Efficient Learning of CNNs using Patch Based Features

Alon Brutzkus*' Amir Globerson*' Eran Malach*? Alon Regev Netser*? Shai Shalev-Shwartz* >

Abstract

Recent work has demonstrated the effectiveness
of using patch based representations when learn-
ing from image data. Here we provide theoretical
support for this observation, by showing that a
simple semi-supervised algorithm that uses patch
statistics can efficiently learn labels produced by a
one-hidden-layer Convolutional Neural Network
(CNN). Since CNNs are known to be computa-
tionally hard to learn in the worst case, our analy-
sis holds under some distributional assumptions.
We show that these assumptions are necessary
and sufficient for our results to hold. We verify
that the distributional assumptions hold on real-
world data by experimenting on the CIFAR-10
dataset, and find that the analyzed algorithm out-
performs a vanilla one-hidden-layer CNN. Finally,
we demonstrate that by running the algorithm in a
layer-by-layer fashion we can build a deep model
which gives further improvements, hinting that
this method provides insights about the behavior
of deep CNNs.

1. Introduction

Recently, learning with patch-based representations has be-
come increasingly popular for solving visual tasks. A no-
table example is the vision transformer (ViT, Dosovitskiy
et al. (2020)) which breaks the input image into 16x16
patches, and then applies a transformer architecture on an
embedding of the patches. Some follow-up works show
that using simple MLPs (Tolstikhin et al., 2021) or Convolu-
tions (Trockman & Kolter, 2022) on top of the patch-based
embedding does similarly well.

In fact, an older work by Coates et al. (2011) already intro-

“ Authors ordered alphabetically. 'Blavatnik School of Com-
puter Science, Tel Aviv University, Israel 2School of Computer
Science, The Hebrew University of Jerusalem, Israel. Correspon-
dence to: Eran Malach <eran.malach@mail.huji.ac.il>, Alon
Regev Netser <alon.netser@mail.huji.ac.il>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

duced a very simple variant of such patch-based learning
that achieved state-of-the-art results on CIFAR-10 when
published. In that work, an embedding of the image patches
is learned in an unsupervised fashion, and then a linear
predictor is trained using the patch-based features. This
algorithm has been recently improved by Thiry et al. (2021),
showing that it can compete with simple Convolutional net-
works. While these works provide a simple “baseline” for
patch-based learning, their theoretical properties have yet to
be explored.

In this work we provide a theoretical analysis of the afore-
mentioned learning algorithm. We show that, under some
assumptions, this algorithm finds a predictor with small er-
ror when the data is labeled by a shallow CNN. The sample
complexity and run-time of the algorithm depend on the cov-
ering number of the distribution of patches, therefore show-
ing that when the patches lie in a low-dimensional space, the
algorithm can achieve low error. Our analysis leads to a new
and improved variant of the original algorithm. We analyze
this new variant, and show that it performs well assuming
that the distribution of patches respects some geometrical
properties of the target function.

We complement our theoretical results with a thorough em-
pirical study, comparing the original algorithm of Coates
et al. (2011) against our new version and against a standard
shallow CNN, showing that our version outperforms both.
Finally, we show that our algorithm can scale to deeper
models, by running it repeatedly in a layer-by-layer fashion,
which improves the performance of the shallow model. We
show that the ability to scale to deeper models is a unique
property of our approach, while the original algorithm does
not improve when applied layerwise.

2. Related Work

Learning with Data-Dependent Representation. Learn-
ing linear classifiers over fixed representations of the input
is a well-studied approach. Specifically, kernel methods
(Shawe-Taylor et al., 2004) and random features (Rahimi
et al., 2007; Rahimi & Recht, 2008) are some prominent
examples of such methods. Recently, the study of the kernel
derived from the neural network architecture, known as the
Neural Tangent Kernel (NTK), has become a main theme
in many theoretical works (Du et al., 2019; 2018b; Arora

Efficient Learning of CNNs using Patch Based Features

et al., 2019; Ji & Telgarsky, 2019b; Cao & Gu, 2019; Ja-
cot et al., 2018). However, using a fixed representation is
known to have its limitations, due to the fact that the repre-
sentation cannot adapt to the learning task (see for example
Kamath et al. (2020); Daniely & Malach (2020); Malach
et al. (2021)). Therefore, using representations that depend
on properties of the input data instead of fixing represen-
tations in advance seems like a sensible way to improve
performance. Indeed, such data-dependent representations
have been explored for learning over image data. Specif-
ically, as previously noted, Coates et al. (2011) study a
learning algorithm for images that uses a linear classifier
over a data-dependent representation. A more recent work
by Thiry et al. (2021) suggests a similar patch-based repre-
sentation, and shows that it achieves impressive empirical
performance on complex datasets such as CIFAR-10 and
ImageNet. However, both Coates et al. (2011) and Thiry
et al. (2021) focus on empirical evaluation of the algorithm,
while our work gives a theoretical analysis of the algorithm.

Learning Neural Networks under Distributional As-
sumptions. Efficient learning of neural networks without
any distributional assumptions is known to be hard (e.g.,
Klivans & Sherstov, 2009; Livni et al., 2014). In fact, in
some cases learning neural networks under simple distribu-
tions such as Gaussian or Uniform distributions was shown
to be hard for a large family of algorithms (see Diakonikolas
et al., 2020). This fact motivates finding the “right” distribu-
tional assumptions, that are both realistic and allow efficient
learning of neural networks. To this end, various works have
studied learning of feed-forward networks (Ge et al., 2018;
Awasthi et al., 2021) and convolutional networks under dif-
ferent distributional assumptions (Brutzkus & Globerson,
2017; Oymak & Soltanolkotabi, 2018; Du & Goel, 2018;
Malach & Shalev-Shwartz, 2018; Brutzkus & Globerson,
2020; Du et al., 2018a). However, these assumptions of-
ten seem far from capturing natural data distributions. Our
work gives a simple characterization of data distributions
that both seems reasonable for natural data, and allows effi-
cient learning of convolutional networks.

Several works study theoretical properties of neural net-
works under a low-dimensional assumption on the data.
Cloninger & Klock (2021); Basri & Jacobs (2017) give ap-
proximation guarantees for neural networks given that the
data is supported on a low-dimensional manifold. Under
similar assumptions Chen et al. (2019) and Schmidt-Hieber
(2019) give statistical guarantees for neural networks that are
ERM minimizers. Note that they do not provide optimiza-
tion guarantees nor study the inductive bias of optimizers
used in practice. Ghorbani et al. (2021) show that neural net-
works can learn distributions that are labeled by one-layer
networks and have a specific low dimensional structure.
Goldt et al. (2020) study neural networks under a hidden
manifold model and provide asymptotic guarantees. Two re-

cent works show that under the NTK approximation, neural
networks can classify one-dimensional curves (Buchanan
et al., 2020; Wang et al., 2021). HaoChen et al. (2021) study
self-supervised learning under a low-dimensional setting.
Assuming that the input data has low intrinsic dimension is
a natural assumption, that is also related to the assumption
we make in this work. However, unlike previous works, we
assume that the patches of the image, and not the entire
input, lie in a low-dimensional space, an assumption that
seems more likely to be satisfied by natural data.

3. Preliminaries

We begin by describing the problem setting considered in
the paper. First, we introduce our assumptions on the data
distribution and the labeling function. We then describe the
learning algorithm that we analyze.

3.1. Data Generating Distribution

We consider distributions over images, where each image
is of size d;. So, let X C R be the input space and
Y = {=£1} be the label space. Each image x € R’ contains
n patches, i.e. n sub-images, where each sub-image is of
size dp > 2. We identify each of the n patches in the image
with a sequence of indices. That is, we define n sequences
Ay, ..., A, such that for every j, A; = (i1,...,iq,) i a
sequence of indices satisfying {i1, ..., 44, } C [dr] (Where
we denote [N] := {1,...,N}). So, A; defines the set of
indices of image pixels associated with the j-th patch, and
we denote the j-th patch by x[j] := (XAj(1), . ,xAj(dP)).

In our theoretical study we make the simplifying assump-
tion that the patches do not overlap, meaning that the sets
Ay, ..., A, are disjoint. However, we believe our results
can be easily extended to the case of overlapping patches.
In our empirical study we use overlapping patches, as in
Coates et al. (2011); Thiry et al. (2021).

We now introduce our assumption on the labeling function
of the data distribution. Namely, we assume that the data is
labeled by a Shallow Convolutional Neural Network (CNN):

Definition 3.1. Let o be the ReLU activation: o(z) =
max{z,0}. A Shallow CNN is any function of the form:

n

Fwo(x) =Y (ao(Wxlil)) M

i=1

where W € R¥4r U = (u(l), cee u(”)) € RIxn,

Observe that this is a standard ReLU CNN with one-hidden-
layer (containing [output channels), followed by a linear
“readout” layer. Since we consider classification tasks, this
is the natural choice for a shallow network architecture.'

"For simplicity, we study networks without bias, but our results

Efficient Learning of CNNs using Patch Based Features

For our analysis, we need the following measure of Lipschitz
continuity with respect to the input patches:

Definition 3.2. Given a CNN Fy y, we say that Fyw v is
L-Patch-Lipschitz if for every x,x" € X it holds that:

[Fw,u(x) — Fwu(x)[< L- max Ix[i] = x"[i]

That is, the L-Patch-Lipschitz definition measures how sen-
sitive the CNN is to perturbation of the input patches. Note
that since the activation o is Lipschitz continuous, any shal-
low CNN is L-Patch-Lipschitz:

Lemma 3.3. Let F\w vy be some CNN. Then, Fyy v is L-
Patch-Lipschitz, with L < |[W||, >, Hu(z’) ‘

Please refer to Appendix B.1 for the proof of this lemma.

Let Z be some distribution over X x), i.e. a distribution of
labeled examples. We make the following assumption on Z.

Assumption 3.4. There exists some L-Patch-Lipschitz
CNN Fw u such that Py)7 [yFw u(x) > 1] = 1.

Simply put, we assume that 7 is realizable with margin 1
by a shallow CNN. From Lemma 3.3, any shallow CNN is
L-Patch-Lipschitz. We use this term in the definition only
in order to track the value of L (which plays a role in our
analysis). It does not limit the scope of our results.

Computational Hardness. Observe that while Assumption
3.4 restricts the family of distributions that are considered
in the paper, learning under Assumption 3.4 alone is com-
putationally intractable. Indeed, learning one-hidden-layer
networks is known to be computationally hard, under vari-
ous cryptographic assumptions (Klivans & Sherstov, 2006;
Song et al., 2021; Daniely & Shalev-Shwartz, 2016; Daniely
& Vardi, 2020; 2021). From these results it follows that shal-
low CNNs cannot be learned in run-time that is polynomial
in the patch dimension dp. In our results, we show learn-
ability with run-time that depends on the covering number
of the distribution of patches. In the worst case, our results
translate to learning in run-time that is exponential in the
patch dimension dp.

3.2. Covering the Patch Distributions

Let 7 be a distribution over X x). We assume that the
marginal distribution of Z on X has a density function and
we denote its support by supp(Z). We denote by Py the
set of patches supported by the distribution Z. Namely,
Pr = {x[i] | x € supp(Z), 1 <i < n}.

The sample complexity and run-time of our algorithm de-
pend on the covering of the distribution of patches. We
define the covering with respect to some metric dist, where

can be extended to networks with bias.

we denote by Bgist (v, r) the ball of radius r around the
point v, namely: Bgist (v, r) = {u : dist(v,u) < r}.

Definition 3.5. For a set A, we say that C' is an r-covering
of Aif A C UyecBaist(v,r). The r-covering number of
a set A, denoted by Nyist (4,), is the minimal size of an
r-covering of A.

Specifically, taking dist to be {5 (the Euclidean norm), we
denote Ny, (A,r) the r-covering number with respect to
f5. We note that the covering number is a well-known
technical tool (see e.g. Vershynin (2017)), used frequently
across many fields such as learning theory, statistics and
more (e.g., Haussler (1995); Bartlett et al. (1997); Zhou
(2002)). Here, we use the covering number to measure the
effective dimension of the patch distribution (see Section
4.1.1 for details about the relation to intrinsic dimension).
Our main result (Theorem 4.1) implies efficient learnability
(i.e., polynomial sample-complexity and run-time) when the
effective dimension of the patches distribution is low (i.e.,
polynomial covering number).

3.3. Learning Algorithm

We now describe the learning algorithm analyzed in this
work. The algorithm has two stages. In the first stage,
which is unsupervised, a dictionary of patches is learned
by clustering patches from an unlabeled set of examples.
In the second stage, which is supervised, a linear classifier
is learned over a feature-map generated using the patch
dictionary. We begin by describing the patch embedding
feature-map, and continue with a detailed description of the
learning algorithm.

Patch-based image embedding Suppose that D =
{v1,...,vN} C R is a set of patches. We refer to D as
a dictionary. We next describe how to use a dictionary to
obtain a representation of a given image x. For some “query”
patch z € R?7, denote by k-mqis;(z; D) C D the set of k
patches closest to z. Namely, k-mqist(z; D) is a subset of
size k s.t. forall v, v’ € D satisfying v € k-mqist(z; D) and
v’ ¢ k-mgist (z; D) it holds that dist(z, v) < dist(z, v'). ?

Using the dictionary D we construct a patch-embedding
#(-; D) : R4 — R*. That is, we embed each patch into R?
(for some t) based on its relation to the patches in the dictio-
nary. We consider the following choices for the embedding:

1. Hard Assignment. One simple embedding is an em-
bedding with hard-assignment of 0/1, where we assign
1 in the index of the dictionary patches that are closest
to the query patch (the patch that we are embedding).

°If there are multiple choices for k-mqist, we choose one arbi-
trarily.

Efficient Learning of CNNs using Patch Based Features

Patch Embedding

Image Embedding

Input Image P k-neighbo
! Ghard (X[1]; D) = [0T0[1]0]0]0 o[0T !
x[1]{x[2] P keneighbors Indices :
‘ é { Gnara(x[2]; D) = [o[1l0lolo[1[ololol0l1T0 |

hard : ! . _

X = 36 1 H . ' q:'llal'd(va) -)

it | Gnara(x[nl; D) = [1i0rtToTofo ofoloTtToTo
F dan(x[1]: D) =
Patches Dictionary L onn(x[2: D) = M —

b~ W - t Pral i Pun(x; D) =

{ dun(x[n); D) = mme .

Figure 1: The patch-based image embedding. First, each patch x[i] is mapped using the patch embedding ¢para(-) or
oran(+), placing 1 or x[i] (respectively) in the indices of the k nearest-neighbors of x[i] in the dictionary D. Then, the
representations of all the patches are concatenated together to obtain a representation for the full image x.

Formally, we define the embedding ¢pa.q as follows:

1 v; € k—ﬂdist(z; D)
0 otherwise

¢hard (Z; D)L = { (2)

2. Full Information. The embedding ¢y..q relates each
patch to the patches in the dictionary that are closest to
it, but does not maintain information about the query
patch. To overcome this, we consider an embedding
that maintains full information about the query patch:

z Vv; € k-mqist(2; D)
0 otherwise

¢\ (z: D) = { 3)

where ¢§fl)11(z; D) == ¢ran(2z; D) (i—1)-N+1,....i-N-
Namely, ¢ga1(z; D) € RN consists of N blocks,
each of size dp, and the i-th block gets the value of z
if v; is a nearest neighbour of z in D, and otherwise
we set all the block to zero. This way, the embedding
maintains information both about the neighborhood of
the patch z in the dictionary, and the value of z.

Using a patch-embedding ¢ (i.€, Pnard OF Pgu11), We define
an input-embedding ®(-; D) as follows:

¢ (X[D)l @)

That is, ® maps each patch of x using the patch embedding
¢ and concatenates all patch embeddings. Figure 1 shows
an illustration of how the embedding & is constructed using
the dictionary D and the input image x.

(x; D) = [¢ (x[1}; D), ...

Learning algorithm. We consider a semi-supervised al-
gorithm Ap;.p, for learning image data, which is similar to
the algorithm presented by Coates et al. (2011). The algo-
rithm takes as a parameter the dictionary-size V. It consists
of an unsupervised stage, followed by a supervised stage.

Unsupervised stage: We assume that we have access
to an unlabeled training dataset S, sampled from the
marginal distribution of Z over X. Define the set P, =
{x[i] | x € Sy, 1 <i < n}, ie., the set of all patches of
images in S,. We perform a clustering procedure which
given P, and a number NV, returns a set of patches D of
size N. For our theoretical analysis we will consider a
greedy clustering algorithm, which performs a farthest-first
traversal. The clustering algorithm is described in Appendix
A. This algorithm was originally proposed for the k-center
problem and it is a 2-approximation algorithm (Gonzalez,
1985).> We use this clustering algorithm in our theoretical
analysis, as it has known run-time guarantees. In practice,
other clustering algorithms, such as k-means, can be consid-
ered (as we do in our empirical study).

Supervised stage: Here we assume that we have a dic-
tionary D = {vi,...,vy} of patches obtained by the
unsupervised stage. Given a labeled training set S =
{(x1,¥1) ---s (Xm, Ym)} sampled from Z, we perform hard
linear SVM over the embedding, and return a predictor s.t.

w = argmin |w||> s.t. Vi € [m], y; (w, ®(x;; D)) > 1

Observe that the Hard-SVM objective is equivalent to mini-
mizing the logistic loss using gradient-descent, as shown in
Soudry et al. (2018). The prediction of the label of a new
point x is then h(x) = sign ((w, ®(x; D))). See Figure 2
for an illustration of the supervised stage.

Remark 3.6. Our learning algorithm is inspired by the algo-
rithm originally proposed by Coates et al. (2011) which was
subsequently improved by Thiry et al. (2021). However, in
our implementation there are some details that differ from
these previous variants (clustering, architecture, etc.). For a
detailed comparison see Appendix C.2.

3See also Williamson & Shmoys (2011) Section 2.2.

Efficient Learning of CNNs using Patch Based Features

Labeled Tralnmg Dataset .
l‘ l 0rse
[‘ I oxm

Embedded Labeled Training Dataset

{ ship horse
[
Linear Model

Figure 2: The supervised stage. The labeled training data
is transformed using the embedding ®(-; D) that was cal-
culated in the unsupervised stage. Then, a linear model is
trained on the transformed input images.

4. Main Result

In this section we give a detailed analysis of the algorithm
Apatcn presented in the previous section. We show that
Apatcn finds a hypothesis with small loss on distributions
that are labeled by a shallow CNN. The sample complexity
and run-time of the algorithm depend on different notions of
covering of the patch distribution, as well as on the choice
of embedding function.

We start by analyzing Apgicn, With the hard-assignment
embedding, showing that it learns shallow CNNs, with
dependence on the covering number of the patch distri-
bution. Next, we analyze the algorithm when using the
Sfull-information embedding, and show a learnability result
depending on existence of a covering of the patches which
“agrees” with the linear regions of the target CNN.

For simplicity, we analyze the algorithm with an embed-
ding that uses 1-nearest-neighbor (i.e., k-mqist With & = 1).
However, similar analysis can be applied to k > 1.

4.1. Hard Assignment Embedding

Our main result in this section shows that for every distri-
bution 7 satisfying Assumption 3.4 with covering number
Ny, (Pz, 1) = Ny (with a proper choice of), given a large
enough sample, A pg;.p, returns a predictor with small error:

Theorem 4.1. Fixe,§ € (0,1). Let T be some distribution
satisfying Assumption 3.4 with Lipschitz constant L. Fix
r = ﬁ and let Ny = Ny, (Pz,r). Then, there exists
some universal constant o > 0, s.t. running algorithm
Apateh With ®yargq on the £y metric, a dictionary of size
N = Ny, and number of labeled and unlabeled examples

(m, m,, respectively) satisfying

N log(1/¢) +log(3/9)

€

6Ny - 3N,
My > 0 ™M log (0>

- 0]

returns w.p. (over the randomness of S, and S) at least
1 — 0 a hypothesis h satisfying P(x)~z [h(x) # y] < e

Remark 4.2. In the above theorem we account separately
for the number of labeled and unlabeled examples. This
immediately implies sample-complexity guarantees in the
classical PAC learning framework, where the total number
of samples is m + m,, (where we can disregard the labels
of m,, examples).

We give the full proof of the theorem in Appendix B.2, and
give a sketch of the argument here. To prove Theorem 4.1,
we start by showing that sampling enough unlabeled exam-
ples from the marginal distribution over the inputs results
in a good dictionary, that essentially covers the distribution
of patches. This is done by observing all the balls from the
covering of Pr that have at least e/ Ny distributional mass,
and showing that a sample from each of them is guaranteed
with high probability.

Next, we show that the target function Fyy u can be approx-
imated by a linear classifier over the representation @, given
a good dictionary. We use the fact that the set of patches
from the unlabeled data P, covers the set Pr of patches
with non-zero probability. So, after clustering, we still get a
good covering. Next, we define the following vector:

w = (...,<u(i),a(WVj)>,...> e RN»

where the v;-s are the vectors in the dictionary D. Then,
using the guarantees on the unsupervised stage (that the
dictionary covers the set of patches), we show that the func-
tion F(x) = (W, ®(x; D)) approximates Fyy . Thus, the
algorithm succeeds because it can get from the unsupervised
stage vectors that cover the set of patches, which in turn
allows it to produce a sufficiently rich representation for
learning the distribution with a linear classifier.

In Section 4.1.2, we show that, up to logarithmic factors, the
number of labeled examples used by Apgcn, is optimal. As
for the run-time of the algorithm, notice that both the unsu-
pervised and the supervised stage use efficient (polynomial
time) algorithms. The run-time of the clustering algorithm
used in the unsupervised stage is O(NZdp), and the hard
SVM used in the supervised stage runs in time O(mn?Ng).

Observe that both the run-time and sample complexity of
Apaten do not necessarily depend on the number of neurons
of the target network (denoted by [). This is because, when
the patches are well-covered, the algorithm can approximate

Efficient Learning of CNNs using Patch Based Features

any Patch-Lipschitz function. Also note that the Patch-
Lipschitz constant L does not necessarily grow with [, so
the dependence on [is not “hidden” in some other parameter.

4.1.1. INTRINSIC DIMENSION AND COVERING NUMBER

The analysis in the previous section shows that the sample
complexity and run-time of our algorithm depend on one
important measure - the covering number of the patch set
Pz. Observe that the covering number is often used as a
measure of the intrinsic dimension of some given space. For
example, the d-dimensional ¢5-ball B = By, (u, 1) has cov-
ering number Ny, (B,) = Cy(1/7)? (for some Cy which
depends on d but not on), and note that this remains true
even if the ball is embedded in a space with larger extrin-
sic dimension. More generally, a bounded d-dimensional
manifold has a covering number that grows exponentially
with the intrinsic dimension d (which again can be much
smaller than the extrinsic dimension). For more examples
and further discussion on the relation between the covering
number and measures of intrinsic dimension refer to e.g.
Falconer (2004); Hamm & Steinwart (2020).

We see that if the distribution of patches (captured by the
set Pr) is concentrated on a low-dimensional structure (e.g.,
a low-dimensional manifold), we can expect the covering
number of Pz to be moderate. On the other hand, if the
patches fill a truly high-dimensional space, then our com-
plexity guarantees become impractical, as these can grow
exponentially with the dimension. That said, we next show
that such dependence on the covering number is essentially
unavoidable, if one wishes to learn any CNN to small loss.

4.1.2. SAMPLE COMPLEXITY LOWER BOUND

We showed that with sample complexity that depends on
the number of patches n and the covering number Ny :=
Ny, (P, r), the algorithm Apg;.p returns with high prob-
ability a hypothesis with small loss. Now, we will show
that such dependence is unavoidable for guaranteeing such
learnability result. Namely, any algorithm that learns all
distributions labeled by a CNN with covering number N,
must have sample complexity of Q(nNy/e):

Theorem 4.3. Fix some ¢ € (0,1/8). Let A be some
learning algorithm that uses m samples. Assume that
for every T which satisfies Assumption 3.4 and for which
N, (Pr,1/L) = Ny, A returns w.p. at least 7/8 a hypoth-
esis hs.t. Py)z [R(X) # y] < €/8. Then, m > 2Po=2,

The proof of the Theorem is in Appendix B.4. It uses simi-
lar arguments as in the No-Free-Lunch Theorem (e.g., see
Sec. 5 in Shalev-Shwartz & Ben-David (2014)).

4.2. Full Information Embedding

In the previous section, we showed that the algorithm
Apatern finds good predictors on distributions labeled by
a CNN, when using the embedding ®y,,.q. The complexity
of the algorithm essentially depends on the covering num-
ber of the distribution of patches. The reason that we need
the patch distribution to have a small covering number is
because we aim to approximate the target function (over the
patches) by a function that is constant over each ball. This
approximation is good enough when the function is Lips-
chitz, but requires the balls to be of small size (relative to the
inverse of the Lipschitz constant). A possible improvement
to this approach is to approximate the target by assigning a
linear function (instead of a constant) for each ball, which
potentially allows taking a covering with balls of larger size.

In this section, we show that when using the embedding
Dy, the complexity of the algorithm A py¢.p, depends on
a covering with larger balls, exploiting some geometrical
properties of ReLU networks. Specifically, our result de-
pends on the characterization of the linear regions of the
target CNN. The linear regions are defined as follows:

Definition 4.4. For some function f : R — R", a linear
region is a maximal connected set H C R” s.t. Vx €
H, f(x) = Wyx+ by forsome Wy € R4 and b € R".

It is well known that ReLU networks divide the input space
to linear regions, where almost every point x is in the interior
of some linear region (Pascanu et al., 2013; Montufar et al.,
2014). We prove our result under an assumption on the
relation between the linear regions of the target network and
the distribution of the patches. Essentially, we assume that
the patch distribution “respects” the linear regions structure
of the target CNN in the sense that it is well-clustered inside
balls that do not cross between different linear regions.

We start by defining the relation between a cover for the
patch distribution and the linear regions of the target CNN:

Definition 4.5. Let C' be some r-covering of P. We say
that C respects f if

* For every v € C there exists a linear region H,, of f
s.t. Baist(v,7) C Hy.

» Forv,v’ € Cs.t. v # v/ we have dist(v,v’) > 4r.

This definition ensures that patches lie in clusters that are
well separated from one another, and that each cluster does
not cross between linear regions. Under this assumption, we
show that A p,¢.p finds a good predictor when using ®gy);.

Theorem 4.6. Let 7 be some distribution which satisfies
Assumption 3.4, with some target Fyy y. Denote by f the
function f(v) = o(Wv). Assume that for some r > 0,
there is an r-covering for Pr of size Ny that respects f. Fix
some €,8 € (0,1/4). Assume that we run Apgzcp, Using

Efficient Learning of CNNs using Patch Based Features

the embedding Py, with dictionary size N = Ny, m,,
unlabeled samples and m labeled samples. Then, there
exists some universal constant o > 0, s.t. when taking:

O/LdeO log(1/€) + log(3/6)

€

6Ny -m 3Ny
L > o0 e (2220
My > 5 0g< 5)

, and

the algorithm returns w.p. at least 1 — § a hypothesis h s.t.
IED(x,y)NI [h(X) 7& y] <e

Observe that the sample complexity bound looks very simi-
lar to the bound in Theorem 4.1. However, the size of the
cover Ny in Theorem 4.6 can be much smaller than the
covering number required for Theorem 4.1, since we now
do not require r = O(1/Ly). Indeed, the balls that we take
for the cover can be of larger size, as long as they do not
cross linear regions. Therefore, using the embedding ®yj,
instead of ®y,.q, can result in better guarantees. The proof
can be found in Appendix B.3.

4.3. Improved Complexity with Rank Constraints

We showed that Apg;.p, learns a good predictor when using
the ®¢,;) embedding. The number of labeled examples re-
quired for learning is O(ndpN/e), which is derived from
the number of parameters of the learned predictor. In reality,
depending on the choice of N and the size of the image
n, this number of parameters may become very big. Addi-
tionally, since the size of the predictor is ndp IV, this can
also cause the computational complexity of optimization to
be impractical (although, still polynomial in the parameters
n,dp, N). To overcome this, we reduce the computational
burden by replacing the single layer of the linear predic-
tor by a linear network that forces more parameter sharing,
thus reducing the number of parameters. Effectively, this is
equivalent to imposing structural constraints on the linear
function we learn. We now introduce the details of such
constrained linear network.

Observe that placing a linear classifier on top of the embed-
ding ®¢,) is equivalent to defining a separate linear function
for every patch in the dictionary and every spatial location
in the image. This means that for every ¢ € [N] and for
every j € [n] we have a linear classifier z — (w("9) z).
One constraint we can make is to have for each patch in
D a single linear function z — (w(?), z), instead of having
different linear functions for different spatial locations in the
image. Then we can use another linear function which given
the NV outputs for each spatial location j € [n] predicts the
final output f(®run(x)) = 3 ep (W), 9 (2[4])) where
U(z); = <W(i), z> - 1{v; € k-mqist(z; D)}. Note that the
total number of parameters for this constrained linear classi-
fieris N - (dp 4+ n) instead of N - n - dp. See Figure 3 (top)
for an illustration of this constrained linear model.

Linear Model Linear Network

4 P Lmearlayer N
Pl Lmear Pl per patch @ Lmear

Reduced Linear Network

N Linear layer Bottleneck
dplN per patcyh N Angool N, (conlel) (Linear R 10
(&

Figure 3: The different linear model variants we experiment
with, in order to reduce the dimension of the linear classifier.

To further reduce the number of parameters, we introduce
two more linear operations: 1) An average pooling layer
after the output of ¢ and 2) a “bottleneck™ layer, in the form
of a1 x 1 convolutional layer which reduces the number
of channels N to some smaller value (performed after the
average pooling layer). Since these layers are linear, we
still learn a linear classifier on top of the embedding. In
Section 5 we show the effect of these constrains. See Figure
3 (bottom) for an illustration of this reduced linear model.

While the reduction in parameters has its merits, it makes
the optimization more complex. That is, while in the “one-
layer” linear case there are known guarantees for finding
the optimal solution, for linear networks this is not neces-
sarily the case. However, various papers show that deep
linear networks can be optimized efficiently using SGD
(e.g., Kawaguchi (2016); Hardt & Ma (2016); Ji & Tel-
garsky (2019a); Arora et al. (2018)), and indeed we show
experimentally in Section 5 that SGD performs well in our
case.

5. Experiments

In this section we empirically study different variants of the
algorithm A p,;.;, when applied to the CIFAR-10 dataset,
to complement our theoretical analysis. In Section 5.2 we
examine the performance of the algorithm equipped with
the suggested embeddings ®1,,,q and Py,j;, comparing it to
a vanilla one-hidden-layer CNN. We also examine the im-
portance of the data-dependent nature of our embedding, by
taking a dictionary of patches sampled from a Gaussian dis-
tribution. In Section 5.3 we examine how various constraints
imposed on the linear classifier affect the performance of
the model (see Section 4.3). In Section 5.4 we show that the
algorithm Ap;.p, (equipped with ®g))) can scale to deep
models. In Section 5.5 we show that patches from natural
images are clustered together, supporting our assumption on
the covering number of the patch distribution. Our code is
available here: github.com/AlonNT/patch-based-learning.

https://github.com/AlonNT/patch-based-learning

Efficient Learning of CNNs using Patch Based Features

Training Dataset

&

Sampled Patches {I\‘l o] ‘_“I_.}
Whitened Patches {.‘1“" . .J‘I__}
Clustered Patches {l'.- 1 }

Figure 4: The unsupervised stage. A large amount of
patches are sampled from the unlabeled training dataset.
The patches are whitened and clustered together to form the
patches dictionary D.

5.1. Implementation Details

We obtain the patches dictionary D = {vy,...,uy} by
sampling M patches uniformly at random from the training
data, performing whitening* on the patches followed by k-
means clustering to get N centroids (see Figure 4). Unless
noted otherwise, we use N = 1024. At inference time,
given an input image, we transform the whitened patches of
the image using ¢para/dra1- The embeddings of the patches
are then concatenated together to get the embedding of the
image (see Figure 1). Then, we learn a linear classifier
on top of the embedding of the input images. We choose
k = 0.25 - N as the number of neighbors defining the
embedding (see the definition of k-7gist (z; D) in Section
3.3)°.

In Sections 5.2 and 5.4 we use the constrained linear clas-
sifier described in Section 4.3. The effects of the different
constraints are studied in Section 5.3. See Appendix C.3 for
details on efficient implementation using tensor operations.

5.2. Results

In this part, we compare the performance of the following:
1) A linear network (see Section 4.3) over ®p,.q and Ppyyy.
2) Same as (1), but with patches sampled randomly from a
Gaussian distribution. 3) A vanilla one-hidden-layer CNN
with the same architecture as the models described above.®

Table 1 shows the results of this experiment. Note that
Apatcn, with embedding ®y,p outperforms both the shallow
CNN and the ®y,,q embedding. Additionally, using ran-
dom patches is inferior to using clustered patches from the
training data, which shows the importance of using data-
dependent features. Note that Apyscp, with ®py,.q is the

*See Appendix C.4 for details on how we perform whitening.

3See Appendix C.5 for different values of N and .

SWe use a learned convolution layer with kernel-size 5 x 5
and 1024 channels followed by a ReLU activation function, 4 x 4
average-pooling with stride 4, batch-normalization, 1 X 1 convolu-
tion with 32 output channels, and finally a linear layer.

Table 1: Comparison between A p,¢., and baselines.

Test Accuracy
80.08% (£0.16%)
71.36% (£0.24%)
76.04% (£0.13%)

()
()

Vanilla 1 hidden-layer CNN
Dy 5rq With random patches
D¢, with random patches
®y,5rq With data patches
®¢, with data patches

78.80% (£0.32%
81.23% (+0.15%

Table 2: The effect of the constraint on the linear function.

Test Accuracy #Parameters
Simple 76.38% (£0.34%) 150 M
Constrained 76.61% (+0.19%) 2M

version proposed in Thiry et al. (2021). See Appendix C.2
for a detailed comparison between our implementation and
theirs. For the full parameters setting we use please refer to
Appendix C.1.

5.3. The Effect of the Linear Function Constraints

We examine the effects of the constraints we impose on the
linear function on top of the embedding ®y,); (see Section
4.3). Table 2 compares the performance and cost between
the original non-constrained linear classifier and the low-
rank constrained linear classifier described in Section 4.3.
The constrained version performs very similar to the original
non-constrained version, while being 75x smaller. Since the
standard linear classifier is very large, for technical reasons
we run it with a smaller dictionary size of N = 256.

We also investigate the effect of using avg-pooling and 1 x 1
conv. (bottleneck) which further reduce the computational
burden and improve accuracy. See the comparison in Table
3. The version with both average-pooling and bottleneck
reaches higher accuracy than the original version, while
being 39x smaller. The results here use the same parameters
setting as described in Appendix C.1 (i.e. N = 1024).

Table 3: Examining the effect of pooling and bottleneck. For
the versions with average-pooling layer we also add a batch-
normalization which empirically helped the optimization.

Test Accuracy #Parameters
Original 78.98% (£0.22%) 8.2M
AvgPool 80.42% (+0.13%) 0.66 M
Bottleneck 80.38% (£0.30%) 0.44M
Both 81.23% (+0.15%) 0.21M

5.4. The Effect of Model Depth

Note that the procedure we describe in Section 3.3 can
also be applied to intermediate features of our learned
model, allowing us to train a “deep” model. We train it

Efficient Learning of CNNs using Patch Based Features

in a layer-wise fashion, as follows. Denote our training-
set by § C RHoxWoxCo Agsume we already trained
layers Ny, ..., N;_1 and we now train layer ;.. Since
N;._1 is a linear network on top of the input embedding,
removing the last linear layer of the network results in a
new embedding of the input space, which we denote by
E,_, : RHoxWoxCo _y RHr—1xWr_1xCr1 We fix this
embedding and do the same procedure as before - sam-
ple patches uniformly from E,._(S), perform whitening,
run k-means clustering on the whitened patches to obtain
a patches-dictionary D,, and train a (constrained) linear
classifier on top of the ®¢,1(F—1(5); D,).

Observe that the performance of @y, similarly to a
standard CNN, improves with depth, although admittedly
achieving much lower final accuracy compared to a deep
CNN. In contrast, note that when using ®y,,,.q the perfor-
mance deteriorate with depth, suggesting that this embed-
ding might not be suitable for deeper models. Table 4 shows
the benefit of depth for Ap,:., With the embedding ;.9
and ®y,);, compared to vanilla CNN and a CNN trained in a
layer-wise fashion (same as Apqicn) -

Table 4: Test accuracy across depth. CNN (Iw) denotes the
performance of a CNN trained layerwise.

Depth 1 Depth2 Depth3 Depth4
D 81.33% 82.55% 82.74% 82.88%
DPrard 78.30% 65.41% 56.22% 50.69%
CNN 80.16% 87.91% 89.51% 89.62%
CNN (Iw) 80.22% 85.44% 85.33% 85.30%

5.5. Intrinsic Dimension Estimation

Our theoretical results show that the sample complexity
of Apgicr, depends on the covering number of the patch
distribution. Here we aim to show that patches in natural
images indeed have a relatively small covering-number. Ob-
serve that if a set has a small covering number, it should be
possible to cover it with a small number of cluster centers.

We therefore perform the following experiment. We sample
1 million patches of size 5 x 5 from CIFAR-10 / ImageNet
dataset, perform k-means clustering with k = 2,...,1024
and show the mean distance between a patch and its assigned
centroid. We compare the original/whitened patches to the
following baselines, which tend to imitate “unnatural” data
- random Gaussian patches, and the patches after shuffling
the pixels values. Since the norms of the whitened/random
patches are in a different scale than the original patches, we
normalize all patches to unit-vectors. The results, shown
in Figure 5, suggest that the patches are closer to their cen-

"For readability, STD is omitted. All runs have STD of 0.1% —
0.3%, except in the deep versions of Pnarq Where training is not
stable and STD is 5% — 10%.

1-
0.9 -
0.8 -
o 0.7 -
2
s 0.6 -
< 0.5 -
= CIFAR-10 ImageNet
S 04— — e Original
=) = G Shuffled
0.3 - o Whitened
‘Whitened-Shuffled
0.2 - Random

|
1,000

| | |
0 200 400 600 800
k

Figure 5: Mean distance between patches and centroids.

troids than the shuffled patches, and the whitening operator
increases the distances dramatically (although still smaller
than the random Gaussian patches).

6. Discussion and Future Work

CNNs are a key component in deep learning, and in par-
ticular in machine vision. Since they are hard to learn in
the worst case, it is important to understand what makes
them learnable in practice. Naturally, the answer must in-
volve the statistical structure of real data these networks are
trained on. Here we take a step in this direction by relating
the statistics of image patches to the learnability of neural
nets. Our focus is on the statistics of patches, but it will be
interesting to extend it to inter-patch correlations.

Our work also highlights the potential of methods that learn
representations in an unsupervised manner. It is thus related
to many recent works on self-supervised learning for images.
It will be interesting to provide guarantees as we have here
for these methods.

Finally, in Section 4.2 we show that sample complexity is
related to an agreement between the prediction function and
the image statistics. We believe such bounds can be made
tighter, and leave it for future work.

Acknowledgments

This project was partially funded by the European Research Coun-
cil (ERC) under the European Unions Horizon 2020 research and
innovation programme (grant ERC HOLI 819080). AB is sup-
ported by a Google PhD fellowship.

Efficient Learning of CNNs using Patch Based Features

References

Arora, S., Cohen, N., and Hazan, E. On the optimiza-
tion of deep networks: Implicit acceleration by overpa-
rameterization. In International Conference on Machine
Learning, pp. 244-253. PMLR, 2018.

Arora, S., Du, S., Hu, W., Li, Z., and Wang, R. Fine-grained
analysis of optimization and generalization for overpa-
rameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322-332, 2019.

Awasthi, P, Tang, A., and Vijayaraghavan, A. Efficient algo-
rithms for learning depth-2 neural networks with general
relu activations. arXiv preprint arXiv:2107.10209, 2021.

Bartlett, P. L., Kulkarni, S. R., and Posner, S. E. Cov-
ering numbers for real-valued function classes. IEEE
transactions on information theory, 43(5):1721-1724,
1997.

Basri, R. and Jacobs, D. W. Efficient representation of
low-dimensional manifolds using deep networks. 2017.

Brutzkus, A. and Globerson, A. Globally optimal gra-
dient descent for a convnet with gaussian inputs. In
International Conference on Machine Learning, pp. 605—
614, 2017.

Brutzkus, A. and Globerson, A. An optimization and gen-
eralization analysis for max-pooling networks. arXiv
preprint arXiv:2002.09781, 2020.

Buchanan, S., Gilboa, D., and Wright, J. Deep networks
and the multiple manifold problem. In International
Conference on Learning Representations, 2020.

Cao, Y. and Gu, Q. Generalization bounds of stochastic
gradient descent for wide and deep neural networks. In
Advances in Neural Information Processing Systems, pp.
10836-10846, 2019.

Chen, M., Jiang, H., Liao, W., and Zhao, T. Nonparamet-
ric regression on low-dimensional manifolds using deep
relu networks: Function approximation and statistical
recovery. arXiv preprint arXiv:1908.01842, 2019.

Cloninger, A. and Klock, T. A deep network construction
that adapts to intrinsic dimensionality beyond the domain.
Neural Networks, 2021.

Coates, A., Ng, A., and Lee, H. An analysis of single-
layer networks in unsupervised feature learning. In
Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp. 215-223.
JMLR Workshop and Conference Proceedings, 2011.

Daniely, A. and Malach, E. Learning parities with neural
networks. Advances in Neural Information Processing
Systems, 33, 2020.

Daniely, A. and Shalev-Shwartz, S. Complexity theoretic
limitations on learning dnf’s. In Conference on Learning
Theory, pp. 815-830. PMLR, 2016.

Daniely, A. and Vardi, G. Hardness of learning neural
networks with natural weights. Advances in Neural
Information Processing Systems, 33, 2020.

Daniely, A. and Vardi, G. From local pseudorandom
generators to hardness of learning. arXiv preprint
arXiv:2101.08303, 2021.

Diakonikolas, 1., Kane, D. M., Kontonis, V., and Zarifis, N.
Algorithms and sq lower bounds for pac learning one-
hidden-layer relu networks. In Conference on Learning
Theory, pp. 1514-1539. PMLR, 2020.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Du, S., Lee, J., Tian, Y., Singh, A., and Poczos, B. Gradient
descent learns one-hidden-layer cnn: Don’t be afraid of
spurious local minima. In International Conference on
Machine Learning, pp. 1339-1348. PMLR, 2018a.

Du, S., Lee, J., Li, H., Wang, L., and Zhai, X. Gradient
descent finds global minima of deep neural networks.
In International Conference on Machine Learning, pp.
1675-1685, 2019.

Du, S. S. and Goel, S. Improved learning of one-hidden-
layer convolutional neural networks with overlaps. arXiv
preprint arXiv:1805.07798, 2018.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradi-
ent descent provably optimizes over-parameterized neu-
ral networks. International Conference on Learning

Representations, 2018b.

Falconer, K. Fractal geometry: mathematical foundations
and applications. John Wiley & Sons, 2004.

Ge, R., Kuditipudi, R., Li, Z., and Wang, X. Learning
two-layer neural networks with symmetric inputs. arXiv
preprint arXiv:1810.06793, 2018.

Ghorbani, B., Mei, S., Misiakiewicz, T., and Montanari,
A. When do neural networks outperform kernel meth-
ods? Journal of Statistical Mechanics: Theory and
Experiment, 2021(12):124009, 2021.

Goldt, S., Mézard, M., Krzakala, F., and Zdeborova, L.
Modeling the influence of data structure on learning in
neural networks: The hidden manifold model. Physical
Review X, 10(4):041044, 2020.

Efficient Learning of CNNs using Patch Based Features

Gonzalez, T. F. Clustering to minimize the maximum in-
tercluster distance. Theoretical computer science, 38:
293-306, 1985.

Hamm, T. and Steinwart, I. Adaptive learning rates for sup-
port vector machines working on data with low intrinsic
dimension. arXiv preprint arXiv:2003.06202, 2020.

HaoChen, J. Z., Wei, C., Gaidon, A., and Ma, T. Provable
guarantees for self-supervised deep learning with spectral
contrastive loss. arXiv preprint arXiv:2106.04156, 2021.

Hardt, M. and Ma, T. Identity matters in deep learning.
arXiv preprint arXiv:1611.04231, 2016.

Haussler, D. Sphere packing numbers for subsets of the
boolean n-cube with bounded vapnik-chervonenkis di-
mension. Journal of Combinatorial Theory, Series A, 69
(2):217-232, 1995.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel:
Convergence and generalization in neural networks. In
Advances in neural information processing systems, pp.
8571-8580, 2018.

Ji, Z. and Telgarsky, M. Gradient descent aligns the layers
of deep linear networks. ICLR, 2019a.

Ji, Z. and Telgarsky, M. Polylogarithmic width suffices
for gradient descent to achieve arbitrarily small test error
with shallow relu networks. In International Conference
on Learning Representations, 2019b.

Kamath, P., Montasser, O., and Srebro, N. Approximate is
good enough: Probabilistic variants of dimensional and
margin complexity. In Conference on Learning Theory,
pp. 2236-2262. PMLR, 2020.

Kawaguchi, K. Deep learning without poor local minima.
In Advances In Neural Information Processing Systems,
pp. 586-594, 2016.

Klivans, A. R. and Sherstov, A. Cryptographic hardness
results for learning intersections of halfspaces. In Proc.
47 IEEE Symp. on Foundations of Computer Science.
Citeseer, 2006.

Klivans, A. R. and Sherstov, A. A. Cryptographic hard-
ness for learning intersections of halfspaces. Journal of
Computer and System Sciences, 75(1):2—-12, 2009.

Livni, R., Shalev-Shwartz, S., and Shamir, O. On the
computational efficiency of training neural networks. In
Advances in Neural Information Processing Systems, pp.
855-863, 2014.

Malach, E. and Shalev-Shwartz, S. A provably correct
algorithm for deep learning that actually works. arXiv
preprint arXiv:1803.09522, 2018.

Malach, E., Kamath, P., Abbe, E., and Srebro, N. Quan-
tifying the benefit of using differentiable learning over
tangent kernels. arXiv preprint arXiv:2103.01210, 2021.

Montiifar, G., Pascanu, R., Cho, K., and Bengio, Y. On the
number of linear regions of deep neural networks. arXiv
preprint arXiv:1402.1869, 2014.

Oymak, S. and Soltanolkotabi, M. End-to-end learning of a
convolutional neural network via deep tensor decomposi-
tion. arXiv preprint arXiv:1805.06523, 2018.

Pascanu, R., Montufar, G., and Bengio, Y. On the
number of response regions of deep feed forward net-
works with piece-wise linear activations. arXiv preprint
arXiv:1312.6098, 2013.

Rahimi, A. and Recht, B. Weighted sums of random kitchen
sinks: replacing minimization with randomization in
learning. In Nips, pp. 1313-1320. Citeseer, 2008.

Rahimi, A., Recht, B., et al. Random features for large-scale
kernel machines. In NIPS, volume 3, pp. 5. Citeseer,
2007.

Schmidt-Hieber, J. Deep relu network approxima-
tion of functions on a manifold. arXiv preprint
arXiv:1908.00695, 2019.

Shalev-Shwartz, S. and Ben-David, S. Understanding
machine learning: From theory to algorithms. Cam-
bridge university press, 2014.

Shawe-Taylor, J., Cristianini, N., et al. Kernel methods for
pattern analysis. Cambridge university press, 2004.

Song, M. J., Zadik, ., and Bruna, J. On the cryptographic
hardness of learning single periodic neurons. arXiv
preprint arXiv:2106.10744, 2021.

Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., and
Srebro, N. The implicit bias of gradient descent on sep-
arable data. The Journal of Machine Learning Research,
19(1):2822-2878, 2018.

Thiry, L., Arbel, M., Belilovsky, E., and Oyallon, E. The
unreasonable effectiveness of patches in deep convolu-
tional kernels methods. arXiv preprint arXiv:2101.07528,
2021.

Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai,
X., Unterthiner, T., Yung, J., Keysers, D., Uszkoreit, J.,
Lucic, M., et al. Mlp-mixer: An all-mlp architecture for
vision. arXiv preprint arXiv:2105.01601, 2021.

Trockman, A. and Kolter, J. Z. Patches are all you need?
arXiv preprint arXiv:2201.09792, 2022.

Efficient Learning of CNNs using Patch Based Features

Vershynin, R. High-dimensional probability. An
Introduction with Applications, 2017.

Vinnikov, A. and Shalev-Shwartz, S. K-means recovers
ica filters when independent components are sparse. In
International Conference on Machine Learning, pp. 712—
720. PMLR, 2014.

Wang, T., Buchanan, S., Gilboa, D., and Wright, J. Deep
networks provably classify data on curves. Advances in
Neural Information Processing Systems, 34, 2021.

Williamson, D. P. and Shmoys, D. B. The design of
approximation algorithms. Cambridge university press,
2011.

Zhou, D.-X. The covering number in learning theory.
Journal of Complexity, 18(3):739-767, 2002.

Efficient Learning of CNNs using Patch Based Features

A. Clustering Algorithm

Below is a pseudo-code of the farthest-first clustering algorithm from (Gonzalez, 1985), which we use in our theoretical
analysis:

Algorithm 1 Clustering

Input: Set of patches P,, N > 0.

Pick an arbitrary z € P,.

Set D = {z}.

fori=2,...,N do:
Find v € P, which maximizes dist(v, D) (where dist(v, D) := min{dist(v,u) | u € D})
D+ DuU{v}

return D.

B. Proofs
B.1. Proof of Lemma 3.3
Proof. Observe that:

[Fw () = Fw.a(x)| =
< Z [0 o (W(i]) — o (W'l
< Z [Wi = <) < 3 [[u?

where the first inequality follows from the triangle inequality and Cauchy—Schwarz inequality, and the second inequality
follows from the fact that o is 1-Lipschitz. Note that ||-||, with respect to matrices (here used on W) refers to the
operator-norm. [

K3

= (u.o(Wxil)) = 3 (u, o(Wx’m>>’

W[, max [[x[i] — <[]

B.2. Proof of Theorem 4.1

The result of Theorem 4.1 follows immediately from the following Theorem:

Theorem B.1. Lete,€’,6,6" € (0,1). Let T be some distribution satisfying Assumption 3.4 with Lipschitz constant Lg. Fix
r= ﬁ and let Ny = Ny, (Pz,r). Assume that m, > N° log () Then, there exists some universal constant o > 0, s.t.
running algorithm Apgicn with ®parq on the Uo metric, a dlctlonary of size N = Ny, and number of labeled samples m s.t.

anNO log(1/€) + log(1/9) <

<m
€

IN

5
2¢/

returns wp.® > 1 — ' — 26 a hypothesis h satisfying P(x)~z [h(x) # y] < e+ €.

Proof. First of all, we show that since we have a large sample of unlabeled images, with high probability the patches in our
sample will be a (2r)-covering of the non-negligible part of the patches distribution.

Indeed, let C be an r-covering of Pr of minimal size, namely |C| = Ny. Let C’ C C be the subset of balls that have mass

! .
> 1@—0, ie.:

C' = {v € C : Pypog [Fistx[i] € By, (v,7)] >];}
0

We first show that with probability > 1 — ¢, for every ¢ € C’ there is patch in P, (the patches of the unlabeled images) in

80ver the randomness of S, and S.

Efficient Learning of CNNs using Patch Based Features

the ball By, (c, 7,), namely By, (c,r) N P, # 0. Indeed, fix some ¢ € C’, and by definition of C”:

e\ My € o’
P P=0<(1-<) < _ <2
Buter)nP=0< (1-) ew (-0 < 4

and the required follows from the union bound.

Now, assume that for every ¢ € C’ there exists v € P, such that v € By, (c,r). Therefore, we also have By, (c,r) C
By, (v,2r), and so:
UCGC,BZQ (Ca T') g UVEPu BEQ (V, 27") (5)

Now, we show that the dictionary of patches (D) that was obtained using the clustering procedure on the patches in our
sampled unlabeled data, also covers the non-negligible part of the patches distribution (although with a slightly larger radius
than the entire set of patches P,, i.e. 6r instead of 2r).

Indeed, since P,, C Pz, there exists a set of patches A of size N = Ny, (Pr, r) such that:
P, C UVGAB€2 (V, 27”) 6)

The clustering algorithm guarantees that (Gonzalez, 1985),

max min ||v — ¢|| < 2 maxm

nlv—c| <4r (N
veP, ceD veP, ceA

where the last inequality holds because A is a (2r)-covering of P, (see Eq. (6)). It follows that P, C UyepBe, (v, 4r)
which implies that Uy¢c p, B, (v, 2r) C UyepBe, (v, 67). Then, by Eq. (5) we get:

UVGC’BZQ (V,T) - UVEDBg2 (V,GT’) ()

Now, we’ll define a vector & € RY™ that will be used as a linear-function on top of the embedding ®y,,,q, which will be
equal to the target labeling CNN (on “most” of the input data distribution, i.e. on input images that don’t contain patches
from negligible balls in the patches distribution).

Fix a target CNN Fyw u(x) = > i, <u(i),U(Wx[i])> satisfying Assumption 3.4. Denote by f the function f(v) =
o(Wv) (which is the target function on the patches - the target convolution layer only, without the linear “readout” layer).
Define the vector

w = (<u(1), f(V1)> s ey <u(1), f(vN)> yeees <u("), f(V1)> yeees <u("), f(VN)>) e RN

Le., Winngy = (u?, f(v;)) foralll <i<mand1<j < N.Let F(x) = (W, Phara(x; D)).

For some x € X, we say that x is good if for all 1 < i < n, x[i] € Uyecc/ By, (v, 7). In words, an image «x is good if all of
its patches lie in non-negligible balls of the patches distribution. We say that the training set S is good if for all x € .S, x is
good.

By the definition of C”, the probability that x is not good is at most o o Px~z [, X[i] € By, (v,7)] < €. Let

& € {0, 1} be the random variable indicating whether the j-th example in S is not good. Observe that E [Z:nzl fj} =
2?21 [E [¢;] = mé'. Therefore, by Markov’s inequality we have:

P[Sisnotgood | =P[Fj € [m] st.&=1=P |> & >1| <E > & | =me <

Therefore, the probability that .S is good is at least 1 — 4.

For some query patch z, we denote by mqist (2; D) the closest patch to z in D:

Taist (23 D) = arg ‘r}éig dist(v, z)

Efficient Learning of CNNs using Patch Based Features

So, for k = 1 we have k-7gis (z; D) = {maist(2z; D)}. For some x € X, define x’ € X to be the image where every patch
in it is x’s patch nearest-neighbor in D, i.e. for all ¢ € [n] x'[i] = my, (x[i]; D). Observe that we have:

Fx) = (9, Brasa(: D) = 3 (u, o(Wre, (xlif D)) = 3 (., 0(Wx'[i])) = Fwu(x)

%

Now, fix some good x € X. Since every patch in x is in some non-negligible ball in the patches-distribution, and these
balls are covered by our patches-dictionary D, every patch in x is close (up to 67) to some patch in D. Since the predicted
function £’ on x equals to the target function Fyy y on an x’, and x and x’ are close to one another, the Lipshitzness of the
target function Fyy y guarantees the outputs will be similar.

Indeed, from what we showed for all ¢ we have ||x[i] — 7, (x[é]; D)|| < 6r and therefore:

Fwu(x) = F(x)| = [Fw,u(x) — Fawu(x)| < Lo - max |[x[i] - me, (x[i]; D)|| < 6Lor <

RIS,

For any (x,y) ~ Z where x is good, assumption 3.4 guarantees yFyy v (x) > 1. If y = +1 it must be that F'(x) > 3 and if
y = —1 it must be that F'(x) < —2 so in any case yF'(x) > 3.

1

Overall we got that for every (x, y) ~ Z where x is good, yF'(x) > 5

For now we consider two events: (1) Event where for every ¢ € C’ we have By, (c,7) N P, # (which occurs with
probability at least 1 — ¢’ and (2) Event that S is good which holds with probability at least 1 — 4. If the first two events
happen, then the predictor F" has zero error on S (since S is good). So, by standard VC generalization bounds (e.g., via the
Fundamental Theorem and bounds on the VC dimension of linear classifiers from Shalev-Shwartz & Ben-David (2014)),
with probability at least 1 — ¢’ — 2§ over the randomness of S and S,,:

IP)(x,y)mI,xis good [y <W7 @(X; D)> < 0] <e
Therefore,

IP)(x,y)NI [y <W7 (I)(X; D)> < 0] = P(x,y)NI, x is good [1/ <V_V7 (P(X; D)> < O]
+ P(x,y)wl’,xis not good [il/ <V_V» (I)(X; D)> < 0] <e+ 6/

which concludes the proof.

B.3. Proof of Theorem 4.6

To prove Theorem 4.6 we use the following Lemma, stating that with a large enough sample from unlabeled data there
exists a linear separator for the a non-negligible part of data distribution. Later on, we’ll require a large enough sample from
labeled data which will enable learning this linear separator.

Lemma B.2. Let €,0,€ (0,1/4). Let T be some distribution satisfying the assumptions of Theorem 4.6, with some
target Fy uy. Then, w.p. at least 1 — § over sampling S, ~ 1 of size m, > % log (%) there exists some W s.t.
P, yynz [y (W, Pran(x)) > 1] > 1 — e

Proof. First of all, we show that every “important” ball in the patches distribution contains some patch in our patches
dictionary (important in the sense that it contains some patch from our sampled data).

Well, let C' be an r-covering of Pz of size Ny that respects f(x) = o(Wx). Let C’ C C be the subset of balls that have

mass > x—, as defined in the proof of Theorem 4.1. Similarly, we have that with probability > 1 — ¢, for every c € C’ there
K 0

exists some v € P, s.t. v € Bgist(c, 7). Denote by C,, C C' as follows:

Cy:={ceC : 3Ive P, st.v e Bys(c,r)}

Efficient Learning of CNNs using Patch Based Features

That is, C,, is the set of balls in the cover C' from which there is a point in the sample of patches P,. So, we showed that w.p.
at least 1 — § we have C’ C C,,. Now, observe that by the guarantees of (Gonzalez, 1985), since |C,,| < |C| = Ny it holds
that:

max min dist(v,v’) < 2 max min dist(v,c) < 2r)
veP, v'eED veP, ceCy,

Where the last inequality is by definition of C,,.

Claim: For every v € Pz and for every ¢ € C, if v ¢ Byisi(c,) then dist(v, ¢) > 3r.

Proof. The intuition is as follows. From the definition of the covering that “respects” the linear regions, it must contain
ball that are distant from each other. Therefore, if a patch is not contained in some ball, it must be quite far from it, since
the patch must be contained in some other ball which is far away. Formally, let v € Pz and ¢ € C s.t. v ¢ Bgse(c,).

By definition of C, there exists ¢’ € C s.t. v € Bgist(c’, 7). Therefore, ¢ # ¢’ and so by the Definition 4.5, it holds that
dist(c, ¢’) > 4r. Therefore, we have:

4r < dist(c, ') < dist(v, ¢) + dist(v,) < dist(v,c) +r

Claim: For every ¢ € Cy, there is v € D s.t. v € Byist(c, 7).

Proof. The intuition is that if there exists a ball that doesn’t contain any patch from D, from the previous claim it must be
far away from every patch in D, contradicting the guarantee from the clustering procedure. Formally, assume there is some
c € C, such that for all v € D it holds that v ¢ Bgst(c,). By definition of C,,, there is some v, € P, s.t. dist(c, ve) < r.
By the previous claim, for all v € D it holds that

3r < dist(c, v) < dist(c, ve) + dist(v, ve) < dist(v,ve) + 7
Therefore:

max min dist(v, v') > min dist(v, v¢) > 2r
v'eP, veD veD

contradicting Eq. (9). O

Now, for every ¢ € C,, from Definition 4.5 there is a linear region H. of f such that Byjst(c,r) C Hc. In other words,
there exists W, € R/¥9? such that f(v) = W,v for all v € Bgis(c,r).” Since C, covers P, and D C P,, for every
v € D there is some c(v) € Cy s.t. v € Baist(c(v), 7).

Now, we’ll define the vector 1 € RY™4* which will be used as a linear-function on top of the embedding ®¢,; to be equal
to the target CNN on “good” x’s. Denote D = {v1,..., vy}, and define the vector w as follows:

W = {(u(l))r Wewi) oo (u(l))T Wewn)ros (u(n))—r Wewyyseos (u(n))—r WC(VN)]

ie,foralll <i<mand1<j<N,W;_1)n4; isablock of size dp defined as W(;_1)n4; = (u(i))T Wev,)-

Observe that:

N
@NT Y Weg, o (x[il; D)
1 j=1

<U-(i), WC(Wdisc(x[i]§D))x[i]>

(W, @run(x)) =

-

7

-

i=1

For some x € X, we call x good as in the proof of Theorem 4.1. Now, for all good x, for every i denote by c(x[i]) € C’
the center of the ball containing x[i], i.e. the vector c(x[i]) € C’ satisfying x[i] € Baist(c(x[i]),r) € He(x[s)- Since the
ball is contained in some linear region, i.e. Byist(c(x[i]),7) € He(x[i))» We get that f(x[i]) = W) x[i].

There is no bias because the first Convolutional layer has no bias

Efficient Learning of CNNs using Patch Based Features

Claim: Denote by v and nearest-neighbor of x[i] in the patches-dictionary D, i.e. v& = a5t (x[i]; D).
Then, if C' C C,,, we have that for all good x and all 4, c(x[i]) = c(v%).

In words, the claim states that every patch in every good x is contained in the same ball as its nearest-neighbor in D.

Proof. Intuitively, the claim is true because if the two patches were not in the same ball, they were distant from each
other (from the previous claims). This will contradict what we previously showed, that each patch is quite close to its
nearest-neighbor in the patches dictionary.

Formally, we have c(x[i]) € C' C C,,, and from the previous claim it holds that there is v € D s.t. v € Bqjst (c(x[i]), 7).
Therefore,
dist(x[i], vi) < dist(x[i], v) < dist(x[i], c(x[i])) + dist(c(x[i]),v) < 2r

Note that ‘ ‘ ‘ ‘
dist(c(x[i]), c(vy)) < dist(c(x[d]), x[i]) + dist(x[i], vL) + dist(v, (VL))

and if c(v%) # c(x[i]), by Definition 4.5 we have dist(c(x[i]), c(v%)) > 4r and therefore
dist(x[i], v) > dist(c(v%), c(x[i])) — dist(x[i], c(x[i])) — dist(v%, c(vi)) > 2r

in contradiction to what we showed, and therefore the required follows. O

So, if C" C C,, we have for all good x:

Fwu(x =i< @ f(x > zn:< ()WC(XZ)XH>

i=1 i=1

s

Il
g

™

(u(i)>T W viyx[i] = (W, Pran(x))

i=1
And the required follows from the fact that Pz [x is not good] < ¢, as shown in the proof of Theorem 4.1. O

Proof of Theorem 4.6. Fix ¢ = §/m and §' = ¢. From Lemma B.2, w.p. 1 — ¢’ over sampling .S,,, there exists some W s.t.
for all good x it holds that Fyy uy(x) = (W, ®rui(x)). Recall that, as in Theorem 4.1, we say that .S is good if x is good for
all x € S. Similarly, we get that by choice of € we have w.p. > 1 — §, that the sample S is good.

So, if S is good and C’' C C,,, there exists some W that separates S with margin 1, and from what we showed this happens
w.p. 1 — § — ¢’. Using standard VC bounds, w.p. 1 — ¢’ — 24 it holds that

H:D(x,y)NI,xis good [Z/ <V_V7 @(X; D)> < O] <e
Therefore,

P(x,y)NI [y <V_V, (I)(X; D)> < 0] = IP)(x,y)NI, x is good [y <W7 (D(X; D)> < 0]
+ IPy(x,y)NZ,xis not good [y <W7 @(X; D)> < O] Set 6/

which concludes the proof.

O

B.4. Proof of Theorem 4.3

Assume that m < nN/2. Denote A = 4n/L. Let Z = {z(M,... 2N} C R? a set of N points s.t. z0) =
(A, 1,0,...,0). Forevery i € [n],j € [N], define x; ; € R as x; ;[i] = 219 and for all i/ # i it holds that x; ;[i'] = 0
(i.e., the i-th patch of x; ; is zU) and the rest of the patches are zero).

Claim: For any y € {£1}%, there exists some function fy : R%” — Rs.t.

Efficient Learning of CNNs using Patch Based Features

* For all j it holds that y; f, (z()) > 1.
* fyis (2/A)-Lipschitz.

s There exist some Wy € R™*” and uy, € R s.t. fy(z) = (uy,0(Wyz))

Proof. Denote (x) = o(z + 1) — 20(z) + o(x — 1). Observe that the following are immediate:

o Y(x) =0forz ¢ (—1,1).
* 9(0) =

* ¢ is 1-Lipschitz.

Now, for all j, denote U;(z) = ¢ (%21 — 2j2z2) = ¥ ($2; — 2j), and observe that ¥;(z()) = 1, ¥;(z()) = 0 for all
Jj#iand ¥; is %-Lipschitz. Now, define:

N
2) =)y ¥
j=1
and observe that this function satisfies the required. O

Claim: For all y(V),... y(™ € {£1}¥, the function Fy(x) = Y i, fyw (x[i]) = S, (uyw, o(Wyox[i])) is
L-Patch-Lipschitz.

Proof. Fix some x,x’ € R Since every function f, is % -Lipschitz we have that:

IFY(X)—FY(X’)|§Z!fy<> — fyo (x'1d])] ZZ il = x'f]ll < L - max |Ix[i] —]|

Claim: It holds that Ny, (Z,1/L) =

Proof. Since |Z| = N, it clearly holds that Ny, (Z,1/L) < N. Now, observe that for any z,z’ s.t. z # z’ it holds that
||z —2z'|| > 4/L, and so for any ball B, (c, 1/L) it cannot hold that z,z’ € By, (c,1/L). Therefore, every z € is covered
by a unique ball, and therefore any cover is of size at least V. O

So, for any choice of y(l), o ,y(") S {:l:l}N, let Zy be the distribution defined as follows: w.p. 1 — ¢, take (xl 1, ygl)) s

and with probability e take (xi’ i y](l)> where ¢ ~ [n], j ~ [IN] uniformly. Observe that by the previous claims Zy satisfies

Assumption 3.4 and also Ny, (Pz,,1/L) = N
Let S be the sample seen by the algorithm A, and .A(.S) be the hypothesis returned by A upon seeing the sample S. Let S be

the samples not seen by the algorithm. We also denote y(.S) the coordinates of y that appear in S, and y(S) the coordinates
of y that do not appear in S. So, we have:

EEPey)~zy [AS)(X) # ylx # x11] 2 EE nN > A (x) £y}
(x.y)€s
5 Bs El

2nN

Efficient Learning of CNNs using Patch Based Features

Now, for some sample S = {x(l), e ,x(m)}, denote by M the number of unique samples in .S, and we have:
M = Z 1{Xi)j S S} <1+ Z 1{%‘1‘,]‘ S S}
i€[n],j€[N] (@:9)#(1,1)

< 1—|— Z Zl{x(t) :Xi,j}: 1+i1{x(t) #Xl,l}

(6.4)#(1,1) t=1 t=1

So, we have:

|§’ (nN M)>nN—1—EZl{x(t)7$x11}—nN me — 1
t=1

nN2

Therefore, if m < there exists a distribution Zy such that

1
IEP(XW)NIY [A(S)(x) # ylx #x11] > 1
Now, using Lemma B.1 in (Shalev-Shwartz & Ben-David, 2014) we get that w.p. at least 1/8 we have

Prcy)nzy [AS)(X) 7# 4] = Pl y)nzy [AS)(X) # ylx # x11] >

ool m

C. Experimental Details
C.1. Parameters setting

We sample uniformly at random 262, 144 patches of size 5 x 5 from the training-data, run k-means clustering to get
N = 1,024 patches which are used as the patches-dictionary. We use & = 0.25 - IV as the number of neighbours. We do not
use padding when calculating the embedding, so an input image of shape 32 x 32 x 3 is transformed to 28 x 28 x 1024. We
then use average-pooling with size 4 x 4 and stride 4 to get 7 x 7 x 1024, followed by batch-normalization and then 1 x 1
convolution (a.k.a. ”bottleneck’) which outputs 7 x 7 x 32. Finally, a linear layer on top of that predicts the desired output.

Note that in section 5.4 we use a slightly different parameters setting - we use a smaller pooling (2 x 2 instead of 4 x 4),
and it’s being used only in the first layer (the deeper layers don’t use pooling at all). The patch-size of the first layer is the
same (5 x 5) but in the deeper layers we use a smaller patch-sizes (3 x 3 instead of 4 x 4) which proved to be helpful. The
number of neighbors in the deeper layer was lowered to k¥ = 128 which proved to be helpful as well.

We train for 200 epochs using SGD with momentum 0.9 and batch-size 64. We set 0.003 as the initial learning-rate, and
decay it by a factor of 0.1 at epochs 100 and 150. We use standard data augmentations during training (random horizontal
flip and random crop), but no augmentations are used when sampling the patches for the dictionary.

Each experiment was launched 5 times (with different random seeds) and the reported values are the mean and std across the
5 runs '°,

C.2. Comparison to previous works

We use k-means clustering for the unsupervised stage, where Coates et al. (2011) examined more techniques - auto-encoders,
Boltzmann machines and Gaussian mixtures. They reported k-means achieves the best performance, so we focused on
this method only. Thiry et al. (2021) discarded the unsupervised phase at all and obtained the patches dictionary simply
by sampling patches uniformly at random from the training data. We chose to keep the clustering phase since we found
it increased the performance a bit and it does not increase the training or inference time as its done only once during the
initialization of the model.

When creating the embedding vector for each patch, Coates et al. (2011) experimented with a “’softer” version - instead
of the hard-assignment of 0/1 indicating the neighbourhood, assign a number which contains some information about the

10For readability, the standard-deviations were removed from Table 4, all of them are between 0.1% and 0.3% except the deep version
of ®para which were unstable with std of 5% - 10%.

Efficient Learning of CNNs using Patch Based Features

distances between the patches. This results in a vector which is less sparse, with about half of the coordinates being non-zero,
and they reported it works better. We follow the idea of Thiry et al. (2021) using the hard assignment with a largest amount
of neighbors (25%/40% of the patches-dictionary), which also results in an embedding vector that is less sparse, and it
works slightly better than the softer version (according to our experiments).

In order to reduce the spatial dimension, Coates et al. (2011) split the image to 4 quadrants and summed over each one (i.e.,
adaptive sum-pooling to 2 x 2). Thiry et al. (2021) used average-pooling with overlapping kernels (e.g., 5 x 5 with stride 3)
followed by adaptive average-pooling to 6 x 6. We conducted multiple experiments with different parameters and found the
differences to be minor. We picked the parameters which gave the best accuracy, which were simply average-pooling with
kernel 4 x 4 and stride 4.

Coates et al. (2011) uses a linear layer for predicting the classes’ scores, given the (spatially-pooled) features. Thiry et al.
(2021) improved it by first reducing the number of channels with a 1 x 1 convolution to 128, essentially replacing the linear
layer with a (shallow) linear network. We follow the same idea, and found that the number of intermediate channels can be
reduced even further to 32 without performance degradation.

Thiry et al. (2021) introduced “modern” techniques that were not used by Coates et al. (2011), like batch-normalization and
data-augmentations (i.e., random crop and flip). We use the same techniques which proved to be useful.

Thiry et al. (2021) doubled the patches dictionary by adding the originally sampled patches multiplied by minus one. In
practice, (by observing their publicly released code implementation) they had two separate ’branches” of (Embedding —
AvgPool — BatchNorm — Bottleneck), one operating on the original dictionary and one operating on the negative patches,
and the two outputs are being summed up element-wise before feeding them to the final linear layer. We chose to keep the
architecture simpler and didn’t do it, since the performance gain was minor.

C.3. Efficient implementation using tensor operations

We implement our model (using the constrained linear classifier suggested in section 4.3) efficiently using tensor operations:

1. Calculate k-nearest-neighbors mask
Each input image of shape H x W x C'is transformed into a tensor of shape H' x W' x N, where the ij entry is a
k-hot vector containing 1 in the indices of the k& nearest neighbors to the patch centered at 7.
We implement the calculation of the distances between the whitened patches in the input image and the whitened
patches in our dictionary using tensor operations as well, as described in Appendix B in Thiry et al. (2021).

2. Convolution
Using a learnable convolution layer operating on the input image, we get output tensor of shape H' x W’ x N. This
layer calculates the linear functions z +— (w(?), z) + b (for every ¢ € [N], i.e. for each patch in our dictionary), and
then puts the results in the desired indices (i.e. the result of the g-th linear function on the patch centered at z[i, 5] is in
the index 7, j, q).

3. Element-wise multiplication
We multiply the tensors from the previous two steps and get a tensor of shape H' x W’ x N which contains the outputs
of the linear classifiers corresponding to the k& nearest patches in their corresponding locations (and zero elsewhere).

4. Linear layers
We (possibly) add more linear layers such like average-pooling, batch-normalization or 1 x 1 convolution. The effect
of such linear layers are discussed in Table 3.

5. Final linear classifier
The result of the previous stage is flattened and fed to a linear classifier, predicting the desired output.

C.4. Whitening

The whitening operator is calculated as follows. We create a matrix X € R"*9? containing all of the patches in the
training-data. We calculate the covariance matrix ¥ := %X T X, perform EVD to get ¥ = EDE”, and then the PCA-
whitening operator is defined as Wpca = (M 4 D)~ '/2ET (where) is the whitening regularization factor, we use
A = 0.001). Since whitened data will stay whitened after any rotation, we can also use ZCA-whitening which is defined as

Efficient Learning of CNNs using Patch Based Features

Wzoa = E(M + D)~Y2ET = (A + X)~ /2 and results in whitened data that is as close as possible to the original data.
Figure 6 shows the patches before and after the ZCA-whitening operator. Using whitened patches instead of the original
patches is extremely important for the performance of the model - accuracy increase from 72% to 81%.

Another interesting observation is that the learned kernels of a vanilla CNN turn out to be quite similar to the whitened
patches from the data (see Figure 6). We show the patches that had the highest effect on the final output of the network, by
measuring the norms of their weights in the bottleneck layer. Interestingly, there is some similarity between the learned
kernels and our patches. This might hint that k-means clustering over whitened patches and trained ConvNets result in
similar convolutional filters (a similar phenomenon was suggested in Vinnikov & Shalev-Shwartz (2014)).

AT"THEA”_&SL | EEEONEEER el BIRC R AN SR
=] MT_=3A= NENMNMds 3= FEFEANEN
CTHAsmT AT EfTEFEROAMN HdHEanDnEwT
EEEENENE EEEEENUOE MEBESOSEINN
EECfESNAN =EEEESN&EN /N TN R
EEN m™ @ EERNIEEMNSER el R | RS €
L N | B SR | AMNMEIIERNAN ENEENDTEN
L MmriIRAM LI S R FARUOITFRSIN

Figure 6: (Left) original patches. (Middle) the same patches after ZCA-whitening operator. (Right) Learned kernels in a
vanilla CNN.

C.5. The effects of the different parameters in our model

In this section we examine the affect of different parameters for the algorithm Apgicn, equipped with our suggested
embedding ®¢,;. Figure 7 (left) shows the accuracy for different values of k. Note that using k& = 1024 (which is equal to
the patches-dictionary size) results in a model achieving only 39% accuracy, which make sense because the information
about the neighbourhood of each patch is completely lost.

Figure 7 (right) shows the accuracy for different sizes of the patches-dictionary, which increase to almost 84% with a
dictionary of size 16, 384. Note that all runs are using the same parameters setting as in C.1, in particular the number of
neighbors k is 25% of the dictionary size.

81—
84 -

80 —
83.5 -

79 -

jos
@
|

78 -
82.5 -

accuracy

-
76 -
75 -

|
1 2 4

Figure 7: (Left) accuracy per k& (number of neighbors), where the patches-dictionary size is 1, 024. (Right) accuracy per

dictionary-size.

8

| | |
16 32 64 1
k

28 256 51

accuracy

[eo]
&)
|

81.5 -

81 -

|
1024

|
2048

|
4096
dictionary-size

|
8196

|
16384

