

(a) (Balanced OMD) Let all players play Algorithm 1 for
T rounds with learning rate η =

√
XiAi logAi/(H3T )

and IX parameter γ =
√
XiAiι/(HT ) for the i-th player.

Then for any ε > 0, the average policy π uniformly sampled
from {πt}Tt=1 satisfies CCEGap(π) ≤ ε with probability
at least 1− δ, as long as the number of episodes

T ≥ O
(
H3ι

(
max
i∈[m]

XiAi

)
/ε2
)
,

where ι := log(3H
∑m
i=1XiAi/δ) is a log factor.

(b) (Balanced CFR) Let all players play Algorithm 2 in
the same self-play fashion as Corollary 8 for T rounds,
with Rxh

instantiated as Hedge (11) with learning rate η =√
XiAiι/(H3T ) for the i-th player. Then for any ε > 0, the

average policy π uniformly sampled from {πt}Tt=1 satisfies
CCEGap(π) ≤ ε with probability at least 1 − δ, as long
as T ≥ O

(
H3ι(maxi∈[m]XiAi)/ε

2
)
. The total number of

episodes played is at most

mH · T = O
(
H4mι ·

(
max
i∈[m]

XiAi

)
/ε2
)
.

where ι := log(10
∑m
i=1XiAi/δ) is a log factor.

For both algorithms, the number of episodes for learning
an ε-NFCCE scales linearly with maxi∈[m]XiAi (with Bal-
anced CFR having an additional Hm factor than Balanced
OMD), compared to the best existing maxi∈[m]X

2
i Ai de-

pendence (e.g. by self-playing IXOMD (Kozuno et al.,
2021)). The proof of Theorem 10 is in Appendix H.2.

7Such distinctions only exist for (Coarse) Correlated Equilibria
and not for the NE studied in the previous sections.

6. Conclusion
This paper presents the first line of algorithms for learning
an ε-NE in two-player zero-sum IIEFGs with near-optimal
Õ((XA+Y B)/ε2) sample complexity. We achieve this by
new variants of both OMD and CFR type algorithms that in-
corporate suitable balanced exploration policies. We believe
our work opens up many interesting future directions, such
as empirical verification of our balanced algorithms, or how
to learn IIEFGs with large state/action spaces efficiently
using function approximation.
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Kovařı́k, V., Schmid, M., Burch, N., Bowling, M., and Lisỳ,
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A. Technical tools
The following Freedman’s inequality can be found in (Agarwal et al., 2014, Lemma 9).

Lemma A.1 (Freedman’s inequality). Suppose random variables {Xt}Tt=1 is a martingale difference sequence, i.e. Xt ∈ Ft
where {Ft}t≥1 is a filtration, and E[Xt|Ft−1] = 0. Suppose Xt ≤ R almost surely for some (non-random) R > 0. Then
for any λ ∈ (0, 1/R], we have with probability at least 1− δ that

T∑
t=1

Xt ≤ λ ·
T∑
t=1

E
[
X2
t |Ft−1

]
+

log(1/δ)

λ
.

B. Bounds for regret minimizers
Here we collect regret bounds for various regret minimization algorithms on the probability simplex. For any algorithm that
plays policy pt in the t-th round and observes loss vector {`t(a)}a∈[A] ∈ RA≥0, define its regret as

Regret(T ) := max
p?∈∆([A])

T∑
t=1

〈
pt, ˜̀t〉− 〈p?, ˜̀t〉 .

B.1. Hedge

Algorithm 3 Regret Minimization with Hedge (HEDGE)
Input: Learning rate η > 0.

1: Initialize p1(a)← 1/A for all a ∈ [A].
2: for iteration t = 1, . . . , T do
3: Receive loss vector

{˜̀
t(a)

}
a∈[A]

.

4: Update action distribution via mirror descent:

pt+1(a) ∝a pt(a) exp
(
−η˜̀t(a)

)
.

The following regret bound for Hedge is standard, see, e.g. (Lattimore & Szepesvári, 2020, Proposition 28.7).

Lemma B.1 (Regret bound for Hedge). Algorithm 3 with learning rate η > 0 achieves regret bound

Regret(T ) ≤ logA

η
+
η

2

T∑
t=1

∑
a∈[A]

pt(a)˜̀t(a)2.

B.2. Regret Matching

The following regret bound for Regret Matching is standard, see, e.g. (Cesa-Bianchi & Lugosi, 2006; Brown & Sandholm,
2014). For completeness, here we provide a proof along with an alternative form of bound useful for our purpose
(Remark B.3). Note that here η is not the learning rate but rather an arbitrary positive value (i.e. the right-hand side is an
upper bound on the regret for any η > 0). Algorithm 4 itself does not require any learning rate.

Lemma B.2 (Regret bound for Regret Matching). Algorithm 4 achieves the following regret bound for any η > 0:

Regret(T ) ≤
[ T∑
t=1

∑
a∈[A]

(〈
pt, ˜̀t〉− ˜̀t(a)

)2]1/2
≤ 1

η
+
η

4

T∑
t=1

∑
a∈[A]

(〈
pt, ˜̀t〉− ˜̀t(a)

)2

.

Proof By the fact that (a+ b)2
+ ≤ a2

+ + 2a+b+ b2, we have

[Rt(a)]2+ ≤ [Rt−1(a)]2+ + 2[Rt−1(a)]+rt(a) + rt(a)2. (14)
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Algorithm 4 Regret Minimization with Regret Matching (REGRETMATCHING)
1: Initialize p1(a)← 1/A and R0(a)← 0 for all a ∈ [A].
2: for iteration t = 1, . . . , T do
3: Receive loss vector

{˜̀
t(a)

}
a∈[A]

.

4: Update instantaneous regret and cumulative regret for all a ∈ [A]:

rt(a)←
〈
pt, ˜̀t〉− ˜̀t(a) and Rt(a)← Rt−1(a) + rt(a).

5: Compute action distribution by regret matching:

pt+1(a)←
[Rt(a)]+∑

a′∈[A] [Rt(a′)]+
=

[∑T
t=1

〈
pt, ˜̀

t

〉
− ˜̀t(a)

]
+∑

a′∈[A]

[∑T
t=1

〈
pt, ˜̀

t

〉
− ˜̀t(a′)]

+

.

In the edge case where [Rt(a)]+ = 0 for all a ∈ [A], set pt+1(a)← 1/A to be the uniform distribution.

Then by the definition of pt(a) and rt(a), we have∑
a∈[A]

[Rt−1(a)]+rt(a) =
∑
a∈[A]

[Rt−1(a)]+

( ∑
a′∈[A]

pt(a
′)˜̀t(a′)− ˜̀t(a)

)
=
∑
a∈[A]

[Rt−1(a)]+ ˜̀t(a)−
∑
a∈[A]

[Rt−1(a)]+ ˜̀t(a) = 0.
(15)

Then summing over a in Eq. (14) and using Eq. (15), we get∑
a∈[A]

[RT (a)]2+ ≤
∑
a∈[A]

[RT−1(a)]2+ + 2
∑
a∈[A]

[RT−1(a)]+rT (a) +
∑
a∈[A]

rT (a)2

=
∑
a∈[A]

[RT−1(a)]2+ +
∑
a∈[A]

rT (a)2 ≤
T∑
t=1

∑
a∈[A]

rt(a)2.

Using that maxaRT (a) ≤ maxa[RT (a)]+ ≤ (
∑
a∈[A][RT (a)]2+)1/2 gives the regret bound

Regret(T ) = max
a∈[A]

RT (a) ≤

 T∑
t=1

∑
a∈[A]

rt(a)2

1/2

=

 T∑
t=1

∑
a∈[A]

(〈
pt, ˜̀t〉− ˜̀t(a)

)2

1/2

.

The claimed bound with η follows directly from the inequality
√
z ≤ 1/η + ηz/4 for any η > 0, z ≥ 0.

Remark B.3. The quantity
∑
a∈[A]

(〈
pt, ˜̀t〉− ˜̀t(a)

)2

above can be upper bounded as

∑
a∈[A]

(〈
pt, ˜̀t〉− ˜̀t(a)

)2

≤
∑
a∈[A]

(〈
pt, ˜̀t〉2

+ ˜̀t(a)2

)

= A
〈
pt, ˜̀t〉2

+
∥∥∥˜̀t∥∥∥2

2
≤ A

∑
a∈[A]

(
pt(a)˜̀t(a)2 + (1/A)˜̀t(a)2

)
= 2A

∑
a∈[A]

p̄t(a)˜̀t(a)2,

where p̄t(a) = [pt(a) + (1/A)]/2 is a probability distribution over [A].
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As a consequence, we get an upper bound on the regret of Regret Matching algorithm by

Regret(T ) ≤ 1

η
+
η

2

T∑
t=1

∑
a∈[A]

(Ap̄t(a))˜̀t(a)2.

Comparing to the bound of Hedge (Lemma B.1), the above regret bound for Regret Matching has a similar form except for
replacing logA by 1 and replacing pt by Ap̄t.

C. Properties of the game
C.1. Basic properties

For any opponent (min-player) policy ν ∈ Πmin, define

pν1:h(xh) :=
∑
sh∈xh

p1:h(sh)ν1:h−1(y(sh−1), bh−1) for all h ∈ [H], xh ∈ Xh.

Intuitively, pν1:h(xh) measures the environment and the opponent’s contribution in the reaching probability of xh.

Lemma C.1 (Properties of pν1:h(xh)). The following holds for any ν ∈ Πmin:

(a) For any policy µ ∈ Πmax, we have ∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)pν1:h(xh) = 1.

(b) 0 ≤ pν1:h(xh) ≤ 1 for all h, xh.

Proof For (a), notice that

µ1:h(xh, ah)pν1:h(xh) =
∑
sh∈xh

p1:h(sh) · µ1:h(xh, ah) · ν1:h−1(y(sh−1), bh−1)

=
∑
sh∈xh

Pµ,ν(visit (sh, ah)) = Pµ,ν(visit (xh, ah)).

Summing over all (xh, ah) ∈ Xh ×A, the right hand side sums to one, thereby showing (a).

For (b), fix any xh ∈ Xh. Clearly pν1:h(xh) ≥ 0. Choose any ah ∈ A, and choose policy µxh,ah ∈ Πmax such that
µxh,ah

1:h (xh, ah) = 1 (such µxh,ah exists, for example, by deterministically taking all actions prescribed in infoset xh at all
ancestors of xh). For this µxh,ah , using (a), we have

pν1:h(xh) = µxh,ah
1:h (xh, ah) · pν1:h(xh) ≤

∑
(x′h,a

′
h)∈Xh×A

µxh,ah
1:h (x′h, a

′
h) · pν1:h(x′h) = 1.

This shows part (b).

Corollary C.2. For any policy µ ∈ Πmax and h ∈ [H], we have∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)`th(xh, ah) ≤ 1.

Proof Notice by definition

`th(xh, ah) =
∑

sh∈xh,bh∈Bh

p1:h(sh)νt1:h(y(sh), bh)(1− rh(sh, ah, bh)) ≤ pν1:h(xh),

and the result is implied by Lemma C.1 (b).
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Lemma C.3. For any h ∈ [H], the counterfactual loss function Lth defined in (10) satisfies the bound

(a) For any policy µ ∈ Πmax, we have ∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)Lth(xh, ah) ≤ H − h+ 1.

(b) For any (h, xh, ah), we have

0 ≤ Lth(xh, ah) ≤ pν
t

1:h(xh) · (H − h+ 1).

Proof Part (a) follows from the fact that

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)Lth(xh, ah) = Eµ,νt

[
H∑

h′=h

rh′

]
≤ H − h+ 1,

where the first equality follows from the definition of the loss functions `h and Lh in (3), (10).

For part (b), the nonnegativity follows clearly by definition. For the upper bound, take any policy µxh,ah ∈ Πmax such that
µxh,ah

1:h (xh, ah) = 1. We then have

Lth(xh, ah) = µxh,ah
1:h (xh, ah)Lth(xh, ah) = Eµxh,ah ,νt

[
1 {visit xh, ah} ·

H∑
h′=h

rh′

]

= Pµxh,ah ,νt(visit xh, ah) · Eµxh,ah ,νt

[
H∑

h′=h

rh′

∣∣∣∣visit xh, ah

]
≤ µxh,ah

1:h (xh, ah)pν
t

1:h(xh) · (H − h+ 1) = pν
t

1:h(xh) · (H − h+ 1).

Definition of average policies For two-player zero-sum IIEFGs, we define the average policy of the max-player µ =
1
T

∑T
t=1 µ

t (in conditional form) by

µh(ah|xh) :=

∑T
t=1 µ

t
1:h (xh, ah)∑T

t=1 µ
t
1:h−1 (xh)

, (16)

for any h and (xh, ah) ∈ Xh×A. It is straightforward to check that this µ is exactly the averaging of µt in the sequence-form
representation (see e.g. (Kozuno et al., 2021, Theorem 1)):

µ1:h(xh, ah) =
1

T

T∑
t=1

µt1:h(xh, ah) for all (h, xh, ah). (17)

Both expressions above can be used as the definition interchangably. The average policy of the min-player ν = 1
T

∑T
t=1 ν

t

is defined similarly.

C.2. Balanced exploration policy

Lemma C.4 (Balancing property of µ?,h). For any max-player’s policy µ ∈ Πmax and any h ∈ [H], we have

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

µ?,h1:h(xh, ah)
= XhA.
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Lemma C.4 states that µ?,h is a good exploration policy in the sense that the distribution mismatch between it and any
µ ∈ Πmax has bounded L1 norm. Further, the bound XhA is non-trivial—For example, if we replace µ?,h1:h with the uniform
policy µunif

1:h (xh, ah) = 1/Ah, the left-hand side can be as large as XhA
h in the worst case.

Proof of Lemma C.4 We have∑
xh,ah

µ1:h(xh, ah)

µ?,h1:h(xh, ah)

=
∑

xh−1,ah−1

∑
(xh,ah)∈C(xh−1,ah−1)×A

µ1:(h−1)(xh−1, ah−1) · µh(ah|xh)

µ?,h1:(h−1)(xh−1, ah−1) · (1/A)

(i)
= A ·

∑
xh−1,ah−1

∑
xh∈C(xh−1,ah−1)

µ1:(h−1)(xh−1, ah−1)

µ?,h1:(h−1)(xh−1, ah−1)

= A ·
∑

xh−1,ah−1

µ1:(h−1)(xh−1, ah−1)

µ?,h1:(h−1)(xh−1, ah−1)
· |Ch(xh−1, ah−1)|

(ii)
= A ·

∑
xh−2,ah−2

∑
(xh−1,ah−1)∈C(xh−2,ah−2)×A

µ1:(h−2)(xh−2, ah−2)µh−1(ah−1|xh−1)

µ?,h1:(h−2)(xh−2, ah−2) · |Ch(xh−1, ah−1)|/|Ch(xh−1)|
· |Ch(xh−1, ah−1)|

= A ·
∑

xh−2,ah−2

∑
(xh−1,ah−1)∈C(xh−2,ah−2)×A

µ1:(h−2)(xh−2, ah−2)µh−1(ah−1|xh−1)

µ?,h1:(h−2)(xh−2, ah−2)
· |Ch(xh−1)|

= A ·
∑

xh−2,ah−2

∑
(xh−1,ah−1)∈C(xh−2,ah−2)×A

µ1:(h−2)(xh−2, ah−2)µh−1(ah−1|xh−1)

µ?,h1:(h−2)(xh−2, ah−2)
· |Ch(xh−1)|

(iii)
= A ·

∑
xh−2,ah−2

µ1:(h−2)(xh−2, ah−2)

µ?,h1:(h−2)(xh−2, ah−2)
· |Ch(xh−2, ah−2)|

= . . .

= A ·
∑
x1,a1

µ1(a1|x1)

|Ch(x1, a1)|/|Ch(x1)|
· |Ch(x1, a1)|

= A ·
∑
x1,a1

µ1(a1|x1) · |Ch(x1)|

= A ·
∑
x1

|Ch(x1)| = A · |Ch(∅)| = XhA.

Above, (i) used the definition of µ?,hh and the fact that
∑
ah∈A µh(ah|xh) = 1 for any µ, xh; (ii) used the definition of

µ?,hh−1; (iii) used the fact that
∑
xh−1∈C(xh−2,ah−2) |Ch(xh−1)| = |Ch(xh−2, ah−2)| which follows by the additivity of the

number of descendants; and the rest followed by performing the same operations repeatedly.

The following corollary is similar to the lower bound in (Farina et al., 2020b, Appendix A.3).

Corollary C.5. We have

µ?,h1:h(xh, ah) ≥ 1

XhA

for any h ∈ [H] and (xh, ah) ∈ Xh ×A.

Proof Choose some deterministic policy µ s.t. µ1:h(xh, ah) = 1 in Lemma C.4 and noticing each term in the summation
is non-negative,

µ1:h(xh, ah)

µ?,h1:h(xh, ah)
≤ XhA.
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C.2.1. INTERPRETATION AS A TRANSITION PROBABILITY

We now provide an intepretation of the balanced exploration policy µ?,h1:h: its inverse 1/µ?,h1:h can be viewed as the (product)
of a “transition probability” over the game tree for the max player. As a consequence, this interpretation also provides an
alternative proof of Lemma C.4.

For any 1 ≤ h ≤ H and 1 ≤ k ≤ h − 1, denote p?,hk (xk+1|xk, ak) = |Ch(xk+1)|/|Ch(xk, ak)| (we use the convention
that |Ch(xh)| = 1). By this definition, p?,hk (·|xk, ak) is a probability distribution over Ch(xk, ak) and can be interpreted as
a balanced transition probability from (xk, ak) to xk+1. We further denote the sequence form of the balanced transition
probability by

p?,h1:h(xh) =
|Ch(x1)|
Xh

h−1∏
k=1

p?,hk (xk+1|xk, ak) =
|Ch(x1)|
Xh

h−1∏
k=1

|Ch(xk+1)|
|Ch(xk, ak)|

. (18)

Lemma C.6. For any (xh, ah) ∈ Xh ×A, the sequence form of the transition p?,h1:h(xh) and the sequence form of balanced
exploration strategy µ?,h1:h(xh, ah) are related by

p?,h1:h(xh) =
1

XhA · µ?,h1:h(xh, ah)
. (19)

Furthermore, for any max player’s policy µ ∈ Πmax and any h ∈ [H], we have∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)p?,h1:h(xh) = 1. (20)

Proof of Lemma C.6 By the definition of the balanced transition probability as in Eq. (18) and the balanced exploration
strategy as in Eq. (5), we have

1

XhA · µ?,h1:h(xh, ah)
=

1

XhA

h−1∏
k=1

|Ch(xk)|
|Ch(xk, ak)|

×A =
|Ch(x1)|
Xh

h−1∏
k=1

|Ch(xk+1)|
|Ch(xk, ak)|

= p?,h1:h(xh).

where the second equality used the property that |Ch(xh)| = 1. This proves Eq. (19). The proof of Eq. (20) is similar to the
proof of Lemma C.1 (a).

Alternative proof of Lemma C.4 Lemma C.4 follows as a direct consequence of Eq. (19) and (20) in Lemma C.6.

C.3. Balanced dilated KL

Lemma C.7 (Bound on balanced dilated KL). Let µunif ∈ Πmax denote the uniform policy: µunif
h (ah|xh) = 1/A for all

(h, xh, ah). Then we have

max
µ†∈Πmax

Dbal(µ†‖µunif) ≤ XA logA.

Proof We have

max
µ†∈Πmax

Dbal(µ†‖µunif) = max
µ†∈Πmax

H∑
h=1

∑
xh,ah

µ†1:h(xh, ah)

µ?,h1:h(xh, ah)
log

µ†h(ah|xh)

µunif
h (ah|xh)

= max
µ†∈Πmax

H∑
h=1

∑
xh,ah

µ†1:h(xh, ah)

µ?,h1:h(xh, ah)

(
logµ†h(ah|xh) + logA

)
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(i)

≤ logA

H∑
h=1

max
µ†∈Πmax

∑
xh,ah

µ†1:h(xh, ah)

µ?,h1:h(xh, ah)

(ii)
= logA

H∑
h=1

XhA = XA logA,

where (i) is because µ†h(ah|xh) logµ†h(ah|xh) ≤ 0 (recalling that each sequence form µ†1:h(xh, ah) contains the term
µ†h(ah|xh)), and (ii) uses the balancing property of µ?,h (Lemma C.4).

C.3.1. INTERPRETATION OF BALANCED DILATED KL

We present an interpretation of the balanced dilated KL (6) as a KL distance between the reaching probabilities under the
“balanced transition” (18) on the max player’s game tree.

For any policy µ ∈ Πmax, we define its balanced transition reaching probability Pµ,?h (xh, ah) as

Pµ,?h (xh, ah) = µ1:h(xh, ah)p?,h1:h(xh). (21)

This is a probability measure on Xh ×A ensured by Lemma C.6. For any two probability distribution p and q, we denote
KL(p‖q) to be their KL divergence.

Lemma C.8. For any tuple of max-player’s policies µ, ν ∈ Πmax, we have

Dbal(µ‖ν) =

H∑
h=1

(XhA)KL(Pµ1:h,?
h ‖Pµ1:h−1νh,?

h ). (22)

Proof of Lemma C.8 By Eq. (21) and by the definition of KL divergence, we have

(XhA)Dkl(Pµ1:h,?
h ‖Pµ1:h−1νh,?

h )

= (XhA)
∑

(xh,ah)∈Xh×A

µ1:h(xh, ah)p?,h1:h(xh) log
[ µ1:h(xh, ah)p?,h1:h(xh)

µ1:h−1(xh−1, ah−1)νh(xh|ah)p?,h1:h(xh)

]
=

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

µ?,h1:h(xh, ah)
log
[µh(ah|xh)

νh(ah|xh)

]
,

(23)

where the last equality is by Lemma C.6. Comparing with the definition of Dbal as in Eq. (6) concludes the proof.

D. Proofs for Section 3
D.1. Efficient implementation for Update (9)

Lemma D.1. Algorithm 5 indeed solves the optimization problem (9):

µt+1 ← arg min
µ∈Πmax

〈
µ, ˜̀t〉+

1

η
Dbal(µ‖µt).

Proof First, by the sparsity of the loss estimator ˜̀t (cf. (8)), the above objective can be written succinctly as〈
µ, ˜̀t〉+

1

η
Dbal(µ‖µt) (24)

=

H∑
h=1

∑
xh,ah

µ1:h(xh, ah)

[˜̀t
h (xh, ah) +

1

ηµ?,h1:h(xh, ah)
log

µh(ah|xh)

µth(ah|xh)

]
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Algorithm 5 Implementation of Balanced OMD update
Input: Current policy µt; Trajectory (xt1, a

t
1, . . . , x

t
H , a

t
H); learning rate η > 0;

Loss vector
{˜̀t

h(xh, ah)
}
h,xh,ah

that is non-zero only on (xh, ah) = (xth, a
t
h).

1: Set ZtH+1 ← 1.
2: for h = H, . . . , 1 do
3: Compute normalization constant

Zth ← 1− µth(ath|xth) + µth(ath|xth) · exp

(
−ηµ?,h1:h(xth, a

t
h)˜̀th(xth, a

t
h) +

µ?,h1:h(xth, a
t
h) logZth+1

µ?,h+1
1:h+1(xth+1, a

t
h+1)

)
.

4: Update policy at xth:

µt+1
h (ah|xth)←


µth(ah|xth) · exp

(
−ηµ?,h1:h(xth, a

t
h)˜̀th(xth, a

t
h) +

µ?,h1:h(xth, a
t
h) logZth+1

µ?,h+1
1:h+1(xth+1, a

t
h+1)

− logZth

)
if ah = ath,

µth(ah|xth) · exp(− logZth) otherwise.

5: Set µt+1
h (·|xh)← µth(·|xh) for all xh ∈ Xh \

{
xth
}

.
Output: Updated policy µt+1.

=

H∑
h=1

∑
xh

µ1:h−1(xh)

[〈
µh(·|xh), ˜̀th (xh, ·)

〉
+

KL (µh(·|xh)||µth(·|xh))

ηµ?,h1:h(xh, ah)

]

=

H∑
h=1

µ1:h−1(xth)

[
µh(ath|xth)˜̀th (xth, ath)+

KL (µh(·|xh)||µth(·|xh))

ηµ?,h1:h(xth, ah)

]
+
∑
xh 6=xt

h

µ1:h−1(xh)
KL (µh(·|xh)||µth(·|xh))

ηµ?,h1:h(xh, ah)

.
(25)

We now show the equivalence by backward induction over h = H, . . . , 1. For h = H , we can optimize over the H-th layer
directly to see

µt+1
H (aH |xtH) ∝aH µtH(aH |xtH) exp

{
−ηµ?,h1:h(xth, ah)˜̀tH(xtH , aH)

}
= µtH(aH |xtH) exp

{
−η˜̀tH(xtH , aH)− logZtH

}
,

where ZtH > 0 is the normalization constant. For all non-visited xH 6= xtH , by equation (25) and non-negativity of KL
divergence, the object must be minimized at µt+1

H (·|xH) = µth(·|xH).

If the claim holds from layer h+1 to H , consider the h-th layer. Plug in the proved optimizer after layer h, the objective (25)
can be written as

H∑
h′=1

∑
xh′ ,ah′

µ1:h′(xh′ , ah′)

[˜̀t
h′ (xh′ , ah′) +

1

ηµ?,h
′

1:h′ (xh′ , ah′)
log

µh′(ah′ |xh′)
µth′(ah′ |xh′)

]

=

H∑
h′=1

∑
xh′

µ1:h′−1(xh′)

[〈
µh′(·|xh′), ˜̀th′ (xh′ , ·)〉+

KL (µh′(·|xh′)||µth′(·|xh′))
ηµ?,h

′

1:h′ (xh′ , ah′)

]

=

h∑
h′=1

∑
xh′

µ1:h′−1(xh′)

[〈
µh′(·|xh′), ˜̀th′ (xh′ , ·)〉+

KL (µh′(·|xh′)||µth′(·|xh′))
ηµ?,h

′

1:h′ (xh′ , ah′)

]

+

H∑
h′=h+1

[
µ1:h′(x

t
h′ , a

t
h′) logZth′+1

ηµ?,h
′+1

1:h′+1(xth′+1, a
t
h′+1)

−
µ1:h′−1(xth′−1, a

t
h′−1) logZth′

ηµ?,h
′

1:h′ (x
t
h′ , a

t
h′)

]

=

h∑
h′=1

∑
xh′

µ1:h′−1(xh′)

[〈
µh′(·|xh′), ˜̀th′ (xh′ , ·)〉+

KL (µh′(·|xh′)||µth′(·|xh′))
ηµ?,h

′

1:h′ (xh′ , ah′)

]
−
µ1:h(xth, a

t
h) logZth+1

ηµ?,h+1
1:h+1(xth+1, a

t
h+1)



Near-Optimal Learning of Extensive-Form Games with Imperfect Information

=

h−1∑
h′=1

∑
xh′

µ1:h′−1(xh′)

[〈
µh′(·|xh′), ˜̀th′ (xh′ , ·)〉+

KL (µh′(·|xh′)||µth′(·|xh′))
ηµ?,h

′

1:h′ (xh′ , ah′)

]

+ µ1:h−1(xth)

[
µh(ath|xth)

(˜̀t
h

(
xth, a

t
h

)
−

logZth+1

ηµ?,h+1
1:h+1(xth+1, a

t
h+1)

)
+

KL (µh(·|xth)||µth(·|xth))

ηµ?,h1:h(xth, ah)

]

+
∑
xh 6=xt

h

µ1:h−1(xh)
KL (µh(·|xh)||µth(·|xh))

ηµ?,h1:h(xh, ah)
.

Thus in the h layer we can optimize by setting

µt+1
h (ah|xth) = µth(ah|xth) exp

{
−

[
ηµ?,h1:h(xth, ah)˜̀th(xth, ah)−

µ?,h1:h(xth, ah)

µ?,h+1
1:h+1(xth+1, a

t
h+1)

logZth+1

]
1
{
ah = ath

}
− logZth

}
.

For all non-visited xh 6= xth, by non-negativity of KL divergence, the object must be minimized at µt+1
h (·|xh) = µth(·|xh).

This is exactly the update rule in Algorithm 5.

D.2. Proof of Theorem 4

Decompose the regret as

RT = max
µ†∈Πmax

T∑
t=1

〈
µt − µ†, `t

〉
(26)

≤
T∑
t=1

〈
µt, `t − ˜̀t〉︸ ︷︷ ︸
BIAS1

+ max
µ†∈Πmax

T∑
t=1

〈
µ†, ˜̀t − `t〉︸ ︷︷ ︸

BIAS2

+ max
µ†∈Πmax

T∑
t=1

〈
µt − µ†, ˜̀t〉︸ ︷︷ ︸

REGRET

. (27)

We now state three lemmas that bound each of the three terms above. Their proofs are presented in Section D.4, D.5, and D.6
respectively. Below, ι := log(3HXA/δ) denotes a log factor.

Lemma D.2 (Bound on BIAS1). With probability at least 1− δ/3, we have

BIAS1 ≤ H
√

2Tι+ γHT.

Lemma D.3 (Bound on BIAS2). With probability at least 1− δ/3, we have

BIAS2 ≤ XAι/γ.

Lemma D.4 (Bound on REGRET). With probability at least 1− δ/3, we have

REGRET ≤ XA logA

η
+ ηH3T +

ηH2XAι

γ
.

Putting the bounds together, we have that with probability at least 1− δ,

RT ≤ XA logA

η
+ ηH3T +

ηH2XAι

γ
+H
√

2Tι+ γHT +
XAι

γ
.

Set η =
√

XA logA
H3T and γ =

√
XAι
TH , we have

RT ≤ 6
√
XAH3Tι+HXAι.
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Additionally, recall the naive bound RT ≤ HT on the regret (which follows as 〈µt, `t〉 ∈ [0, H] for any µ ∈ Πmax, t ∈ [T ]),
we get

RT ≤ min
{

6
√
XAH3Tι+HXAι,HT

}
≤ HT ·min

{
6
√
XAHι/T +XAι/T, 1

}
.

For T > HXAι, the min above is upper bounded by 7
√
HXAι/T . For T ≤ HXAι, the min above is upper bounded by

1 ≤ 7
√
HXAι/T . Therefore, we always have

RT ≤ HT · 7
√
HXAι/T = 7

√
H3XATι.

This is the desired result.

The rest of this section is devoted to proving the above three lemmas.

D.3. A concentration result

We begin by presenting a useful concentration result. This result is a variant of (Kozuno et al., 2021, Lemma 3) and (Neu,
2015, Lemma 1) suitable to our loss estimator (8) where the IX bonus on the denominator depends on (xh, ah).

Lemma D.5. For some fixed h ∈ [H], let αth (xh, ah) ∈
[
0, 2γµ?,h1:h (xh, ah)

]
be F t−1-measurable random variable for

each (xh, ah) ∈ Xh ×A. Then with probability 1− δ,

T∑
t=1

∑
xh,ah

αth (xh, ah)
(˜̀t
h (xh, ah)− `th (xh, ah)

)
≤ log (1/δ) .

Proof Define the unbiased importance sampling estimator

̂̀t
h :=

1− rth
µt1:h(xth, a

t
h)
· 1
{
xh = xth, ah = ath

}
.

We first have

˜̀t
h (xh, ah) =

1− rth
µt1:h(xh, ah) + γµ?,h1:h(xh, ah)

· 1
{
xh = xth, ah = ath

}
≤ 1− rth
µt1:h(xh, ah) + γµ?,h1:h(xh, ah) (1− rth)

· 1
{
xh = xth, ah = ath

}
≤ 1

2γµ?,h1:h(xh, ah)

2γµ?,h1:h(xh, ah) (1− rth)1 {xh = xth, ah = ath} /µt1:h(xh, ah)

1 + γµ?,h1:h(xh, ah) (1− rth)1 {xh = xth, ah = ath} /µt1:h(xh, ah)

=
1

2γµ?,h1:h(xh, ah)

2γµ?,h1:h(xh, ah)̂̀th(xh, ah)

1 + γµ?,h1:h(xh, ah)̂̀th(xh, ah)

(i)

≤ 1

2γµ?,h1:h(xh, ah)
log
(

1 + 2γµ?,h1:h(xh, ah)̂̀th(xh, ah)
)
,

where (i) is because for any z ≥ 0, z
1+z/2 ≤ log (1 + z).

As a result, we have the following bound on the moment generating function:

E

{
exp

{∑
xh,ah

αth (xh, ah) ˜̀th (xh, ah)

}
|F t−1

}

≤E

{
exp

{∑
xh,ah

αth (xh, ah)

2γµ?,h1:h(xh, ah)
log
(

1 + 2γµ?,h1:h(xh, ah)̂̀th(xh, ah)
)}
|F t−1

}
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(i)

≤E

{
exp

{∑
xh,ah

log
(

1 + αth (xh, ah) ̂̀th(xh, ah)
)}
|F t−1

}

=E

{ ∏
xh,ah

(
1 + αth (xh, ah) ̂̀th(xh, ah)

)
|F t−1

}
(ii)
= E

{
1 +

∑
xh,ah

αth (xh, ah) ̂̀th(xh, ah)|F t−1

}
=1 +

∑
xh,ah

αth (xh, ah) `th(xh, ah)

≤E

{
exp

{∑
xh,ah

αth (xh, ah) `th(xh, ah)

}
|F t−1

}
,

where (i) is because z log (1 + z′) ≤ log (1 + zz′) for any 0 ≤ z ≤ 1 and z′ > −1, and (ii) follows from the fact that for
any h, at most one of ̂̀th(xh, ah) is non-zero, so the cross terms disappear.

Repeating the above argument,

E

{
exp

{
T∑
t=1

∑
xh,ah

αth (xh, ah)
(˜̀t
h (xh, ah)− `th (xh, ah)

)}}

≤E

{
exp

{
T−1∑
t=1

∑
xh,ah

αth (xh, ah)
(˜̀t
h (xh, ah)− `th (xh, ah)

)}

× E

{
exp

{∑
xh,ah

αTh (xh, ah)
(˜̀T
h (xh, ah)− `Th (xh, ah)

)}
|FT−1

}

≤E

{
exp

{
T−1∑
t=1

∑
xh,ah

αth (xh, ah)
(˜̀t
h (xh, ah)− `th (xh, ah)

)}}
≤ · · · ≤ 1.

Therefore, we can apply the Markov inequality and get

P

{
T∑
t=1

∑
xh,ah

αth (xh, ah)
(˜̀t
h (xh, ah)− `th (xh, ah)

)
> log (1/δ)

}

=P

{
exp

{
T−1∑
t=1

∑
xh,ah

αth (xh, ah)
(˜̀t
h (xh, ah)− `th (xh, ah)

)}
> 1/δ

}

≤δ · E

{
exp

{
T∑
t=1

∑
xh,ah

αth (xh, ah)
(˜̀t
h (xh, ah)− `th (xh, ah)

)}}
≤ δ.

This is the desired result.

Corollary D.6. We have

(a) For some fixed h ∈ [H] and (xh, ah), let αth (xh, ah) ∈
[
0, 2γµ?,h1:h (xh, ah)

]
be F t−1-measurable random variable.

Then with probability 1− δ,

T∑
t=1

αth (xh, ah)
(˜̀t
h (xh, ah)− `th (xh, ah)

)
≤ log (1/δ) .
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(b) For some fixed h ∈ [H] and xh, let αth (xh, ah) ∈
[
0, 2γµ?,h1:h (xh, ah)

]
be F t−1-measurable random variable for each

ah ∈ A. Then with probability 1− δ,

T∑
t=1

∑
ah∈A

αth (xh, ah)
(˜̀t
h (xh, ah)− `th (xh, ah)

)
≤ log (1/δ) .

Proof For (a), using Lemma D.5 with (αth)
′
(x′h, a

′
h) = αth (x′h, a

′
h)1 {x′h = xh, a

′
h = ah},

T∑
t=1

αth (xh, ah)
(˜̀t
h (xh, ah)− `th (xh, ah)

)
=

T∑
t=1

∑
x′h,a

′
h

αth (xh, ah)1 {x′h = xh, a
′
h = ah}

[˜̀t(x′h, a′h)− `t(x′h, a′h)
]
≤ log (1/δ) .

Claim (b) can proved similarly.

D.4. Proof of Lemma D.2

We further decompose BIAS1 to two terms by

BIAS1 =

T∑
t=1

〈
µt, `t − ˜̀t〉 =

T∑
t=1

〈
µt, `t − E

{˜̀t|F t−1
}〉

︸ ︷︷ ︸
(A)

+

T∑
t=1

〈
µt,E

{˜̀t|F t−1
}
− ˜̀t〉︸ ︷︷ ︸

(B)

.

To bound (A), plug in the definition of loss estimator,

T∑
t=1

〈
µt, `t − E

{˜̀t|F t−1
}〉

=

T∑
t=1

H∑
h=1

∑
xh,ah

µt1:h(xh, ah)

[
`th(xh, ah)− µt1:h(xh, ah)`th(xh, ah)

µt1:h(xh, ah) + γµ?,h1:h(xh, ah)

]

=

T∑
t=1

H∑
h=1

∑
xh,ah

µt1:h(xh, ah)`th(xh, ah)

[
γµ?,h1:h(xh, ah)

µt1:h(xh, ah) + γµ?,h1:h(xh, ah)

]

≤
T∑
t=1

H∑
h=1

∑
xh,ah

γµ?,h1:h(xh, ah)`th(xh, ah)

(i)

≤
T∑
t=1

H∑
h=1

γ =γHT,

where (i) is by using Corollary C.2 with policy µ?,h for each layer h.

To bound (B), first notice

〈
µt, ˜̀t〉 =

H∑
h=1

∑
xh,ah

µt1:h(xh, ah)
(1− rth)1 {xh = xth, ah = ath}
µt1:h(xh, ah) + γµ?,h1:h(xh, ah)

≤
H∑
h=1

∑
xh,ah

1
{
xh = xth, ah = ath

}
=

H∑
h=1

1 = H.
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Then by Azuma-Hoeffding, with probability at least 1− δ/3,

T∑
t=1

〈
µt,E

{˜̀t|F t−1
}
− ˜̀t〉 ≤ H√2T log(3/δ) ≤ H

√
2Tι.

Combining the bounds for (A) and (B) gives the desired result.

D.5. Proof of Lemma D.3

We have

BIAS2 = max
µ†∈Πmax

T∑
t=1

〈
µ†, ˜̀t − `t〉

= max
µ†∈Πmax

T∑
t=1

H∑
h=1

∑
xh,ah

µ†1:h(xh, ah)
[˜̀t
h(xh, ah)− `th(xh, ah)

]

= max
µ†∈Πmax

T∑
t=1

H∑
h=1

∑
xh,ah

µ†1:h(xh, ah)

γµ?,h1:h(xh, ah)
γµ?,h1:h(xh, ah)

[˜̀t
h(xh, ah)− `th(xh, ah)

]

= max
µ†∈Πmax

H∑
h=1

∑
xh,ah

µ†1:h(xh, ah)

γµ?,h1:h(xh, ah)

T∑
t=1

γµ?,h1:h(xh, ah)
[˜̀t
h(xh, ah)− `th(xh, ah)

]
(i)

≤ log (XA/δ)

γ

H∑
h=1

max
µ†∈Πmax

∑
xh,ah

µ†1:h(xh, ah)

µ?,h1:h(xh, ah)

(ii)

≤ ι

γ

H∑
h=1

XhA = XAι/γ,

where (i) is by applying Corollary D.6 for each (xh, ah) pair and taking union bound, and (ii) is by Lemma C.4.

D.6. Proof of Lemma D.4

We begin by stating the following lemma, which roughly speaking relates the task of bounding the regret to bounding the
term

〈
µ, ˜̀t〉+ 1

ηµ?,1
1:1 (xt

1,a1)
logZt1.

Lemma D.7. For any policy µ ∈ Πmax,

Dbal(µ‖µt+1)−Dbal(µ‖µt) = η
〈
µ, ˜̀t〉+

1

µ?,11:1(xt1, a1)
logZt1.

Proof By definition of Dbal and the conditional form update rule in Algorithm 1,

Dbal(µ‖µt+1)−Dbal(µ‖µt)

=

H∑
h=1

∑
xh,ah

µ1:h(xh, ah)

µ?,h1:h(xh, ah)
log

µth(ah|xh)

µt+1
h (ah|xh)

=

H∑
h=1

∑
ah

µ1:h(xth, ah)

µ?,h1:h(xth, ah)
log

µth(ah|xth)

µt+1
h (ah|xth)

=

H∑
h=1

µ1:h(xth, a
t
h)

µ?,h1:h(xth, a
t
h)

[
ηµ?,h1:h(xth, a

t
h)˜̀th − µ?,h1:h(xth, a

t
h)

µ?,h+1
1:h+1(xth+1, a

t
h+1)

logZth+1

]
+

H∑
h=1

∑
ah

µ1:h(xth, ah)

µ?,h1:h(xth, ah)
logZth

=η

H∑
h=1

µ1:h(xth, a
t
h)˜̀th(xth, a

t
h)−

H∑
h=1

µ1:h(xth, a
t
h)

µ?,h+1
1:h+1(xth+1, a

t
h+1)

logZth+1 +

H∑
h=1

µ1:h−1(xth−1, a
t
h−1)

µ?,h1:h(xth, a
t
h)

logZth
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=η
〈
µ, ˜̀t〉+

1

µ?,11:1(xt1, a1)
logZt1.

Additional notation We introduce the following notation for convenience throughout the rest of this subsection. Define

βth := ηµ?,h1:h(xth, a
t
h).

For simplicity, when there is no confusion, we write

µth := µth(ath|xth), µth:h′ :=

h′∏
h′′=h

µth′′ ,

and ˜̀t
h := ˜̀t

h

(
xth, a

t
h

)
=

1− rth
µt1:h(xth, a

t
h) + γµ?1:h(xth, a

t
h)
.

Define the normalized log-partition function as

Ξth :=
1

βth
logZth =

1

βth
log
(

1− µth + µth exp
[
βth

(
Ξth+1 − ˜̀th)]) . (28)

Note that this value can be seen as an H-variate function of the loss estimator
{˜̀t

h

}
h∈[H]

. To make this dependence more

clear, for any ˜̀∈ [0,∞)H , we define the function {Ξth (·)}Hh=1 recursively by (overloading notation)

Ξth

(˜̀) = Ξth

(˜̀
h:H

)
:=


log
(

1− µth + µth exp
[
−βth ˜̀h]) /βth if h = H,

log
(

1− µth + µth exp
[
βth

(
Ξh+1

(˜̀
h+1:H

)
− ˜̀h)]) /βth otherwise.

With this definition, we have Ξth = Ξth

(˜̀t) where ˜̀t is the actual loss estimator. Note that, importantly, Ξth(˜̀h:H) has a

compositional structure: It is a function of ˜̀h (h-th entry of the loss) and Ξth+1 (which is itself a function of ˜̀h+1:H ). This
compositional structure is key to proving bounds on its gradients and Hessians.

The rest of this subsection is organized as follows. In Section D.6.1, we bound the gradients and Hessians of the function
Ξt1(·) in an entry-wise fashion, and then use the Mean-Value Theorem to give a bound on Ξt1 = Ξt1(˜̀t) (Lemma D.11). We
then combine this result with Lemma D.7 to prove the main lemma that bounds REGRET (Section D.6.2).

D.6.1. BOUNDING Ξt1

Lemma D.8. For ˜̀∈ [0,∞)H and any h ∈ [H], Ξth

(˜̀) ≤ 0. Furthermore, Ξth (0) = 0.

Proof We show the first claim by backward induction. For h = H ,

ΞtH

(˜̀
H

)
= log

(
1− µtH + µtH exp

[
−βtH ˜̀H]) /βtH ≤ log

(
1− µtH + µtH

)
/βtH ≤ 0,

because ˜̀tH ≥ 0.

Assume Ξth+1

(˜̀) ≤ 0, then for the previous step h,

Ξth

(˜̀
h:H

)
= log

(
1− µth + µth exp

[
βth

(
Ξth+1

(˜̀
h+1:H

)
− ˜̀h)]) /βth ≤ log

(
1− µth + µth

)
/βth ≤ 0.

The second claim follows as all inequalities become equalities at ˜̀= 0.
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Lemma D.9 (Bounds on first derivatives). For ˜̀∈ [0, 1]H and any h ∈ [H], the derivatives are bounded by

0 ≤ ∂Ξth
∂Ξth+1

≤ µth and − µth ≤
∂Ξth

∂ ˜̀h ≤ 0.

Furthermore,
∂Ξth

∂ ˜̀h′
∣∣∣∣˜̀=0

=

{
− µth:h′ if h′ ≥ h,
0 otherwise.

Proof By chain rule and the compositional structure of the functions Ξth(·), for any h′ ≥ h,

∂Ξth

∂ ˜̀h′ =
∂Ξth
∂Ξth′

· ∂Ξth′

∂ ˜̀h′ =

h′−1∏
h′′=h

∂Ξth′′

∂Ξth′′+1

 · ∂Ξth′

∂ ˜̀h′ .
For any h, the derivatives are bounded by

∂Ξth
∂Ξth+1

=
µth exp

[
βth

(
Ξth+1

(˜̀)− ˜̀h)]
1− µth + µth exp

[
βth

(
Ξth+1

(˜̀)− ˜̀h)] ∈
[
0, µth

]
,

∂Ξth

∂ ˜̀h = −
µth exp

[
βth

(
Ξth+1

(˜̀)− ˜̀h)]
1− µth + µth exp

[
βth

(
Ξth+1

(˜̀)− ˜̀h)] ∈
[
−µth, 0

]
.

The inequalities hold because the function f (z) =
µt
hz

1−µt
h+µt

hz
= 1 − 1−µt

h

1−µt
h+µt

hz
is increasing on z ∈ [0, 1], and

exp
[
βth

(
Ξth+1

(˜̀)− ˜̀h)] ∈ [0, 1] by Lemma D.8.

Putting them together, at ˜̀= 0, the derivative is just ∂Ξt
h

∂ ˜̀h′
∣∣∣˜̀t=0

= −µth:h′ if h′ ≥ h. If h′ < h, since Ξth only depends on

loss in the later layers, ∂Ξt
h

∂ ˜̀h′ |˜̀t=0 = 0.

Lemma D.10 (Bounds on second derivatives). For ˜̀∈ [0, 1]H and any h ∈ [H], if h′ ≥ h and h′′ ≥ h, the second-order
derivatives are bounded by

∂2Ξth

∂ ˜̀h′∂ ˜̀h′′ ≤
min{h′,h′′}∑
h′′′=h

βth′′′µ
t
h:h′µ

t
h′′′+1:h′′ =

min{h′,h′′}∑
h′′′=h

βth′′′µ
t
h:h′′′µ

t
h′′′+1:h′µ

t
h′′′+1:h′′ .

Otherwise ∂2Ξt
h

∂ ˜̀h′∂ ˜̀h′′ = 0.

Proof By symmetry of the second derivatives and the right-hand side with respect to h′ and h′′, it suffices to prove the
claim for h′′ ≥ h′ only.

By chain rule and the compositional structure of the functions Ξth(·),

∂2Ξth

∂ ˜̀h′∂ ˜̀h′′ =
∂2Ξth

∂Ξth′∂
˜̀
h′′
· ∂Ξth′

∂ ˜̀h′ +
∂Ξth
∂Ξth′

· ∂2Ξth′

∂ ˜̀h′∂ ˜̀h′′ .
If h′′ = h′ = h,

∂2Ξth

∂ ˜̀2h = βthµ
t
h exp

[
βth

(
Ξth+1

(˜̀)− ˜̀h)] 1− µth{
1− µth + µth exp

[
βth

(
Ξth+1

(˜̀)− ˜̀h)]}2 ≤ β
t
hµ

t
h.
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If h′ = h, h′′ > h,

∂2Ξth

∂ ˜̀h∂ ˜̀h′′ = −
(1− µth)βthµ

t
h exp

[
βth

(
Ξth+1

(˜̀)− ˜̀h)](
1− µth + µth exp

[
βth

(
Ξth+1

(˜̀)− ˜̀h)])2 ·
∂Ξth+1

∂ ˜̀h′′ ≤ βthµth:h′′ .

If h < h′ < h′′, we can compute the Hessian by induction. Notice once h′ > h we have

∂Ξth

∂ ˜̀h′ =
∂Ξth
∂Ξth+1

·
∂Ξth+1

∂ ˜̀h′ .
Take second derivative,

∂2Ξth

∂ ˜̀h′∂ ˜̀h′′ =
∂Ξth
∂Ξth+1

·
∂2Ξth+1

∂ ˜̀h′∂ ˜̀h′′︸ ︷︷ ︸
(i)

+
∂2Ξth

∂Ξth+1∂
˜̀
h′′
·
∂Ξth+1

∂ ˜̀h′︸ ︷︷ ︸
(ii)

.

We first bound the second term,

(ii) =
(1− µth)βthµ

t
h exp

[
βth

(
Ξth+1

(˜̀)− ˜̀h)](
1− µth + µth exp

[
βth

(
Ξth+1

(˜̀)− ˜̀h)])2 ·
∂Ξth+1

∂ ˜̀h′′ · ∂Ξth+1

∂ ˜̀h′
≤ βthµth · µth+1:h′′ · µth+1:h′

≤ βthµth:h′µ
t
h+1:h′′ .

The first term can be simplified to

(i) ≤
µth exp

[
βth

(
Ξth+1

(˜̀)− ˜̀h)]
1− µth + µth exp

[
βth

(
Ξth+1

(˜̀)− ˜̀h)]
∂2Ξth+1

∂ ˜̀h′∂ ˜̀h′′ ≤ µth ∂
2Ξth+1

∂ ˜̀h′∂ ˜̀h′′ .
Now plug in ∂2Ξt

h′

∂ ˜̀h′∂ ˜̀h′′ ≤ βth′µth′:h′′ and backward induction from h′ to h gives:

∂2Ξth

∂ ˜̀h′∂ ˜̀h′′ ≤
h′∑

h′′′=h

βth′′′µ
t
h:h′µ

t
h′′′+1:h′′ .

We can check this expression is also correct for the above special cases when h′ = h. The second claim holds because Ξth
only depends on loss in the later layers.

Lemma D.11 (Bound on Ξt1). We have

Ξt1 ≤ −
〈
µt, ˜̀t〉+

ηH

2

H∑
h=1

 H∑
h′=h

∑
xh′ ,ah′

µ?,h1:h (xh′ , ah′)µ
t
h+1:h′ (xh′ , ah′)

˜̀t
h′ (xh′ , ah′)

.
Proof We apply the Mean-value Theorem to function Ξt1

(˜̀) at ˜̀= 0,

Ξt1 = Ξt1

(˜̀t) = Ξt1 (0) +
〈
∇˜̀Ξt1∣∣˜̀=0

, ˜̀t〉+
1

2

〈
∇2˜̀ Ξt1

∣∣˜̀=ξt ˜̀t, ˜̀t〉 ,
where ξt lies on the line segment between 0 and ˜̀t.
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By Lemma D.8, the initial term is just zero. By Lemma D.9, the first-order term is just −
〈
µt, ˜̀t〉.

It thus remains to bound the second-order term. Applying the entry-wise upper bounds in Lemma D.10 at h = 1 (which
hold uniformly at all nonnegative loss values, including ξt), we have

〈
∇2˜̀ Ξt1

∣∣˜̀=ξt ˜̀t, ˜̀t〉 =

H∑
h=1

H∑
h′=1

∂2Ξt1

∂ ˜̀h∂ ˜̀h′
∣∣∣∣˜̀=ξt ˜̀th ˜̀th′

(i)

≤
H∑
h=1

H∑
h′=1

min{h,h′}∑
h′′=1

βth′′µ
t
1:hµ

t
h′′+1:h′

˜̀t
h
˜̀t
h′

=

H∑
h=1

µt1:h
˜̀t
h

H∑
h′=1

min{h,h′}∑
h′′=1

βth′′µ
t
h′′+1:h′

˜̀t
h′

(ii)

≤H max
h∈[H]

H∑
h′=1

min{h,h′}∑
h′′=1

βth′′µ
t
h′′+1:h′

˜̀t
h′

=H

H∑
h′=1

h′∑
h′′=1

βth′′µ
t
h′′+1:h′

˜̀t
h′

=H

H∑
h′′=1

H∑
h′=h′′

βth′′µ
t
h′′+1:h′

˜̀t
h′

=ηH

H∑
h′′=1

(
H∑

h′=h′′

µ?,h
′′

1:h′′

(
xth′ , a

t
h′
)
µth′′+1:h′

˜̀t
h′

)

(iii)
= ηH

H∑
h′′=1

 H∑
h′=h′′

∑
xh′ ,ah′

µ?,h
′′

1:h′′ (xh′ , ah′)µ
t
h′′+1:h′ (xh′ , ah′)

˜̀t
h′(xh′ , ah′)

,
where (i) is by Lemma D.10; (ii) follows from the bound

H∑
h=1

µt1:h
˜̀t
h =

H∑
h=1

µt1:h ·
1− rth

µt1:h + γµ?,h1:h

≤ H;

and (iii) is because ˜̀th′(xh′ , ah′) = 0 at all (xh′ , ah′) 6= (xth′ , a
t
h′).

Lemma D.12. With probability at least 1− δ/3,

T∑
t=1

Ξt1 ≤ −
T∑
t=1

〈
µt, ˜̀t〉+ ηH3T +

ηXAH2ι

γ
,

where ι := log(H/δ).

Proof Using Lemma D.11 and take the summation with respect to t ∈ [T ] we have

T∑
t=1

Ξt1 ≤ −
T∑
t=1

〈
µt, ˜̀t〉+

ηH

2

H∑
h=1

H∑
h′=h

T∑
t=1

∑
xh′,ah′

µ?,h1:h (xh′, ah′)µ
t
h+1:h′ (xh′, ah′)

˜̀t
h′ (xh′, ah′)︸ ︷︷ ︸

:=∆t
h,h′

. (29)

Observe that the random variables ∆t
h,h′ satisfy the following:
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• ∆t
h,h′ ≤ Xh′A/γ almost surely:

∆t
h,h′ =

∑
xh′,ah′

µ?,h1:h (xh′ , ah′)µ
t
h+1:h′ (xh′, ah′)

(1− rth′)1 {xh′ = xth′ , ah′ = ath′}
µt1:h′ (xh′, ah′) + γµ?,h

′

1:h′ (xh′, ah′)

≤ 1

γ

∑
xh′,ah′

µ?,h1:h (xh′ , ah′)µ
t
h+1:h′ (xh′, ah′)

µ?,h
′

1:h′ (xh′, ah′)

(i)

≤ Xh′A

γ
,

where (i) is by using Lemma C.4 with the mixture of µ?,h and µt.

• E[∆t
h,h′|Ft−1] ≤ 1, where Ft−1 is the σ-algebra containing all information after iteration t− 1:

E[∆t
h,h′|Ft−1] =

∑
xh′,ah′

µ?,h1:h (xh′ , ah′)µ
t
h+1:h′ (xh′, ah′) `

t
h′ (xh′, ah′)

(i)

≤ 1,

where (i) is by using Corollary C.2 with the mixture policy of µ?,h and µt.

• The conditional variance E[(∆t
h,h′)

2|Ft−1] can be bounded as

E[(∆t
h,h′)

2|Ft−1]
(i)
=
∑
xh′,ah′

(µ?,h1:h (xh′ , ah′)µ
t
h+1:h′ (xh′, ah′)

(1− rth′)1 {xh′ = xth′ , ah′ = ath′}
µt1:h′ (xh′, ah′) + γµ?,h

′

1:h′ (xh′, ah′)

)2


≤
∑
xh′,ah′

(
µ?,h1:h (xh′ , ah′)µ

t
h+1:h′ (xh′, ah′)

µt1:h′ (xh′, ah′) + γµ?,h
′

1:h′ (xh′, ah′)

)2

µt1:h′ (xh′, ah′)

≤ 1

γ

∑
xh′,ah′

µ?,h1:h (xh′ , ah′)µ
t
h+1:h′ (xh′, ah′)

µ?,h
′

1:h′ (xh′, ah′)

(ii)

≤ Xh′A

γ
,

where (i) follows from the fact that for any h, at most one of indicators is non-zero, so the cross terms disappear and
(ii) is using Corollary C.2 with the mixture policy of µ?,h and µt.

Therefore, we can apply Freedman’s inequality (Lemma A.1) and union bound to get that, with probability at least 1− δ/3,
for some fixed λh,h′ ∈ (0, γ/Xh′A], the following holds simultaneously for all h, h′:

T∑
t=1

∆t
h,h′ ≤

λh,h′Xh′AT

γ
+

2 log(H/δ)

λh,h′
+ T,

Take λh,h′ = γ/Xh′A, we have
T∑
t=1

∆t
h,h′ ≤

Xh′A · 2 log(H/δ)

γ
+ 2T.

Plug into equation (29), we have

T∑
t=1

Ξt1 ≤ −
T∑
t=1

〈
µt, ˜̀t〉+ ηH3T +

ηH2XAι

γ
,

where ι := log(H/δ) is a log factor.
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D.6.2. PROOF OF MAIN LEMMA

By Lemma D.7, for any policy µ† ∈ Πmax,

1

η

(
Dbal(µ†‖µt+1)−Dbal(µ†‖µt)

)
=
〈
µ†, ˜̀t〉+ Ξt1.

Taking the summation w.r.t. t ∈ [T ] and using Lemma D.12, we have with probability at least 1− δ/3, the following holds
simultaneously over all µ† ∈ Πmax:

1

η

(
Dbal(µ†‖µT )−Dbal(µ†‖µ1

)
) =

T∑
t=1

〈
µ†, ˜̀t〉+

T∑
t=1

Ξt1

≤
T∑
t=1

〈
µ† − µt, ˜̀t〉+ ηH3T +

ηH2XAι

γ
.

Rerranging the terms we have

max
µ†∈Πmax

T∑
t=1

〈
µt − µ†, ˜̀t〉 ≤ max

µ†∈Πmax

1

η

(
Dbal(µ†‖µ1)−Dbal(µ†‖µT )

)
+ ηH3T +

ηH2XAι

γ

≤ max
µ†∈Πmax

1

η
Dbal(µ†‖µ1) + ηH3T +

ηH2XAι

γ

≤XA logA

η
+ ηH3T +

ηH2XAι

γ
,

where the last inequality above follows by recalling that µ1 is taken to be the uniform policy (µ1
h(ah|xh) = 1/A for all

(h, xh, ah)) in Algorithm 1, and applying the bound on the balanced dilated KL (Lemma C.7). This proves Lemma D.4.

D.7. Proof of Theorem 6

Both the regret and PAC lower bounds follow from a direct reduction to stochastic multi-armed bandits. For completeness,
we first state the lower bound for stochastic bandits (Lattimore & Szepesvári, 2020, Exercise 15.4 & Exercise 33.1) as
follows. Below, c is an absolute constant.

Proposition D.13 (Lower bound for stochastic bandits). Let K ≥ 2 denote the number of arms.

(a) (Regret lower bound) Suppose T ≥ K. For any bandit algorithm that plays policy µt ∈ ∆([K]) (either deterministic
or random) in round t ∈ [T ], there exists some K-armed stochastic bandit problem with Bernoulli rewards with mean
vector r ∈ [0, 1]K , on which the algorithm suffers from the following lower bound on the expected regret:

E

[
max

µ†∈∆([K])

T∑
t=1

〈
µ† − µt, r

〉]
≥ c ·

√
KT.

(b) (PAC lower bound) For any bandit algorithm that plays for t rounds and outputs some policy µ̂ ∈ ∆([K]), there exists
some K-armed stochastic bandit problem with Bernoulli rewards with some mean vector r ∈ [0, 1]K , on which policy
µ̂ is at least ε away from optimal:

E
[

max
µ†∈∆([K])

〈
µ† − µ̂, r

〉]
≥ ε,

unless T ≥ cK/ε2.

We now construct a class of IIEFGs with XH = AH−1 (the minimal possible number of infosets), and show that any
algorithm that solves this class of games will imply an algorithm for stochastic bandits with AH arms with the same
regret/PAC bounds, from which Theorem 6 follows.
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Our construction is as follows: For any A ≥ 2 and H ≥ 1, we let Sh = Ah−1 for all h ∈ [H] (in particular, S1 = 1)
and B = 1 (so that there is no opponent effectively). By the tree structure, each state is thus uniquely determined
by all past actions sh = (a1, . . . , ah−1), and the transition is deterministic: ((a1, . . . , ah−1), ah) ∈ Sh × A transits to
(a1, . . . , ah) ∈ Sh+1 with probability one. Further, we let xh = x(sh) = sh, so that there is no partial observability, and thus
Xh = Sh for all h. Only the H-th layer yields a Bernoulli reward with some mean ra1:H := E[rH(a1:H−1, aH)] ∈ [0, 1],
for all a1:H ∈ XH . The reward is zero within all previous layers.

Under this model, the expected reward under any policy µ ∈ Πmax can be succinctly written as

〈µ, r〉 =
∑

(xH ,aH)∈XH×A

µ1:H(xH , aH)E[rH(xh, aH)] =
∑

a1:H∈AH

µ1:H(a1:H)ra1:H .

This expression coincides with the expression for the expected reward of an AH -armed stochastic bandit problem.

Now, for any algorithm Alg achieving regret RT on IIEFGs, we claim we can use it to design an algorithm for solving any
AH -armed stochastic bandit problem with Bernoulli rewards, and achieve the same regret. Indeed, given any AH -armed
bandit problem, we rename its arms as a sequence a1:H = (a1, . . . , aH) ∈ AH . Now, we instantiate an instance of Alg on
a simulated IIEFG with the above structure. Whenever Alg plays policy µt ∈ Πmax, we query an arm a1:H using policy
µt1:H(·) ∈ ∆(AH) in the bandit problem. Then, upon receiving the reward rt from the bandit problem, we give the feedback
that the game transitted to infoset a1:H and yielded reward rt. By the above equivalence, the regret RT within this simulated
game is exactly the same as the regret for the bandit problem.

Therefore, for T ≥ AH , we can apply Proposition D.13(a) to show that for any such Alg, there exists one such IIEFG, on
which

E
[
RT
]
≥ c ·

√
AHT = c

√
XHAT ≥ c

√
XAT,

where the last inequality follows from the fact that X ≤ XH(1 + 1/A+ 1/A2 + · · · ) ≤ XH/(1− 1/A) ≤ 2XH by perfect
recall. This shows part (a).

Part (b) (PAC lower bound) follows similarly from Proposition D.13(b). Using the same reduction, we can show for any
algorithm that controls both players and outputs policy (µ̂, ν̂) ∈ Πmax × Πmin, there exists one such game of the above
form (where only the max player affects the game) where the algorithm suffers from the PAC lower bound

E[NEGap(µ̂, ν̂)] = E
[

max
µ∈Πmax

V µ
†,ν̂ − V µ̂,ν̂

]
≥ ε

unless T ≥ cXA/ε2. The symmetrical construction for the min player implies that there exists some game on which
E[NEGap(µ̂, ν̂)] ≥ ε unless T ≥ cY B/ε2.

Therefore, if T < c(XA+ Y B)/(2ε2), at least one of T ≥ cXA/ε2 and T ≥ cY B/ε2 has to be false, for which we obtain
a game where the expected duality gap is at least ε. This shows part (b).

E. Proofs for Section 4
E.1. Counterfactual regret decomposition

Define the immediate counterfactual regret at any xh ∈ Xh, h ∈ [H] as

Rimm,T
h (xh) = max

µ†h(·|xh)

T∑
t=1

〈
µth(·|xh)− µ†h(·|xh), Lth(xh, ·)

〉
, (30)

where Lth(·, ·) is the counterfactual loss function defined in (10):

Lth(xh, ah) := `th(xh, ah) +

H∑
h′=h+1

∑
(xh′ ,ah′ )∈Ch′ (xh,ah)×A

µt(h+1):h′(xh′ , ah′)`
t
h′(xh′ , ah′).
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Lemma E.1 (Counterfactual regret decomposition). We have R̃T ≤
∑H
h=1 R

T
h , where

RT
h :=

∑
x1∈X1

max
a1∈A

· · ·
∑

xh−1∈C(xh−2,ah−2)

max
ah−1∈A

∑
xh∈C(xh−1,ah−1)

Rimm,T
h (xh),

= max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1) ·Rimm,T
h (xh).

Proof The bound R̃T ≤
∑H
h=1 R

T
h with the sum-max form expression for R̃T

h has already implicitly appeared in the
proof of (Zinkevich et al., 2007, Theorem 3), albeit with their slightly different formulation of extensive-form games
(turn-based games with reward only in the last round). For completeness, here we provide a proof under our formulation.

We first show the bound with the µ form expression for RT
h , which basically follows by a performance decomposition

argument. We have

R̃T = max
µ†∈Πmax

T∑
t=1

〈
µt − µ†, `t

〉
= max
µ†∈Πmax

T∑
t=1

H∑
h=1

〈
µ†1:h−1µ

t
h:H − µ

†
1:hµ

t
h+1:H , `

t
〉

≤
H∑
h=1

max
µ†∈Πmax

T∑
t=1

〈
µ†1:h−1µ

t
h:H − µ

†
1:hµ

t
h+1:H , `

t
〉

︸ ︷︷ ︸
:=RT

h

.

Note that each term RT
h measures the performance difference between µ†1:h−1µ

t
h:H and µ†1:hµ

t
h+1:H :

RT
h = max

µ†∈Πmax

T∑
t=1

Esh∼µ†1:h−1×νt

[
Eah∼µt(·|xh)

[
H∑
h′=1

rh′

]
− Eah∼µ†(·|xh)

[
H∑
h′=1

rh′

]]
(i)
= max

µ†∈Πmax

T∑
t=1

Esh∼µ†1:h−1×νt

[
Eah∼µt(·|xh)

[
H∑

h′=h

rh′

]
− Eah∼µ†(·|xh)

[
H∑

h′=h

rh′

]]
(ii)
= max

µ†∈Πmax

T∑
t=1

∑
xh∈Xh

µ†1:h−1(xh−1, ah−1) ·
〈
µth(·|xh)− µ†h(·|xh), Lth(xh, ·)

〉
= max
µ†∈Πmax

∑
xh∈Xh

µ†1:h−1(xh−1, ah−1) ·Rimm,T
h (xh).

Above, (i) follows as the rewards for the first h−1 steps are the same for the two expectations; (ii) follows by definition of the
counterfactual loss function (cumulative loss multiplied by the opponent and environment’s policy / transition probabilities,
as well as the max player’s own policy from step h onward). The claim (with the µ form expression) thus follows by
renaming the dummy variable µ† as µ.

To verify that the second expression is equivalent to the first expression, it suffices to notice that the max over µ1:h−1 ∈ Πmax

consists of separable optimization problems over µh′(·|xh′) over all xh′ ∈ Xh′ , h′ ≤ h − 1, due to the perfect recall
assumption (different (xh′ , ah′) leads to disjoint subtrees). Therefore, we can rewrite the above as

RT
h =

∑
x1∈X1

max
µ1(·|x1)∈∆(A)

∑
a1∈A

µ1(a1|x1)
∑

x2∈C(x1,a1)

· · ·

∑
xh−1∈C(xh−2,ah−2)

max
µh−1(·|xh−1)∈∆(A)

∑
ah−1∈A

µh−1(ah−1|xh−1)
∑

xh∈C(xh−1,ah−1)

Rimm,T
h (xh).

Further noticing (backward recursively) that each max over the action distribution is achieved at a single action yields the
claimed sum-max form expression.
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E.2. Proof of Theorem 7

We now prove our main theorem on the regret of the CFR algorithm.

By Lemma E.1, we have R̃T ≤
∑H
h=1 R

T
h , where for any h ∈ [H] we have

RT
h = max

µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)Rimm,T
h (xh)

= max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1) max
µ†h(·|xh)

T∑
t=1

〈
µth(·|xh)− µ†h(·|xh), Lth(xh, ·)

〉

≤ max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1) max
µ†h(·|xh)

T∑
t=1

〈
µth(·|xh)− µ†h(·|xh), L̃th(xh, ·)

〉
︸ ︷︷ ︸

:=R̃imm,T
h (xh)

+ max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)

T∑
t=1

〈
µth(·|xh), Lth(xh, ·)− L̃th(xh, ·)

〉

+ max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1) max
µ†h(·|xh)

T∑
t=1

〈
µ†h(·|xh), L̃th(xh, ·)− Lth(xh, ·)

〉
(i)
= max

µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)R̃imm,T
h (xh)︸ ︷︷ ︸

:=REGRETh

+ max
µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:(h−1)(xh−1, ah−1)

T∑
t=1

µth(ah|xh)
[
Lth(xh, ah)− L̃th(xh, ah)

]
︸ ︷︷ ︸

:=BIAS1
h

+ max
µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

T∑
t=1

[
L̃th(xh, ah)− Lth(xh, ah)

]
︸ ︷︷ ︸

:=BIAS2
h

= REGRETh + BIAS1
h + BIAS2

h.

Above, the simplification of the BIAS2
h part in (i) uses the fact that the inner max over µ†h(·|xh) and the outer max over

µ1:(h−1) are separable and thus can be merged into a single max over µ1:h.

We now state three lemmas that bound each term above. Their proofs are deferred to Sections E.3-E.5.

Lemma E.2 (Bound on BIAS1
h). For any sequence of opponents’ policies νt ∈ Ft−1, using the estimator L̃h in (12), with

probability 1− δ/10, we have

H∑
h=1

BIAS1
h ≤ 2

√
H3XATι+HXι,

where ι = log(10X/δ).

Lemma E.3 (Bound on BIAS2
h). For any sequence of opponents’ policies νt ∈ Ft−1, using the estimator L̃h in (12), with

probability 1− δ/10, we have

H∑
h=1

BIAS2
h ≤ 2

√
H3XATι+HXAι,

where ι = log(10XA/δ).
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Lemma E.4 (Bound on REGRETh). Choosing η =
√
XAι/(H3T ), we have that with probability at least 1− δ/10 (over

the randomness within the loss estimator L̃th),

H∑
h=1

REGRETh ≤ 2
√
H3XATι+

√
HX3A3ι3/(4T ),

where ι = log(10XA/δ).

Combining Lemma E.2, E.3, and E.4, we obtain the following: Choosing η =
√
XAι/(H3T ), with probability at least

1− 3δ/10 ≥ 1− δ, we have

R̃T ≤
H∑
h=1

RT
h ≤

H∑
h=1

REGRETh +

H∑
h=1

BIAS1
h +

H∑
h=1

BIAS2
h

≤ 6
√
H3XATι+ 2HXAι+

√
HX3A3ι3/(4T ).

Additionally, recall the naive bound R̃T ≤ HT on the regret (which follows as 〈µt, `t〉 ∈ [0, H] for any µ ∈ Πmax, t ∈ [T ]),
we get

R̃T ≤ min
{

6
√
H3XATι+ 2HXAι+

√
HX3A3ι3/4T ,HT

}
≤ HT ·min

{
6
√
HXAι/T + 2XAι/T +

√
X3A3ι3/(4HT 3), 1

}
.

For T > HXAι, the min above is upper bounded by 9
√
HXAι/T . For T ≤ HXAι, the min above is upper bounded by

1 ≤ 9
√
HXAι/T . Therefore, we always have

R̃T ≤ HT · 9
√
HXAι/T = 9

√
H3XATι.

This is the desired result.

E.3. Proof of Lemma E.2

Rewrite BIAS1
h as

BIAS1
h = max

µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:(h−1)(xh−1, ah−1)

µ?,h1:(h−1)(xh−1, ah−1)

·
T∑
t=1

µ?,h1:(h−1)(xh−1, ah−1)µth(ah|xh) ·
[
Lth(xh, ah)− L̃th(xh, ah)

]
= max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)

µ?,h1:(h−1)(xh−1, ah−1)

·
T∑
t=1

∑
ah∈A

µth(ah|xh)

µ?,hh (ah|xh)

[
µ?,h1:h(xh, ah)Lth(xh, ah)−

(
H − h+ 1−

H∑
h′=h

r
t,(h)
h′

)
1
{

(x
t,(h)
h , a

t,(h)
h ) = (xh, ah)

}]
︸ ︷︷ ︸

:=∆̃
xh
t

.

(31)

Observe that the random variables ∆̃xh
t satisfy the following:

• ∆̃xh
t ≤ H almost surely:

∆̃xh
t ≤

∑
ah∈A

µth(ah|xh)

µ?,hh (ah|xh)
· µ?,h1:h(xh, ah)Lth(xh, ah)
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=
∑
ah∈A

µth(ah|xh)µ?,h1:(h−1)(xh−1, ah−1)Lth(xh, ah) ≤ H.

Above, the last bound follows from Lemma C.1(a).

• E[∆̃xh
t |Ft−1] = 0, where Ft−1 is the σ-algebra containing all information after iteration t− 1;

• The conditional variance E[(∆̃xh
t )2|Ft−1] can be bounded as

E
[(

∆̃xh
t

)2∣∣∣Ft−1

]

≤ E

 ∑
ah∈A

(
µth(ah|xh)

µ?,hh (ah|xh)

)2

·

(
H − h+ 1−

H∑
h′=h

r
t,(h)
h′

)2

1
{

(x
t,(h)
h , a

t,(h)
h ) = (xh, ah)

} ∣∣∣Ft−1


≤ H2

∑
ah∈A

(
µth(ah|xh)

µ?,hh (ah|xh)

)2

· Pµ
?,h
1:h ,ν

t
(

(x
t,(h)
h , a

t,(h)
h ) = (xh, ah)

)

= H2
∑
ah∈A

(
µth(ah|xh)

µ?,hh (ah|xh)

)2

· µ?,h1:h(xh, ah) · pν
t

1:h(xh)

= H2
∑
ah∈A

(
µth(ah|xh)

µ?,hh (ah|xh)

)
︸ ︷︷ ︸

≤A

·µ?,h1:h−1(xh−1, ah−1) · µth(ah|xh)pν
t

1:h(xh)

≤ H2A ·
∑
ah∈A

µ?,h1:h−1(xh−1, ah−1) · µth(ah|xh)pν
t

1:h(xh).

Therefore, we can apply Freedman’s inequality (Lemma A.1) and union bound to get that, for any fixed λ ∈ (0, 1/H], with
probability at least 1− δ/10, the following holds simultaneously for all (h, xh):

T∑
t=1

∆̃xh
t ≤ λH2A

∑
ah∈A

µ?,h1:h−1(xh−1, ah−1) ·
T∑
t=1

µth(ah|xh)pν
t

1:h(xh) +
ι

λ
,

where ι := log(10X/δ) is a log factor. Plugging this bound into (31) yields that, for all h ∈ [H],

BIAS1
h = max

µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)

µ?,h1:(h−1)(xh−1, ah−1)
·
T∑
t=1

∆̃xh
t

≤ max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)

µ?,h1:(h−1)(xh−1, ah−1)
·

[
λH2A

∑
ah∈A

µ?,h1:h−1(xh−1, ah−1) ·
T∑
t=1

µth(ah|xh)pν
t

1:h(xh) +
ι

λ

]

≤ λH2A · max
µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:h−1(xh−1, ah−1)

T∑
t=1

µth(ah|xh)pν
t

1:h(xh)

+
ι

λ
· max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)

µ?,h1:(h−1)(xh−1, ah−1)

(i)
= λH2AT +

ι

λ
· 1

A
max
µ∈Πmax

∑
(xh,ah)∈Xh×A

(µ1:(h−1)µ
unif
h )(xh, ah)

µ?,h1:h(xh, ah)

(ii)
= λH2AT +

ι

λ
·Xh.

Above, (i) used the fact that
∑

(xh,ah)∈Xh×A µ1:h−1(xh−1, ah−1)µth(ah|xh)pν
t

1:h(xh) = 1 for any µ ∈ Πmax and any

t ∈ [T ] (Lemma C.1(a)), as well as the fact that µ?,hh (ah|xh) = µunif
h (ah|xh) := 1/A; (ii) used the balancing property of
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µ?,h1:h (Lemma C.4). Combining the bounds for all h ∈ [H], we get that with probability at least 1− δ/10,

H∑
h=1

BIAS1
h ≤ λH3AT +

Xι

λ
.

Choosing

λ = min

{√
Xι

H3AT
,

1

H

}
≤ 1

H
,

we obtain the bound

H∑
h=1

BIAS1
h ≤ 2

√
H3XATι+HXι.

This is the desired result.

E.4. Proof of Lemma E.3

The proof strategy is similar to Lemma E.2. We can rewrite BIAS2
h as

BIAS2
h = max

µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

µ?,h1:h(xh, ah)
·
T∑
t=1

µ?,h1:h(xh, ah)
[
L̃th(xh, ah)− Lth(xh, ah)

]
= max
µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

µ?,h1:h(xh, ah)
·

T∑
t=1

[(
H − h+ 1−

H∑
h′=h

r
t,(h)
h′

)
1
{

(x
t,(h)
h , a

t,(h)
h ) = (xh, ah)

}
− µ?,h1:h(xh, ah)Lth(xh, ah)

]
︸ ︷︷ ︸

:=∆
xh,ah
t

, (32)

where the last equality used the definition of the loss estimator L̃th(xh, ah) in (12).

Observe that the random variables ∆xh,ah
t satisfy the following:

• ∆xh,ah
t ≤ H almost surely.

• E[∆
(xh,ah)
t |Ft−1] = 0, where Ft−1 is the σ-algebra containing all information after iteration t− 1. This follows as

the episode was sampled using µt,(h) = µ?,h1:hµ
t
h+1:H , as well as the definition of Lth(xh, ah) in (10).

• The conditional variance E[(∆
(xh,ah)
t )2|Ft−1] can be bounded as

E
[(

∆
(xh,ah)
t

)2∣∣∣Ft−1

]
≤ E

(H − h+ 1−
H∑

h′=h

r
t,(h)
h′

)2

1
{

(x
t,(h)
h , a

t,(h)
h ) = (xh, ah)

} ∣∣∣Ft−1


≤ H2Pµ

?,h
1:h ,ν

t
(

(x
t,(h)
h , a

t,(h)
h ) = (xh, ah)

)
= H2µ?,h1:h(xh, ah) · pν

t

1:h(xh).

Therefore, we can apply Freedman’s inequality (Lemma A.1) and union bound to get that, for any fixed λ ∈ (0, 1/H], with
probability at least 1− δ/10, the following holds simultaneously for all (h, xh, ah):

T∑
t=1

∆
(xh,ah)
t ≤ λH2µ?,h1:h(xh, ah) ·

T∑
t=1

pν
t

1:h(xh) +
ι

λ
,
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where ι := log(10XA/δ) is a log factor. Plugging this bound into (32) yields that, for all h ∈ [H],

BIAS2
h = max

µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

µ?,h1:h(xh, ah)
·
T∑
t=1

∆xh,ah
t

≤ max
µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

µ?,h1:h(xh, ah)
·

[
λH2µ?,h1:h(xh, ah) ·

T∑
t=1

pν
t

1:h(xh) +
ι

λ

]

≤ λH2 · max
µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

T∑
t=1

pν
t

1:h(xh) +
ι

λ
· max
µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

µ?,h1:h(xh, ah)

(i)
= λH2T +

ι

λ
·XhA.

Above, (i) used the fact that
∑

(xh,ah)∈Xh×A µ1:h(xh, ah)pν
t

1:h(xh) = 1 for any µ ∈ Πmax and any t ∈ [T ] (Lemma C.1(a)),

as well as the balancing property of µ?,h1:h (Lemma C.4). Combining the bounds for all h ∈ [H], we get that with probability
at least 1− δ/10,

H∑
h=1

BIAS2
h ≤ λH3T +

XAι

λ
.

Choosing

λ = min

{√
XAι

H3T
,

1

H

}
≤ 1

H
,

we obtain the bound

H∑
h=1

BIAS2
h ≤ 2

√
H3XATι+HXAι.

This is the desired result.

E.5. Proof of Lemma E.4

Recall that for all (h, xh), we have implemented Line 8 of Algorithm 2 as the HEDGE algorithm (Algorithm 3) with
learning rate ηµ?,h1:h(xh, a) and loss vector

{
L̃th(xh, a)

}
a∈A

(cf. (11)). Therefore, applying the standard regret bound for

HEDGE (Lemma B.1), we get (below a ∈ A is arbitrary)

R̃imm,T
h (xh) = max

µ†h(·|xh)

T∑
t=1

〈
µth(·|xh)− µ†h(·|xh), L̃th(xh, ·)

〉
≤ logA

ηµ?,h1:h(xh, a)
+
η

2
·
T∑
t=1

∑
ah∈A

µ?,h1:h(xh, ah) · µth(ah|xh)
(
L̃th(xh, ah)

)2

(i)
=

logA

ηµ?,h1:h(xh, a)

+
η

2
·
T∑
t=1

∑
ah∈A

µ?,h1:h(xh, ah)µth(ah|xh) ·

(
H − h+ 1−

∑H
h′=h r

t,(h)
h′

)2

1
{

(x
t,(h)
h , a

t,(h)
h ) = (xh, ah)

}
(
µ?,h1:h(xh, ah)

)2

≤ logA

ηµ?,h1:h(xh, a)
+
ηH2

2
·
T∑
t=1

∑
ah∈A

µth(ah|xh) ·
1
{

(x
t,(h)
h , a

t,(h)
h ) = (xh, ah)

}
µ?,h1:h(xh, ah)

.

(33)
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Above, (i) used the form of L̃th in (12). Plugging this into the definition of REGRETh, we have

REGRETh = max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)R̃imm,T
h (xh)

≤ max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1) · logA

ηµ?,h1:h(xh, a)︸ ︷︷ ︸
Ih

+ max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1) · ηH
2

2
·
T∑
t=1

∑
ah∈A

µth(ah|xh) ·
1
{

(x
t,(h)
h , a

t,(h)
h ) = (xh, ah)

}
µ?,h1:h(xh, ah)︸ ︷︷ ︸

IIh

.

(34)

We first calculate term Ih. We have

Ih
(i)
=

logA

η
· max
µ∈Πmax

∑
(xh,ah)∈Xh×A

1

Ah
·
µ1:(h−1)(xh−1, ah−1)

µ?,h1:h(xh, ah)

=
logA

η
· max
µ∈Πmax

∑
(xh,ah)∈Xh×A

(µ1:(h−1)µ
unif
h )(xh, ah)

µ?,h1:h(xh, ah)

(ii)
=

logA

η
·XhA =

XhA logA

η
,

where (i) follows by splitting the sum over ah and using the fact that µ?,h1:h(xh, a) does not depend on a; (ii) follows from the
balancing property of µ?,h1:h (Lemma C.4).

Next, we bound term IIh. We have

IIh =
ηH2

2
max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1) ·
T∑
t=1

∑
ah∈A

µth(ah|xh) ·
1
{

(x
t,(h)
h , a

t,(h)
h ) = (xh, ah)

}
µ?,h1:h(xh, ah)

=
ηH2

2
max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)

µ?,h1:h(xh, a)
·
T∑
t=1

∑
ah∈A

µth(ah|xh) · 1
{

(x
t,(h)
h , a

t,(h)
h ) = (xh, ah)

}
︸ ︷︷ ︸

:=∆
xh
t

. (35)

The last equality above used the fact that µ?,h1:h(xh, ah) does not depend on ah (cf. (5)).

Observe that the random variables ∆
xh

t satisfy the following:

• ∆
xh

t ∈ [0, 1] almost surely;

• E[∆
xh

t |Ft−1] =
∑
ah∈A µ

?,h
1:h(xh, ah) · µth(ah|xh)pν

t

1:h(xh), where Ft−1 is the σ-algebra containing all information
after iteration t− 1;

• The conditional variance Var[∆
xh

t |Ft−1] can be bounded as

Var
[
∆
xh

t

∣∣∣Ft−1

]
≤ E

[(
∆
xh

t

)2∣∣∣Ft−1

]
= E

[ ∑
ah∈A

(
µth(ah|xh)

)2
1
{

(x
t,(h)
h , a

t,(h)
h ) = (xh, ah)

} ∣∣∣Ft−1

]
=
∑
ah∈A

(
µth(ah|xh)

)2 · Pµ?,h
1:h×ν

t
(

(x
t,(h)
h , a

t,(h)
h ) = (xh, ah)

)
=
∑
ah∈A

µ?,h1:h(xh, ah) ·
(
µth(ah|xh)

)2 · pνt

1:h(xh).
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Therefore, we can apply Freedman’s inequality (Lemma A.1) and a union bound to obtain that, for any λ ∈ (0, 1], with
probability at least 1− δ/10, the following holds simultaneously for all (h, xh):

T∑
t=1

∆
xh

t −
T∑
t=1

∑
ah∈A

µ?,h1:h(xh, ah) · µth(ah|xh)pν
t

1:h(xh)

≤ λ ·
T∑
t=1

∑
ah∈A

µ?,h1:h(xh, ah) ·
(
µth(ah|xh)

)2 · pνt

1:h(xh) +
ι

λ
,

where ι := log(10X/δ) is a log factor. Plugging this bound into (35) yields that, for all h ∈ [H],

IIh ≤
ηH2

2
· max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)

µ?,h1:h(xh, a)
·
T∑
t=1

∑
ah∈A

µ?,h1:h(xh, ah) · µth(ah|xh)pν
t

1:h(xh)

+
ηH2

2
· max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)

µ?,h1:h(xh, a)

·

[
λ

T∑
t=1

∑
ah∈A

µ?,h1:h(xh, ah) ·
(
µth(ah|xh)

)2 · pνt

1:h(xh) +
ι

λ

]
(i)

≤ ηH2

2
· max
µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:(h−1)(xh−1, ah−1) ·
T∑
t=1

µth(ah|xh)pν
t

1:h(xh)

+
ηH2

2
· max
µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:(h−1)(xh−1, ah−1) · λ
T∑
t=1

(
µth(ah|xh)

)2 · pνt

1:h(xh)

+
ηH2

2
· ι
λ
· max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)

µ?,h1:h(xh, a)

(ii)

≤ ηH2

2
(1 + λ) · max

µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:(h−1)(xh−1, ah−1) ·
T∑
t=1

µth(ah|xh)pν
t

1:h(xh)

+
ηH2

2
· ι
λ
· max
µ∈Πmax

∑
(xh,ah)∈Xh×A

(µ1:(h−1)µ
unif
h )(xh, ah)

µ?,h1:h(xh, ah)

(iii)
=

ηH2

2
(1 + λ)T +

ηH2

2
· ι
λ
·XhA.

Above, (i) used again the fact that µ?,h1:h(xh, a) = µ?,h1:h(xh, ah) for any a, ah ∈ A; (ii) used the fact that µth(ah|xh) ≤ 1; (iii)
used the fact that

∑
(xh,ah)∈Xh×A(µ1:(h−1)µ

t
h)(xh, ah)νt(xh) = 1 for any µ ∈ Πmax and any t ∈ [T ] (Lemma C.1(a)), as

well as the balancing property of µ?,h1:h (Lemma C.4).

Combining the bounds for Ih and IIh, we obtain that

H∑
h=1

REGRETh ≤
H∑
h=1

(Ih + IIh)

≤
H∑
h=1

[
XhA logA

η
+
ηH2

2
(1 + λ)T +

ηH2XhAι

2λ

]
≤ XAι

η
+
ηH3

2
T +

ηH2

2

[
λ ·HT +

XAι

λ

]
,

where we have redefined the log factor ι := log(10XA/δ). Choosing λ = 1, the above can be upper bounded by

XAι

η
+ ηH3T +

ηH2XAι

2
.
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Further choosing η =
√
XAι/(H3T ), we obtain the bound

H∑
h=1

REGRETh ≤ 2
√
H3XATι+

√
HX3A3ι3/(4T ).

This is the desired result.

F. Results for full feedback setting
We now consider the full feedback setting in which the algorithm can receive the true loss {Lth(xh, ah)}h,xh,ah

within each
round. Define

‖Πmax‖1 := max
µ∈Πmax

H∑
h=1

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah).

Note that we have the bound ‖Πmax‖1 ≤ X (as
∑
ah
µ1:h(xh, ah) = µ1:h−1(xh−1, ah−1) ≤ 1 for all (h, xh)), but

‖Πmax‖1 may in general be much smaller than X (Zhou et al., 2020).

F.1. Regret bound for CFR algorithm

Algorithm 6 CFR with Hedge (full feedback setting)
Input: Learning rate η > 0.
1: Initialize policies µ1

h(ah|xh)← 1/A for all h ∈ [H], (xh, ah) ∈ Xh ×A.
2: for iteration t = 1, . . . , T do
3: for all h ∈ [H] and xh ∈ Xh do
4: Receive loss Lth(xh, ah) for all ah ∈ A.
5: Update policy at xh using Hedge:

µt+1
h (a|xh) ∝a µth(a|xh) · e−η·L

t
h(xh,a).

We present a “vanilla” CFR algorithm for the full-feedback case in Algorithm 6 (with regret minimizers are instantiated as
Hedge). The algorithm is similar as Balanced CFR for the bandit-feedback case (Algorithm 2), yet is simpler as it does not
need the sampling step, and uses a constant learning rate for all infosets.

The following sharp regret bound for CFR in the full-feedback case has appeared in (Zhou et al., 2020, Lemma 2)8. For
completeness, we provide a full statement and proof under our notation.

Theorem F.1 (Regret of CFR in full feedback setting). For the full feedback setting, Algorithm 6 with learning rate
η =

√
2 ‖Πmax‖1 logA/(H3T ) achieves regret bound

RT ≤
√

2H3 ‖Πmax‖1 T logA.

Proof Note that Algorithm 6 updates the policy at each xh using the Hedge algorithm (Algorithm 3) with loss vector
{Lth(xh, a)}a∈A and learning rate η. Therefore, plugging the standard regret bound for Hedge (Lemma B.1) into the
counterfactual regret decomposition (Lemma E.1), we get

RT
(i)

≤ max
µ∈Πmax

H∑
h=1

∑
xh∈Xh

µ1:h−1(xh−1, ah−1)Rimm,T
h (xh)

= max
µ∈Πmax

H∑
h=1

∑
xh∈Xh

µ1:h−1(xh−1, ah−1) · max
µ†h(·|xh)

T∑
t=1

〈
µth(·|xh)− µ†h(·|xh), Lth(xh, ·)

〉
8modulo the (minor) difference of them using Regret Matching instead of Hedge
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≤ max
µ∈Πmax

H∑
h=1

∑
xh∈Xh

µ1:h−1(xh−1, ah−1) ·

[
logA

η
+
η

2

T∑
t=1

∑
a∈Ah

µth(a|xh)Lth(xh, a)2

]
(ii)

≤ max
µ∈Πmax

H∑
h=1

∑
xh∈Xh

µ1:h−1(xh−1, ah−1) ·

[
logA

η
+
η

2

T∑
t=1

∑
a∈Ah

µth(a|xh) · pν
t

1:h(xh)2H2

]
(iii)

≤ max
µ∈Πmax

∑
h,xh

µ1:h−1(xh−1, ah−1) · logA

η
+
ηH2

2
max
µ∈Πmax

∑
h,xh

µ1:h−1(xh−1, ah−1)

T∑
t=1

∑
a∈Ah

µth(a|xh) · pν
t

1:h(xh)

(iv)

≤
‖Πmax‖1 logA

η
+
ηH2

2
max
µ∈Πmax

H∑
h=1

T∑
t=1

∑
(xh,a)∈Xh×A

(
µ1:h−1µ

t
h

)
(xh, a) · pν

t

1:h(xh)

(v)
=
‖Πmax‖1 logA

η
+
ηH3T

2
.

Above, (i) uses a stronger form of Lemma E.1 (with maxµ∈Πmax
outside of the

∑H
h=1, which could also be extracted from

the proof of Lemma E.1); (ii) used the bound for Lth(xh, a) in Lemma C.3(b); (iii) pushed the max into each of the two parts,
and used pν

t

1:h(xh) ≤ 1 (Lemma C.1(b)); (iv) used the fact that
∑
h,xh

µ1:h−1(xh−1, ah−1) =
∑
h,xh,ah

µ1:h(xh, ah) ≤
‖Πmax‖1 for any µ ∈ Πmax; (v) used Lemma C.1(a).

Choosing η =
√

2 ‖Πmax‖1 logA/(H3T ) yields the desired regret bound.

G. Balanced CFR with regret matching
In this section, we consider instantiating Line 8 of Algorithm 2 using the following Regret Matching algorithm:

µt+1
h (a|xh) =

[
Rtxh

(a)
]
+∑

a′∈A
[
Rtxh

(a′)
]
+

,

where Rtxh
(a) :=

t∑
τ=1

〈
µτh(·|xh), L̃τh(xh, ·)

〉
− L̃τh(xh, a) for all a ∈ A.

(36)

We now present the main theoretical guarantees for Balanced CFR with regret matching. The proof of Theorem G.1 can be
found in Section G.1.

Theorem G.1 (“Regret” bound for Balanced CFR with Regret Matching). Suppose the max player plays Algorithm 2 where
each Rxh

is instantiated as the Regret Matching algorithm (36). Then the policies µt achieve the following regret bound
with probability at least 1− δ:

R̃T := max
µ†∈Πmax

T∑
t=1

〈
µt − µ†, `t

〉
≤ O(

√
H3XA2Tι),

where ι = log(10XA/δ) is a log factor. Further, each round plays H episodes against νt (so that the total number of
episodes played is HT ).

We then have the following corollary directly by the regret-to-Nash conversion (Proposition 1).

Corollary G.2 (Learning Nash using Balanced CFR with Regret Matching). Letting both players play Algorithm 2 in a
self-play fashion against each other for T rounds, where each Rxh

is instantiated as the Regret Matching algorithm (36).
Then, for any ε > 0, the average policy (µ, ν) = ( 1

T

∑T
t=1 µ

t, 1
T

∑T
t=1 ν

t) achieves NEGap(µ, ν) ≤ ε with probability at
least 1− δ, as long as

T ≥ O(H3(XA2 + Y B2)ι/ε2),
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where ι := log(10(XA+ Y B)/δ) is a log factor. The total amount of episodes played is at most

2H · T = O(H4(XA2 + Y B2)ι/ε2).

G.1. Proof of Theorem G.1

The proof is similar as Theorem 7, except for plugging in the regret bound for Regret Matching instead of Hedge.

First, by Lemma E.1, we have R̃T ≤
∑H
h=1 R

T
h , where for any h ∈ [H] we have

RT
h ≤ max

µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)R̃imm,T
h (xh)︸ ︷︷ ︸

:=REGRETh

+ max
µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:(h−1)(xh−1, ah−1)

T∑
t=1

µth(ah|xh)
[
Lth(xh, ah)− L̃th(xh, ah)

]
︸ ︷︷ ︸

:=BIAS1
h

+ max
µ∈Πmax

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

T∑
t=1

[
L̃th(xh, ah)− Lth(xh, ah)

]
︸ ︷︷ ︸

:=BIAS2
h

= REGRETh + BIAS1
h + BIAS2

h,

(37)

where the definition of R̃imm,T
h (xh), Lth(xh, ah) are at the beginning of Section E.1 and the definition of L̃th(xh, ah) are

given by Algorithm 2.

To upper bound BIAS1
h and BIAS2

h, we use the same strategy as the proof of Lemma E.2 and E.3 (whose proofs are
independent of the regret minimizer), so that we have the same bound as in Lemma E.2 and E.3: with probability at least
1− δ/5, we have

H∑
h=1

BIAS1
h ≤ 2

√
H3XATι+HXι,

H∑
h=1

BIAS2
h ≤ 2

√
H3XATι+HXAι, (38)

where ι = log(10XA/δ).

To upper bound REGRETh, we use the same strategy as the proof of Lemma E.4 as in Section E.5. First, applying the
regret bound for Regret Matching (Lemma B.2 & Remark B.3), we get (below a ∈ A is arbitrary, and η > 0 is also arbitrary)

R̃imm,T
h (xh) = max

µ†h(·|xh)

T∑
t=1

〈
µth(·|xh)− µ†h(·|xh), L̃th(xh, ·)

〉
≤ 1

ηµ?,h1:h(xh, a)
+
η

2
·
T∑
t=1

∑
ah∈A

µ?,h1:h(xh, ah) ·Aµ̄th(ah|xh)
(
L̃th(xh, ah)

)2

≤ 1

ηµ?,h1:h(xh, a)
+
ηH2

2
·
T∑
t=1

∑
ah∈A

A · µ̄th(ah|xh) ·
1
{

(x
t,(h)
h , a

t,(h)
h ) = (xh, ah)

}
µ?,h1:h(xh, ah)

,

(39)

where µ̄th(ah|xh) = (µth(ah|xh) + (1/A))/2 is a probability distribution over [A]. Comparing the right hand side of Eq.
(39) with the right hand side of Eq. (33), we can see that there is only one difference which is A · µ̄th versus µth. Plugging
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this into the definition of REGRETh, we have

REGRETh = max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1)R̃imm,T
h (xh)

≤ max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1) · 1

ηµ?,h1:h(xh, a)︸ ︷︷ ︸
Ih

+ max
µ∈Πmax

∑
xh∈Xh

µ1:(h−1)(xh−1, ah−1) · ηH
2

2
·
T∑
t=1

∑
ah∈A

A · µ̄th(ah|xh) ·
1
{

(x
t,(h)
h , a

t,(h)
h ) = (xh, ah)

}
µ?,h1:h(xh, ah)︸ ︷︷ ︸

IIh

.

(40)

Comparing Eq. (40) with Eq. (34), we can see that Ih in Eq. (40) is the same as Ih in Eq. (34), and IIh in Eq. (40) and (34)
only have one difference which is also A · µ̄th versus µth. Using the same argument as in the former proof, we have

Ih =
XhA

η
.

Furthermore, using the same argument as in the former proof, we can show that the upper bound of IIh in Eq. (40) is at most
A times the upper bound of IIh in Eq. (34). This gives for any λ ∈ (0, 1), with probability at least 1− δ/10, we have

IIh ≤
ηH2A

2
(1 + λ)T +

ηH2

2
· ι
λ
·XhA

2.

Combining the bounds for Ih and IIh, we obtain that

H∑
h=1

REGRETh ≤
H∑
h=1

(Ih + IIh) ≤ XA

η
+
ηH3A

2
T +

ηH2A

2

[
λ ·HT +

XAι

λ

]
,

Choosing λ = 1 and choosing η =
√
Xι/(H3T ), with probability at least 1− δ/10, we obtain the bound

H∑
h=1

REGRETh ≤ 2
√
H3XA2Tι+

√
HX3A4ι3/(4T ). (41)

This bound is
√
A times larger than the bound of

∑H
h=1 REGRETh as in Lemma E.4.

Combining Eq. (37), (38) and (41), we obtain the following: with probability at least 1− 3δ/10 ≥ 1− δ, we have

R̃T ≤
H∑
h=1

RT
h ≤

H∑
h=1

REGRETh +

H∑
h=1

BIAS1
h +

H∑
h=1

BIAS2
h

≤ 6
√
H3XA2Tι+ 2HXAι+

√
HX3A4ι3/(4T ).

Additionally, recall the naive bound R̃T ≤ HT on the regret (which follows as 〈µt, `t〉 ∈ [0, H] for any µ ∈ Πmax, t ∈ [T ]),
we get

R̃T ≤ min
{

6
√
H3XA2Tι+ 2HXAι+

√
HX3A4ι3/4T ,HT

}
≤ HT ·min

{
6
√
HXA2ι/T + 2XAι/T +

√
X3A4ι3/(4HT 3), 1

}
.

For T > HXA2ι, the min above is upper bounded by 9
√
HXA2ι/T . For T ≤ HXA2ι, the min above is upper bounded

by 1 ≤ 9
√
HXA2ι/T . Therefore, we always have

R̃T ≤ HT · 9
√
HXA2ι/T = 9

√
H3XA2Tι.

This is the desired result.
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H. Results for multi-player general-sum games
We introduce multi-player general-sum games with imperfect information and show when all the players run Algorithm 1 or
Algorithm 2 independently, the average policy is an approximate Coarse Correlated Equilibrium policy.

H.1. Multi-player general-sum games

Here we define an m-player general-sum IIEFG with tree structure and perfect recall. Our definition is parallel to the POMG
formulation for two-player zero-sum IIEFGs in Section 2.

Partially observable Markov games We consider finite-horizon, tabular, m-player general-sum Markov Games with
partial observability. Formally, it can be described as a POMG(H,S, {Xi}mi=1, {Ai}mi=1,P, {ri}mi=1), where

• H is the horizon length;

• S =
⋃
h∈[H] Sh is the (underlying) state space;

• Xi =
⋃
h∈[H] Xi,h is the space of infosets for the i-th player with |Xi,h| = Xi,h and Xi :=

∑H
h=1Xi,h. At any state

sh ∈ Sh, the i-th player only observes the infoset xi,h = xi(sh) ∈ Xi,h, where xi : S → Xi is the emission function for the
i-th player;

• Ai is the action spaces for the i-th player with |Ai| = Ai. For any h, we define the joint action of m players by
ah := (a1,h, · · · , am,h) and the set of joint actions by A := A1 × · · · × Am.

• P = {p1(·) ∈ ∆(S1)} ∪ {ph(·|sh,ah) ∈ ∆(Sh+1)}(sh,ah)∈Sh×A, h∈[H−1] are the transition probabilities, where p1(s1)
is the probability of the initial state being s1, and ph(sh+1|sh,ah) is the probability of transitting to sh+1 given state-action
(sh, ah, bh) at step h;

• ri = {ri,h(sh,ah) ∈ [0, 1]}(sh,ah)∈Sh×A are the (random) reward functions with mean ri,h(sh,ah).

Policies, value functions A policy for the i-th player is denoted by πi = {πi,h(·|xi,h) ∈ ∆(Ai)}h∈[H],xi,h∈Xi,h
, where

πi,h(ai,h|xi,h) is the probability of taking action ai,h ∈ Ai at infoset xi,h ∈ Xi,h. A trajectory for the i-th player takes
the form (xi,1, ai,1, ri,1, xi,2, . . . , xi,H , ai,H , ri,H), where ai,h ∼ πi,h(·|xi,h), which depends on both the other (unseen)
players’ policy and underlying state transition.

We use π to denote the joint policy. Notice although the marginals are πi, π is not necessarily a product policy. When π is
indeed a product policy, we have π = π1 × · · · × πm. We also use π−i to denote the joint product policy excluding the i-th
player. The overall game value of the i-th player for any joint policy π is denoted by V πi := Eπ

[∑H
h=1 ri,h(sh,ah)

]
.

Tree structure and perfect recall As before, we assume

• Tree structure: for any h and sh ∈ Sh, there exists a unique history (s1,a1, . . . , sh−1,ah−1) of past states and (joint)
actions that leads to h.

• Perfect recall: For any h and any infoset xi,h ∈ Xi,h for the i-th player, there exists a unique history
(xi,1, ai,1, . . . , xi,h−1, ai,h−1) of past infosets and i-th player’s actions that leads to xi,h.

Given above conditions, under any product policy π, the probability of reaching state-action (sh,ah) at step h takes the form

Pπ(sh,ah) = p1:h(sh)

m∏
i=1

πi,1:h (xi,h, ai,h), (42)

where {sh′ ,ah′}h′≤h−1 are the histories uniquely determined from sh and xi,h′ = xi(sh′). We have also defined the
sequence-form transition probability as

p1:h(sh) := p1(s1)
∏

h′≤h−1

ph′(sh′+1|sh′,ah′),
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and the sequence-form policies as

πi,1:h (xi,h, ai,h) :=

h∏
h′=1

πi,h′ (ai,h′ |xi,h′).

Regret and CCE Similar as how regret minimization in two-player zero-sum games leads to an approximate Nash
equilibrium (Proposition 1), in multi-player general-sum games, regret minimization is known to lead to an approximate
NFCCE. Let {πt}Tt=1 denote a sequence of joint policies (for all players) over T rounds. The regret of the i-th player is
defined by

RT
i := max

π†i∈Πi

T∑
t=1

(
V
π†i ,π

t
−i

i − V π
t

i

)
.

where Πi denotes the set of all possible policies for the i-th player.

Using online-to-batch conversion, it is a standard result that sub-linear regret for all the players ensures that the average
policy π is an approximate NFCCE (Celli et al., 2019).

Proposition H.1 (Regret-to-CCE conversion for multi-player general-sum games). Let the average policy π be defined as
playing a policy within {πt}Tt=1 uniformly at random, then we have

CCEGap(π) =
maxi∈[m] R

T
i

T
.

We include a short justification for this standard result here for completeness.

Proof By definition of π, we have for any i ∈ [m] and π†i ∈ Πi that

V
π†i ,π−i

i − V πi =
1

T

T∑
t=1

(
V
π†i ,π

t
−i

i − V π
t

i

)
.

Taking the max over π†i ∈ Πi and i ∈ [m] on both sides yields the desired result.

H.2. Proof of Theorem 10

It is straightforward to see that the regret guarantees for Balanced OMD (Theorem 4) and Balanced CFR (Theorem 7)
also hold in multi-player general-sum games (e.g. by modeling all other players as a single opponent). Therefore, the
regret-to-CCE conversion in Proposition H.1 directly implies that, letting π denote the joint policy of playing a uniformly
sampled policy within {πt}Tt=1, we have for Balanced OMD that

CCEGap(π) ≤ O

(
maxi∈[m]

√
H3XiAiιT

T

)
= O

(√
H3

(
max
i∈[m]

XiAi

)
ι/T

)
,

with probability at least 1 − δ, where ι := log(3H
∑m
i=1XiAi/δ) is a log factor. Choosing T ≥

Õ
(
H3
(
maxi∈[m]XiAi

)
ι/ε2

)
ensures that the right-hand side is at most ε. This shows part (a). A similar argument

can be done for the Balanced CFR algorithm to show part (b).


