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Abstract

In many scientific disciplines, we are interested in
inferring the nonlinear dynamical system under-
lying a set of observed time series, a challenging
task in the face of chaotic behavior and noise. Pre-
vious deep learning approaches toward this goal
often suffered from a lack of interpretability and
tractability. In particular, the high-dimensional
latent spaces often required for a faithful embed-
ding, even when the underlying dynamics lives
on a lower-dimensional manifold, can hamper
theoretical analysis. Motivated by the emerg-
ing principles of dendritic computation, we aug-
ment a dynamically interpretable and mathemat-
ically tractable piecewise-linear (PL) recurrent
neural network (RNN) by a linear spline basis
expansion. We show that this approach retains
all the theoretically appealing properties of the
simple PLRNN, yet boosts its capacity for approx-
imating arbitrary nonlinear dynamical systems in
comparatively low dimensions. We employ two
frameworks for training the system, one combin-
ing back-propagation-through-time (BPTT) with
teacher forcing, and another based on fast and
scalable variational inference. We show that the
dendritically expanded PLRNN achieves better
reconstructions with fewer parameters and dimen-
sions on various dynamical systems benchmarks
and compares favorably to other methods, while
retaining a tractable and interpretable structure.
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1. Introduction
For many complex systems in physics, biology, or the so-
cial sciences, we do not know or have only rudimentary
knowledge about the dynamical system (DS) that may un-
derlie those quantities that we can empirically observe or
measure. Data-driven approaches aimed at automatically
inferring the generating DS from time-series observations
could therefore strongly support the scientific process, and
various such methods have been proposed in recent years
(Raissi et al., 2018; Zhu et al., 2021; Yin et al., 2021; Nor-
cliffe et al., 2021; Mohajerin & Waslander, 2018; Karl et al.,
2017; Chen et al., 2018; Strauss, 2020). However, due to the
often high-dimensional, complex, chaotic, and inherently
noisy nature of real-world DS, like the brain, weather-, or
ecosystems, this remains a formidable challenge. Moreover,
although the true DS may evolve on a lower-dimensional
manifold in its state space, the system used for approxima-
tion usually needs to be of higher dimensionality to achieve
a proper embedding (Takens, 1981; Sauer et al., 1991; Kantz
& Schreiber, 2004). This is especially true when the approx-
imating system is of a different functional form than the
one that would most naturally describe the data generation
process (but is unknown), for instance, when we attempt
to approximate a system of exponential or trigonometric
functions by polynomials.

In this work we sought to improve the capacity and expres-
siveness of a specific class of recurrent neural networks
(RNNs), achieving agreeable solutions with fewer dimen-
sions and parameters while retaining a set of desirable theo-
retical properties. Specifically, we build on piecewise-linear
RNNs (PLRNNs) based on ReLU activation functions, for
which fixed points, periodic orbits, and other dynamical
properties can be derived analytically (Schmidt et al., 2021;
Koppe et al., 2019), and for which dynamically equivalent
continuous-time (ordinary differential equation, ODE) sys-
tems can be constructed (Monfared & Durstewitz, 2020b).
Inspired by principles of dendritic computation in biological
neurons (Fig. 1), each PLRNN unit was endowed with a set
of nonlinear pre-processing subunits (“dendritic branches”),
such that it effectively takes on the role of an equivalent
much larger network. Mathematically, this comes down,
in our case, to enhancing each latent unit with a linear
spline basis expansion as popular in statistics (Hastie et al.,
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2009). Through this trick, we achieve a powerful RNN
which provides reconstructions of underlying nonlinear DS
in lower-dimensional latent spaces than were needed by
conventional PLRNNs or other approaches. Model training
may be performed by classical Back-Propagation-Through-
Time (BPTT; Rumelhart et al. (1986)) augmented by teacher
forcing (TF; Williams & Zipser (1989); Pearlmutter (1990)),
or through the scalable framework of sequential variational
auto-encoders (SVAE) (Archer et al., 2015; Girin et al.,
2020; Krishnan et al., 2017). Importantly, we prove that
these modifications preserve the mathematical and dynam-
ical accessibility of the resulting system, e.g., such that
fixed points, cycles, and their stability, can still be computed
analytically.

Besides its effectiveness in capturing complex dynamical
systems in fewer dimensions within a tractable framework,
our approach highlights more generally how principles of
dendritic signal processing may be harvested in the design
of RNNs. Strongly nonlinear local computations are known
for decades to occur within dendritic trees of biological
neurons (Mel, 1994; Poirazi et al., 2003), but have hardly
been exploited so far for machine learning models.

2. Related Work
One class of DS reconstruction models attempts to discover
governing equations from the vector field estimated from
data through differencing the time series. Sparse Identifica-
tion of Nonlinear Dynamics (SINDy), for instance, does so
by sparsely regressing on a rich library of basis functions
using the least absolute shrinkage and selection operator
(LASSO) (Brunton et al., 2016; Rudy et al., 2017; de Silva
et al., 2020). Other methods approximate the vector field
using additive ODE models (Chen et al., 2017), sparse au-
toencoders (Heim et al., 2019), shallow ‘multi-layer’ per-
ceptrons reformulated as RNNs (Trischler & D’Eleuterio,
2016), or deep neural networks (Chen et al., 2018). Some
works aimed at directly learning the system’s underlying
Hamiltonian (Chen et al., 2020; Greydanus et al., 2019).
Generally, numerical derivatives obtained from time series
tend to be more noise-prone than the time series observa-
tions themselves (Baydin et al., 2018; Chen et al., 2017;
Raissi, 2018). This can be a problem particularly if only
comparatively short trajectories were empirically observed
or when the underlying systems are very high-dimensional,
as in these cases the system’s vector field may be (severely)
under-sampled. Methods directly based on numerical deriva-
tives also need to be augmented by other techniques, like
delay embeddings (Kantz & Schreiber, 2004; Bakarji et al.,
2022), if not all the system’s dimensions were observed.

Various RNN architectures such as Long-Short-Term-
Memory networks (LSTMs) (Zheng et al., 2017), Reservoir
Computing (RC) (Pathak et al., 2018), or PLRNNs (Koppe

et al., 2019; Schmidt et al., 2021) have been employed to in-
fer DS directly from the observed time series without going
through numerical derivatives. More generally, a wide array
of RNN architectures with specific functional or parametric
forms, e.g. based on coupled oscillators (Rusch & Mishra,
2021), has been proposed in recent years (Kerg et al., 2019;
Chang et al., 2019; Erichson et al., 2021; Kag et al., 2020;
Rusch et al., 2022), mainly in order to tackle the exploding/
vanishing gradient problem in RNN training (Bengio et al.,
1994; Hochreiter & Schmidhuber, 1997). In the present
context it is important to note, however, that most of these
are not suitable for DS reconstruction since their functional
form or specific parameterization strictly delimits the range
of DS phenomena they can learn or generate. For instance,
chaotic dynamics are not possible in any of these latter sys-
tems by mathematical design (Monfared et al., 2021), with
the only exception of Long-Expressive-Memory (LEM) net-
works (Rusch et al., 2022). More recently, transformers
(Shalova & Oseledets, 2020a;b) were used as black box
approaches for DS prediction.

Except for PLRNNs, however, all of the approaches re-
viewed above, even those specifically designed for DS recon-
struction and prediction, rest on relatively complex model
formulations that are not easy to tackle and analyze from a
DS perspective (Fraccaro et al., 2016). The ability to gain
deeper insights into the specific DS properties and mech-
anisms of the recovered system is, however, often crucial
for its applicability to science and engineering problems.
Transformers, unlike RNNs, do not even constitute DS them-
selves (as they explicitly forgo any temporal recursions),
and therefore are not directly amenable to DS theory tools.
Moreover, most of these models, RC in particular, need very
high-dimensional latent spaces, which further adds to their
black-box nature.

Better interpretability and tractability is achieved by using
PLRNNs (Koppe et al., 2019; Schmidt et al., 2021) or by
(locally) linearizing nonlinear systems through ideas from
Koopman operator theory (Azencot et al., 2020; Brunton
et al., 2017; Yeung et al., 2017). In such systems, certain DS
properties can be analytically accessed (Schmidt et al., 2021;
Monfared & Durstewitz, 2020a). On the downside, usually
one needs to move to very high dimensions to represent
the DS in question properly. Here we aim to overcome
this limitation by augmenting PLRNNs with linear basis
expansions without altering their analytical accessibility.

Finally, probabilistic (generative) latent variable models
such as state space models have been applied to the problem
of posterior inference of latent state paths zt ∼ p(zt|x1:T )
of DS given time series observations {x1:T } (Pandarinath
et al., 2018; Ghahramani & Roweis, 1998; Durstewitz, 2017;
Krishnan et al., 2017). The advantage here is that they also
account for uncertainty in the model formulation or latent
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process itself and yield the full distribution over latent space
variables (Karl et al., 2017). For DS reconstruction, however,
we need to move beyond posterior inference: We require
that samples drawn from the model’s prior distribution p(z)
after training exhibit the same (invariant) temporal and geo-
metric structure as those produced by the unknown DS, a
property that is not automatically guaranteed in this class of
algorithms.

Here we show that PLRNNs augmented with a linear spline
expansion can be most efficiently trained by BPTT using a
specific form of TF (Appx. 6.1). We also embed expanded
PLRNNs into a fully probabilistic, variational approach that
scales well with system size by employing stochastic gra-
dient variational Bayes (SGVB; (Kingma & Welling, 2014;
Rezende et al., 2014)), thereby combining the advantages
of the two classes of models reviewed above, but with mild
detriments in DS reconstruction performance compared to
BPTT.

3. Model Formulation and Theoretical
Considerations

3.1. Piecewise Linear Recurrent Neural Network
(PLRNN)

Our approach builds on PLRNNs (Durstewitz, 2017; Koppe
et al., 2019) because of their mathematical tractability (see
Sec. 3.3). PLRNNs are defined by the M -dimensional latent
process equation

zt = Azt−1 +Wϕ(zt−1) + h+Cst, (1)

which describes the temporal evolution of M -dimensional
latent state vector zt = (z1t . . . zMt)

T . The self-
connections of the units are represented by diagonal matrix
A ∈ RM×M , whereas the connections between units are
collected in off-diagonal matrix W ∈ RM×M , with the
nonlinear activation function ϕ given by the rectified linear
unit (ReLU) applied element-wise:

ϕ(zt−1) = max(0, zt−1). (2)

The diagonal terms in A can be interpreted as the system’s
“passive” (in the absence of inputs) time constants such that
different latent states may capture different time scales of the
underlying DS (as illustrated in Fig. S1; see also Schmidt
et al. (2021)). The PLRNN also has a bias term h ∈ RM and
accommodates potential external inputs st ∈ RK weighted
by C ∈ RM×K . In a fully probabilistic framework, fur-
thermore a Gaussian noise term ϵt ∼ N (0,Σ) with diag-
onal covariance Σ is added to Eq. 1. The PLRNN can
be interpreted as a discrete-time neural rate model (Durste-
witz, 2017), where the entries of A stand for the individual
neurons’ time constants, W for the synaptic connection
strengths between neurons, and ϕ(z) for a (ReLU-shaped)

voltage-to-spike-rate transfer function. The latent RNN
Eq. 1 is linked to the N -dimensional observed time series
(xt)t=1...T , xt ∈ RN , drawn from an underlying noisy DS,
by an observation function (decoder model) which, in the
simplest case, may take the linear Gaussian form

xt = Bzt + ηt, (3)

where B ∈ RN×M represents a factor loading matrix and
ηt ∼ N (0,Γ) is Gaussian observation noise with diagonal
covariance Γ ∈ RN×N (only explicitly estimated as a free
parameter in the variational approach).

3.2. Dendritic Computation and Spline Basis Expansion

Dendrites have long been known to play an active and im-
portant part in neural computation (Mel, 1994; 1999; Koch,
2004). Active, fast voltage-gated ion channels endow den-
drites with strongly nonlinear behavior, giving rise for in-
stance to dendritic Ca2+ spikes that boost synaptic inputs
(Schiller et al., 2000; Häusser et al., 2000). It has been sug-
gested previously that different dendritic branches may con-
stitute rather independent computational sub-units whose
outputs are combined at the soma, as in a 2-layer neural
network (Poirazi et al., 2003; Mel, 1993; 1994), an idea that
received strong empirical support especially in recent years
(Poirazi & Papoutsi, 2020). Here we mimic this functional
setup by modeling dendritic processing through a linear
combination of ReLU-type threshold-nonlinearities (Fig. 1),
replacing Eq. 2 by

ϕ(zt−1) =

B∑
b=1

αb max(0, zt−1 − hb), (4)

with “dendritic input/output” slopes αb ∈ R and “activation”
thresholds hb ∈ RM . As in real dendrites, where both ion
channels and morphological structure are subject to learn-
ing (Poirazi & Papoutsi, 2020; Stemmler & Koch, 1999),
we treat these as trainable parameters. To emphasize the
connection to dendritic computation we call the system Eqs.
1, 3, 4, the dendPLRNN.

We note that Eq. 4 inserted into model Eq. 1 takes the form
of a linear spline basis expansion as popular in statistics and
machine learning (Hastie et al., 2009) for approximating
arbitrary functions (Wahba, 1990; Storace & De Feo, 2004)
in regression settings and other model-based approaches.
In our context of DS reconstruction, however, there are
particular challenges associated with such an approach, as
we would like to preserve certain mathematical properties
of the expanded model for its DS tractability. This is indeed
one major contribution of the present work and addressed
in the next section.
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Figure 1. Inspired by principles of dendritic computation, our dend-
PLRNN extends each unit into a set of nonlinear branches con-
nected to a soma, yielding single unit transfer functions with in-
creased approximation capabilities. Figure created with the artistic
support of Darshana Kalita.

3.3. Mathematical Tractability and Dynamical Systems
Interpretation

Sharp threshold-nonlinearities (like a ReLU) are a reason-
able choice from a neurobiological perspective, as dendrites
naturally give rise to this threshold-type behavior (Mel,
1999; Koch, 2004). Another important consideration in
choosing this particular form, however, was that it preserves
all the theoretically appealing properties of a PLRNN, as
we will formally establish below: For PLRNNs fixed points
and cycles can be explicitly computed (Schmidt et al., 2021;
Koppe et al., 2019), and they can be translated into dy-
namically equivalent continuous-time systems (Monfared &
Durstewitz, 2020b), properties which profoundly ease the
analysis of trained systems from a DS perspective.1 This is
crucial for application in the sciences, where we are specif-
ically interested in understanding the underlying system’s
dynamics. For PLRNNs, precise connections between the
long-term behavior of the system and that of its gradients
have also been established (Schmidt et al., 2021; Monfared
et al., 2021). Finally, PLRNNs belong to the class of con-
tinuous piecewise-linear (PWL) maps, for which many im-
portant types of bifurcations have been well characterized
(Feigin, 1995; Hogan et al., 2007; Patra, 2018) (see (Mon-
fared & Durstewitz, 2020a) for an overview). Bifurcations
are essential to understand how geometrical and topological
properties of the system’s state space depend on its param-
eters or could be controlled, and hence are also important
to characterize or improve the training process itself (Doya,
1992; Pascanu et al., 2013; Saxe et al., 2014), or to under-
stand properties of trained systems (Maheswaranathan et al.,
2019a;b).

Our first proposition, therefore, assures that by the particular
form of basis expansion introduced in Eq. 4, the system will
remain within the class of continuous PWL maps:

1For instance, for a PLRNN trained on the Lorenz-63 system
(see sect. 4), we exactly located all fixed points in less than 1 s and
cycles up to 40th order within 20 s on a single 1.8GHz CPU.

Proposition 1. The model defined through Eq. 1 and Eq. 4
constitutes a continuous PWL map.

The proof essentially straightforwardly follows from the
model’s definition as a linear spline basis expansion in each
unit, but is formally provided in Appx. 6.4.4.

While Proposition 1 is all we need to ensure we can harvest
all previously established results on PLRNNs in particular,
and on continuous PWL maps more generally, it is revealing
to note that any dendPLRNN (Eqs. 1, 4) can be rewritten as
a conventional PLRNN, as stated in the following theorem:

Theorem 1. Any M -dimensional dendPLRNN as defined in
Eqs. 1, 4, can always be rewritten as a M ×B-dimensional

“conventional” PLRNN of the form

ẑt = Ãẑt−1 + W̃ max(0, ẑt−1) + ĥ0 + C̃st + ϵ̃t.
(5)

Proof. Straightforward by construction, see Appx. 6.4.5.

This theorem highlights why the dendPLRNN will allow
to reduce the dimensionality of the reconstructed system,
as it suggests we may often be able to reformulate a high-
dimensional PLRNN in terms of an equally powerful lower-
dimensional dendPLRNN. In Appx. 6.4.1 we also spell out
the exact computation of fixed points and k-cycles for the
dendPLRNN.

Finally, the unboundedness of the PLRNN’s latent states
due to the ReLU function can cause divergence problems
in training. The dendPLRNN, on the other hand, offers a
simple and natural way to contain the latent states without
violating the basic model description above, as established
in the following theorem:

Theorem 2. For each basis {αb,hb} in Eq. 4 of a dend-
PLRNN let us add another basis {α∗

b ,h
∗
b} with α∗

b = −αb

and h∗
b = 0. Then, for σmax(A) < 1, any orbit of this

“clipped” dendPLRNN (Eq. 10) will remain bounded.

Proof. See Appx. 6.4.6.

Appx. 6.4 collects further theoretical results, assuring, for
instance, that the manifold attractor regularization employed
here (see next section) does not interfere with the results
above (Proposition 2).

3.4. Training the dendPLRNN

We apply two different training strategies to infer the param-
eters θ = {A,W ,h,C,Σ,B,Γ, {αb,hb}} of the dend-
PLRNN (Eq. 1, 3, 4) from observed data: First, we employ
“classical” BPTT with a variant of TF (Williams & Zipser,
1989; Pearlmutter, 1990). TF here means that the first N
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latent states zk,lτ+1, k ≤ N , were replaced by observa-
tions xk,lτ+1 at times lτ + 1, l ∈ N0, where τ ≥ 1 is
the forcing interval (for details, see Appx. 6.1). Second,
we use a fast and scalable variational inference (VI) algo-
rithm which maximizes the Evidence Lower Bound (ELBO)
L(θ, ϕ;x) := Eqϕ [log(pθ(x|z)]−KL[qϕ(z|x)||pθ(z)] us-
ing the reparameterization trick (Kingma & Welling, 2014),
and convolutional neural networks (CNNs) for parameteriz-
ing the encoder model qϕ(z|x) (see Appx. 6.1 for details).
Furthermore, as proposed in Schmidt et al. (2021), to effi-
ciently capture DS at multiple time scales, for VI we add a
regularization term to the ELBO that encourages the map-
ping of slow time constants and long-range dependencies
(so-called manifold attractor regularization, see Eq. 6, with
regularization factor λ).

4. Experiments
4.1. Performance Measures

In DS reconstruction, we aim to capture invariant properties
of the underlying DS like its geometrical and temporal struc-
ture. To evaluate the quality of reconstructions w.r.t. geomet-
rical properties we employed a Kullback-Leibler divergence
(Dstsp) that quantifies the agreement in attractor geometries
(more details in Appx. 6.2), as first suggested in Koppe
et al. (2019) (see also Schmidt et al. (2021)). Specifically,
this measure evaluates the overlap between the observed
data distribution p(xobs) and the distribution p(xgen|zgen)
generated from model simulations (i.e., with zgen ∼ pθ(z)
after model training2) across state space (not time!). Since
this measure as originally defined in Koppe et al. (2019) is
expensive to compute, for the high-dimensional benchmark
DS we used another approximation, details of which are
given in Appx. 6.2. Dstsp is evaluated on a test set of 100
trajectories with randomly sampled initial conditions and
1000 time steps each. To assess the agreement in tempo-
ral structure, power spectra were first computed through
the Fast Fourier Transform (Cooley & Tukey, 1965) on all
dimensions (i.e., time series) and slightly smoothed with
Gaussian kernels to remove noise. For each dimension, the
power spectral correlation (PSC) between ground truth and
model-generated time series was then computed and aver-
aged across dimensions (see Appx. 6.2). Finally, we also
computed a 20-step-ahead prediction error along test set
trajectories to assess short-term behavior (see Appx. 6.2).
We note, however, that prediction errors can be misleading
in case of chaotic systems because of exponential trajec-
tory divergence, as illustrated in Koppe et al. (2019) (i.e.,
may be large even if the true system has been accurately
captured, and vice versa). They therefore need to be inter-
preted with caution and are less relevant in the context of

2For deterministic latent models this comes down to just
forward-iterating Eq. 1 from various random initial conditions.

DS reconstruction than the statistics introduced above.

4.2. DS Benchmarks Used for Evaluation

We evaluated our approach and the specific role of the basis
expansion on six different types of challenging DS bench-
marks.

First, the famous 3d chaotic Lorenz attractor (Lorenz-63)
originally proposed by Lorenz (1963) (formally defined in
Appx. 6.3) has become a popular benchmark for DS recon-
struction algorithms. Fig. 2a (l.h.s.) illustrates true (blue)
and reconstructed (orange) time series from this system,
while the r.h.s. illustrates the chaotic attractor’s geometry
in its 3d state space for both the ground truth (blue) and
reconstructed (orange) systems. It is important to note that
both the time and state space graphs are not merely ahead
predictions from the dendPLRNN but are produced by sim-
ulating the trained dendPLRNN from some initial condition.
This illustrates that the dendPLRNN has captured the tem-
poral and geometrical structure of the original Lorenz-63
system in its own governing equations. Moreover, comput-
ing analytically (see Appx. 6.4.1) the fixed points of the
reconstructed system, we see that their positions in state
space agree well with those of the true system.

Second, a 3d biophysical model of a bursting neuron (see
Eq. 15 in Appx. 6.3; Durstewitz (2009)) highlights an-
other aspect of DS reconstruction: Besides an equation for
membrane voltage (V ), the model consists of one very fast
(n) and one slow (h) variable that control the gating of
the model’s ionic conductances. This produces fast spikes
that ride on top of a much slower oscillation, making this
system challenging to reconstruct. One such successful
dendPLRNN reconstruction is illustrated in Fig. 2b (orange)
together with time graphs and state space representations of
the true system (blue).

Third, the Lorenz-96 weather model is an example of a
higher-dimensional, spatially organized chaotic system with
local neighborhood interactions that can be extended to arbi-
trary dimensionality (Eq. 18 in Appx. 6.3). It has also been
used more widely for benchmarking DS reconstruction algo-
rithms. For our experiments we employed a 10-dimensional
spatial layout. Fig. 3a illustrates time graphs for selected
dimensions (top), the full evolving spatio-temporal pattern
(center), and examples of power spectra (bottom) for both
the ground truth system (blue) and an example reconstruc-
tion (orange). The spatio-temporal characteristics of the true
and the dendPLRNN-generated time series tightly agree.

Fourth, as another high-dimensional example we used a
neural population model with structured connectivity tuned
to produce coherent chaos (Landau & Sompolinsky, 2018),
from which we produced 50d observations (see Appx. 6.3
for details). Fig. 3b provides example time series (top),
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Figure 2. Examples of low-dimensional model reconstructions: (a)
Time series (left) and state space trajectories (right) for the orig-
inal Lorenz-63 chaotic attractor and simulations produced by a
dendPLRNN trained with VI (B = 20, M = 15, λ = 1.0,
Mreg/M = 0.5). Dots indicate true and reconstructed fixed points.
(b) Same for the bursting neuron model, produced by a dend-
PLRNN trained with TF (B = 47, M = 26, τ = 5). Note that
the bursting is a complex limit cycle but non-chaotic.

full spatio-temporal patterns (center), and overlaid power
spectra (bottom) for time series drawn from the true sys-
tem (blue) and those simulated by a trained dendPLRNN
(orange). Again there is a tight agreement, and again we
emphasize that - like in all the other examples - these are
not mere model ahead-predictions but fully simulated from
some random initial condition.

Finally, we studied two real-world datasets consisting of
electroencephalogram (EEG) recordings from human sub-
jects, described in more detail with results (Fig. S4) in
Appx. 6.3, and an electrocardiogram (ECG), recorded from
a human subject with a chest sensor (Fig. S5), described in
more detail in Appx. 6.3.

4.3. Basis Expansion Allows for Reduced
Dimensionality

Fig. 4 shows the reconstruction performance of the dend-
PLRNN on the Lorenz-63 DS when trained with a range of
different numbers of bases B and latent states M . As con-
jectured in Sec. 3 and confirmed by these results, the latent
space dimensionality M can indeed be reduced profoundly,
at no loss in geometrical reconstruction quality (as assessed
by Dstsp), by increasing the expansion order B.

Figure 3. Examples of high-dimensional model reconstructions:
(a) Time series (top), spatio-temporal evolution (middle), and
power spectra (bottom) for the true 10d Lorenz-96 system and
for dendPLRNN simulations (B = 50, M = 30, τ = 10). (b)
Same for a 50d neural population model producing coherent chaos
(B = 5, M = 12, λ = 1.0, Mreg/M = 0.2).

4.4. Model Comparisons

We compared our model to the PLRNN without dendritic
expansion and four other algorithms purpose-tailored for
DS reconstruction: First, SINDy (Brunton et al., 2016) aims
to reconstruct the governing equations by approximating
numerical derivatives (obtained by differencing the time
series, and applying a variance regularization to reduce
noise) through a large library of (usually polynomial) ba-
sis functions. Sparse (LASSO) regression is used to pick
out the right terms from the library (we used the PySINDy
implementation (de Silva et al., 2020) with multinomials
up to sixth order). Second, Vlachas et al. (2018) used a
hybrid of LSTMs, trained using truncated BPTT, and mean-
field stochastic models based on Ornstein-Uhlenbeck pro-
cesses (LSTM-MSM) to approximate the true system’s vec-
tor field estimated from observed time series. Third, Pathak
et al. (2018) built on reservoir computing (RC) for their
approach with reservoir parameters chosen to satisfy the
“echo state property” (Jaeger & Haas, 2004). For higher-
dimensional systems, a spatially arranged set of reservoirs
with local neighborhood relations is employed. Fourth,
Neural-ODEs (Chen et al., 2018) were trained based on
an implementation in the torchdiffeq package using
the odeintadjoint method for the backward pass. For
all these systems, we performed grid searches for optimal
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Figure 4. Effect of basis expansion on latent space dimensional-
ity. Agreement in attractor geometries (top) and proportion of
successful reconstructions (bottom) for the Lorenz-63 system as a
function of the number of bases (B) and latent states (M ). B = 0
in the top graph denotes the standard PLRNN (no basis expansion).
Each data point corresponds to 20 independent runs from different
initial parameter configurations. In the bottom graph, runs with
Dstsp < 4 were defined as successful as by inspection (but similar
results are obtained with other choices for the Dstsp threshold).

hyperparameters (see Appx. 6.1). For our own system, the
dendPLRNN, we also performed a grid search for optimal
hyper-parameters λ, τ , M , and B (see Appx. 6.1 and Table
S1 for details). For all five methods, to the degree possible
we tried to ensure roughly the same number of trainable
parameters (see Table 1).

Results for all five models on all six DS benchmarks em-
ployed here are summarized in the upper part of Table 1,
using the temporal and geometrical reconstruction measures
introduced in Sec. 4.2 (as well as a 20-step-ahead prediction
error for comparison3). To produce this table, 100,000 time
steps for both training and testing were simulated from each
ground truth system, all dimensions were standardized to
have zero mean and unit variance, and process noise and
observation noise (with about 1% of the data variance) were
added while simulating the (now stochastic) differential
equations, and after drawing the observations, respectively
(see Appx. 6.3 for further methodological details). To pro-
duce statistics, each method was run from a total of 20
randomly chosen initial conditions for the parameters. We
also tested all five methods on real-world EEG and ECG

3As pointed out in sect. 4.1, for some of the chaotic systems
we indeed observed, however, that lower prediction errors do not
always go in hand with better DS reconstructions.

data and on challenging data situations produced using the
Lorenz-63 system (Fig. 2a), with either short time series of
just 1000 time steps for training, only partial observations
(just state variable x in Eq.14 in Appx. 6.3), or high process
and high observation noise (drawing from a Gaussian with
dϵ ∼ N (0, 0.1dt × I) for the process noise as described
in Appx. 6.3, and using 10% of the observation variance,
respectively). SINDy cannot naturally handle missing ob-
servations, as it has no latent variables but formulates the
model directly in terms of the observations. Therefore, for
the partially observed system, we used a delay embedding
(Takens, 1981; Sauer et al., 1991) to create a 3d dataset,
adding two time-lagged versions of x as coordinates.4

A general observation is that indeed all five models are quite
powerful for reconstructing the underlying DS. However,
in most comparisons the dendPLRNN had an edge over
the other methods, or came out second after SINDy, espe-
cially when trained by BPTT+TF (see Appx. S2 for results
obtained with VI). SINDy tends to outperform the dend-
PLRNN on the Lorenz-63 DS, but it performs poorly on
the bursting neuron example and fails on the neural popu-
lation model, as well as on the EEG and ECG data. It also
becomes comparatively slow to train on high-dimensional
systems (as the number of bases needed scales exponentially
with the number of dimensions). This can be explained by
the fact that SINDy already has the correct functional form
for the Lorenz-63 (and also Lorenz-96) DS: Both of these
have a strictly polynomial form (see Eq. 14 and Eq. 18 in
Appx. 6.3), and SINDy (in our tests) works with a set of
polynomial library functions to begin with. Hence, SINDy
only needs to pick out the right terms from its expansion to
succeed, giving it a clear advantage on these model systems
by design. On the other hand, as indicated in Table 1, it
largely fails on systems which have a different (in this case
non-polynomial) functional form, or when the true form,
as in the EEG and ECG empirical examples, is simply not
known. Unlike the other methods, SINDy therefore appears
less suitable as a general framework for DS reconstruction if
an appropriate library of basis functions cannot be specified
a priori, a potential shortcoming already discussed by the
original authors (Brunton et al., 2016).

While our conclusion is that essentially all of the four tested
models LSTM-MSM, RC, Neural ODE and dendPLRNN,
are suitable for reconstruction of arbitrary unknown DS,
even in very challenging data situations (Table 1, bottom),

4Note that SINDy by design always has as many dynamical
variables as observed (or embedded) dimensions. This could be an
advantage if the observed system really is that low-dimensional.
If, however, the number of observations is much larger than those
needed to describe the generating DS (as often suspected in neuro-
science) or – vice versa – not all system states have been observed,
SINDy may need to be augmented by other techniques (see Cham-
pion et al. (2019); Bakarji et al. (2022)).
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LSTM-MSM, RC and Neural-ODE performed worse on av-
erage and have other disadvantages compared to our method:
First, they are quite complex in their architectures and hence
not easily interpretable, i.e. much harder to track and an-
alyze mathematically.5 In contrast, as summarized in Sec.

5This is especially true for RC. Moreover, the fact that only the
weights of the linear output layer are trainable while the recurrent
connections within the reservoirs are static, may raise the question

3.3, the dendPLRNN is a continuous PWL map and as
such comes with a huge bulk of already existing theoreti-
cal results (Schmidt et al., 2021; Monfared & Durstewitz,
2020a;b), as well as with mathematical tractability. This
aspect is illustrated more explicitly in Fig. 5 which shows
true and reconstructed vector fields and fixed point locations

of what precisely is learnt in terms of dynamics if the reservoirs
themselves cannot adapt to the DS at hand.

Table 1. Comparison of dendPLRNN (Ours) trained by BPTT+TF, RC (Pathak et al., 2018), LSTM-MSM (Vlachas et al., 2018), SINDy
(Brunton et al., 2016) and Neural ODE (Chen et al., 2018) on 4 DS benchmarks and two experimental datasets (top) and 3 challenging
data situations (bottom). Values are mean ± SEM.

Dataset Method PSC Dstsp 20-step PE Dyn.var. #parameters

Lorenz-
63

dendPLRNN TF 0.997 ± 0.002 0.13 ± 0.18 9.2e−5 ± 2.8e−5 22 1032
RC 0.991 ± 0.001 0.24 ± 0.05 1.2e−2 ± 0.1e−3 345 1053
LSTM-MSM 0.985 ± 0.004 0.85 ± 0.07 1.2e−2 ± 0.1e−3 29 1035
SINDy 0.998 ± 0.0003 0.04 ± 0.01 6.8e−5 ± 0.2e−5 3 252
Neural ODE 0.992 ± 0.001 0.149 ± 0.014 1.1e−3 ± 4.1e−5 3 1011

Bursting
Neuron

dendPLRNN TF 0.76 ± 0.04 0.61 ± 0.09 6.1e−2 ± 2.2e−2 26 2040
RC 0.51 ± 0.01 5.1 ± 0.6 8.6e−2 ± 0.1e−2 711 2133
LSTM-MSM 0.54 ± 0.02 2.83 ± 0.36 3.9e−2 ± 0.1e−2 45 2166
SINDy 0.25 ± 0.01 6.36 ± 0.02 5.4e−1 ± 0.1e−2 3 252
Neural ODE 0.65 ± 0.017 3.85 ± 0.1 2.1e−1 ± 0.5e−2 3 2073

Lorenz-
96

dendPLRNN TF 0.998 ± 0.0001 0.04 ± 0.01 4.1e−2 ± 0.8e−2 50 4480
RC 0.986 ± 0.008 0.25 ± 0.17 7.1e−1 ± 0.1e−2 440 4400
LSTM-MSM 0.993 ± 0.002 0.23 ± 0.03 8.2e−1 ± 0.3e−2 62 4384
SINDy 0.997 ± 0.001 0.06 ± 0.003 6.3e−2 ± 0.1e−3 10 27410
Neural ODE 0.985 ± 0.001 0.21 ± 0.02 4.4e−2 ± 4.5e−3 10 4130

Neural
Popula-
tion
Model

dendPLRNN TF 0.52 ± 0.01 0.37 ± 0.05 1.43 ± 0.01 75 9990
RC 0.34 ± 0.03 2.8 ± 0.4 1.64 ± 0.07 200 10000
LSTM-MSM 0.51 ± 0.02 0.29 ± 0.04 1.56 ± 0.01 56 10298
SINDy diverging diverging diverging 50 66300
Neural ODE 0.47 ± 0.03 9.56 ± 0.86 0.58 ± 0.006 50 10200

EEG

dendPLRNN TF 0.923 ± 0.012 1.96 ± 0.18 0.202 ± 0.007 128 27058
RC 0.782 ± 0.002 8.8 ± 0.8 0.78 ± 0.02 448 28672
LSTM-MSM 0.827 ± 0.002 8.3 ± 0.3 0.708 ± 0.003 168 27728
SINDy diverging diverging diverging 64 133120
Neural ODE 0.82 ± 0.002 21.72 ± 0.71 0.31 ± 0.005 64 30559

ECG

dendPLRNN TF 0.929 ± 0.014 0.4 ± 0.6 0.23 ± 0.03 30 2641
RC 0.880 ± 0.013 1.78 ± 0.44 0.571 ± 0.013 378 2646
LSTM-MSM 0.926 ± 0.007 0.59 ± 0.08 7.0e−2 ± 0.6e−2 51 2801
SINDy diverging diverging diverging 7 4424
Neural ODE 0.90 ± 0.011 1.18 ± 0.02 0.61 ± 0.01 7 2599

Low
amount of
data

dendPLRNN TF 0.97 ± 0.04 6.9 ± 5.3 1.5e−2 ± 0.9e−2 22 1032
RC 0.68 ± 0.05 5.74 ± 0.11 4.1e+5 ± 1.2e+5 345 1053
LSTM-MSM 0.960 ± 0.006 6.06 ± 0.37 2.1e−1 ± 0.3e−2 29 1035
SINDy 0.998 ± 0.0003 0.04 ± 0.01 6.8e−5 ± 0.2e−5 3 252
Neural ODE 0.967 ± 0.008 4.66 ± 0.31 1.6e−3 ± 1.8e−4 3 1011

Partially
observed

dendPLRNN TF 0.993 ± 0.003 0.54 ± 0.16 5.3e−3 ± 0.2e−3 22 1032
RC 0.981 ± 0.001 2.92 ± 0.08 7.6e−3 ± 0.1e−3 345 1053
LSTM-MSM 0.934 ± 0.005 6.06 ± 0.37 2.3e−2 ± 0.3e−2 29 1035
SINDy 0.974 ± 0.001 2.52 ± 0.01 7.4e−3 ± 0.1e−3 3 252
Neural ODE 0.945 ± 0.004 3.34 ± 0.12 8.3e−3 ± 9e−5 3 1011

High
noise

dendPLRNN TF 0.995 ± 0.002 0.4 ± 0.13 4.6e−3 ± 0.4e−3 22 1032
RC 0.988 ± 0.001 2.33 ± 0.21 3.1e−2 ± 0.2e−2 345 1053
LSTM-MSM 0.967 ± 0.006 1.19 ± 0.27 3.3e−2 ± 0.2e−2 29 1035
SINDy 0.984 ± 0.005 0.42 ± 0.01 7.0e−3 ± 0.1e−4 3 252
Neural ODE 0.982 ± 0.055 0.79 ± 0.06 5.5e−3 ± 1.7e−4 3 1011
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for the Wilson-Cowan model of neural population dynamics
(see Appx. 6.3) in the bistable regime. Fixed points were
computed analytically for the dendPLRNN (cf. also Fig.
2a and Appx. 6.4.1), and match those of the ground truth
system both in position and stability as determined from the
dendPLRNN’s Jacobian. On top, the dendPLRNN mostly
achieves reconstructions of the DS in (much) lower dimen-
sions than RC or LSTM-MSM (see Table 1), further adding
to its better interpretability. By embedding the dendPLRNN
within a SVAE (Archer et al., 2015) framework (see Appx.
6.1), one could also obtain uncertainty estimates on the state
trajectories and perform posterior inference, features that
the other models lack.
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Figure 5. Comparison of ground truth vector field for the 2D
Wilson-Cowan equations to a reconstruction obtained by the dend-
PLRNN with M = 5, B = 20, τ = 15,Mreg/M = 0.5, λ =
5 ·10−3. Also shown are locations of the true system’s fixed points
and those computed analytically for the trained dendPLRNN.

5. Conclusions
In this work we augmented PLRNNs (Durstewitz, 2017;
Koppe et al., 2019) by a linear spline basis expansion in-
spired by principles of dendritic computation. We show
mathematically that by doing so we remain within the theo-
retical framework of continuous PWL maps and hence can
harvest a huge bulk of existing DS theory (Sec. 3.3), while
at the same time achieving better performance with less pa-
rameters and in lower dimensions. This is a key advantage
from a scientific perspective where mechanistic insight and
understanding of the system under study is sought. Indeed,
we are not aware of any other current DS reconstruction
approach that combines these features, a simple, mathemat-
ically tractable design with competitive performance, yet
providing comparatively low-dimensional representations

of the dynamics. Another contribution of the present work
is that it assembles a set of DS benchmarks, experimental
settings, and reconstruction measures which may be helpful
more generally for assessing DS reconstruction algorithms,
including an extension of a geometrical reconstruction mea-
sure (Dstsp) for use in high dimensions.

Using a stochastic latent model and VI/SVAE for training
(see Appx. 6.1) in addition yields posterior distributions
and uncertainty estimates across latent state trajectories.
Somewhat surprisingly, however, the BPTT+TF approach
to model training clearly outperformed the more sophisti-
cated VI approach (see Table S2). This could be rooted in
suboptimal encoder models or, as we suspect, in subopti-
mal sampling from the approximate posterior: BPTT+TF
(and, similarly, LSTM-MSM) allow trajectories to evolve
freely for several time steps during training and hence assess
longer bits of trajectory for optimization. In contrast, in VI
single time points are sampled separately from the approxi-
mate posterior and overall temporal consistency is ensured
only through the Kullback-Leibler term in the ELBO. Other
more expressive yet still fast to compute encoder models
that better map a trajectory’s temporal evolution, e.g., based
on normalizing flows (Rezende & Mohamed, 2015), may
boost performance. Specific annealing and curriculum train-
ing protocols (as used in Koppe et al. (2019)) are other
amendments to consider.

Another potentially interesting direction would be to aug-
ment the model with multiple trainable and adaptive time
scales, as in LEM networks (Rusch et al., 2022). While
this is similar in spirit to the manifold attractor regulariza-
tion scheme proposed for PLRNNs by Schmidt et al. (2021)
(see also Fig. S1), LEMs allow for a more flexible and
state/input-dependent way of adjusting the system’s time
constants. In preliminary studies we observed LEM net-
works to come close to our model for DS reconstruction
tasks. Borrowing LEM’s basic functional principles while
retaining the dendPLRNN’s tractable form thus appears to
be another promising though challenging avenue.

Software and Data
All code created in here is available at https://github.
com/DurstewitzLab/dendPLRNN.
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6. Appendix
6.1. Further Methodological Details

Manifold Attractor Regularization As proposed in Schmidt et al. (2021), to encourage the discovery of long-term
dependencies and slow time scales in the data, a subset of Mreg ≤M states was regularized by adding the following term to
the ELBO for the VI approach:

Lreg = λ

Mreg∑
i=1

(Aii − 1)2 +

Mreg∑
i=1

M∑
j ̸=i

(Wij)
2 +

Mreg∑
i=1

h2
i

 . (6)

This regularization pushes the regularized subset of states toward a continuous set of marginally stable fixed points that
tends to form an attracting manifold in the full state space, which supports the learning of systems with widely differing
time scales, such as the bursting neuron model (cf. Sec. 4). During training with VI, the ELBO was divided by the number
of time steps T of a given batch to put it on equal grounds with the regularization term. Regularization settings used are
summarized in Table S1 along other hyper-parameter settings.
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Figure S1. Different latent states capture different time scales of the reconstructed DS. (a) Simulated time series of the first (V/x1) and third
(h/x3) system variables from a reconstruction (dendPLRNN trained with BPTT, M = 20, B = 20, τ = 5,Mreg/M = 0.5, λ = 0.05)
of the bursting neuron model (Eq. 15). (b) Time series of the two latent states with the lowest (a8,8 ≈ 0.1012, left) and highest
(a10,10 ≈ 0.9987, right) time constants of a dendPLRNN trained with manifold attractor regularization (MAR), capturing the fast spiking
and slow oscillatory time scales of the bursting neuron, respectively. (c) Same as (b) for a dendPLRNN trained without manifold attractor
regularization. In this case the separation of time scales in the latent states is often less clear, although in this particular example the
lowest (a7,7 ≈ 0.0067, left) and highest (a18,18 ≈ 0.6951, right) time constants still tend to capture the bursting neuron’s fastest and
slowest time scales, respectively. Similar observations were also made for other systems like the ECG and EEG data (not shown).

BPTT-TF To train a deterministic version of the dendPLRNN, we employ BPTT with a scheduled version of TF (Williams
& Zipser, 1989; Pearlmutter, 1990). To do so, we choose an “identity-mapping” for the observation model x̂t = Izt,
where I ∈ RN×M with Ikk = 1 if k ≤ N and zeroes everywhere else. This allows us to regularly replace latent states
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with observations to “recalibrate” the model and break trajectory divergence in case of chaotic dynamics. Consider a
time series {x1,x2, · · · ,xT } generated by a DS we want to reconstruct. At times lτ + 1, l ∈ N0, where τ ≥ 1 is the
forcing interval, we replace the first N latent states by observations ẑk,lτ+1 = xk,lτ+1, k ≤ N . The remaining latent
states, ẑk,lτ+1 = zk,lτ+1, k > N , remain unaffected by the forcing. This means that we optimize the dendPLRNN
such that a subspace of the latent space directly maps to the observed time series variables. The forcing interval τ is a
hyperparameter, with optimal settings varying depending on the dataset. The settings we chose are summarized in Table S1.
With F = {lτ + 1}l∈N0

, the dendPLRNN updates can then be written as

zt+1 =

{
dendPLRNN(z̃t) if t ∈ F
dendPLRNN(zt) else

. (7)

The loss is calculated prior to the forcing, such that Lt = ∥xt−Izt∥22 for every time step. To improve performance, in some
experiments we employed a mean-centered dendPLRNN (for details see next paragraph). In the evaluation phase, the trained
dendPLRNN is simulated freely without any forcing. As the model is deterministic, the initial condition z1 = [x1,Lx1]

T

is estimated from the first data point x1 with a matrix L ∈ R(M−N)×N which is jointly learned with the other model
parameters.

Mean-Centered dendPLRNN Layer normalization has recently been developed as a way of significantly improving RNN
training (Ba et al., 2016). Here we adapt the idea of layer normalization to the piecewise-linear nature of our dendPLRNN.
Instead of fully standardizing the latent states at every time step before applying the activation function, we only mean-center
them:

zt = Azt−1 +Wϕ
(
M(zt−1)

)
+ h0, (8)

where ϕ(·) is given in Eq. 4 andM(zt−1) = zt−1 − µt−1 = zt−1 − 1
1

M

M∑
j=1

zj,t−1, where 1 ∈ RM is a vector of ones.

Note that this mean-centering is linear and can be rewritten as a matrix-multiplication

M(zt−1) = zt−1 − µt−1

=
1

M


M − 1 −1 · · · −1
−1 M − 1 · · · −1

...
...

. . .
...

−1 −1 · · · M − 1

 zt−1 = Mzt−1. (9)

As Remark 1 points out, all results about the tractability of the dendPLRNN also hold for the mean-centred dendPLRNN.

State Clipping Since the ReLU function used in the dendPLRNN is non-saturating, states may diverge to infinity. As
Theorem 2 guarantees, there is a simple and natural way to construct a “clipped” dendPLRNN

zt = Azt−1 +W

B∑
b=1

αb

[
max(0, zt−1 − hb)−max(0, zt−1)

]
+ h0. (10)

Note that the results of Theorem 2 also hold true when the manifold attractor regularization is applied. This is detailed in
Proposition 2 further below.

Approximate Posterior for Variational Inference To estimate the true unknown posterior p(z|x), we make a Gaussian
assumption for the approximate posterior qϕ(z|x) = N (µϕ(x),Σϕ(x)), where mean and covariance are functions of
the observations. Without any simplifying assumptions, the number of parameters in Σϕ(x) ∈ RMT×MT would scale
unacceptably with time series length T . We therefore made a mean field assumption and factorized qϕ(z|x) across time.
Specifically, a time-dependent mean µt,ϕ and covariance Σt,ϕ were parameterized through stacked convolutional networks
which take the observations {xt−w...xt+w} as inputs, with w given by the largest kernel size. The mean is given by a
4-layer CNN with decreasing kernel sizes (41, 31, 21 and 11, respectively), with the last layer of the CNN feeding into
the parameters of the approximate posterior. For the diagonal covariance, the observations are mapped directly onto the
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logarithms of the covariance through a single convolutional layer (with a kernel size of 41) mapping onto the parameters
of the approximate posterior. The classical motivation behind using CNNs rests on the assumption that the data contains
translationally invariant patterns, and that this allows the recognition model to embed potentially meaningful temporal
context into the latent representation (see e.g. Cui et al. (2016)). We note that while the mean-field approximation is
computationally highly efficient, it makes potentially strongly simplifying assumptions (Blei et al., 2017; Bayer et al., 2021)
that may limit the ability of the encoder model to approximate the true posterior. Somewhat surprisingly, the BPTT+TF
approach to model training clearly outperformed the more sophisticated VI approach. This could be rooted in suboptimal
encoder models or in suboptimal sampling from the approximate posterior: While BPTT+TF assesses longer bits of
trajectory during optimization, in VI single time-point samples are drawn and the temporal consistency is ensured only
through the Kullback-Leibler term in the ELBO. Other more expressive yet still fast to compute encoder models, e.g., based
on normalizing flows (Rezende & Mohamed, 2015), may boost performance.

Hyperparameter Settings To train the dendPLRNN in the VI framework, Adam (Kingma & Ba, 2015), with a batch size
of 1000 and learning rate of 10−3 was used as the optimizer. For the training with BPTT, we used the Adam optimizer with
an initial learning rate of 10−3 that was iteratively reduced during training down to 10−5. For each epoch we randomly
sampled sequences of length Tseq = 500 (except for the Lorenz-63 runs, where Tseq = 200 time steps were sufficient)
from the total training data pool of each dataset, which are then fed into the reconstruction method in batches of size
16. Parameters A, W and h were initialized according to Talathi & Vartak (2016), while the {αb} were initialized
according to a uniform distribution in

[
−B−0.5, B−0.5

]
. Initial thresholds {hb} also followed uniform distributions, but

with ranges determined by the extent of the data, i.e. such that the whole data domain was covered. To find optimal
hyper-parameters we performed a grid search within λ ∈ {0, 0.01, 0.1, 1, 10} (VI), τ ∈ {1, 5, 10, 25, 50, 100} (BPTT-TF),
M ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100}, and B ∈ {0, 1, 2, 5, 10, 20, 35, 50}. Hyper-parameters chosen for the
benchmarks in Sec. 4 are reported in Table S1 below (note that these may not fully agree with the ranges initially scanned,
as given above, since we attempted to adjust them further in order to approximately match the number of parameters among
models in Table 1).

Table S1. Hyperparameter settings for dendPLRNN VI/TF for all data sets from Sec. 4.
Dataset M B Mreg/M λ τ

Lorenz-63 22 20 1.0/− 1.0/− −/25
Lorenz-96 42/50 50/30 1.0/− 1.0/− −/10

Bursting Neuron 26 50/47 0.5/− 1.5/− −/5
Neural Population 12/75 5/40 0.2/− 1.0/− −/5

EEG 117/128 50/50 0.8/0.1 1.0/5 · 10−3 −/10
ECG −/30 −/50 −/− −/− −/10

LSTM-MSM and Reservoir Computing For the Lorenz-63 and Lorenz-96 system, hyperparameters were used according
to the default settings for these specific datasets in the codebase provided at https://github.com/pvlachas/
RNN-RC-Chaos. For the other datasets not previously explored by Vlachas et al. (2018) and Pathak et al. (2018),
we performed a grid search to find best performing hyperparameter configurations. To this end, the following hyperpa-
rameters were scanned for the RC and LSTM-MSM approach, respectively: For RC the scanned hyperparameters and
values are the dynamics length ∈ {10, 50, 100, 200, 500}, noise level ∈ {10, 100, 1000}, regularization
∈ {0, 10−1, 10−2, 10−3} and learning rate ∈ {10−2, 10−3, 10−4}. For LSTM-MSM, similar parameters were ex-
plored, where the equivalent of dynamics length is hidden state propagation length in the respective code.
Also, due to the comparatively slow execution times, only fewer parameter combinations were tried.

Neural ODE For Neural ODEs we used the implementation in the torchdiffeq package. The number of layers was
fixed to make the numbers of trainable parameters comparable to those in Table 1, while a grid search was performed over
activation functions {'elu', 'silu', 'tanh'}, sequence length {5, 10, 25, 50} used per batch, and learning rates {1e−3, 1e−2}.
For each dataset, 20 models were trained for 1000 epochs, each with a batch size of 20. The odeintadjoint method
with the default solver dopri5 was mostly used for training. As the adaptive step size caused numerical instabilities during
training on the two experimental datasets, we switched to the solver euler for these.

https://github.com/pvlachas/RNN-RC-Chaos
https://github.com/pvlachas/RNN-RC-Chaos
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PySINDy For PySINDy we performed a hyperparameter search over threshold values
{.0001, .0002, .0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1} in the stlsqoptimizer. This threshold specifies
the minimum value for a coefficient in the weight vector, below which it is dropped out (i.e., set to zero).

6.2. Performance Measures

Geometrical Measure Dstsp used for evaluating attractor geometries (Fig. 4) measures the match between the ground
truth distribution ptrue(x) and the generated distribution pgen(x | z) through the discrete binning approximation (Koppe
et al., 2019)

Dstsp (ptrue(x), pgen(x | z)) ≈
K∑

k=1

p̂
(k)
true(x) log

(
p̂
(k)
true(x)

p̂
(k)
gen(x | z)

)
, (11)

where K is the total number of bins, and p̂
(k)
true (x) and p̂

(k)
gen (x | z) are estimated as relative frequencies through sampling

trajectories from the benchmark DS and the trained reconstruction method, respectively. A range of 2× the data standard
deviation on each dimension was partioned into m bins, yielding a total of K = mN bins, where N is the dimension of the
ground truth system. Initial transients are removed from sampled trajectories to ensure that the system has reached a limiting
set. If the bin size is chosen too large, important geometrical details may be lost, while if it is chosen too small, noise and
(low) sampling artifacts with many empty bins may misguide the approximation above. Here we chose a bin number of
m = 30 per dimension as an optimal compromise that distinguished well between successful and poor reconstructions.

Since the number of bins needed to cover the relevant (populated) region of state space scales exponentially with the
number of dimensions, for high-dimensional systems evaluating Dstsp as outlined above is not feasible. We therefore
resorted to an approximation of the densities based on Gaussian Mixture Models (GMMs), similar to a strategy outlined in
(Koppe et al., 2019). Specifically, we approximate the true data distribution by a GMM ptrue(x) ≈ 1

T

∑T
t=1N (xt,Σ) with

Gaussians centered on the observed data points {xt} and covariance Σ, which we treat as a hyper-parameter that determines
the granularity of the spatial resolution (similar to the bin size in Eq. 11). We can generate a likewise distribution by
sampling trajectories from the trained models (or one very long trajectory) and placing Gaussians on the sampled data points,
pgen(x|z) ≈ 1

L

∑L
l=1N (x̂l | zl,Σ) (in the case of VI, rather than sampling, one could also use the model’s distributional

assumptions to build this posterior across the observations). For the Kullback-Leibler divergence between two GMMs
efficient approximations are at hand (Hershey & Olsen, 2007). Here we employ a Monte Carlo approximation

D̃stsp

(
ptrue(x), pgen(x|z)

)
≈ 1

n

n∑
i=1

log
1/T

∑T
t=1N (x(i);xt,Σ)

1/L
∑L

l=1N (x(i); x̂l,Σ)
, (12)

where n Monte-Carlo samples x(i) are drawn from the GMM representing ptrue. In practice, we set the covari-
ance Σ = σ2I equal to a scaled identity matrix, with a single hyperparamter σ2. Scanning the range σ2 ∈
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5}, we found that values for σ2 = 0.1− 1.0 to differentiate best between good and bad
reconstructions. We chose σ2 = 1.0 for numerical stability. For this setting, Dstsp as derived with the binning method and
D̃stsp computed through the GMMs also correlated highly on the low-dimensional benchmark systems (see Figure S2).

Power Spectrum Correlation The power spectrum correlations (PSC) were obtained by first sampling time series of
100,000 time steps, standardizing these, and computing dimension-wise Fast Fourier Transforms (using scipy.fft) for
both the ground truth systems and model-simulated time series. Individual power spectra were then slightly smoothed
with a Gaussian kernel, normalized, and the long, high-frequency tails of the spectra, mainly representing noise, were cut
off. Smoothing width σ and cutoff values were increased linearily with the length of the time series used to compute the
spectrum, and were chosen by visual inspection of the individual spectra. Dimension-wise correlations between smoothed
power spectra were then averaged to obtain the reported PSC scores.

Mean Squared Prediction Error A mean squared prediction error (PE) was computed across test sets of length T = 1000
by initializing the reconstructed model with the test set time series up to some time point t, from where it was then iterated
forward by n time steps to yield a prediction at time step t+ n. The n-step ahead prediction error (PE) is then defined as the
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Figure S2. Correlation between the binning approximation (m = 30) and the logarithm of the GMM approximation (σ2 = 1) to Dstsp on
the Lorenz-63 system for different noise realizations and variances. Similar as reported for the KLZ approximation in (Koppe et al.,
2019) we observed a logarithmic relation between the GMM and binning based measures.

Figure S3. Example power spectra for different values of the smoothing factor σ.

MSE between predicted and true observations:

PE(n) =
1

N(T − n)

T−n∑
t=1

N∑
i=1

(xi,t+n − x̂i,t+n)
2. (13)

Note that for a chaotic system initially close trajectories will exponentially diverge, such that PEs for too large prediction
steps n are not meaningful anymore (in a chaotic system with noise, for large n the PE may be high even when estimated
from two different runs of the same ground truth model from the same initial condition; see (Koppe et al., 2019)). How
quickly this happens depends on the rate of exponential divergence as quantified through the system’s maximal Lyapunov
exponent (Kantz & Schreiber, 2004).

6.3. Details on Dynamical Systems Benchmarks

Lorenz-63 System The famous 3d chaotic Lorenz attractor with the butterfly wing shape, originally proposed in (Lorenz,
1963), is defined by
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dx = (σ(y − x))dt+ dϵ1(t),

dy = (x(ρ− z)− y)dt+ dϵ2(t), (14)
dz = (xy − βz)dt+ dϵ3(t).

Parameters used for producing ground truth data in the chaotic regime were σ = 10, ρ = 28, and β = 8/3. Process noise
was injected into the system by drawing from a Gaussian term dϵ ∼ N (0, 0.012dt× I).

Bursting Neuron Model The 3d biophysical bursting neuron model was introduced in (Durstewitz, 2009) and is defined
by one voltage and two ion channel gating variables (one slow and one fast):

−CmV̇ = gL (V − EL) + gNam∞(V ) (V − ENa)

+ gKn (V − EK) + gMh (V − EK)

+ gNMDA

[
1 + .33e−.0625V

]−1
(V − ENMDA)

(15)

ṅ =
n∞(V )− n

τn

ḣ =
h∞(V )− h

τh

(16)

The limiting values of the ionic gates are given by

{m∞, n∞, h∞} =
[
1 + e({VhNa,VhK ,VhM}−V )/{kNa,kK ,kM}

]−1

. (17)

We borrowed parameter settings from Schmidt et al. (2021) to place the system into the burst-firing regime:

Cm = 6µF, gL = 8mS, EL = −80mV, gNa = 20mS, ENa = 60mV, VhNa = −20mV,

kNa = 15, gK = 10mS, EK = −90mV, VhK = −25mV, kK = 5, τn = 1 ms, gM = 25mS

VhM = −15mV, kM = 5, τh = 200 ms, gNMDA = 10.2mS

Lorenz-96 System The Lorenz-96 is a high-dimensional, spatially extended weather model, also introduced by Edward
Lorenz (Lorenz, 1996):

dxi = ((xi+1 − xi−2)xi−1 − xi + F )dt+ dϵ, i = 1 . . . N, (18)

with (constant) forcing term F . F = 8 is a common choice that leads to chaotic behavior. Process noise was added as for
the Lorenz-63 system, dϵ ∼ N (0, 0.012dt× I). In our simulations we used N = 10, but in principle the system allows for
arbitrary dimensionality.

Neural Population Model A larger-scale neural population model was recently introduced in Landau & Sompolinsky
(2018) to examine the effect of structured connectivity on top of a randomly initialized network matrix. Specifically, an
independently Gaussian distributed weight structure was combined with a rank-1 component with coupling strength J1. The
dynamics of the single unit currents were defined as

dh

dt
= −h+ Jϕ(h) +

J1√
N

ξvTϕ(h), (19)

where ϕ(h) = tanh(h(t)). We produced a 50-dimensional chaotic network model based on the code provided in Landau &
Sompolinsky (2018) using J1 = 0.09 and seeding the random number generator with 35.

The Lorenz-63 and Lorenz-96 systems were simulated using scipy.integrate, while for the bursting neuron and
neural population model we used the code provided in Schmidt et al. (2021) and Landau & Sompolinsky (2018), respectively.



Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems

Table S2. Comparison of dendPLRNN (Ours) trained by VI or BPTT+TF, and a standard PLRNN (Schmidt et al., 2021), trained by VI or
BPTT+TF on four DS benchmarks (top) and three challenging data situations (bottom). Values are mean ± SEM.

Dataset Method PSC Dstsp 20-step PE Dyn.var. #parameters

Lorenz

dendPLRNN VI 0.997 ± 0.001 0.80 ± 0.25 2.1e−3 ± 0.2e−3 22 1032
dendPLRNN TF 0.997 ± 0.002 0.13 ± 0.18 9.2e−5 ± 2.8e−5 22 1032
PLRNN VI 0.94 ± 0.004 16.6 ± 0.4 1.8e−1 ± 0.1e−1 30 1020
PLRNN TF 0.994 ± 0.001 0.4 ± 0.09 4.3e−3 ± 0.2e−3 30 1011

Bursting
Neuron

dendPLRNN VI 0.55 ± 0.03 7.5 ± 0.4 6.1e−1 ± 0.1e−1 26 2052
dendPLRNN TF 0.76 ± 0.04 0.61 ± 0.09 6.1e−2 ± 2.2e−2 26 2040
PLRNN VI 0.54 ± 0.01 17.5 ± 0.5 1.17 ± 0.14 42 2021
PLRNN TF 0.72 ± 0.07 0.63 ± 0.11 6.4e−2 ± 2.0e−2 43 2021

Lorenz-
96

dendPLRNN VI 0.987 ± 0.001 0.10 ± 0.01 3.1e−1 ± 0.9e−1 42 4384
dendPLRNN TF 0.998 ± 0.0001 0.04 ± 0.01 4.1e−2 ± 0.8e−2 50 4480
PLRNN VI 0.93 ± 0.002 1.68 ± 0.03 2.1e−3 ± 0.2e−3 60 4260
PLRNN TF 0.996 ± 0.0003 0.05 ± 0.01 2.2e−1 ± 0.2e−1 64 4700

Neural
Popula-
tion
Model

dendPLRNN VI 0.45 ± 0.05 0.56 ± 0.05 0.82 ± 0.09 12 821
dendPLRNN TF 0.52 ± 0.01 0.37 ± 0.05 1.53 ± 0.03 75 9990
PLRNN VI 0.48 ± 0.01 11.65 ± 1.32 0.68 ± 0.09 13 832
PLRNN TF 0.47 ± 0.15 0.6 ± 0.3 4 ± 10 98 12102

Low
amount of
data

dendPLRNN VI 0.967 ± 0.007 4.36 ± 0.10 2.8e−2 ± 0.2e−2 22 1032
dendPLRNN TF 0.97 ± 0.04 6.9 ± 5.3 1.5e−2 ± 0.9e−2 22 1032
PLRNN VI 0.96 ± 0.01 18.1 ± 0.10 1.08 ± 0.02 30 1020
PLRNN TF 0.96 ± 0.04 9.0 ± 5.4 1.8e−2 ± 0.5e−2 30 1011

Partially
observed

dendPLRNN VI 0.940 ± 0.006 12.6 ± 1.0 6.5e−2 ± 1.4e−2 22 1032
dendPLRNN TF 0.993 ± 0.003 0.54 ± 0.16 5.3e−3 ± 0.2e−3 22 1032
PLRNN VI 0.944 ± 0.002 17.2 ± 0.2 2.7e−1 ± 0.03e−1 30 1020
PLRNN TF 0.994 ± 0.003 0.56 ± 0.34 5.0e−3 ± 0.2e−3 30 1011

High
noise

dendPLRNN VI 0.973 ± 0.006 4.9 ± 0.75 3.5e−2 ± 0.1e−2 22 1032
dendPLRNN TF 0.995 ± 0.002 0.4 ± 0.13 4.6e−3 ± 0.4e−3 22 1032
PLRNN VI 0.94 ± 0.004 18.2 ± 0.04 6.4e−1 ± 0.1e−1 30 1020
PLRNN TF 0.994 ± 0.002 0.5 ± 0.08 4.3e−3 ± 0.2e−3 30 1011

Wilson Cowan Model The Wilson-Cowan model is a classical model of neural population dynamics that describes the
interactions between a pool of excitatory (E) cells and one of inhibitory (I) cells (Wilson & Cowan, 1972), defined by

τi
dri
dt

= −ri + ϕ (wei · re − wii · ri − zi) (20)

τe
dre
dt

= −re + ϕ (wee · re − wei · ri − ze) , (21)

where wei, wee, wie, wii are coupling strengths, zi and ze denote constant input currents, and τi and τe are time constants.
We chose parameters that placed the model into a bistable regime: wei = 9., wee = 9., wie = 5., wii = 5., ze = 3, zi = 4.
The vector field and fixed points for this configuration are shown in Figure 5.

For simulating the model, we used the implementation provided at https://github.com/OpenSourceBrain/
WilsonCowan. For training the dendPLRNN, we sampled 400 initial conditions evenly distributed across the unit square
[0, 1]2, and then simulated trajectories of T = 300 from each of these initial states. Vector fields for the dendPLRNN were
approximated as finite 1-step difference vectors F (xn)− xn at each grid point xn, where F denotes the map induced by the
dendPLRNN in observation space. Approximated and ground truth vector fields are shown in Figure 5.

EEG Dataset Electroencephalogram (EEG) data were taken from a study by (Schalk et al., 2000) available at https:
//physionet.org/content/eegmmidb/1.0.0/. These are 64-channel EEG data obtained from human subjects
during different motor and imagery tasks. We trained the dendPLRNN using BPTT+TF on the ”eyes open” baseline time
series from subject 0, which had a total of 9760 time steps. The signal was standardized and smoothed with a Hann function,
using numpy.hanning and a window length of 15. Results for ground-truth and freely generated EEG signals from
several brain regions are shown in Figure S4.

ECG Dataset Electrocardiogram (ECG) time series were taken from the PPG-DaLiA dataset (Reiss et al., 2019). ECG
signals were captured using a chest-worn device (RespiBAN Professional) with a sampling rate of 700 Hz. For the benchmark

https://github.com/OpenSourceBrain/WilsonCowan
https://github.com/OpenSourceBrain/WilsonCowan
https://physionet.org/content/eegmmidb/1.0.0/
https://physionet.org/content/eegmmidb/1.0.0/
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Figure S4. EEG recordings from frontal, occipital, parietal and temporal lobe vs. freely generated trajectories, sampled from the
dendPLRNN, trained with BPTT (M = 128, B = 50, τ = 10,Mreg/M = 0.1, λ = 5 · 10−3).

model comparisons (Table 1), we used the first (one-dimensional) time series (index 0, “sitting”) from subject 2, which
consists of 419973 time steps. We preprocessed the data by slightly smoothing the series using a Gaussian kernel (σ = 5
time bins), standardization, and performing a temporal delay embedding with dimension m = 7 and lag τlag = 61. Optimal
embedding parameters were determined using the DynamicalSystems.jl Julia package. For the experiments, we
constructed a training and test set, each of length T = 100, 000 cut out from the available series.
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Figure S5. Original ECG recording vs. freely generated time series simulated using a dendPLRNN, trained with BPTT-TF (M = 30, B =
50, τ = 10).
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6.4. Theoretical Analysis

Consider the PLRNN with linear spline basis expansion as defined by Eq. 1, Eq. 4, reproduced here for convenience:

zt =Azt−1 +W

B∑
b=1

αb max(0, zt−1 − hb) + h0 +Cst + ϵt, (22)

where ϵt ∼ N(0,Σ), E[ϵt, ϵ
T
t′ ] = 0 for t ̸= t′, αb ∈ R are scalar weighting factors and hb ∈ RM different ReLU

“activation thresholds”, and all other parameters are as in conventional PLRNNs (Koppe et al., 2019).

Defining

D
(b)
Ω(t−1)(zt−1 − hb) := max(0, zt−1 − hb), (23)

Eq. 22 can be rewritten as

zt =

(
A+W

B∑
b=1

αb D
(b)
Ω(t−1)

)
zt−1

+ W
B∑

b=1

αb D
(b)
Ω(t−1) (−hb) + h0 + Cst + ϵt, (24)

where D
(b)
Ω(t−1) = diag

(
d
(b)
1,t−1, d

(b)
2,t−1, · · · , d

(b)
M,t−1

)
are diagonal binary indicator matrices with d

(b)
m,t−1 = 1 if zm,t−1 >

hm,b and 0 otherwise.

6.4.1. FIXED POINTS AND n-CYCLES OF SYSTEM EQ. 24

Defining

DB
Ω(t−1) :=

B∑
b=1

αb D
(b)
Ω(t−1),

hB
Ω(t−1) :=

B∑
b=1

αb D
(b)
Ω(t−1)(−hb), (25)

WB
Ω(t−1) := A+W DB

Ω(t−1),

and considering the autonomous system (i.e., without external inputs or noise terms), Eq. 24 can be rewritten as

zt = WB
Ω(t−1) zt−1 +W hB

Ω(t−1) + h0. (26)

Fixed points and cycles of Eq. 22, and their eigenvalue spectra, can now be computed in a way analogous to standard
PLRNNs. Specifically, solving the equation F (z∗1) = z∗1, fixed points of the dendPLRNN are given by

z∗1 =
(
I −WB

Ω(t∗1)

)−1[
W hB

Ω(t∗1) + h0

]
, (27)

where z∗1 = zt∗1 = zt∗1−1, and det(I −WB
Ω(t∗1)) = PWB

Ω(t∗1)
(1) ̸= 0, i.e. WB

Ω(t∗1) has no eigenvalue equal to 1. If there

are eigenvalues close or equal to 1 (such that the matrix in (27) is non-invertible or badly conditioned), this means the
system is undergoing a bifurcation or has one or more directions of marginal stability in its state space (e.g., may exhibit
a line, plane, or manifold attractor if there is convergence to this object along the other directions). We emphasize that
non-invertibility is thus not a ‘problem’ for the method, but rather indicates a dynamically important scenario in itself that
can be detected from the eigenspectrum (see, e.g., Schmidt et al. (2021)).

For n > 1, an n-cycle with periodic points {z∗n, F (z∗n), F 2(z∗n), · · · , Fn−1(z∗n)} of map F can be obtained by solving
Fn(z∗n) = z∗n. Therefore, in order to find the periodic points, we first compute Fn in the following way:

zt = F (zt−1) = WB
Ω(t−1) zt−1 +W hB

Ω(t−1) + h0,
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zt+1 = F 2(zt−1) = F (zt) = WB
Ω(t) W

B
Ω(t−1) zt−1 +

(
WB

Ω(t) W hB
Ω(t−1) + W hB

Ω(t)

)
+
(
WB

Ω(t) + I
)
h0,

zt+2 = F 3(zt−1) = F (zt+1) = WB
Ω(t+1)W

B
Ω(t)W

B
Ω(t−1) zt−1 +

(
WB

Ω(t+1)W
B
Ω(t)WhB

Ω(t−1)

+ WB
Ω(t+1)WhB

Ω(t) +WhB
Ω(t+1)

)
+
(
WB

Ω(t+1)W
B
Ω(t) + WB

Ω(t+1) + I
)
h0,

...

zt+(n−1) = Fn(zt−1) =

n+1∏
i=2

WB
Ω(t+n−i) zt−1 +

n∑
j=2

[ n−j+2∏
i=2

WB
Ω(t+n−i) W hB

Ω(t+j−3)

]

+ WhB
Ω(t+n−2) +

( n∑
j=2

n−j+2∏
i=2

WB
Ω(t+n−i) + I

)
h0, (28)

where

n+1∏
i=2

WB
Ω(t+n−i) = WB

Ω(t+n−2)W
B
Ω(t+n−3) · · ·W

B
Ω(t−1).

Defining t+ n− 1 =: t∗n, the periodic point z∗n of the n-cycle of F can now be obtained as the fixed point of the n-times
iterated map Fn as

z∗n =

(
I −

n∏
i=1

WB
Ω(t∗n−i)

)−1( n∑
j=2

[ n−j+1∏
i=1

WB
Ω(t∗n−i)WhB

Ω(t∗n−n+j−2)

]
+ WhB

Ω(t∗n−1)

+
( n∑

j=2

n−j+1∏
i=1

WB
Ω(t∗n−i) + I

)
h0

)
, (29)

where z∗n = zt∗n = zt∗n−n, if (I −
∏n

i=1 W
B
Ω(t∗n−i)) is invertible, i.e.

det

(
I −

n∏
i=1

WB
Ω(t∗n−i)

)
= P∏n

i=1 WB
Ω(t∗n−i)

(1) ̸= 0,

which implies WΩ∗n :=
∏n

i=1 W
B
Ω(t∗n−i) has no eigenvalue equal to 1. As for simple fixed points, non-invertibility of the

matrix in (29) implies there are directions of marginal stability in the dendPLRNN’s state space, along which we will find
continuous sets of n-cycles, or the system is undergoing a bifurcation. Thus, we are approaching such a situation as one of
the eigenvalues of WΩ∗n moves toward 1 and the matrix in (29) may become ill-conditioned.

Remark 1. These results about fixed points and n-cycles also hold for the mean-centred dendPLRNN. This can easily
be seen by defining WB

Ω(t−1) := A + W DB
Ω(t−1) M and noting that the elements of D(b)

Ω(t−1) are now determined by

the mean-centred latent states. That is d(b)m,t−1 = 1 if zm,t−1 − 1
M

∑M
j=1 zj,t−1 > hm,b and 0 otherwise. The rest of the

calculations then proceeds as above.

6.4.2. SUB-REGIONS AND DISCONTINUITY BOUNDARIES CORRESPONDING TO SYSTEM EQ. 24

Consider system Eq. 24 without external input and noise terms. Denoting hb = (h1,b, h2,b, · · · , hM,b)
T in Eq. 24, for

b = 1, 2, · · · , B, we can order the elements hj,1, hj,2, · · · , hj,B for every j ∈ {1, 2, · · · ,M}. Without loss of generality, let

hj,1 < hj,2 < · · · < hj,B , j = 1, 2, · · · ,M. (30)
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Then, for every j, we define the intervals Ij,b as follows:

Ij,1 := (−∞, hj,1],

Ij,b := (hj,b−1, hj,b], b = 2, 3, · · · , B, (31)

Ij,B+1 := (hj,B ,+∞).

By definition of D(i)
Ω(t−1) in Eq. 24, the phase space is separated into (B + 1)M sub-regions by MB(B + 1)M−1 hyper-

surfaces as discontinuity boundaries. Every sub-region can be defined by the thresholds hb as Cartesian product of suitable
intervals in Eq. 31 for j ∈ {1, 2, · · · ,M}. (Note that if in Eq. 30 we had ” ≤ ” instead of strict inequalities ” < ”, obviously
the number of intervals, hence sub-regions, would decrease.) In each sub-region the matrices D(b)

Ω(t−1), b = 1, 2, · · · , B,
have a different configuration. Therefore, in Eq. 26 there are (B+1)M different forms for DB

Ω(t−1), and so for WB
Ω(t−1) and

hB
Ω(t−1) as well. Hence, indexing DB

Ω(t−1), W
B
Ω(t−1) and hB

Ω(t−1) as DB
(r), W

B
(r) and hB

(r) for r ∈ {1, 2, · · · , (B + 1)M},
Eq. 24 can be written as

zt = WB
(r) zt−1 +W hB

(r) + h0. (32)

To visualize the sub-regions and their borders, let for example M = 2 and B = 2. In this case there are 9 sub-regions divided
by 12 borders. As illustrated in Fig. 6.4.2, there are different matrices D(b)

Ω(t−1), b = 1, 2, and DB
(r) = D2

(r), r = 1, 2, · · · , 9,
for each sub-region.

Figure S6. Example of different sub-regions and related matrices D(b)

Ω(t−1), b = 1, 2, and DB
(r), r = 1, 2, · · · , 9, for M = 2 and B = 2.

Here, it is assumed that the components of h1 = (h1,1, h2,1)
T and h2 = (h1,2, h2,2)

T satisfy Eq. 30 with ” < ”.

6.4.3. BOUNDED ORBITS ARE COMPATIBLE WITH THE MANIFOLD ATTRACTOR REGULARIZATION

Proposition 2. The results of Theorem 2 are also true when the manifold-attractor regularization, Eq. 6, is strictly enforced
for the dendPLRNN, Eq. 10.

Proof. Assume A, W , ϕ̃(zt−1) (see proof of Theorem 2 in Appx. 6.4.6 for the definition) and h0 have the partitioned
forms

A =

 Ireg OT

O Anreg

 , W =

 Oreg OT

S Wnreg

 ,
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h0 =

 hreg
0

hnreg
0

 , ϕ̃(zt−1) =

 ϕ̃reg(zt−1)

ϕ̃nreg(zt−1)

 , (33)

where IMreg×Mreg
=: Ireg ∈ RMreg×Mreg ,OMreg×Mreg

=: Oreg ∈ RMreg×Mreg , O,S ∈ R(M−Mreg)×Mreg , the
sub-matrices A{Mreg+1:M,Mreg+1:M} =: Anreg ∈ R(M−Mreg)×(M−Mreg) and W{Mreg+1:M,Mreg+1:M} =: Wnreg ∈
R(M−Mreg)×(M−Mreg) are diagonal and off-diagonal respectively. Furthermore, hreg

0 , ϕ̃reg(zt−1) ∈ RMreg and
h
{Mreg+1:M,Mreg+1:M}
0 =: hnreg

0 , ϕ̃{Mreg+1:M,Mreg+1:M}(zt−1) =: ϕ̃nreg(zt−1) ∈ RM−Mreg .

In this case ∥A∥ = σmax(A) = max{1, σmax(Anreg)} and

∥∥∥Aj W ϕ̃(zT−1−j)
∥∥∥ =

∥∥∥∥∥∥
 O

Aj
neg S ϕ̃nreg(zt−1) +Aj

neg Wneg ϕ̃nreg(zt−1)

∥∥∥∥∥∥
=
∥∥∥Aj

neg S ϕ̃nreg(zt−1) +Aj
neg Wneg ϕ̃nreg(zt−1)

∥∥∥ ,
∥∥Aj W h0

∥∥ =

∥∥∥∥∥∥
 O

Aj
neg S hnreg

0 +Aj
neg Wneg h

nreg
0

∥∥∥∥∥∥
=
∥∥Aj

neg S hnreg
0 +Aj

neg Wneg h
nreg
0

∥∥ . (34)

Thus, for σmax(Anreg) < 1

∥zT ∥ ≤ ∥A∥T−1 ∥z1∥ +

T−2∑
j=0

∥∥∥Aj W ϕ̃(zT−1−j)
∥∥∥+ T−2∑

j=0

∥∥Aj h0

∥∥

≤ ∥z1∥ +
(
c̃+ ∥h0∥

)(
∥S∥+ ∥Wneg∥

) T−2∑
j=0

∥Aneg∥j

=

(
c̃+ ∥h0∥

)(
∥S∥+ ∥Wneg∥

)
1− ∥Aneg∥

< ∞. (35)

6.4.4. PROOF OF PROPOSITION 1

Proof. For A = (aij) ∈ RM×M , W = (wij) ∈ RM×M , ϵt = (ϵ1,t, ϵ2,t, · · · , ϵM,t)
T, st = (s1,t, s2,t, · · · , sM,t)

T and
C = (cij) ∈ RM×M , writing Eq. 24 in scalar form yields

zl,t =

M∑
j=1

aljzj,t−1 +

M∑
j=1

wlj

B∑
b=1

αb d
(b)
j,t−1[zj,t−1 − hj,b] + hl,0 +

M∑
j=1

clj sj,t + ϵl,t

=

M∑
j=1

(
aljzj,t−1 + wlj

B∑
b=1

αb d
(b)
j,t−1[zj,t−1 − hj,b]

)
+ hl,0 +

M∑
j=1

clj sj,t + ϵl,t

=:

M∑
j=1

fl,j(zj,t−1) + hl,0 +

M∑
j=1

clj sj,t + ϵl,t =: Fl(zt−1), l = 1, 2, · · · ,M. (36)
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Using this, we can write Eq. 24 in the vector form

zt =
(
F1(zt−1), F2(zt−1), · · · , FM (zt−1)

)T
. (37)

We show that every Fl is continuous and so Eq. 24 is a continuous PWL map. For this purpose, by Eq. 36, it suffices to prove
that every fl,j(zj,t−1) is continuous. According to the definition of the intervals Ij,b, Eq. 31, for any j ∈ {1, 2, · · · ,M} we
have

zj,t−1 ∈ Ij,1 ⇒ d
(b)
j,t−1 = 0 ∀ b = 1, 2, · · · , B,

zj,t−1 ∈ Ij,s ⇒


d
(b)
j,t−1 = 1, b = 1, 2, · · · , s− 1

d
(b)
j,t−1 = 0, b = s, s+ 1, · · · , B

s = 2, 3, · · · , B,

zj,t−1 ∈ Ij,B+1 ⇒ d
(b)
j,t−1 = 1 ∀ b = 1, 2, · · · , B. (38)

Hence, for l, j = 1, 2, · · · ,M , each function fl,j(zj,t−1) can be stated as

fl,j(zj,t−1) =



f
(1)
l,j = alj zj,t−1; zj,t−1 ∈ Ij,1

f
(2)
l,j = (alj + α1 wlj) zj,t−1 − α1 wljhj,1; zj,t−1 ∈ Ij,2

...

f
(B)
l,j = (alj + wlj

∑B−1
b=1 αb) zj,t−1 − wlj

∑B−1
b=1 αb hj,b; zj,t−1 ∈ Ij,B

f
(B+1)
l,j = (alj + wlj

∑B
i=1 αb) zj,t−1 − wlj

∑B
b=1 αb hj,b; zj,t−1 ∈ Ij,B+1

(39)

Since for every b = 1, 2, · · · , B,

lim
zj,t−1→hj,b

f
(b)
l,j (zj,t−1) = lim

zj,t−1→hj,b

f
(b+1)
l,j (zj,t−1) = f

(b)
l,j (hj,b), (40)

each function fl,j(zj,t−1) is continuous. Hence, Eq. 24 is a continuous PWL map in z (but has discontinuities in its Jacobian
matrix across the borders). Because of these properties, all the results established for standard PLRNNs in (Monfared &
Durstewitz, 2020a;b; Schmidt et al., 2021) apply to the dendPLRNN as well, only that the sub-regions and discontinuity
boundaries are different.

6.4.5. PROOF OF PROPOSITION 1

Proof. Defining z̃t as B identical copies of zt,

z̃t =



z̃1,t
z̃2,t

...
z̃M,t

z̃M+1,t

...
z̃BM,t


:=


zt
zt
...
zt


BM×1

(41)
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and likewise

h̃ =



h̃1

h̃2

...
h̃M

h̃M+1

...
h̃BM


=


h1

h2

...
hB


BM×1

, h̃0 =



h̃0,1

h̃0,2

...
h̃0,M

h̃0,M+1

...
h̃0,BM


=


h0

h0

...
h0


BM×1

ÃBM×BM = diag
(
AM×M ,AM×M , · · · ,AM×M︸ ︷︷ ︸

B times

)
,

W̃BM×BM =



α1WM×M α2WM×M . . . αBWM×M

α1WM×M α2WM×M . . . αBWM×M

...
...

. . .
...

α1WM×M α2WM×M . . . αBWM×M


,

C̃st =



c̃s1,t
c̃s2,t

...
c̃sM,t

c̃sM+1,t

...
c̃sBM,t


=


Cst
Cst

...
Cst


BM×1

, ϵ̃t =



ϵ̃1,t
ϵ̃2,t

...
ϵ̃M,t

ϵ̃M+1,t

...
ϵ̃BM,t


=


ϵt
ϵt
...
ϵt


BM×1

(42)

one can rewrite the dendPLRNNfrom Eq. 22 as

z̃t = Ãz̃t−1 + W̃ max(0, z̃t−1 − h̃) + h̃0 + C̃st + ϵ̃t. (43)

Now performing the substitution

∀ t ẑt ← z̃t − h̃, (44)

Eq. 43 can be rewritten as the M ×B-dimensional “conventional” PLRNN Eq. 5 with

ĥ0 =
(
Ã− I

)
h̃ + h̃0. (45)

6.4.6. PROOF OF THEOREM 2

Proof. It can easily be shown that for every i ∈ {1, 2, · · · ,M}

αb

[
max(max(0, zi,t−1 − hi,b)−max(0, zi,t−1)

]
∈

{
[−αbhib , 0] if sgn(αb) = sgn(hi,b)

[0, αbhi,b] else
. (46)
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By defining

B∑
b=1

αb

[
max(0, zt−1 − hb)−max(0, zt−1)

]
:= ϕ̃(zt−1) =

(
ϕ̃1(zt−1), · · · , ϕ̃M (zt−1)

)T
, (47)

and

cup
i,b =

{
0 if sgn(αb) = sgn(hi,b)

αbhi,b else
, clow

i,b =

{
−αbhi,b if sgn(αb) = sgn(hi,b)

0 else
, (48)

we can conclude that
clowi ≤ ϕ̃i(zt−1) ≤ cupi ,

where c
low/up
i =

∑B
b=1 c

low/up
i,b . For ci = max{|clowi |, |c

up
i |} we have

ϕ̃i(zt−1)
2 ≤ c2i ,

and so letting c = max{c1, c2, · · · , cM} yields

∥∥∥ϕ̃(zt−1)
∥∥∥ =

√√√√ M∑
i=1

(
ϕ̃i(zt−1)

)2 ≤
√√√√ M∑

i=1

c2 := c̃. (49)

Since

zt = Azt−1 + W ϕ̃(zt−1) + h0, (50)

for T ∈ N and t = 2, · · · , T , computing z2, z3, · · · , zT recursively leads to

z2 = Az1 + W ϕ̃(z1) + h0

z3 = A2 z1 + AW ϕ̃(z1) +W ϕ̃(z2) +
[
A+ I

]
h0

...

zT = AT−1 z1 +

T−2∑
j=0

Aj W ϕ̃(zT−1−j) +

T−2∑
j=0

Aj h0. (51)

Therefore, by Eq. 49, for every T ≥ 2, we have

∥zT ∥ ≤ ∥A∥T−1 ∥z1∥ + c̃ ∥W ∥
T−2∑
j=0

∥A∥j +
T−2∑
j=0

∥A∥j ∥h0∥ . (52)

If σmax(A) < 1, then lim
T→∞

∥A∥T−1
= 0 and

lim
T→∞

∥zT ∥ ≤ c̃ ∥W ∥
∞∑
j=0

∥A∥j +
∞∑
j=0

∥A∥j ∥h0∥ =
c̃ ∥W ∥+ ∥h0∥

1− ∥A∥
< ∞. (53)


