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Abstract

We focus on a specific class of shallow neural
networks with a single hidden layer, namely those
with Lo-normalised data and either a sigmoid-
shaped Gaussian error function (“erf”) activation
or a Gaussian Error Linear Unit (GELU) activa-
tion. For these networks, we derive new generali-
sation bounds through the PAC-Bayesian theory;
unlike most existing such bounds they apply to
neural networks with deterministic rather than ran-
domised parameters. Our bounds are empirically
non-vacuous when the network is trained with
vanilla stochastic gradient descent on MNIST,
Fashion-MNIST, and binary classification ver-
sions of the above.

1. Introduction

The study of generalisation properties of deep neural net-
works is arguably one of the topics gaining most trac-
tion in deep learning theory (see, e.g., the recent surveys
Kawaguchi et al., 2020; Jiang et al., 2020b). In particular, a
characterisation of out-of-sample generalisation is essential
to understand where trained neural networks are likely to
succeed or to fail, as evidenced by the recent NeurIPS 2020
competition "Predicting Generalization in Deep Learning”
(Jiang et al., 2020a). One stream of this joint effort, which
the present paper contributes to, is dedicated to the study
of shallow neural networks, potentially paving the way to
insights on deeper architectures.

Despite numerous efforts in the past few years, non-vacuous
generalisation bounds for deterministic neural networks
with many more parameters than data remain generally elu-
sive. Those few non-vacuous bounds that exist primarily
report bounds for networks with randomised parameters, for
example Gaussian weights, which are re-drawn for every
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prediction (a non-exhaustive list of references would begin
with Dziugaite & Roy, 2017; 2018; Neyshabur et al., 2017,
2018; Hellstrom & Durisi, 2021), or for compressed ver-
sions of the trained networks (Zhou et al., 2019). While
these undoubtedly advanced knowledge on generalisation in
deep learning theory, this is far from contemporary practice
which generally focuses on deterministic networks obtained
directly through stochastic gradient descent (SGD), as we
do.

The PAC-Bayesian theory (we refer to the recent Gued;,
2019 and Alquier, 2021 for a gentle introduction) is thus
far the only framework within which non-vacuous bounds
have been provided for networks trained on common clas-
sification tasks. Given its focus on randomised or “Gibbs”
predictors, the aforementioned lack of results for determin-
istic networks is unsurprising. However, the framework
is not limited to such results: one area within PAC-Bayes
where deterministic predictors are often considered lies in
a range of results for the “majority vote”, or the expected
overall prediction of randomised predictors, which is itself
deterministic.

Computing the average output of deep neural networks with
randomised parameters is generally intractable: therefore
most such works have focused on cases where the average
output is simple to compute, as for example when consid-
ering linear predictors. Here, building on ideas from Biggs
& Guedj (2022), we show that provided our predictor struc-
ture factorises in a particular way, more complex majority
votes can be constructed. In particular, we give formula-
tions for randomised predictors whose majority vote can
be expressed as a deterministic single-hidden-layer neural
network. Through this, we obtain classification bounds for
these deterministic predictors that are non-vacuous on the
celebrated baselines MNIST (LeCun et al., 1998), Fashion-
MNIST (Xiao et al., 2017), and binarised versions of the
above. We believe these are the first such results.

Our work fundamentally relates to the question: what kind
of properties or structures in a trained network indicate
likely generalisation to unseen data? It has been shown by
Zhang et al. (2017) that neural networks trained by SGD
can perfectly overfit large datasets with randomised labels,
which would indicate a lack of capacity control, while simul-
taneously generalising well in a variety of scenarios. Thus,
clearly any certification of generalisation must involve ex-



tracting additional information other than the train loss—for
example, the specific final network chosen by SGD. How
do the final parameters of a neural network trained on an
“easy” data distribution as opposed to a pathological (e.g.,
randomised label) one differ? A common answer to this has
involved the return of capacity control and the norms of the
weight matrices, often measured as a distance to the initial-
isation (as done, e.g., in Dziugaite & Roy, 2017; Bartlett
et al., 2017; Neyshabur et al., 2018).

We suggest, following insights from Dziugaite et al. (2021),
that a better answer lies in utilising the empirically-observed
stability of SGD on easy datasets. We give bounds that are
tightest when a secondary run of SGD on some subset of
the training set gives final weights that are close to the full-
dataset derived weights. This idea combines naturally in the
PAC-Bayes framework with the requirement of perturbation-
robustness of the weights—related to the idea of flat-minima
(Hinton & van Camp, 1993; Hochreiter & Schmidhuber,
1997)—to normalise the distances between the two runs.
By leveraging this commonly-observed empirical form of
stability we effectively incorporate information about the
inherent easiness of the dataset and how adapted our neural
network architecture is to it. Although it is a deep and
interesting theoretical question as to when and why such
stability occurs under SGD, we believe that by making the
link to generalisation explicit we solve some of the puzzle.

Setting. We consider D-class classification onaset ¥ C R?
with “score-output” predictors returning values in Y CcRP
with multi-class label space J = [D], or in Y = R with
binary label space ) = {+1,—1}. The prediction is the
argmaximum or sign of the output and the misclassification
loss is defined as £(f(z),y) = H{argmax,cpj f(z)[k] #
y} or £(f(x),y) = 1{yf(x) < 0} respectively. It is
will prove useful that scaling does not enter into these
losses and thus the outputs of classifiers can be arbi-
trarily re-scaled by ¢ > 0 without affecting the predic-
tions. We write L(f) := E¢, ,y~pf(f(x),y) and L(f) =
m~1 > (zyes L(f (@), y) for the risk and empirical risk of
the predictors with respect to data distribution D and i.i.d.
m-sized sample S ~ D™,

Overview of our contributions. We derive generalisation
bounds for a single-hidden-layer neural network Fi;y with
first and second layer weights U and V' respectively taking
the form

Foy(@) =V (5[]“’)
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with ¢ being an element-wise activation. If the data is
normalised to have ||z||2 = S these are simply equivalent
to one-hidden-layer neural networks with activation ¢ and
the given data norm. We provide high-probability bounds

on L(Fy,y) of the approximate form
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where () is a distribution over predictors f, which depends
on U and V but does not necessarily take the form of a
neural network. The construction of this randomised proxy
(@ is central to our PAC-Bayes derived proof methods. The
bounds hold uniformly over any choice of weight matrices,
but for many choices the bounds obtained will be vacuous;
what is interesting is that they are non-vacuous for SGD-
derived solutions on some real-world datasets. U™ and
V™ are matrices constructed using some subset n < m
of the data. Since we consider SGD-derived weights, we
can leverage the empirical stability of this training method
(through an idea introduced by Dziugaite et al., 2021) to
construct U™, V" which are quite close to the final true
SGD-derived weights U, V, essentially by training a prior
on the n-sized subset in the same way.

Outline. In Section 2 we give an overview of results from
previous works which we use. In Section 3 we give a bound
on the generalisation error of binary classification SHEL
networks, which are single hidden layer networks with “erf”
activations. In Section 4 we extend to multi-class classifica-
tion using a simple assumption, giving a general formulation
as well as results for “erf”’- and GELU-activated networks.
In Section 5 we discuss our experimental setting and give
our numerical results, which we discuss along with future
work in Section 6.

2. Background and Related Work

PAC-Bayesian bounds. Originated by McAllester (1998;
1999), these generally consider the expected loss or Gibbs
risk L(Q) := E;gL(f) and analogously for the empirical
risk, where Q € M (F) (with M7 (A) denoting the set of
measures on .4) is a distribution over randomised predictors
f € F. The high-probability bounds take the rough form
(although numerous variations using variance terms or at-
taining fast rates also exist — see the aforecited Guedj, 2019
and Alquier, 2021 for a survey)

LQ) <L@Q)+0 <\/KL(Q’P> + 10g(1/6)> o

m

holding with at least 1—§ probability over the draw of the
dataset. Here KL(Q, P) is the Kullback-Leibler divergence
and P € M (F) is the PAC-Bayesian “prior” distribution,
which must be chosen in a data-independent way (but is not
subject to the same requirements as a standard Bayesian
prior for the validity of the method). This bound holds
over all “posterior” distributions (), but a poor choice (for
example, one over-concentrated on a single predictor) will



lead to a vacuous bound. We note in particular the following,
which we use to prove our main results.

Theorem 2.1. Langford & Seeger (2001), Maurer (2004).
Given data distribution D, m € N*, prior P € M7 (F),
and § € (0, 1), with probability > 1 — § over S ~ D™, for
all Q € M (H)

p@ <17 (1@ + (K1@.P) +10s 25" ) )
where K1™ ! (u, ¢) := sup{v € [0,1] : kl(u,v) < ¢} and
kl(g : p) := qlog(a/p) + (1 — g)log((1 — ¢)/(1 = p)).

We note the relaxation k1 ™" (u, ¢) < u -+ /c/2 which gives
an idea of the behaviour of Theorem 2.1; however in the
case of u close to 0 the original formulation is considerably
tighter.

Data-Dependent Priors. A careful choice of the prior is
essential to the production of sharp PAC-Bayesian results. A
variety of works going back to Ambroladze et al. (2006) and
Parrado-Herndndez et al. (2012) (and further developed by
Dziugaite & Roy, 2018; Dziugaite et al., 2021; Rivasplata
et al., 2018; Perez-Ortiz et al., 2021a;b, among others) have
considered dividing the training sample into two parts, one
to learn the prior and another to evaluate the bound. For-
mally, we divide S = S prior| ) gbnd 3 q yge SPIOT g Jearn a
prior P" where n = |SP*i°%|, then apply the PAC-Bayesian
bound using sample S to a posterior @) learned on the
entirety of S. The resulting bound replaces L by Ling, P
by the data-dependent P™, and m by m — n = |SP*4|; thus
the KL complexity term may be reduced at the cost of a
smaller dataset to apply the bound to.

Dziugaite et al. (2021) used this when considering training
neural networks by constructing a so-called “coupled” prior
P™ which is trained in the same way from the same ini-
tialisation as the posterior () by stochastic gradient descent
with the first n examples from the training set forming one
epoch. Due to the stability of gradient descent, the weights
of P™ and @ evolve along similar trajectories; thus stabil-
ity of the training algorithm is leveraged to tighten bounds
without explicit stability results being required (and we do
not study the conditions under which SGD provides such
solutions). In many ways this can be seen as an extension
of previous work such as Dziugaite & Roy (2017) relating
generalisation to the distance from initialisation rather than
total weight norms.

Majority Votes. Since PAC-Bayesian bounds of the
form in (1) and Theorem 2.1 generally consider the
risk of randomised predictors, a natural question is
whether prediction accuracy can be improved by “voting”
many independently drawn predictions; such a majority
vote predictor takes the deterministic form MVg(z) =
argmaxy, P (argmax f(xz) = k). Several strategies

have been devised to obtain bounds for these predictors
via PAC-Bayesian theorems, with the simplest (and often
most successful) being the unattributed first-order bound
(MVg(x),y) < 2Epqfl(f(z),y) valid for all (z,y),
called the “folk theorem” by Langford & Shawe-Taylor
(2003) and the first-order bound elsewhere. This can be
substituted directly into PAC-Bayesian theorems such as
Theorem 2.1 above to obtain bounds for the majority vote at
a de-randomisation cost of a factor of two. This is the result
we use, since across a variety of preliminary experiments
we found other strategies including the tandem bound of
Masegosa et al. (2020) and the C-bound of Lacasse et al.
(2006) were uniformly worse, as also discussed by Zant-
edeschi et al. (2021).

Gaussian Sign Aggregation. To exploit the useful rela-
tionship above, Germain et al. (2009) considered aggre-
gating a kind of linear prediction function of the form
f(x) = sign(w-z) withw ~ Q = N(u, I). In this case the
aggregation can be stated in closed form using the Gaussian
error function “erf” as

u-xT

Ew~ N sign(w - z) = erf <> . )
vt ) = e B,

This closed-form relationship has been used since by Letarte
et al. (2019) and Biggs & Gued;j (2021) in a PAC-Bayesian
context for neural networks with sign activation functions
and Gaussian weights; Biggs & Guedj (2022) used it to
derive a generalisation bound for SHEL (single hidden erf
layer) networks, which have a single hidden layer with erf
activation function. We will consider deriving a different
PAC-Bayesian bound for this same situation and develop
this method further in this work.

Other Approaches. A wide variety of other works have
derived generalisation bounds for deterministic neural net-
works without randomisation. We note in particular the
important works of Bartlett et al. (2017), Neyshabur et al.
(2017) (using PAC-Bayesian ideas in their proofs) and Arora
et al. (2018), but contrary to us, they do not provide em-
pirically non-vacuous bounds. Nagarajan & Kolter (2019a)
de-randomise PAC-Bayesian bounds by leveraging the no-
tion of noise-resilience (how much the training loss of
the network changes with noise injected into the param-
eters), but they note that in practice their bound would
be numerically large. Many of these approaches utilise
uniform convergence, which may lead to shortcomings as
discussed at length by Nagarajan & Kolter (2019b); we em-
phasise that the bounds we give are non-uniform and avoid
these shortcomings. Finally, we also highlight the works of
Neyshabur et al. (2015; 2019) which specifically consider
single-hidden-layer networks as we do — as in the recent
study from Tinsi & Dalalyan (2021). Overall we empha-
sise that, to the best of our knowledge, all existing bounds
for deterministic networks are vacuous when networks are



trained on real-world data.

3. Binary SHEL Network

We begin by giving a bound for binary classification by a sin-
gle hidden layer neural network with error function (“erf”)
activation. Binary classification takes J) = {+1, —1}, with
prediction the sign of the prediction function. The spe-
cific network takes the following form with output dimen-
sion D = 1. Although the erf activation function is not a
commonly-used one, it is very close in value to the more
common tanh activation. It can also be rescaled to a Gaus-
sian CDF activation, which is again very close to the classi-
cal sigmoid activation (and is itself the CDF of the probit
distribution).

Definition 3.1. SHEL Network. (Biggs & Guedj, 2022) For
U c REXd 1 ¢ REXD ‘and 3 > 0, a B-normalised single
hidden erf layer (SHEL) network is defined by

or Uz
FU}/(JU) =V - erf (6||$||2) .

The above is a single-hidden-layer network with a first nor-
malisation layer, or if the data is already normalised the
overall scaling ||z||2 can be absorbed into the /3 parameter.
This parameter 5 could easily be absorbed into the matrix
U and mainly has the effect of scaling the relative learning
rate for U versus V when training by gradient descent, as
shown by looking at 8 Ferf v (), something which would
normally be affected by the scaling of data. A higher
means more “feature learning” takes place as U has a rela-
tively larger learning rate.

For binary classification, the majority vote of distribution
Q is MVg(x) = sign(Es.qsign(f(x))). By expressing
the (binary classification) SHEL network directly as the
majority vote of a randomised prediction function, we can
prove a PAC-Bayesian generalisation bound on its error
using the first-order bound. The misclassification error of
the randomised function can further be stated in closed form
using the Binomial cumulative distribution function (CDF),
giving rise to a bound where the distribution ) does not
appear directly.

Theorem 3.2. In the binary setting, fix prior parameters
ud, ... ul € R0 € RE, T e N*, 8 > 0, and data
distribution D. For 6 € (0,1), with probability at least
1 — d under the sample S ~ D™, simultaneously for any
U e RE*d y ¢ RE,

R Tk + log 2™
L(Fgri) <2 k1t (L(Q®T), HJrOg5> .
] m

Here F; (‘}rf} is a SHEL network with 5-normalised activation,

vkl /l[ollx
|v2|/||v0||1>)

for Bin(k; r,p) the CDF of a Binomial distribution with
parameters T, p.

K

Z
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and

i/(Q®T = % Z Bln( % (1 +
z.y)€

4. Multi-class Networks

We now go further and show that various single-hidden-
layer multi-class neural networks can also be expressed as
the expectation of randomised predictors. We show specific
results for multi-class SHEL networks as well as GELU-
activation (Hendrycks & Gimpel, 2016) networks as defined
below. We also give a more general form of the result as
a aggregation of individual aggregated predictors which
allows these results to be extended further.

We make a simple assumption based on the first-order bound
to extend PAC-Bayesian bounds to this case. This is neces-
sary because under certain choices of PAC-Bayes posterior
Q, the majority vote does not give the same prediction as
the expected vote as was the case in Section 3, i.e. there
exist @ such that argmax; E;q f(z)[k] # MVg(z) at
certain adversary-chosen values of x. Thus we assume that
L(Esuqf(z)) < 2E;.qgL(f), (denoted %), which follows
from the first order bound in the case Eq f(z) =~ MV (z),
which we later verify empirically.

4.1. SHEL Networks

Here we give a generalisation bound for a multi-class variant
of the SHEL network using the above assumption. The proof
is slightly different from the binary case, but still relies on
the useful fact that the SHEL network can be written as
the expectation of a randomised predictor. This predictor
however takes a slightly different form to that in the binary
case.

Theorem 4.1. In the multi-class setting, fix prior param-
eters U" € REX qnd V™ € RP*K oy, > 0, 8 > 0,
and data distribution D. For 6 € (0,1), with probability
at least 1 — § under the sample S ~ D™, simultaneously
for any U € RE*d vV ¢ RPXK such that assumption (x)
is satisfied,

X log 2V
L(FgL) <2k (L(Q), Hog) .
’ m



erf

Here F{y, is a SHEL network with 3-normalised activation,

vV —VoI%

ko= B2U - U°% + ;
20‘2/

L(Q) = % Z P {argmax [Ws sign(W1x)] # vy},
(z,y)es

with the probability over draws of vec(W3) ~
N(vec(V),02.1I),vec(W1) ~ N(vec(U), 587 2I). Note
that vec is the vectorisation operator and sign is applied
element-wise.

Differences to Biggs & Guedj (2022). In their Theorem
5, Biggs & Guedj (2022) give a bound for generalisation
in SHEL networks, with L(F, ff{/) upper bounded under
similar conditions to Theorem 4.1 by

L(Fgy) +0 <£ (VoollU = U°l ¢+ ||VF)> :

where L7(g) = m {(zy) € § : gla)ly) —
maxy2y g(z)[k] < v}, the proportion of y-margin errors
in the training set, and V. := max;; |V;;|. Thus a margin
loss of the actual predictor used rather than a stochastic one
appears. A tighter formulation more similar to Theorem 4.1
is also given in an appendix and the bound could be similarly
adapted to a data-dependent prior.

The derivation of the bound is quite different from ours, re-
lying on a quite differently-constructed randomised version
of @ (which is however constructed to have mean Ff}f{,),
and a de-randomisation procedure relying on margins and
concentration rather than a majority vote bound. Both the
form of () used and the de-randomisation step lead to issues
which we have addressed through our alternative formu-
lation of ) and a majority vote bound: de-randomisation
requires a very low variance @, leading to the v/ K /7 term
in the bound, which is empirically very large for low mar-
gin losses. Thus as demonstrated in their experiments, the
big-O term increases with widening networks. Finally we
note the most important distinction to our work: contrary
to the present work, Biggs & Guedj (2022) do not obtain
non-vacuous bounds in practice.

4.2. GELU Networks

The Gaussian Error Linear Unit is a commonly-used alterna-
tive to the ReLU activation defined by GELU(t) := ®(¢) ¢
where ®(t) is the standard normal CDF. Far from the ori-
gin, the ®(t) is saturated at zero or one so it looks much
like a smoothed ReLLU or SWISH activation (defined by Ra-
machandran et al., 2018 as /(1 + e~“*) for some ¢ > 0).
It was introduced to lend a more probabilistic interpretation

to activation functions, and fold in ideas of regularisation by
effectively averaging the output of adaptive dropout (Ba &
Frey, 2013); its wide use reflects excellent empirical results
in a wide variety of settings.

Definition 4.2. GELU Network. For U € RExd V ¢
REXP and 8 > 0, a B-normalised single hidden layer
GELU network is defined by

Ux
FG¥Y(z) ==V - GELU <5H$|2)

where GELU(¢) := ®(¢) t.

Theorem 4.3. In the multi-class setting, fix prior param-
eters U" € REXA gnd V™ € RP*K 5y > 0, 0y > 0
B > 0, and data distribution D. For § € (0,1), with
probability at least 1 — § under the sample S ~ D™, si-
multaneously for any U € REX4 V¢ RPXK gych that
assumption (x) is satisfied,

_ . /14—10gm
L(FGyY) <21 1<L(Q), —. 0

Here F, g‘E/LU is a single-hidden-layer GELU network with
[B-normalised activation,

1\ [U—U°2 v — Vo2
ﬁ:(ﬁ+2)| 7 | QHﬁ
o 2 207,
and L(Q) is
1
LS B fargmax (Wa(lwye © (W) £}

(z,y)€S

with the probability is over draws of vec(Wa) ~
N(vec(V),0%1),vec(W1),~  N(vec(U),372I) and
vec(W{) ~ N(vec(V),0%1). Here vec is the vectorisa-
tion operator and the indicator function 1, is applied
element-wise.

Although the proof method for Theorem 4.3 and the con-
siderations around the hyper-parameter 3 are the same as
for Theorem 4.1 and SHEL networks, one notable differ-
ence is the inclusion of the oy parameter. When this is
very small, the stochastic predictions are effectively just a
linear two-layer network with adaptive dropout providing
the non-linearity. The ability to adjust the variability of the
stochastic network hidden layer and thus L(Q) is a major
advantage over the SHEL network; in SHEL networks this
variability can only be changed through 3, which is a fixed
parameter related to the deterministic network, not just a
quantity appearing only in the bound.



4.3. General Form

Both of the above bounds can effectively be derived from
the same formulation, as both take the form

F(z) :=Esuof(z kaHk )

where v;, € RP are the column vectors of a matrix V &
RP*K and Hy, : X — R is itself a predictor of a form ex-
pressible as the expectation of another predictor. This means
that there exists a distribution on functions Q* € M7 (F*)
such that for each x € X, Hy(x) = Epgr[h(z)]. The
bound on the generalisation of such predictors takes essen-
tially the same form those given in the rest of this section.

Theorem 4.4. Fix a set of priors P* € M{ (F*) for k €
(K], a prior weight matrix V° € RP*K 4, > 0,4 €
(0,1). With probability at least 1 — & under the sample
S ~ D™ simultaneously for any V. € RP*X and set of
QY € M (F¥) such that assumption (x) holds,

1 W
K + log > )
m

L(F) <2k (i(@),

where I is the deterministic predictor given in Equation (4),

|V -V%
20‘2/

K
k=Y KL(QF, P*) +
k=1

and

% Z {argmax [Z wkhk(m)] # y}
z,y)€E k=1

is the stochastic predictor sample error where the probabil-
ity is over independent draws of w* ~ N (vg, 0% 1), h¥ ~
QF forall k € [K].

5. Numerical Experiments

For numerical evaluation and the tightest possible values of
bounds, a few further ingredients are needed, which are here
described. We also give the specific way these are evaluated
in our later experiments.

Bounding the empirical error term. We note that there
is rarely a closed form expression for ﬁ(Q) as there is in
the binary SHEL bound. In the multi-class bounds, this
term must be estimated and bounded by making many in-
dependent draws of the parameters and using the fact that
the quantity is bounded in [0, 1] to provide a concentration
bound through, for example, Hoeffding’s inequality. This
adds a penalty to the bound which reduces with the number
of independent draws and thus the amount of computing

time invested in calculating the bound, but this is not a theo-
retical drawback of the bound. We give here a form which
is useful in the neural network setting, where it is computa-
tionally efficient to re-draw predictors for every prediction,
but we make 7" passes through the dataset to ensure a tight
bound. This formulation is considerably more computation-
ally efficient than drawing a single & for every pass of the
dataset.

Theorem 5.1 (Train Set Bound). Let QQ be some distribution
over predictors and h* ~ Q be i.i.d. draws fori € [m],t €
[T). Then with probability at least 1—¢’,

m

log 3
_mTzzéthxz Z/z ;g%

i=1 t=1

In our results, we will set 6’ = 0.01 (zero in the binary
SHEL case), T = 20, and the generalisation bound § =
0.025; combining them our overall results will hold with
probability at least § + ¢’ = 0.035, as in Dziugaite & Roy
(2017).

Variance Parameters $ and o. The parameters 3, oy and
oy control the variances of the weights in the stochastic
estimator defined by @, but fulfil different functions. The
[ parameter appears in the non-stochastic shallow network
Fy v and thus affects the final predictions made and the
training by SGD, and can be related to data normalisation
as discussed above. We therefore set it to the fixed value of
B = 5 in all our experiments.

However the o parameters appear only on the right hand
side of the bounds for multi-class SHEL and GELU, and
can be tuned to provide the tightest bounds—as they grow
the KL term reduces but the performance of () will degrade.
We therefore optimise the final bounds over a grid of o
values as follows: choose a prior grid of oy values, oy €
{o},,...,0%}, and combine via a union bound argument
to add a log(r) term to k where r is the number of grid
elements. The same practice is applied to oy in the GELU
case. In practice we use a grid o € {0.05,0.06,...,0.2}
for both. Thus the tuning of oy and oy is not a feature of
the bound like /3, but rather a tool to optimise the tightness
of the bounds.

The parameter 1" appearing in Theorem 3.2 fufils a similar
function, trading off the performance of ﬁ(Q®T) versus the
complexity term, but we do not optimise it like the above in
our experiments, fixing it to 7" = 500 in all our results.

Coupling Procedure. We adopt a 60%-prefix coupling pro-
cedure for generating the prior weights U™, V™ (rather than
U, VO, and similarly in the binary case) as in Dziugaite
et al. (2021). This works by taking the first 60% of training
examples used in our original SGD run and looping them
in the same order for up to 4000 epochs. Note that this also



replaces m by m — n and S by S*"¢ in the bounds, so we
are making a trade off between optimising the prior and
the tightness of the bound (affected by m — n). These are
used to train a prior model of the same architecture with
the same learning rate from the same initialisation (this is
valid because the initialisation is data-independent). The
best bound from the generated prior weights was chosen
(with a small penalty for this choice added to the bound via
a union argument).

Numerical Results. In order to evaluate the quality of the
bounds provided, we made many evaluations of the bound
under many different training scenarios. In particular we
show that the bound behaves in similar ways to the test error
on changes of the width, learning rate, training set size and
random relabelling of the data.

The following results follow by training S-normalised SHEL
and GELU networks with stochastic gradient descent on
the cross-entropy loss to a fixed cross entropy value of 0.3
for Fashion-MNIST and 0.1 for MNIST. When evaluat-
ing the binary SHEL bound (Theorem 3.2) we use bina-
rised versions of the datasets where the two classes consist
of the combined classes {0, ...,4} and {5,...,9} respec-
tively (following Dziugaite & Roy, 2017; Letarte et al.,
2019), training to cross-entropy values of 0.2 for Bin-F
(binarised Fashion-MNIST) and 0.1 for Bin-M (binarised
MNIST) respectively. We trained using SGD with momen-
tum = 0.9 (as suggested by Hendrycks & Gimpel, 2016
and following Biggs & Guedj, 2022) and a batch size of
200, or without momentum and a batch size of 1000 (with
this larger batch size stabilising training). We evaluated
for ten different random seeds, a grid search of learning
rates € {0.1,0.03,0.01} without momentum, and addition-
ally € {0.003,0.001} with momentum (where small learn-
ing rate convergence was considerably faster), and widths
€ {50, 100, 200, 400, 800, 1600} to generate the bounds in
Table 1.

From these results we also show plots in Figure 1 of the test
error, stochastic error ﬁbnd(Q) and best prior bound versus
width for the different dataset/activation combinations, with
more plots given in the appendix. We also note here that in
all except the width = 50 case, our neural networks have
more parameters than there are train data points (60000).
Using the test set, we also verified that assumption (%) holds
in all cases in which it is used to provide bounds.

6. Discussion

In Table 1 we have given the first non-vacuous bounds
for two types of deterministic neural networks trained on
MNIST and Fashion-MNIST through a standard SGD learn-
ing algorithm, both with and without momentum. The cou-
pled bounds are in all cases far from vacuous, with even the

Best Coupled Bounds with Momentum

Data Test Err  Full Bnd  Coupled Bnd
SHEL  Bin-M 0.038 0.837 0.286
SHEL  Bin-F 0.085 0.426 0.297
SHEL MNIST 0.046 0.772 0.490
SHEL  Fashion  0.150 0.984 0.727
GELU MNIST  0.043 0.693 0.293
GELU Fashion  0.153 0.976 0.568

Best Coupled Bounds without Momentum

Data Test Err  Full Bnd  Coupled Bnd
SHEL Bin-M 0.037 0.835 0.286
SHEL  Bin-F 0.085 0.425 0.300
SHEL MNIST 0.038 0.821 0.522
SHEL Fashion 0.136 1.109 0.844
GELU MNIST  0.036 0.742 0.317
GELU Fashion  0.135 1.100 0.709

Table 1. Results for S-normalised (with 8 = 5) SHEL and GELU
networks trained with and without momentum SGD on MNIST,
Fashion-MNIST and binarised versions of the above, after a grid
search of learning rates and widths as described above. Results
shown are those obtaining the tightest coupled bound (calculated
using Theorem 4.1 and Theorem 4.3 for the multi-class datasets,
and Theorem 3.2 for the binary datasets), with the accompanying
full train set bound and test error for the same hyper-parameter
settings.

full bounds being non-vacuous in most cases, particularly
on the easier MNIST task. Further, Figures 1 and 2 show
that the bounds are robustly non-vacuous across a range of
widths and learning rates. Since these are direct bounds
on L(Fy ) rather than the usual PAC-Bayes L(Q), we
emphasise that (for fixed hyper-parameters) no trade off is
made between the tightness of the bound and the real test set
performance, which is usually worse for a higher-variance
(and thus more tightly bounded) Q.

Stability and Robustness Trade-Off. The two main con-
tributions to the bound are the empirical error f,(Q) and
the KL divergence incorporated in k. ﬁ(Q) can be seen
roughly as measuring a combination of the difficulty of the
task for our predictor Fyy, combined with some kind of
perturbation resistance of its weights (like the idea of a flat
minimum originated in Hinton & van Camp, 1993 and dis-
cussed at length by Dziugaite & Roy, 2017); while « is here
an empirical measure of the stability of the training method,
scaled by the inverse width of the perturbation robustness.

When optimising the trade-off between these terms through
a choice of o7, oy values, we find that the complexity con-
tribution to the bound remains relatively consistent across
datasets and architectures, while it is the stochastic error that
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Figure 1. Changes in bound on left (L) hand axis, and test error
and stochastic bound error ﬁbnd(Q) on the right (R) axis versus
width for SHEL and GELU networks trained with momentum SGD
and learning rate 0.01 on Fashion-MNIST and MNIST. Error bars
show 1 standard deviation from ten different random seeds. The
different scales are chosen so the trade-off between ﬁbnd(Q) and
complexity terms can be seen more easily by neglecting the overall
factor of 2, and the trends can be seen more clearly. We include an
option in our code to generate these figures with a common scaling
instead.

varies. This is especially true of multi-class SHEL networks
as seen in Figure 1, perhaps since there is no easy way to
set the stochastic error small by adjusting the variability
of the @ hidden layer. This is in direct contrast to many
works (Jiang et al., 2020b; Dziugaite et al., 2020) evaluating
the predictive ability of PAC-Bayesian bounds for general-
isation on hyper-parameter changes, which fix the weight
variances as the largest leading to a bound on ﬁ(Q) of a
fixed value, say 0.1. Our results show that this approach
may be sub-optimal for predicting generalisation, if as in
our results the optimal trade-off tends to fix the « term and
trade off the size of L((Q) instead of the reverse'.

Width Comparison. For the width comparisons we note
that it is difficult to discern the real trend in the out-of-
sample error of our trained networks. The test sets only have
10000 examples and thus any test-set estimate of L(Fy ) is
subject to error; if the differences between test errors of two
networks of different widths is smaller than about 0.02 (ob-
tained through a Hoeffding bound) it is not possible to say if
generalisation is better or worse. It is therefore possible that

!The use of bi-criterion plots as suggested by Neyshabur et al.
(2017) may therefore offer an better alternative when comparing
vacuous bounds.
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Figure 2. Changes in bound on left (L) hand axis, and test error
and stochastic bound error ﬁbnd(Q) on the right (R) axis versus
learning rate for width 200 SHEL and GELU networks trained
with momentum SGD on Fashion-MNIST and MNIST. Scales are
as in Figure 1.

the pattern of weaker bounds for wider SHEL networks seen
is a strong amplification of an existing trend, but it seems
more likely it is an artefact of the bound shared with that
of Biggs & Guedj (2022). Assuming the latter conclusion
that the trained network true error really is relatively width-
independent, the GELU bound does better matching this
prediction (with this also being true in the momentum-free
case, see appendix). The value of Lnq(Q) stays roughly
constant as width increases, while we observe that the opti-
mal bound oy tends to decrease with increasing width. We
attribute to this the tighter bounds for wide GELU networks,
since the SHEL network has no comparable way to reduce
the randomness of the hidden layer in (), as we discuss at
the end of Section 4.2.

Lower-Variance Stochastic Predictions. Following from
the above, we note that in general ﬁbnd(Q) is smaller for
comparably-trained GELU networks than the SHEL net-
works. We speculate that this arises from the increased
randomness of the hidden layer of @) in Theorem 4.1: the
sign activation is only {+1, —1}-valued and the amount of
information coming through this layer is therefore more lim-
ited; and a {+1, —1}-valued random variable has maximum
variance among [+1, —1]-bounded variables of given mean.
In future work we will explore whether variance reduction
techniques such as averaging multiple samples for each acti-
vation can improve the tightness of the bounds, but we also
emphasise both that the bounds are still non-vacuous across
a range of widths, and that the ability to adjust this variabil-



ity is a central advantage of our new GELU formulation.

Learning Rate Comparison and Stability. In the case of
training with momentum SGD we see that a very large learn-
ing rate leads to weaker and higher-variance bounds, with
significantly larger norm contribution in k. We speculate
this arises because of the reduced stability at such high rates:
we found in general that small batch sizes (particularly un-
der vanilla SGD) and fast learning rates caused the training
trajectory of U™, V™ to diverge more greatly from that of
UVv.

Improving Prior Coupling. With the instability of high
learning rates and the empirical observation that in many
cases L(Q) was very close to L(Q) (as estimated from the
test set), we see that there is a degree of slackness in the
bound arising from the x term. We speculate that it may
be possible to make more efficient use of the sample S
in constructing U™, V" to reduce this term further. This
might be possible through an improved coupling scheme,
or through extra side-channel information from S*"4 which
can be compressed (as per Zhou et al., 2019) or is utilised
in a differentially-private manner (as by Dziugaite & Roy,
2018).

Majority Votes. In our results we rely on the novel idea
of randomised single-hidden-layer neural networks as the
expectation or majority vote of randomised predictors for de-
randomisation of our PAC-Bayes bound. For the multi-class
bounds we rely on an additional assumption, so a first step
in future work could be providing further conditions under
which this assumption can be justified without relying on a
test set. Next, we found empirically (similarly to many PAC-
Bayesian works) that L(Q) > L(Fy ), in other words
the derandomised predictor was better than the stochastic
version on the test set. By de-randomising through the first
order bound, we introduce a factor of 2 which cannot be
tight in such cases. Removal of this term would lead to
considerably tighter bounds and even non-vacuous bounds
for CIFAR-10 (Krizhevsky, 2009), based on preliminary
experiments, where the training error for one-hidden-layer
networks on CIFAR-10 was greater than 0.5 so such bounds
could not be non-vacuous, but the final bounds were only
around 1.1—1.2. Improved bounds for the majority vote
have been the focus of a wide variety of PAC-Bayesian
works (Lacasse et al., 2006; Masegosa et al., 2020), and can
theoretically give tighter results for L(MV ) than L(Q),
but these are not yet competitive. They universally led
to inferior or vacuous results in preliminary experiments.
However, there is still much scope for exploration here:
alternative formulations of the oracle C-bound lead to dif-
ferent empirical bounds, and improvement of the KL term
(which appears more times in an empirical C-bound than
Theorem 2.1) may improve these bounds more than the first
order one. We also hope that offering this new perspective

on one-hidden-layer networks as majority votes can lead to
better understanding of their properties, and perhaps even
of closely-related Gaussian processes (Neal, 1996).

Deeper networks and convolutions. An extremely inter-
esting question whether this approach will generalise to
convolutions or deeper networks. For convolutions, the pa-
rameter sharing is not a problem as separate samples can be
taken for each convolution kernel position (although poten-
tially at a large KL divergence cost that might be mitigated
through the use of symmetry). For deeper networks the an-
swer is less clear, but the empirically-observed stability of
most trained networks to weight perturbation would suggest
that the mode of a Bayesian neural network may at least be
a close approximation to its majority vote, a connection that
could lead to further results.

Summary. We have provided non-vacuous generalisation
bounds for shallow neural networks through novel methods
that make a promising new link to majority votes. Although
some aspects of our approach have recently appeared in the
PAC-Bayesian literature on neural networks, we note that
all previous results obtaining non-vacuous generalisation
bounds only apply to randomised versions of neural net-
works. This often leads to degraded test set performance
versus a deterministic predictor. By providing bounds di-
rectly on the deterministic networks we provide a setting
through which the impact of robustness, flat-minima and
stability on generalisation can be explored directly, with-
out making potentially sub-optimal trade-offs or invoking
stringent assumptions.

In future work we intend to address two main potential
sources of improvement: through progress in majority votes
to tighten the step from stochastic to deterministic predictor;
and through development of the prior (perhaps thorough
improved utilisation of data), a strand running parallel to
much PAC-Bayesian research on neural networks.
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A. Proofs

Proof of Theorem 3.2. We consider randomised functions f(z) = % 23:1 sign(wy-x) withwy, . .., wr ~ Q®T identically
and independently distributed. Here () is a mixture of Gaussians distribution with 2K components; we denote by
Qr = Categ(q) the distribution over the choice of component, and by Q* the corresponding component. We choose the
mixture component weights

— ol [max(0,v1), ..., max(0, vk ), max(0, —vy), ..., max(0, —vg)],
Vi1

and component distributions Q¥ = N (uy, 3872I) fork € 1,..., K, and Q¥ = N(—uy, 5872I) fork € K +1,...,2K.
Here wuy, are the rows of U. This dimension-doubling trick accommodates the use of negative final-layer weights.

A PAC-Bayes bound on the above relates to the SHEL network through the following. Firstly, it is easy to show that
E;ogerf(z) = WF(CE), where F' is the SHEL network with parameters U, v as given above. This follows using the
expectation of a mixture followed by using the aggregation of a sign function under a Gaussian weight given in Equation (2),
which gives

~O®T f rf Uk'l‘) = F(I)
Er~qor (@ que ( E ||> > o ( lzlla /) Tivlls

k=K+1

The predictions of this SHEL network, sign F'(x), are equivalent to a majority vote of f(x), since MV(z) =
sign(Esign(f(z))) is 1 if Ef(x) « F(x) > 0 and vice-versa for —1. Therefore the first order bound can be used to
see that £(F'(x),y) < 2Eqerl(f(x),y).

To obtain a PAC-Bayes bound in full, we choose a set of prior weights U, v° to define a prior P that takes the same structure
as Q. The index distribution P* = Categ(p) with

1
p= WHU?M--,\’U?{L |U?|7~-~7|U?(|]7

and component distributions defined as per Q¥ but with weights uf instead.

Then, using the chain rule for KL divergence (Cover & Thomas, 2006) twice,

KL(Q, P) < KL(Qu,k, Puwx) < KL(Quk, Pujr) + KL(Q, Pr) (6)

where Q1 and @, are the joint and conditional distributions on w and mixture index k (and analogously for P), as
opposed to ), which is a marginal on w.

Using the definitions of the KL divergence for categorical and Gaussian distributions in the above, KL(Q, P) is bounded by

K K q

k
> " aiBlluk —ull3 + D aqxlog = =
k=1 k=1 Pk

Combining Theorem 2.1 with the fact that KL(Q®T, P®T) = T KL(Q, P) since the T copies are i.i.d., the following holds
with probability > 1 — ¢

m

. Tk + log 247
L(FU,U) <2 k1—t (L(Q®T), FHFOgé) .

To complete the result we also note the closed form for ﬁ(Q®T) given through the following. The average misclassification



loss

Eqerl(f(z),y) = Pqor (yf(x) <

T
=Pger (Zymgn wh-x) < 0)
t=1
T1 1
=Pger (Z 3 (ysign(w' - z) +1) < 2T>
t=1
d 1
= PQ@T (Z ]-y sign(wt -z) < 2T>
t=1

= Bin (: 7.Roly = sen’ )

(G4

y=sign(w-x) — 7(y Sign(w ! I) + 1)

where we have interchanged 1,

All of the above can be readily extended to the data-dependent prior case, replacing U O = U™ 0" = o™, m— m—n,and
L — Lpna. O

Proof of Theorem 4.4. We are considering a distribution on functions of the form ), wkhk(x) where for each index
k € [K] we have wy, ~ N ( - Uk, I) and hy, ~ Q. This slightly different formulation can take advantage of the scaling-
invariance of the final layer to the misclassification loss when V0 = 0, so we can then choose oy > 0 arbitrarily. The
expectation of this takes the form given in Equation (4) scaled by 1/0 and leads to the empirical loss above.

Given another distribution P taking a similar form with wy, ~ N (ivg, I) and components Py, the KL divergence can be
expressed (using the chain rule for KL divergence) as

|V = V%
20‘2/

K
KL(Q,P) <> KL(Q* P*) +
k=1

We prove the overall bound by combining Theorem 2.1 with the assumption (). O

Proof of Theorem 4.1. Apply the bound from Theorem 4.4 with the individual units as hy(z) = sign(wy, - ) and wy, ~
N (ug, %B ~27) alongside Theorem 4.4. The aggregated form of the sign activation function is given in (2). The prior takes
the same form as the posterior with weight means U°, V° and the same variances, leading to the form of KL divergence for
Gaussian weights given in k. O

Proof of Theorem 4.3. The proof takes the same form as that of Theorem 4.1. We note that the expectation under the
given probability distributions of E[Wa(1w,, @ (Wix))] = ||z||2F; EI‘E,LU(:L") but since the misclassification loss is scaling-
invariant this gives equivalent results. Choosing appropriate prior forms as in Theorem 4.1 gives the KL divergence which
we substitute into Theorem 4.4. O

Proof of Theorem 5.1. Define € = 5" 2, —=0(h**(x;),y;) which has expectation Eq¢ = L(Q). Since this quantity

is a sum of mT independent random variables in {0, 1/mT}, application of Hoeffding’s inequality gives the result. O

B. Additional Results and Code

We provide all of our results and code to reproduce them along with the figures (including with the option of using the same
scaling for the bound and errors, as described in Figure 1) in the supplementary material. We also note here that the “erf”
function is included in a wide variety of common deep learning libraries.



Here we also provide Figures 3 and 4 similar to Figures 1 and 2 for GELU and SHEL networks trained without momentum
and with a batch size of 1000, as described in Section 5. We then also provide further similar plots for networks trained with
momentum and a batch size of 200 as in Section 5 with different learning rates and widths, to show the similar behaviour
across a variety of regimes.
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Figure 3. Changes in bound on left (L) hand axis, and test error and stochastic bound error L gbnd (@) on the right (R) axis versus width
for SHEL and GELU networks trained with vanilla SGD and learning rate 0.01 on Fashion-MNIST and MNIST. Scales are as in Figure 1.

Error and Bound Comparison by Learning Rate
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Figure 4. Changes in bound on left (L) hand axis, and test error and stochastic bound error L gbna (@) on the right (R) axis versus learning
rate for width 200 SHEL and GELU networks trained with vanilla SGD on Fashion-MNIST and MNIST. Scales are as in Figure 1.
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Figure 5. Changes in bound on left (L) hand axis, and test error and stochastic bound error L gbnd (Q) on the right (R) axis versus width
under fixed other hyperparameters, for a GELU network trained with momentum on Fashion-MNIST.
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Figure 6. Changes in bound on left (L) hand axis, and test error and stochastic bound error L gbnd (Q) on the right (R) axis versus width
under fixed other hyperparameters, for a GELU network trained with momentum on MNIST.
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under fixed other hyperparameters, for a SHEL network trained with momentum on Fashion-MNIST.
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Figure 8. Changes in bound on left (L) hand axis, and test error and stochastic bound error L gbnd (Q) on the right (R) axis versus width
under fixed other hyperparameters, for a SHEL network trained with momentum on MNIST.

Error and Bound Comparison by Learning Rate
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Figure 9. Changes in bound on left (L) hand axis, and test error and stochastic bound error L gbna (@) on the right (R) axis versus learning
rate under fixed other hyperparameters, for a GELU network trained with momentum on Fashion-MNIST.

Error and Bound Comparison by Learning Rate
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Figure 10. Changes in bound on left (L) hand axis, and test error and stochastic bound error L sbna (@) on the right (R) axis versus
learning rate under fixed other hyperparameters, for a GELU network trained with momentum on MNIST.



Error and Bound Comparison by Learning Rate
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Figure 11. Changes in bound on left (L) hand axis, and test error and stochastic bound error L sbnd (@) on the right (R) axis versus
learning rate under fixed other hyperparameters, for a SHEL network trained with momentum on Fashion-MNIST.

Error and Bound Comparison by Learning Rate
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Figure 12. Changes in bound on left (L) hand axis, and test error and stochastic bound error L gbna (Q) on the right (R) axis versus
learning rate under fixed other hyperparameters, for a SHEL network trained with momentum on MNIST.



