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Abstract
Contrastive representation learning encourages
data representation to make semantically simi-
lar pairs closer than randomly drawn negative
samples, which has been successful in various
domains such as vision, language, and graphs.
Recent theoretical studies have attempted to ex-
plain the benefit of the large negative sample size
by upper-bounding the downstream classification
loss with the contrastive loss. However, the previ-
ous surrogate bounds have two drawbacks: they
are only legitimate for a limited range of neg-
ative sample sizes and prohibitively large even
within that range. Due to these drawbacks, there
still does not exist a consensus on how negative
sample size theoretically correlates with down-
stream classification performance. Following the
simplified setting where positive pairs are drawn
from the true distribution (not generated by data
augmentation; as supposed in previous studies),
this study establishes surrogate upper and lower
bounds for the downstream classification loss for
all negative sample sizes that best explain the em-
pirical observations on the negative sample size
in the earlier studies. Our bounds suggest that the
contrastive loss can be viewed as a surrogate ob-
jective of the downstream loss and larger negative
sample sizes improve downstream classification
because the surrogate gap between contrastive and
supervised losses decays. We verify that our the-
ory is consistent with experiments on synthetic,
vision, and language datasets.

1. Introduction
The contrastive loss (Chopra et al., 2005) is one of the pop-
ular loss functions in metric learning (Kulis, 2012) and rep-
resentation learning (Bengio et al., 2013). The contrastive
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Figure 1: Empirical comparison of our upper bound and the
existing bounds of the classification loss with CIFAR-10
(C = 10), showing that we improve the classification loss
bound by exponentially large margins. Arora et al.’s and
Nozawa & Sato’s bounds are valid only at K + 1 ≥ C.
Note that Arora et al.’s and Ash et al.’s bounds become
infinity at K = 512, where K and C are the numbers of
negative samples and classes, respectively. As can be seen,
our bound is the closest approximator of the true mean
supervised losses. The detailed setup is in Section 5.2.

loss forces data representation of semantically similar pairs
closer in some metric space than multiple random samples,
called negative samples. Many state-of-the-art represen-
tation learning algorithms use a type of contrastive losses
in natural language processing (Mikolov et al., 2013; Lo-
geswaran & Lee, 2018), vision (Chopra et al., 2005; He
et al., 2019; Chen et al., 2020), and graph (Lirong et al.,
2021) domains. A simple model built on top of the learned
representation can achieve almost the same accuracy as
supervised learning does.

Recent empirical studies observed that downstream classi-
fication performance could be improved with a sufficiently
large negative sample size (denoted by K), compared with
the number of classes (denoted by C) (He et al., 2020; Chen
et al., 2020). To better understand the underlying mecha-
nism of this large K benefit, several studies attempted to
derive surrogate upper bounds of the downstream classifica-
tion loss by the contrastive loss. Arora et al. (2019) success-



On the Surrogate Gap between Contrastive and Supervised Losses

fully established the first upper bound, which exponentially
deteriorates with larger K because the labels of negative
samples frequently collide with the positive sample (called
label collision), contradicting the larger-K benefit. By con-
trast, Nozawa & Sato (2021) argued that supervised classes
could be covered by negative samples with higher probabil-
ity as K becomes larger (called label coverage), supported
by their bound. While their claim agrees with the large-K
benefit, their bound holds only when K > C+1, and hence
does not explain the empirical observation that contrastive
learning works to some extent even with small K (Chen
et al., 2021; Tomasev et al., 2022). Furthermore, Ash et al.
(2022) advocated the existence of collision-coverage trade-
off so that their upper bound has an optimal K. Why have
we yet to reach a consensus? We observe that the lack of
a consensus is due to the existing upper bounds having the
following drawbacks: some bounds are only valid within
a limited range of K, and prohibitively large even within
that range. Figure 1 shows the comparison of the existing
bounds and the classification loss. Hence, we ask the fol-
lowing research question: How does negative sample size
K affect the downstream classification performance?

In this study, we derive a surrogate gap bound of the down-
stream classification loss that is applicable to any K and
shrinks with larger K. In particular, we derive not only the
upper (Theorem 1) but also the lower bound (Theorem 2) of
the downstream loss, and show the tightness in K. As the
gap between upper and lower bounds shrinks in O(K−1),
the contrastive loss can be viewed as a surrogate objective of
the downstream classification loss, and the downstream per-
formance is improved by larger K. This is consistent with
the empirical observations that larger K improves the down-
stream performance whereas contrastive learning can work
to some extent even with small K (Section 3.3). In addi-
tion, our bounds resolve the controversy among the existing
bounds so that there is no collision-coverage trade-off in K
and the large-K benefit is witnessed (Section 4). Finally,
we empirically verify our theory by experiments (Section 5)
on a synthetic dataset, CIFAR-10/100 (Krizhevsky, 2009)
datasets, and Wiki-3029 dataset (Arora et al., 2019). Note
that we assume that positive pairs are drawn from the true
underlying distribution instead of generated by data augmen-
tation for simplicity, as supposed in the previous studies.

2. Formulation of Contrastive Learning
First, this section briefly summarizes the problem setup
and formulation of contrastive unsupervised representation
learning (CURL).1

1We refer to our problem setting as contrastive unsupervised
representation learning by following Arora et al. (2019) while
CURL is provided with the contrastive supervision.

Notation. The C-dimensional vector whose elements are
all ones is denoted by 1C := [1 1 . . . 1]⊤. When it
is clear from context, the subscript is abbreviated. For a
vector a ∈ Rp, a(i) denotes the i-th largest element of a,
namely, a(1) ≥ a(2) ≥ · · · ≥ a(p). Likewise, a(−i) denotes
the i-th smallest element of the vector a. The indicator
function is denoted by 1{A} for a predicate A. Let △C :=

{p ∈ [0, 1]C | p⊤1 = 1} be the C-dimensional probability
simplex. For p ∈ △C , the Shannon entropy is denoted by
H (p) := −

∑
c∈[C] pc ln pc.

Supervised classification. One of the goals in machine
learning is supervised classification, while we consider the
setup where the label supervision is unavailable. Here, we
first formulate C-class classification problem for C ∈ N.
Let X be d-dimensional feature space and Y := [C] be
the supervised label set. In the supervised setup, we are
interested in the following risk quantity, the supervised loss,
for a multi-class classifier g : X → RC :

Rsupv(g) := E
x,y∼P

[
− ln

egy(x)∑
c∈Y egc(x)

]
, (1)

which is specialized for the softmax cross-entropy loss. The
expectation is taken over the unknown underlying joint dis-
tribution P. Test prediction is given by argmaxy∈Y gy(·).

Contrastive unsupervised representation learning. In
the CURL framework (Arora et al., 2019), we target to
learn meaningful data representation by training a similarity
model to make the representation of positive pairs more
similar than randomly drawn K negative samples. The
class-conditional distribution is denoted by Dc := P(X |
Y = c) for each c ∈ Y and the class-prior distribution by
π := [P(Y = c)]c∈Y ∈ △C . The data generating process
is described as follows: (i) draw positive/negative classes:
c+, {c−k }Kk=1 ∼ πK+1 (ii) draw an anchor sample x ∼ Dc+

(iii) draw a positive sample x+ ∼ Dc+ (iv) draw K negative
samples x−

k ∼ Dc−k
(for each k ∈ [K]).

In CURL, the representation is learned through minimiza-
tion of the following contrastive loss Rcont(f)

E
c+,{c−k }

x,x+,{x−
k }

[
− ln

ef(x)
⊤f(x+)

ef(x)⊤f(x+) +
∑

k∈[K] e
f(x)⊤f(x−

k )

]
. (2)

Evaluation of representations. Now we specify our
model of classifiers to evaluate learned representations. A
multi-class classifier g : X → RC consists of learned rep-
resentation f : X → Rh (frozen) and linear parameters
W ∈ RC×h as g(·) := Wf(·), where h ∈ N denotes the
dimensionality of the representation given in advance.

For the sake of evaluation, a specific linear classifier called
mean classifier is introduced. Given representation f , the
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mean classifier Wµ is defined as Wµ := [µ1 · · ·µC ]
⊤,

where µc := Ex∼Dc [f(x)]. This will later be used for eval-
uating the representation f combined with the supervised
loss, which is denoted by Rµ-supv(f) := Rsupv(W

µf). We
call it the mean supervised loss. If the mean supervised loss
is successfully bounded from above, we end up a bound
on the supervised loss through infW∈RC×h Rsupv(Wf) ≤
Rµ-supv(f). For this reason, an upper bound on Rµ-supv is
an intermediate milestone that we seek in this paper.

3. Surrogate Bounds for Contrastive Learning
In this section, our main theoretical results are provided. We
aim at showing that the contrastive loss Rcont(f) serves as a
good estimator of the mean supervised loss Rµ-supv(f) for
any f . We show this by establishing upper and lower bounds
of Rµ-supv(f) by Rcont(f). Eventually, the minimization of
Rcont(f) may lead to a good minimizer of Rµ-supv(f). All
proofs are provided in Appendix B.

3.1. Assumptions

Before proceeding with the main results, we explicitly state
assumptions used throughout this paper and discuss their
validity.

Conditional independence. In Section 2, we assumed
that anchor and positive samples are conditionally indepen-
dent: x⊥⊥x+ | c+, whereas data augmentation (DA) is
commonly combined with contrastive learning, and the as-
sumption no longer holds. While a concurrent work (Wang
et al., 2022) attempted to mitigate this assumption, we work
with this assumption to concentrate on the theoretical rela-
tionship between K and the downstream performance. With
this assumption, it is possible to compare our result with
the previous bounds in a relatively fair manner since the
previous studies assumed the same assumption (Arora et al.,
2019; Nozawa & Sato, 2021; Ash et al., 2022). The con-
ditional independence assumption has been used in metric
learning (Bellet et al., 2012) and weakly-supervised learn-
ing (Bao et al., 2018). In Appendix C, we discuss how to
relax the conditional independence assumption.

Existence of supervised classes. In unsupervised repre-
sentation learning, the latent classes [C] and the downstream
supervised classes Y are often distinguished. To draw the
connection between learned representation and downstream
classification, we must suppose the relationship between [C]
and Y . We assume Y = [C] for ease of exposition in the
main part. This assumption can be relaxed to some extent
(similarly to Arora et al. (2019)), which will be discussed in
Appendix C.

Bounded feature representation. The size of the repre-
sentation ∥f(x)∥2 is assumed to be bounded. This assump-
tion is reasonable from the experimental perspective since
it is common to normalize representation to employ the
cosine similarity as the similarity metric. Several works
reported that the normalized embeddings improve the per-
formance (Chen et al., 2020; Wang & Isola, 2020). The
existing theoretical work (Arora et al., 2019) also assumes
the bounded feature extractor. Unlike the existing analyses
(reviewed in Section 4), we take advantage of this assump-
tion to derive the sharp bounds.

Loss function. We focus on the cross-entropy-type con-
trastive loss (2) because this is the most commonly used loss
function (Mikolov et al., 2013; Logeswaran & Lee, 2018;
Chen et al., 2020) and its connection to mutual information
has been actively discussed (Tian et al., 2020; Tschannen
et al., 2020), while other contrastive loss functions have been
proposed in a few recent studies (Li et al., 2021; HaoChen
et al., 2021; Chuang et al., 2022).

3.2. Main Results

Below, we investigate the surrogate gap Rµ-supv(f) −
Rcont(f) for a fixed representation f . If the surrogate gap
is bounded sufficiently small, the contrastive loss Rcont(f)
can be regarded a good surrogate objective for Rµ-supv(f).

First, we show a sharp upper bound of the mean supervised
loss. Unlike the existing surrogate bounds of CURL, the
upper bound obtained here has a constant coefficient in
the contrastive loss and is applicable for all C and K (see
discussions in Section 4).

Theorem 1. For all f such that ∥f(x)∥2 ≤ L (∀x ∈ X ),
the following inequality holds.

Rµ-supv(f) ≤ Rcont(f) + ∆U, (3)

where ∆U := ln{π(1)K
−1C2 cosh2(L2)}.

Next, the lower bound of the mean supervised loss is pro-
vided. While the existing theoretical analyses often provided
upper bounds with a huge coefficient in the contrastive loss,
our lower bound provided below has the same constant coef-
ficient and intercept (∆U and ∆L) rate as our upper bound,
ensuring the tightness of our analysis.

Theorem 2. For all f such that ∥f(x)∥2 ≤ L (∀x ∈ X ),
the following inequality holds.

Rµ-supv(f) ≥ Rcont(f) + ∆L, (4)

where ∆L := H (π) + ln K
(K+1)2 − 2 ln cosh(L2).

Our proofs leverage that the contrastive loss and mean su-
pervised loss share the similar log-sum-exp functional form
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Rcont(f)

Rµ-supv(f)

R∗
µ-supv

R∗
cont

Rµ-supv(f) ≥ Rcont(f) + ∆L

Rµ-supv(f) ≤ Rcont(f) + ∆U

R∗
cont +∆U

R∗
µ-supv −∆L

Figure 2: The surrogate bounds and feasible region. The
point ⋆ , (R∗

cont, R
∗
µ-supv), is the optimal point in the feasi-

ble region. The points • and ■ are mentioned in the texts.

and directly apply the Jensen’s inequality. This is in contrast
to the existing works including Arora et al. (2019), which
approximate the mean supervised loss with the contrastive
loss by taking the expectation over latent classes, leading to
an exponentially large coefficient.

As we see in Section 3.3, ∆U and ∆L are the same order in
K under the uniform class prior assumption. By applying
either the high-probability bound (Arora et al., 2019) or
PAC-Bayesian analysis (Nozawa et al., 2020), Theorem 1
(Theorem 2 as well) can be naturally extended to the form
Rµ-supv(f̂) ≤ Rcont(f) + ∆U + χ with a complexity term
χ, where f̂ is the empirical minimizer of the contrastive loss.
Since this is a routine and does not affect the surrogate gap,
we omit the high-probability bounds.

3.3. Discussion

Subsequently, we discuss implications of our main results
on the relationship between the mean supervised loss and
K. For the sake of simplicity, we assume πc = 1/C for all
c ∈ [C] (the uniform class prior) in this section.

Gap between upper and lower bounds. Both of our
upper (Theorem 1) and lower (Theorem 2) bounds draw
the linear relationship between the mean supervised loss
Rµ-supv and the contrastive loss Rcont, with the additional
intercept terms ∆U and ∆L. Under the uniform class prior
assumption, the intercepts are in the same order:

∆U = ln (C/K) + 2 ln cosh(L2) = O (ln (1/K)) ,

∆L = ln (CK/(K+1)2)− 2 ln cosh(L2) = O (ln (1/K)) ,

and the gap between two bounds ∆U −∆L is2

4 ln cosh(L2) + 2 ln (1 + 1/K) = O
(
K−1

)
, (5)

meaning that the gap shrinks to 4 ln cosh(L2) as K in-
creases. Hence, our bounds have the tight intercepts, and

2The approximation ln(1 + z) ≈ z is used (for 0 < z ≪ 1).

the larger K is beneficial for CURL from the viewpoint of
the surrogate gap of the mean supervised loss.

Surrogate bounds and feasible region. Next, we con-
sider the (Rcont, Rµ-supv)-plot, in which a point indicates
(Rcont(f), Rµ-supv(f)) for some f (see Figure 2). Here, let
us focus on the feasible region in the (Rcont, Rµ-supv)-plot
by assuming ∥f∥2 ≤ L for any f (same as Theorems 1
and 2). Then, the mean supervised loss and contrastive loss
are essentially lower-bounded by the constants3

R∗
µ-supv := ln{1 + (C − 1)e−2L2

}, (6)

R∗
cont :=

K∑
m=0

rK,C,m ln{1 +m+ (K −m)e−2L2

}, (7)

respectively, where rK,C,m :=
(
K
m

) (
1
C

)m (
1− 1

C

)K−m
.

Hence, the feasible region is

Rµ-supv(f) ≤ Rcont(f) + ∆U, (8a)
Rµ-supv(f) ≥ Rcont(f) + ∆L, (8b)
Rµ-supv(f) ≥ R∗

µ-supv, (8c)

Rcont(f) ≥ R∗
cont, (8d)

as illustrated in Figure 2. The first two bounds (8a) and (8b)
restrict the mean supervised loss by the contrastive loss. We
specifically refer to these bounds as surrogate bounds. The
remaining two bounds (8c) and (8d) represent the achiev-
able limits for each loss separately. One of the important
questions is how the smallest possible value of Rµ-supv in
the feasible region (8) changes as K and C change. In
other words, we are interested in whether the optimal point
(R∗

cont, R
∗
µ-supv) (⋆ in Figure 2) is always achievable re-

gardless of the values of K and C. To investigate it, we
check whether the optimal point (⋆ ) crosses the surrogate
gaps (• or ■ ) under the following two conditions.

• The feasible region at Rcont(f) = R∗
cont (Figure 3a):

We plot the value R∗
cont + ∆U (solid line; the Rµ-supv-

value of the point • in Figure 2) and the minimum
possible Rµ-supv (R∗

µ-supv; dotted line) numerically.
These two curves do not cross for all K, which means
Rµ-supv(f) = R∗

µ-supv is attainable no matter the values
K and C. In addition, the bound becomes sharper as
K increases, but the gap between the upper bound and
R∗

µ-supv does remain even at the limit K ↗ ∞.

• The feasible region at Rµ-supv(f) = R∗
µ-supv (Figure 3b):

When Rµ-supv(f) = R∗
µ-supv, the contrastive loss

Rcont(f) is upper-bounded by R∗
µ-supv − ∆L (the

Rcont-value of the point ■ in Figure 2). The curve

3The derivations of R∗
µ-supv and R∗

cont are detailed in Ap-
pendix D.
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(a) The feasible region at Rcont(f) = R∗
cont.
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(b) The feasible region at Rµ-supv(f) = R∗
µ-supv.

Figure 3: Visualization of the smallest possible value of Rµ-supv in the feasible region (8) for different K and C. The dotted
lines show the essential lower bounds which come from each loss separately. The solid lines show the surrogate upper
bounds in which Rµ-supv and Rcont restrict each other.

of this value does not cross R∗
cont, which tells us that

the lower bound does not exclude the optimal point
(R∗

cont, R
∗
µ-supv) from the feasible region (8) at any K.

Note that the gap between R∗
cont and R∗

µ-supv − ∆L

gradually increases, meaning that it becomes much easier
to attain R∗

µ-supv as K increases.

Hence, the optimal point ⋆ stays in the feasible region
(8) no matter the value K. From this viewpoint, smaller
K is not necessarily disadvantageous because the optimal
point ⋆ remains in the feasible region. Note again that the
estimation of Rµ-supv may become harder with the smaller
K because of the gap ∆U − ∆L = O(K−1), even if the
optimal solution is unaffected by K.

Summary. We draw a connection between the mean super-
vised loss and the negative sample size K by the following
claim: the gap between the contrastive loss and mean su-
pervised loss shrinks with larger K but the optimal mean
supervised loss can nevertheless be achieved with small K.

4. Comparison with Existing Work
This section first discusses the detailed difference between
our main results and the existing theoretical results on
CURL. Then, we briefly review the other related literatures.

Surrogate bounds comparison. Here, we compare our re-
sults with the existing works by Arora et al. (2019), Nozawa
& Sato (2021), and Ash et al. (2022). We assume the uni-
form class prior for comparison. We introduce a notation
Col :=

∑
k∈[K] 1{c+=c−k }. Let vK be the probability that

sampled K negative classes contains all classes c ∈ [C].

vK :=

K∑
n=1

C−1∑
m=0

(
C − 1

m

)
(−1)m

(
1− m+ 1

C

)n−1

. (9)

0 20 40 60 80 100

K

100

101

102 Ours

Arora et al.

Nozawa & Sato

Ash et al.

(a) Coefficient of Rcont(f).

0 20 40 60 80 100

K

100

101

102

(b) Upper bound at Rcont(f) = R∗
cont.

Figure 4: Theoretical comparison of surrogate bounds (C =
10), log-scaled. Arora et al.’s and Nozawa & Sato’s bounds
are valid only at K + 1 ≥ C (the dotted vertical lines).

The value vK is often referred to as the coupon collector’s
probability. Let τK be the probability that at least one of
the negative classes c−k is the same as the positive class c+.
Under the uniform class prior, τK = 1− (1− 1/C)K . The
surrogate bounds are summarized in Table 1.4

We discuss the applicability and the dependence of exist-
ing and our bounds with respect to K. As summarized in
Table 1, the coefficients of Rcont(f) for existing bounds
strongly depend on C and K through the coverage (vK)

4More precisely, Arora et al. (2019) bound the averaged su-
pervised loss over a part of the latent classes rather than Rµ-supv.
Thus we can obtain a slightly better upper bound than Arora et al.’s
bound shown in Table 1. Nevertheless, the scale of the upper
bound is dominated by the coefficient (1− τK)vK+1.
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Table 1: Surrogate bounds of the existing works. Hn denotes the n-th harmonic number. Remark that Arora et al.’s and
Nozawa & Sato’s bounds are valid only K + 1 ≥ C. The detailed derivations are discussed in Appendix E.

UPPER BOUND REFERENCE

Rµ-supv(f) ≤ 1
(1−τK)vK+1

{Rcont(f)− E ln(Col + 1)} Arora et al. (2019)
1

vK+1
{2Rcont(f)− E ln(Col + 1)} Nozawa & Sato (2021)

2
1−τK

⌈
2(C−1)HC−1

K

⌉
{Rcont(f)− E ln(Col + 1)} Ash et al. (2022)

and the collision (τK ) probability whereas our bounds have
the constant coefficient. As Arora et al.’s and Nozawa &
Sato’s bounds depend on the coverage probability vK in
the denominator of the coefficients, the coefficients diverge
in the range of K + 1 < C (where the negative sample
size is insufficient to cover the entire [C]). In addition, the
coefficients of the Arora et al.’s and Ash et al.’s bounds in-
crease exponentially with increasing K due to the collision
probability τK in the denominator, which are not consistent
with the experimental facts. Compared to these bounds, our
upper bound has the coefficient independent of C and K.

We numerically demonstrated the abovementioned depen-
dencies on K in Figure 4. As we can see in Figure 4a, the
coefficients of Rcont(f) of Arora et al.’s and Ash et al.’s
bounds have unique minima, Nozawa & Sato’s coefficient
has monotonically decreasing nature, and our coefficient is
constant. On the other hand, the tendencies of the bound
values at Rcont(f) = R∗

cont, namely, the best possible mean
supervised loss in terms of the upper bounds (Figure 4b) are
slightly different from the coefficient: Ash et al.’s bound
is monotonically increasing, Arora et al.’s and Nozawa &
Sato’s bounds have a unique minimum, and ours is mono-
tonically decreasing. Among the compared bounds, only
ours is legitimate for all K and moderately decreases with
K, which agrees well with the experimental fact observed
as well in Figure 1; the details are stated in Section 5.2.5

Such a moderate dependence on K is due to the mechanism
that the contrastive loss behaves as a surrogate objective.

4.1. Related literatures.

Wang & Isola (2020) showed that the contrastive loss asymp-
totically favors data representation uniformly distributed
over the unit sphere yet aligning across semantically sim-
ilar samples. Li et al. (2021) proposed an alternative loss
function to the contrastive loss based on a kernel metric,
following the similar idea to Wang & Isola (2020). Tosh
et al. (2021) showed that a (linear) mean classifier learned
in CURL can approximate the (potentially nonlinear) Bayes

5Note that Nozawa & Sato (2021)’s bound also implies larger
K is better. Still, our argument on how contrastive learning works
differs from theirs. See Appendix E for the further discussions.

classifier well.

More recently, Awasthi et al. (2022) showed the existence
of representations that well separate each class and opti-
mize the contrastive loss regardless of K, under the as-
sumptions of the conditional independence and the disjoint
class-conditional distributions. Their claim aligns well with
our claim that larger K is not harmful. While our analy-
sis focuses on the relationship between the contrastive and
(mean) supervised losses, they investigated the property of
representations that minimize the contrastive loss.

While our work does not handle DA, several works analyzed
the effect of DA on the performance. Wen & Li (2021)
showed that DA is necessary to recover sparse signals under
a specific assumption on the model architecture. HaoChen
et al. (2021) introduced a notion of the augmentation graph,
representing how likely the nearby samples are generated
via DA and showed that a type of contrastive loss could be
viewed as a low-rank approximation of the adjacency matrix
of the augmentation graph. von Kügelgen et al. (2021)
proposed a loss function that enables the model to identify
invariant factors across DA.

We mention a few works analyzing the other types of self-
supervised learning; Garg & Liang (2020) analyzed masked
self-supervised learning, Wei et al. (2021) analyzed the input
consistency loss for unsupervised learning, and Saunshi et al.
(2021) analyzed auto-regressive language models. Grill
et al. (2020); Chen & He (2021) proposed self-supervised
learning without negative samples.

Lastly, multi-sample estimators (van den Oord et al., 2018;
Poole et al., 2019; Song & Ermon, 2020) popularly used in
mutual information estimation are substantially related to
the contrastive loss. We defer its discussion to Appendix F.

Remark. A concurrent work (Wang et al., 2022) recently
established the surrogate bound that has similar order in
K with ours without conditional independence assumption.
We stress that our results were obtained independently of
theirs. In addition, the purpose of our research is to clarify
the mechanism of how K affects the downstream perfor-
mance, which is different from their motivation to discuss
the validity of assumptions in contrastive learning. In Ap-



On the Surrogate Gap between Contrastive and Supervised Losses

pendix C, we discuss how our surrogate bounds hold without
the conditional independence assumption.

5. Experiments
We verified our theoretical findings with experiments on
synthetic (Section 5.1), vision, and language datasets (Sec-
tion 5.2). The details of the setup are in Appendix G.
The experimental codes to reproduce all figures in the
paper are available at https://github.com/nzw0301/
gap-contrastive-and-supervised-losses.

5.1. Small-scale Experiments on Synthetic Dataset

Dataset and learning setups. We create a synthetic
dataset circle, which is a 2D dataset created as follows:
for each class c ∈ [C] (C = 10), 1 000 samples are drawn
from Uniform([−0.5 − 0.5], [0.5, 0.5]), normalized, and
multiplied by c+1/2. The generated samples are nonlinear
and require disentanglement to be linearly separable. We
treated 60% of the generated samples as a training dataset
and the rest of the samples as a test dataset.

As a feature extractor f , we used a multi-layer perceptron
(the number of units 2-256-256-256) with the ReLU acti-
vation functions following after each hidden layer. Dur-
ing the training, the extracted feature representations are
normalized. For negative samples, we sampled K ∈
{1, 4, 16, 64, 256} samples without replacement from 2B−
2 points included in the same mini-batch to avoid the influ-
ence of mini-batch size B, inspired by Ash et al. (2022).6

Results. Figure 5 shows a single trajectory in the
(Rcont, Rµ-supv)-plot and the feasible region (confer Fig-
ure 2) for each K. We plotted the trajectories by tracking
(Rcont(f

(t)), Rµ-supv(f
(t))) at each epoch t computed with

the test dataset. All trajectories were located in between
the upper (Rcont + ∆U) and lower (Rcont + ∆L) bounds
as a matter of course. Given that the existing surrogate
bounds provide the much larger upper bounds (Figure 4),
our surrogate bounds provide the finest estimate of the mean
supervised loss. In addition, it is remarkable that all trajec-
tories have nearly the same slopes as our surrogate bounds,
which constitutes solid evidence that our surrogate bounds
capture the learning dynamics well.

In Figure 6, the mean supervised loss and accuracy are com-
pared with the different K. We plotted the standard devia-
tions of the same experiments with eight different random
seeds for each K. From these figures, it can be concluded
that the contrastive loss performance becomes better with
the larger K in the sense that the supervised loss improved

6Each mini-batch consists of B pairs of positive pairs. The can-
didates of the negative samples are the 2B − 2 samples excluding
the anchor and its paired point.

and the variance shrank. The variance improvement is theo-
retically suggested by Figure 5 as well; the larger K is, the
smaller the gap between upper and lower bounds becomes.

5.2. Large-scale Experiments on Vision and Language
Datasets

We used the same datasets as Arora et al. (2019): CIFAR-
100 (Krizhevsky, 2009) and Wiki-3029 (Arora et al., 2019)
datasets, along with CIFAR-10 (Krizhevsky, 2009) dataset.

Learning setups. We treated the supervised classes as
latent classes as in Arora et al. (2019) and Ash et al. (2022)
for creating positive pairs. We used the original supervised
classes of CIFAR-10/100 as [C]; C = 10 and C = 100,
respectively. We used K in {4, 16, 32, 64, 128, 512} and in
{4, 64, 128, 512} for CIFAR-10/100, respectively. For Wiki-
3029, we used C ∈ {500, 1 000, 2 000, 3 029} and K ∈
{8, 64, 256, 1 024}. For each different (C,K), we trained
the feature extractor f on the training dataset. We then
evaluated its performance on the test dataset with mean and
linear classifiers. We used ResNet-18 (He et al., 2016)-based
feature extractor f for CIFAR-10/100 and the fasttext (Joulin
et al., 2017)-based feature extractor for Wiki-3029.

Results. Figure 1 shows the comparison between the esti-
mated upper bounds using Theorem 1 and actual supervised
loss on the CIFAR-10 test dataset. We estimated the bounds
by substituting the actual Rcont(f) to the equations shown
in Theorem 1 and Table 1. Our bound gave the closest
bound to the experimental value of the supervised loss. The
existing surrogate bounds of Arora et al. (2019) and Ash
et al. (2022) were prohibitively large to explain the classifi-
cation performance. Although Nozawa & Sato’s bound was
comparable with ours, it was valid only in K + 1 ≥ C and
tended to diverge near K + 1 = C, as shown in Section 4.

We investigated how K affects the test accuracy for different
C in Figure 7. The test accuracy improved or was saturated
with the larger K for all C on Wiki-3029. In contrast, it was
degraded as K increased in mean and linear classifiers on
CIFAR-10/100. This behavior could be partly because of
the gap between the cross-entropy loss and the supervised
accuracy—the theory of CURL, including the existing stud-
ies, usually focuses on the cross-entropy loss only. Figure 9
in Appendix G.6 revealed that the supervised loss was not
significantly worse with the larger K on CIFAR-10/100.

With the smaller K and large C, we found that long epochs
were more effective to improve classification accuracy than
increasing the negative sample size K (Figure 8b). While
similar results were reported by Chen et al. (2020, Figure 9),
it is important to remark that we randomly drew K negative
samples from the 2B− 2 samples in the given mini-batch at
each iteration as in Ash et al. (2022)—a different approach

https://github.com/nzw0301/gap-contrastive-and-supervised-losses
https://github.com/nzw0301/gap-contrastive-and-supervised-losses
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Figure 5: Learning trajectories of the circle dataset in the (Rcont, Rµ-supv)-plot. The trajectories are plotted with gradient
color lines, indicating the epochs.
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Figure 6: For each K, eight runs on the circle dataset are averaged with the standard deviations plotted. (Left) the
test mean supervised losses at each epoch with the different negative sample sizes K. (Middle) the test mean supervised
accuracy at each epoch with the different negative sample sizes K. (Right) the best test mean supervised loss with the
different negative sample sizes K.

was used by Chen et al. (2020) to regard the all samples in
the mini-batch except an anchor sample as negative samples.
Under our experimental setup, a learner may encounter
less diverse samples with the smaller K even if the mini-
batch size B is the same, which could make the downstream
performance worse—the longer epochs are necessary to
mitigate the issue. Since the CIFAR-10 dataset has a smaller
C and is simpler than the CIFAR-100, all accuracies were
saturated with similar epochs for all K (Figure 8a).

6. Conclusion
We established novel surrogate bounds for contrastive learn-
ing. In contrast to existing theories, our bounds are applica-
ble for all negative sample sizes and have a constant coeffi-
cient. We verified that our bounds well explained learning
dynamics on the synthetic dataset, and the surrogate gap
shrinks with large negative samples. For the vision and lan-
guage datasets, the downstream classification losses were
also best explained by our bounds in contrast to existing
theories. Our bounds provided a perspective on the effect of
negative sample size that the contrastive loss behaves as a
surrogate objective of the downstream loss, and its surrogate
gap decays with larger negative samples.
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«APPENDIX»
ON THE SURROGATE GAP BETWEEN CONTRASTIVE AND SUPERVISED LOSSES

As an additional notation, the d-dimensional ball of radius r associated with the Lp-norm is denoted by Bd
p(r) := {x ∈ Rd |

∥x∥p ≤ r}. For z ∈ RC , the log-sum-exp function is denoted by LSE (z) := ln(
∑

c∈[C] exp(zc)).

A. Useful Lemmas
In this section, a few lemmas are introduced in order to prove the main results.
Lemma 3. For z ∈ [−L2, L2]N ,

2 lnN ≤ LSE (z) + LSE (−z) ≤ 2 ln(N cosh(L2)). (10)

Proof. Define H(z) := LSE (z) + LSE (−z). First, we prove the lower bound of H(z). Since

∂H

∂zi
=

exp(zi)∑
n∈[N ] exp(zn)

− exp(−zi)∑
n∈[N ] exp(−zn)

(11)

for all i ∈ [N ], z = 0N satisfies the first-order optimality condition of H . By noting that H is convex due to the convexity
of the log-sum-exp functions, H is minimized at z = 0N : H(z) ≥ H(0N ) = 2 lnN . Note that z can be any vector in RN

for this lower bound.

Next, we prove the upper bound of H(z). Observe that finding the maximum of H(z) in z ∈ BN
∞(L2) is equivalent to a

concave minimization problem over a convex polytope. It is known that every vertex of the polytope z ∈ {−L2, L2}N is a
local optimum for concave minimization over a convex polytope (Pardalos & Rosen, 1986). Hence, it is sufficient to test the
vertices z ∈ {−L2, L2}N to find the maximum of H(z). Define

H̃(m) := H
(
L2, L2, . . . , L2︸ ︷︷ ︸

m

,−L2,−L2, . . . ,−L2︸ ︷︷ ︸
N−m

)
(12)

= ln
{
m exp(L2) + (N −m) exp(−L2)

}
+ ln

{
m exp(−L2) + (N −m) exp(L2)

}
. (13)

Note that the maximizer of H(z) in z ∈ {−L2, L2}N is equivalent to that of H̃(m) in m ∈ [N ] because H(z) is symmetric
in every zn for n ∈ [N ]. We verify the following by simple algebra:

exp H̃(m) = −
(
exp(L2) + exp(−L2)

){(
m− N

2

)2

+Const

}
, (14)

meaning that H̃(m) is maximized at m =
⌊
N
2

⌋
. Hence, H(z) ≤ H̃(⌊N/2⌋) ≤ H̃(N/2) = 2 ln(N cosh(L2)).

Lemma 4. For all z0 ∈ R and z ∈ RK such that z0, zk ∈ [−L2, L2] (∀k ∈ [K]),

ln
exp(−z0)

exp(−z0) +
∑

k∈[K] exp(−zk)

≥ − ln
exp(z0)

exp(z0) +
∑

k∈[K] exp(zk)
− 2 ln

{
(K + 1) cosh(L2)

}
. (15)

Proof. We write z̃ := [z0 z⊤]⊤. Let H(z̃) be a function such that

H(z̃) := − ln
exp(z0)

exp(z0) +
∑

k∈[K] exp(zk)
− ln

exp(−z0)

exp(−z0) +
∑

k∈[K] exp(−zk)
(16)

= ln

K+1∑
k=1

exp(z̃k) + ln

K+1∑
k=1

exp(−z̃k). (17)
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Our goal is to find a tight upper bound of H(z̃) for z̃ ∈ BK+1
∞ (L2).

Observe that H(z̃) is the sum of the two log-sum-exp functions hence it is convex in z̃. In addition, the domain BK+1
∞ (L2)

is a compact convex polytope. Henceforth, every vertex of the polytope, z̃ ∈ {−L2, L2}K+1, is a local maximizer because
maximizing H(z̃) is concave minimization over a convex polytope (Pardalos & Rosen, 1986). Since H(z̃) is symmetric in
every element z̃k, it is sufficient to test the vertices and see the difference between

H

(L2, . . . , L2︸ ︷︷ ︸
# = j

,−L2, . . . ,−L2)


︸ ︷︷ ︸

:=H̃(j)

and H

(L2, . . . , L2︸ ︷︷ ︸
# = j + 1

,−L2, . . . ,−L2)


︸ ︷︷ ︸

:=H̃(j+1)

(18)

for j ∈ {0, . . . ,K} to seek out the global maximum. For 0 ≤ j ≤ K, a simple algebra shows

exp
(
H̃(j)

)
− exp

(
H̃(j + 1)

)
= (K − 2j)

{
2−

(
exp(2L2) + exp(−2L2)

)}︸ ︷︷ ︸
≤0

because of AM-GM inequality

, (19)

from which we can tell that H̃(j) is maximized at j = K/2 when K is even and j = (K+1)/2 when K is odd. In addition,
it is confirmed that

exp

(
H̃

(
K

2

))
− exp

(
H̃

(
K + 1

2

))
=

2−
(
exp(2L2) + exp(−2L2)

)
4

(20)

≤ 0, (21)

where the AM-GM inequality is invoked at the last line. Eventually, H̃ ((K + 1)/2) turns out to be a tight upper bound of
H(z̃) for z̃ ∈ BK+1

∞ (L2). It is elementary to confirm H̃ ((K + 1)/2) = 2 ln
{
(K + 1) cosh(L2)

}
.

B. Proofs of Main Results
In this section, we provide proofs for the main results, Theorems 1 and 2.

Theorem 1. For all f such that ∥f(x)∥2 ≤ L (∀x ∈ X ), the following inequality holds.

Rµ-supv(f) ≤ Rcont(f) + ∆U, (3)

where ∆U := ln{π(1)K
−1C2 cosh2(L2)}.

Proof of Theorem 1. The proof largely relies on the Jensen’s inequality. To apply the Jensen’s inequality in the reversed
way, we occasionally transform a convex function into a concave function by applying the log-sum-exp bound in Lemma 3.

Rcont(f) = − E
c+,{c−k },x,x+,{x−

k }
ln

exp(f(x)⊤f(x+))

exp(f(x)⊤f(x+)) +
∑

k∈[K] exp(f(x)
⊤f(x−

k ))
(22)

= − E
c+,x,x+

[f(x)⊤f(x+)] + E
c+,{c−k },x,x+,{x−

k }
ln
(
exp(f(x)⊤f(x+)) +

∑
k∈[K]

exp(f(x)⊤f(x−
k ))

)
(23)

≥ − E
c+,x,x+

[f(x)⊤f(x+)] + E
c+,{c−k },x,x+,{x−

k }
ln

∑
k∈[K]

exp(f(x)⊤f(x−
k ))︸ ︷︷ ︸

=LSE({f(x)⊤f(x−
k )}k∈[K])

(monotonicity of ln) (24)

≥ − E
c+,x,x+

[f(x)⊤f(x+)] + E
c+,{c−k },x

ln
∑

k∈[K]

exp(f(x)⊤µc−k
)

︸ ︷︷ ︸
=LSE

(
{f(x)⊤µ

c
−
k
}k∈[K]

)
(Jensen’s inequality) (25)
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≥ − E
c+,x,x+

[f(x)⊤f(x+)]− E
c+,{c−k },x

ln
∑

k∈[K]

exp(−f(x)⊤µc−k
)

︸ ︷︷ ︸
=LSE

(
{−f(x)⊤µ

c
−
k
}k∈[K]

)
+2 lnK (Lemma 3) (26)

≥ − E
c+,x,x+

[f(x)⊤f(x+)]− E
c+,x

ln
∑

k∈[K]

E
{c−k }

[exp(−f(x)⊤µc−k
)] + 2 lnK (Jensen’s inequality) (27)

(a)
≥ − E

c+,x,x+
[f(x)⊤f(x+)]− E

c+,x
ln
(
K

∑
c∈[C]

π(1) exp(−f(x)⊤µc)
)
+ 2 lnK (28)

= − E
c+,x,x+

[f(x)⊤f(x+)]− E
c+,x

ln
∑
c∈[C]

exp(−f(x)⊤µc)︸ ︷︷ ︸
=LSE({−f(x)⊤µc}c∈[C])

+2 lnK − lnKπ(1) (29)

≥ − E
c+,x,x+

[f(x)⊤f(x+)] + E
c+,x

ln
∑
c∈[C]

exp(f(x)⊤µc)︸ ︷︷ ︸
=LSE({f(x)⊤µc}c∈[C])

+2 ln(C cosh(L2))− 2 lnK − lnKπ(1) (Lemma 3)

(30)
(*)
= − E

c+,x
[f(x)⊤µc+ ] + E

c+,x
ln

∑
c∈[C]

exp(f(x)⊤µc)︸ ︷︷ ︸
=LSE({f(x)⊤µc}c∈[C])

−2 ln(C cosh(L2)) + 2 lnK − lnKπ(1) (31)

= Rµ-supv(f)− 2 ln(C cosh(L2)) + 2 lnK − lnKπ(1), (32)

where we use Ec[A] ≤
∑

c∈[C] π(1)A and the monotonicity of − ln at (a). Note that the conditional independence is used
only at (*).

Theorem 2. For all f such that ∥f(x)∥2 ≤ L (∀x ∈ X ), the following inequality holds.

Rµ-supv(f) ≥ Rcont(f) + ∆L, (4)

where ∆L := H (π) + ln K
(K+1)2 − 2 ln cosh(L2).

Proof of Theorem 2. The proof is essentially a consequence of the Fenchel’s inequality and the Jensen’s inequality. First,
by noting that the convex conjugate of the log-sum-exp function is the negative Shannon entropy, the following identity is
obtained.

Rµ-supv(f) = E
x,y

[
−f(x)⊤µy + LSE (Wµf(x))

]
(33)

= E
x,y

[
−f(x)⊤µy + sup

p∈△C

{
p⊤(Wµf(x)) +H (p)

}]
. (34)

If we choose an arbitrary p ∈ △C , Rµ-supv(f) is lower bounded (Fenchel’s inequality). Our choice is p = π. Recall that K
is the number of negative samples. Then,

Rµ-supv(f) ≥ E
c+,x

−f(x)⊤µc+ +
∑
c−∈Y

πc−f(x)
⊤µc−

+H (π) (35)

(*)
= E

c+
E

x,x+∼D2
c+

[
−f(x)⊤f(x+) + f(x)⊤

(
E
c−

E
x−∼Dc−

[
f(x−)

])]
+H (π) (36)

= E
c+

E
x,x+

−f(x)⊤f(x+) +
1

K

∑
k∈[K]

E
c−k

E
x−
k

[f(x)⊤f(x−
k )]

+H (π) (37)
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= E
c+,{c−k }k

E
x,x+,{x−

k }k

− 1

K

∑
k∈[K]

(
f(x)⊤f(x+)− f(x)⊤f(x−

k )
)+H (π) (38)

= E
c+,{c−k }k

E
x,x+,{x−

k }k

− 1

K

∑
k∈[K]

ln exp(f(x)⊤(f(x+)− f(x−
k )))

+H (π) . (39)

Note that the conditional independence is used at (*). Here, we can proceed with the Jensen’s inequality to lower bound the
first term: for a non-negative vector z ∈ RN

≥0, the inequality −N−1
∑

i∈[N ] ln zi ≥ − ln(N−1
∑

i∈[N ] zi) holds. If we set
zk = exp(f(x)⊤(f(x+)− f(x−

k ))) for k ∈ [K],

Rµ-supv(f)−H (π)

≥ E
c+,{c−k }k,

x,x+,{x−
k }k

[
− ln

∑
k∈[K] exp(f(x)

⊤(f(x+)− f(x−
k )))

K

]
(40)

≥ E
c+,{c−k }k,

x,x+,{x−
k }k

[
− ln

exp(f(x)⊤(f(x+)− f(x+))) +
∑

k∈[K] exp(f(x)
⊤(f(x+)− f(x−

k )))

K

]
(41)

= E
c+,{c−k }k,

x,x+,{x−
k }k

[
ln

exp(−f(x)⊤f(x+))

exp(−f(x)⊤f(x+)) +
∑

k∈[K] exp(−f(x)⊤f(x−
k ))

]
+ lnK. (42)

Finally, by using Lemma 4,

Rµ-supv(f)−H (π)

≥ E
c+,{c−k }k

E
x,x+,{x−

k }k

[
− ln

exp(f(x)⊤f(x+))

exp(f(x)⊤f(x+)) +
∑

k∈[K] exp(f(x)
⊤f(x−

k ))

]
+ lnK

− 2 ln
{
(K + 1) cosh(L2)

}
(43)

= Rcont(f) + lnK − 2 ln(K + 1)− 2 ln cosh(L2), (44)

which concludes the proof.

C. Discussion on Relaxing Assumptions
In this section, we discuss relaxation of our main results (Theorems 1 and 2) from the following perspectives: the conditional
independence assumption x⊥⊥x+ | c+, incorporating DA, and the correspondence between the supervised and latent classes
Y = [C]. Note that each relaxation is conceptually orthogonal and can be combined together.

C.1. When Conditionally Independent Assumption Is Violated

Theorems 1 and 2 initially rely on the conditional independence, which is used only when we mutually transform the
following terms:

E
c+,x,x+

[f(x)⊤f(x+)] = E
c+,x

[f(x)⊤µc+ ]. (45)

This operation appears only once in each proof of Theorems 1 and 2 at (*). The conditional independence can be removed
by the following bound:

−2L2 ≤ E
c+,x,x+

[f(x)⊤f(x+)]− E
c+,x

[f(x)⊤µc+ ] = E
c+,x

[f(x)⊤(f(x+)− µc+)] ≤ 2L2, (46)

where the inequalities is due to the Cauchy-Schwarz inequality: |f(x)⊤(f(x+)−µc+)| ≤ ∥f(x)∥ · ∥f(x+)−µc+∥ ≤ 2L2.
An excessive term incurs in the upper/lower bounds by invoking this bound. Wang et al. (2022) used the same idea to
remove the conditional independence assumption. Nevertheless, we show Theorems 1 and 2 with the conditional assumption
to focus on the influence of the negative sample size K on the surrogate gap.
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C.2. When Supervised Class Differs from Latent Class

In unsupervised/self-supervised representation learning, it is often natural not to suppose any relationship between the
supervised class set used in a downstream task and the latent classes. For example, unsupervised data in hand may represent
concepts such as ‘dog’, ‘cat’, ‘taxi’, ‘bus’, and ‘bird’, while one expects to classify ‘animal’ or ‘vehicle’ in downstream. In
our main results presented so far, we suppose that the supervised class set Y is the same as the latent classes [C]. Hereafter,
we consider several cases where Y = [C] does not hold.

(Case I) Y is a subset of [C]: The upper bound (Theorem 1) can be extended but the lower bound (Theorem 2) cannot for
this case. In the proof of Theorem 1 (Appendix B), we showed

Rcont(f) ≥ − E
c+,x∼Dc+

ln
exp(f(x)⊤µc+)∑
c∈[C] exp(f(x)

⊤µc)︸ ︷︷ ︸
cross-entropy loss defined over class set [C]

−2 ln(C cosh(L2)) + 2 lnK − lnKπ(1). (47)

The cross-entropy loss defined over latent classes [C] can be lower-bounded as follows:

E
c+∼P(c+=y∈[C]),x∼Dc+

[
− ln

exp(f(x)⊤µc+)∑
c∈[C] exp(f(x)

⊤µc)

]
≥ E

c+∼P(c+=y∈Y),x∼Dc+

[
− ln

exp(f(x)⊤µc+)∑
c∈[C] exp(f(x)

⊤µc)

]
(48)

= − E
c+,x

[f(x)⊤µc+ ] + E
c+,x

LSE
(
{f(x)⊤µc}c∈[C]

)
(49)

≥ − E
c+,x

[f(x)⊤µc+ ] + E
c+,x

LSE
(
{f(x)⊤µc}c∈Y

)
(50)

= E
c+∼P(c+=y∈Y),x∼Dc+

[
− ln

exp(f(x)⊤µc+)∑
c∈Y exp(f(x)⊤µc)

]
, (51)

where the first inequality is resulted from the non-negativity of the cross-entropy loss and the second inequality uses
monotonicity of the log-sum-exp: LSE (z1, . . . , zN ) ≥ LSE (z1, . . . , zN−1). Hence, the mean supervised loss defined over
the supervised class set Y is bounded by the contrastive loss.

(Case II) Y is a coarse-grained set of [C]: In this case, we consider Y such as

Y =

{
(c1, . . . , cj1), (cj1+1, . . . , cj2), . . . , (cjJ−1+1, . . . , cjJ )

∣∣∣∣∣ cj ∈ [C] for any j = 1, 2, . . . , cjJ
and cj ̸= cj′ for any j, j′ = 1, 2, . . . , cjJ

}
, (52)

where jJ = C. Intuitively speaking, we split the latent classes [C] into disjoint tuples (cj)j∈[j1], . . . , (cj)j∈[jJ−jJ−1] and
regard each tuple in the disjoint set as a coarse-grained class of the original latent classes. This case aligns with the initial
example: ‘dog’, ‘cat’, and ‘bird’ in the latent classes are combined into a single class ‘animal’, while ‘taxi’ and ‘bus’
are combined into ‘vehicle’. Both the upper (Theorem 1) and lower (Theorem 2) bounds can be extended for this case.
We omit the discussion on the upper bound because this is an immediate result by noting the linearity of the expectation
and summation over classes. For the lower bound, after Equation (35) in the proof (Appendix B), we need to replace the
expectation and summation over the supervised class Y with those over the latent class [C], which is immediate as is the
case of the upper bound.

D. Essential Bounds of Mean Supervised and Contrastive Losses
This section provides a supplementary explanation of the essential lower bounds of the mean supervised and contrastive
losses. The common approaches of CURL applies the normalization on representation, in order to employ the cosine
similarity f(x)⊤f(x′)

∥f(x)∥2·∥f(x′)∥2
as the similarity metric. Then, it is reasonable to assume ∥f(x)∥2 ≤ L for all x with our data

representation f . The normalized representation corresponds to the case L = 1.

When we introduce the constraint ∥f(x)∥2 ≤ L, the mean supervised loss and contrastive loss are restricted as well. As for
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the mean supervised loss,

Rµ-supv(f) ≥ inf
∥f ′∥2≤L

Rµ-supv(f
′) (53)

= inf
∥f ′∥2≤L

E

ln
1 +

∑
c ̸=y

exp(f ′(x)⊤(µc − µy))

 (54)

= ln
(
1 + (C − 1) exp(−2L2)

)
(55)

(:= R∗
µ-supv). (56)

As for the contrastive loss,

Rcont(f) ≥ inf
∥f ′∥2≤L

Rcont(f
′) (57)

= inf
∥f ′∥2≤L

E
c+,{c−k },x

E
x+,{x−

k }

ln
1 +

∑
k∈[K]

exp(f ′(x)⊤(f ′(x−
k )− f ′(x+)))

 (58)

≥ inf
∥f ′∥2≤L

E
c+,{c−k },x

ln
1 +

∑
k∈[K]

exp(f ′(x)⊤(µc−k
− µc+))

 (59)

=

K∑
m=0

(
K

m

)(
1

C

)m (
1− 1

C

)K−m

ln{1 +m+ (K −m) exp(−2L2)} (60)

(:= R∗
cont), (61)

where the Jensen’s inequality is applied in the second inequality.

E. Discussion of Existing Surrogate Bounds
In this section, we describe the existing surrogate bounds in details to make them comparable with our main results. Then,
we further discuss the detailed comparison between our theory and existing works. Before the discussion, we need to
introduce the sub-class loss (of the mean classifier), which is the supervised classification loss over a subset of classes:

Rsub(f , T ) := E
x,y

[
− ln

exp(µ⊤
y f(x))∑

c∈T exp(µ⊤
c f(x))

]
, (62)

where T ⊆ [C] is a subset of classes and y is drawn from the subset of π with respect to T .

Arora et al.’s bound. We introduce additional notation that Arora et al. (2019) use. For a subset of classes T ,

• Q ⊆ [C] is the set of distinct classes in c+, c−1 , . . . , c
−
K

• I+ := {k ∈ [K] | c−k = c+}

• Col :=
∑

k∈[K] 1{c+=c−k } = |I+|

• ρmax(T ) := maxc∈T πc

• ρ+min(T ) := minc∈T Pc+,{c−k }k∼πK+1(c+ = c | Q = T, I+ = ∅)

• τK := P(I+ ̸= ∅)

Arora et al. (2019) prove a finite-sample surrogate bound in Theorem B.1. In its proof, Eq. (26) is a surrogate bound
established for a fixed f . For the comparison, we focus on their Eq. (26):

(1− τK) E
T∼πK+1

[
ρ+min(T )

ρmax(T )
Rsub(f , T )

]
≤ Rcont(f)− τK E

c+,{c−k }k∼πK+1

[
ln(Col + 1)

∣∣I+ ̸= ∅
]
. (63)
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We split the expectation term in the left-hand side as follows.

E
[
ρ+min(T )

ρmax(T )
Rsub(f , T )

]
= P(T covers [C])︸ ︷︷ ︸

=vK+1

·E
[
ρ+min(T )

ρmax(T )
Rsub(f , T )

∣∣∣∣T covers [C]

]

+ P(T does not cover [C]) · E
[
ρ+min(T )

ρmax(T )
Rsub(f , T )

∣∣∣∣T does not cover [C]

]
(64)

≥ vK+1
ρ+min([C])

ρmax([C])
Rsub(f , [C])︸ ︷︷ ︸
=Rµ-supv(f)

. (65)

Under the uniform class prior assumption (π = 1/C · 1), ρmax([C]) = 1/C, and we can pick any class c0 ∈ [C] by the
symmetry and ρ+min([C]) = P(c+ = c0 | Q = [C], I+ = ∅) = 1/C. In addition,

τK E
c+,{c−k }k∼πK+1

[
ln(Col + 1)

∣∣I+ ̸= ∅
]
= E [ln(Col + 1)]− (1− τK)E

[
ln(Col + 1)

∣∣I+ = ∅
]

(66)

= E [ln(Col + 1)] . (67)

As a result, we obtain the following simplified expression in Table 1:

Rµ-supv(f) ≤
1

(1− τK)vK+1
{Rcont(f)− E[ln(Col + 1)]} . (68)

Nozawa & Sato’s bound. The surrogate bound provided by Nozawa & Sato (2021, Theorem 8) involves a factor resulting
from DA and self-supervised learning setting. By dropping this (negative) factor, the surrogate bound is

Rcont(f) ≥
1

2

{
vK+1Rµ-supv(f) + (1− vK+1) E

T∼πK+1
[Rsub(f , T )] + E[ln(Col + 1)]

}
(69)

≥ 1

2
{vK+1Rµ-supv(f) + E[ln(Col + 1)]} , (70)

resulting in the bound in Table 1. The sub-class loss may be safely dropped because it has the coefficient 1− vK+1, which
is expected to be exponentially small in K.

Ash et al.’s bound. Ash et al. (2022, Theorem 5) provides the following surrogate bound

Rµ-supv(f) ≤
2
⌈
2(1−π(−1))HC−1

Kπ(−1)

⌉
(1− π(1))K

{
Rcont(f)− τK E

c+,{c−k }k∼πK+1

[
ln(Col + 1)

∣∣I+ ̸= ∅
]}

. (71)

By substituting π = 1/C · 1 and τK E[ln(Col + 1) | I+ ̸= ∅] = E[ln(Col + 1)], the bound in Table 1 is obtained.

Detailed comparisons. As we stated in Section 4 of the main text, only our bound agrees well with the experimental fact
that the larger K is better for all K regions:

• Arora et al. (2019): Large K degrades the performance because of the label collision.

• Nozawa & Sato (2021): Large K improves the performance for K > C.

• Ash et al. (2022): The optimal K exists by the collision-coverage trade-off.

Even though the claim by Nozawa & Sato (2021) is similar to ours, we discovered a different underlying mechanism to
support this idea, which leads to better explainability of empirical facts.
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The proof of Nozawa & Sato (2021) is based on the idea of label coverage: The more negative samples we draw (larger K),
the more likely the negative samples can cover all class labels. The upper bound based on this idea is only activated when
K > C because label coverage is impossible with K ≤ C. This inability contradicts the real experiments including Chen
et al. (2021); Tomasev et al. (2022), which showed that CURL exhibits reasonable performance even with small K.

Our proof leverages the idea that Rcont and Rµ-supv have the similar log-sum-exp functional forms. This similarity casts
Rcont as a surrogate objective of Rµ-supv and its surrogate gap is reduced with larger K. Even with small K, the upper
bound of Rµ-supv is loose but not prohibitively large thereby the surrogate bound of Rµ-supv is still valid. Our theoretical
claim reveals that the surrogate gap improves in O(K−1) for all K regions, which is in good agreement with the real
experiments. Eventually, our theory provides practical feedback such that one may reduce K (even smaller than C) to trade
off the downstream performance with the computational cost.

F. Relationship to Mutual Information (MI) Estimation
The contrastive loss Rcont we studied in this paper is also known as the InfoNCE loss (van den Oord et al., 2018), which is
known to be deeply related to the multi-sample estimation of mutual information (MI) (van den Oord et al., 2018; Poole
et al., 2019; Song & Ermon, 2020). Although the multi-sample estimators have high bias and low variance compared to
variational estimators in general (Poole et al., 2019; Song & Ermon, 2020; Guo et al., 2021), the quantitative analysis of the
bias-variance trade-off of the multi-sample MI estimators has yet to be clearly known. Tian et al. (2020) and Tschannen
et al. (2020) experimentally showed that maximizing tighter MI bound does not necessarily lead to good representation;
there is no guarantee that the model can achieve higher MI by the tighter bound.

Recently, the theoretical limitations of sample-based MI estimation have been analyzed (Gao et al., 2015; McAllester &
Stratos, 2020). These studies revealed that a particular type of sample-based estimator of MI (Gao et al., 2015) or its lower
bound (McAllester & Stratos, 2020) can be upper bounded by O(lnN) for the number of samples N . In this section, we
discuss the implications of these limitations in the CURL setting.

Given two random variables X and Y , suppose that we have K +1 randomly drawn pairs {(xi, yi)}K+1
i=1 from these random

variables such that for all (i, j), (xi, yj) can be regarded as a positive pair when i = j, and otherwise can be regarded as a
negative pair. Poole et al. (2019, Equation 10) derived the following lower bound for MI:

I(X;Y ) ≥ IK+1
NCE := E

[
1

K + 1

K+1∑
i=1

ln
exp(s(xi, yi))

1
K+1

∑K+1
j=1 exp(s(xi, yj))

]
, (72)

where I(X;Y ) is the MI between X and Y , and s(x, y) is a critic function. This lower bound estimator can be rewritten
using Rcont as follows:

IK+1
NCE := E

[
1

K + 1

K+1∑
i=1

ln
exp(s(xi, yi))

1
K+1

∑K+1
j=1 exp(s(xi, yj))

]
(73)

= E

[
1

K + 1

K+1∑
i=1

ln
exp(s(xi, yi))∑K+1

j=1 exp(s(xi, yj))

]
+ ln(K + 1) (74)

= E

[
1

K + 1

K+1∑
i=1

ln
exp(s(xi, yi))

exp(s(xi, yi)) +
∑

j ̸=i exp(s(xi, yj))

]
+ ln(K + 1) (75)

= E

[
ln

exp(s(x, x+))

exp(s(x, x+)) +
∑K

j=1 exp(s(x, x
−
j ))

]
+ ln(K + 1) (76)

= −Rcont(f) + ln(K + 1). (77)

The first equality is obtained by putting the constant in the denominator outside. The third equality comes by replacing
the notation (xi, yi) with (x, x+) under the assumption that all (xi, yi) come from the same iid distribution. By setting
s(x, y) := f(x)⊤f(y), we obtain the last equation.

Here, McAllester & Stratos (2020) gave the following theorem for the sample-based estimator of the lower bound on MI.
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Theorem 5 (McAllester & Stratos (2020) Theorem 1.1, informal). Let ÎN be any mapping from N samples of (X,Y ) to R
that satisfies

I(X;Y ) ≥ ÎN ({(xi, yi)}Ni=1) (78)

in high probability, then the following relationship holds in high probability:

ÎN ({(xi, yi)}Ni=1) ≤ 2 lnN + 5. (79)

Since IK+1
NCE satisfies the condition for ÎK+1, we now have the following:

−Rcont(f) + ln(K + 1) ≤ 2 ln(K + 1) + 5 =⇒ Rcont(f) ≥ − ln(K + 1)− 5. (80)

However, the right-hand statement always holds by the construction of Rcont for all f (∀f , Rcont(f) ≥ 0). In other words, in
the case of the CURL setting, McAllester & Stratos (2020)’s theorem does not restrict Rcont, which means that the large K
effect investigated in our paper comes from a completely different mechanism from the above theorem. While the theoretical
studies on MI aim to guarantee for multi-sample estimation of ground-truth MI, a series of CURL studies, including ours,
differ in that we aim to derive a surrogate gap bound between two different losses, namely supervised loss and contrastive
loss. Specifically, the above derivation does not address supervised loss in that both the left-hand (I(X;Y ) or IK+1

NCE ) and
the right-hand (Rcont(f)) quantities represent the amount of information between different views rather than MI between
the view and its label. The existing studies on sample-based MI estimation are worthwhile in the sense that these works
revealed the O(lnN) effect on the non-trivial estimators such as k-NN based estimator (Gao et al., 2015) or any kind of
lower bound estimator (McAllester & Stratos, 2020).

G. Experimental details
G.1. Synthetic Dataset

We used Adam (Kingma & Ba, 2015) optimizer with the weight decay of coefficient 0.01 to all parameters. The mini-batch
size was set to B = 1024 and the number of epochs was 300. The learning rate was set to 0.01 with ReduceLROnPlateau
scheduler (patience: 10 epochs) provided by PyTorch (Paszke et al., 2019).

G.2. CIFAR-10/100

We treated 10% training samples as a validation dataset by sampling class uniformly. We used the original test dataset
for testing. We used the same data-augmentation as in the CIFAR-10 experiment by Chen et al. (2020) during contrastive
learning and linear supervised training of the linear classifier.

As a feature extractor f , we modified the ResNet-18 (He et al., 2016) by following the convention of self-supervised
representation learning (Chen et al., 2020, B.9); replacement of the first convolutional layer with a smaller one, removal
of the first max-pooling layer, and replacement of the final fully-connected layer with a nonlinear projection head whose
dimensional is 32.7

Since we need to enlarge the negative samples size K that depends on the size of mini-batches, we followed a large mini-
batch training setting used in recent self-supervised learning (Chen et al., 2020; Caron et al., 2020). We used LARC (You
et al., 2017) optimizer wrapping the momentum SGD, whose momentum term was 0.9. We applied weights decay of
coefficient 10−4 to all parameters except for all bias terms and batch norm’s parameters. The base learning rate was
initialized at lr ×

√
B, where lr ∈ {2, 4, 6} × 1/64 and mini-batch size B = 1024 inspired by SimCLR’s squared learning

rate scaling. As a learning rate scheduler for each iteration, we used linear warmup during the first 10 epochs and cosine
annealing without restart (Loshchilov & Hutter, 2017) during the rest epochs. The number of epochs was 2 000.

We implemented our experimental code by using PyTorch (Paszke et al., 2019)’s distributed data-parallel training (Li et al.,
2020) on 8 NVIDIA A100 GPUs provided by the internal cluster. Therefore we replaced the all batch normalization layer
with SyncBatchNorm module provided by PyTorch.8 To accelerate contrastive learning, we used automatic mixed-precision
training provided by PyTorch.

7Unlike the reported results by Chen et al. (2021), smaller dimensionality, i.e., 32 gives better downstream accuracy on CIFAR-100
than 64 or 128. This difference might come from the differences in the loss function and positive pair’s generation process.

8See Wu & Johnson (2021, Sec. 6.2) for more detailed discussion of this replacement for contrastive learning.
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G.3. Wiki-3029

Wiki-3029 contains 3 029 English Wikipedia article pages. Each page consists of 200 sentences. Since the dataset does
not have the explicit train/validation/test splits, we split the dataset into 70%/10%/20% train/validation/test datasets,
respectively. As a pre-processing, we tokenized the dataset using torchtext’s basic_english tokenizer. After tokenization,
we removed the tokens whose frequency is less than 5 in the training dataset. We did not use DA.

We used fasttext (Joulin et al., 2017)’s based feature extractor.9 In our preliminary experiments, only using a word embedding
layer and average pooling among words perform better than either additional linear or nonlinear projection heads. A similar
model to ours is also used in Ash et al. (2022). The dimensionality of the word embedding layer was 256.

We mainly followed the same optimization setting as our CIFAR-10/100 experiments. We note that the mini-batch size
B = 2048; the initial learning rate lr was selected in {1, 2, 3, 4} × 1/40; no weights decay; the number of epochs was 90;
and perform linear warmup during the first 3 epochs. When we decrease C, the number of epochs is multiplied by 3 000/C
for simplicity.10

G.4. Contrastive Learning

By following the data generation process in contrastive representation learning and existing work (Arora et al., 2019; Ash
et al., 2022), we treated the supervised classes Y as latent classes [C]. After obtaining training/validation/test datasets as
described above, we carefully constructed positive pairs for contrastive learning before training11 as follows; We treated
each sample in the training data as an anchor sample. We drew a different sample from the same latent class of each anchor
sample as a positive sample in the training dataset. For negative samples, we drew K negative samples from other samples
in the same mini-batch by following the convention of self-supervised representation learning such as SimCLR (Chen
et al., 2020). Since Chen et al. (2020) used all other samples as negative samples, the negative samples size and the size
of mini-batches depend on each other: K = 2B − 2. To relax the effect of the difference of the mini-batch size when
we change K, we drew K samples without replacement from 2B − 2 inspired by Ash et al. (2022). In this sampling, we
guaranteed to draw at most one sample from each positive pair because we are concerned about the relation between the
number of latent classes and K. We did not use validation and test datasets during contrastive representation learning.

G.5. Mean and Linear Classifiers’ Evaluation

For evaluation, we reported the test accuracy values of mean and linear classifiers. For a linear classifier, we used Nesterov’s
momentum SGD, whose momentum coefficient was 0.9 without weight decay. We set the mini-batch size B = 256 and
B = 512 for CIFAR-10/100 and Wiki-3029, respectively. We used cosine annealing without restart as a learning rate
scheduler for each iteration. We set 100 and 30 epochs for CIFAR-10/100 and Wiki-3029 datasets, respectively. For
CIFAR-10/100, we set learning rate as 0.03. For Wiki-3029, we searched the learning rate in {0.5, 1, 5, 10, 50} × 1/103. The
learning rate was scaled by using squared learning rate scaling. For linear evaluation of CIFAR-10/100, we used PyTorch’s
distributed data-parallel training. We calculated the test accuracy by using the best combination of the contrastive model
and the hyper-parameter of a linear classifier that maximizes the validation accuracy. We repeated contrastive learning and
downstream task’s evaluation three times with different random seeds and reported the averaged values.

G.6. Details of Figure 1

Before computing the upper bounds and supervised loss, we normalized feature representations f(x) learned in Appendix G.4
to ensure L = 1, which is the upper bound of ∥f(x)∥2,∀x. For each random seed and the number of negative samples K,
we selected learned feature encoder f that got the highest validation mean supervised accuracy in different learning rates of
the optimizer of the contrastive learning. Then we calculated the test supervised loss value by using the selected contrastive
models.

Using the same feature encoder with L2 normalization, we calculated the contrastive loss on the test dataset. To do so, we
created positive pairs by the same procedure on the test dataset as described in Appendix G.4. Negative samples were also

9Arora et al. (2019) uses GRU-based feature encoder with frozen word embeddings of GloVe (Pennington et al., 2014) trained on
commonCrawl.

10We found the contrastive learning did not yield good feature representations for a downstream task without this longer training.
11We can create the labeled dataset, especially with non-overlapped latent classes, if we draw positive samples at each iteration or

epoch during optimization using stochastic gradient descent.
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Figure 9: Enlarged Figure 1 for the detailed comparison between the proposed bound and the supervised loss on CIFAR-
10/100 datasets. All value is an averaged value among three runs with a different random seed. Error bar indicates the
standard deviation.

drawn from the other samples in the mini-batches as the contrastive learning step described in Appendix G.4. To calculate the
contrastive loss, we used the same batch size as the contrastive learning step and only one epoch. Since this contrastive loss
calculation was stochastic due to the sampling of positive and negative samples, we repeated the contrastive loss calculation
25 times and averaged them to create plot Figure 1. Note that we used the theoretical values of τK , vK+1,E ln(Col + 1)
that are shown in the existing upper bounds on Table 1 rather than the simulated values.

Figure 9 shows the enlarged version of Figure 1 and the same plot using CIFAR-100. This figure focuses on the detailed
comparison between the test datasets’ empirical supervised loss values and theoretical bounds. For both CIFAR-10/100
datasets, there were almost no changes in the supervised loss as K varied, and the losses were slightly larger in the region
where K was small. These results are consistent with the theoretical estimation of the upper bounds (solid lines).

G.7. Details of Figure 8

During minimization of the contrastive loss to learn f in Appendix G.4, we saved the model’s weight at every 200 epochs.
We reported the test mean supervised accuracy using f that maximized validation accuracy among different learning rate
values.

G.8. Additionally Used Libraries

In our experiments, we also used scikit-learn (Pedregosa et al., 2011) for train/val/test data splits. We created all plots by using
matplotlib (Hunter, 2007) and seaborn (Waskom, 2021) via pandas (Reback et al., 2020) except for Figure 2. We managed
our experiments’ configuration using hydra (Yadan, 2019) and experimental results using Weights & Biases (Biewald, 2020).
For effective parallelized execution of our experimental codes, we use GNU Parallel (Tange, 2021).


	Introduction
	Formulation of Contrastive Learning
	Surrogate Bounds for Contrastive Learning
	Assumptions
	Main Results
	Discussion

	Comparison with Existing Work
	Related literatures.

	Experiments
	Small-scale Experiments on Synthetic Dataset
	Large-scale Experiments on Vision and Language Datasets

	Conclusion
	Useful Lemmas
	Proofs of Main Results
	Discussion on Relaxing Assumptions
	When Conditionally Independent Assumption Is Violated
	When Supervised Class Differs from Latent Class

	Essential Bounds of Mean Supervised and Contrastive Losses
	Discussion of Existing Surrogate Bounds
	Relationship to Mutual Information (MI) Estimation
	Experimental details
	Synthetic Dataset
	CIFAR-10/100
	Wiki-3029
	Contrastive Learning
	Mean and Linear Classifiers' Evaluation
	Details of Figure 1
	Details of Figure 8
	Additionally Used Libraries


