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Abstract

Inverse kinematic (IK) methods recover the pa-
rameters of the joints, given the desired position
of selected elements in the kinematic chain. While
the problem is well-defined and low-dimensional,
it has to be solved rapidly, accounting for multiple
possible solutions. In this work, we propose a neu-
ral IK method that employs the hierarchical struc-
ture of the problem to sequentially sample valid
joint angles conditioned on the desired position
and on the preceding joints along the chain. In our
solution, a hypernetwork f recovers the parame-
ters of multiple primary networks g1, g2, . . . , gN ,
where N is the number of joints, such that each gi
outputs a distribution of possible joint angles, and
is conditioned on the sampled values obtained
from the previous primary networks gj , j < i.
The hypernetwork can be trained on readily avail-
able pairs of matching joint angles and positions,
without observing multiple solutions. At test time,
a high-variance joint distribution is presented, by
sampling sequentially from the primary networks.
We demonstrate the advantage of the proposed
method both in comparison to other IK methods
for isolated instances of IK and with regard to
following the path of the end effector in Cartesian
space.

1. Introduction
Given the joint angles, the position and orientation of the
robot’s end-effector can be readily computed in a process
called forward-kinematics. However, robotic planning and
controls require mapping in the other direction, i.e., from
the end-effector’s Cartesian space coordinates to the joint
positions. This inverse mapping is called Inverse Kinematic
(IK). It is a nonlinear problem that often has multiple solu-
tions (Craig, 2009).
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For simple kinematic chains without much ambiguity, one
can obtain analytical solutions for the IK problem. However,
for the chain type that appears in robotic arms and other
complex robots, one has to rely on numerical methods. In
this work, we propose what is, as far as we can ascertain, the
first deep learning solution that allows for multiple solutions.

Given a certain kinematic chain, one can readily obtain a
training set consisting of pairs (x, y) of end-effector posi-
tions x and matching joint angles y, by sampling the latter
and computing the former with forward kinematics. This
straightforward way of obtaining the training set does not
reflect the possibility of multiple solutions y, given the coor-
dinates and orientation of x. In our framework, we employ a
variational approach to the problem and sample, at inference
time, from a distribution Px that is conditioned on the vector
of Cartesian-space specifications x.

Due to the structure of the kinematic chain, the IK problem
can be seen as a hierarchical problem. Typically, the angle
of the joint that is attached to the end-effector is uniquely
determined by the location of all previous joints and the
specifications in x. The previous joint may have multiple
solutions given the joint angles that precede it. In general,
as we move along the kinematic chain, from the fixed at-
tachment point to the end effector, the number of possible
configurations decreases. While this is true for any order in
which we sequentially fix one joint, the kinematic chain is
often equipped with a natural order, in which the first joints
typically cause larger motions in Cartesian space.

In our model, this hierarchy is manifested by a sequential
sampling of the joints from the distribution Px. Namely, we
parametrize Px as a sequential process in which the joints
are sampled one by one and the sampling of each joint is
conditioned on the values obtained for the previous joints.

The IK problem is often characterized by a discontinuous
solution space. While for a given y, we can expect to see
multiple solutions y′ that are close in the configuration space,
there may be other solutions that obtain the desired position
and orientation in x using a completely different configu-
ration. Our model addresses this by employing Gaussian
Mixture Models (GMMs) during sequential sampling.

The sequential sampling process, therefore, takes the fol-
lowing form. The distribution of the first joint is given as
a GMM. The parameters of this GMM are computed by a
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neural network, given the desired position and orientation
of the end effector x. The angle of the first joint y(1) (this
is the joint that is the most distant from the end effector) is
sampled by this GMM and the set of possible configurations
for the remaining joints is reduced. A second GMM is then
inferred in a way that is conditioned both on x and on y(1).
The second joint y(2) is sampled, and the process is repeated
until all N joints are obtained.

In the framework we propose, the parameters of each GMM
are obtained by a neural network that receives the preceding
joint locations as inputs. Conditioning on the input x is
obtained using a hypernetwork scheme, such that the pa-
rameters (weight matrices and biases) of the networks that
provide the GMMs change dynamically, depending on x.
This solution allows us to model the problem in a natural
way, separating the conditioning on x from the conditioning
on the sampled values.

Using the proposed neural IK solution, which we call
IKNet, we present a path following method for recover-
ing a sequence of joint location vectors given a sequence of
smoothly varying end effector positions. This method runs
online, such that at each time point the sampling of the joint
angle depends on the preceding joints along the kinematic
chain and on the angle of the same joint in the previous time
step. The latter consideration ensures smoothness of the
resulting path.

Our experiments demonstrate that IKNet outperforms a wide
variety of IK methods, both optimization-based and learning-
based. In the path following problem, our method generates
multiple solutions, each more accurate and more stable than
the single solution of the best baseline method. Additionally,
we show that our probabilistic method displays robustness
to noisy dimensions in the kinematic chain. Moreover, a
relatively small number of examples is sufficient to finetune
a trained model to perform well on a similar but unseen
kinematic chain. Lastly, the representation learned by IKNet
seems to help in learning other tasks.

2. Related Work
IK methods can be divided into analytical and numerical
methods. Analytical methods (Raghavan & Roth, 1993;
Diankov, 2010) provide a globally optimal solution, and
in many situations multiple solutions, in an efficient and
reliable way. However, the availability of analytical solu-
tions is limited to models of limited complexity. Iterative
(numerical) IK methods (Buss, 2004) update the vector of
joint angular parameters through nonlinear optimization un-
til convergence. A particular case is that of steerable needles,
for which an optimization-based IK method was presented
by Sears & Dupont (2007).

Attempts to apply machine learning methods to IK include

the application of One-Class SVM (Schölkopf et al., 2002)
by Bócsi et al. (2011). D’Souza et al. (2001) applied locally
weighted projection regression (Vijayakumar & Schaal,
2000; Klanke et al., 2008) to this problem. In another
work, De Angulo & Torras (2008) have addressed IK with
Parametrized Self Organizing Maps (Walter & Ritter, 1996).

A straightforward application of neural networks and other
regression techniques to map between the vector x of the
end effector’s position to the vector y of joint locations (El-
Sherbiny et al., 2018; Duka, 2014). Such methods fail to
model the entire solution space for a given x and are also,
as we show empirically, less accurate. (Csiszar et al., 2017)
propose to heuristically divide the dataset to reduce ambigu-
ities.

An important challenge for learning-based IK methods is
to perform modeling online, with a given setup, and not
based on a large training set (Rolf et al., 2010a;b; Baranes
& Oudeyer, 2013). Such methods employ frameworks such
as the one by Moulin-Frier et al. (2014). In Sec. 5.4 we
experiment with finetuning an existing model to model,
with a relatively few samples, a model that deviates from it.

IK-based learning methods have been applied for computer
graphics purposes, in order to obtain a more natural mo-
tion (Grochow et al., 2004; Huang et al., 2017). Learning
in such cases is based on motion capture and other sources
of data. In contrast to these methods, our method is aimed
at finding all possible solutions for a given kinematic chain
and the data we employ is synthetic data generated by this
chain.

In order to perform sequential sampling, we employ a series
of networks gk, which are all conditioned on the pose vector
x. To this end, we employ a hypernetwork (Ha et al., 2016).
The hypernetwork scheme has two components: a primary
network g, which outputs the computation result, and a hy-
pernetwork f , which is used for conditioning on some input.
The weights of network g are not learned directly. Instead,
they are provided as the output of network f . Therefore,
the weights of g are dynamic and vary based on the input
of f . Hypernetworks have been used for RNNs since their
inception, but we are not aware of any other application for
a series of primary networks.

While there exist alternative ways of conditioning, such as
passing x as an additional input to each network gk, hyper-
networks provide a modular solution, in which the capacity
of the conditioning network can be increased, while employ-
ing relatively shallow primary networks (Galanti & Wolf,
2020). This is useful in our IK framework, in which data is
generated synthetically. In our experiments, we present a
baseline that conditions on the end effector position without
using a hypernetwork and demonstrate the advantage of
employing hypernetwork-based conditioning in the context
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of IK. The hypernetwork structure that we employ performs
hierarchical sampling. In the context of image generation,
Bensadoun et al. (2021) have combined a hypernetwork with
a hierarchical sampling to obtain multiple valid solutions.

3. Method
In this section, we describe a method for learning the map-
ping from an end-effector position x to the distribution of
the joint angles Px, thereby enabling the sampling of joint
angles ỹ ∈ RN ∼ Px, such that applying ỹ to the N -joint
kinematic model results in the end-effector at position x.

At training time, we are given a set of pairs of vectors
{(x(i),y(i))}, in which every vector x(i) is matched with
a single vector y(i) ∈ Sx, where Sx is a set of possible
matching y-space vectors for the vector x. Note that our
formulation allows for the existence of indices i, j such
that x(i) = x(j), but y(i) ̸= y(j). To index the vector
y(i) ∈ RN , we use the superscript y(i) to denote the i-th
sample, and the subscript yk to denote the k-th joint.

In the IK problem, x is the position of the robot’s end-
effector, and y ∈ RN is the vector of joint angles, where
N is the number of joints in the kinematic chain. The end
effector position can include its location or both its location
and orientation. In the latter case, the number of plausible
IK solutions decreases.

Every valid Cartesian position x has one or more matching
joint configurations y, which collectively form the set Sx.
Since the forward mapping is one to one, Sx ∩ S′

x = Ø for
x ̸= x′. However, our method does not employ this fact.

Our goal is to learn to map every vector x to a conditional
distribution Px, such that the likelihood of every y ∈ Sx is
high and, conversely, low for y /∈ Sx.

Due to the hierarchical structure of the kinematic chain,
we parametrize Px such that sampling a vector ỹ from this
distribution is done sequentially

ỹ1 ∼ p1x := px(y1) (1)

ỹ2 ∼ p2x := px(y2|ỹ1) (2)
. . .

ỹk ∼ pkx := px(yk|ỹ1, . . . , ỹk−1) (3)
. . . and

Px :=
[
p1x, p

2
x, . . . , p

N
x

]
. (4)

Namely, the first element ỹ1 is sampled first from the dis-
tribution px(y

1), then the second element, ỹ2, in a way
that is conditioned on the first, ỹ1, using the distribution
px(y2|ỹ1), and so on. This way of sampling is natural for
kinematic chains, as mentioned in Sec. 1.

Specifically, we model each part of the Px distribution

p1x, . . . , p
N
x as a Gaussian mixture model (GMM). This way,

the distribution is able to capture sets Sx that have a dis-
continuous shape, with multiple regions. For m GMM
components, the distribution pkx is thus parameterized by
a vector mk

x ∈ R3m capturing the mean, variance, and
mixture coefficient of each of the m components.

Let N be the dimensionality of the vectors y. The method
employs a hypernet structure, in which the hypernet f maps
its input x to the set of parameters of N primary networks
g1, g2, . . . , gN . The mapping between x and Px and the
sampling from this distribution is formulated as follows:

[θ1, θ2, . . . , θN ] = f(x) (5)

m1
x = g1(θ1) (6)

ỹ1 ∼ p1x (7)

m2
x = g2(θ2, ỹ1) (8)

ỹ2 ∼ p2x (9)

m3
x = g3(θ3, ỹ1, ỹ2) (10)

ỹ3 ∼ p3x (11)
. . .

mN
x = gN (θN , ỹ1, ỹ2, . . . , ỹN−1) (12)

ỹN ∼ pNx (13)

where for the primary networks gk, the network parameters
are mentioned explicitly as the first input parameter, and pkx
is the GMM distribution with the parameters mk

x. Given
an input sample x, the hypernet f returns, in Eq. 5, the
parameters of the N primary networks. Then, in Eq. 6, the
GMM parameters of the distribution for the first element
of ỹ are obtained through the primary network g1. Subse-
quently, in Eq. 7, a value is obtained from this distribution.
Conditioned on the sampled value, the parameters of the
GMM of the second element in ỹ are obtained (Eq. 8), and
this value is sampled (Eq. 9). The process continues until
all N values of the vector ỹ are obtained, each conditioned
on the previous elements.

Fig. 1 illustrates the proposed methods, where given a query
input x for f , as a desired end-effector position, the network
produced N GMMs, as the number of joints, that we can
sample from. Each sampled solution will be mapped to the
end-effector position using forward kinematics.

3.1. Training

During training, we learn only the parameters of the hyper-
network f . The parameters of the primary networks gk are
given by f and change based on the input to this network. In
the training procedure, we employ a teacher forcing scheme,
in which the values of the training sample y(i) are employed
instead of sampling.

The loss term we employ during training maximizes the log
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Figure 1. Illustration of the proposed method. Given a query input x, which is the desired end-effector position, the hypernet f maps
its input to the set of parameters of N primary networks g1, g2, . . . , gN , where N is the number of joints in the kinematic chain. The
output ỹk of gk is a GMM pkx, modeling the solutions distribution for joint k, and the input for each gk are all the previously sampled
ỹ1, . . . , ỹk−1.

likelihood of the training samples

L = −
∑
i

log

N∏
k=1

pkx(i)

(
y
(i)
k |y(i)

1 , . . . ,y
(i)
k−1

)
(14)

where y
(i)
1 , . . . ,y

(i)
k−1 are the ground truth values, i.e., no

sampling takes place, and instead of sequential sampling
as in Eq. 7,9,11, and 13, the values of y(i) are used. The
training sample x(i) is manifested through the distributions
pk
x(i)(yk| . . . ) , which are based on the GMM parameters

mk
x(i) (Eq. 6,8,10, and 12).

3.2. Architecture

The network f is a 4-layer fully-connected network. Each
linear layer has a dimension of 1024, with ReLU and batch-
norm following each layer. The last layer of f is followed
by N projection layers that map the last dimension of 1024
to the vector of weights, θk, for each network gk.

The networks gk take as an input the weights produced by f
and a sequence of joint angles y1, . . . ,yk−1. Each network
is composed of three linear layers with a hidden dimension
of 256, and ReLU activation between the layers. The output
is a vector of 3m elements, where a subset of m elements
denote the prior for each GMM component.

In order not to explicitly select an optimal value for the
parameter m, we set it at a very high value of m = 50,
and make sure that the vector of priors is sparse. Specif-
ically, the relevant (i.e., not mean- or variance-related) m
values produced by each gk undergo a sparsemax (Martins
& Astudillo, 2016) operation.

4. Path Following
As an application of the IK network, we present a
method for recovering a sequence of joint locations Y =
[y1,y2, . . . ,yn], given a desired path of end-effector loca-
tions X = [x1,x2, . . . ,xn]. Ideally, given a many-to-one
situation, one would like to obtain multiple different se-
quences, each of which should depict a smooth path in the
joint location space, which matches (by applying forward
kinematics) the desired sequence X.

To achieve this, we employ a path following method. At
each point along the desired path, we have the joint angles
in the previous time-step ȳt−1, and the desired end-effector
position xt. By employing our network (f then g1), we
obtain a GMM distribution p1xt for the first joint at time t.

To maintain a smooth transition, we sample ȳt
1 (i.e., the first

joint of the current time step) from p1xt , subjected to the
neighborhood Ω of ȳt−1

1 of radius r, which we denote by
Ω(ȳt−1

1 , r):

ȳt
1 ∼ p1xt |Ω(ȳt−1

1 ,r) (15)

This way, we maximize the smoothness of the path, while
sampling from the learned distribution of the joint location
that is conditioned on the end effector position in the current
time-step, Thus emphasizing GMM components that are
closer to the the joint angles in the previous time-step.

We now have the angle of the first joint at time t, denoted
by ȳt

1. We repeat the process using the same path following
procedure, this time applied to p2xt = g(θ2, ȳ

t
1). After

this, the process is iterated for the rest of the joints. In our
experiments we choose r = 0.1 radian.
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Table 1. Results for the two 2D chains.

Mean distance (cm) Accuracy

2-joints 0.6 ± 0.6 97.6% ± 4.7%
4-joints 0.8 ± 0.6 95.6% ± 3.7%

5. Experiments
Our experiments check the performance of the IK method
for isolated poses as well as for paths. We also present an
experiment evaluating the representation learned by IKNet.

Metrics We compare the accuracy of the results using the
following scores: (1) the mean Euclidean distance over the
sample between FK(ȳ) and x, where ȳ is the obtained
solution and FK stands for the forward kinematics, (2)
accuracy, which is the ratio of solutions for which the Eu-
clidean distance is less than a set threshold.

5.1. Evaluation on a 2D chain

In order to illustrate the ability of our method to capture
the distribution of solutions, we train and evaluate with
two settings of 2-dimensional chains – two joints (2J) and
four joints (4J), where each joint is limited to 180 degrees
for each direction. We train our model on a dataset of
20K random (reachable) points, and test on a different set
of 1K (reachable) points. Tab. 1 show results for mean
distance error and accuracy, where we measure accuracy
as the percentage of points that are up to 2cm from the
end-effector.

In the case of the 2J-chain, we notice, analytically, that the
number of solutions for the first and second joints are 2
and 1, respectively. In the case of the 4J-chain, there is an
infinite number of solutions for a given end-effector, since
the kinematic chain has more degrees of freedom than the
end-effector.

In Fig. 2 we illustrate 100-sampled solutions for each chain,
and for a given end-effector position. Fig. 2(b,d) show
the learned GMMs for each joint, and Fig. 2(a,c) show
the sampled chain layouts, where opacity represents the
probability of the layout, and starting / end-effector positions
are illustrated with circle and X symbols, respectively.

As can be seen, the network learns to model the two layout
solutions for a given point in the 2J-chain. The GMM of
the first joint is collapsed into two main means, and the
GMM of the second joint is collapsed into a single mean,
both with low variance. In the 4J-chain, we can observe
that the first joint’s angles are spread according to its GMM
distribution, while the third and fourth joints collapsed to
the same distribution of results as in the 2J-chain.

5.2. Comparison with IK methods

In the following section, we present the experiment set-
ting used for evaluating our method, termed IKNet, against
well-established IK methods, as well as machine-learning
baselines. We use three different robotic arms, with different
levels of complexity, as our benchmark kinematic chains.

5.2.1. BASELINES

Numerical methods We experiment with three types of
optimization-based methods, (i) the Damped least squares
Jacobian (Wampler, 1986) – which optimizes the end-
effector position using the Jacobian of the model, (ii) the IK
software package IKPy(Manceron, 2021) – which optimizes
the position using ‘L-BFGS-B’ (Zhu et al., 1997) optimizer,
and (iii) a differentiable model of the forward-kinematics
package, DiffNEA, by Sutanto et al. (2020) – which opti-
mizes the joint angle to minimize the L2 distance between
the current and desired end-effector position.

Each method was initialized with multiple starting points
in order to obtain multiple solutions, and ran for the same
amount of time per sample during the optimization step for
a fair comparison.

Learning methods We construct three different network
models that capture different aspects of our method. First,
we build an MLP network with depth 3 and width 1024,
which takes as an input the desired end-effector, and out-
puts all joint angles at once. This baseline is incapable of
generating multiple solutions. Second, instead of modeling
conditional distributions sequentially, we use a network f
with the same architecture as our hypernetwork to output
mean vectors, covariance matrices (via Cholesky decompo-
sition) and selection weights, to model the distribution as a
mixture of multivariate Normal random variables, sampling
all joints at once.

Last, we experiment with a recurrent neural network (RNN)
architecture for modeling the sequential properties of the
distribution of joint solutions. The RNN architecture is com-
posed of a shared weights GRU (Cho et al., 2014) module
for all joints, and an independent MLP part for each joint
before and after the GRU module. This is done in order to
model the unique part of each joint. To reflect the angles
of the preceding joints, while reducing the repetition in the
solution space, we project the end-effector position to the
current coordinate system, reflecting the location of the joint
after the preceding joints have determined its location.

5.2.2. KINEMATIC CHAINS (DATASETS)

We demonstrate our method on 3 different kinematic chains,
which differ in their scale and degrees of freedom (DoFs)
(Fig. 3). All demonstrated kinematic chains are redundant,
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Figure 2. Illustration of the two 2D chains settings. We present 100 solutions for each chain and for a given end-effector position. (b,d)
show the learned GMMs for each joint, and (a,c) show the sampled chain layouts, where opacity represents the probability of the layout,
and starting / end-effector positions are illustrated with circle and X symbols, respectively.

Figure 3. Illustration of the three kinematic chains used in
our experiments. From left to right, Digit arm as obtained
from the DigitRobot.jl repository https://github.com/
adubredu/DigitRobot.jl – containing 4 DoFs, Franka
panda – containing 7 DoFs and UR5 – containing 6 DoFs. The
joints axis are illustrated in red.

i.e the number of DoFs is greater than the task space dimen-
sion (for the 3D inverse position kinematic task employed
in the experiments, this dimension is 3).

Digit arm Digit by Agility robotics is a humanoid, bipedal
robot, made for work in environments designed for hu-
mans. Digit’s upper torso is integrated with two 4-DoFs
arms aimed for basic manipulation and object carrying tasks.
As a source for this model, we employs the public reposi-
tory by Alphonsus Adu-Bredu that is available at https:
//github.com/adubredu/DigitRobot.jl. Ac-
cording to this resource, Digit’s arm DoF angular ranges are
[(-1.3, 1.3),(-2.5, 2.5),(-1.75,1.75),(-1.35, 1.35)] radians.

UR5 UR5 by Univeral Robots is an industrial, flexible,
lightweight, 6-DoFs robotic arm with working radius of up
to 85.0cm. The DoFs angular range are [(-3.14, 3.14),(-3.14,
3.14),(-2.5, 2.5),(-3.14, 3.14),(-3.14, 3.14),(-3.14, 3.14)]
radians.

Franka Franka Emika Panda is a 7-DoFs programmable
robotic arm with working radius of up to 85.5cm. The DoF
angular ranges are [(-2.9, 2.9),(-1.76, 1.76),(-2.9, 2.9),(-3.07,
-0.07),(-2.9, 2.9),(-0.02, 3.75),(-2.9, 2.9)] radians.

5.2.3. RESULTS

The results are presented in Tab. 2 and depict mean and
Standard Deviation on a test set of reachable arm locations.
As can be seen, IKNet outperforms both the optimization
based baselines and the learning based baselines is terms of
mean distance, with the exception of IKPy outperforming
somewhat better than our method on average, but with much
higher variance.

Accuracy is measured at a 10cm threshold. Our method
outperforms all baselines in this metric. Lastly, we measure
the actual runtime per method and report results for 100
executions. For this purpose, the learning based methods
were run on a CPU. As can be seen, our method is consid-
erably more efficient than the optimization based methods.
While the runtime cannot be taken at face value, since it
is implementation-dependent, our method has an inherent
advantage since it does not iterative.

5.3. Path following

We next evaluate the path following methods presented in
Sec. 4. This experiment does not involve any training and
evaluation sequences X of end effector positions were gen-
erated by moving the Digit arm smoothly. Each sequence is
of length 50.

As a baseline to the path following method we propose, we
employ IKPy, which is the best baseline method found in
our single-position experiments. As an iterative method,
IKPy finds a solution that is close to the starting point and

https://github.com/adubredu/DigitRobot.jl
https://github.com/adubredu/DigitRobot.jl
https://github.com/adubredu/DigitRobot.jl
https://github.com/adubredu/DigitRobot.jl
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Table 2. Inverse kinematic results on three kinematic chains. Our results are provided as the average of 100 samples and not based on the
most likely solution, which would improve IKNet results. For each method we present the mean across the test set as well as the Standard
Deviation. As can be seen, our method achieves best accuracy and standard deviation across all robots, and best accuracy for Digit arm
and UR5. For Franka panda, our method is compatible with the results of IKPy, but with better standard deviation.

Distance (cm) Accuracy Runtime (s)

DIGIT - Arm (4 DoFs)

Damped least squares Jacobian 8.3 ± 19.6 80.4% ± 15.9% 0.0400
IKPy 7.5 ± 16.0 79.0% ± 13.6% 0.0850

DiffNEA 28.7 ± 20.9 21.8% ± 6.5% 0.1100

MLP 12.3 ± 1.2 56.2% 0.0002
RNN 12.7 ± 11.0 53.5% ± 24.2% 0.0090
Multivariate GMMs 4.4 ± 3.7 92.3% ± 12.7% 0.0020

IKNet 2.3 ± 1.7 99.5% ± 1.3% 0.0070

UR5 (6 DoFs)

Damped least squares Jacobian 10.9 ± 22.3 76.2% ± 40.9% 0.2000
IKPy 6.5 ± 15.4 81.7% ± 9.9% 0.1200
DiffNEA 36.4 ± 24.5 15.3% ± 4.8% 0.1100

MLP 59.1 ± 0.9 2.6% 0.0002
RNN 5.7 ± 8.9 84.7% ± 7.4% 0.0090
Multivariate GMMs 5.0 ± 3.8 89.8% ± 15.5% 0.0050

IKNet 2.8 ± 2.1 98.8% ± 1.9% 0.0120

Franka (7 DoFs)

Damped least squares Jacobian 4.4 ± 13.3 88.7% ± 6.8% 0.1100
IKPy 2.1 ± 7.6 91.2% ± 6.3% 0.1650
DiffNEA 22.8 ± 18.4 29.4% ± 8.9% 0.1100

MLP 57.7 ± 1.12 5.4% 0.0003
RNN 4.9 ± 6.1 84.7% ± 7.4% 0.0200
Multivariate GMMs 6.5 ± 4.6 82.1% ± 16.8% 0.0100

IKNet 3.1 ± 2.6 98.0% ± 2.0% 0.0300

can, therefore, be applied sequentially to the positions along
the end effector’s path to obtain a smooth trajectory in the
joint space.

Comparing the Euclidean error in the end effector positions,
the paths we generate obtain a similar average error to that of
IKPy (3.0cm). However, for our method this is an average
over 100 different paths and not the results for the best
path, while for IKPy it is the result for the single path that
starts at the ground truth joint position and varies smoothly
(an ideal setting for IKPy). When selecting the generated
path with the highest fidelity among all 100 generated paths
(still considerably faster than running IKPy), we obtain an
average error of 1.8 cm.

Fig. 4 presents the multiple trajectories obtained per a single
target sequence X. As can be seen, the generated paths

present a high degree of variability.

5.4. Robustness and few-shot learning

Since our model is learning-based and since it employs a
sampling-based approach, it can naturally model noisy robot
dimensions. To demonstrate this we created a set of 55 4-
jointed 3D arms that differ by at most ±20% in the length of
each segment of the chain. We then learn one IKNet per arm
and one based on the entire data. At test time, we sample
10 new random arms and evaluate the 55 single arm models
and the one trained on the entire dataset.

Out of the 55 random models, some are more similar than
others and are ranked by the accuracy (the error ranges
between 2.1-3.6cm, on average). The model that we train
on the entire data is, on average, at the 75th percentile of the



IKNet

0.4
0.2 0.6

0.5
0.4

0.2
0.3
0.4
0.5

0.4
0.2

0.0 0.7
0.6

0.5
0.4

0.3
0.4
0.5

0.0 0.2 0.4 0.30
0.25

0.20

0.1
0.2
0.3

0.2 0.10.0 0.1 0.3
0.2

0.1

0.6
0.8

0.2 0.0 0.2 0.1
0.0

0.1
0.2

0.5
0.6
0.7

0.2
0.1

0.0 0.50
0.25

0.00
0.25

0.4
0.6

0.2 0.3 0.4 0.10
0.05

0.00
0.05

0.3

0.4

0.4
0.2

0.0 0.3
0.2

0.1
0.0

0.5

0.6

0.7

0.6 0.4 0.20.0
0.1

0.0

0.1
0.2
0.3

0.0 0.1
0.2 0.00

0.05
0.10

0.15

0.1
0.2
0.3

Figure 4. Path following. Given a sequence of end effector locations, we use a path following method in order to recover multiple possible
trajectories. The axis of the plots represent the angles along the first three joints of the Digit arm.

results (standard deviation 6%), which is a clear indication
that the unified model learns a robust solution that matches
many random arms.

Additionally, we expect our method to have an advantage in
scenarios in which one needs to learn to perform IK from a
few real measurements. To test this, we propose to leverage
transfer learning in order to tackle a very common real-
world scenario, in which a given robot deviates from the
specifications.

We learn an IK model MA for a 3D kinematic chain with 4
joints (“arm A”) based on 100K samples. Then, we sample
a new arm (“arm B”) in which the segment lengths vary
randomly by up to ±20% from the original design. We then
fine-tune MA based on samples from arm B, obtaining
model MB .

The results are presented in Fig. 5. Applying MA on the
test set of arm B yields an error of 3.62cm (dashed blue
line). Training on 100K samples for arm B yields 1.84cm
(dashed blackline). With 1K samples, the finetuned model
MB obtains a similar error of 1.92cm, while a model trained
from scratch with the same number of samples has a much
higher error of 9.26cm. Evidently, with a relatively small
number of training points, one reaches the same level of
accuracy that can be obtained from 100K samples of arm B.

5.5. Learning Seq2Seq mapping

Lastly, in order to demonstrate that the representation
learned by IKNet is powerful, we consider the task of
learning to map a single sequence of effector poses X =
[x1, x2, . . . , x100] to a sequence of joint angles Y =
[y1, y2, . . . , y100]. For this seq2seq task, we employ a Trans-
former (Vaswani et al., 2017).

The transformer is trained on 10k pairs of matching se-
quences, each of length 100, from the UR5 chain. We
compare two variants. In the first, the transformer is trained
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Figure 5. The number of training points during the training (ma-
genta) or fine-tuning (cyan) phase of arm B vs. the forward kine-
matics error (cm) on the test-set of arm B.
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Figure 6. Convergence plots when training a sequence to sequence
transformer model based either on the sequence of the end effector
positions (red) or its embedding by network f (blue).

to map X to Y directly. In the second, we employ repre-
sentation obtained by f ′, which is the mapping between an
input of network x and the activations of the last layer of f ,
before the N projections to the weights of the networks gk.
In this case, the sequence to sequence problem learned is
between f ′(X) = [f(x1), f(x2), . . . , f(x100)] and X.

We employ a 6-layers deep Transformer encoder, with 8
attention heads. We also use an embedding of size 128, as
our hypernetwork embedding size. When training with raw
inputs, a trainable linear layer projecting the 3-dimensional
input to 128 dimensions is applied, in order to allow for fair
comparison.

In order to evaluate the results, we employ a test set of 100
trajectories of (X,Y), each of length 100. The convergence
graphs for both methods are presented in Fig. 6. The plots
depict the mean squared Euclidean error on the test set per
epoch. We stopped training the transformer model with the
IKNet representation after 80 epochs, since it converged
faster. Therefore, the two plots are of different lengths. Evi-
dently, employing the IKNet representation leads to faster
convergence and to an overall lower error.

6. Discussion
The most successful baseline methods are designed to pro-
vide one IK solution, given an initial position from which
optimization starts. In contrast, variability is natural in our
model, which is a feed-forward model and not an iterative
optimization model.

The runtime of the method is a good indicator of its appli-
cability. Reductio ad absurdum, without any limit on the
runtime or the number of restarts, almost all optimization
methods would reach optimal results and fully characterize
the solution space. In the experiments, we relied on the
default parameters provided in the implementation of each
method. In the same vain, it is possible to use an optimiza-
tion method on top the solutions provided by IKnet and

obtain negligible MSEs. We avoid this in order to provide
the raw results as returned by this neural model.

The more degrees of freedom the kinematic chain has, the
easier it is for an optimization method to find a single valid
vector of joint angles, given the end effector’s location. How-
ever, modeling the ambiguity, which is the task solved by
our network, becomes more difficult. In the Digit arm and
UR5 experiment, where there are 4 and 6 DOF, respectively,
our advantage over the baselines is more pronounced than it
is for Franka with 7 DOF.

Characterization of the entire probability distribution can
also help achieve what is called robust inverse kinemat-
ics (Sinha & Chakraborty, 2019). In this setting, one would
like to select the IK solution that is the most stable with
respect to errors in the joint angles. A robust solution is
one such that the entire ball in joint angle space (where
y resides) leads to end effector positions within a certain
tolerance of the desired position and angle (x).

7. Conclusions
We present a neural IK model that can capture the inherent
one-to-many ambiguity of the problem, while training on a
dataset with one-to-one samples. The architecture consists
of a single hypernetwork and a sequence of primary matrices.
Making use of the hierarchical nature of the problem, each
joint is sampled from a GMM that is conditioned on the
samples performed for the previous joints in the kinematic
chain.

Having an accurate feed forward model that supports mul-
tiple outputs has a few advantages, which we demonstrate.
First, the solution is extremely efficient at run-time. Second,
it entails an effective representation of the Cartesian posi-
tions. Third, one can use such a model to obtain multiple
smooth paths. In addition, while not demonstrated here,
having a differentiable model allows it to be incorporated as
a module in a complex network during inference or as part
of a loss at training time.
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Peters, J. Learning inverse kinematics with structured
prediction. In 2011 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 698–703, 2011.
doi: 10.1109/IROS.2011.6094666.
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