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Abstract

This paper introduces a novel and generic frame-
work to solve the flagship task of supervised la-
beled graph prediction by leveraging Optimal
Transport tools. We formulate the problem as
regression with the Fused Gromov-Wasserstein
(FGW) loss and propose a predictive model rely-
ing on a FGW barycenter whose weights depend
on inputs. First we introduce a non-parametric es-
timator based on kernel ridge regression for which
theoretical results such as consistency and excess
risk bound are proved. Next we propose an inter-
pretable parametric model where the barycenter
weights are modeled with a neural network and
the graphs on which the FGW barycenter is cal-
culated are additionally learned. Numerical ex-
periments show the strength of the method and its
ability to interpolate in the labeled graph space on
simulated data and on a difficult metabolic iden-
tification problem where it can reach very good
performance with very little engineering.

1. Introduction

Graphs allow to represent entities and their interactions.
They are ubiquitous in real-world: social networks, molec-
ular structures, biological protein-protein networks, rec-
ommender systems, are naturally represented as graphs.
Nevertheless, graphs structured data can be challenging to
process. An important effort has been made to design well-
tailored machine learning methods for graphs. For example,
many kernels for graphs have been proposed allowing to
perform graph classification, graph clustering, graph regres-
sion (Kriege et al., 2020). Many deep learning architecture
have also been developped (Zhang et al., 2022), including
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Graph Convolutional Networks (GCNs) that are powerful
models for processing graphs.

Most of existing works in machine learning consider graphs
as inputs, but predicting a graph as output given an input
from an arbitrary input space has received much less atten-
tion. In this work, we target the difficult problem of super-
vised learning of graph-valued functions. In contrasts with
node classification (Bhagat et al., 2011), or link prediction
(Lii & Zhou, 2011), entire graphs are predicted. Supervised
Graph Prediction (SGP) can be considered as an emblematic
instance of Structured Prediction (SP) with the difficulty that
the output space is of finite but huge cardinality and contains
structures of different sizes. In principle, any of the three
main approaches to SP, energy-based models, surrogate
approaches and end-to-end learning, are eligible. In energy-
based models (Tsochantaridis et al., 2005; Chen et al., 2015;
Belanger & McCallum, 2016), predictions are obtained by
maximizing a score function for input-output pairs over the
output space. In surrogate approaches (Cortes et al., 2005;
Geurts et al., 2006; Brouard et al., 2016b; Ciliberto et al.,
2016), a feature map is used to embed the structured outputs.
After minimizing a surrogate loss a decoding procedure
is used to map back the surrogate solution. End-to-end
learning methods attempt to solve structured prediction by
directly learning to generate a structured object (Belanger
etal., 2017; Silver et al., 2017) and leverage differentiable
and relaxed definition of energy-based methods (see for
instance Pillutla et al. (2018); Mensch & Blondel (2018)).

Nevertheless, to our knowledge, among surrogate methods,
only Input Output Kernel Regression (IOKR) (Brouard et al.,
2016Db) that leverages kernel trick in the output space has
been successfully applied to SGP while on the side of end-
to-end learning, several generative models allow to build
and predict graphs but in general in an unsupervised setting.
Gomez-Bombarelli et al. (2018) try to obtain a continuous
representation of molecules using a variational autoencod-
ing (VAE) of text representations of molecules (SMILES).
Kusner et al. (2017) incorporates in the VAE architecture
knowledge about the structure of SMILES thanks to its avail-
able grammar. Olivecrona et al. (2017); Liu et al. (2017); Li
et al. (2018a); You et al. (2018); Shi et al. (2020) propose
models that generate graphs using a sequential process gen-
erating one node/edge at a time, and train it by maximizing
the likelihood.
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In supervised graph prediction, the crucial issue is to learn
or leverage appropriate representations of graphs, a problem
tightly linked with the choice of a loss function. Typical
graph representations usually rely on graph kernels leverag-
ing fingerprint representations, i.e. a bag of motifs approach
(Ralaivola et al., 2005), or more involved kernels such the
Weisfeiler-Lehman kernel (Shervashidze et al., 2011). In
this work, we propose to exploit another kind of graph rep-
resentation, opening the door to the use of an Optimal Trans-
port loss, and derive an end-to-end learning approach that
constrasts to energy-based learning and surrogate methods.

Successful applications of optimal transport (OT) in ma-
chine learning are becoming increasingly numerous thanks
to the advent of numerical optimal transport (Cuturi, 2013;
Altschuler et al., 2017; Peyré et al., 2019). Examples in-
clude domain adaptation (Courty et al., 2016), unsupervised
learning (Arjovsky et al., 2017), multi-label classification
(Frogner et al., 2015), natural language processing (Kus-
ner et al., 2015), fair classification (Gordaliza et al., 2019),
supervised representation learning (Flamary et al., 2018).
Optimal transport provide meaningful distances between
probability distributions, by leveraging the geometry of the
underlying metric spaces.

Supervised learning with optimal transport losses has been
considered in Frogner et al. (2015); Bonneel et al. (2016);
Luise et al. (2018); Mensch et al. (2019) for predicting
histograms. But traditional OT loss can be applied only
between distributions lying in the same space, preventing
their use on structured data such as graphs. Mémoli (2011)
proposed the Gromov-Wasserstein distance that can mea-
sure similarity between metric measure space and has been
used as a distance between graphs in several applications
such as computing graph barycenters (Peyré et al., 2016)
or for performing graph node embedding (Xu et al., 2019b)
and graph partitioning (Xu et al., 2019a). This distance
has been extended to the Fused Gromov-Wasserstein dis-
tance (FGW) in Vayer et al. (2019; 2020) with applications
to attributed graphs classification, barycenter estimation
and more recently dictionary learning (Vincent-Cuaz et al.,
2021). Those novel divergences that can be used on graphs
are a natural fit, first as a loss term in graph prediction but
also as a way to model the space of graphs for instance using
FGW barycenters.

Contributions. In this paper we present the following
novel contributions. First we propose a novel and and gen-
eral framework in Sec. 3 for graph prediction building on
FGW as a loss and FGW barycenter as a way to interpolate
in the target space. The framework is studied theoretically
in Sec. 4 in the non-parametric case for which we provide
consistency and excess risk bounds. Then a parametric
version of the model building on deep neural network and
learning of the template graphs is proposed in Sec. 5 with

a simple stochastic gradient algorithm. Finally we provide
some numerical experiments in Sec. 6 on synthetic and real
life metabolite prediction datasets.

2. Background on OT for graphs

We begin by introducing how to represent graphs and define
distances between graph by leveraging the Fused Gromov-
Wasserstein distance.

Notations. 1, is the all-ones vector with size n. ¢, de-
notes the Dirac measure in x for z in a measurable space.
Identity matrix in RV*¥ is noted Iy. L(A) the set of
bounded linear operator from A to A. M(A, B) the set of
measurable functions from A to B.

Graph represented as metric measure spaces. Denote
Nmaee € N* the maximal number of nodes (vertices) in the
graphs we consider in this paper. We define 7 ¢ R? a
finite feature space of size |F| < co. A labeled graph y of
n < Nyqqe nodes is represented by a triplet y = (C, F, h)
where C = CT € {0,1}"*" is the adjacency matrix,
and ' = (F;)_; is a n-tuple composed of feature vec-
tors [; € F C R? labeling each node indexed by i.
The space of labeled graphs ) is thus defined as J =
{(C,F,h)In < npaa, C € {0,1}" CT = CF =
(F;)fy € F",h = 11,,}. Observe that we equipped all
graphs with a uniform discrete probability distributions over
the nodes 1= Y7, h;d,, where u; = (v;, F;) represents
the structure v; (encoded only through C(i, j), V) and the
feature information [ attached to a vertex i (Vayer et al.,
2019). These weights indicate the relative importance of
the vertices in the graph. In absence of this information, we
simply fix uniform weights h; = % for a graph of size n.
Now, let us introduce the space of continuous relaxed graphs
with fixed size n: Z,, = {(C, F,h)|C € [0,1]"*",CT =
C,F € Conv(F)",h = n~'1,}. Conv(F) denotes the
convex hull of F in R"*4, We call Z = |J(Z;)!""¢* and
want to emphasize that ) C Z.

Gromov-Wasserstein (GW) distance. The Gromov-
Wassertein distance between metric measure space has been
introduced by Mémoli (2011) for object matching. The
GW distance defines an OT problem to compare these ob-
jects, with the key property that it defines a strict metric
on the collection of isomorphism classes of metric mea-
sure spaces. In this paper, we adopt this angle to address
graph representation and graph comparison, opening the
door to define a loss for supervised graph prediction. Let
z1 = (C1,ny*,,) and zp = (Ca,n5'1,,) be the rep-
resentation of two graphs with respectively n; € N* and
no € N* nodes, the Gromov-Wasserstein (GW) distance
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between z1 and 2o, GW%(zl, 29), is defined as follows:

n1 n2

Z Z(Cl(ivk)—02(1'75))27%,]‘7%,17 (1)

where Py, n, = {m € R}**"?|7r1,, = ny My, 7, =
Ny '1,,,}. GW, can be used to compare unlabeled graphs
with potentially different numbers of nodes, it is symmetric,
positive and satisfies the triangle inequality. Furthermore,
it is equal to zero when z; and z, are isomorphic, namely
when there exist a bijection ¢ : [1,n1] — [1,n2] such
that Ca2(¢(7), ¢(4)) = C1(i,4) forall 4,5 € [1,n1]. GW
provides a distance on the unlabeled graph quotiented by the
isomorphism, making it a natural metric when comparing
graphs.

Fused Gromov-Wasserstein (FGW) distance. The FGW
distance has been proposed recently as an extension of GW
that can be used to measure the similarity between attributed
graphs (Vayer et al., 2020). Fora given 0 < g < 1, the FGW
distance between two labeled weighted graphs represented
as z1 = (Cq, Fl,nflllnl) and zo = (Co, Fg,nglllm) is
defined as follows (Vayer et al., 2020):

FGW3(21,22) = min
TEPn1,n2

Yo la=-pIR6 - RO)E

ikl
+ B(C1(i k) — Ca(4, )] mi i

a

The optimal transport plan matches the vertices of the two
graphs by minimizing the discrepancy between the labels,
while preserving the pairwise similarities between the nodes.
Parameter 3 governs the trade-off between structure and
label information. Its choice is typically driven by the appli-
cation.

3. Graph prediction with Fused
Gromov-Wasserstein

Relaxed Supervised Graph Prediction. In this work, we
consider labeled graph prediction as a relaxed structured out-
put prediction problem. We assume that X’ is the input space
and that the predictions belong to the space Z,, defined in
Section 2, for a given value of n, while we observe training
data in the finite set ). We define an asymmetric partially
relaxed structured loss function A : Z,, x YV — R*. Given
a finite sample (z;,v;)Y ; independently drawn from an
unknown distribution p on X x ), we consider the problem
of estimating a target function f* : X — Z,, with values in
the structured objects Z,, that minimizes the expected risk:

RA(f) = B [A(f(X), Y], 2

by an estimate f obtained by minimizing the empirical
counterpart of the true risk, namely the empirical risk:

N

RAS) =D A(f(xi), vi), 3)

i=1

over the hypothesis space G C M(X, Z,,). The goal of
this paper is to provide a whole framework to address this
family of problems instantiated by n < 7m,,,4,. Note that the
complexity of the task depends primarily on n.

FGW as training loss. 'We propose in this paper to use
the FGW distance as the loss. More precisely, we define:

Y(2,y) € Z, x Y, Arow(z,y) := FGW3(z,2,), (4)

where z, = (Cy, Fy,n, '1,,) € Z,, C Z is the represen-
tation of y = (Cy, Fyy,n, '1,,,) € V. As FGW is defined
for graphs of different sizes, the expression in Eq. (4) is
well posed. Accordingly, for all+ = 1,... N, we denote
z; € Z,, the relaxed version of y; € ) with number of
nodes n;.

Supervised Graph Prediction with FGW. Having fixed
a value for n and following these definitions, the empirical
risk minimization problem now writes as follows. Given the
training sample {(z;, ;)2 }, we want to find a minimizer
over G" C M(X, Z,,) of the following problem:

min Y " FGW3(f(x:), z). (5)

Remark 3.1 (Role of the graph sizes for the FGW distance).
For the FGW distance, it is worth noting that graphs’ sizes
act as resolutions, namely levels of prevision in the descrip-

FGW
tion of graphs. We denote by C the subset symbol for

the equivalence classes induced by the FGW metric. We
FGW
approximately have, forn < n’,Z,, C Z, depending if

exact or approximate resampling is possible. For instance,
we exactly have, for all n € N* 7, FGCW Zoy. It means
that low-resolution graphs can be represented exactly as
high-resolution graphs. Conversely, one can approximate
a high-resolution graph with a low-resolution graph. This
property is leveraged in the model hereinafter proposed.
Note that if one wants to compare two graphs, with equal
weights on each node, it is still possible to do padding: add
nodes with no neighbours, and with a chosen constant label.

Structured prediction model. To address this structured
regression problem, we propose a generic model fy : X —
Z,, expressed as a conditional FGW barycenter computed
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Figure 1. Proposed supervised graph prediction model. The input z (left) is mapped with cx(z) onto the simplex (center) where the
weights are used for computing the prediction as a FGW barycenter (right).

over M template graphs z; € Z (See Figure 1):

M

fo(x) = argmin Zaj (z; W)FGW3(2, 2;),
ZEZ,

(6)

Jj=1

where the weights «;(z; W) : X — R are functions that
can be understood as similarity scores between x and x;.
We include in a single parameter 6 = (M, (z;)i2,, W) all
model’s parameters.

M
j=17

A key feature of the proposed model fy is that it interpolates
in the graph space Z by using the Fréchet mean with respect
to the FGW distance. Therefore, it inherits the good prop-
erties of FGW, especially including the invariance under
isomorphism (two isomorphic graphs have equal scores in
Eq. (6)). Moreover, in terms of computations, the proposed
model leverages the recent advances in computational opti-
mal transport such as Conditional Gradient descent (Vayer
et al., 2019) or Mirror descent for (F)GW with entropic
regularization (Peyré et al., 2016).

Properties of fy. Relying on recent works that studied in
a large extent GW and FGW barycenters, we now discuss
the shape of the recovered objects (Peyré et al., 2016; Vayer
et al., 2020, Eq. 14). The evaluation of fy on input  writes
as follows: fy(z) = (C(x;0), F(x;0),n"'1,,), where the
structure and feature barycenters are:

M
Clz;0) =0 oj(a; W)a] Cymy € [0,1]™", (7)
j=1
M
F(x;0) :nZaj(x; W)Fj_]T € R4, (8)
j=1

The (7;); are the optimal transport plans from (C;, F}); to
the barycenter (C(z;0), F'(x;0)) (Cuturi & Doucet, 2014,
Eq. (8)), and thus depend on 6. Note that a very appealing
property of using FGW barycenter is that the order n (that

fixes the prediction space Z,,) of the prediction does not de-
pend on the parameters #. This means that a unique trained
model can predict several objects with a different resolution
n allowing better interpretation at small resolution and finer
modeling at higher resolution. This will be illustrated in the
experimental section.

In the next sections, we propose two different approaches
to learn and define the conditional barycenter. The first
one in Section 4 leads to a purely nonparametric estimator
with M = N and z; = z; and the second one proposed
in Section 5 relies on a deep neural network for the weight
functions «;s” while the template graphs (Z;) ;‘il are learned
as well.

4. Nonparametric conditional
Gromov-Wasserstein barycenter

Non-parametric estimator with kernels. Before address-
ing the general problem of learning both the template graphs
and the weight function «, we adopt a nonparametric point
of view to address the structured regression problem. Under
some conditions we recover a FGW conditional barycenter
estimator of the following form:

N
fw(z) = arg min Zaj(x; W)FGW3(z,2;), (9)
2€E2Z,

j=1
where § = W is now the single parameter to learn and
the template graphs Z; are not estimated but set as all the
training samples z;. Similarly to scalar or vector-valued
regression, one can find many different ways to define the
weight functions «; in the large family of nonparametric
estimators (Geurts et al., 2006; Ciliberto et al., 2020). We
propose here a kernel approach that leverages kernel ridge
regression.

Defining a positive definite kernel on the input space & :
X x X — R, one can consider the coefficients of kernel
ridge estimation as in Brouard et al. (2016b); Ciliberto et al.
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(2020) to define the weight function o : X — RN:
a(z) = (K + Mn) 'k, (10)

with the Gram matrix K = (k(z;,;));; € RV*Y and
the vector kI’ = (k(x,z1),...,k(z,2x)). Such a model
leverages learning in vector-valued Reproducing Kernel
Hilbert Spaces and is rooted in the Implicit Loss Embedding
(ILE) framework proposed and studied by Ciliberto et al.
(2020).

Example 4.1. In the metabolite identification problem (see
Section 6), the input takes the form of tandem mass spectra.
A typical relevant kernel k for such data is the probability
product kernel (PPK) (Heinonen et al., 2012).

4.1. Theoretical justification for the proposed model

The framework SELF (Ciliberto et al., 2016) and its exten-
sion ILE (Ciliberto et al., 2020) concerns general regression
problems defined by an asymmetric loss A : Z x Y — R
that can be written using output embeddings, allowing to
solve a surrogate regression problem in the output embed-
ding space. We recall the ILE property and the resulting
benefits, especially when working in vector-valued Repro-
ducing Kernel Hilbert Space.

Definition 4.2 (ILE). For given spaces Z,)), a map A :
Z x Y — Ris said to admit an Implicit Loss Embedding
(ILE) if there exists a separable Hilbert space U/ and two
measurable bounded maps ¢ : Z2 — U and ¢ : Y — U,
suchthatforany z € Z,y € Y: A(z,y) = (¥(2), o(¥))u-

Note that this definition highlights an asymmetry between
the processing of z and y. A regression problem based
on a loss satisfying the ILE condition enjoys interesting
properties. The following true risk minimization problem:
ming Eo[A(f(X), V)] = E,[((£(X)). $(Y )], can be
converted into i) a surrogate (intermediate) and simpler least-
squares regression problem into the implicit embedding
space U, i.e. ming.x—y E,[||(X) — ¢(Y)]|Z], and ii) a de-
coding phase: f*(z) := argmin ,(¢(2), h*(z))y, where
h* is solution of problem i), i.e. h*(z) = E[¢(Y)|z]. A
nice property proven by Ciliberto et al. (2020) is the one of
Fisher consistency, f* is exactly the minimizer of problem
in Eq. (2), justifying the surrogate approaches.

Structured prediction with implicit embedding and ker-
nels. Assuming the loss A is ILE, when relying on ai.i.d.
training sample {(z;, ;)Y , }, one gets h an estimator of h*
by minimizing the corresponding (regularized) empirical
risk and then builds f.

If we choose to search & in the vector-valued Reproducing
Kernel Hilbert Space Hx associated to the decomposable
operator-valued kernel IC : X x X — L(U) of the form
K(z,2') = Iyk(z,x") where k is the positive definite ker-
nel defined in Section 4 and [, is the identity operator on

the Hilbert space {/, then the solution to the problem:

h(z;) — é(yi Ak
,Lrél;LI}CZII @) = ()7 + Mhllae.

for A\ > 0, writes as h(z) = Zfil a;(z)¢(y;) with a(z)
verifying Eq. (10). Then, f

N
),Zai(x

f(x) can be expressed as

e y}

We show in the following proposition that A gy admits
an ILE. This allows us to obtain theoretical guarantees from
Ciliberto et al. (2020) for our estimator.

Proposition 4.3. Argw admits an ILE.

arg Izrélg {(w(z

Proof. Y is a finite space by definition. Z,, is a compact
space as [0, 1]"*™ and Conv(F)™ are compact (F is finite).
Moreover, Vy € ),z — Apgw(z,y) is a continuous map
(See Lemma A.1). Therefore, according to Theorem 7 from
Ciliberto et al. (2020) Argw : Z, X Y — R admits an
ILE. O]

4.2. Excess-risk bounds

Since A pgw is ILE, the proposed estimator enjoys consis-
tency (See Theorem A.2 in Appendix). Moreover, under
an additional technical assumption (Assumption A.3 in Ap-
pendix), it verifies the following excess-risk-bound.

Theorem 4.4 (Excess-risk bounds). Let k be a bounded
continuous reproducing kernel such that k?> =
sup,cx k(z, ) < +00. Let p be a distribution on X x ).

Let § € (0 1] and Ny sufficiently large such that N, 12 >

9” 1og 0 Under Assumption A.3, for any N > N, szW
is the proposed estimator built from N independent couples
(wi,y:)| drawn from p. Then, with probability 1 —

RX(fw) = RA(f*) < clog(d/6) N~ (1D
with ¢ a constant independent of N and §.

Note that N~1/4 is the typical rate for structured predic-
tion problems without further assumptions on the problem
(Ciliberto et al., 2016; 2020). Theorem 4.4 relies on the
attainability assumption A.3. This can be interpreted as the
fact that the proposed GW barycentric model defines an
hypothesis space which is able to deal with graph prediction
problems that are smooth with respect to the FGW metric.
This corroborates with the intuition that for such problems
FGW interpolation will obtain good prediction results. We
illustrate this theoretical insight on a synthetic dataset in the
experimental section. Furthermore, both theorems are valid
for any Z,,,n € N*, that is, they provide guarantees for all
regression problems defined in Eq. (2) for all n € N*.
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5. Neural network-based conditional
Gromov-Wasserstein barycenter

In this section, we discuss how to train a neural network
model estimator as defined in Equation (6) where the tem-
plate graphs z; are learned simultaneously with the weight
function «.. This provides a very generic model that inherits
the flexibility of deep neural networks and their ability to
learn input data representation.

Parameters of the model. First we recap the different
parameters that we want to optimize. First, the weights
a(z, W) of the barycenter are modeled by a deep neural
network with parameters 1. Next the templates M graphs
Z; are also estimated allowing the model to better adapt to
the prediction task. It is important to note that M is also a
parameter of the model that will tune the complexity of the
model and will need to be validated in practice. Note that
this parametric formulation is better suited to large scale
datasets since the complexity of the predictor will be fixed
by M instead of increasing with the number of training data
N as in non-parametric models.

Stochastic optimization of the model. We optimize the
parameters of the model using a classical ADAM (Kingma
& Ba, 2014) stochastic optimization procedure where the
gradients are taken over samples or minibatches of the full
empirical distribution.

We now discuss the computation of the stochastic gradient
on a training sample (z;,y;). First note that the gradient
of FGW(fg(x;),y;) w.rt. 0 is actually the gradient of a
bi-level optimization problem since fy is the solution of
a FGW barycenter. The barycenter solutions expressed
in Equations (7) and (8) actually depends on the optimal
OT plans (7;); of the barycenter that depends themselves
on 6. But in practice the OT plans (7;); are solutions of
a non-convex and non-smooth quadratic program and are
with high probability on a border of the polytope (Maron &
Lipman, 2018). This means that we can assume that a small
change in 6 will not change their value and a reasonable
differential of (7;); w.rt. 6 is the null vector. This actually
corresponds in Pytorch (Paszke et al., 2019) notation to
"detach" the OT plan with respect to the input which is
done by default in POT toolbox (Flamary et al., 2021). The
gradient of the outer FGW loss can be easily computed as
the gradient of the loss with the fixed optimal plan 7; using
the theorem from (Bonnans & Shapiro, 1998). Computing a
sub-gradient of the loss FGW( fy(z;), y;) can then be done
with the following steps:

1. (7;); < Compute the barycenter fy(z;).
2. m; «+ Compute the loss FGW ( fy(2;),v:))-

3. Vy < Compute the gradient of FGW(fy(z;),v:))
with fixed OT plans (7;); and ;.

Note that for the matrices C’j in the templates, the stochastic
update is actually a projected gradient step onto the set of
matrices with components belonging to [0, 1].

6. Numerical experiments

In this section, we evaluate the proposed method on a syn-
thetic problem and the metabolite identification problem.
A Python implementation of the method is available on
github'.

6.1. Synthetic graph prediction problem

Problem and dataset. We consider the following graph
prediction problem. Given an input 2 drawn uniformly in
[1,6], y is drawn using a Stochastic block model with | x|
blocks, such that the biggest block smoothly splits into two
blocks when x is between two integers (see Figure 2, bottom
line). Each node has a label, which is an integer indicating
the block the node is belonging to. More precisely, we take
randomly from 40 to 45 nodes for each graph (uniformly in
[40,45]. There is a probability 0.9 of connection between
nodes belonging to the same block, and a probability 0.01
of connection between nodes belonging to different blocks.
The probability of connection between nodes belonging
to the splitting blocks is p(xz) = 0.889(z — |z]) + 0.01.
When a node belongs to the new appearing block its label
is the new block’s label with probability (« — |z ]), and the
splitting block’s label otherwise. We generate a training set
of N = 50 couples (x;, ;). Notice that the considered
learning problem is highly difficult as one want to predict a
graph from a continuous value in [1, 6].

Experimental setting. We test the parametric version of
the proposed method with learning of the templates. We
use M = 10 templates, with 5 nodes, and initialize them
drawing C; € R>*5 F; € R5*! uniformly in [0, 1]*° and
[0,1]5%1. The weights a(z; W) € RM are implemented
using a three-layer ( 100 neurons in each hidden layer) fully
connected neural network with ReLLU activation functions,
and a final softmax layer. We use § = 1/2 as FGW’s bal-
ancing parameter and a prediction size of n = 40 during
training. During training, we optimize the parameters 6
of the model using the continuous relaxed graph prediction
model. Interestingly this prediction provides us with contin-
uous versions of the adjacency matrices so we can generate
discrete graphs by randomly sampling each edge with a
Bernouilli distribution of parameter given by C(z, 6).

Supervised learning result. The estimated graph predic-
tion model on the synthetic dataset is illustrated in Figure
2. We can see that the learned map is indeed recovering the

"https://github.com/lmotte/graph-
prediction-with-fused-gromov-wasserstein
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Figure 2. Graph prediction on the synthetic dataset as a function of the 1D input x. (top) estimated continuous prediction fy(x), (middle)
discrete realizations following the continuous prediction, (bottom) true graph prediction function f*(z).

evolution of the graphs as a function of x. This shows, as
suggested by the theoretical results in Section 4, that the
FGW metric is a a good data fitting term and that FGW
barycenters are a good way to interpolate continuously be-
tween discrete objects. This is particularly true on this
problem where a small change w.r.t = induces small change
in the output of f*(z) according to the FGW metric.

Interpretability and flexibility of the proposed model.
We now illustrate how interpretable is the estimated model.
First we recall that the prediction is actually a Fréchet mean
w.r.t the FGW distance, according to the weights «;(x) and
the templates (z;)’2 ;. In practice it means that we can plot
the template graphs (2;)72; to check that the learned tem-
plates are indeed 31m11ar (with less nodes) to training data.
But on this synthetic dataset we can also plot the trajectory
of the barycenter weights «/; on the simplex as a function
of « which we did in Figure 3. We can see in the figure that
in practice the weights o;(x) are sparse concentrated on
the templates on the left of the Figure starting with a graph
with one connected cluster and ending with a graph with 5
clusters following the true model f*.

We now illustrate one very interesting property of our model:
the ability to predict graphs with a varying number of nodes
n for a given input x. An example of the predicted graphs
for x = 5 is provided in Figure 4. It is interesting to note
that even with small templates of 5 nodes, the proposed
barycentric graph prediction model is able to predict big
graphs while preserving their global structure. This is partic-
ularly true for Stochastic Block Models graphs that can by
construction be factorized with a small number of clusters.
Note that the number of nodes in the templates (z;)’2; can
be seen as a regularization parameter. The model is also
very flexible in the sens that the FGW barycenter model-
ing allows for templates with different number of nodes
allowing for a coarse to fine modeling of the data.

1.0

Figure 3. Learned templates (Z;)7~, on the synthetic dataset and
trajectory of the weights «(z) on the simplex as a function of z.

6.2. Metabolite identification problem

Problem and dataset. An important problem in
metabolomics is to identify the small molecules, called
metabolites, that are present in a biological sample. Mass
spectrometry is a widespread method to extract distinctive
features from a biological sample in the form of a tandem
mass (MS/MS) spectrum. The goal of this problem is to
predict the molecular structure of a metabolite given its
tandem mass spectrum. Labeled data are expensive to ob-
tain, and despite the problem complexity not many labeled
data are available in datasets. Here we consider a set of
4138 labeled data, that have been extracted and processed
in Diihrkop et al. (2015), from the GNPS public spectral
library (Wang et al., 2016). Datasets and code for reproduc-
ing the metabolite identification experiments are available
on github?.

Experimental setting. We test the nonparametric version
of the proposed method, using a probability product kernel
on the mass spectra, as it has been shown to be a good choice

’Imotte/metabolite-identification-with-
fused-gromov-wasserstein
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Figure 4. Predicted graphs with the estimated model fo(z) with a
varying number of nodes n for x = 5.

on this problem (Brouard et al., 2016a). We use 5 = 0.5 as
FGW balancing parameter. We split the dataset into a train-
ing set of size N = 3000 and a test set of size N;. = 1138.
On this problem, structured prediction approaches that have
been proposed fall back on the availability of a known can-
didate set of output graphs for each input spectrum (Brouard
et al., 2016a). This means that in practice for prediction on
new data, we will not solve the FGW barycenter in (6) but
search among the possible candidates in )/ the one minimiz-
ing the barycenter loss.

In a first experiment, we evaluate the performance of FGW
as a graph metric. To this end we compare the perfor-
mance of various graph metrics D : ) x Y — R* used in
the model: arg min v, Ejvzl a(x; W)D(y,y;). We con-
sider the metric induced by the standard Weisfeiler—Lehman
(WL) graph kernel that consists in embedding graphs as a
bag of neighbourhood configurations (Shervashidze et al.,
2011). The FGW one-hot distance corresponds to the FGW
distance and using a one-hot encoding of the atoms. The
FGW fine distance corresponds to the one-hot distance con-
catenated with additional atom features: number of attached
hydrogens, number of heavy neighbours, formal charge, is
in a ring, is in an aromatic ring. Additional features are
normalize by their maximum values in the molecule at hand.
The FGW diffuse distance corresponds to the FGW dis-
tance and using a one-hot encoding of the atoms which has
been diffused, namely: Fy = e "L O P where 7 > 0,
Lap(C') denotes the normalized Laplacian of C' as proposed
in Barbe et al. (2020). Fingerprints are molecule represen-
tations, well engineered by experts, that are binary vectors.
Each value of the fingerprint indicates the presence or ab-
sence of a certain molecular property (generally a molecular
substructure). Several machine learning approaches using
fingerprints as output representations have obtained very
good performances for metabolite identification (Diihrkop
et al., 2015; Brouard et al., 2016a; Nguyen et al., 2018) or
other tasks, such as metabolite structural annotation (Hoff-
mann et al., 2021). In the last two Casmi challenges (Schy-
manski et al., 2017), such approaches have obtained the
best performances for the best automatic structural identifi-
cation category. Here we consider the metrics induced by
linear and Gaussian kernels between fingerprints of length
d = 2765. Notice that, in this case, the structured prediction
method corresponds to IOKR-Ridge proposed in Brouard
et al. (2016b). For the FGW metrics, we compute them us-

Topr-1 Tor-10 Topr-20
WL KERNEL 9.8% 29.1% 37.4%
LINEAR FINGERPRINT 28.6% 54.5% 59.9%
GAUSSIAN FINGEPRINT  41.0% 62.0% 67.8%
FGW ONE-HOT 12.7%  37.3% 44.2%
FGW FINE 18.1% 46.3% 53.7%
FGW DIFFUSE 27.8% 52.8% 59.6%

Table 1. Top-k accuracies for various graph metrics on the metabo-
lite identification dataset.

ing the 5 greatest weights «;(x). We evaluate the results in
terms of Top-k accuracy: percentage of true output among
the k outputs given by the k greatest scores in the model.
The two hyperparameters (ridge regularization parameter
A and the output metric’s parameter) are selected using a
validation set (1/5 of the training set) and Top-1 accuracy.

Graph metrics comparison. The results given in Table
1 shows that Gaussian fingerprints is the best performing
metric on this dataset when a candidate set is available.
We see that the FGW greatly benefits from the improved
fine and diffuse metrics showing the adaptation potential
of the FGW metric to the graph space at hand reaching
competitive performance against fingerprints with linear
kernel and beating WL kernels. The method proposed in
this work is the first generic approach that obtained good
Top-k accuracies without using expert-derived molecular
graph representations.

Predicting novel molecules. Being able to interpolate
novel graphs without using predefined finite candidate sets
is a great advantage of the proposed method. Such compu-
tation is in general intractable (e.g. with WL and fingerprint
metrics). In this experiment, we evaluate the performance
of the estimator when computing the barycenter over Z,,,
and not over the candidate sets. For a given test input x, let
us define dy(x) the FGW (one-hot) distance of the training
molecule with the greatest c; () to the true molecule. do(x)
measures the level of interpolation difficulty: very small dg
means that the true molecule is close to a training molecule
and no interpolation is required. We compute, over 1000
test data, the mean dy () and the mean FGW (one-hot) dis-
tance between the predicted barycenter (using the 10 largest
a;(x)) and the true test molecule. In Figure 5, we plot the
two mean distances, with respect to a filtering threshold
dmin such that only the test point with do(x) > dp, are
used when computing these means. We can see that the
FGW interpolation allows to become closer to the true out-
put than only predicting the output with the greatest weight
a; (), even more when interpolation is required (do (z) big).
This validates the choice of FGW as a way to interpolate
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Figure 5. No candidate set setting. In average, the FGW barycenter
(blue) using the 10 molecules with the greatest weights «;(x) is
closer to the true molecule, than the molecule with the greatest
weight o (z): closest template prediction (green).

between real-world graphs.

Comparison with a flow-based deep graph generation
method. As mentioned previously, to the best of our
knowledge, there is no generic method for graph predic-
tion able to deal with any graph space at hand. The only
existing methods, that do not require expert-derived graph
representations available for a specific graph space, are un-
supervised deep graph generation methods (Li et al., 2018b;
Liao et al., 2019; Zang & Wang, 2020; Mercado et al., 2021).
We propose to compare our approach by designing a new
generic graph prediction method. We use the deep gener-
ative graph representations from MoFlow (Zang & Wang,
2020) learned from 249.455 molecules and which obtained
state-of-the-art results in (unsupervised) molecular graph
generation. The latent representations are learned via ker-
nel ridge regression, then we predict the candidate with the
closest latent representation to the estimated one. Note that
because the pre-trained model’s architecture can not handle
all atoms present in the metabolite dataset, we removed from
the dataset the molecules with not handled atoms. More-
over, we compute the test predictions using the test spectra
with less than 300 candidates for faster computation: 286
test points. The results are given in Table 2. We observe
that FGW diffuse exhibits far better performance than the
MoFlow approach.

Top-1 Top-10 Top-20
GAUSSIAN FINGERPRINT  46.2% 77.8% 84.9%
FGW DIFFUSE 40.3% 69.7% 78.3%
MOFLOW REPRESENTAT. 20.0% 58.2% 68.4%

Table 2. Top-k accuracies obtained using deep molecular graph
representations in comparison to the proposed FGW metric, and
expert-derived fingerprint representations.

7. Conclusion

We proposed in this work a novel framework for graph
prediction using optimal transport barycenters to interpo-

late continuously in the output space. We discussed both
a non-parametric estimator with theoretical guarantees and
a parametric one based on neural network models that can
be estimated with stochastic gradient methods. The method
was illustrated on synthetic and real life data showing the
interest of the continuous relaxation especially when targets
are not available.

Future works include estimation of the target number of
nodes n(z) and supervised learning of complementary fea-
ture on the templates that can guide the FGW barycenters.
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A. Theory

A.1. Proof of FGW continuity

We prove the continuity of FGW(.,y) : Z, — R for any y € Y. Such result is crucial to prove the ILE property of
FGW: Z, x Y — R.

Lemma A.1 (FGW continuity). Let y = (Cy, Fy) with Cy € R"2X"2 [, € R"2%4 ny d € N*. The map FGW(.,y) :
Z, — R is continuous.

Proof. Recall that for any z = (C, F) € Z,,:

FOW3(sy) = _min " [(1=BIF() — B2l + BC(L k) = Cai. D] ms g (12
kg
Using the inequality | min, f(7) — min, g(7)| < sup, |f(7) — g(7)| for any f,g : Pnin2 — R, we have for any
dz = (dC,dF) € 2,

[FGW3(z + dz,y) — FGW3(z,y)| < S| Y (=8 (dF@)|E(j)ra + o(ldF (D) )za)) (13)
TETnin2 g kgl
+ B(dC (i, k)Ca(j, 1) + o(dC (i, k))) |71y
< nnp[(1 = B) (dF [[gnxa || Fallgnxa + o(|dF [gnxa)) (14)
+ B (HdC\ RnXn d02| Rn2 Xn2 + O(HdC‘ ]R"X"))]
= O(||d2| Rn)(nXRnXd) m 0 (15)

where from (13) to (14) we have used the Cauchy—Schwarz inequality, and the fact that V(, j) € [1,n] x [1,no], m;; < 1.
We conclude that z — FGW3(z, y) is a continuous on R”*” x R™*?, hence on Z,,.

O

A.2. Universal consistency theorem

We restate the universal consistency theorem from Ciliberto et al. (2020) that is verified by our estimator because of the
proved ILE property.

Theorem A.2 (Universal Consistency). Let k be a bounded universal reproducing kernel. For any N € N and any
distribution p on X X Y let fy be the proposed estimator built from N independent couples (x;, yi)f\il drawn from p. Then,
ifA= N71/2’

lim RX(fw)=RA(f*) withprobability 1. (16)
N —+o00

A.3. Attainability assumption

The following assumption is required to obtain finite sample bounds. It is a standard assumption in learning theory
(Caponnetto & De Vito, 2007). It corresponds to assume that the solution h* of the surrogate problem indeed belongs to the
considered hypothesis space, namely the reproducing kernel Hilbert space induced by the chosen operator-valued kernel
K(z,2") = k(z,z")Iy.

Assumption A.3 (attainable case). We assume that there exists a linear operator H : H, — U with | H|lus < +oo such
that

with A, the reproducing kernel Hilbert space associated to the kernel k(z, z’).

B. Neural network model and training algorithm

Choice of the templates. As always in deep learning, parameter initialization is an important aspect and we discuss now
how to initialize the templates Z;. In practice they can be initialized at random with matrices C; drawn uniformly in [0, 1]
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or chosen at random from training samples as suggested by the non-parametric model. One interesting aspect is that the
number of nodes do not need to be the same for all templates. This means that one can have both templates with few nodes
and templates with a larger number of nodes allowing for a coarse to-fine modeling of the graphs.

Pseudocode. We give the pseudocode for the proposed neural network training algorithm. This algorithm has been
implemented in Python using the POT library: Python Optimal Transport (Flamary et al., 2021), and Pytorch library (Paszke
etal., 2019).

Algorithm 1 Neural network-based model training - One stochastic gradient descent step

Input: 2 — a(x) neural network’s parameters 1. Templates (z;)}Z,. Dictionary learning (True or False).
1. If Dictionary learning is True: 6 = (W, (;)}L,). Otherwise: 6 = W'

2. (m;)}L, + Compute the barycenter fo(z;).

3. m; < Compute the losses FGW ( fo(x;), y:))-

4. Vg < Compute the gradient of FGW(fg(x;),y;)) with fixed OT plans (7;), and ;.

Return: Updated neural network’s parameters 1V, updated templates (Z;) ;Vil

Python implementation on github. The code is available on github at https://github.com/lmotte/graph-
prediction-with-fused-gromov-wasserstein.

C. Justification of the algorithms

Reminder on ILE and surrogate problem:

Recall that / is solving a least-squares problem, that is estimate h*(z) = E.|2[¢(2)]. Moreover, we can write f*(z) =
argmin ; [E;|,[A(Z, z)]. Now, we can provide intuition in the following derivations about the construction of f exploiting
the linearity of expectation.

f(z) = argmin ((2), h(x))

z

~ arg min (0(2), B ().

Moreover, we have:

and thus, taking the "arg min" gives:

D. Discussion about keeping only the greatest weights o;(x) in the barycenter computation

In the metabolite identification experiments we computed the barycenter only using the 5 greatest ones. In the following
experiments, we show that, beyond the considerable computational interest, this approximation is also statistically beneficial
on this dataset. We compute the test Top-k accuracies by changing the number of kept «;. From Figure 6, it seems that the
best number of kept a; () seems to be around 10.
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Figure 6. Top-k accuracies of fp(z) using a varying number of kept a;(z).



