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Abstract

This paper proposes an extension of a popular
decentralized discrete-time learning procedure
when repeating a static game called fictitious play
(FP) (Brown, 1951; Robinson, 1951) to a dynamic
model called discounted stochastic game (Shap-
ley, 1953). Our family of discrete-time FP proce-
dures is proven to converge to the set of stationary
Nash equilibria in identical interest discounted
stochastic games. This extends similar conver-
gence results for static games (Monderer & Shap-
ley, 1996a). We then analyze the continuous-time
counterpart of our FP procedures, which include
as a particular case the best-response dynamic in-
troduced and studied by Leslie et al. (2020) in the
context of zero-sum stochastic games. We prove
the converge of this dynamics to stationary Nash
equilibria in identical-interest and zero-sum dis-
counted stochastic games. Thanks to stochastic
approximations, we can infer from the continuous-
time convergence some discrete time results such
as the convergence to stationary equilibria in zero
sum and team stochastic games (Holler, 2020).

1. Introduction
Learning Nash equilibria of a static game G after play-
ing repeatedly G is a subject that has been widely studied
almost since the beginning of game theory (Fudenberg &
Levine, 1998; Hart & Mas-Colell, 2013; Young, 2004; Cesa-
Bianchi & Lugosi, 2006; Brown, 1951; Robinson, 1951).
In contrast, learning Nash equilibria of a dynamic model
such as a stochastic game has comparatively been much less
developed. Some noticeable exceptions are the two recent
papers (Leslie et al., 2020; Sayin et al., 2020) which develop
quite similar systems that converge to stationary equilibria
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in zero-sum discounted stochastic game. Our paper extends
the continuous-time dynamics of (Leslie et al., 2020) to a
large parametric class and to discrete-time. We show the
convergence of the two systems to stationary equilibria in
identical interest and also in zero-sum stochastic games.

Discounted stochastic games, introduced by Shapley (1953),
model strategic interactions between players with a state
variable. Thus, compared to non-stochastic games, actions
that players take impact their current payoff but also a state
variable that may influence their future payoff. Therefore,
this class of games offers a rich framework (Neyman &
Sorin, 2003) that is especially well suited for economic ap-
plications (see the survey by Amir (2003) and references
therein), or engineering applications. In the latter, this be-
longs to the more general framework of multi-agent rein-
forcement learning (see Busoniu et al. (2008) for a survey).

Fink (1964) proved that when there are finitely many play-
ers and actions (our framework), any discounted stochastic
game admits a stationary (mixed) Nash equilibrium (e.g. a
decentralized randomized policy that depends only on the
state variable). The proof is implied by the fact that a sta-
tionary equilibrium is the fixed point of an operator where,
given other players stationary strategies, each player strat-
egy is an optimal stationary policy in a Markov Decision
Process. A stochastic game admits typically many other
Nash equilibria. To see why, if there is only one state, it is
a repeated game and a stationary equilibrium consists on
playing independently the same mixed strategy. Therefore,
the set of stationary Nash equilibrium payoffs of the dis-
counted repeated game coincides with the Nash equilibria
of its stage game (which is known to be a semi-algebraic set
with several connected components (Laraki et al., 2019)).
On the other hand, the famous folk theorem of repeated
game (Aumann & Shapley, 1994; Fudenberg & Maskin,
1986; Laraki et al., 2019) shows that when the discount
factor is large enough, any feasible and individually rational
payoff of the stage game is a Nash equilibrium payoff of the
repeated game.

Stationary Nash equilibria are the simplest of all equilibria
and it is desirable to construct some natural learning pro-
cedures that are provable to converge to them. This is a
challenging problem even in identical interest or zero-sum
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stochastic games (the subject of our paper). The reason is
that the payoff function of a player in a discounted stochas-
tic game is not linear, nor concave or quasi-concave when
the players are restricted to their stationary strategies and
thus, no gradient method is guaranteed to converge, even
to a local Nash equilibrium (Daskalakis et al., 2021). Only
recently, two extensions of the oldest of learning procedures
–fictitious play (FP)– have been proposed and proven to con-
verge to stationary equilibria but only in zero-sum stochastic
games (Leslie et al., 2020; Sayin et al., 2020). Our article ex-
tends one of the two papers in both discrete and continuous
time and shows that our systems converge in both regimes
to the set of stationary Nash equilibria in identical-interest
and zero-sum discounted stochastic games.

Our family of procedures combines classical fictitious play
(a kind of myopic best reply in the local game given some
prior constructed from empirical observations) with an elab-
orate rule in the spirit of Q-learning to update the expected
continuation payoff, as in (Leslie et al., 2020; Sayin et al.,
2020). Q-learning is a quite famous model-free rule which
allows to learn the stationary policy in dynamic program-
ming without even knowing the transition probabilities or
the state space). The updating rule we study needs the
knowledge of the model, however, as observed in the con-
clusion, they can be easily modified to become model-free.

The combination of FP and Q-learning is not surprising.
A major trend in recent years is the advent of efficient re-
inforcement learning algorithms (Sutton & Barto, 2018).
Q-learning (Watkins & Dayan, 1992) is one of the most
successful model-free algorithms (Konda & Borkar, 1999)
with numerous extensions (Hasselt, 2010; Kumar et al.,
2020). On the game theory side, fictitious play (Brown,
1951; Robinson, 1951) is one of the most studied proce-
dures of learning in games.

The idea of combining concepts from Q-learning and fic-
titious play emerged only recently with the work of Leslie
et al. (2020); Sayin et al. (2020) in the context of zero-sum
stochastic games. In these papers, a mechanism inspired
by Q-learning is used to learn rewards in future states and
fictitious play (or in continuous time, the related best re-
sponse dynamics) is employed to choose the action in the
current state taking into account the interaction with other
players. Typically, players learn at a fast rate the actions
of the other players in every state but compute the future
rewards at a comparatively slower pace. Our work extends
Leslie et al. (2020), by introducing other procedures with
several time-scales, and prove their convergence to the set of
Nash equilibria in identical interest and in zero-sum stochas-
tic games, resulting in a decentralized algorithm for fully
cooperative multi-agent reinforcement learning (Busoniu
et al., 2008). In contrast with Leslie et al. (2020); Sayin et al.
(2021), our algorithm can use the same timescale to learn

actions and future rewards, which is of practical interest
in implementations. Importantly, we prove convergence to
global Nash equilibria and not to local Nash equilibria.

Contributions. Our contributions are as follows:

• We define procedures to play stochastic games in dis-
crete time combining ideas from fictitious play and
Q-learning. We prove their convergence to the set of
stationary Nash equilibria in identical interest stochas-
tic games. The proof is given directly in discrete time.

• We define the continuous-time counterpart of our proce-
dures. It results in a generalization of the best-response
dynamics of Leslie et al. (2020) where the relative
timescales of the estimation of continuation and of
other players strategies is much less restricted. We
prove the convergence of our continuous-time dynam-
ics to the set of stationary equilibria in identical interest
and in zero-sum stochastic games.

• The convergence in continuous time allows us to prove
some new convergence results in discrete time for zero-
sum and team stochastic games (Holler, 2020) (a class
which includes identical interest stochastic games).

Outline Section 2 gives initial definitions and assump-
tions. The next section describes related works. Then, Sec-
tion 4 introduces two families of fictitious play procedures
in discrete time whose convergence is shown in identical in-
terest stochastic games. The continuous time best response
dynamics are defined in Section 5 together with their conver-
gence in identical interest and in zero-sum stochastic games.
The last section uses the continuous and discrete time re-
sults to infer convergence of the discrete time procedures in
zero-sum and in team stochastic games (Holler, 2020).

2. Background
Stochastic games We study dynamically interactive multi-
agent systems based on the model of discounted stochastic
games. Two or more players can take actions over an in-
finite horizon. Players’ actions affect both their current
stage payoffs but also the transition probability of the future
state, which is the second determining factor of the total
discounted average payoff. Therefore, compared to standard
repeated games where there is no evolving state variable,
stochastic games add a layer of complexity: a player who
wants to optimize its payoff should strike a balance between
the instantaneous payoff optimization and an advantageous
orientation of the state. As in (Leslie et al., 2020; Sayin
et al., 2020), we will focus on finite games where the state
space, the action sets and the player set are finite.
Definition 2.1. Stochastic games are tuples G =
(S, I, (Ai)i∈I , (r

i
s)i∈I,s∈S , (Ps)s∈S) where S is the state



Fictitious Play and Best-Response Dynamics in Identical Interest and Zero Sum Stochastic Games

space (a finite set), I is the finite set of players, Ai is the
finite action set of player i, A := Πi∈IA

i is the set of action
profiles, ris : A → R is the stage reward of player i, and
Ps : A → ∆(S) is the transition probability map (where
∆(S) is the set of probability distributions on S).

A stochastic game is played in discrete time as follows: it
starts in an initial state s0 ∈ S and at every time step n ∈ N,
the system state is sn. Knowing the current state sn and the
past history of states and actions (s0, a0, ..., sn−1, an−1),
every player i ∈ I chooses, independently from the other
players, an action ain ∈ Ai (potentially at random) and
receives a stage reward of risn(an). The new state sn+1 is
the realization of a random variable whose distribution is
Psn(an). The total payoff of such a sequence of play for
player i is (1− δ)

∑∞
k=0 δ

krisk(ak) where δ ∈ (0, 1) is the
discount factor (the 1− δ factor is the usual normalization).

A behavioral strategy σi for player i is a mapping associ-
ating with each stage n ∈ N, history hn ∈ (S × A)n and
current state s, a mixed action xi

n = σi(n, hn, s) in ∆(Ai).
The behavioral strategy is pure if its image is always in
Ai. By Kolmogorov’s extension theorem, each behavioral
strategy profile induces a unique probability distribution on
the set of infinite histories, from which one can compute
an expected discounted payoff for every player (Neyman &
Sorin, 2003). A stationary strategy of player i is the simplest
of behavioral strategies. It depends only on the current state
s but not on the period n nor on the past history hn. As such,
a stationary strategy can be identified with an element of
∆(Ai)S (a mixed action per state interpreted as: whenever
the state is s, i plays randomly according to distribution
xi
s). The set of stationary strategy profiles is Πi∈I∆(Ai)S .

For yi ∈ (∆(Ai))S and x ∈ Πi∈I∆(Ai)S , we denote by
(yi, x−i) the stationary strategy profile where i changes its
strategy from xi to yi.

Extending a result of (Shapley, 1953) for zero-sum games,
(Fink, 1964) proved the existence of stationary Nash equi-
libria in every finite discounted stochastic game, as a fixed
point of the Shapley operator. Fink’s characterization im-
plies that a stationary strategy profile forms a Nash equilib-
rium iff there is no pure stationary profitable deviation.

Proposition 2.2 (Stationary equilibrium characterization).
A stationary profile x ∈ Πi∈I∆(Ai)S is a Nash equilibrium
if and only if no pure stationary deviation is profitable: for
every player i, its expected total payoff with x is greater or
equal than its expected total payoff of strategy (b, x−i) for
any b ∈ (Ai)S .

Fink’s result implies that (1) checking that a stationary pro-
file is a Nash equilibrium is equivalent to solving finitely
many polynomial inequalities, implying that the set of sta-
tionary strategy profiles is a semi-algebraic set (Neyman &
Sorin, 2003); (2) a stationary profile is a Nash equilibrium

of our stochastic games if and only if it is a Nash equilib-
rium of a restricted stochastic game where each player i is
restricted to play a stationary strategy. While this restricted
game is smooth (strategy spaces are convex/compact and
the payoff functions analytic) the payoff functions are not
linear, nor concave, nor quasi-concave with respect to a
player own-strategy. This makes the computation of an
equilibrium very hard: no learning gradient-based method
is guaranteed to convergence, even to a local Nash equilib-
rium, and even in a zero-sum game (Daskalakis et al., 2021).
But this is not any non-concave game: its dynamic nature
is structured enough to allow learning to occur. Using the
dynamic programming principle that stationary Nash equi-
libria satisfy allowed (Leslie et al., 2020; Sayin et al., 2020)
to introduced some learning procedures that converge to
stationary equilibria in zero-sum stochastic games. We en-
large the set of procedures in (Leslie et al., 2020) and show
convergence to stationary equilibria in team and also zero-
sum stochastic games. Formally, team stochastic games
are such that the payoff functions of the players differ only
by a constant (there is rs(·) : A → R such that for every
i and s, ris(·) = rs(·) + ci for a constant ci). A special
case is identical-interest stochastic games where all payoff
functions are equal (ris(·) = rs(·) for all i). A stochastic
game is zero-sum when there are only two players 1 and 2
and r1s + r2s = 0.

When there is only one state (a repeated game) (Monderer
& Shapley, 1996a) proved that fictitious play converges
to Nash equilibria of the stage game (hence to stationary
equilibria of the repeated game). Their proof uses exten-
sively the multi-linearity of the (common) payoff function.
Since we don’t have this multi-linearity nor do we have
multi-concavity or multi-quasi-concavity, we must use the
structure of the problem, namely that stationary equilibria
satisfy a dynamic programming principle (each player is
optimizing at every state 1 − δ its current payoff plus δ
the expectation of the continuation payoff). As such, our
procedures will use fictitious play at the local static game in
which the continuation payoff vector is fixed and update the
continuation payoff using a Q-learning like rule. But, since
learning can only occur if all states are visited infinitely
often, the following assumption is needed.
Definition 2.3 (Ergodicity). A stochastic game is ergodic if
there is a finite time T such that for every s and s′ there is a
positive probability that the system starting from s is in s′

after T steps for any actions taken.

Some final notations. We denote by Pss′(a) the probability
to go to state s′ starting from s with action profile a ∈ A.
As players will be randomizing, let the functions Pss′ and
ris be multi-linearly extended to mixed action profiles (i.e.,
Πi∈I∆(Ai)S) and are therefore I-linear. Finally, a station-
ary equilibrium payoff is an S × I-vector that corresponds
to a stationary Nash equilibrium.
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3. Related Work
Fictitious Play Fictitious play (FP) is a procedure that
was introduced in discrete time to play the same stage game
repeatedly. It asks every player to play a best response to a
prior (a mixed strategy profile) which is equal to the empiri-
cally past actions of the opponents. It was initially proposed
by Brown (1951) and Robinson (1951) who proved that
when the stage game is a zero-sum game and both players
use FP, the empirical distribution of actions converges to the
set of Nash equilibria of the stage game. A similar result
has been obtained when the stage game is a potential game
(Monderer & Shapley, 1996a), a 2×n game (Berger, 2005),
or a mean-field game (Perrin et al., 2020). Similar conver-
gence results have been obtained for some variants such
as smooth FP, or vanishingly smooth FP, or stochastic FP
(Benaı̈m & Faure, 2013; Fudenberg & Levine, 1995; 1998;
Hofbauer & Sandholm, 2002) But FP as well as all no-regret
algorithms fail to converge to Nash equilibra in all finite
games (Shapley, 1964; Hart & Mas-Colell, 2003; Hofbauer
& Sigmund, 1998; DeMichelis & Germano, 2000).

FP is much less studied when the stage games vary (stochas-
tic games) and there are many possible extensions. Vrieze &
Tijs (1982) used a FP like algorithm to compute the value of
a stochastic game but it is not a learning procedure (as it as-
sumes all the states are observed and updated at every stage
and so it does not define a behavioral strategy). Perkins
(2013) defined and studied another FP procedure in zero-
sum and identical interest stochastic games relying crucially
on two-timescale updates and with some restrictions on the
discount factor (for zero-sum games) and the structure of
equilibria (for identical interest stochastic games). More
recently, Sayin et al. (2020) introduced another discrete-
time variant of FP and deduced its convergence in zero-sum
stochastic games from the convergence of an associated
continuous-time best response dynamics explained below.

Best-response dynamics In continuous time, best-
response dynamics (Harris, 1998; Matsui, 1992) is based
on the same principle as fictitious play: each player ad-
justs its mixed action towards the best-response to the time-
average mixed action of other players. For repeated –non-
stochastic– games, it is the continuous-time counterpart of
the discrete-time fictitious play as the stochastic approxi-
mations framework (Benaı̈m et al., 2005) allows to deduce
from the convergence of the continuous time dynamics the
convergence of the (discrete-time) FP. Recently Leslie et al.
(2020) introduced an extension of the best-response dynam-
ics to stochastis games with the continuation payoff updated
at a slower pace in the spirit of Q-Learning (described be-
low) and proved the convergence of this system to the set
of stationary Nash equilibria of the underlying discounted
stochastic game. However, Leslie et al. (2020) did not prove
the convergence to stationary equilibria of the discrete-time

counterpart of their dynamics: we will do it in this article for
their dynamics and others in zero-sum and also in identical
interest stochastic games. Sayin et al. (2020) defined an
alternative dynamics close to the one of Leslie et al. (2020)
and using a two time-scale stochastic approximation theory,
they show convergence of their discrete time FP to stationary
equilibria of the zero-sum discounted stochastic game. In
contrast, we give a direct convergence proof of our discrete-
time system in identical interest stochastic games. But the
convergence of our discrete time FP procedure in zero-sum
game will be deduced from the continuous time system,
thanks to an elaborate stochastic approximation technique.

Q-learning Watkins (1989) introduced the Q-learning al-
gorithm designed to control MDPs. It had a major impact
and there are multiple generalizations, including offline Q-
learning (Kumar et al., 2020), double Q-learning (Hasselt,
2010) or Q-learning with no-regret procedures (Kash et al.,
2020). There is a wide range of applications, from robots
control (Tai & Liu, 2016) to SAT solving (Kurin et al., 2020).
Q-learning is a model-free algorithm, meaning that it does
not require a complete specification of the environment such
as the transition probability between states. A step proceeds
as follows: starting from a state st, an action at is chosen
and this results in a new (random) state st+1 chosen by the
environment while the learner gets an instantaneous payoff
Rt+1. At every step, a Q-function Qt defined on every state-
action pair is updated towards Rt+1 + δmaxa Qt(st+1, a).

Q-learning was generalized to multi-agent systems. One
line of work comprises algorithms that solve at every step
the stage game defined as follows: every player has actions
of the current state, and payoffs are the payoff of the Q-
function Qt(st, ·). Then the values of the Q-function are
updated towards the values of the stage game. This leads to
algorithms such as Nash-Q (Hu & Wellman, 1998; 2003) or
Team-Q and Minimax-Q (Littman, 2001). For a complete
survey, see (Busoniu et al., 2008) and references therein.

Combining Q-learning and fictitious play To extend FP
to stochastic games, the challenge is to define and compute
what is a best-response to empirical observations: given a
strategy for every player, the total discounted payoff is not
straightforward to compute and is non-linear with respect
a player stationary strategy. To overcome this difficulty,
Sayin et al. (2020) and Leslie et al. (2020) use (close but
different) mechanisms similar to that of Q-learning to deal
with multiple states: a Q-function (or a state-value function)
defined on every state-action pair or on every state is updated
during the play. The player can then consider a stage game
that is built with this Q-function, which is linear with respect
to its mixed actions, to play a best response. The Q-function
is typically updated at a slower timescale. More precisely,
the algorithm of Sayin et al. (2020) estimates Q̂i,s,k(a) for
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every player i, state s, action a at time k. It is the expected
payoff if players play action profile a starting from state
s. Then, the procedure is to play the best-response against
the belief on actions used by other players in current state,
that is an element of argmaxa∈Ai Q̂i,sk,k(a, x

−i
sk
) at time

k where x−i
s is the (uncorrelated) strategy of other players

in state s believed by player i.

Leslie et al. (2020) introduced and studied a best-response
dynamics in zero-sum stochastic games. Time is contin-
uous, so this is not an online-learning algorithm. The
proposed dynamics maintains a vector ui := {ui

s}s∈S

for player i. It is the expected payoff starting from ev-
ery state s (i.e., an estimate of the state-value function).
It plays a role similar to that of the Q-function in Q-
learning. Then player i plays a best-response to the stage
game with payoffs composed of the instantaneous pay-
off and the expected later payoff, that is an element of
argmaxa∈Ai(1− δ)ris(a, x

−i
s ) + δPs(a, x

−i
s ) · ui.

(Leslie et al., 2020) are only concerned with two-player
zero-sum stochastic games and only study a continuous-
time system. We introduce a family of continuous-time
dynamics that contains the dynamics of Leslie et al. (2020)
as a particular case, as well as their discrete-time coun-
terpart. We prove that our systems in both time regimes
converge to stationary equilibria in identical interest and in
zero-sum discounted stochastic games. See Appendix G for
a summary of differences between our systems and the ones
of Sayin et al. (2020) and Leslie et al. (2020).

Multi-Agent Reinforcement Learning This paper falls
within the more general framework of multi-agent reinforce-
ment learning (MARL), see Busoniu et al. (2008) for a
survey. One interesting line of work is that of the complex-
ity of MARL in the centralized case (i.e., with a central
planner), see for instance (Liu et al., 2021) and references
therein. However, Liu et al. (2021) rely on an oracle to
choose correlated equilibria in an auxiliary game (similarly
to Nash-Q) and as such can not be considered as a decen-
tralized procedure.

4. Discrete Time : Fictitious Play Procedures
Procedures to play stochastic games Each asynchronous
FP procedure, introduced in this subsection, is a behav-
ioral strategy to play stochastic games for a player i, that
is a function that provides a distribution of probability
for the action ain given the history of the play prior to
n and the current state sn. Formally, it is a mapping⋃

n∈N[(S × A)n × S] → ∆(Ai). Such an extension of
FP is called asynchronous because there is a unique current
state (that every player observes) and actions are chosen by
the players only for this state. This contrasts with another
FP procedure that we also study and call synchronous FP.

This not a behavioral strategy because there is no specific
current state and players provide actions for all states at
every stage, i.e., its a mapping

⋃
n∈N(A

S)n → ∆(Ai)S . It
can be interpreted in various ways: either as a setting where
the actual state is not known to the players, as a simulation
of the system or as an algorithm, as in (Vrieze & Tijs, 1982).

Our discrete-time procedures are designed using two esti-
mates per state: one is the empirical action that every player
uses and the other one is the expected continuation payoff
that a player estimates starting from this state. First, we
define the two estimates, then proceed with a description of
the action selection, and finally the updating rules.

Empirical actions We begin by exposing how the empiri-
cal action is computed for every state. Given a state s ∈ S
and a time step n, s♯n denotes the number of times that s oc-
curs between 0 and n i.e., s♯n = ♯{k | 0 ≤ k ≤ n∧ sk = s}.
Then the empirical action of player i in state s is defined in
∆(Ai) as:

xi
n+1,s :=

1

s♯n

n∑
k=0

1sk=sa
i
k =

1sn=sa
i
n

s♯n
+

s♯n−1x
i
n,s

s♯n
(1)

with the convention that if s♯n = 0, then xi
n+1,s = xi

0,s

which is defined arbitrarily. Consequently, xi
n+1,s is equal

to xi
n,s when sn is not equal to s. Pure action aik is seen as

an element of the Euclidean space ∆(Ai).

The auxiliary Shapley game The second estimate is de-
fined using the payoff of an auxiliary game. Given a contin-
uation payoff vector u ∈ RS , we define (following (Shapley,
1953)) the auxiliary game parameterized by u as the one-
shot game where the action set is Ai for every player i and
the payoff function is f i

s,ui(·) where:

f i
s,u(x) := (1− δ)ris(x) + δ

∑
s′∈S

Pss′(x)us′

Fink (and Shapley) proved that stationary equilibria are the
fixed point of an operator based on this auxiliary game.

Update steps αn is the non-increasing sequence of posi-
tive update steps for the payoff estimates, σn =

∑n
k=0 αk,

and starting values ui
0,s defined arbitrarily. We suppose that:∑

k

αk

σk
=∞

0 < αn ≤ 1 αn+1 ≤ αn

(H1)

Payoff estimates Players estimate the continuation payoff
in a vector ui

n ∈ RS . Values of this vector are written
ui
n,s for state s, at step n for player i. At every step n, the
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estimator is defined as:

ui
n+1,s :=

1

σn

n∑
k=0

αkf
i
s,ui

k
(xk,s)

=
σn−1

σn
ui
n,s +

αn

σn
f i
s,ui

n
(xn,s)

Notice that in an identical interest stochastic game, ris does
not depend on i and as a consequence, ui

n,s does not depend
on i either. The same holds for zero-sum games because the
payoff of player 2 is the negative of that of player 1 and it is
sufficient to follow player 1’s payoff. As such, we omit the
superscript for ui in the rest of the paper.

Estimator un,s can be seen as a mean where recent values
of the expected payoffs fs,un

(xn,s) are given less weight
than oldest values. However, if the sequence fs,un

(xn,s) is
stationary, un,s will ultimately converge to the same limit
as fs,un

(xn,s). A similar idea of a fast and a slow update
rates is used in (Leslie et al., 2020; Perkins, 2013; Konda &
Borkar, 1999; Sayin et al., 2020).

Remark: If αn = 1, then σn = n. Thus, the update rates
of xi

n,s and un,s are the same and the hypothesis (H1) holds.
It also holds for αn = 1

logn where σn = log log n. In this
case, the update rate of xi

n,s is much faster than the one of
un,s and, as will be seen, this is the discrete-time analog of
the continuous time dynamics in (Leslie et al., 2020).

Action selection We can now define the action selection
of our FP procedures. It is an extension of the classical FP
procedure. For repeated games, FP is defined as a behavioral
strategy where at every stage, every player takes a best
response against the empirical action of the opponents up to
that stage. For stochastic games, we define fictitious play as
a best response in the auxiliary Shapley game parameterized
by a given continuation payoff ui

n, that is for every n:

ain,s ∈ bris,un
(x−i

n,s) := argmax
y∈Ai

fs,un(y, x
−i
n,s)

where s = sn. When there are several best responses, our
convergence results are independent on the selection rule.

Now we can define precisely our two FP procedures.

Asynchronous FP
un+1,s − un,s =

αn

σn

(
fs,un

(xn,s)− un,s

)
xi
n+1,s − xi

n,s =
1sn=s

s♯n

(
ain − xi

n,s

)
ain ∈ bris,un

(x−i
n,s)

(AFP)

Estimates of continuation payoff un,s are updated towards
the estimated payoff in the auxiliary game f i

s,ui
n
(xn,s) for

all states s at every step. Empirical actions xi
n,s are updated

only for the current state (notice the indicator function) in
the direction of the action played ain. This is an incremental
version of Eq. (1).

Therefore, this defines a behavioral strategy because the
only information needed to update the system variables is
the actions played in the current state, as the second equation
shows.

Synchronous FP To get convergence in non ergodic
stochastic games, we now define a version with synchronous
updates on every state. This is an algorithm but not a be-
havioral strategy and thus, not a learning rule. Synchronous
fictitious play is defined as follows:

un+1,s − un,s =
αn

σn

(
fs,un(xn,s)− un,s

)
xi
n+1,s − xi

n,s =
1

n

(
ain,s − xi

n,s

)
ain,s ∈ bris,un

(x−i
n,s)

(SFP)

Contrary to AFP, an action is provided for every state at
every step, as if the state was unknown. This allows to
update xi

n,s and un,s synchronously (but with at a rate that
may be different).

Incremental updates In both FP procedures, xi
n,s and

un,s can be computed via incremental updates. This will
enable us to make the link with the continuous version (Sec-
tion 6). Moreover, it shows that for a machine implementa-
tion, the procedure only needs constant memory instead of
storing the whole history.
Theorem 4.1 (Convergence of FP rules in identical interest
stochastic games). Under H1, procedures SFP and AFP al-
most surely converge to the set of stationary Nash equilibria
in identical interest ergodic discounted stochastic games.
The convergence hold also in non ergodic games for SFP.

As in (Monderer & Shapley, 1996b), our discrete-time proof
for identical interest stochastic games is direct and is not
derived from some associated continuous-time system.

Proof of Theorem 4.1 (sketch). The central idea is to show
that the gap between fs,un

(xn,s) and un,s is lower-bounded
by a sequence whose sum converge. This is possible be-
cause fs,un(xn,s) is mostly non-decreasing (but for the syn-
chronization error of the players that optimize this function
which is in 1

n2 ). This is similar to the proof continuous
time (where the payoff function is a Lyapunov function of
the system). Another key point is that un,s moves towards
fs,un at a rate no faster than the updates of xn,s. This lower
bound is used to prove the convergence of un,s, and the
convergence to the set of stationary Nash equilibria follows.

See Appendix A for the complete proof.
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5. Continuous Time: Best-Response Dynamics
This section extends and studies the best-response dynamics
introduced and studied in zero-sum stochastic games by
Leslie et al.. We generalize their updating rates and prove
that all the extended dynamics converge to stationary equi-
libria in identical interest and in zero-sum stochastic games.
These dynamics are the continuous-time counterpart of AFP
and SFP as shown in the next section.

As in discrete-time, there are two sets of variables:
{ui

s, x
i
s}s∈S,i∈I . These variables may have different update

rates, and we suppose there is a function α : R+ → R+∗

to express the update rates of variables ui
s. Function α is

continuous and non-increasing. We make the following
additional assumption on α:∫ t

0

α (y) dy −−−→
t→∞

+∞

α (t) ≥ 0 and α is non-increasing
(H2)

Synchronous Dynamics As in AFP, in the next dynamics,
variables of all states are updated at the same time.

For t ≥ 0 and every state s and player i, synchronous best-
reply dynamics (SBRD) is defined as:u̇i

s(t) = α (t)
(
f i
s,ui(t)(xs(t))− ui

s(t)
)

ẋi
s(t) ∈ bris,ui(t)(xs(t))− xi

s(t)
(SBRD)

where bris,ui(t)(xs(t)) := argmaxa∈Aif i
s,ui(t)(a, x

−i
s (t))

(i.e., it is a best response to the auxiliary Shapley game).
This action is used as an element of the Euclidean space
∆(Ai). Vector ui(t) denotes {ui

s(t)}s∈S .

Remark: This is a generalization of the definition of
Leslie et al. who studied the case α(t) = 1

t+1 . Replac-
ing f i

s,ui(t)(xs(t)) by the maximum over actions, that is
maxa∈Ai f i

s,ui(t)(a, x
−i
s (t)) is an alternative that would be

closer to the system outlined by Sayin et al. and Q-learning
in general. It could be an interesting system to study but
as noted by Sayin et al., this would result in ui

s(t) to be
different for two players even if the game is zero-sum or
identical interest, which poses more theoretical challenges.

Differential inclusion SBRD classically admits a (typically
non-unique) solution (Aubin & Cellina, 1984; Benaı̈m et al.,
2005). Indeed, one can rewrite it as dy

dt ∈ F (t, y) where y is
a vector with every ui

s, x
i
s and F is a closed set-valued map,

with non-empty, convex values. Furthermore, as shown
in Lemma B.1 of Appendix B, values are bounded, so the
solution is defined on R+ (Aubin & Cellina, 1984, p. 97).

In identical interest games, ris = rs for every player i.
Therefore, for every s, ui

s and f i
s,ui do not depend on i

(when initial values are equal), hence we omit the super-
script i in our statements. It is similar for zero-sum games.

Asynchronous Dynamics We now provide results regard-
ing the convergence of asynchronous systems. In this sys-
tem, the expected continuation payoff starting from state s
is always updated at the same rate but the empirical action
is not. It is defined as follows:

u̇s(t) = α (t)
(
fs,u(t)(xs(t))− us(t)

)
ẋi
s(t) ∈ βs(t)

(
bris,u(t)(x

−i
s (t))− xi

s(t)
)

βs(t) ∈ [β−, 1]

(ABRD)

where β− ∈ (0, 1].

Value βs(t) is the update rate for state s at time t. If only
one state was updated at every time point, then we would
have βs(t) equal to 0 but in one state where it would be
equal to 1. If the game is ergodic, then on average every
state is reached a strictly positive proportion of the time,
> β−. Next section will show in the ergodic case, that this
system is formally linked to the AFP procedure.
Theorem 5.1 (Convergence of ABRD and SBRD in identi-
cal interest stochastic games). Let {us, βs, x

i
s}s∈S,i∈I be a

solution of ABRD. Under H2, there is Φ ∈ R|S| such that:
• for all s, fs,u(t)(xs(t)) −−−→

t→∞
Φs and u(t) −−−→

t→∞
Φ

• Φ is a stationary Nash equilibrium payoff
• {xs(t)}s∈S converges to the set of stationary Nash

equilibria with payoff Φ

A sketch of the proof is provided below. A comprehensive
proof with technical lemmas is provided in Appendix B.

Sketch of proof. We define, for s ∈ S:

Γs(t) :=fs,u(t)(xs(t))

∆i
s(t) :=max

y∈Ai
fs,u(t)(y, x

−i
s (t))− fs,u(t)(xs(t)) ≥ 0

We are going to lower bound Γs(t) − us(t) for every s
so as the differential of us is lower-bounded by an inte-
grable function. This guarantees that, as us is bounded (see
Lemma B.1), it converges. We then show that for every
player i, ∆i

s(t)→ 0 and finish the proof of the theorems by
studying convergence of Γs(t) and the limit set of xs(t).

Theorem 5.2 (Convergence of ABRD in zero-sum stochas-
tic games). Let {us, βs, x

i
s}s∈S,i∈I be a solution of ABRD.

There exists a constant A > 0 (which only depends on δ and
rs) such that if α⋆ > limt→∞ α (t), then, under H2:

• for all s, lim supt→∞ |fs,u(t)(xs(t))− u(t)| ≤ Aα⋆

• {xs(t)}s∈S converges to the set of stationary Nash
Aα⋆−equilibria as t→∞.

The proof is in Appendix C. Note that if α(t) → 0, then
α⋆ can be chosen arbitrarily close to 0 which is the case
in (Leslie et al., 2020) (α(t) = t + 1). Hence this is an
extension of (Leslie et al., 2020).
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6. Linking Continuous and Discrete Systems
This section uses the continuous time results of the previous
section to deduce the convergence of the discrete-time pro-
cedures in zero-sum stochastic games (which is not covered
by (Leslie et al., 2020)) but also in team stochastic games
(defined below). Any identical interest stochastic game is a
team stochastic game but not the reverse.

Zero-sum games We can discretize the continuous model
using an extension of the stochastic approximation frame-
work (see details in Appendix D and then using an algorithm
with doubling trick (standard in RL procedures). Note that
the doubling trick trigger T (α) can be computed, this is
explained in Appendix D.

Algorithm 1 FP with Doubling Trick for Zero-Sum Games
α, x, u← 1, x0, u0

loop
xn+1,sn ← xn,sn + 1

n+1 (an − xn,sn)
∀s, un+1,s ← un,s +

α
σn

(fs,un
(xn,s − un,s)

Choose ain+1 ∈ bris,un
(x−i

n+1,s)
if n > T (α) then
α← α/2

end if
end loop

Combining the stochastic approximation framework and
Theorem 5.2 guarantees the convergence of this algorithm.
A detailed proof is in Appendix D.

Theorem 6.1 (Convergence of FP with doubling trick in
zero-sum stochastic games). Under H1, procedures SFP
and AFP with the doubling trick as specified in Algorithm 1
almost surely converge to the set of stationary Nash equilib-
ria in zero-sum ergodic discounted stochastic games. The
convergence holds also in non ergodic games for SFP.

Different Priors and Team Stochastic Games Holler
(2020) proved that in exact global-potential stochastic
games, players are divided into two categories: either they
do not influence the transition or they have the same payoff
function up to a constant. This last class is called team
stochastic games. While the proof of convergence of FP in
discrete-time is not straightforward in team games, it can be
studied using the continuous time system and stochastic ap-
proximations techniques. Similarly, if players have different
priors on continuations.

Theorem 6.2 (Convergence of FP with different priors in
team stochastic games). If all players use a FP procedure
as defined in Section 4 with priors on the continuations
that may be different (i.e., ui

s(0) may not be equal to uj
s(0)

for two players i and j and a state s), then the average
actions xs,n and vectors ui (for every player i) converge

respectively to the set of stationary Nash equilibria and the
corresponding continuation payoffs.

Sketch of proof. We can define a Lyapunov function on the
continuous-time system, yielding conditions on chain tran-
sitive sets. Details can be found in D.6.

7. Conclusion
We defined a number of continuous and discrete time sys-
tems to learn stationary equilibria in stochastic games. They
combine ideas from fictitious play and Q-learning and are
extensions of a continuous-time system of (Leslie et al.,
2020) who proved its convergence to stationary equilibria in
zero-sum stochastic games. We prove their convergence to
stationary equilibria in continuous time but also in discrete
time; in zero sum but also in identical interest discounted
stochastic games. An open problem is to show the conver-
gence of the procedures of (Sayin et al., 2021) in identical
interest and team stochastic game. The main difficulty relies
on the fact that their updating rule does not preserve the
identical interest objective along the trajectory.

Another interesting direction is the speed of convergence.
As outlined in the proof, there are bounds for zero-sum
stochastic games but none for identical interest ones. To
the best of our knowledge, no results are known even in
non-stochastic games (Monderer & Shapley, 1996a).

An interesting extension would be limiting average stochas-
tic games. This could be achieved by increasing in AFP
the discount factor δn from stage to stage to 1. Another
nice extension would be to have a model free algorithm,
that is an updating rule that does not use the knowledge of
the probability distribution. A simple way to adapt AFP
is by letting the players explore with small probability and
replace in the up-dating rule of AFP the probability transi-
tion by its empirical estimation. When the game is ergodic,
after some period T (ε) the estimated transition probabil-
ity will be close to the real transition with probability at
least 1− ε. Consequently, under ergodicity and (H1), this
modification of AFP converges to stationary equilibria in
identical-interest and zero-sum stochastic games.

More tricky is to construct a learning procedure that con-
verges to a stationary equilibrium when the players do not
observe other players past actions but only their own past
actions and the current state. Even when there is only one
state (a repeated game) FP and all its variants fail because
there is no way to form a belief about the opponents without
observing their actions. A class of procedures that converge
to Nash equilibria of the stage game in zero sum and identi-
cal interest repeated games are non-regret algorithms (Blum
& Mansour, 2005; Hofbauer & Sandholm, 2002) with some
exploration to be able to estimate what would the payoff be
if a player has played differently (we are in a bandit setting).
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But regret is not well defined in stochastic games even if
players observe the past actions of the opponents (Mannor
& Shimkin, 2003).

A last interesting question is: what happens if we let each
player use simple Q-learning? This is very unstable in some
repeated games (RG) (Wunder et al., 2010). In others RG,
simulations in a repeated pricing game (a kind of repeated
prisoner dilemma) show that Q-learning does not converge
to the stationary Nash (Calvano et al., 2020) (i.e., not com-
petitive pricing which would be defection at every stage)
but to Pareto Nash equilibrium of the RG (to collusion, that
is a cooperative equilibrium, similar to Tit for Tat). One
may wonder if it is possible to construct a Q-learning like
procedure which converges to Pareto optimal equilibria in
every repeated/stochastic game. This was our motivating
question because the Tit for Tat equilibrium in a RG is a sta-
tionary equilibrium in the auxiliary stochastic game where
the current state is the last action profile in the RG.
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A. Convergence of Discrete-Time Fictitious Play in Identical Interest Stochastic Games
In this section, we prove that systems SFP and AFP converge to a stationary Nash equilibrium. The proofs for the two
systems are similar, except for the last part about the convergence of the empirical actions. Therefore, we write the first,
identical part, only for AFP (the more complex system), and give the two proof in the last part.

Recall system AFP:



un+1,s − un,s =
αn

σn

(
fs,un

(
xn,s

)
− un,s

)
xi
n+1,s − xi

n,s = 1s=sn

ain − xi
n,s

n

ain ∈ brisn,un
(x−i

n,s)

σn =

n∑
k=1

αk

(AFP)

Under these hypothesis on αn:

∑
k

αk

σk
=∞

αn ≤ 1

αn+1 ≤ αn

(H1)

Note that this is satisfied for αn = 1 (single timescale, autonomous case) or αn = 1
n (u is updated significantly slower than

x).

We are going to show that under H1, un,s and fs,un

(
xn,s

)
converge to the same equilibrium payoff for every s in an

(ergodic for AFP), identical interest stochastic game. This implies that xn,s converges to a stationary Nash equilibrium.

Proof. Denote Γn,s := fs,un

(
xn,s

)
, wn := mins∈S Γn,s−un,s and s−n ∈ argmin

s∈S
Γn,s−un,s so as wn = Γn,s−n

−u
n,s−n

.

The energy of the system wn converges We bound the changes in wn:

wn+1 − wn = Γn+1,s−n+1
− u

n+1,s−n+1

− (Γn,s−n
− u

n,s−n
)

≥ Γn+1,s−n+1
− u

n+1,s−n+1

− (Γn,s−n+1
− u

n,s−n+1

)

= Γn+1,s−n+1
− Γn,s−n+1

− (u
n+1,s−n+1

− u
n,s−n+1

)

= Γn+1,s−n+1
− Γn,s−n+1

− αk

σk

(
Γn,s−n+1

− u
n,s−n+1

) (2)

Now, there exists C (independent of n) such that |Γn,s−n+1
− u

n,s−n+1

| − |Γn,s−n
− u

n,s−n
| < C

n (because for every s,

Γn,s − un,s changes of at most C
n between n and n+ 1, so this is true for the minimum as well).
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As a consequence, continuing (2):

wn+1 − wn ≥ Γn+1,s−n+1
− Γn,s−n+1

− αnwn

σn
− αnC

nσn

≥ fs−n+1,un+1

(
x
n+1,s−n+1

)
− fs−n+1,un

(
x
n+1,s−n+1

)
+ fs−n+1,un

(
x
n+1,s−n+1

)
− fs−n+1,un

(
x
n,s−n+1

)
− αnwn

σn
− αnC

nσn

≥ δ
∑
s′∈S

Ps−n+1,s
′(xn+1,s−n+1

)
(
un+1,s′ − un,s′

)
+ fs−n+1,un

(
x
n+1,s−n+1

)
− fs−n+1,un

(
x
n,s−n+1

)
− αnwn

σn
− αnC

nσn

≥ δ
wn

σnαn
+ fs−n+1,un

(
x
n+1,s−n+1

)
− fs−n+1,un

(
x
n,s−n+1

)
− αnwn

σn
− αnC

nσn

≥ (δ − 1)
αnwn

σn
+ fs−n+1,un

(
x
n+1,s−n+1

)
− fs−n+1,un

(
x
n,s−n+1

)
− αnC

nσn

The first order expansion of fs−n+1,un

(
x
n+1,s−n+1

)
for AFP:

fs−n+1,un

(
x
n+1,s−n+1

)
= fs−n+1,un

(
x
n,s−n+1

)
+
∑
i∈I

1s=sn

n

(
fs−n+1,un,s

(
ain, x

−i
n,s

)
− fs−n+1,un,s

(
xn,s

))
+O

(
1

n2

)
(3)

The expansion (3) would be the same for SFP except for the indicator 1s=sn which would disappear.

In any case, the first order term is positive (because ain is a best-response in the auxiliary game), therefore there exists D > 0
such that:

wn+1 − wn ≥ (δ − 1)
αnwn

σn
− D

n2
− αnC

nσn

Then, using Lemma F.1, for n > m:

wn ≥ wmΠn
k=m(1 +

δ − 1

k
)−

n∑
k=m

[
D

k2
+

αkC

kσk

]
≥ EΠn

k=m(1 +
δ − 1

k
)−

∞∑
k=m

[
D

k2
+

C

k2

]
for some E > 0 (independent of m because wn is bounded). The last inequality is obtained using Lemma F.2. The right
term goes to 0 as the rest of a convergent sum. Furthermore, the left term goes to 0 when n goes to∞, so wn → 0.

The continuation payoffs un converge Sequence wn can be lower bounded more precisely:
∑∞

k=m
D+C
k2 = Ω

(
1
m

)
and

Πn
k=m(1 + δ−1

k ) = Ω
((

m
n

)δ−1
)

, so with m = [
√
n], wn ≥ Ω

(
1√
n

)
+Ω

(
1

n
1−δ
2

)
= Ω

(
1

n
1−δ
2

)
.

Consequently, for every s, un+1,s − un,s ≥ Ω
(

1

n1+ 1−δ
2

)
, and as un,s is bounded (again using Lemma F.2), it converges.

The payoff of the auxiliary game converges to the same limit Similarly, one can show that fs,un+1

(
xn+1,s

)
−

fs,un

(
xn,s

)
is lower bounded by Ω

(
1

n1+ 1−δ
2

)
, so it converges, and it is the same limit as un,s (otherwise un,s could not be

bounded).

The limit is an equilibrium payoff in AFP Using (3), (valid for every s), writing ∆s,n :=
∑

i∈I fs,un,s

(
ain, x

−i
n,s

)
−

fs,un,s

(
xn,s

)
:

fs,un

(
xn+1,s

)
− fs,un

(
xn,s

)
=

1s=sn

n
∆s,n +O

(
1

n2

)
(4)
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Then:
fs,un+1

(
xn+1,s

)
− fs,un

(
xn+1,s

)
= δ

∑
s′∈S

Pss′(xn+1,s)(un+1,s′ − un,s′)

= δ
∑
s′∈S

Pss′(xn+1,s)
αn

σn
(fs′,un

(
xn,s

)
− un,s′)

≥ δ|S|Pss′(xn+1,s)
αn

σn
wn

(5)

Summing (4) and (5) gives:

fs,un+1

(
xn+1,s

)
− fs,un

(
xn,s

)
≥ δ|S|αn

σn
wn +

1s=sn

n
∆s,n +O

(
1

n2

)
(6)

However, ∆s,n ≥ 0, so summing (6) over n gives that
∑

n
1s=sn

n ∆s,n < ∞ with the same reasoning as above (because
αn

σn
wn = Ω

(
1

n1+(1−δ)/2

)
and the terms in the left term cancel out).

Simple calculations yield that 1
n

∑n
k=1 1s=sk∆s,k goes to 0 as n goes to∞. However, it is clear that changes in ∆s,n are of

the order of magnitude of the update steps, that is 1
n . As a consequence, assuming that ∆s,n does not go to 0, there exists a

A > 0 such that for ϵ > 0, if ∆s,n ≥ 3ϵ, then ∆s,n+m ≥ 3ϵ−
∑m

k=1
A

n+k ≥ 2ϵ−A log((n+m)/n) for n large enough
(well known result of the harmonic series). But then, for m = [n exp(ϵ/A)− 1)]:

1

n+m

m+m∑
k=n

1s=sk∆s,k ≥
1

n+m

n+m∑
k=n

1s=skϵ

Since the game is ergodic, with probability 1 when m goes to ∞ (and it goes to infinity when n goes to infinity),
1
m

∑n+m
k=n 1s=sk is greater than a real β− which depends only on the game (minimal frequency of visit of s using the law of

large numbers).

1

n+m

m+m∑
k=n

1s=sk∆s,k ≥
1

n+m
mβ−ϵ ≥

n exp(ϵ/A)− 1)− 1

n+ n exp(ϵ/A)− 1)
β−ϵ ≥

exp(ϵ/A)− 1)− 1
n

1 + exp(ϵ/A)− 1)
β−ϵ

This latest inequality is absurd, so ∆s,n goes to 0 almost surely when n goes to infinity, proving that the limit of un,s is
an equilibrium payoff. Then, it is clear that xn,s converge towards the set of Nash equilibria almost surely (otherwise
fs,un,s

(xn,s) could not have the same limit asun,s.

Now, for SFP, the proof is similar but for the indicator function which disappears. As a consequence, it is not needed to use
a β− but we still prove that almost surely, ∆s,k goes to 0. Therefore, we do not need the ergodicity hypothesis for this case.

B. Convergence of Best-Response Dynamics in Identical Interest Stochastic Games
In this section, we prove that the best-response dynamics converge in identical interest stochastic games. We first prove a
boundedness lemma and then proceed with the convergence of every system in identical interest stochastic games.

Note that since we only deal with identical interest stochastic games, the superscript i in ui
s can be omitted as all ui

s are
equals (see Section 5).

In what follows, let {ui
s, x

i
s}s∈S,i∈I be a solution of (ABRD). Note that since (SBRD) is included in (ABRD), this is valid

for solutions of (SBRD) as well (it is the case where β− = 1).

We define:
Γs(t) :=fs,u(t)(xs(t))

∆i
s(t) :=max

y∈Ai
fs,u(t)(y, x

−i
s (t))− fs,u(t)(xs(t))

=max
y∈Ai

fs,u(t)(y, x
−i
s (t))− Γs(t)



Fictitious Play and Best-Response Dynamics in Identical Interest and Zero Sum Stochastic Games

Lemma B.1. Let {ui
s, x

i
s}s∈S,i∈I a solution of (ABRD) or (SBRD). Then for all s ∈ S, functions us and t 7→ fs,u(t)(xs(t))

are bounded.

Proof. Let M = maxs∈S,a∈A {|us(0)|, |Γs(0)|, |rs(a)|}+ 1.

Then |us(0)| < M and |Γs(0)| < M for every s. us and Γs are continuous, therefore if they are not bounded by M , there
exists t minimal such that there exists s ∈ S such that either:

• us(t) = M and |Γs(t)| < M , therefore u̇s(t) = βtα (t) (Γs(t) − us(t)) ≤ 0 for some βt, therefore us(t
−) ≥ M ,

which is absurd.

• us(t) = −M and |Γs(t)| < M , therefore u̇s(t) = βtα (t) (Γs(t)− us(t)) ≥ 0 for some βt, therefore us(t
−) ≤ −M ,

which is absurd.

• Γs(t) = M , therefore:

(1− δ)rs(xs(t)) + δ
∑
s′∈S

Ps,s′(xs(t))us′(t) = M

But rs(xs) < M and us′(t) ≤M for all s′,
therefore

∑
s′∈S Ps,s′(xs(t))us′(t) ≤M ,

so Γs(t) < M (because 0 < δ < 1), absurd.

Lemma B.2. Function Γs is differentiable and its differential is:

dΓs

dt
= δ

∑
s′

Pss′(xs)u̇s′ + βs(t)
∑
i

∆i
s(t)

In the SBRD case, βs(t) = 1.

Proof.
dΓs

dt
= Du(fs,u⃗(t)(xs(t)))(Dtu) +Dxsfs,u⃗(xs)(Dtxs)

where Du is the partial differential in u.

xs 7→ fs,u(t)(xs) is a n-linear map in xs, therefore:

Dxsfs,u(t)(xs)(Dtxs) =
∑
i

fs,u(t)(ẋ
i
s, x

−i
s )

u 7→ fs,u(xs(t)) is a linear function in u, and:

Dufs,u(xs(t)) = δ
∑
s′

Pss′(xs)u̇s

Therefore, dΓs

dt = δ
∑

s′ Pss′(xs)u̇s′ + βs(t)
∑

i ∆
i
s(t).

Lemma B.3. Function ∆i
s(t) is Lipschitz.

Proof. u is differentiable and its derivative is bounded by
supt |Γs(t) − us(t)|, so u is 2M -Lipschitz where M is a bound of the Γs and us. The derivative of xs is also bounded,
so it is also Lipschitz. As fs,· is Lispschitz with respect to any parameter (it is multilinear). Therefore, for all y,
t 7→ fs,u(t)(y, x

−i
s (t)) is Lispschitz with the same coefficient, so ∆i

s(t) is also Lipschitz.
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Convergence of the synchronous and asynchronous system Let s−(t) ∈ argmin
s∈S

(Γs(t)− us(t)). This means that

for every t we choose an arbitrary s that minimizes Γs(t) − us(t). Note that as a consequence, Γs−(t)(t) − us−(t)(t) is
continuous because every Γs(t)− us(t) is continuous.

Lemma B.4. There exists A ≥ 0 such that for every s ∈ S, Γs(t)− us(t) ≥ −A exp(
∫ t

1
(δ − 1)α (t) dt)

Proof. By the previous lemma:

dΓs

dt
≥ δ

∑
s′

Pss′(xs)α (t) (Γs′(t)− us′(t))

≥ δ
∑
s′

Pss′(xs)α (t)
(
Γs−(t)(t)− us−(t)

)
= δα (t)

(
Γs−(t)(t)− us−(t)

)
(7)

Moreover, for h > 0:

Γs−(t+h)(t+ h)− us−(t+h)(t+ h)− (Γs−(t)(t)− us−(t)(t))

≥ Γs−(t+h)(t+ h)− us−(t+h)(t+ h)− (Γs−(t+h)(t)− us−(t+h)(t))

≥ hmin
s∈S

dΓs

dt
+ o(h) + us−(t+h)(t)− us−(t+h)(t+ h)

(8)

For any s:

us(t)− us(t+ h) = −hdus

dt
+ o(h)

= −hα (t) (Γs(t)− us(t)) + o(h)

Now let us suppose that s is an accumulation point of s−(t+h) when h goes to 0. Then, as every Γs(t)−us(t) is continuous,
we have that Γs−(t)(t)− us−(t)(t) = Γs(t)− us(t) (else s can not be an accumulation point). So, the preceding equality
can be rewritten as:

us(t)− us(t+ h) = −hα(t)
(
Γs−(t)(t)− us−(t)(t)

)
+ o(h)

This is valid for every accumulation point of s−(t+ h) (and is independent of s) and there is a finite number of such s, so
we also have:

us−(t+h)(t)− us−(t+h)(t+ h) = −hα(t)
(
Γs−(t)(t)− us−(t)(t)

)
+ o(h)

Now, from inequality (7), we have that:

hmin
s∈S

dΓs

dt
≥ hδα (t)

(
Γs−(t)(t)− us−(t)

)
And these two last inequalities can be summed to get:

hmin
s∈S

dΓs

dt
+ us−(t+h)(t)− us−(t+h)(t+ h) + o(h) ≥ h(δ − 1)α (t)

(
Γs−(t)(t)− us−(t)

)
+ o(h)

Going back to (8):

Γs−(t+h)(t+ h)− us−(t+h)(t+ h)− (Γs−(t)(t)− us−(t)(t))

≥ h(δ − 1)α (t)
(
Γs−(t)(t)− us−(t)

)
+ o(h)
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We now need a version of Grönwall Lemma that applies to this case, it is provided here for completeness:

Let v(t) = exp
(∫ t

0
(δ − 1)α (t) dt

)
.

Then dv
dt = (δ − 1)α (t) v(t), v(0) = 1, v > 0.

and 1
v(t+h) =

1
v(t) − h(δ − 1)α(t)v(t) + o(h)

We now proceed with the classical proof of Grönwall Lemma:

Γs−(t+h)(t+ h)− us−(t+h)(t+ h)

v(t+ h)
≥

Γs−(t)(t)− us−(t)(t)

v(t+ h)
+ h(δ − 1)α (t)

Γs−(t)(t)− us−(t)(t)

v(t+ h)
+ o(h)

≥
Γs−(t)(t)− us−(t)(t)

v(t)
− h(δ − 1)α (t)

Γs−(t)(t)− us−(t)(t)

v(t)

+ h(δ − 1)α (t)
Γs−(t)(t)− us−(t)(t)

v(t)
+ o(h)

≥
Γs−(t)(t)− us−(t)(t)

v(t)
+ o(h)

Therefore, t 7→
Γs−(t)(t)−us−(t)(t)

v(t) is increasing. We can conclude:

Γs−(t)(t)− us−(t)(t) ≥
(
Γs−(0)(0)− us−(0)(0)

)
exp

(∫ t

0

(δ − 1)α (t) dt

)

Lemma B.5. The gap between Γs(t) and maxy∈Ai fs,u(t)(y, x
−i
s (t)) converges to 0:

∀s,
∑
i

∆i
s(t)→ 0

Proof. First, we show that ∀i, s,
∫∞
1

∑
i∈I ∆

i
s(t)dt < +∞.

Using Lemma B.2: βs(t)
∑

i ∆
i
s(t) =

dΓs

dt − δ
∑

s′ Pss′(xs)u̇s.

Therefore:

∀T,
∫ T

1

βs(t)
∑
i

∆i
s(t)dt =

∫ T

1

dΓs

dt
− δ

∑
s′

∫ T

1

Pss′(xs)u̇s

With the previous lemma:
Pss′(xs)u̇s = Pss′(xs)α (t) (Γs(t)− us(t))

≥ −Pss′(xs)Aα (t) exp(

∫ t

1

(δ − 1)α (t))

Then, for all T :

β−

∫ T

1

∑
i

∆i
s(t)dt ≤

∫ T

1

βs(t)
∑
i

∆i
s(t)dt

≤ Γs(T )− Γs(1) + δ
∑
s′

Pss′(xs)

∫ T

1

Aα (t) exp

(∫ t

1

α (v) (δ − 1)dv

)

= Γs(T )− Γs(1) + δ
A

δ − 1

(
exp

(∫ T

1

α (v) (δ − 1)dv

)
− 1

)

< Γs(T )− Γs(1) + δ
A

1− δ
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Then, as ∆i
s(t) is Lipschitz (Lemma B.3) and the limit of its integral is bounded and positive, ∆i

s(t) −−−→
t→∞

0.

Lemma B.6 (Convergence of the synchronous and semi-asynchronous system). For all s ∈ S:

Γs(t) = fs,u(t)(xs(t)) −−−→
t→∞

lim supΓs

and us(t) −−−→
t→∞

lim supΓs

Proof.

Γs(t2) = Γs(t1) +

∫ t2

t1

dΓs

dt
dv

≥ Γs(t1) + δ

∫ t2

t1

α (v)
(
Γs−(v)(v)− us−(v)(v)

)
dv

≥ Γs(t1)−Aδ

∫ t2

t1

α (v) exp

(∫ v

1

(δ − 1)α (t) dt

)
dv

≥ Γs(t1)−A
δ

1− δ
exp

(∫ t1

1

(δ − 1)α (t) dt

)

So
Aδ

1− δ
exp

(∫ t1
1
(δ − 1)α (t) dt

)
goes to 0 when t1 goes to +∞ (thanks to hypothesis H2), therefore, it is sufficient to

take t1 big enough so that Γs(t1) is close to the lim sup and the second term is small enough.

With a similar argument, us has a limit, and it is necessarily the same as Γs, otherwise us would be unbounded (because
u̇s = (Γs − us)/α (t)).

Lemma B.7 (Convergence to the set of mixed stationary equilibria). {limΓs}s∈S is an equilibrium payoff of the δ discounted
stochastic game. {xs}s∈S converges to the set of mixed equilibria.

Proof. Let x̃ be an accumulation point of the vector-valued function x = {xs}. Then, from Lemma B.5:

∆i
s(t) = fs,u(t)(br

i
s,u(t)(x

−i
s (t))− xi

s(t), x
−i
s (t))→ 0

So by continuity, for all s:
fs,limu(br

i
s,limu(x̃

−i
s (t))− x̃i

s, x̃
−i
s ) = 0

Proof of Theorem 5.1.
Lemma B.7 and B.6 prove the theorems for both the SBRD and ABRD systems.

C. Convergence of Best-Response Dynamics in Zero-Sum Games
In this section, we prove that best-response dynamics converges in two players zero-sum games, therefore extending the
result of Leslie et al.. The proof is very similar to that of (Leslie et al., 2020) but it is included below for completeness.
Details can be found in the other paper.

Let {xs, u}s∈S be a solution of ABRD and let α⋆ > limt→+∞ α(t). Note that α⋆ may be be arbitrarily close to 0 if the
limit of α is 0, and indeed the case proven in (Leslie et al., 2020) is the case where α(t) = 1

t+1 and α⋆ → 0.

We define the energy of the system, also known as the duality gap, as:

ws (t) = max
a1∈A1

fs,u(t)
(
a1, x2

s(t)
)
− min

a2∈A2
fs,u(t)

(
x1
s(t), a

2
)

(9)

Lemma B.1 states that there exists a constant M > 0 such that ∥us∥∞ ≤M and ∥fs,u(t) () ∥∞ ≤M .

By definition xs, u are differentiable almost everywhere. It is straightforward to see that it is also true for ws.

We denote vs,u(t) the value of the auxiliary game in state s parameterized by u(t).
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Lemma C.1. For every s ∈ S, there exists a time T such that for all t ≥ T , |fs,u(t) (xs(t))− vs,u(t)| ≤ 4Mα⋆.

Proof. We define Duws and Dxs
ws as the partial derivatives of ws when u and xs are considered as parameter of ws. With

these notations, dws

dt = u̇ ·Duws + ẋs ·Dxsws.

On the one hand, using Lemma A.2 of (Leslie et al., 2020), u̇ ·Duws ≤ 2δmaxs′∈S ˙us′ ≤ 4δMα(t). On the other hand,
using (Hofbauer et al., 2006), ẋs ·Dxsws ≤ −β−ws (t).

Therefore, dws

dt ≤ −β−ws (t) + 4δMα(t). Since α is decreasing, it is arbitrarily close to α⋆ when t goes to ∞, so
ws (t) ≤ 4Mα⋆ when t is big enough. Note that knowing α, a t satisfying this property can be computed. This will be used
in the discrete time algorithm.

Since |fs,u(t) (xs(t))− vs,u(t)| ≤ ws (t), this gives the desired result.

Define ϵ such as (1−δ)ϵ
16 = 4Mα⋆ and and t1(ϵ) as defined in Lemma C.1.

We define two distinguished states:

• sf (t) ∈ argmax
s∈S

|fs,u(t) (xs(t))− us(t)|

• sv(t) ∈ argmax
s∈S

|vs,u(t) − us(t)|

Lemma C.2. If t ≥ t1(ϵ), |usf (t)(t)− fsf ,u(t)

(
xsf (t)

(t)
)
| ≥ ϵ and for an s ∈ S,

∣∣|usf (t)(t)− vsf (t),u(t)| − |us(t)− vs,u(t)|
∣∣ ≤ (1− δ)ϵ

8

then:
d|us(t)− vs,u(t)|

dt
≤ −3(1− δ)α (t) ϵ

4

Proof. First, using Lemma A.2 of (Leslie et al., 2020):

d|vs,u(t)|
dt

≤ δmax
s∈S
|u̇| = δα (t) |fsf ,u(t)

(
xsf (t)

(t)
)
− usf (t)(t)|

If us(t) ≥ vs,u(t): Then |usf (t)(t)− vsf (t),u(t)| − us(t) + vs,u(t) ≤ (1−δ)ϵ
8 .

dus(t)

dt
= α (t)

(
fs,u(t) (xs(t))− us(t)

)
≤ α (t)

(
fs,u(t) (xs(t)) +

(1− δ)ϵ

8
− vs,u(t) − |usf (t)(t)− vsf (t),u(t)|

)
≤ α (t)

(
3(1− δ)ϵ

16
− |usf (t)(t)− vsf (t),u(t)|

)
≤ α (t)

(
(1− δ)ϵ

4
− |usf (t)(t)− fsf ,u(t)

(
xsf (t)

(t)
)
|
)

Summing with vs,u(t):

dus(t)− vs,u(t)

dt
≤ α (t)

(
(1− δ)ϵ

4
+ (δ − 1)|usf (t)(t)− fsf ,u(t)

(
xsf (t)

(t)
)
|
)

≤ α (t)

(
(1− δ)ϵ

4
− (1− δ)ϵ

)
≤ −α (t)

(
3(1− δ)ϵ

4

)
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If us(t) ≤ vs,u(t): similar calculations yield the same result.

We can now prove the two final lemma of this section.

Lemma C.3. For all s ∈ S, lim sup |us(t)− fs,u(t) (xs(t)) | ≤ 2ϵ.

Proof. We define g(t) = max{|usf (t)(t)− vsf (t),u(t)|, 2ϵ}.

As a composition of maximum of locally Lipschitz function and as such is locally Lipschitz as well. (See Lemma B.4 of
(Leslie et al., 2020) for detailed arguments.)

Now, if |usf (t)(t) − vsf (t),u(t)| ≤ 2ϵ, then dg
dt = 0. If usf (t)(t) − vsf (t),u(t)| ≥ 2ϵ, then, if t is greater than t1(ϵ),

|usf (t)(t) − fsf ,u(t)

(
xsf (t)

(t)
)
| ≥ ϵ (Lemma C.1). For t ≥ t1(ϵ), on a neighbourhood of t, every s that maximizes

|fs,u(t) (xs(t)) − us(t)| satisfies the condition of Lemma C.2, because fs,u(t) (xs(t)) and vs,u(t) are close thanks to
Lemma C.1. Therefore, Lemma C.2 can be used and dg

dt ≤ −
3(1−δ)α(t)ϵ

4 .

Using hypothesis H2, g(t)→ 2ϵ, which gives the result.

Lemma C.4. For all s ∈ S, xs(t) converge to the set of 2ϵ-Nash equilibria of the auxiliary game.

Proof. The previous proof gives that fs,u(t) (xs(t)) is 2ϵ close to vs,u(t), hence the result.

D. Using Continuous Time Results for Discrete Time Fictitious Play with Stochastic
Approximations

In this section, we describe how the stochastic approximation framework with differential inclusion (Benaı̈m et al., 2005)
can be extended and used to prove result in discrete time in the autonomous case (i.e., α is constant).

D.1. Correlated Asynchronous Stochastic Approximation

An asynchronous system as defined in (Perkins & Leslie, 2012) is as follows. Assuming yn ∈ Rk, one defines a system
where updated components of the vector at every step n are Sn ⊆ K := [1 . . . k]. We define s♯n as the number of times util
n that s occured:

s♯n = ♯{k | s ∈ Sk ∧ 0 ≤ k ≤ n}

We now describe now a system where component ys,n is updated at rate γs♯n if and only if s ∈ Sn, that is:

ys,n+1 − ys,n − γs♯n(Ys,n + ds,n) ∈ 1s∈Snγs♯nFs(yn) (10)

where variable Ys,n is a random noise with E[Ys,n] = 0 and ds,n goes to 0 when n→∞.

We define:
γn = max

s∈Sn

γs♯n

Mn+1 = diag
{
1s∈In

γs♯n
γn

| s ∈ K

}
and we can rewrite (10) to:

yn+1 − yn − γnMn+1(Yn + dn) ∈ γnMn+1F (yn) (11)

The continuous counterpart is defined as follows. For an ϵ > 0, Ωϵ
k is the set of k × k diagonal matrices with coefficients

between ϵ and 1:

Ωϵ
k := {diag(β1, . . . , βk);βi ∈ [ϵ, 1],∀i = 1, . . . , k}
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And the continuous system is:

dy

dt
∈ F (y) := Ωϵ

k · F (y) (12)

where the multiplication is between sets (i.e., the resulting set is the multiplication of every pair of the initial sets).

Then, the limit set of solutions of (11) is internally chain transitive (see Definition D.2 below) for system (12) (Perkins &
Leslie, 2012) under assumptions stated in Subsection D.2.

However, we need a modified version where the asynchronoucity can be correlated, meaning for instance that some
components are updated synchronously or that updating may be done at the same time for a set of components. This is
the case if xi

s and us were updated at the same times for a specific state s (which is an extension of this current work, as
explained in the conclusion) or for us which is always updated at every step in AFP. Therefore, we now suppose that every
Sn ∈ S ⊆ K. For instance, if the s component is updated at every step, it can be expressed with ∀S′ ∈ S, s ∈ S′. Then
we define an alternative set of diagonal matrices for the continuous version: Ωϵ

k,S := diag(conv(S)
⋂
[ϵ, 1]K) and the map

F (y) := Ωϵ
k,S · F (y)

Then we can link the internally chain transitive sets of differential inclusion dy
dt ∈ F (y) and limit sets of solutions of (11). As

systems ABRD and SBRD can be written as F with a suitable S and F , making it possible to prove the rest of Theorem 4.1
using the convergence results of the continuous time systems of the previous section, see section D.4.

D.2. Formal Results

We start with the definition of Marchaud maps. They are used in most stochastic approximation theorems, even if the term is
not always employed. In our systems, as the best-response map br is piecewise constant and the rest of the right hand side is
continuous, right hand sides of the differential inclusions are Marchaud maps.

Definition D.1 (Marchaud map). F : RK ⇒ RK is a Marchaud map if:

(i) F is a closed set-valued map, i.e. {(x, y) ∈ RK × RK | y ∈ F (x)} is closed.

(ii) for all y ∈ RK , F (y) is a non-empty, compact, convex subset of RK

(iii) there exists c > 0 such that supy∈RKz∈F (y) ||z|| ≤ c(1 + ||y||)

We now need the definition of internally chain transitive sets, as stated in (Benaı̈m et al., 2005). They will later be used to
characterize the limit sets of the discrete time systems.

Definition D.2 (Internally chain transitive). A set A is internally chain transitive for a differential inclusion dy
dt ∈ F (y) if it

is compact and if for all y, y′ ∈ A, ϵ > 0 and T > 0 there exists an integer n ∈ N, solutions y1, . . . yn to the differential
inclusion and real numbers t1, t2, . . . , tn greater than T such that:

• yi(s) ∈ A for 0 ≤ s ≤ ti

• ∥yi(ti)− yi+1(0)∥ ≤ ϵ

• ∥y1(0)− y∥ ≤ ϵ and ∥yn(tn)− y′∥ ≤ ϵ

Definition D.3 (Asymptotic pseudo-trajectories). A continuous function z : R+ → Rm is an asymptotic pseudo-trajectory
of a differential inclusion if limt→+∞ D(Θt(z), S) = 0 where Θt(z)(s) = z(t+ s) (it is the translation operator), S is the
set of all solutions of the differential inclusion and D is the distance between continuous functions defined as:

D(f, g) :=

∞∑
k=1

1

2k
min(∥f − g∥[−k,k], 1)

where ∥ · ∥[−k,k] is the supremum norm on the interval [−k, k].
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This two last definitions will be useful with Theorem 4.3 of (Benaı̈m et al., 2005) that establishes that the limit set of
asymptotic pseudo-trajectories is internally chain transitive. What is left to prove is that an affine interpolation of the discrete
time system is an asymptotic pseudo-trajectories. Below is the proof for the synchronous system SFP and the next section
deals with semi-asynchronous and fully-asynchronous systems.
Lemma D.4. The limit set of SFP is internally chain transitive with respect to SBRD for α (t) = 1 for all t.

Proof. Proposition 1.3 and Theorem 4.2 of (Benaı̈m et al., 2005) establish that the affine interpolation of sequences xn,s, un

is a perturbed solution and then an asymptotic pseudo trajectory. Theorem 4.3 from the same article proves that the limit set
is internally chain transitive.

D.3. Correlated Asynchronous Stochastic Approximations

We now extend a theorem originally proven by Perkins & Leslie:
Theorem D.5 (Analog of Theorem 3.1 of (Perkins & Leslie, 2012)). Suppose that:

(i) yn ∈ C for all n where C is compact

(ii) The set valued application F : C ⇒ C is Marchaud

(iii) Sequence γn is such that

(a)
∑

n γn =∞ and γn −−−−→
n→∞

0

(b) for x ∈ (0, 1), supn γ[xn]/γn < Ax <∞ where [·] is the floor function.
(c) for all n, γn ≥ γn+1

(iv) (a) For all y ∈ C, Sn,Sn+1 ∈ S,

P(Sn+1 = Sn+1|Fn) = P(Sn+1 = Sn+1|Sn = Sn, yn = y)

(b) The probability transition between Sn and Sn+1 is Lipsichitz continuous in xn and the Markov chain that Sn form
is aperiodic, irreducible and for every s ∈ S, there exists S ∈ S such that s ∈ S.

(v) For all n, Yn+1 and Sn+1 are uncorrelated given Fn

(vi) For some q ≥ 2,


∑
n

γ1+q/2
n <∞

sup
n

E(∥Yn∥q) <∞

(vii) dn → 0 when n→∞

Then with probability 1, affine interpolation y is an asymptotic pseudo-trajectory to the differential inclusion,

dy

dt
∈ F (y)

where


F (y) := Ωϵ

k,σ · F (y)

Ωϵ
k :=

{
diag(β1, . . . , βk)

∣∣∣∣∣∀i ∈ {1, . . . , k} ,βi ∈ [ϵ, 1]

}
ϵ > 0

However, at every step of the proof of Perkins and Leslie, we can take into account that Sn ∈ S, therefore we do not
need every matrix diag([ϵ, 1]K) in Ωϵ

k but only those that are also in diag(convϵ(S)) where conv(S) is the convex hull of S
composed with max(ϵ, ·) for every coordinate. Indeed, when update rates are manipulated, they are summed via integrals
or floored by an ϵ > 0. The resulting vectors belongs to convϵ(S) at every step of the proof. Therefore, the conclusion
of the theorem can be changed with Ωϵ

k,S := diag(conv(S)
⋂
[ϵ, 1]K). This makes it possible to use the Theorem in our

asynchronous and semi-asynchronous cases.

The full proof is included in Section E.
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D.4. Convergence of a Fictitious Play procedure in identical interest stochastic games

In this subsection, we first characterize the internally chain transitive sets of SBRD and ABRD before using this
characterization to prove a second time the convergence of FP in identical interest stochastic games.

Lemma D.6 (Internally Chain Transitive Sets). If for all t, α (t) = 1 and if L is internally chain transitive either for ABRD
then

L ⊆

(x, u)

∣∣∣∣∣∣
∀s ∈ S ∀i ∈ I, fs,u(xs) = us

∧ xi
s ∈ argmax

yi∈Ai

fs,u(y
i, x−i

s )


Proof.

We define:

A :=

(x, u)

∣∣∣∣∣∣
∀s ∈ S ∀i ∈ I, fs,u(xs) = us

∧ xi
s ∈ argmax

yi∈Ai

fs,u(y
i, x−i

s )


B := {(x, u) |∀s ∈ S fs,u(xs) ≥ us }

We first show that L ⊆ B. In order to do that, we take an element of L and show that any path starting from this element is
brought towards B, leading to the fact that the element is necessarily already in B (by definition of internal chain transitivity).

Let (x, u) ∈ L and suppose that (x, u) ̸∈ B, that is:

−ζ := min
s∈S

fs,u(xs)− us < 0

Then for the case of SBRD, for any T > 0, there exists n ∈ N, solutions of SBRD (x1, u1), . . . (xn, un) and t1, . . . , tn
greater than T as in Definition D.2 for ϵ = ζ/2.

Then mins∈S fs,u1(0)(x1,s(0))− u1,s(0) ≥ −ζ − ζ/2.

Now we can use Lemma B.4 with α (t) = 1, for all s:

fs,u1(t1)(x1,s(t1))− u1,s(t1) ≥ (fs,u1(t1)(x1,s(t1))− u1,s(t1)) exp((δ − 1)t1) ≥ (−3

2
ζ) exp((δ − 1)T )

So for T big enough, then for all s:
fs,u1(t1)(x1,s(t1))− u1,s(t1) ≥ −ζ/4

Iteratively, we get:
fs,un(tn)(xn,s(tn))− un,s(tn) ≥ −ζ/4

which is contradictory to the fact that mins∈S fs,u(xs)− us = −ζ.

For ABRD, we have the exact same proof.

So L ⊆ B.

We can now use a more classic argument to show that L ⊆ A with a Lyapunov function now that the ambient space can be
restricted to B. Let us define V (x, u) :=

∑
s∈S

fs,u(xs). Then, V is a Lyapunov function for set A with ambient space B.

Indeed, on B, dus

dt ≥ 0, so dfs,u(xs)
dt ≥ 0 (with Lemma B.2). Therefore dfs,u(xs)

dt = 0 for every s if and only if (x, u) ∈ A.
Moreover, V (A) has empty interior thanks to Sard’s Theorem.

So we can use Proposition 3.27 of (Benaı̈m et al., 2005): it applies in case the Lyapunov function is defined on invariant set.
So L is contained in A.
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A second proof of Theorem 4.1 using continuous time Below, we prove a second time Theorem 4.1 in the autonomous
case (that is, αn = 1) to show that our extension to the stochastic approximations framework is directly useful.

Proof of Theorem 4.1. For systems (AFP) we now need to apply Theorem D.5. Variable Yn is 0 in our case because there is
no noise. Sn+1 is the next state variable and it has distribution PSn

(an). We check the assumptions:

• (i) is guaranteed because every variable of the system is bounded.

• (ii) is guaranteed because the best-response map is marchaud and the derivative of u is continuous.

• for (iii) and (vi) we use γ(n) = 1/n, so every assumption is trivial to verify.

• (iv) and (v) comes from the definition of a play and the ergodicity hypothesis on the game

Therefore the affine interpolation of a sequence of fictitious play for stochastic games under our assumption is an asymptotic
pseudo-trajectory, which implies that its limit set is internally chain transitive by Theorem 4.3 of (Benaı̈m et al., 2005).

For system SFP Lemma D.4 states that the limit set is internally chain transitive.

Then Lemma D.6 concludes the proof: the limit set is internally chain transitive and consequently included in the set of
equilibria.

D.5. Convergence of FP in zero-sum stochastic games

We consider SBRD and ABRD in zero-sum stochastic games in the autonomous case, that is for α(t) = α⋆

Proof of Theorem 6.1. The previous proof checks all the hypothesis necessary to apply the stochastic approximation
framework we presented in this section. Therefore, a characterization of internally chain transitive sets will be sufficient to
conclude.

In the proof of Lemma C.1, we showed that function maxws(t)− 1
β−

4δMα⋆ is a Lyapunov function. Therefore, the
set where the duality gap is lower or equal than 4δMα⋆ is a internally chain transitive set. Furthermore, in the proof of
Lemma C.3, we defined a function g which is a Lyapunov function relative to the previous internally chain transitive set.

D.6. Different Priors and Team Games

In this subsection, we suppose that every player has its own ui estimates. We are going to show that in this case, internally
chain transitive sets are included into the set where the estimates ui are equal (up to a constant) for every i.

Indeed, suppose that G is now a team game. Then every ris can be written ris = rs +Mi with the convention that M1 = 0
and rs = r1s . Then let us show that any internally chain transitive set L is included in {(x, u) | ui

s = u1
s +Mi ∀i, s}.

Define V i(x, u) = argmaxs |ui
s − u1

s −Mi|

Let s that maximizes |ui
s − u1

s −Mi| so that V i(x, u) = |ui
s − u1

s −Mi|.

Then if ui
s > u1

s −Mi, then V i(x(t), u(t)) can be differentiated for almost every t (using the same techniques as in
Section B):

dV i

dt
= α(t)(f i

s,ui(xs(t))− f1
s,ui(xs(t))− ui

s(t) + u1
s(t)

≤ α(t)((1− δ)Mi + δV i(x, u) + δMi − ui
s(t) + u1

s(t) ≤ α(t)(δ − 1)V i(x, u)

And similar calculations for the case ui
s ≤ u1

s −Mi give the same results.

Therefore V i is a Lyapunov function and L ⊆ V i−1
({0}), hence the result.
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E. Proof of Theorem D.5
In this subsection, we show a proof of Theorem D.5. It is a modification of Theorem 3.1 of (Perkins & Leslie, 2012). In
order to carry the proof, we first need a general theorem found in (Benaı̈m et al., 2005):
Theorem E.1 (Linear interpolation are asyptotic pseudo-trajectories). Consider the stochastic approximation process

yn+1 − yn ∈ γn [F (yn) + Yn+1 + dn+1] (13)

under the assumptions:

(i) For all T > 0

lim
n→∞

sup
k

{∥∥∥∥∥
k−1∑
i=n

γi+1Yi+1

∥∥∥∥∥ ; k = n+ 1, . . . ,m(τn + T )

}
= 0 (14)

where τ0 = 0, τn =
∑n

i=1

gammai and m(t) = sup{k ≥ 0; t ≥ τk},

(ii) τn −−−−→
n→∞

∞ and γn −−−−→
n→∞

0

(iii) supn ∥yn∥ = Y <∞

(iv) F is a Marchaud map

(v) dn → 0 as n→∞ and supn ∥dn∥ = d <∞

Then a linear interpolation of the iterative process {yn}n∈N given by (13) is an asymptotic pseudo-trajectory of the
differential inclusion

dx

dt
∈ F (x) (15)

Proof of Theorem D.5. We are going to use Theorem E.1 and the four conditions must be verified for stochastic process 11
so as its linear interpolation is an asymptotic pseudo-trajectory of 12.

To do this, we first define the discrete time system that Theorem E.1 will be applied to. We define M̃n :=

diag(max{1s∈In

γ
s
♯
n

γn
, ϵ}). Note that, consequently, M̃n ∈ diag(conv(S)

⋂
[ϵ, 1]K) = Ωϵ

k,S . We select fn ∈ F (xn)

in the differential inclusion so as for every n, yn+1 = yn + γn+1Mn+1 [fn + Yn+1 + dn+1]. Then define Y n+1 :=

fn(Mn+1 − M̃n+1) +Mn+1Vn+1, that is to say that Y n+1 is the noise Yn+1 plus the error induced by the fact that every
state is updated at a minimum ϵ rate. Then we have yn+1 = yn + γn+1

[
M̃n+1fn + Y n+1 + dn+1

]
.

So yn+1 − yn ∈ γn+1

(
Ωϵ

K,S · F (yn) + Y n+1 + dn+1

)
.

And now we verify assumptions of Theorem E.1:

(i) For T > 0:

sup
k


∥∥∥∥∥
k−1∑
i=n

γi+1Y i+1

∥∥∥∥∥ ;
k = n+ 1, . . . ,m(τn + T )


≤ sup

k


∥∥∥∥∥
k−1∑
i=n

γi+1Mi+1Yi+1

∥∥∥∥∥ ;
k = n+ 1, . . . ,m(τn + T )


+ sup

k


∥∥∥∥∥
k−1∑
i=n

γi+1fi(Mi+1 − M̃i+1)

∥∥∥∥∥ ;
k = n+ 1, . . . ,m(τn + T )


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The first part of the sum goes to 0 via classical Kushner-Clark condition and assumptions (iii) and (vi), the proof is
detailled in Lemma 3.3 of (Perkins & Leslie, 2012). Regarding the second part, it is exactly Lemma 3.6 of (Perkins &
Leslie, 2012) and this applies because of assumptions (iii), (iv) and (v).

(ii) This is assumption (iii).

(iii) This is assumption (i) of Theorem E.1.

(iv) The map is F (y) := Ωϵ
k,S · F (y) and it is Marchaud because F is Marchaud (assumption (ii)) and Ωϵ

k,S is compact (so
every property of Definition D.1 holds).

(v) This is assumption (vii).

So Theorem E.1 applies and gives the desired result.

F. Technical Lemmas
Discrete-time Grönwall can be found in the literature with various assumptions. For the sake of completeness, we include
here a version that matches the assumptions we have in our paper, with the associated proof. It is a differential version with
error terms.

Lemma F.1 (Discrete-Time Grönwall). Let {yn}, {gn}, {bn} sequences of real numbers such that 1 > 1 + gn > 0 for all
n and:

yn+1 − yn ≤ gn+1yn + bn+1

Then yn ≤ y0Π
n
k=0(1 + gk) +

∑n
k=0 bk.

Proof. We define vn :=
yn−

∑n
k=0 bk

Πn
k=0(1+gk)

. We show that vn is decreasing:
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+
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Πn
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−
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+
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+
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(
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− 1
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−
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+
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Πn
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≤ gn+1yn + bn+1

Πn
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+
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−gn+1
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−
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+
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≤ bn+1

Πn+1
k=0(1 + gk)

−
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≤
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(
1− 1

1 + gn+1

)
≤ 0

And v0 = y0, hence the result.

Lemma F.2 (Bound on αn). Under hypothesis H1, for all n, αn

σn
≤ 1

n+1 .

Proof. By induction: for n = 0, αn

σn
= 1. Now for n+ 1:

αn+1

σn+1
≤ αn

σn

σn

σn+1
≤ 1

n+ 1

(
1− αn+1

σn+1

)
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As a consequence:
αn+1

σn+1

n+ 2

n+ 1
≤ 1

n+ 1

And the result follows.

G. Comparison with Existing Work
The table below summarizes the identical and different aspects of four systems: (asynchronous) fictitious play and best-
response dynamics of our paper, and best-response dynamics of Leslie et al. (2020) and fictitious play of Sayin et al. (2020)
which are the closest works to ours. We say that the timescales of actions and continuations are different when the ratio of
the update rate of actions and the one of continuations goes to 0 when t goes to∞.

System Time
Classes of games with proven

convergence to the set of equilibria Timescales of actions and continuations

AFP Discrete
Zero-sum (approximate convergence)

and team games

Same or different timescales for
team games, same timescale (or constant

ratio) for zero-sum games

ABRD Continuous
Identical-interest

and zero-sum

Same or different timescales for
identical-interest games,

convergence with different
timescales in zero-sum games,
approximate convergence with

same timescales in zero-sum games
Best-Response
Dynamics of

(Leslie et al., 2020)
Continuous Zero-sum

Two timescales: update rate of 1/t
for continuations and 1 for empirical

actions
Fictitious Play of

(Sayin et al., 2020) Discrete Zero-sum
Two timescales: strategies updated

infinitely faster than Q-values

Figure 1. Comparison of recent adaptations of best-response dynamics and fictitious play in stochastic games


