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Abstract
We study decision making problems in which an
agent sequentially interacts with a stochastic envi-
ronment defined by means of a tree structure. The
agent repeatedly faces the environment over time,
and, after each round, it perceives a utility and a
cost, which are both stochastic. The goal of the
agent is to learn an optimal strategy in an online
fashion, while keeping costs below a given safety
threshold at the same time. Our model naturally
fits many real-world scenarios, such as, e.g., oppo-
nent exploitation in games and web link selection.
We study the hard-threshold problem of achiev-
ing sublinear regret while guaranteeing that the
threshold constraint is satisfied at every iteration
with high probability. First, we show that, in gen-
eral, any algorithm with such a guarantee incurs in
a linear regret. This motivates the introduction of
a relaxed problem, called the soft-threshold prob-
lem, in which we only require that the cumulative
violation of the threshold constraint grows sublin-
early, and, thus, we can provide an algorithm with
sublinear regret. Next, in the hard-threshold prob-
lem, we show how a sublinear regret algorithm
can be designed under the additional assumption
that there exists a known strategy strictly satisfy-
ing the threshold constraint. We also show that
our regret bounds are tight. Finally, we cast the
opponent exploitation problem to our model, and
we experimentally evaluate our algorithms on a
standard testbed of sequential games.

1. Introduction
Tree-form sequential decision making models situations in
which an agent interacts with an environment in a multi-
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stage process. The agent-environment interaction is sequen-
tial, and it can be represented with a tree structure made
by: (i) decision nodes where the agent takes actions; and
(ii) observation nodes in which the agent observes signals
from the environment. This kind of interaction naturally
models the decision-making problem faced by an agent
in extensive-form (i.e., sequential) games, which have re-
cently received a terrific attention from the AI and machine
learning community; see, e.g., the superhuman agents devel-
oped for two-player (Brown & Sandholm, 2018) and multi-
player (Brown & Sandholm, 2019) no-limit Texas hold’em
Poker, Go (Silver et al., 2016), and Starcraft II (Vinyals
et al., 2019). Moreover, it also fits many real-world sce-
narios, such as, e.g., multi-level web link selection, path
routing in telecommunication networks, robot patrolling,
and mission planning in military settings.

In spite of the popularity gained by sequential decision mak-
ing problems over the last years, most of the works on the
topic focus on the basic (unconstrained) online learning
problem faced by a utility-maximizing agent that repeatedly
plays the decision making process. However, these works
do not account for the case, which is common in safety-
critical systems, where agent’s decisions at each round are
subject to safety constraints depending on unknown param-
eters. For instance, these constraints are crucial for many
cyber-physical systems with humans in the loop, such as,
e.g., autonomous driving, power grids management, and
opponent exploitation in games. While safety constraints
have been widely studied in one-shot decision making prob-
lems (see, e.g., (Usmanova et al., 2019)), to the best of our
knowledge our work is the first one addressing online learn-
ing with safety constraints in general tree-form sequential
decision making settings.

1.1. Original Contributions

We study stochastic tree-form sequential decision making
processes with costs (compactly referred to as SDMCs). In
an SDMC, at the end of each sequential interaction, the
agent perceives a utility and a cost. In our model, both
utilities and costs are stochastic, as well as how the envi-
ronment evolves determining signals perceived by the agent
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at observation nodes. The goal of the agent is to learn an
optimal strategy in an online fashion by repeatedly playing
the SDMC, while keeping the expected cost below a given
safety threshold at the same time. In this work, we make
minimal assumptions on the feedback received by the agent,
which, beside realized utilities and costs, only encompasses
the sequence of decision nodes and signals encountered
while playing the SDMC.

We address the hard-threshold problem of achieving sub-
linear regret in the number of rounds T while being δ-safe
for any given δ ∈ (0, 1), which means that the threshold
constraint is satisfied at every iteration with probability at
least 1 − δ. We provide an impossibility result for the
hard-threshold problem stating that any δ-safe algorithm
must incur in a linear regret with high probability. This
motivates the introduction of a relaxed problem, called the
soft-threshold problem, in which we only require that the
cumulative violation of the threshold constraint grows sub-
linearly. For this problem, we provide a UCB-inspired
algorithm attaining sublinear regret, which, at each round,
plays the SDMC according to a randomized strategy ob-
tained by solving a linear program (LP) that computes an
optimal and safe agent’s strategy using upper and lower
bounds for utilities and costs, respectively. Such bounds
are built using specifically crafted estimates of utilities and
costs, so as to leverage the tree structure of the SDMC and
formulate the optimization problem as an LP. Then, we
switch back to the hard-threshold problem, where we show
that, surprisingly, our initial negative result can be circum-
vented by introducing the additional, reasonable assump-
tion that the agent knows a strategy that is always strictly
safe. Such an assumption allows us to design a δ-safe al-
gorithm with sublinear regret, which works by solving the
same LP used in the soft-threshold algorithm, but plays a
different strategy that is obtained by properly combining
the solution of the LP with the always-strictly-safe strat-
egy. Moreover, for both our algorithms, we provide lower
bounds showing that their guarantees are tight. Finally, we
cast the utility-constrained opponent exploitation problem
recently introduced by Bernasconi-de-Luca et al. (2021) to
our model, and we experimentally evaluate our algorithms
on a standard testbed of sequential games.

1.2. Related Works

The problem of safe learning has been widely studied in
the online learning literature, even if most of the works
on the topic consider one-shot decision making problems.
See, e.g., the works on multi-armed bandits with linear con-
straints (Chen et al., 2018; Saxena et al., 2020) and their
extension to linear bandits (Usmanova et al., 2019; Amani
et al., 2020; Liu et al., 2021; Pacchiano et al., 2021). To
the best of our knowledge, the only work addressing safe
learning in a multi-armed bandit with a sequential structure

is that by Chen et al. (2018). However, they consider a spe-
cific structure, which is a bi-level decision making problem
modeling a web link selection process. Our model subsumes
theirs and it can be applied to much more general sequential
settings. Let us also remark that the techniques developed
for safe learning in linear bandits assume a specific structure
of the feedback, which only depends on the agent’s decision,
a fixed environment parameter, and an additional random
noise. Instead, our model assumes that each feedback is de-
termined by the signals sampled by the environment during
the sequential decision process. Even if these two feedbacks
are equivalent in expectation, they are different random vari-
ables, and this renders the techniques used for linear bandits
inapplicable in our setting.

Tree-form sequential decision making problems were origi-
nally introduced by Farina et al. (2021) and Farina & Sand-
holm (2021), who focus on adversarial decision-making
problems. Our setting significantly differs from theirs in
two crucial aspects: (i) we add costs, which are associated to
terminal nodes of the tree structure; and (ii) we assume that
the environment is stochastic, i.e., that utilities, costs, and
signals are randomly drawn according to some probability
distributions. Notice that assuming an adversarial environ-
ment in our setting with costs makes our goal of designing
δ-safe algorithms unfeasible, unless one resorts to strong,
unreasonable assumptions. Indeed, the features of SMDCs
render our learning problem considerably different from the
adversarial problems described above, and, thus, our tech-
niques are more akin to those used in safe online learning
than those adopted by Farina et al. (2021) and Farina &
Sandholm (2021).

2. Preliminaries
In SDMCs, a utility-maximizing agent interacts with a
stochastic environment by taking sequential decisions sub-
ject to costs. The interaction underlying an SDMC is defined
by a finite tree, whose set of nodesK is partitioned into three
disjoint subsets: (i) the set I of decision nodes, in which the
agent takes decisions; (ii) the set J of observation nodes,
where the agent receives signals from the environment; and
(iii) the set Z of terminal nodes, in which the SDMC ends.
For every decision node i ∈ I, we denote by Ai the finite
set of actions available to the agent at i, while, for every ob-
servation node j ∈ J , we let Sj be the finite set of possible
signals that the agent may receive at j.

The dynamics of an SDMC is as follows. When the agent
takes an action in a decision node i ∈ I, then the process
transitions to one of the children of node i, depending on the
chosen action a ∈ Ai. The same happens, on the environ-
ment side, for a given observation node j ∈ J and signal
s ∈ Sj . The interaction ends whenever a terminal node
z ∈ Z is reached. The environment draws signals at each
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Figure 1. Example of an SDMC representing a Kuhn Poker game
with 3 ranks and an additional action (forfeit). Black rounded nodes
represent decision nodes, white rounded nodes are observation
nodes, and gray squared nodes are terminal nodes. Labels on the
edges correspond to actions played by the agent or signals sent by
the environment (ch stands for check, r for raise, f for fold, and
ca for call). Finally, J, Q, and K represent the card dealt by the
environment to the agent, i.e., Jack, Queen, and King, respectively.

observation node according to some probability distribution
that is unknown to the agent. Formally, we let ρjs ∈ [0, 1]
be the probability of signal s ∈ Sj at observation node
j ∈ J , so that

∑
s∈Sj

ρjs = 1 for all j ∈ J . In what fol-
lows, by a slight abuse the notation, given any terminal node
z ∈ Z we let ρ(z) be the probability of reaching z due to
environment transitions only, i.e., ρ(z) is the product of the
probabilities ρjs of all the pairs j ∈ J , s ∈ Sj encountered
on the path from the root of the tree to z. Figure 1 shows
an example of SMDC corresponding to the tree of Kuhn
poker with 3 cards (Kuhn, 2016). In an SDMC, utilities and
costs are unknown to the agent and modeled by means of
bounded random variables. Formally, each terminal node
z ∈ Z is associated with two random variables, namely Uz
and Cz , which are both bounded in the interval [a, b]. For
ease of notation, we let ∆ := b− a.

Any node k ∈ K identifies a sequence of agent’s actions,
which are those encountered on the path from the root of the
tree to that node. We denote such a sequence as σ(k). As
customary in the literature (see, e.g., (Farina et al., 2021)),
we adopt the notation (i, a) to denote the sequence obtained
by appending action a ∈ Ai to the sequence σ(i) identified
by node i ∈ I. Then, Σ := {(i, a) | i ∈ I, a ∈ Ai} ∪ {∅}
is the set of all sequences, where ∅ is the empty sequence
identified by the root of the tree. With a slight abuse of
notation, we use σ to denote a generic sequence σ ∈ Σ.

Strategy Representation. An agent’s strategy in an
SDMC defines a probability distribution over the actions
that are available at each decision node. In this work, we
represent strategies by exploiting the widely-used sequence-

form representation (von Stengel, 1996; Koller et al., 1996).
In such a representation, a strategy is encoded by a vector
x ∈ R|Σ|≥0 indexed over the set of sequences Σ, where, intu-
itively, the element x[σ] associated with sequence σ ∈ Σ ex-
presses the realization probability of that specific sequence
of agent’s actions. Then, a vector x ∈ R|Σ|≥0 is a valid
sequence-form strategy if it satisfies the following linear
constraints:

x[∅] = 1, x[σ(i)] =
∑
a∈Ai

x[(i, a)] ∀i ∈ I. (1)

The set of linear constraints in Equation (1) character-
izes the polytope of all the valid sequence-form strategies,
which, from now on, is denoted as X . For compactness,
we introduce a matrix F ∈ {−1, 0, 1}|I|×|Σ| and a vec-
tor f ∈ {0, 1}|I| such that the sequence-form polytope is
formally defined as:1

X :=
{
x ∈ R|Σ|≥0 | Fx = f

}
.

Furthermore, let Π := X ∩ {0, 1}|Σ| be the set of agent’s
pure strategies, i.e., those deterministically prescribing a
single action at each decision node. It is immediate to check
that X can be written as the convex hull of the set of pure
strategies, namely X := co Π.

Expected Utilities and Costs. The sequence-form repre-
sentation allows us to write the expected utilities and costs
as linear functions of the agent’s strategy. Given x ∈ X , the
expected utility u(x), respectively the expected cost c(x), is
the sum of the expectations of random variables Uz , respec-
tively Cz , over all the terminal nodes z ∈ Z , weighted by
the probability of reaching such terminal nodes. Formally:

u(x) :=
∑
z∈Z

x[σ(z)] ρ(z)E[Uz],

c(x) :=
∑
z∈Z

x[σ(z)] ρ(z)E[Cz].

The expected utility u(x) can be re-written as follows:

u(x) =
∑
σ∈Σ

x[σ]

 ∑
z∈Z:
σ(z)=σ

ρ(z)E[Uz]


︸ ︷︷ ︸

=:θ?[σ]

= x>θ?,

where the vector θ? ∈ R|Σ| includes all the quantities
related to the environment appearing in the definition of
u(x). Similarly, we write c(x) = x>ω? by introduc-
ing the vector ω? ∈ R|Σ| having elements ω?[σ] :=∑
z∈Z:σ(z)=σ ρ(z)E[Cz] for all σ ∈ Σ. Finally, let us re-

mark that the vectors θ? and ω? are defined by quantities
that are unknown to the agent.

1The formal definitions of F and f are in (von Stengel, 1996).
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3. Problem Formulation
We study an online learning problem in which the agent
repeatedly interacts with the environment in an SDMC (see
Figure 2 for a graphical representation of the interaction).
We denote by T ∈ N>0 the number of rounds of the inter-
action. At each round t ∈ [T ], based on the information
collected up to round t − 1, the agent selects a strategy
xt ∈ X to be adopted at t.2 Then, the sequential decision-
making process is unfolded, with the agent employing a
pure strategy πt ∈ Π drawn according to xt.3 The process
ends upon reaching some terminal node zt ∈ Z , which is
determined by πt and the signals drawn by the environment
at observation nodes encountered down the tree. Finally, the
environment draws a utility value ut ∼ Uzt and a cost value
ct ∼ Czt from the random variables corresponding to zt,
and these are revealed to the agent together with zt.

In a repeated SDMC, the goal of the agent is twofold. First,
strategies xt have to be selected so that, with high probabil-
ity, at every round t ∈ [T ] the strategy xt satisfies a safety
constraint on its expected cost. In particular, we require that
the expected cost x>t ω

? is below a given threshold γ ∈ R.
Second, the agent has to select strategies that maximize its
performance (in terms of cumulative expected utility) with
respect to an optimal strategy satisfying the safety constraint,
i.e., computed knowing the vectors θ? and ω?.

In this work, we refer to the problem described above as the
hard-threshold problem. Formally, we let

X ? :=
{
x ∈ X | x>ω? ≤ γ

}
be the set of strategies that satisfy the safety constraint. We
assume the existence of a known feasible strategy.

Assumption 1. There exists a known always-safe strategy
x� ∈ X such that x�,>ω? ≤ γ.

This implies that the set X ? is always non-empty. Then,
we measure the performance of the agent after T rounds by
means of the following notion of regret:

RT := max
x∈X?

T∑
t=1

x>θ? −
T∑
t=1

x>t θ
?.

Moreover, we let vt := x>t ω
? − γ be the violation of the

safety constraint during round t ∈ [T ]. Thus, we formalize
the agent’s goal as that of designing an online learning
algorithm such that: (i) its regret grows sublinearly in the
number of rounds T , i.e., RT = o(T ); and (ii) it is δ-safe

2For the ease of notation, we compactly denote by [n] the set
{1, . . . , n} made by the first n ∈ N>0 natural numbers.

3The pure strategy πt is drawn according to xt by applying
a sampling scheme that selects an action at each decision node
i ∈ I of the tree according to the probability distribution defined
as xt[(i,a)]

xt[σ(i)]
for a ∈ Ai (see, e.g., (Farina et al., 2021)).

for any δ ∈ (0, 1) given as input, i.e., with probability at
least 1− δ, it holds that vt ≤ 0 for all t ∈ [T ].

As we show next, no algorithm can achieve both (i) and (ii)
without requiring additional assumptions on the SDMC set-
ting. Thus, we also introduce a relaxed version of the hard-
threshold problem, which we call soft-threshold problem.
In particular, we relax point (ii) by requiring instead that the
sum of the positive violations vt incurred by the algorithm
grows sublinearly in the number of rounds. Formally, we
define the cumulative violation up to round T as follows:

VT :=

T∑
t=1

(vt)
+
,

where (vt)
+ := max{vt, 0}, so that we can express the

requirement of the soft-threshold problem as VT = o(T ).

4. Impossibility Result
We start by providing a negative result for the hard-threshold
problem. In particular, the following theorem shows that,
in general repeated SDMCs, no learning algorithm for the
agent can achieve sublinear regret in the number of rounds
T while, at the same time, being δ-safe for any δ ∈ (0, 1)
given as input. This motivates our study of the soft-threshold
problem in Section 6. Nevertheless, in Section 7 we show
that the negative result stated in the following theorem can
be circumvented by introducing an additional assumption
on the SDMC.4

Theorem 1. In general repeated SDMCs, if an algorithm is
δ-safe for any δ ∈ (0, 1) given as input, then it incurs in a
regret RT = Ω(T ) with probability at least 1− δ.

5. Parameters Estimation
The algorithms that we propose in the following sections
rely on having access to unbiased estimators and high-
probability confidence bounds for the vectors θ? and ω?.
This section is devoted to introducing these tools.

For ease of notation, for every sequence σ ∈ Σ and round
t ∈ [T ], we define the following two subsets:

τ tert (σ) := {τ ∈ [t− 1] | σ(zτ ) = σ} ,
τpuret (σ) := {τ ∈ [t− 1] | πτ [σ] = 1} .

Intuitively, τ tert (σ) contains all the rounds up to t − 1 in
which the actions prescribed by σ are those actually played
by the agent during the SDMC, while τpuret (σ) defines all
the rounds up to t− 1 in which the pure strategy drawn by
the agent prescribed to play all the actions in σ (these are
played or not depending on the environment transitions).
Furthermore, we let nt(σ) := |τpuret (σ)| for all σ ∈ Σ.

4All the proofs are in the Appendix.
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Figure 2. Overview of the interaction between the agent and the environment in an SDMC.

5.1. Unbiased Estimators

Given the agent’s observations up to round t − 1, we de-
fine the estimators θ̂t and ω̂t for the vectors θ? and ω?,
respectively, so that, for every σ ∈ Σ:

θ̂t[σ] :=
1

nt(σ)

∑
τ∈τter

t (σ)

uτ , ω̂t[σ] :=
1

nt(σ)

∑
τ∈τter

t (σ)

cτ .

Given how θ? and ω? are defined, θ̂t and ω̂t need to jointly
estimate the probabilities ρ(z) and the expected values of the
random variables defining utilities and costs, respectively.
Intuitively, this is achieved by writing the component θ̂t[σ]
(or ω̂t[σ]), associated with sequence σ ∈ Σ as the average
of the observations of the utilities (or costs) obtained at
each round τ ∈ [t − 1] such that the pure strategy πτ
prescribed actions in σ, where each observation is weighted
by an indicator function that is equal to 1 if and only if the
terminal node zτ reached at round τ is such that σ(zτ ) = σ
(i.e., the agent actually played all the actions in σ at τ ).

The observation above is crucial to prove the following
lemma, which shows that θ̂t and ω̂t are unbiased estimators
of θ? and ω?, respectively.

Lemma 1. For any t ∈ [T ], E
[
θ̂t

]
= θ? and E

[
ω̂t

]
= ω?.

5.2. High-Probability Confidence Bounds

By observing that the components of θ̂t and ω̂t can be seen
as empirical means computed only on a subset of observa-
tions in rounds preceding t, we can derive high-probability
confidence bounds for θ? and ω?, as follows:
Lemma 2. Given a confidence level δ′ ∈ (0, 1), for every
t ∈ [T ] and σ ∈ Σ, the following bounds hold:

P
{∣∣∣θ̂t[σ]− θ?[σ]

∣∣∣ ≤ ξt[σ]
}
≥ 1− δ′,

P
{∣∣∣ω̂t[σ]− ω?[σ]

∣∣∣ ≤ ξt[σ]
}
≥ 1− δ′,

where ξt ∈ R|Σ|≥0 is a vector such that, for every σ ∈ Σ:

ξt[σ] := ∆

√
log(2/δ′)

2nt(σ)
.

Moreover, at each round t ∈ [T ], we define upper and lower
confidence bounds for the vector θ? as θt := θ̂t + ξt and
θt := θ̂t− ξt, respectively. Similarly, for the vector ω?, we
define bounds ωt := ω̂t + ξt and ωt := ω̂t − ξt.5

6. Soft–Threshold Problem
In this section, we study the soft-threshold problem in gen-
eral repeated SDMCs. In Section 6.1, we provide an algo-
rithm that achieves cumulative regret and violation that grow
sublinearly in the number of rounds T . Then, in Section 6.2,
we prove a lower bound for the problem showing that the
bounds of our algorithm are tight with respect to T .

6.1. The Algorithm for the Soft–Threshold Problem

Our algorithm for the soft-threshold problem (Algorithm 1)
works by applying a confidence-bound-based approach that
exploits the sequence-form strategy space of SDMCs. Its
core idea is to select the strategy to play at each round by
considering upper and lower bounds on utilities and costs,
respectively. In particular, at each round t ∈ [T ] and given
a threshold γ ∈ R, our algorithm works by solving the
following linear program LP(θt,ωt) parametrized by the
vector of upper bounds θt and that of lower bounds ωt.

LP(θt,ωt) :=


max
x<0

x>θt s.t.

Fx = f

x>ωt ≤ γ
.

The LP above computes an agent’s strategy maximizing the
upper bounds on utilities defined by θt subject to a safety
constraint evaluated with the lower bounds ωt on costs.

Algorithm 1 takes a threshold γ, a number of rounds T , a
confidence δ ∈ (0, 1), and an always-safe x� ∈ X ?.6 Then,
at each round t ∈ [T ], the algorithm solves LP(θt,ωt). If
there exists an optimal solution xt to the linear program, it

5In the rest of this work, for ease of notation, we omit the
dependence of ξt, θt, θt, ωt, and ωt from the confidence level
δ′ ∈ (0, 1), as the latter will be specified when needed.

6Indeed, Algorithm 1 also works without knowing an always-
safe strategy x�, by playing any x ∈ X instead.
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Algorithm 1 Algorithm for the soft-threshold problem

Require: γ ∈ R, T ∈ N>0, δ ∈ (0, 1), x� ∈ X ?
t← 1;
Initialize θ1[σ]←∞ and ω1[σ]← −∞ for all σ ∈ Σ
while t ≤ T do

if LP(θt,ωt) is feasible then
xt ← optimal solution to LP(θt,ωt)

else
xt ← x�

end if
Play the SDMC by using strategy xt
Observe terminal node zt, utility ut, and cost ct
Compute θt+1,ωt+1 using confidence δ′ = δ

4T |Σ|
t← t+ 1

end while

is used when playing the SDMC. Otherwise, if LP(θt,ωt)
is unfeasible, then the algorithm adopts x�, which is the
always-safe strategy in X known to the agent by assumption.
Finally, the algorithm observes zt, ut, and ct as feedbacks
from playing the SDMC, and it employs them to update
the bounds θt+1 and ωt+1, which are used by the linear
program solved by the algorithm during the next round.

Notice that, during rounds t ∈ [T ] in which LP(θt,ωt)
is unfeasible, playing the alway-safe strategy x� does not
provide any guarantee on the regret the algorithm attains.
Nevertheless, as we show in our proofs, the linear program
is unfeasible with low probability, and, thus, this event does
not hinder the overall regret guarantees.

The theoretical guarantees of Algorithm 1 are stated in the
following Theorem 2. Let us remark that the theorem pro-
vides cumulative regret and violation bounds that hold with
high probability 1− δ. All of our regret bounds also hold in
expectation by taking δ ∝ 1

T .
Theorem 2. In a general repeated SDMC, Algorithm 1 with
δ ∈ (0, 1) and T ∈ N>0 as inputs guarantees that, with
probability at least 1− δ, the following bounds hold:

RT ≤ 4∆|Σ|
√

2T log(2/δ), VT ≤ 4∆|Σ|
√

2T log(2/δ).

The central result that enables us to prove Theorem 2 is
stated in the following technical lemma:
Lemma 3. The strategies xt ∈ X selected by Algorithm 1
with δ ∈ (0, 1) and T ∈ N>0 as inputs are such that, with
probability at least 1− δ

2 , it holds:

T∑
t=1

x>t ξt ≤ 2∆|Σ|
√

2T log (2/δ).

Intuitively, Lemma 3 states that the uncertainty on the utili-
ties/costs of strategies xt played by Algorithm 1 concentrate
at a rate of O(1/

√
T ).

6.2. Lower Bound for the Soft–Threshold Problem

Next, we prove that the regret and violation bounds of Algo-
rithm 1 are tight. In particular, we show that any algorithm
that attains cumulative violation VT that grows “too slowly”
with the number of rounds T would incur in a regret linear
in T . The following theorem formalize this statement.

Theorem 3. In general repeated SDMCs, if an algorithm
guarantees VT = o(

√
T ) with probability at least 1 − δ

for any δ ∈ (0, 1
3 ) given as input, then it incurs in a regret

RT = Ω(T ) with probability at least 1− 3δ.

Notice that Theorem 3 shows that the bounds achieved by
Algorithm 1 are tight. Indeed, it is always the case that
RT = Ω(

√
T ) (it can be proven by considering an instance

in which all the sequences have cost strictly less than γ),
and Theorem 3 proves that one cannot improve the bound
VT = O(

√
T ) without incurring in a linear regret.

7. Hard–Threshold Problem
In this section, we switch the attention to the hard-threshold
problem. By Theorem 1, in this case we cannot design an
algorithm that is δ-safe for any δ ∈ (0, 1) while attaining
sublinear regret in T . To circumvent such a negative re-
sult, as we show next, we need to introduce the additional,
stringent assumption that the always-safe strategy x� ∈ X ?
known to the agent is strictly safe. Formally:

Assumption 2. There exists a known always-strictly-safe
strategy x� ∈ X , which is such that x�,>ω? = γ − λ for
some λ ∈ R>0 that is known to the agent.

Notice that Assumption 2 is reasonable in many real-world
settings, where x� can be thought of as a strategy represent-
ing the case in which the agent avoids playing the SDMC.

In Section 7.1, by leveraging Assumption 2, we provide
our algorithm for the hard-threshold problem, while, in
Section 7.2, we show that its regret bound is tight.

7.1. The Algorithm for the Hard–Threshold Problem

Our algorithm for the hard-threshold problem (Algorithm 2)
exploits Assumption 2 to balance the amount of exploration
needed to attain sublinear regret with the requirement of
being δ-safe. Its core idea is to select, at each t ∈ [T ], a
strategy xt that is obtained as a convex combination of the
always-strictly-safe strategy x� and a strategy x̃t obtained
by solving LP(θt,ωt). This procedure allows the algorithm
to ensure that, with high probability, xt satisfies the safety
constraint, since the strategy x̃t, which is the one that Al-
gorithm 1 would have selected, does not guarantee that. In
particular, the mixing probability pt is chosen in such a way
that, even considering the upper bounds for ω?, the convex
combination of x� and x̃t satisfies the safety constraint.



Safe Learning in Tree-Form Sequential Decision Making: Handling Hard and Soft Constraints

Algorithm 2 Algorithm for the hard-threshold problem

Require: γ ∈ R, T ∈ N>0, δ ∈ (0, 1), λ > 0,x� ∈ X ?
t← 1;
Initialize θ1[σ]←∞, ω1[σ],ω1[σ]← −∞ for σ ∈ Σ
while t ≤ T do

if LP(θt,ωt) is feasible then
x̃t ← optimal solution to LP(θt,ωt)

else
x̃t ← x�

end if

pt ←
{

min{x̃>
t ωt,∆}−γ

min{x̃>
t ωt,∆}−γ+λ

if x̃>t ωt − γ > 0

0 if x̃>t ωt − γ ≤ 0.

xt ← ptx
� + (1− pt)x̃t

Play the SDMC by using strategy xt
Observe terminal node zt, utility ut, and cost ct
Compute θt+1,ωt+1,ωt+1 using δ′ = δ

4T |Σ|
t← t+ 1

end while

The following theorem provides guarantees for Algorithm 2.

Theorem 4. In repeated SDMCs satisfying Assumption 2,
Algorithm 2 with δ ∈ (0, 1) and T ∈ N>0 as inputs is δ-safe
and, with probability at least 1− 2δ, the following holds:

RT ≤ C +
6

λ
∆2|Σ|

√
2T log (2/δ),

where C is a term independent from T .

Notice that requiring δ-safeness introduces an extra ∆/λ
factor multiplying the

√
T term to the regret bound obtained

in Theorem 2. Indeed, as we show in the following subsec-
tion, the dependence of the

√
T term on 1/λ is necessary.

7.2. Lower Bound for the Hard–Threshold Problem

We conclude the section by showing that the regret bound
attained by Algorithm 2 is asymptotically—in the parameter
T—tight with respect to the parameters λ and T .

Theorem 5. In repeated SDMCs satisfying Assumption 2,
if an algorithm is δ-safe for any δ ∈ (0, 1) given as input,
then it incurs in a cumulative regret RT = Ω( 1

λ

√
T ) with

probability at least 3
4 − δ.

8. Application to Sequential Games
In this section, we apply our algorithms in sequential game
settings captured by the repeated SDMC model. In partic-
ular, in Section 8.1, we formulate the utility-constrained
opponent exploitation problem introduced by Bernasconi-
de-Luca et al. (2021) as an instance of our hard-threshold
problem. Then, in Section 8.2, we experimentally evalu-
ate our hard-threshold algorithm (Algorithm 2, abbreviated

with HT) on a standard testbed of Poker-inspired sequen-
tial games, comparing them with the algorithm proposed
by Bernasconi-de-Luca et al. (2021). Finally, we report
additional experimental results evaluating our algorithm for
the soft-threshold problem (Algorithm 1, abbreviated with
ST) in Appendix E.

8.1. SDMCs for Constrained Opponent Exploitation

The tree structure underlying an SDMC can be easily shaped
so as to represent the two-player extensive-form games stud-
ied by Bernasconi-de-Luca et al. (2021).7 In particular, they
study games in which one player, say Player 1, repeatedly
faces an opponent, say Player 2, whose behavior follows a
fixed, unknown stochastic strategy. The goal of Player 1 is
to exploit the opponent (i.e., maximizing their expected util-
ity) while at the same time guaranteeing that the expected
utility of the opponent remains above a given threshold.

Intuitively, the model by Bernasconi-de-Luca et al. (2021)
naturally fits into our framework, as follows:

• Player 1’s utilities are mapped to utilities of the SDMC,
while Player 2’s utilities corresponds to its costs.

• The information sets of Player 1 are mapped one-to-
one to the decision nodes of the SDMC.

• The observation nodes of the SDMC are arranged
so that their signals represent (stochastic) actions of
Player 2 and chance that are observable by Player 1.

• The stochasticity of all the other unobservable actions
(of both Player 2 and chance) is encoded into the ran-
dom variables defining utilities and costs in the SDMC.

We refer the reader to Figure 1 for an example of SDMC
resulting from a simple Poker game instance.

Notice that, in the work by Bernasconi-de-Luca et al. (2021),
it is required that the constraint on the opponent’s utility be
satisfied at each round with high probability. This matches
the requirement of our hard-threshold problem. Thus, in this
case, we can directly compare the HT algorithm with the
COX-UCB algorithm by Bernasconi-de-Luca et al. (2021).

Differences between the HT algorithm and COX-UCB.
There is a crucial difference between our HT algorithm and
COX-UCB. In particular, the latter requires perfect observ-
ability of the opponent’s private information at the end of
each episode. This significantly limits the applicability of
the algorithm, as there are many games in which private
information is not publicly revealed (e.g., in Poker, when a
player folds their private cards are not revealed to the other

7We refer the reader to the book by Shoham & Leyton-Brown
(2008) for further details on extensive-form games.
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Figure 3. Experimental results for the hard-threshold problem. From left to right, the plots show the results for K5, K7, and L2 games.

players). On the other hand, our algorithm does not require
knowledge of the opponent’s private information, and, thus,
it can be applied to a wider range of real-world sequential
games than the COX-UCB algorithm.

8.2. Experiments for the Hard–Threshold Problem

We evaluate the algorithms on a testbed of Kuhn and Leduc
Poker games, which is commonly used in the literature on
sequential games.

Setting. We conduct experiments on Kuhn Poker with
5 and 7 ranks (called K5 and K7, respectively) and on
Leduc Poker with 4 seeds and 2 ranks (called L2).8 In
order to adhere to the assumption on the existence of an
always-strictly-safe strategy x� (Assumption 2), we enrich
the games of Kuhn and Leduc Poker with a forfeit action
causing the loss of the agent’s bet without entering the game.
Notice that a similar assumption is required by COX-UCB,
as the optimization problem solved at each iteration by the
algorithm needs to be always feasible (Bernasconi-de-Luca
et al., 2021). In the experiments, we set γ = 0.3, while
the values of [α, β] for COX-UCB utility constraints are
set to α = −0.3 and β = +∞, respectively. All the opti-
mization problems are solved by means of Gurobi (Gurobi
Optimization, LLC, 2021). Moreover, we also compare the
algorithms with an additional baseline (called Random-Safe,
or RS for short), which selects a random strategy from a set
of strategies that are safe with respect to the upper bounds on
the costs, and, thus, safe with high probability. For further
experimental results we refer the reader to Appendix E.

8Notice that these games are zero-sum, and, thus, requiring
that the opponent’s utility remains above a given threshold as in
the framework by Bernasconi-de-Luca et al. (2021) is achieved
in our model by letting the costs be equal to the opposite of the
opponent’s utility, which coincides with the agent’s utility.

Results. We report in Figure 3 the results of running the
HT, COX-UCB, and RS algorithms on K5, K7, and L2.
As the plots show, our HT algorithm matches the perfor-
mances (in terms of cumulative regret) of the COX-UCB
algorithm. This is surprising since, as we discussed earlier,
COX-UCB has much more information available than our
algorithm. Indeed, this information advantage enables COX-
UCB to incur in lower regret than HT in the first rounds,
but then the cumulative regrets incurred by the two algo-
rithms are comparable. Moreover, let us remark that, while
the COX-UCB algorithm requires the solution of a bilinear
optimization problem at each iteration, our HT algorithm
only calls for the solution of an LP, thus requiring much less
pre-round computational burden. These results elect our HT
algorithm as the most appealing method to be applied in
utility-constrained opponent exploitation problems. Finally,
as shows in Figure 3, let us remark that our HT algorithm
empirically satisfies the safety constraint at each round, thus
validating our theoretical analysis.

9. Conclusions and Future Works
We studied, for the first time, safe learning in tree-form se-
quential decision making problems with stochastic utilities
and costs. Our work paves the way to the application of
tree-form sequential decision making to several real-world
scenario, where being able to satisfy safety constraints is
crucial, due to, e.g., the presence of humans in the loop.

Future research could investigate other forms of safety,
such as, e.g., guaranteeing better performances with re-
spect to a baseline (Garcelon et al., 2020; Yang et al., 2021;
Bernasconi de Luca et al., 2021), ensuring monotonic im-
provements of the learned strategy (Garcıa & Fernández,
2015), and budget constraints (Badanidiyuru et al., 2013;
Immorlica et al., 2019; Castiglioni et al., 2022).
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M. Conservative online convex optimization. In Joint Eu-
ropean Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 19–34. Springer, 2021.

Brown, N. and Sandholm, T. Superhuman ai for heads-up
no-limit poker: Libratus beats top professionals. Science,
359(6374):418–424, 2018.

Brown, N. and Sandholm, T. Superhuman ai for multiplayer
poker. Science, 365(6456):885–890, 2019.

Castiglioni, M., Celli, A., and Kroer, C. Online learning
with knapsacks: the best of both worlds. In International
Conference on Machine Learning. PMLR, 2022.

Cesa-Bianchi, N. and Lugosi, G. Prediction, learning, and
games. Cambridge university press, 2006.

Chen, K., Cai, K., Huang, L., and Lui, J. C. Beyond the
click-through rate: web link selection with multi-level
feedback. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence, pp. 3308–3314,
2018.

Farina, G. and Sandholm, T. Model-free online learning
in unknown sequential decision making problems and
games. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 35, pp. 5381–5390, 2021.

Farina, G., Schmucker, R., and Sandholm, T. Bandit
linear optimization for sequential decision making and
extensive-form games. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pp. 5372–
5380, 2021.

Garcelon, E., Ghavamzadeh, M., Lazaric, A., and Pirotta,
M. Improved algorithms for conservative exploration
in bandits. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 3962–3969, 2020.

Garcıa, J. and Fernández, F. A comprehensive survey on safe
reinforcement learning. Journal of Machine Learning
Research, 16(1):1437–1480, 2015.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2021. URL https://www.gurobi.com.

Immorlica, N., Sankararaman, K. A., Schapire, R., and
Slivkins, A. Adversarial bandits with knapsacks. In 60th
IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2019, pp. 202–219. IEEE Computer Soci-
ety, 2019.

Koller, D., Megiddo, N., and von Stengel, B. Efficient
computation of equilibria for extensive two-person games.
Games and Economic Behavior, 14:247–259, 1996.

Kuhn, H. W. 9. a simplified two-person poker. In Contri-
butions to the Theory of Games (AM-24), Volume I, pp.
97–104. Princeton University Press, 2016.
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Appendix
The appendix includes all the proofs omitted from the paper and additional experimental results.

A. Proofs Omitted from Section 4
Theorem 1. In general repeated SDMCs, if an algorithm is δ-safe for any δ ∈ (0, 1) given as input, then it incurs in a regret
RT = Ω(T ) with probability at least 1− δ.

Proof. In order to prove the result, we consider two instances of SDMC, defined as follows. Both of them feature a single
decision node of the agent, where there are 3 actions available, and no observation point. Thus, other than the empty
sequence ∅, there are 3 different (one-action) sequences, namely Σ = {∅, σ1, σ2, σ�}. The sequence σ� is added only to
guarantee that there always exists a strategy in X that satisfies the safety constraint. Instead, the other sequences characterize
the two instances. In particular, instance i(i) for i ∈ {1, 2} is specified as follows:

i(i) :=


θ?[σi] = 1

2 , ω
?[σi] = 1

2

θ?[σj ] = 1
2 , ω

?[σj ] = 1
2 + ε, j ∈ {1, 2} \ {i}

θ?[σ�] = 0, ω?[σ�] = 1
2 .

For all the instances we let γ = 1
2 . Notice that, in each instance, we can define Uz and Cz as Bernoulli random variables

with suitable parameters, so that their expected values correctly define vectors θ? and ω?. Moreover, in the rest of the proof,
we denote by P(i) the probability measure of instance i(i), encompassing the randomization of both the SDMC and the
algorithm (Lattimore & Szepesvári, 2020).

Any algorithm that is δ-safe for any δ ∈
(
0, 1

2

)
given as input, when executed on instance i(i), must output strategies xt ∈ X

such that the following holds:
P(i)
{
vt ≤ 0 ∀t ∈ [T ]

}
≥ 1− δ,

which implies that
P(i)
{
xt[σi] + xt[σ�] = 1 ∀t ∈ [T ]

}
≥ 1− δ,

since the only strategies xt such that vt = x>t ω
? − γ ≤ 0 are those placing all the probability mass on sequences σi and σ�,

namely xt[σi] + xt[σ�] = 1.

Now, we relate the probability measure of instance i(1) with that of instance i(2) by means of the Pinsker’s inequality (Cesa-
Bianchi & Lugosi, 2006). Formally:

P(1)
{
xt[σ2] + xt[σ�] = 1 ∀t ∈ [T ]

}
≥ P(2)

{
xt[σ2] + xt[σ�] = 1 ∀t ∈ [T ]

}
−
√

1

2
K(P(2),P(1)),

where K(P(2),P(1)) is the Kullback-Leibler divergence between the probability measures of instance i(2) and instance i(1).

The Kullback-Leibler decomposition (see, e.g., (Lattimore & Szepesvári, 2020) for more details) states that:

K(P(2),P(1)) ≤ ε2T.

Hence, we can conclude that:

P(1)
{
xt[σ2] + xt[σ�] = 1 ∀t ∈ [T ]

}
≥ 1− δ − ε

√
T

2
. (2)

Let R(i)
T be the cumulative regret experienced by an algorithm in instance i(i). It is easy to check that:

R
(i)
T =

1

2

T∑
t=1

xt[σ�].
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Then, under the probability measure of instance i(1), we have that:

P(1)

{
R

(1)
T =

T

2
− 1

2

T∑
t=1

xt[σ1]

}
≥ 1− δ.

Moreover, thanks to Equation (2), under the probability measure of the other instance i(1), the same holds for R(2)
T with

probability at least 1− δ − ε
√

T
2 , formally:

P(1)

{
R

(2)
T =

T

2
− 1

2

T∑
t=1

xt[σ2]

}
≥ 1− δ − ε

√
T

2
.

By a union bound, under the probability measure of instance i(1), we can conclude that the following holds with probability

at least 1− 2δ − ε
√

T
2 :

2 max
i∈{1,2}

R
(i)
T ≥ R

(1)
T +R

(2)
T

= T − 1

2

T∑
t=1

(xt[σ1] + xt[σ2])

=
T

2
+

1

2

T∑
t=1

xt[σ�]

≥ T

2
.

The statement follows by setting ε = δ
√

2
T and rescaling the parameter δ accordingly.

B. Proofs Omitted from Section 5
Lemma 1. For any t ∈ [T ], E

[
θ̂t

]
= θ? and E

[
ω̂t

]
= ω?.

Proof. Fix t ∈ [T ]. In order to prove the result, let us first notice that, for every σ ∈ Σ and τ ∈ [t− 1], it holds:

E [uτ I {σ(zτ ) = σ}] = θ?[σ]

E [cτ I {σ(zτ ) = σ}] = ω?[σ].

Furthermore, for every σ ∈ Σ, we can write the following:∑
τ∈τter

t (σ)

uτ =
∑

τ∈τpure
t (σ)

uτ I {σ(zτ ) = σ} (3a)

∑
τ∈τter

t (σ)

cτ =
∑

τ∈τpure
t (σ)

cτ I {σ(zτ ) = σ} . (3b)

Then, it follows that:

E
[
θ̂t[σ]

]
= E

 1

nt(σ)

∑
τ∈τpure

t (σ)

uτ I {σ(zτ ) = σ}


= θ?[σ],

and, similarly:

E
[
ω̂t[σ]

]
= E

 1

nt(σ)

∑
τ∈τpure

t (σ)

cτ I {σ(zτ ) = σ}





Safe Learning in Tree-Form Sequential Decision Making: Handling Hard and Soft Constraints

= ω?[σ].

This concludes the proof.

Lemma 2. Given a confidence level δ′ ∈ (0, 1), for every t ∈ [T ] and σ ∈ Σ, the following bounds hold:

P
{∣∣∣θ̂t[σ]− θ?[σ]

∣∣∣ ≤ ξt[σ]
}
≥ 1− δ′,

P
{∣∣∣ω̂t[σ]− ω?[σ]

∣∣∣ ≤ ξt[σ]
}
≥ 1− δ′,

where ξt ∈ R|Σ|≥0 is a vector such that, for every σ ∈ Σ:

ξt[σ] := ∆

√
log(2/δ′)

2nt(σ)
.

Proof. Fix any round t ∈ [T ] and sequence σ ∈ Σ. By the Hoeffding’s inequality and Equation (3) in the proof of Lemma 1,
we can write the following two equations:

P
{∣∣∣θ̂t(σ)− θ?[σ]

∣∣∣ ≥ `

nt(σ)

}
≤ 2 exp

(
− 2`2

nt(σ)∆2

)
P
{∣∣∣ω̂t[σ]− ω?[σ]

∣∣∣ ≥ `

nt(σ)

}
≤ 2 exp

(
− 2`2

nt(σ)∆2

)
.

By setting each right-hand-side of the equations above to be equal to δ′ and solving each equation independently for `, we
get the statement of the lemma.

C. Proofs Omitted from Section 6
Lemma 3. The strategies xt ∈ X selected by Algorithm 1 with δ ∈ (0, 1) and T ∈ N>0 as inputs are such that, with
probability at least 1− δ

2 , it holds:

T∑
t=1

x>t ξt ≤ 2∆|Σ|
√

2T log (2/δ).

Proof. First, let us notice that, by considering the pure strategies πt ∈ Π sampled according to the sequence-form strategies
xt, we can write the following:

T∑
t=1

π>t ξt =

T∑
t=1

∑
σ∈Σ

πt[σ]ξt[σ] (4)

=
∑
σ∈Σ

∑
t∈τpure

T (σ)

ξt[σ] (5)

=
∑
σ∈Σ

nT (σ)∑
t=1

∆

√
log (2/δ)

2t
(6)

≤ 2∆

√
log(2/δ)

2

∑
σ∈Σ

√
nT (σ) (7)

≤ ∆|Σ|
√

2 log(2/δ)T , (8)

where Equation (5) holds by definition of τpureT (σ), Equation (6) follows by using the definition of ξt[σ] and re-arranging
the 1

t terms in the sum over t ∈ τpureT (σ), Equation (7) holds since
∑nT (σ)
t=1

1√
t
≤ 2
√
nT (σ), while Equation (8) is obtained

by Cauchy–Schwarz inequality.
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Next, it remains to bound the difference between the sums
∑T
t=1 x

>
t ξt and

∑T
t=1 π

>
t ξt. This can be done by applying the

Azuma-Hoeffding inequality (Cesa-Bianchi & Lugosi, 2006). In particular, define the random variable Zt :=
∑t
τ=1 π

>
τ ξτ −

x>τ ξτ for every t ∈ [T ]. It follows that Zt is a martingale, since the following holds:

E [πt|Ft−1] = xt,

where Ft−1 is the filtration generated by the feedbacks observed by the algorithm up to round t−1. Hence, we can conclude
that with probability at least 1− δ′ , it holds:

T∑
t=1

x>t ξt ≤
T∑
t=1

π>t ξt + ∆|Σ|
√

2T log (1/δ′). (9)

The lemma is proved by combining Equation (8) with Equation (9) obtained before, after setting δ′ := δ
2 .

Theorem 2. In a general repeated SDMC, Algorithm 1 with δ ∈ (0, 1) and T ∈ N>0 as inputs guarantees that, with
probability at least 1− δ, the following bounds hold:

RT ≤ 4∆|Σ|
√

2T log(2/δ), VT ≤ 4∆|Σ|
√

2T log(2/δ).

Proof of Theorem 2. As customary in the analysis of online learning algorithms, for every round t ∈ [T ], we define the
following useful clean events:

Eut :=
{∣∣∣θ̂t[σ]− θ?[σ]

∣∣∣ ≤ ξt[σ] ∀σ ∈ Σ
}

Ect :=
{∣∣∣ω̂t[σ]− ω?[σ]

∣∣∣ ≤ ξt[σ] ∀σ ∈ Σ
}
,

Moreover, we let Et := Eut ∩ Ect . Notice that, by Lemma 2 and the fact that in Algorithm 1 the bounds θt = θ̂t + ξt and
ωt = ω̂t− ξt are computed by using confidence level δ′ = δ

4T |Σ| , we can conclude that the event Eut , respectively Ect , holds
jointly over t ∈ [T ], with probability at least 1− δ

4 . Thus, Et is a high-probability event, since by a union bound we get that
Et holds with probability at least 1− δ

2 , jointly over t ∈ [T ].

Feasibility. As a first step, we prove that the linear program solved by Algorithm 1 at each round is feasible with high
probability. At each round t ∈ [T ], we define Ut as the event in which LP(θt,ωt) solved by Algorithm 1 is feasible. We
prove the result by showing that Et ⊂ Ut for every t ∈ [T ]. Let x� be the known sequence-form strategy that always belongs
to the set X ? by assumption. Then, if the clean event Et holds at round t, we can write the following:

x�,>ωt ≤ x�,>ω? ≤ γ,

where the first inequality holds since x� is a vector of non-negative entries and ωt � ω? under Et, while the second
inequality holds since x� ∈ X ?. This shows that x� is also feasible for LP(θt,ωt), proving that Et ⊂ Ut.

Regret Bound. After having established that the event Ut holds with high probability at each round t ∈ [T ], we
are now ready to prove that Algorithm 1 attains small cumulative regret. First, let us notice that, by letting x? ∈
argmaxx∈X?

∑T
t=1 x

>θ? be an optimal agent’s strategy among those satisfying the safety constraints, we have:

RT =

T∑
t=1

(x? − xt)>θ?.

At each round t ∈ [T ], under the clean event Et, we have θ? + 2ξt � θt. Thus, since xt is a vector of positive entries, we
can write the following:

x>t (θ? + 2ξt) ≥ x>t θt.
Moreover, since under Et ⊂ Ut the strategy xt is indeed an optimal solution to LP(θt,ωt), we have that:

x>t θt ≥ x>θt,
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for any strategy x ∈ X such that x>ωt ≤ γ. These strategies include x?, since, under the clean event Et, it is always the
case that x>ωt ≤ γ implies x>ω? ≤ γ. Finally, under Et, it also holds that x?,>θt ≥ x?,>θ?. Thus, by combining all
these observations we obtain that:

x>t (θ? + 2ξt) ≥ x?,>θ?,
which, after re-arranging, gives 2x>t ξt ≥ (x? − xt)>θ?. By Lemma 3 and the fact that Et holds with probability at least
1− δ

2 for every round t ∈ [T ], a union bound allows us to conclude that with probability at least 1− δ:

T∑
t=1

(x? − xt)>θ? ≤ 4∆|Σ|
√

2T log (2/δ),

which gives the desired regret bound.

Violation Bound. The bound is proved in a way similar to that followed for the regret. First, let us recall that, by definition
of cumulative violation:

VT =

T∑
t=1

(x>t ω
? − γ)+.

At each round t ∈ [T ], under the clean event Et we have that ω? − 2ξt � ωt and that LP(θt,ωt) is feasible. Hence, since
xt has positive entries, we can state that:

x>t (ω? − 2ξt) ≤ x>t ωt ≤ γ.
By re-arranging the terms, we have that x>t ω

? ≤ γ + 2x>t ξt. This implies that (x>t ω
? − γ)+ ≤ 2x>t ξt. Finally, by

Lemma 3 and the fact that Et holds with probability at least 1 − δ
2 for every round t ∈ [T ], we can conclude that with

probability at least 1− δ:

VT ≤ 2

T∑
t=1

x>t ξt ≤ 4∆|Σ|
√

2T log (2/δ),

which is obtained by a union bound.

Theorem 3. In general repeated SDMCs, if an algorithm guarantees VT = o(
√
T ) with probability at least 1− δ for any

δ ∈ (0, 1
3 ) given as input, then it incurs in a regret RT = Ω(T ) with probability at least 1− 3δ.

Proof. We employ the same instances used to prove Theorem 1. In each instance i(i), the cumulative deviation is:

V
(i)
T = ε

T∑
t=1

xt[σj ],

where we let j = 2 when i = 1 and vice versa. Moreover, given an algorithm that guarantees VT = o(
√
T ) with probability

at least 1− δ for any δ ∈ (0, 1) given as input, there must exist a constant c > 0 such that, for each instance i(i), under the
probability measure of that instance the following hods with probability al least 1− δ:

V
(i)
T ≤ c

√
T . (10)

Next, we express the event V (1)
T ≤ c

√
T under the probability measure of instance i(2). This is done by means of the

Pinsker’s inequality. As in the proof of Theorem 1, we can conclude that, under the probability measure of instance i(2), the

following holds with probability at least 1− δ − ε
√

T
2 :

T∑
t=1

xt[σ2] ≤ c

ε

√
T . (11)

Moreover, by Equation (10) and definition of V (2)
T , we have:

T∑
t=1

xt[σ1] ≤ c

ε

√
T , (12)
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which holds with probability at least 1− δ under the probability measure of instance i(2).

Now, let us consider the regret experienced by any algorithm in instance i(2), which is equal toR(2)
T = 1

2

∑T
t=1 xt[σ�]. Then,

by a union bound and Equations (11) and (12), under the probability measure of instance i(2) we have that the following

holds with probability at least 1− 2δ − ε
√

T
2 :

R
(2)
T =

1

2

T∑
t=1

xt[σ�]

=
T

2
−

T∑
t=1

(xt[σ1] + xt[σ2])

≥ T

2
− 2c

ε

√
T

2
.

Then, setting ε = d√
2T

gives:

R
(2)
T ≥ T

(
1

2
− 2c

d

)
with probability at least 1− 2δ − d. Thus, by setting d = δ and c = δ

8 we can conclude that R(2)
T ≥ T

4 with probability at
least 1− 3δ. This concludes the proof.

D. Proof Omitted from Section 7
Theorem 4. In repeated SDMCs satisfying Assumption 2, Algorithm 2 with δ ∈ (0, 1) and T ∈ N>0 as inputs is δ-safe and,
with probability at least 1− 2δ, the following holds:

RT ≤ C +
6

λ
∆2|Σ|

√
2T log (2/δ),

where C is a term independent from T .

Proof. Let us define the clean event Et as in the proof of Theorem 2.

Violations. As a first step, we show that Algorithm 2 is δ-safe for any δ ∈ (0, 1) given as input. In order to prove that, it is
enough to show that vt ≤ 0 for every t ∈ [T ], with probability at least 1− δ. In particular, under the event Et, we have that:

x>t ω
? = ptx

�,>ω? + (1− pt)x̃>t ω? (13)

= pt(γ − λ) + (1− pt)x̃>t ω? (14)

≤ pt(γ − λ) + (1− pt)x̃>t ωt (15)

= pt(γ − λ− x̃>t ωt) + x̃>t ωt (16)
≤ γ, (17)

where Equation (14) follows from the definition of x�, Equation (15) comes from the fact that x̃t has non-negative entries
and, under the event Et, it holds ω? � ωt, while Equation (17) follows from the definition of pt. Hence, we can conclude
that, under the clean event Et, it holds vt ≤ 0. Since the clean event Et holds at every round t ∈ [T ] with probability at least
1− δ

2 (Lemma 2) and the fact that δ′ = δ
4T |Σ| , we get that Algorithm 2 is δ-safe for any δ ∈ (0, 1) given as input.

Regret Bound. In order to prove that Algorithm 2 attains sublinear regret with high probability, we decompose its
cumulative regret in the following way:

RT =

T∑
t=1

(x? − xt)>θ? =

T∑
t=1

(1− pt)(x? − x̃t)>θ? + pt(x
? − x�)>θ?
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≤
T∑
t=1

(1− pt)(x? − x̃t)>θ? + 2∆

T∑
t=1

pt, (18)

where the last step follows from the triangular inequality.

Bounding
∑T
t=1(1 − pt)(x? − x̃t)>θ?. Next, we bound the first term of Equation (18). Given that the strategy x̃t is

chosen analogously to the strategy xt in Algorithm 1, we can follow steps analogous to those used in the proof of Theorem 2
in order to derive the following bound under the clean event Et:

(x? − x̃t)>θ? ≤ 2x̃>t ξt.

Notice that, in this case, we cannot directly apply Lemma 3 as we no longer have that E[πt|Ft−1] = x̃t (since the strategy
actually played by the algorithm is xt instead of x̃t). However, we obtain a similar result by decomposing the strategy xt
chosen by Algorithm 2. Indeed, from Lemma 3, we have that, with probability at least 1− δ

2 :

T∑
t=1

x>t ξt ≤ 2∆|Σ|
√

2T log (2/δ),

since Lemma 3 does not rely on any assumption on how the strategies xt are selected. Thus, we can decompose xt in
ptx
� + (1− pt)x̃t and obtain that, with probability at least 1− δ

2 :

T∑
t=1

(1− pt)x̃>t ξt ≤ 2∆|Σ|
√

2T log (2/δ), (19)

where we discarded the sum of the positive terms ptx�,>ξt.

Bounding
∑T
t=1 pt. Now, we bound the second term of Equation (18). In order to do that, we split the rounds into two

sets. The first set T1 is made by all the rounds t ∈ [T ] such that pt ≤ 1
2 , while the second set T2 by all the rounds t ∈ [T ]

such that pt > 1
2 . In the following, we analyze the two cases separately.

(i) Upper bound on
∑
t∈T1

pt. Notice that, under the clean event Et:

pt =
min{x̃>t ωt,∆} − γ

min{x̃>t ωt,∆} − γ + λ

≤ x̃>t ωt − γ
x̃>t ωt − γ + λ

≤ x̃
>
t ωt − γ
λ

≤ 2

λ
x̃>t ξt,

where the last inequality follows by x̃>t ωt ≤ γ and x̃>t (ωt − ωt) = 2x̃>t ξt. By a union bound and recalling that the
clean event Et holds at every round t ∈ [T ] with probability at least 1− δ

2 , we can conclude that the following holds
with probability at least 1− δ:∑

t∈T1

pt ≤
∑
t∈T1

2

λ
x̃>t ξt ≤

4

λ

∑
t∈T1

(1− pt)x̃>t ξt ≤
4

λ

∑
t∈[T ]

(1− pt)x̃>t ξt ≤
4

λ
∆|Σ|

√
2T log (2/δ), (20)

where the second inequality comes from 1− pt > 1
2 for pt < 1

2 and the last one by Equation (19).

(ii) Upper bound on
∑
t∈T2

pt. We proceed by upper bounding the cardinality |T2| of the set T2. In order to do that, we
need to introduce the following set T3 ⊂ [T ], which is defined as:

T3 :=

{
t ∈ [T ] | π>t ξt ≥

λ2

8δ

}
.
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By resorting to arguments similar to the ones used to prove Lemma 3, we can bound the range of the random variable
T3. In particular, let us consider the following steps, similar to the ones used in the proof of Lemma 3:∑

t∈T3

π>t ξt =
∑
t∈T3

∑
σ∈Σ

πt[σ]ξt[σ] (21)

=
∑
σ∈Σ

∑
t∈τpure

T (σ)∩T3

ξt[σ] (22)

≤
∑
σ∈Σ

|τpure
T (σ)∩T3|∑

t=1

∆

√
log (2/δ)

2t
(23)

≤ 2∆

√
log(2/δ)

2

∑
σ∈Σ

√
|τpureT (σ) ∩ T3| (24)

≤ ∆|Σ|
√

2|T3| log(2/δ), (25)

where the only difference with respect to the proof of Lemma 3 is in Equation (23), which uses the fact that T3 is a
subset of the set [T ] and, thus, for each sequence σ ∈ Σ the t-th term in the sum in Equation (23) is an upper bound
for the t-th term ξt[σ] in the sum in Equation (22). Then, since for all t ∈ T3 we have that π>t ξt ≥ λ2

8∆ , it holds that∑
t∈T3

π>t ξt ≥ |T3| λ
2

8∆ . This, together with Equation (25), implies that the following upper bound on |T3| holds:

|T3| ≤ 128
∆4|Σ|2
λ2

log(2/δ).

By using the bound on |T3| given above, we can obtain an upper bound on |T2|, as follows. First, let us observe that, if
t ∈ T2, then 2(x̃>t ωt − γ) ≥ x̃>t ωt − γ + λ. By rearranging the terms, we have that x̃>t ωt ≥ γ + λ. Moreover, by
rewriting the upper confidence bound ωt as ωt + 2ξt, we obtain that, if t ∈ T2, then x̃>t ξt ≥ λ

2 . By using the reverse
Markov inequality (Lattimore & Szepesvári, 2020), we can lower bound the probability that t ∈ T2 ∩ T3. Indeed, if
t ∈ T2, then we can lower bound the probability that π>t ξt ≥ λ2

8∆ holds. First, we lower bound the expected value of
π>t ξt as follows (recall that Ft−1 is the filtration generated by the information up to round t− 1):

E[π>t ξt|Ft−1] = x>t ξt

= ptx
�,>ξt + (1− pt)x̃>t ξt

≥ (1− pt)x̃>t ξt (26)

≥ λ

∆ + λ
x̃>t ξt (27)

≥ λ2

4∆
, (28)

where Equation (26) follows from the fact that ptx�,>ξt ≥ 0, Equation (27) follows from the fact that pt ≤ ∆
∆+λ

by definition of pt (since x 7→ x
x+a is monotonically increasing for a > 0 and min{x̃>t ωt,∆} − γ ≤ ∆), while

Equation (28) follows from the fact that λ < ∆ and that, if t ∈ T2, then x̃>t ξt ≥ λ
2 . Then, by the reverse Markov

inequality we have that:

P
{
π>t ξt ≥

λ2

8∆
| Ft−1

}
≥ E[π>t ξt|Ft−1]− λ2

8∆

∆|Σ| − λ2

8∆

≥ λ2

4∆2|Σ| .

Let us define ρ := 1
4∆2|Σ| , so that P

{
π>t ξt ≥ λ2

8∆

∣∣∣Ft−1

}
≥ ρλ2. Starting from this inequality we can now derive an

upper bound on |T2|. Suppose by contradiction that |T2| ≥ (1 + α)128∆4|Σ|2
ρλ4 log(2/δ), for a small α > 0. This would

imply that E
[
|T3|

]
≥ ρλ2|T2| ≥ (1 + α)128∆4|Σ|2

λ2 log(2/δ), contradicting the fact that |T3| ≤ 128∆4|Σ|2
λ2 log(2/δ).

Thus, by setting α = 1
128 for convenience, we obtain:

|T2| ≤ 129
∆4|Σ|2
ρλ4

log(2/δ). (29)
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Finally, by combining Equation (20) and Equation (29), the following holds with probability at least 1− δ:

T∑
t=1

pt ≤ 516
∆6|Σ|3
λ4

log(2/δ) +
4

λ
∆|Σ|

√
2T log (2/δ).

Putting all Together. By combining the upper bound on
∑T
t=1 pt with Equation (18) and Equation (19), we can conclude

that the following bound on the regret holds with probability at least 1− 2δ:

RT ≤ 516
∆7|Σ|3
λ4

log(2/δ) +
6

λ
∆2|Σ|

√
2T log (2/δ).

By letting C := 516∆7|Σ|3
λ4 log(2/δ), we conclude the proof.

Theorem 5. In repeated SDMCs satisfying Assumption 2, if an algorithm is δ-safe for any δ ∈ (0, 1) given as input, then it
incurs in a cumulative regret RT = Ω( 1

λ

√
T ) with probability at least 3

4 − δ.

Proof. In order to prove the statement, we provide two instances of SDMC such that, if an algorithm is δ-safe for any
δ ∈ (0, 1) given as input in the first instance, then the regret attained by the algorithm is at least 1

8λ

√
T in the second one. Let

ε ∈ R+ be a parameter to be defined later. We consider two instances i(1) and i(2), where there is only one decision node of
the agent and no observation nodes, so that both instances have 3 sequences: the empty sequence ∅, the alway-strictly-safe
sequence σ�, and an additional sequence σ1. Hence, Σ = {∅, σ1, σ�}. The two instances deffer in the utilities and costs
that are associated to sequence σ1. More specifically, each instance i(i) for i ∈ {1, 2} is specified as follows:

i(i) :=


θ?[σ1] = ω?[σ1] = 1

2 + ε if i = 1

θ?[σ1] = ω?[σ1] = 1
2 if i = 2

θ?[σ�] = 0, ω?[σ�] = 1
2 − λ.

Finally, in both instances we set γ = 1
2 . Notice that it is always possible to define Uz and Cz as Bernoulli random variables

whose expected values result in vectors θ? and ω? as above.

If an algorithm is δ-safe on instance i(1), then:

P(1)

{
xt[σ1] ≥ ε

ε+ λ
∀t ∈ [T ]

}
≥ 1− δ,

where P(i) is the probability measure of instance i(i). This implies the following:

P(1)

{
T∑
t=1

xt[σ1] ≥ T ε

ε+ λ
∀t ∈ [T ]

}
≥ 1− δ.

Now, let us change the probability measure from P(1) to P(2), by means of the Pinsker’s inequality:

P(2)

{
T∑
t=1

xt[σ1] ≥ T ε

ε+ λ
∀t ∈ [T ]

}

≥P(1)

{
T∑
t=1

xt[σ1] ≥ T ε

ε+ λ
∀t ∈ [T ]

}
−
√

1

2
K(2, 1),

where K(2, 1) is the Kullback-Leibler divergence between the probabilities measures P(2) and P(1). Since standard

computations show that K(2, 1) ≤ ε
√

T
2 , we conclude that:

P(2)

{
T∑
t=1

xt[σ1] ≥ T ε

ε+ λ
∀t ∈ [T ]

}
≥ 1− δ − ε

√
T

2
. (30)
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Figure 4. Experimental results for the soft-threshold problem on K5 (top row), K7 (center row) and L2 (bottom row). The plots show
cumulative regret (left column), expected cost (center column) and cumulative violation (right column).

Next, let us consider the cumulative regret R(2)
T of the algorithm on instance i(2). It is easy to check that:

R
(2)
T =

T∑
t=1

xt[σ1].

By setting ε = 1
4

√
2
T and using Equation (30), we obtain that, under the probability measure of instance i(2), it holds

RT ≥ 1
8λ

√
2T with probability at least 3

4 − δ, concluding the proof.

E. Additional Experimental Results
In this section, we present additional experimental results on the soft-threshold problem.

Figure 4 shows the performances of the soft-threshold algorithm (Algorithm 1) in three different instances of Kuhn and
Leduc Poker: Kuhn Poker with 5 ranks (K5), Kuhn Poker with 7 ranks (K7) and Leduc Poker with 4 seeds and 2 ranks
(L2). The plots show the cumulative violation VT , the cumulative regret RT , and the expected cost c(xt). The experimental
results empirically validate our theoretical result concerning the fact that VT grows sublinearly in T . Furthermore, notice
that the expected costs (and therefore also the expected utilities, as in zero-sum games we have that ω? = θ?) converge to
the threshold γ. This is also reflected on the cumulative regret that turns out to be negative. The reason for such a behavior
lies in the fact the strategy against which the cumulative regret is computed is over-constrained with respect to the strategy
chosen at each round t ∈ [T ]. Indeed, the relaxation of the cost constraint allows the expected utility to exceed the value
achieved by the optimal strategy.


