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Abstract

'In this paper, we extend the remarkable M-
estimator of Catoni (2012) to situations where the
variance is infinite. In particular, given a sequence
of i.i.d random variables { X;}?_; from distribu-
tion D over R with mean u, we only assume the
existence of a known upper bound v. > 0 on
the (1 + ¢)*" central moment of the random vari-
ables, namely, for € € (0, 1]

1+e
< ve.

Ex, ~p ’X 1— H‘
The extension is non-trivial owing to the difficulty
in characterizing the roots of certain polynomials
of degree smaller than 2. The proposed estimator
has the same order of magnitude and the same
asymptotic constant as in Catoni (2012), but for
the case of bounded moments. We further propose
a version of the estimator that does not require
even the knowledge of v., but adapts the moment
bound in a data-driven manner. Finally, to illus-
trate the usefulness of the derived non-asymptotic
confidence bounds, we consider an application in
multi-armed bandits and propose best arm identifi-
cation algorithms, in the fixed confidence setting,
that outperform the state of the art.

1. Introduction

Mean estimation with an emphasis on achievable trade-off
between accuracy and confidence plays a pivotal role in
the design of algorithms for applications such as multi-
armed bandits (Auer et al., 2002; Lattimore and Szepesvari,
2020) and reinforcement learning (Fiechter, 1994; Burne-
tas and Katehakis, 1997; Auer and Ortner, 2006; Agarwal
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et al., 2019). Here the fundamental problem is of designing
an estimator i, = f,({X;}" ) that for a given confi-
dence 6 € (0,1) has the smallest possible o = o(n, §) such

thatIP’{ n, —u‘ > Q} <.

1.1. Sub-Gaussian Estimators

Taking a cue from the asymptotic confidence bounds in-
formed by the Central Limit Theorem for the empirical
mean, Devroye et al. (2016) derive several L—sub-Gaussian
estimators and also establish the tightest possible L for
different classes of distributions. More precisely, an esti-
mator [i,, is L—sub-Gaussian if there is a constant L > 0
such that for random variables with variance o and (any)
sample size n, it holds

~ Lo+/log(2/6

i — ] < L/ 10200
NG

with probability at least 1 — §. Sub-Gaussian estimators are

optimal up to constants, and estimators with L < /2 + o(1)
are nearly not improvable.

There are equivalent definitions of sub-Gaussian estima-
tors; see for example, the monograph by Buldygin and
Kozachenko (2000). Also see Li (2007, Chapter 4) for the
use of sub-Gaussian distributions in the context of random
projections and very sparse random projections.’

In the context of these L—sub-Gaussian estimators, the
estimator proposed in Catoni (2012), which is henceforth
referred to as Catoni’s estimator, is significant owing to the
fact that it is a (nearly) optimal sub-Gaussian estimator of
the mean with L = /2 4 o(1). Here optimal is to be under-
stood in the sense that the Catoni’s estimator comes close
the best possible L(= 1/2). Given the sharpness of result,
it is not surprising that Catoni’s estimator has spawned a
wide range of applications ranging from bandits (Bubeck
et al., 2013) to empirical risk minimization (Brownlees et al.,
2015).

https://hastie.su.domains/THESES/pingli_
thesis.pdf.
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1.2. Heavy-tailed Estimators

One crucial shortcoming of the Catoni estimator is that it
requires the existence of finite second moment. This is
a serious limitation in heavy-tail settings where the vari-
ance need not exist or be finite. Such heavy-tail distribu-
tions are well motivated and studied extensively in applica-
tions (Resnick, 2007), for example, sparse recovery with
extremely heavy-tailed stable distributions (Li and Zhang,
2013; Li, 2016). Given the simplicity and near-optimality
of the Catoni estimator under finite variance (¢ = 1), it is
natural to consider extending the underlying ideas to derive

an estimator when the variance of X ~ D is infinite, i.e,
1+e¢

Ex,p ’Xl - u‘ < . fore < 1. Chen et al. (2021)
take the first steps towards this and propose an estimator that
approaches the same order as in Catoni’s estimator as € — 1.
However, Chen et al. (2021) assume a sub-optimal choice
for the influence function inspired by Taylor-like expansions,
resort to weak C,. —inequalities, and employ loose character-
ization of the roots of certain polynomials of degree smaller
than 2 to construct the estimator. These lossy intermediate
steps results in large asymptotic constants that are not the
same as in Catoni (2012), ruling out near-optimality. The
main contribution of this paper is to alleviate these shortcom-
ings and obtain nearly optimal Catoni’s estimator for € < 1,
using a different approach.

When ¢ < 1, Devroye et al. (2016) establish that the achiev-
able g(n, d) is no more sub-Gaussian and is in fact given by
the following result:

Theorem (Lower Bound). There exists a distribution with
mean / and (1 + ¢)*" central moment upper bound v, such
that for any mean estimator fi,, and § € (2e~"/4,1/2),

P{|fin — 1l > (U 105(2/6))ﬁ} >0,

This is established in Devroye et al. (2016, Theorem 3.1).
See (Lugosi and Mendelson, 2019) for an excellent sum-
mary and related literature.

The derived extension of Catoni’s estimator requires the
knowledge of v, to perform the M-estimation. This might
be less desirable when such information is not available,
whence it is impossible to provide any observable confi-
dence intervals. We extend the results to define an adaptive
estimator and to bound its deviations by bounds depending
on the unknown moments. This extension borrows ideas
from Lepskii’s adaptation method (Lepskii, 1992) to provide
a data-driven M-estimator that adapts to unknown v..

To illustrate the usefulness of the non-asymptotic confidence
bounds associated with Catoni’s estimator for heavy-tails
derived in this work, we propose best arm identification
algorithms (BAI) in the fixed confidence setting (Even-Dar
et al., 2006), which outperform the state of the art.

1.3. Main Contributions
We summarize our main contributions and key results:

(1) We provide a nearly-optimal M-estimator of the mean of

random variables having bounded (1 + ¢)** moment. This
implies that the asymptotic constant is the best possible
and same as in Catoni (2012). Two key ideas contribute
towards this: (a) we construct an influence function that
favorably controls the (1 + £)* order variations from the
mean; (b) we characterize tight upper bounds on the roots
of certain polynomials of degree 1 + €.

(ii) We provide an algorithm that extends the proposed M-
estimator to adapt to an unknown moment bound v, in a
data-driven manner. The key ideas make use of Lepskii’s
classical adaptive estimation techniques (Lepskii, 1992). We
further establish that the resulting M-estimator has close to
near-optimal asymptotic bound.

(iii) Unlike the previous results on M-estimators under
(14 )" moment assumption (see Chen et al. (2021) and
the references therein), the minimum data required to obtain
a tight high confidence bound for the proposed M-estimator
is decoupled from the moment bound v.. This makes it
possible to employ the M-estimators in online learning ap-
plications that need to adapt to unknown v.. We illustrate
one such application in multi-armed bandits, where the ob-
jective is to identify the best arm with a high confidence.
We propose a novel best arm identification algorithm that
eliminates arms in phases, while sequentially adapting to
the unknown v.. We further establish that the sample com-
plexity is doubly-logarithmic in the problem parameters,
while demonstrating excellent empirical performance.

1.4. Overview of Previous Work

Construction of tight confidence intervals for the unknown
mean using finite samples from the distribution is a funda-
mental objective that has naturally generated an enormous
interest in the statistics and machine learning community.
A detailed investigation into this using M-estimation was
initiated in the work of Catoni (2012), and there upon formal-
ized in Devroye et al. (2016). Since this class of estimators
only require a bounded second moment, a notion of ‘ro-
bustness’ is commonly associated (Lugosi and Mendelson,
2019) with them. While the focus of this work is primar-
ily on M-estimators (Zhou et al., 2018), there are other
estimators that obtain the optimal order such as Median-
of-Means (Bubeck et al., 2013; Minsker, 2019; Lecué and
Lerasle, 2020) and Trimmed Mean (Oliveira and Orenstein,
2019; Lugosi and Mendelson, 2021), each with their own
merits and shortcomings. The key difference is that robust-
ness in class of M-estimators is characterized by the extrema
of an influence function which modulates the impact of out-
lier samples (Huber, 2004).



Catoni’s M-estimator for Infinite Variance

A powerful method for adapting to the unknown moments
was introduced in Lepskii (1992). The versatility of the
method stems from the fact that it can adapt to any unknown
structure of the problem. Since then the idea has been used
in M-estimation to adapt to unknown variance (Catoni, 2012;
Minsker, 2018).

Best arm identification in the fixed confidence setting is a
classical framework (Even-Dar et al., 2006) in multi-armed
bandits that has a wealth of applications (Jamieson and
Talwalkar, 2016; Kaufmann and Koolen, 2017). Two algo-
rithms 1il’UCB (Jamieson et al., 2014) and Exponential-Gap
Elimination algorithm in (Karnin et al., 2013) obtain the
optimal sample complexity for the best-arm problem in the
fixed confidence setting under sub-Gaussian reward distri-
butions, and are standard. In the asymptotic setting, Garivier
and Kaufmann (2016) propose a best arm identification al-
gorithm that matches the established tighter lower bound
as & reduces to zero. In the case of bounded (1 + £)*" mo
ment, Yu et al. (2018); Glynn and Juneja (2018) propose
best arm identification algorithms based on trimmed mean
estimator from Bubeck et al. (2013). In the asymptotic set-
ting, Agrawal et al. (2020) propose a best arm identification
algorithm that matches the established lower bound as §
reduces to zero.

2. Key Ideas from Finite Variance (Catoni,
2012)

In this section, we briefly review Catoni’s estimator (Catoni,
2012) illustrating the key changes required in extending
ittoe € (0,1). Let a sequence of i.i.d random vari-
ables {X;}™  be such that EX; = pand E|X; — u|? < v.
Consider an “influence” function v : R — R that is non-
decreasing and is such that for all x € R

—log(l —x +2%/2) < ¢(z) <log(l+x +2%/2) (1)

(Fact 1) Note that the bounds that define the func-
tion 9. () satisfy

(1—-z+2%/2)"' < (1+2+2%/2) & 1< 1+2%/4, V.

An analogous fact will be required to state bounds appropri-
ate for dealing with infinite variance. For a > 0, Catoni’s
M-estimator ji. is defined as a solution to the equation

i% (Oé(Xi - ﬁc)) =0.

The traditional empirical mean (¢.(xz) = x) is unduly in-
fluenced by large values which might invalidate® the sub-
Gaussian confidence bound when the distributional tails are

3For examples of distributions that result in O (\ /1/ mi) con-
fidence bound, see (Catoni, 2012; Lugosi and Mendelson, 2019).

not themselves sub-Gaussian. When instead 1. (z) satis-
fies (1), it is similar to the linear function for small and mod-
erate values of z, but its logarithmic rate of growth reduces
the effect of large values and preserves the sub-Gaussian
confidence bound.

Next, consider the function 7 ,,(#) defined as

ren(0) = Zw (a(xi - 0)).

Note that r. ,, () is a non-increasing function of 4. Using
the upper bound on ). (x) in (1), we have that

E[exp(rc,n(ﬁ))] < (1 +alp—0)+ a?(v? +2(u— 0)2)>n

na?(v? + (4 — 6)%)
s )
From (2), a motivation for choosing the logarithm of a de-
gree 2 polynomial in the bounds for the influence function is
clear, as it helps to bound the expectation using the variance
upper bound (Fact 1). This also informs the nature of in-
fluence functions required to obtain bounds using (1 4 ¢)**
moments; see Minsker (2018, Section 3.4).

< exp (na(u —0)+ (2

Using the exponential Markov inequality, we now have that
forany # € Rand 6 € (0,1)

na®(v? + (11— 0)%)
2
+ 1og(2/5)} <5/2.

P{ren(6) = na(u - 0) +

It is clear from the monotonicity of the 7. ,, that the roots of
the quadratic polynomial in 6,

na2(v? + (1 — 6)?)

2
play a pivotal role in characterizing the deviations of the
estimator fi. from p. For a suitable «, the quadratic poly-
nomial has at least one or two roots that can be obtained
in closed form (Fact 1). If T is the smallest root,
then r.,,(0") < 0 with probability at least 1 — §/2. A
suitable choice « results in the following upper confidence
bound (Catoni, 2012):

na(y - 6) +

+log(2/6),

1<0t =t 2vulog(2/6) .
n — 2log(2/4)

A lower bound can be derived using symmetric arguments.
Note that an influence function designed using ideas out-
lined above (Fact 1 and Fact 2) for the infinite vari-
ance setting will not have explicit expressions of the roots
(Fact 3). In fact, as we shall see in the next section that
this is precisely the difficulty that has to be overcome to ex-
tend Catoni’s estimator to deal with infinite variance, while
ensuring near-optimality.
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3. Catoni’s M-estimator for Heavy Tails

Let ¢ € (0,1] and let a sequence of i.i.d random vari-
ables {X;}? , be such that E(X;) = u and E|X; —
pultte < v, For C. > 0,lety : R — R be a non-
decreasing influence function such that for all z € R

—log(1—2+C.|z|' ™) < ¢(z) < 1og(1+z+CE\x|1+6).
3)

Similarly, consider a Catoni’s M-estimator ji. . as a solution
to the equation

> w(a(Xi —fies)) =0 o
i=1

using an influence function ¢ satisfying (3). If the solution
is not unique, choose fi. . to be the median solution.

Lemma 3.1. A function v satisfying (3) exists if and only if

1+e l1—e
g 2 1—¢ 2
2 () ()
f=\l+¢ €

Lemma 3.1 provides a necessary and sufficient condition
for the selection of the coefficient in the influence function,
similar to Fact 1 in Section 2. We want to emphasize
that many choices of C. are possible that satisfy Fact 1,
for example, Chen et al. (2021) choose C, = % inspired by
Taylor-like expansions, and Minsker (2018) choose C, =

&
1+e

that obtains a sharp bound as |fi. . —u| < rem.(C.)Y/(+e),

\Y \/I In our paper, we derive a tightest such choice

We further contribute a novel analysis that tightens the rem.

term.

Remark 1. Unless otherwise stated, hereon we choose the

1+4e 1—e

coefficient C. = (1i5> : (%) ®  Whene = 1, we
recover the coefficient in Catoni (2012), namely C; = 1/2.
(Here the standard convention 0° := 1 applies.) Also, we

assume throughout that the influence function v satisfies (3).

Theorem 3.2 (Main Result). Let {X;}" , be i.i.d random
variables with mean p and E| X1 — p|'*e < v.. Let § €
(0,1), 7> 0and 0 < h < 1 be such that

14+e(1+7)0+e)/e

n2<1_h>_1 c ,7_1/5

C1/%10g(2/6).

Then for € € (0, 1], Catoni’s M-estimator [i. . with parame-
ter

o =

1 1 (log(2/6)) T+
e1iz (h=2CLv.)V/(te) n

satisfies, with probability at least 1 — §,

N

—pl < (1471 +e) V(1 —g)T—
x (h v, )t/(+e) (loig(2/5)) 1i5. 5)

n

~
e,

Theorem 3.2 provides a non-asymptotic confidence bound
for heavy tails. The estimator depends on scaling « and the
71°g(2/ 9) . The key
elements in the proof are as follows: (i) The ‘right’ influence
function (3) coupled with a convexity upper bound,

confidence parameter J, and is O(

a1+s b1+5

(a+b)'*e < s +(1—7h)5’ a,b>0and h € (0,1),

obtains a polynomial of degree (1 + &) with smallest coeffi-
cients. (ii) Characterizing a tight upper bound on the roots
of this polynomial yields the desired confidence bound.

We note that for ¢ = 1, we obtain the exact near-optimal
estimator as in Catoni (2012); see Sec.3.3.1 for details.

3.1. Comparison with known bounds

Below we compare the non-asymptotic bounds in (5) with
state-of-the-art mean estimators. Since trimmed mean has a
larger bound than Median-of-Means (MoM) estimator (Lu-
gosi and Mendelson, 2019), we only make a comparison
with MoM estimator.

3.1.1. MEDIAN OF MEANS ESTIMATOR

We compare the constants obtained in (5) with the con-
stants obtained for the Median-of-Means (MoM) estima-
tor (Bubeck et al., 2013; Lugosi and Mendelson, 2019) that
also features central moments. The MoM estimator fiysons
with appropriate number of blocks has the bound

1/aﬁf)<log(2/5)) ,

[fintons — p| < 8(12) 7w n

with probability at least 1 — ¢; see Lugosi and Mendelson
(2019, Theorem 3). For a similar length of the random
sequence, for example even with a choice of h = 0.5, the
constant in (5) is better than that using the MoM estimator
fore > 0.05.

3.1.2. CHEN ET AL.”S M-ESTIMATOR

M-estimator derived by Chen et al. (2020) has the following

1re
bound, for n > (271)1‘;1) : 2(1+€)v1°g(2/ %) with probabil-
ity at least 1 — &
T 1/14¢
Ain—p| < 2(2(1 i 5)) ve (log(2/5)> T
- n

(142)— (2(1+5) 1og(2/5)>1%s

nuve
(6)
The non-asymptotic bound in (5) is sharper than (6) for
all e € (0,1) even with h = 0.5. Note that the asymptotic
constant in (6) is much larger than in Catoni (2012) for ¢ =
1, ruling out near-optimality (see Section 3.3.1). A minor
generalization is later proposed in Chen et al. (2021) using
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a convexity upper bound, however, we compare with Chen
et al. (2020) as the best parameter choices are not discussed
in Chen et al. (2021). We note that the constant in (5) is still
much sharper than that in Chen et al. (2021) owing to tight
characterizations on the roots of degree < 2 polynomial.

3.2. )—independent estimator

It is clear that the estimator fi. . is a function of d. This is
not always desirable as a different point estimate results for
each §. We can obtain an estimator independent of §, which
however does not have sharp bounds. The dependence on n
is still optimal, but the dependence on § is worse than (5).

Corollary 3.3. Suppose that for 0 < h < 1,
1+¢

n > (14 1og(2/a) (1 +2)C0)*

., . ~
Cooon , Catoni’s M-estimator [i. .

satisfies, with probability at least 1 — §,
14+e\V/2, —c /1 —e\V/(A+e)-1/2
) ()
€

. \1/14¢
Then with o = ( h )

‘ﬁc,e - /‘| < (
Ul/(1+6)

x (5 ) (1 4+ 10g(2/9).

nilte
3.3. h—independent estimator

The following is an immediate corollary of Theorem 3.2. It
results from choosing the largest possible & that satisfies the
assumptions.

Corollary 3.4. Suppose that for T > 0,

1 1 (14e)/e 1
> LT o 1og(2/).

€ Tl/e
Then with
1 1 log(2/6)\ =
a_glis ( g’Us)l/ 1+4¢) n
. 1+ E( )(1+€ /sOé log(2/5) e/(1+e)
x e T1/e N n ’

Catoni’s M-estimator [i. . satisfies, with probability at least
1-4,

—ul < A 4+7) (1 +) /21 =) T2/ 049

(1+e)/e e
" (1_ 1+e(l+7) Cslog(2/5)>

~
|t

5 Ti/e S oon
% (10g(2/6)) 1+5' (7)
n

Remark 2. We note that the dependence on the parame-
ter 7 > 0 in (7) cannot be eliminated and is a free parameter.
A value of 7 ~ 0 obtains a tight bound at the cost of an
increase in the minimum number of samples as n rl%
A judicious choice hence depends on the budgetary con-
straints.

3.3.1. COMPARISON WITH CATONI (2012) FORe =1

It is interesting to compare (7) with Catoni (2012, Propo-
sition 2.4) for € = 1. For large n we can take 7 arbitrarily
close to 0, hence in this case, the bound in (7) becomes

. log(2/8)\1/2
e — ] < (242002 (B
for any v > 0 and n large, which has the same order of
magnitude and the same asymptotic constant as in Catoni

(2012, Proposition 2.4).

4. Adapting to unknown v,

We provide an algorithm based on Lepski’s method (Lep-
skii, 1992) to adapt to the unknown structure of the problem,
specifically, we show how it adapts to the unknown moment
bound in a data-driven manner. Lepski’s adaptation method
has been employed to select loss functions in regression
problems (Sun et al., 2020), to adapt to unknown variance
in mean estimation problems (Catoni, 2012), bandwidth
selection in kernel density estimation (Kerkyacharian et al.,
2001); to name a few. Note that this is different from es-
timating the moment bound, which requires further prior
information. For ease of presentation, rewrite (7) as

log(2/6)

T s

)L ®

valid when v, is a true moment bound. Here ®(e,T,J)
absorbs the remaining terms.

Algorithm 1 adapts to the unknown moment bound as de-
scribed. The main intuition is as follows: a crude moment

Algorithm 1 Lepskii Moment Adaptation (LMA)
11 LMA (=, {Xi}icn 0,7, A(> 1), 0(> 1))
%12?:1 | X[t

2: Compute U, = -
_1

3: Set Vpin = i@;“ and Upax = AV

4: Set¥; = Umino”’ and let

J = {] =0,1,2, : Umin < 79]’ < 019111ax}

5: Compute Catoni’s M-estimators {/ig, } je.7

log(2(1 + log,, A2)/5)> e

|/719j —/L| < @(57 T, h)ﬂj (

6: Evaluate/f such that forallk > j, k € J

~

j=min{j €7 : [fio, — fio,| < 20(e, 7, h)

< 9, (log(2(1 + log,, AQ)/5)> i }

n

7: Output: {71y, 05}
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estimate is obtained by the corresponding empirical mean.
We estimate a non-centered moment, but it is easy to see
that

(E|X _ M|1+6)1/(1+E) < 2(E\X|1+5)1/(1+5).

Next, we choose A large enough so that, with a large proba-
bility the event

1 _1 _1
Ba = {05 JA < oI < ABFF)

occurs. There is no way to estimate the probability of the
complement of B 4 without further assumptions on X, and
the conclusions of the result below hold on the event B 4.
However, the resulting confidence interval depends on A
only in a very modest manner, so one should choose A
large in order to make the probability of the event B4
large. The algorithm proceeds by computing a series of
M-estimators (4) with scaling o chosen as

a(v;) : ! (1og<2<1 +log, A2>/6>) =N

1
= 197j (€CE)1/(1+6) n
(1 14e (14 7)0He)/e

€

€ Ti/e n

Intuitively, the definition of 3 can be seen as choosing
the best v, from a point of view of the risk of the esti-
mator (Birgé, 2001). The continuity property of the risk
then ensures the desired adaptive performance of the final
estimator ﬁg? (Lepskii, 1992; Birgé, 2001).

Theorem 4.1. Let ¢ € (0,1) and [i. - (D) denote the data-
driven estimator output by Algorithm 1. Suppose that

G l4e(Q4r)0Fe/e o
€ Tl/e

n > (1-h)

Then, on the event B 4, outside of a part with probability at
most 6, the following holds:

|fie,e (D) — | < 30®(e, 7, h)v2/(+9)

<log (2(1 +2log, A)/d) ) i

n

Typical values for estimators that use Lepskii’s method use
A ~ 100 as a safe choice. Note that the confidence bound
has a logarithmic dependence in A, so even larger values
will only have minor effect.

5. Extension to non-i.i.d

In this section, we will show that the results derived in
the previous sections can be extended to a special case of
non-i.i.d random variables.

L log(2(1 + log, A2>/a>>

CZ log(2(1+log, A%)/6).

The extension of Catoni estimators to this more general
setting is based on the application of standard martingale
analysis (Freedman, 1975; Seldin et al., 2012) to establish
the bounds for bounded functions of real-valued random
variables. Since the influence function v(-) is bounded
by logarithmic functions, a supermartingale can be con-
structed as a function of ¢ (-) and the result then follows
using Markov’s inequality. Below we provide a crucial re-
sult that can be used to establish similar deviation bounds
for the non-i.i.d case.

Proposition 5.1. Suppose the process { X;} is a real-valued
stochastic process adapted to the filtration {F; }ren such
that E[X; 41| F] = pforallt € N. Also, let E[| X411 —
plt*te|F] < v.. Foranyn > 0,

P(T(O) > B+(9)) < g

where B, (0) := (u—0)+h™*Ceafv.+Cea®(1—-h) ™% |pu—
6‘1+E + log(2/5).

The result says that the random variables need not be i.i.d,
and only need to have constant conditional expected value
and a bounded conditional moment. Under these assump-
tions, the main results (Section 3 and Section 4) still hold
using Proposition 5.1. Other types of non-i.i.d case (e.g. ad-
versarial contamination, sequential detection) can be found
in concurrent works (Bhatt et al., 2022b;a).

6. Application: Best Arm Identification with
Fixed Confidence

Consider the best arm (arm with the largest mean) iden-
tification problem on a multi-armed bandit with [K] :=
{1,2,---, K} arms in a fixed confidence setting (Even-Dar
et al., 2006). Here, given a confidence ¢, the objective is
to pull the arms as few times as possible to identify the
best arm with probability at least 1 — §. The distribution
of rewards of arm ¢ € [K] with mean pu(7) is such that
E|X (i) — p(i)|*+e <., fore € (0,1]. Let

1
5

Ln(0) = (L +7)(1+e) /2 (1 —e)+

=

€

x (h=Sv,) 1/ (1+2) (10g(2/5)) 9

The confidence bound using the Catoni’s estimator for heavy
tails (4) can be rewritten as

~ 1\ %=
fec®) —ul <CLO(3) o

Let fi.(j,t) denote the estimation of mean using (4) for
arm j € [K] at time ¢t. Let * = argmax;¢ g (J)
and A; := p(*) — (i) denote the sub-optimality gap.
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6.1. Simple Iterative Elimination with Catoni

In this section, we provide an intuitive algorithm for best
arm identification with fixed confidence. With minor mod-
ifications, Algorithm 2 is essentially a successive elimi-
nation algorithm (Even-Dar et al., 2006) that eliminates
sub-optimal arms according to (11). The key difference is
the initial exploration required to obtain the desired bound
using M-estimation. The elimination criterion is classical
(Auer et al., 2002; Even-Dar et al., 2006), where an arm
whose optimistic empirical estimate is still worse than the
pessimistic estimate of the best arm (having the maximal re-
ward) is eliminated. For ¢ € S, let the elimination criterion
be specified as

{feci) + G (7))

<max (7o) - G (7)1 A

Algorithm 2 Iterative Elimination with Catoni
1: Input: 6, K, h, 7, ¢, v,
2: Initialization: Set S := [K]
3: Pull each arm in S,

(14e)/e
t = 5(11t€h) (”TT)I/: C2/% 1og(4K2/5) times

4: Compute /i, (¢, t) using (4) with
o= —1 1 (1og(4kt2/5))ﬁ
o (A =Cov) /09 [

while |S| > 1 do
Remove all arms ¢ from S that satisfy (11)
Update S' as the remaining arms and sett = ¢ 4 1
Pull each arm in S once and update fi. (i, 1)

end while

10: output: S

Rl e AN

Parameter Choices: There is an inverse relationship be-
tween the parameters h, 7 and the number of samples n
necessary to ensure the bound in (5). So depending on the
tolerance to the cost of initial exploration, the values of 7
and A can be chosen. Ideally, we could reduce the number
of free parameters, namely h as 7 > 0 can be arbitrary, by
using the bound (7). While this has the added advantage of
being sharper, characterizing theoretical sample complex-
ity results is harder owing to the implicit nature of § and
n dependence. So we use the bound in (5) and tune the
parameters accordingly.

Theorem 6.1 (Sample Complexity with v. known). Let
the confidence parameter § € (0, 1) be one of the inputs to
the algorithm. For Algorithm 2 to output S = {x}, with

probability at least 1 — 6, the number of pulls is bounded
1+e

o(Smps () (4) )

The sample complexity attains the order of successive elim-
ination algorithm (Even-Dar et al., 2006) when ¢ = 1. Ow-
ing to the O(1/n 7= ) dependence in the confidence bound
instead of O(1/+/n), we need to explore further to esti-
mate the parameters to a high confidence. For a small A;
with € < 1, this translates to the additional samples required
to distinguish the arms when the variance does not exist.

The moment bound v, is an input to the algorithm. If such a
bound is not known, adaptive estimators derived in Section 4
can be used instead on all arms. With a minor modification,
Algorithm 2 can be used in conjunction with Algorithm 1
to identify the best arm (see Algorithm 4). Essentially the
upper bound for v, in (10) can be chosen as the maximum
of the moment bound estimates from all the arms, and the
event B4 can be defined as the union of the correspond-
ing events for all the arms. With this change, we have
the next Theorem.

Theorem 6.2 (Sample Complexity with v, unknown). Us-
ing Algorithm 1 to adapt to unknown moment, for Algo-
rithm 2 to output S = {x}, on the event By, outside of
a part with probability at most §, the number of pulls is

14+e
bounded by O(ZiE[K] log (%) (i) ’ )
A, ¢

As expected, the number of samples required is larger than
in Theorem 6.1. The additional samples are required to
compensate for the increase in the width of the confidence
bound owing to Algorithm 1.

6.2. Phase-based Elimination with Catoni

It is clear that in Algorithm 2, the Catoni’s estimate is waste-
fully computed at every step and the initial exploration phase
is larger than necessary due to the union bound. We next
provide a phase-based algorithm and achieve better sample
complexity in terms of A;.

Algorithm 3 eliminates arms conditioned on the phase, while
using the standard elimination criterion (11). For i € S, let
the elimination criterion for the phase based algorithm be
specified as

{fcctito) + &2 (rmae) () 1 ay

3 {A Gitn) — G (L)(ir}
Ijrleagi He,eldr tm e,h 2K(m+1)2 tm ’

where m is the phase index.

The key reason for the gain in performance is that, it can be
shown that once the phase index is such that

1+e 1+e

(’Ym ;h(5/2Km2)> C > KW) E “7

then arm ¢ will be eliminated before phase m, whence we
obtain m = O(log., (4/A;)).
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Algorithm 3 Phase-based Iterative Elimination with Catoni

Algorithm 4 Adaptive Elimination with Catoni

1: Input: 6, K, h, 7,¢e,v:,7(> 1)
2: Initialization: Set S := [K], phase index m = 0
3: Set

1+e (147)0+e)/e
e(1—h) Tl/e

binit 1= { Cal/s log(4K/6)-‘

4: Set ty = 0 and

1+e

b= max { (+GZu(/2K)) * st }

5: while |S| > 1do

6: Increase phase index m by 1
7:  Sample every arm in S for max{t,, —tm,—_1,0} times
8:  Compute fi. (i, ) using (4) for i € S with

o =

1 (1og(4K(m + 1)2/5)) e
(eh==CLv.)V/(+e) tm

9:  Remove all arms ¢ from .S which satisfy (12)
10:  Update S as the remaining arms and set m = m + 1

14¢
Lu(6/2Km?))

€

11:  Sett,, = (’ym
12: end while
13: Output: S

Algorithm 3 considers a much smaller initial exploration
phase (Step 3), which also results in considerable saving in
sample complexity when K is large, and this coupled with
order optimal phase length yields the result below.

Theorem 6.3 (Sample Complexity with v, known). For
Algorithm 3 to output S = {x}, with probability at least
1 — 6, the number of pulls is bounded by

max{ (Zl (Klog 1/A)) LE)’KQM}_

i€[K] A,

The sample complexity attains the lower bound for ¢ = 1
when using the state of the art algorithm 1il’UCB (Jamieson
et al., 2014) and Exponential-Gap Elimination algorithm
in Karnin et al. (2013). When the moment bound v, is un-
known, Algorithm 1 can be used in conjunction with Algo-
rithm 3 to identify the best arm. The complexity increases to
compensate for the increased width of the confidence bound.

Theorem 6.4 (Sample Complexity with v, unknown). For
Algorithm 4 to output S = {x}, with probability at least
1 — 6, the number of pulls is bounded by

max{ (Zl (Klog 1/A)> L€>7Ktinit},

i€[K] Ai

where K := K(1 4 2log, A).

1: Input: §, K, h,7,e,7(>1),A>1,0 > 1

2: Initialization: Set S := [K], phase index m = 0
{Replace Step 8. in Algorithm 3 by the following two
steps}

3: Step 8a. Compute {ficc(%,tm),
rithm 1

4: Step 8a. Set v. = max;cs ¥5(i) and the number of
(pseudo) arms K := K (1 + 2 logo A)

5: Qutput: S

U5(i)} using Algo-

The key idea in Algorithm 4 is that the minimum length of
initial exploration (¢;,it) does not depend on v, which is not
the case in the current state of the art M-estimators like Chen
etal. (2021). Note that in Algorithm 1, fori € S, fic,c (4, tm)
is computed in Algorithm 4 over {X;(4)},<q,, with

o =

1 1 (log(4K(m + 1)2/5)) e
9-(i) (h==Ce) /0%0) tm

Remark 3. In practice, the solution of (4) that corresponds
to the estimate, is computed by root-finding using fixed-
point iterative updates. While Catoni’s estimator provides
tight bounds and good results, the space complexity is lin-
ear, which perhaps is the only impediment in a sequential
decision making application.

7. Experimental Results

We empirically validate the performance improvement in
using our proposed algorithm based on Catoni’s estimator
for e € (0, 1] by comparing it with the state of the art best
arm identification algorithms proposed in Yu et al. (2018).

7.1. Theoretical Comparison

e Successive Elimination (SE) vs Phase-based (PB):
(i) SE requires Catoni estimation by root finding at
every time step on all valid arms, while PB com-
putes once at the end of each phase. In addition, in
Algorithm 3, the length of the phases are carefully
modulated to obtain the best possible order for sam-
ple complexity. (ii) The sample complexity using
SE is at best O(log(K/6A;)/ArT/%) as opposed to
O(log (%)/Aff/s) using PB, which cannot
be improved, for example when ¢ = 1. Note that PB
has similar order as Karnin et al. (2013) and Jamieson
et al. (2014) for € = 1 and also works for € < 1.

e SE-TEA (Yu et al. (2018)) vs Algorithm 2: (i) SE-TEA
is based on raw moments, so sensitive to the location
of the mean, which is not desirable in bandit applica-
tions. (ii) The constants in the robust mean estimator
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K=10 | K=50 | K=100 | K=500 | K=1000
5=005 LE= 0.85 | 2.57 21.07 43.95 259.16 565.71
e=1 0.10 0.43 1.01 7.23 15.37
s—01 LE= 0.85 | 2.19 19.33 40.39 248.25 550.76
e=1 0.06 0.34 0.99 5.97 13.42

Table 1. Average sample complexity (x 10°) over 50 iterations over a range of arms for different hyper-parameter values using Algorithm 3.

x10° . . . x10* 42 10°
33 101 ———
, M v =
5F 4
w0 w0 - 12} L 4
Z ol 1 = 8 L= 3 —+SE-TEA
2 +SE_TE.A 2 6t ——SE-TEA 2 Student’s t, = — 0.85, K —2 |~ Catoni
LS 1.5 Student’s t, e =1, K =12 +Cat0n? % Student’s t. e = 1. K = 6 —e—Catoni LS 2t —*—Catoni.p J
S i —+— Catoni-p | s al —+— Catoni-p s
z 1 Z g Z
——o_—o
03¢ 24 ; f i 1L 1
— =1
0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05

Confidence

Confidence

Confidence

Figure 1. Average number of pulls for a fixed confidence over 50 iterations for different number of arms K = 2,6,12,and ¢ = 1 and
€ < 1. Successive Elimination with Truncation Estimator(SE-TEA) algorithm is borrowed from Yu et al. (2018), Catoni corresponds to
Algorithm 2, and Catoni-p to Algorithm 3. Significant performance improvement is observed using a sharper concentration bound.

are not even close to optimal (even disregarding the
fact that central moment is much smaller than raw mo-
ment). These translate to poor empirical performance
compared to Algorithm 3.

In terms of sample complexity bounds, Yu et al. (2018)
obtain O(3", log(K/8)/AL</%). The reason for such
a sharp, albeit impossible bound, is due to the fact
that they use a faulty union bound argument (compare
with Even-Dar et al. (2006)). For example when ¢ = 1,
the lower bound is O(}"; loglog(1/A;)/A2) as es-
tablished in Jamieson et al. (2014). After correction,
SE-TEA obtains the same order as Algorithm 2, how-
ever, with worse constants.

7.2. Numerical Comparison

The experimental setup is as follows: the rewards for all
arms in all experiments are generated from the heavy tailed
Student’s-t distribution. The shifted mean of each arm is
given using the following rule: u(i) = 2 — (i — 1/K)%6
fori =2,---, K and p(1) = 2. The number of degrees of
freedom for the first two figures from the left is ¥ = 3 which
corresponds to ¢ = 1 and v, = 3. The third figure uses v =
2 which has infinite variance and for ¢ = 0.85, an upper
bound is v, = 50. Smaller values for 7 and larger values for
h will have sharper bounds, and can be chosen depending on
the tolerance to the cost of initial exploration. One choice
parameters used is 7 = 0.05 and . = 0.7. Further, v(>
1) in Algorithm 3 is set to 1.1; this can be tuned further
to improve performance. A significant improvement in
performance using our algorithms is observed in Figure 1,

more so in case of smaller ¢, indicating the tightness for
smaller €. Table 1 shows the performance of Algorithm 3
for K from 10 to 1000. Two facts contribute to algorithmic
improvements over the state of the art. (i) Tighter bounds of
|fic,e — p| obtained in Section 3 and Section 4. (ii) Phase-
based elimination scheme (Algorithm 3).

We do not illustrate the performance of Algorithm 4, as
Algorithm 1 can be incorporated into any of existing al-
gorithms to adapt to the unknown parameters; and the al-
gorithms using Catoni’s estimator (Algorithm 2 & Algo-
rithm 3) would continue to outperform by at least a similar
margin owing to near-optimal confidence bounds.

8. Conclusion & Future Work

We provided a nearly-optimal M-estimator for computing
the mean of a random variable having bounded (1+¢)** mo

ment. This is based on the non-trivial extension of Catoni’s
estimator proposed in Catoni (2012) for the case of infinite
variance. We also provided an algorithm to adapt to the situ-
ation of unknown moment bound using classical Lepskii’s
adaptive estimation method. We then provided adaptive
best arm identification algorithms, based on this estimator,
that have excellent empirical performance compared with
trimmed mean baselines.

Useful and challenging future directions for the proposed
M-estimator include extending the results to larger dimen-
sions using ideas in Catoni and Giulini (2017) and Minsker
(2018); and relaxing the requirement of ¢ using ideas
from Kagrecha et al. (2019); Ashutosh et al. (2021).
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In this appendix, we include the following additional details to support the main claims and results. Specifically, we include
detailed proofs of the main theorems to make the paper self-contained in Appendix A, and include an implication of the
results in the upcoming important application of differential privacy in Appendix B.

A. Proofs

Proof of Lemma 3.1

A necessary and sufficient condition for the existence of a function satisfying (3) is given by
(1—z+Cx'™) 1+ 2+ Cex'¥) > 1, Va2 > 0.

Rearranging, this reduces to
20zt + 052332(1+€) > 2 V>0,

which is equivalent to the condition
C%x* 4 2C.2 ' > 1, Vo > 0. (13)

The minimum of the expression in the left hand side over = > 0 is achieved at

(1 —5)ﬁ
Ty = ,
C.e

and substituting this value in (13) and solving for C. produces the desired result. [

Proof of Theorem 3.2
As in Catoni (2012), define

r6) =3 (a(X, - 0)),
and note that r, () is non-increasing in § € R. Using th: :Jpper bound on the influence function in (3),
E[exp(ra(0)] = (E[exp (¢(a(x:i - 9)])"
< (B[1+a(X) - 0) + Cal* X, - 9\1+8Dn
= (1+a(u =6+ C.aEIX; - 9|1+6)".

We will use a convexity upper bound as follows. Fora,b > 0and 0 < h < 1,

14+e __ E _ b Ite
(a+) = (3 +(1-m)=)
an l+e b 14+e alte plte
<h(- 1—h)|——+ = — 4+ —. CB
<h(z) +a-m(i=) e T —h)e (CB)
Therefore, for any 0 < h < 1,
E|X; — 0" <h™°E|X; — pu|' T + (1 — h)~%|pu — 0] F=. (14)

This leads to worse constants than in Catoni (2012), and is the price to pay for the generalization. Using the above bound,
we obtain

E[exp(ra(0))] < (14 a(u = 0) + h7°Ca’* v, + CealT(1 = )| — 0]+*)
< exp (om(u —0) +nh~°C.a' v, + nCoa (1 — h) | — 0|1+€).
Similarly, using the lower bound on the influence function in (3), we obtain by symmetric arguments

E {exp(—rn(G))} < exp ( —an(u —0) +nh C.a v, + nCoa™ (1 — h)~¢|u — 9|1+5>.
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Let§ € (0,1). As in Catoni (2012), we define

By(0) = (p—0)+h*C.av. + Cea®(1 — h)%|u— 0

9

e, Tos(2/9)
an
log(2/6
B(6) = (j— 0) — h=Cuafv. — Coa(1 — B)~< | — g1+ — 1082/0).
an
By the exponential Markov inequality, we have

]P’{rn(G) > naB+(9)} < <4/2,

exp(anB4 (0

P{rn(ﬁ) < naB- (0)} = Iei[:(xpomB ((?9 ])

]E[exp 7 ( ))]
)~
)

5)

Note that the function B is a strictly convex function of 6 and B, (6) — oo as |6] — oo. Therefore, B, has a unique

minimum on R, which is achieved at
1
€

O =p+ 1;h((1+1s)05) ’

so that

%_'_ log(2/6).

e 1—nh 1
B.(0) = B4 (0.) = h*a°Cou. —
min B, (6) = By.(6.) = h™*a*Cev (( ) -

9cR l+e a 1+¢)C;

Suppose that this minimum is non-positive, i.e.

o=

1og(§/5) < 1;5(1 B h)((l +15)05) . a6)

h=caltteCou, +

Then the equation
By(0)=0 17)

has a real root, and, if the inequality is strict, it has two real roots. Since By (u) > 0 and 6, > p, the roots are larger than p.
Let 04 () € [u, 0,] denote the smallest of these roots. Our next step is to bound the difference 0 (o) — p.

Let us denote

log(2/6
K=(1-h)"aCe, M =h"*aC.ve + M,
an
and introduce a variable z = 6 — p, 8 > pu. Now the equation (17) is rewritten as
Kzt — 24+ M=0, 2>0. (18)
Denoting further
D=K:M,
and introducing the variable y = K % 2 transforms (18) into the equation
Yy -y+D=0,y>0 (19)
Let the associated function f be defined as
fly) =y —y+D.
If the condition
7_1/8
D<—2 (20)
(1+7)=

holds for 7 > 0, then f((1 + 7)D) < 0, so the equation (19) has a positive solution y(D) satisfying

y(D) < (1+7)D,
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which is the same as
Oy (a) —p < (1+7)M.

Equivalently,
log(2/6
() —p<(1+71) (h_sofC’aUE + %),
assuming (20) holds. Note that the latter condition can be rewritten in the form
_ log(2/0) Ti/e _
e, 1+4e€ _ 1/e
h™fa ¢ C.u. + . < (1 o (I-h)CZ /5. 2D

This condition coincides with (16) for 7 = 1/e and is stronger than the latter for other values of 7.

Similar analysis using B_ () shows that the roots of the equation B_(6) = 0 are smaller than y and the largest of the
roots, 6_(«), satisfies

os(2/8))

pw—0_(a) <(1+7) (hfeofcgvs + .

once again assuming that (21) holds.

Assuming (21) holds, from (15) with § = 0 («), there is an event & with P{€;} > 1 — §/2 such that, on &,

Fa(0:(a)) < B+ (6(a)) = 0.

Since 1, is a non-increasing function of #, we see that, on &1, fice < 04 (). It follows that on &,

~ _ log(2/6
Hee—p<(14+7) (h fafC.v. + %). (22)

Similarly, from (15) with 6 = 6_(«), there is an event & with P{E3} > 1 — /2 such that, on &,
rn(0_(a)) > B_(6_(a)) = 0.
Again the monotonicity of r implies that on &, fi . > 6_(«). It follows that on &,

log(2/5))' 23)

p—fee < (14+7) (h_aof Ve +
an

It follows from (22) and (23) that, if (21) holds, then with probability at least 1 — ¢,

~ _ log(2/0
|fce —pl < (147) (h fafCLvu, + M) (24)
an
Choice of o:
We start by writing « in the form
log(2/0)\ =
- A(M) S 25)
n
for some A > 0 to be chosen. This form of « leads to the bound
—~ log(2/6)\ 5=
oo — pl < (1+7) (%) i (h’EAfcgvs + 1/A). (26)
Note that the condition (21) with « of the form (25) requires
_ log(2/6)  log(2/6) Tl/e _
€ 1+e 7 1/e
= Ceved w T, =0-n 1+ )0+ s 27
This implies that if n satisfies
1 1 (14¢€)/e
n> (-t e O o g0, (28)

€ Tl/e
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then the value of A that minimizes the right hand side in (26),

1 1
gﬁ (h—e EUE)I/(lJ’_E)

A:

satisfies (27). Using this choice of A, we conclude that for all § € (0,1) and for all n satisfying (28), we have with
probability at least 1 — 6,

1 155
few —pl < (14 7)1 (h—fcgvg)l/(lﬁ)(M) =

ce/(ite)

n
14e 1—¢
2 2

Finally, recalling that C, = (ﬁ) (%) , we obtain the required non-asymptotic confidence bound

~ log(2/9)\ %=

fiee — pl < (1+7)(1+)/2(1 —¢) li;%(h*gvs)l/(us)( 0g(2/ )> §

n

with probability at least 1 — 4. O

Proof of Theorem 6.1

First, note that from Theorem 3.2,
6 1\ 7%= 1)

Plfce =l < G2(570) (7)1 2 1~ e

|/‘L ;€ /‘LI — Gs,h 2Kt2 t - 2Kt2
From union bound, we therefore have that with probability at least 1 — ¢ for any time ¢ and any arm ¢ € [K],
~ . - 1) 1\ 5=
|Hee(iyt) — p| < s,h(m) (;) .
From Algorithm 2, a sub-optimal arm ¢ € [K] is eliminated when the number of pulls 7 is such that (cf. (11))

L L6 N 1\t S L6 NIy
{fcction + 62 () (7)) < mae {ectiom - €2 (5752) () 7

L o /6 1\ 15
max {Fiee () } = Recliom) 2 2670 5762) (5)

Note that on the relevant event the optimal arm is not eliminated in such as fashion, lest condition (11) leads to a contradiction.
Furthermore, on this event the latter condition will be automatically satisfied if

a2 10 () ()

With g = 4(1 4 7)(1 4 £)Y/2(1 — &) T 2 (h =50, )/ (%2 this can be rewritten as

A > q(log(4Kn2/6))16? (%)15?7

(%) e > 10g(4l§n2/§).

Therefore, on the relevant event a suboptimal arm 7 will eliminated after at most

@) < log (MK;:E> Aigg)

(2

pulls.The result follows. O
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Proof of Theorem 6.3

From Theorem 3.2, with probability at least 1 — #, we have each of the following events

. _ 51y
< T -
flealit) < u(0) + GLue—) (7) 29)
and 5 e
~ > o T - 1+e
flec () 2 1) = GGG (3) - (30)

We’ll first establish that if the number of pulls of sub-optimal arm ¢ is larger than

AGT ), (5% )\ 1
o= (L) ),

i

at phase m (m will be determined later, i.e. (31)), then arm ¢ will be eliminated. Indeed, by (29) and (30), (and expressing A;
as a function n,,,, and G; 1), we have

e i) + G o) () 7 < i) + 2670 (o) ()

2Km? " \ny, 2Km2?’ \nyy,

(i) + A= 26T () ()

2Km2’ \ny,

= le) — 267 (o) ()

N,

~ - ) 1 T+e
< Je,e (¥, M, ) — e,h(m) <7> .

N,

Note that the optimal arm will not be eliminated if (29) and (30) hold, as then the required relation

~T (s T J 1 ﬁ ~T T d 1 ﬁ
B e (@, Mm;) — s,h(m)(rmi) > T o (%, 1, ) + Gs,h(m) (ﬁ>

leads to a contradiction p(i) > p(*) for a sub-optimal arm 4. This implies that once the phase index m! is such that

14¢

€

mY ;= min {m : ('ym g’h(5/2Km2)> > nmi}, 31)

then arm i will be eliminated before phase m? with probability at least 1 — S, Kfnz >1-— %.

1t+e

) TW . It suffices to have m > log. (4/A;). We then
know m{ is bounded by [log, (4/A;)]. Therefore, the number of times pulling arm i is bounded by

4GT ) ()
A

e,h i

Solving (31), we have (WGT (6/2Km2))¥ > [(

1+4e 14e

(Vm?G;h(Q;mQ)) ‘ :< ;h(ﬂ(((sW)) i

+e

1te - 1) € 4 14
“(eEtame) @
2K log7(4/Al) 4 14e

5 NE) (32)

-

IN
Lo

14e€

< 27 (2qlog(

1

where ¢ = (14 7)(1 +)Y/2(1 — &) 7=~ 2 (h==v,)/(1+9). The result follows. O
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Proof of Theorem 4.1
Recall that on the event By, Ymin > 0 and ¥, > 0 sandwich the true bound U; / (1+2) Let ¥ = Ymino? . Define
J =I5 = {.7 =0,1,2,-++, :Umin < ﬂj Saqgmax}-

Note that the cardinality of [ is upper bounded as

T < (1 + log,, (ZZ::)) = (1+2log, A).

In the range n specified in the theorem, with a slight abuse of notation, we have from (8) that for all k € J

log(2(1 + log,, A%)/9) ) T
n

o, =l < @(e, 7 myon

if v, < ¥y. Define

log(2(1 + log,, A2%)/9)

Ezmm{jej; i, — Tio,| gz@(g,T,h)ﬁj( )+ V>, kej}.

1
On the event B4, we define j* = inf{j € J : ¥; > vs ™ }, whence we have that
_1 1
v < <ove el

Consider the event B4 N {j > j*}, so that

log(2(1 + log,, Az)/é)) Tie

Ban{j>j}<Ban |J {Iﬁﬂj—ﬁwﬁ >2(D(€,T,h)19j(

}

jeT >4 "
- log(2(1 + log,, A%)/8)\ 5=
cBan | {|uﬁj—u|>q>(s,7,h)q9j( g (2( ng )/ )>1+ }
jegg>j*

Defining an event £ as

log(2(1 + log,, AQ)/(S))lE? }’

£=Ban () {mﬂj—mg@(e,n@ﬁj( -

FISVAV RS

we have that £ C B4 N {3 < j*}. Using Theorem 3.2, the probability of B4 N £¢ is upper bounded as

SRS P{mﬂ,.fm>@(e,T,awj(log(?(l+1oggA2>/6>)ﬁ}S .

n

1
jeg 9 >vlte

On the event &£, we have that} < j*, so that

[Ho; — pl < |fo; — B | + 1o, — pl

< 3(e, T, h)ﬁj* <log (2<1 + log,, (%))/(g ) ﬁ.

n

1

The result follows by noting that 9« < ovd ™.

Proof of Corollary 3.3

The condition (16) is satisfied whenever n and « are chosen as required. Under this condition, we obtain by (24) that

VR

(b C) 9 (B ) (1 + 1og(2/9))

n 1+e€

1+e
e

|ﬁc,s - /"‘ <

with probability at least 1 — §. Using the chosen value of C¢, the result follows.
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Proof of Proposition 5.1

Proof. For any i < n, using the upper bound on the influence function, we have for h € (0, 1)

Elexp(i(a(X; — 0)))] < E[1+a(X; - 0) + Ceal*9| X; — 0]+
< (1+alp—0) + h=*Cca’ B[|X; — u|"+] + Ceal*=(1 — h)~“|pu — 0]'+<)
< exp (a(,u —0)+hC.a R X; — pu| T + Coat (1 — h) " — 9|1+5). (33)

We shall use the standard methodology in dealing with martingales (Freedman, 1975; Seldin et al., 2012) to obtain a
deviation probability for (6). Let Zy = 1, and for ¢ > 1, let

Zi = Zi_1 exp((a(X; — 0))) exp ( - (a(u —0) + hSCoa P E[|IX; — p|'] + Ceal (1 — h)~|u — 91+5)>.

Clearly, using (33) and the definition of Z;,
E[Z, <---<E[Z] <---<E[Z] =1, (34

where Z,, is given as

Zn = exp (Zw(a(Xi - 9))) X exp < - (na(,u —0) + nh™Cea' v, + nCea (1 — h)~%|u — 9|1+5)>.
i=1

Now using (34) and Markov’s inequality, we have

In other words,

2 1)
P(r(&) > na(p — 0) +nh™*C.a v, +nCea T (1 — h)~%|u — 6] + log (5)) < 3
O
Proof of Theorem 6.2 & Theorem 6.4
Proofs follows from Theorem 6.1 and Theorem 6.3 with § = —% O

1+2log, A*
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B. Implication for Differential Privacy Problem

In this last section, we illustrate the usefulness of our result by considering mean estimation problem under a differential
privacy setting.
Recall the classical definition of e-differential privacy (Dwork, 2008):

Definition B.1. The algorithm 4 is said to provide e-differential privacy if, for all datasets D and D’ that differ only on a
single element, and all events S,

P(A(D) € ) < exp{e}P(A(D') € 5), (35)
where the probability is taken over the randomness of algorithm 4.

In the literature, a relaxation form is also considered. Dwork et al. (2006) proposed a framework of approximate differential
privacy:

Definition B.2. The algorithm A4 is said to provide (e, §)-differential privacy if, for all datasets D and D’ that differ only on
a single element, and all events .5,

P(A(D) € S) < exp{e}P(A(D') € §) + 6. (36)

We restrict ourselves by considering that dataset D consists of independently and identically distributed (i.i.d) data samples.
We hence introduce the restricted differential privacy:

Definition B.3. The algorithm A is said to satisfy restricted (e, §)-differential privacy if, for all i.i.d datasets D and D’ that
differ only on a single element, and all events .S,

P(A(D) € S) < exp{e}P(A(D’) € S) + 6, (37
where the probability is taken over the randomness of both A and D, D’.

Here, in the definition of restricted differential privacy, we require the samples in D to be i.i.d. The second dataset D’ is
obtained by replacing one sample in D by another independent copy. In this scenario, we can easily construct a series of
algorithms with guarantees of restricted differential privacy as below.

Algorithm 5 Restricted Differential Privacy for Heavy-tailed Data

1: Input: i.i.d dataset { X;}, moment parameter ¢, differential privacy parameter ¢, ¢, and an estimation algorithm M.
Compute the estimator j of the mean via using algorithm M.

Compute the 1 — ¢/2 confidence error of /i and denote it as Bs.

Randomly generate a noise term W which follows Laplace(2B;/¢).

Output: 1+ W.

In the framework of Algorithm 5, the estimation algorithm M can be taken as any of Lugosi and Mendelson (2019), Chen
et al. (2021) or our proposed method. The random variable W follows a Laplace distribution (i.e., the probability density
function of Laplace(b) = 37 exp{—|x|/b}). Larger value of b will lead to larger magnitude of noise. In other words,
the estimation quality is largely determined by Bs. According to the discussions in Section 3.1, our method provides a
smaller Bs compared with other two competing methods and hence returns a better estimator under the same algorithmic
framework. Lastly, by using standard proof techniques (Dwork and Roth, 2014; Duchi et al., 2018), it can be easily shown
that Algorithm 5 satisfies (e, 9) restricted differential privacy.

The proposed application framework raises a few questions that have important implications for the community. Firstly, it is
interesting to see if the i.i.d restriction on the data D can be relaxed, to allow any dependence structure between samples,
which are themselves heavy-tailed. Secondly, it is worthwhile investigating whether the framework we adopted here can be
viewed as a global private method. That is, noise is added to the output (query) of the dataset (or noise is added only once, at
the end of the process before sharing it with the third party/user) (Wang et al., 2020). Also, is there any reasonable local
differential private framework to privatize each data sample X; before adopting any estimation algorithm M ?



