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Abstract
We study the problem of designing autonomous
agents that can learn to cooperate effectively with
a potentially suboptimal partner while having no
access to the joint reward function. This problem
is modeled as a cooperative episodic two-agent
Markov decision process. We assume control over
only the first of the two agents in a Stackelberg
formulation of the game, where the second agent
is acting so as to maximise expected utility given
the first agent’s policy. How should the first agent
act in order to learn the joint reward function as
quickly as possible and so that the joint policy
is as close to optimal as possible? We analyse
how knowledge about the reward function can be
gained in this interactive two-agent scenario. We
show that when the learning agent’s policies have
a significant effect on the transition function, the
reward function can be learned efficiently.

1. Introduction
Recent applications of autonomous systems in our daily
lives show that autonomous agents are no longer deployed
in isolation only, but in situations where they are in close
interaction with humans. To facilitate successful and safe
cooperation between autonomous systems and humans, we
need to design agents that can learn about human prefer-
ences as well as adapt to suboptimal human behaviour. We
focus on the situation where the autonomous agent and the
human simultaneously act in the same environment. As
a result, observed human behaviour, which could be used
to infer preferences, depends on the learning agent’s ac-
tions. This leads to the problem of learning preferences
and intentions from interactions. Learning in these interac-
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tive scenarios brings its own challenges, but also significant
benefits as we will see in the following.

In this paper, we consider the problem of learning to coop-
erate with a potentially suboptimal partner while having no
access to the joint reward function. This problem is mod-
eled as a cooperative episodic Markov Decision Process
(MDP) between two agents A1 and A2. While agent A2

(the human) knows the joint reward function, we take the
perspective of agent A1 (the learner) that has to cooperate
with A2 without knowing or observing the rewards. As an
example, consider a maze in which the human tries to reach
a target while the learning agent can unlock doors to help
the human move, but without knowing the precise target
location. We focus on the Stackelberg formulation of the
game, in which at the beginning of each episode the learner
commits to a policy before the human does. This allows
us to view the learning agent as a designer of environments
that the human operates in. For instance, when the learn-
ing agent’s actions correspond to unlocking doors in a grid
world, then, in the Stackelberg game, we can interpret the
learner’s policy as choosing a maze layout, which is com-
municated to the human at the beginning of the episode and
in which she operates.

Inverse Reinforcement Learning (IRL) (Russell, 1998) can
be used to infer the reward function of an agent from ob-
servations of that agent’s behaviour, which is assumed to
be (near-)optimal. In our case, the learner also obtains ob-
servations of the human’s behaviour through interactions,
which could then be used to infer the joint reward func-
tion. However, the human’s actions, e.g. the path taken
in a maze, depend on the learner’s policy, e.g. the maze
layout, so that in contrast to the standard IRL formulation
the learner now actively influences the demonstrations of
the human expert. This leads to an interesting Interactive
IRL setting, where the learner can actively seek information
about the joint reward function by playing specific policies.
In this paper, we analyse how to infer the unknown (joint)
reward function from interactions with the expert and how
the learner should choose its policy so that the two agents
collaborate efficiently over both the short and long term. We
lay an emphasis on the role of the learner as the designer
of environments and investigate what environments allow
the learning agent to infer the reward function quickly while
achieving high levels of cooperation.
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Outline and Contribution. We discuss related work in
Section 2 and formally introduce the setting in Section 3.
Section 4 considers the case where A2 plays optimally. We
show how to learn about the reward function from inter-
actions with A2 and prove the existence of ideal reward
learning environments. We then construct an algorithm that
is no-regret under mild assumptions. Section 5 considers
the case where A2 responds suboptimally. In Section 5.1,
we adapt conventional Bayesian IRL methods for estimating
the reward function to our setting. We then analyse opti-
mal commitment strategies for cooperating with suboptimal
followers in Section 5.2. Section 6 describes the experi-
ments, which we perform on random MDPs and specially
constructed maze problems. Our experiments support our
theoretical results and show that the interactive nature of our
setting allows the learning agent to obtain a much better es-
timate of the reward function (compared to the standard IRL
setting). We thus achieve better cooperation by intelligently
probing the human’s responses. Future work is discussed in
Section 7. Finally, omitted proofs, experimental details and
algorithms are collected in the Appendix.

2. Related Work
Since our setting requires (a) inferring the joint reward func-
tion, as in IRL, and (b) collaborating with a potentially
suboptimal agent, in this section we present related work in
those two domains.

Inverse Reinforcement Learning. IRL (Russell, 1998)
aims to find a reward function that explains observed be-
haviour of an agent. We face the same problem, with the
main difference being that two agents act in the environment
simultaneously, one of which (the human) knows the reward
function and the other (the learner) does not. Our algorithm
for the case when A2 is optimal is based on a characterisa-
tion of reward functions consistent with an optimal policy,
similarly to Ng & Russell (2000). We extend their charac-
terisation to our interactive setting and prove the existence
of ideal (reward) learning environments. Ramachandran
& Amir (2007) adopt a Bayesian perspective to the IRL
problem as it provides a principled way to reason under
uncertainty. The Bayesian formulation of the IRL problem
can naturally account for suboptimal demonstrations as well
as partial information and we will show how to translate the
Bayesian approach to our interactive IRL setting.

Hadfield-Menell et al. (2016) introduce the problem of coop-
erative IRL in which a robot must cooperate with a human
but does not initially know the reward function. Their work
focuses on apprenticeship learning, where the robot and the
human take turns demonstrating and performing a task. In
particular, they examine the problem of calculating optimal
human demonstrations for the robot to observe. Instead, we

consider the situation when the agents interact by simulta-
neously acting in the same environment. Our setting also
notably differs from apprenticeship learning (Abbeel & Ng,
2004) and imitation learning (Ratliff et al., 2006) more gen-
erally in that our goal is not to mimic the behaviour of A2,
as effective cooperation between A1 and A2 may require
both agents to perform entirely different tasks. Nikolaidis &
Shah (2013) consider a cross-training approach in which a
human expert and a robot repeatedly switch roles. In the first
of two phases, the expert operates in an environment, which
is influenced by the robot. The learner then observes the ex-
pert and updates its estimates of the reward function. In the
second phase, the robot then demonstrates the learned policy
while the expert influences the transitions. Crucially, in this
approach the human steers the learning of the robot similar
to teaching approaches for IRL (Brown & Niekum, 2019;
Parameswaran et al., 2019). In contrast, we consider the
situation where the learner actively seeks information from
the human over whom we have no control. Natarajan et al.
(2010) consider a multi-agent extension of IRL in which the
learner observes multiple experts maximising a joint reward
function. Similarly, Lin et al. (2019) address the problem of
multi-agent IRL in certain general-sum games. In contrast
to their work, we consider the case where the learner is not
a passive observer, but interacts with the other agent and
thereby influences what observations it collects.

Zhang & Parkes (2008) and Zhang et al. (2009) consider the
problem of environment design: how to modify an environ-
ment so as to influence an agent’s decisions. They analyse
how to construct reward incentives to induce a particular pol-
icy when the reward function of the acting agent is unknown.
In our setting, we can also view the learner as a designer of
environments that the human operates in, however, with the
difference that the learner influences transitions, but not the
underlying reward function. Moreover, our goal is generally
not to steer the human towards certain behaviour, but rather
to learn from and cooperate with a human expert.

Cooperating with suboptimal partners. In the context
of human-AI collaboration, there have been recent efforts
addressing the problem of cooperating with a potentially
suboptimal partner when the reward function is known. In
particular, Dimitrakakis et al. (2017) and Radanovic et al.
(2019) consider a setting where the human responds subop-
timally to the learning agent’s policy. The former focuses
on a single-stage Stackelberg game, while the latter on an
online learning variant of the problem. However, in both
cases the learning agent knows the human’s reward function.

Our work also has some links to the problem of optimal com-
mitment in Stackelberg games (Conitzer & Sandholm, 2006;
Letchford et al., 2012). While prior work assumes optimal
responses and a potentially competitive game, we focus on
finding optimal commitment strategies when playing with a
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suboptimal follower in a strictly cooperative setting.

3. Setting
We model this problem as a cooperative two-agent MDP
(S, A1, A2,P, r, γ) between agents A1 and A2, where S
denotes a finite state space, Ai a finite action space of agent
Ai with i ∈ {1, 2}, P : S×A1×A2 → ∆(S) the transition
function, r : S → R the joint reward function and γ ∈ [0, 1)
the discount factor. We will take the perspective of agent A1

that, without knowing or observing the joint reward function,
aims to cooperate with its partner A2. We assume that the
interaction between the two agents and the environment
takes place in a sequence of episodes, where at the beginning
of each episode, A1 commits to a policy π1 first. Agent
A2 then responds with a policy π2 and the joint policy is
executed until the end of the episode.1 We assume that
agents A1 and A2 know the transition function.

Interaction. The repeated interaction of both agents can
be specified as the following Stackelberg game. In episode t:

1) A1 commits to policy π1
t ,

2) A2 observes π1
t and responds with policy π2

t ,

3a) A1 observes the fully specified policy π2
t , or

3b) A1 observes a trajectory τt of (random) length H + 1,
where τt = (s0, a0, b0, . . . , sH , aH , bH).

Alternative 3a) describes the full information setting in
which the complete policy π2

t is available to the learner
at the end of each episode. This could, for instance, be
the case when interaction takes place for a sufficiently long
time in each episode, or the same policy is committed by
A1 several times so that A1 can effectively observe A2’s
response. Alternative 3b) corresponds to the partial infor-
mation setting, where A1 interacts with A2 in a series of
H +1 time steps and observes the generated trajectory only.

3.1. Preliminaries

By a slight abuse of notation, we sometimes refer to func-
tions f : S → R as vectors f ∈ R|S|. For instance, when
convenient, we treat reward functions r : S → R as vectors
r ∈ R|S|. Let Vπ1,π2 denote the value function under the
joint policy (π1, π2). The value function satisfies the Bell-
man equation, which we can concisely express in matrix-
form as

Vπ1,π2 = (I − γPπ1,π2)−1r,

where Vπ1,π2 and r are column vectors and Pπ1,π2 is the
transition matrix obtained from P by marginalising over

1Even in MDPs without termination condition, discounting
corresponds to episodes that end with probability 1− γ each time
step.

policy (π1, π2). Let Qπ1,π2(s, a, b) denote the value of tak-
ing joint action (a, b) in state s under policy (π1, π2). When
A1 commits to a policy π1 first, agent A2 gets to plan under
the marginalised transitions Pπ1 : S × A2 → ∆(S) given
by Pπ1(s′|s, b) = Ea∼π1 [P(s′|s, a, b)]. The Q-values for
A2 under Pπ1 equal Qπ1,π2(s, b) = Ea∼π1 [Qπ1,π2(s, a, b)]
and we denote the optimal Q-value with respect to Pπ1 by
Q∗

π1(s, b) = maxπ2 Qπ1,π2(s, b).

Behavioural Models for A2. A typical assumption about
the behaviour of a partner (or opponent) in game theory
(Nisan et al., 2007) and IRL (Ng & Russell, 2000) is that of
optimal behaviour, sometimes referred to as fully rational
behaviour. In our case, this means that in episode t, agent
A2 plays an optimal response π2

t (π
1
t ) to the policy π1

t com-
mitted by agent A1. Note that we will simply write π2

t when
the dependence on π1

t is clear from the context.

We are also interested in the case when A2 is suboptimal. A
common decision-model for suboptimal human behaviour
in IRL (Jeon et al., 2020), economics (Luce, 1959), and cog-
nitive science (Baker et al., 2009) are Boltzmann-rational
policies for which the probability of choosing an action is
exponentially dependent on its expected value:

π2(b | s, π1) ∝ exp
(
βQ∗

π1(s, b)
)
.

Here, β ≥ 0 is called the inverse temperature of the dis-
tribution and indicates how rationally A2 is behaving. In
particular, for β = 0, A2 acts uniformly at random, and
for β → ∞, A2 acts perfectly rational, i.e. optimally in
response to A1’s committed policy.

Objective and Regret. Agent A1 aims to maximise the
expected sum of discounted rewards by learning about the
joint reward function and cooperating with A2. In general,
due to the possibly suboptimal nature of A2, we have that
maxπ1 Vπ1,π2(π1) ⪯ maxπ1,π2 Vπ1,π2 , i.e. the value of the
game under A2’s behavioural model is bounded by the value
of the joint optimal policy. For an initial state distribution D,
we define the value of the optimal commitment strategy as

V ∗ = max
π1

Es0∼D

[
Vπ1,π2(π1)(s0)

]
,

where π2(π1) denotes the response of A2 to policy π1.
Note that the optimal value V ∗ may only be well-defined
with respect to a specific initial state distribution as a dom-
inating commitment strategy may fail to exist when A2

responds suboptimally (see Section 5.2). We define the
(per-episode) regret of playing policy π1 as the difference
L (π1) = V ∗ − Es0∼D[Vπ1,π2(π1)(s0)]. Similarly, we de-
fine the (online) regret of playing policies π1

1 , . . . , π
1
T as the

sum L (π1
1 , . . . , π

1
T ) =

∑T
t=1 L (π1

t ).
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3.2. Interactive IRL

In the classical IRL problem, the learner is able to observe
an expert performing a task. The observations are then
interpreted as demonstrations of approximately optimal be-
haviour in a fixed single-agent MDP with unknown reward
function. Our setting is substantially different, as two agents
must collaborate in the same two-agent MDP, with the first
agent not knowing the common reward function. As a re-
sult, the second agent’s demonstrations depend on the first
agent’s policy and so become context-dependent. In addi-
tion, learning must take place in an online fashion, as the
first agent must adapt its policy to extract information and
to better collaborate.

A1 as an MDP Designer. When the learner, A1, commits
to a policy π1 at the beginning of an episode, then — with
knowledge of π1 — the expert, A2, can be seen as planning
in a single-agent MDP with transition function Pπ1 . Con-
sequently, from the perspective of the learner, choosing a
policy π1 is equivalent to designing single-agent MDPs for
the human expert to act in. While the state space, A2’s
action space, the (unknown) reward function as well as
the discount factor remain the same across these simplified
MDPs, A2 may face different environment dynamics Pπ1

depending on A1’s policy. This is in contrast to the standard
IRL setting in which demonstrations always take place in
the same fixed MDP. An abstract example where the learner
creates different environments for the expert to operate in is
illustrated in Figure 1(a).

Context-Dependent Responses. The learner can now in-
terpret the expert’s response to a policy π1 as a demonstra-
tion in the single-agent MDP (S, A2,Pπ1 , r∗, γ), where r∗

is the true reward function that is unknown and unobserved
by A1. Since A2 faces possibly different environment dy-
namics across episodes, we can also expect A2’s behaviour
to vary between episodes. In Figure 1(a), for instance, the
expert adapts their policy to the specific maze layout created
by the learner. As a result, A2’s responses (and thus demon-
strations) become context-dependent in the sense that they
always depend on A1’s policy, i.e. the environment that is
implicitly generated by A1.

In particular, we see that even though the underlying re-
ward function remains the same, the results of IRL methods
vary depending on the environment in which demonstrations
were provided. Figure 1(b) also illustrates that reward learn-
ing may overfit to specific environment dynamics, which
has also been observed by, e.g., Toyer et al. (2020). While
there may exist certain environment dynamics that are bet-
ter suited for learning rewards, in this paper we focus on
designing a sequence of environments, based on past data,
to learn the reward function efficiently.

(a) A2

+1

A2

+1

A2

+1

(b) A2 A2 A2

Figure 1. (a) A1 designs a maze for A2 to navigate in and collect a
reward in the top right corner. A2 behaves differently, i.e. chooses a
different path, depending on the maze created by A1. (b) The mean
reward function computed using Bayesian IRL (Ramachandran
& Amir, 2007) when observing A2 navigate in each of the three
mazes. Dark colours denote higher estimated rewards.

Online Learning. As the game progresses, the learner
interacts with the expert in a series of episodes, thereby
collecting a stream of observations. Then, in order to extract
more information as well as to improve cooperation in the
next episode, the learner may want to leverage the observa-
tions up to episode t to learn about the joint reward function
and to inform its decisions in episode t + 1. Naturally,
since the learner actively influences the demonstrations by
the expert, we ask ourselves whether demonstrations un-
der some environment dynamics Pπ1 are more informative
than others. In particular, how much more information (if
any) can be gained from demonstrations in unseen environ-
ments? In the following, we will address these questions
both theoretically and empirically.

4. Cooperating with Optimal Agents
Here we consider the case when A2 responds optimally to
the commitment of A1. In Section 4.1, we characterise the
set of feasible reward functions, i.e. those that are consistent
with observed responses, and prove the existence of ideal (re-
ward) learning environments. We then describe an algorithm
that is no-regret under an assumption on the identifiability
of suboptimal behaviour in Section 4.2. The omitted proofs
from this section can be found in Appendix A.

4.1. Learning from Optimal Responses

For our theoretical analysis, we focus on the full informa-
tion setting in which A1 observes the fully specified policy
played by the expert at the end of each episode. In a first
step, we define a feasible reward function under (π1, π2) as
a reward function for which A2’s response to the commit-
ment of A1 is optimal.

Definition 1. We say that a reward function r is feasible
when observing policy π2 in response to π1 if π2 is optimal
in the single-agent MDP (S, A2,Pπ1 , r, γ).
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We now adapt the standard result by Ng & Russell (2000)
to obtain a characterisation of the set of feasible reward
functions under policies π1 and π2. Here, we let ⪰ denote
element-wise inequality.

Theorem 1 ((Ng & Russell, 2000)). Let there be an MDP
without reward function (S, A1, A2,P, γ). A reward func-
tion r is feasible under policies π1 and π2 if and only if(

Pπ1,π2 − Pπ1,b

)(
I − γPπ1,π2

)−1
r ⪰ 0 ∀b ∈ A2,

where Pπ1,b is the one-step transition matrix under policy
π1 and action b ∈ A2.

Since A1 and A2 repeatedly interact in a series of episodes,
a reward function is feasible after t episodes if and only if
it is feasible under all policies π1

1 , . . . , π
1
t and correspond-

ing responses π2
1 , . . . , π

2
t . As an immediate consequence

of Theorem 1, we then obtain the following characterisa-
tion of reward functions that are feasible under multiple
observations.

Corollary 1. Let there be an MDP without reward function
(S, A1, A2,P, γ). A reward function r is feasible when
observing policies (π1

1 , π
2
1), . . . , (π

1
t , π

2
t ) if and only if(

Pπ1
1 ,π

2
1
− Pπ1

1 ,b

)(
I − γPπ1

1 ,π
2
1

)−1
r ⪰ 0 ∀b ∈ A2,

. . .(
Pπ1

t ,π
2
t
− Pπ1

t ,b

)(
I − γPπ1

t ,π
2
t

)−1
r ⪰ 0 ∀b ∈ A2.

We denote the set of reward functions that satisfy these
constraints by Rt = R((π1

1 , π
2
1), . . . , (π

1
t , π

2
t )).

The IRL problem is an inherently ill-posed problem as de-
generate solutions such as constant reward functions explain
any observed behaviour. In fact, we see that any reward func-
tion r ∈ R|S| is indistinguishable from its positive affine
transformations Aff(r) = {λ1r + λ21 : λ1 ≥ 0, λ2 ∈ R}.

Lemma 1. If A2 responds optimally to the commitment
of A1, any reward function r is indistinguishable from its
positive affine transformations, i.e. r is feasible iff every
r̄ ∈ Aff(r) is feasible.

In particular, Lemma 1 states that all positive affine transfor-
mations of the true reward function r∗ are always feasible.2

However, since any reward function in Aff(r∗) induces the
same optimal (joint) policy, finding it is sufficient for opti-
mally solving the IRL problem.

Perhaps surprisingly, we find that if A1’s policies can in-
duce any transition matrix for A2, then there exists a policy
π1 such that its optimal response π2(π1) can only be ex-
plained by positive affine transformations of the true reward
function.

2We generally denote the true underlying reward function by r∗.
Note that r∗ is unknown to and unobserved by A1.

Theorem 2. (A) If A2 responds optimally and (B) if for all
T : S × A2 → ∆(S) there exists π1 such that Pπ1 ≡ T ,
then there exists a policy π1 with optimal response π2 such
that the feasible set of reward functions under (π1, π2) is
given by Aff(r∗), i.e. R((π1, π2)) = Aff(r∗).

To emphasise the interpretation and relevance of Theo-
rem 2 in the standard single-agent IRL setting, we can also
rephrase Theorem 2 as follows:
Remark 1. For any state space S , action space A, reward
function r∗ and discount factor γ ∈ [0, 1), there exists a
transition matrix T : S ×A → ∆(S) such that the optimal
policy π in (S, A, T , r∗, γ) uniquely characterises r∗ up to
positive affine transformations.

This leads to the following corollary, which shows that it
is possible to check in a single episode whether any given
reward function is an affine transformation of r∗.
Corollary 2. Under Assumptions (A) and (B) of Theorem 2,
the learner can verify in any episode whether a reward
function r is a positive affine transformation of the unknown
and unobserved reward function r∗.

We have shown that for any reward function r∗ there exists
an environment T : S ×A2 → ∆(S) such that the optimal
policy with respect to T and r∗ characterises r∗ up to posi-
tive affine transformations (Theorem 2). This implied that
the learner, without knowledge of r∗, can verify whether
a reward function is element in Aff(r∗) by playing a spe-
cific policy (Corollary 2). However, the assumption that
A1 can create any environment dynamics is very strong and
we notice that, while retrieving the set Aff(r∗) is clearly
desirable, it is generally not necessary in order to cooperate
optimally as other reward functions may also induce optimal
behaviour. Thus, milder assumptions may be sufficient to
learn about the reward function so that A1 is an optimal part-
ner to A2. In the following, we propose an algorithm that
learns about the reward function by adaptively designing
environments and that is no-regret under mild assumptions.

4.2. An Algorithm for Interactive IRL

We now present an online algorithm for learning from and
cooperating with an optimally responding agent A2 when
agent A1 gets to observe the fully specified policy of A2 at
the end of each episode. Note that we can always restrict the
space of reward functions to the |S|-dimensional unit sim-
plex ∆(S) as any positive affine transformation of r ∈ ∆(S)
is equivalent to r in the sense that they are feasible under
the same observations and induce the same optimal (joint)
policies (Lemma 1). Now, as the constraints characterising
the feasible set Rt = R((π1

1 , π
2
1), . . . , (π

1
t , π

2
t )) are linear

in the reward function (Corollary 1), we can use a Linear
Program (LP) to find a reward function in Rt ∩∆(S). Let
C((π1

1 , π
2
1), . . . , (π

1
t , π

2
t )) denote the set of constraints in-
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Algorithm 1 Interactive IRL via Linear Programming
1: input: (S, A1, A2,P, γ), initial policy π1

1

2: for t = 1, 2, . . . do
3: commit to policy π1

t

4: observe response π2
t

5: get constraints Ct = C((π1
1 , π

2
1), . . . , (π

1
t , π

2
t ))

6: sample objective vector c uniformly at random
7: find solution rt ∈ Rt of LP (1) for Ct and c
8: compute π1

t+1 ∈ Πopt
1 (rt)

9: end for

duced by (π1
1 , π

2
1), . . . , (π

1
t , π

2
t ). In episode t+ 1, we then

sample an |S|-dimensional objective function c uniformly
at random and solve the following LP:

max
r∈∆|S|

c⊤r subject to C((π1
1 , π

2
1), . . . , (π

1
t , π

2
t )). (1)

In the unlikely event that the LP computes the constant
reward function in ∆(S), we resample the objective c and
solve the LP again. Given a prospective reward function r,
we then want to compute an optimal commitment strategy in
(S, A1, A2,P, r, γ). We see that if A2 responds optimally,
it suffices to find an optimal joint policy as it yields an
optimal commitment strategy for A1.

Lemma 2. Let (π̄1, π̄2) be an optimal joint policy. If
agent A2 responds optimally to the commitment of A1,
then Vπ̄1,π2(π̄1) = Vπ̄1,π̄2 . In particular, this entails that
maxπ1 Vπ1,π2(π1) = maxπ1,π2 Vπ1,π2 .

Note that an optimal joint policy and thus an optimal com-
mitment strategy for A1 can be computed in time polyno-
mial in the number of states and actions. In episode t+ 1,
the algorithm then commits to a policy π1

t+1 ∈ Πopt
1 (r),

where r is the solution of the LP (1) and Πopt
1 (r) is the set

of optimal commitment strategies under r. A description of
this approach is given by Algorithm 1. In fact, we can show
that Algorithm 1 is no-regret under the assumption that
reward functions that induce suboptimal joint policies are
identifiable in the sense that these also induce suboptimal
responses.

Proposition 1. Suppose that for any non-constant reward
function r ∈ ∆(S) it holds that if an optimal joint policy
(π1, π2) under r is suboptimal under r∗, then in return
there exists an optimal response π2(π1) under r∗ that is
suboptimal under r. Moreover, assume that A2 responds
optimally and breaks ties between equally good policies
uniformly at random. Then, the average regret suffered by
Algorithm 1 converges to zero almost surely.

Proof Sketch. The proof relies on a finite cover of the space
of reward functions. We can show that in every step of the
algorithm either an optimal policy was played (generating

no regret) or with positive probability the reward functions
in at least one of the sets of the cover become infeasible -
thus ultimately reducing the set of feasible reward functions
to only those that yield optimal policies.

5. Cooperating with Suboptimal Agents
We now consider the case when A2 responds suboptimally
according to some behavioural model such as Boltzmann-
rational policies. Section 5.1 extends the Bayesian IRL for-
mulation to our setting and Section 5.2 analyses the problem
of computing optimal commitment strategies when A2 is
playing suboptimally. The omitted proofs from this section
can be found in Appendix B.

5.1. Learning from Suboptimal Responses

When demonstrations are possibly suboptimal, it is natu-
ral to take a Bayesian perspective (Ramachandran & Amir,
2007) as it provides a principled way to reason under uncer-
tainty. Moreover, the Bayesian approach naturally extends
to the partial information setting, where only trajectories
generated by both agents’ policies are available for learn-
ing. We assume that A2 responds with Boltzmann-rational
policies with unknown inverse temperature β3 and adapt the
Bayesian IRL formulation to our setting. Suppose that in the
first t episodes A1 observes (π1

1 , τ1), . . . , (π
1
t , τt), where τi

is the trajectory generated by A1’s policy π1
i and A2’s re-

sponse π2
i (π

1
i ) for i ∈ [t].4 Bayesian IRL aims to estimate

the posterior

P(r, β | (π1
1 , τ1), . . . , (π

1
t , τt))

=
P((π1

1 , τ1), . . . , (π
1
t , τt) | r, β)P(r)P(β)

P((π1
1 , τ1), . . . , (π

1
t , τt))

,

given priors P(r) and P(β) over reward functions and in-
verse temperatures, respectively. We notice that the ob-
servations (π1

1 , τ1), . . . , (π
1
t , τt) are conditionally indepen-

dent under measure P(· | r, β). As a result, we can ex-
press their likelihood as P((π1

1 , τ1), . . . , (π
1
t , τt) | r, β) =∏t

i=1 P((π1
i , τi) | r, β). The likelihood for each observa-

tion (π1
i , τi) can then be computed as

P((π1
i , τi) | r, β) =

H∏
h=0

π2(bi,h | si,h, π1
i , r, β)

∝ exp
(
β

H∑
h=0

Q∗
π1
i
(si,h, bi,h, r)

)
.

The Bayesian method we employ generates samples from
the posterior via Markov Chain Monte Carlo (MCMC), sim-

3Note that any other parameterised behavioural model could
also be modeled by this Bayesian formulation.

4For notational conciseness, we assume here that the length of
a trajectory is fixed across all episodes.
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ilarly to (Ramachandran & Amir, 2007; Rothkopf & Dimi-
trakakis, 2011). At a high level, we employ a Metropolis-
Hastings algorithm on the reward simplex, with a uniform
prior on the reward function and an exponential prior on the
inverse temperature (see Algorithm 4 in Appendix D).

5.2. Planning with Suboptimal Agents

Prior work on computing optimal commitment strategies
in stochastic games typically assumes that the follower is
responding optimally (Letchford et al., 2012; Vorobeychik
& Singh, 2012). In this section, we analyse optimal com-
mitment strategies for the cooperative Stackelberg game
from Section 3 when agent A2, i.e. the follower, responds
suboptimally according to some behavioural model, e.g.
Boltzmann-rational policies or ε-greedy policies. For this,
the concept of dominating policies play a crucial role.

Definition 2. A policy π1 is dominating if Vπ1,π2(π1)(s) ≥
Vπ̄1,π2(π̄1)(s) for all policies π̄1 and states s ∈ S.

The existence of dominating policies is closely linked to
our capacity to compute an optimal commitment strategy
efficiently as it is a key requirement for dynamic program-
ming. We show that if A2 plays proportionally with respect
to the expected value of taking an action, there may not exist
dominating policy for A1 to commit to.

Theorem 3. If π2(b | s) ∝ f(Q∗
π1(s, b)) for any strictly

increasing function f : [0,∞) → [0,∞), then a dominating
commitment strategy for agent A1 may not exist.

In particular, this means that if A2 plays Boltzmann-rational
policies, a dominating commitment strategy may fail to
exist. Note that Theorem 3 generally only holds for strictly
increasing functions f , as, for instance, there always exists a
dominating commitment strategy when A2 plays uniformly
at random. However, even for behavioural models as simple
as ε-greedy, we see that a dominating commitment strategy
does not necessarily exist.

Lemma 3. If A2 plays ε-greedy, a dominating commitment
strategy for A1 may not exist.

Despite these difficulties, we provide algorithms to ap-
proximate optimal commitment strategies for the case of
Boltzmann-rational responses (Algorithm 2) and ε-greedy
responses (Algorithm 3), which can be found in Appendix C.
The proposed methods correspond to approximate value it-
eration algorithms that keep track of two value functions,
each modelling one agent. We include an empirical evalu-
ation of the proposed algorithms in Appendix C.3, which
demonstrates that accounting for the suboptimal nature of
A2 reliably improves performance.

6. Experiments
In our experiments, we investigate how much the learner
benefits from repeatedly interacting with the expert. To
address this question and emphasise the potential benefit of
demonstrations in different environments, we include the
situation where A1 only observes the response of A2 to the
initial policy π1

1 played by A1. This resembles the standard
IRL setting where we observe the expert only in a single
fixed environment (S, A2,Pπ1

1
, r, γ).

Here, the initial policy π1
1 is chosen uniformly at random.

We model the standard IRL setting by repeatedly generat-
ing responses of A2 with respect to π1

1 , i.e. in the implied
environment Pπ1

1
. Using these observations, we then esti-

mate the reward function using standard IRL, compute the
optimal policy with respect to the estimated rewards, and
evaluate the regret of this policy. In contrast, in the Interac-
tive IRL setting, the learner gets to choose a different policy
in subsequent episodes. In this case, we report the online
regret of the actually played policies, i.e. the actual regret
of the learner. More details are provided in Appendix D.

6.1. Environments

Maze-Maker. In this environment, agents A1 and A2

jointly control a cart in a 7×7 grid world. In this grid world,
the doors leading from one cell to the neighbouring ones
are locked. However, A1 can unlock exactly two doors at
any time step before they fall shut again. Agent A2 can at-
tempt to move the cart through a door to a neighbouring cell.
However, when the door is locked, the cart stays where it
was. The agents are tasked with collecting three rewards of
different value (+1, +2, +3), which disappear once collected.
While the expert, A2, knows where the rewards are placed,
the helper, A1, does not know their location. We model this
environment as a two-agent MDP with 392 states (49× 8)
and discount factor γ = 0.9, where A1 has six actions (un-
locking two out of four doors) and A2 four actions (moving
the cart North, East, South, West). An illustration of the
environment is given in Figure 2.

+1

+2

+3

(a) (b)

+2

+3

(c)

Figure 2. The Maze-Maker Environment. (a) The initial game
setup with starting position in the center and three rewards scat-
tered across the grid world. (b) When A1 commits to a policy it
implicitly creates a maze for A2 to navigate the cart in. (c) An
exemplary path taken by A2 in the maze implied by A1’s policy.
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(b) Random MDPs

Figure 3. Optimal Responses and Full Information. Blue lines
show the per-episode regret L (π1

t ) of Algorithm 1. Green lines
correspond to the regret of maximum-margin IRL (Ng & Russell,
2000) performed with observation (π1

1 , π
2
1) only.

Random MDPs. We also randomly generated MDPs with
200 states and four actions for each agent. We randomly
draw the transition dynamics from a Dirichlet distribution,
with restrictions on the influence of each agent on the transi-
tions, and the rewards from an i.i.d. Beta distribution. The
discount factor is set to γ = 0.9.

6.2. Results

Optimal Responses and Full Information: In Fig-
ure 3(a) and 3(b), we observe that the per-episode regret
suffered by Algorithm 1 in both environments decreases
notably with the number of episodes played. In particular,
we see that after only a few episodes the per-episode regret
of Algorithm 1 is significantly lower than for maximum-
margin IRL (Ng & Russell, 2000) when A1 only observes
the response to the initial policy π1

1 . This roughly corre-
sponds to the standard IRL setting in which demonstrations
are obtained in a single environment only. We thus find
that the learner significantly benefits from observing A2’s
behaviour in new and different environments, i.e. with re-
spect to different policies of A1. In particular, it appears
to be necessary to observe the expert’s response to several
different policies in order to infer an approximately optimal
reward function. The results are averaged over 5 runs.

Suboptimal Responses and Partial Information For the
case of suboptimal responses and partial information, we let
A2 respond with Boltzmann-rational policies with inverse
temperature β = 10 in both environments. We assume
that the inverse temperature, i.e. the optimality of A2, is
unknown to the learner and simulate the partial information
setting by generating trajectories according to policies π1

t

and π2
t in episode t. We let an episode end with probabil-

ity 1 − γ each time step so that the lengths of observed
trajectories are random.

Figure 4(a) and 4(b) show that Bayesian Interactive IRL
(Algorithm 4) reliably improves its estimate of the true
reward function with the number of episodes played and that
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Figure 4. Suboptimal Responses and Partial Information. Blue
lines show the per-episode regret of Bayesian Interactive IRL
(Algorithm 4 in Appendix D). Green lines refer to Bayesian IRL
performed for trajectories repeatedly generated by π1

1 and π2
1 .

the learner again substantially benefits from observing A2

act in different environments. While obtaining an increasing
amount of trajectories in the same environment improves
the estimate of the reward function as well, we see that
trajectories generated in new environments, i.e. with respect
to different policies of A1, yield much more information
and thus allow for a better estimate of the unknown reward
function. The results are averaged over 10 runs.

7. Discussion and Future Work
We considered an interactive cooperation problem when
the objective is unknown to one of the agents. This can
be seen as a two-agent version of the IRL problem, where
one agent is actively trying to infer the preferences of the
other in order to cooperate. While the classical IRL problem
is generally ill-posed, the interactive version that we study
here can indeed be solved if the learning agent has sufficient
power to affect the transitions. This is supported by both our
experimental and theoretical results. In particular, the exper-
iments clearly show that we can more accurately estimate
the reward function (and hence collaborate more effectively)
if we intelligently probe the other agent’s responses.

An open theoretical question is whether upper and lower
problem-dependent bounds on the episodic regret could
be obtained in this setting. We presume that such bounds
would involve a characterisation of A1’s power to affect the
transitions. A natural extension of our setting would be the
case where A1 does not reveal its policy to A2, but instead
the latter simply observes the former’s actions. In future
work, it will also be interesting to construct Interactive IRL
algorithms that scale to large state spaces (or continuous
domains) and test these in real-world applications.

Our observation that reward learning benefits from demon-
strations under different environment dynamics also opens
up a new and interesting perspective on IRL more generally.
While current IRL methods still struggle to learn satisfactory
reward functions in certain domains (even with abundant
data), it could be promising to try to infer the reward func-
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tion from demonstrations in slight variations of the target
environment (when possible). Moreover, our results suggest
that receiving samples under new environment dynamics
is generally more valuable than collecting additional sam-
ples from the same environment. Thus, such an approach
could be useful in domains where resources are limited and
samples expensive.
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A. Proofs for Section 4
A.1. Proof of Theorem 1

Theorem 1. Let there be some MDP without reward function (S, A1, A2,P, γ). A reward function r is feasible under
policies π1 and π2 if and only if (

Pπ1,π2 − Pπ1,b

)(
I − γPπ1,π2

)−1
r ⪰ 0 ∀b ∈ A2,

where Pπ1,b is the one-step transition matrix under policy π1 and action b ∈ A2.

Proof of Theorem 1. Substituting transition matrix P by Pπ1 in the proof by Ng & Russell (2000) readily implies Theorem 1.
Note that if π2(s) = b̄ for all s ∈ S , the inequality vacuously holds for b = b̄. Thus, in general we obtain |A2| − 1 many of
the above vector inequalities.

A.2. Proof of Lemma 1

Lemma 1. If A2 responds optimally to the commitment of A1, any reward function r is indistinguishable from its positive
affine transformations, i.e. r is feasible iff every r̄ ∈ A(r) is feasible.

Proof of Lemma 1. We write Vπ1,π2(r) for the value function under joint policy (π1, π2) and reward function r. The
Bellman equation tells us that the value function under (π1, π2) and reward function λ1r + λ21 ∈ Aff(r) is given by

Vπ1,π2(λ1r + λ21) = (I − γPπ1,π2)−1(λ1r + λ21).

Now, since Pπ1,π2 is a stochastic matrix, it is easy to check that (I − γPπ1,π2)−11 = (1− γ)−11. It then follows that

Vπ1,π2(λ1r + λ21) = λ1Vπ1,π2(r) +K,

where K = λ2(1− γ)−11. Hence, we find that any policy π2 that maximises Vπ1,π2(r) also maximises Vπ1,π2(λ1r+ λ21)
for λ1 ≥ 0 and λ2 ∈ R, and vice versa. This means that r is feasible if and only if every r̄ ∈ Aff(r) is feasible.

A.3. Proof of Theorem 2

Theorem 2. (A) If A2 responds optimally and (B) if for all T : S ×A2 → ∆(S) there exists π1 such that Pπ1 ≡ T , then
there exists a policy π1 with optimal response π2 such that the feasible set of reward functions under (π1, π2) is given by
Aff(r∗), i.e. R((π1, π2)) = Aff(r∗).

For the proof of Theorem 2, we will need the following technical lemma.

Lemma A.1. Any (two-dimensional) plane R ⊆ RN can be uniquely characterized by the intersection of N − 1 many
half-spaces Hi = {x ∈ RN : φ⊤

i x ≥ 0}, where φ1, . . . , φN−1 ∈ RN are vectors orthogonal to R.

Proof of Lemma A.1. W.lo.g. let R be some plane in RN through the origin. Let the vectors v1 and v2 denote an orthogonal
basis of R, i.e. R = {λ1v1 + λ2v2 : λ1, λ2 ∈ R} and v⊤1 v2 = 0. We can then find vectors φ1, . . . , φN−2 such that
{φ1, . . . , φN−2, v1, v2} forms an orthogonal basis of RN . In particular, we then have φ⊤

i x = 0 for all x ∈ R and
i ∈ [N − 2]. Moreover, we define the vector

φN−1 = −(φ1 + · · ·+ φN−2)

and note that φN−1 is orthogonal to R as well. Let the half-spaces induced by vectors φ1, . . . , φN−1 be given by
Hi = {x ∈ RN : φ⊤

i x ≥ 0} for i ∈ [N − 1]. We now show that H1 ∩ · · · ∩HN−1 = R.

We begin by verifying that H1 ∩ · · · ∩ HN−1 ⊆ R. Suppose this is not true and there exists a vector w /∈ R such that
φ⊤
i w ≥ 0 for all i ∈ [N − 1], i.e. w ∈ H1 ∩ · · · ∩HN−1. Then, we must have φ⊤

j w > 0 for some j ∈ [N − 2] as the
orthogonal complement of span(φ1, . . . , φN−2) is given by R and we assumed w /∈ R. By definition of φN−1, we have
φ1 + · · ·+ φN−1 = 0 and thus, (φ1 + · · ·+ φN−1)

⊤w = 0. However, it also holds that

φ⊤
1 w + · · ·+ φ⊤

N−1w > 0,
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since φ⊤
i w ≥ 0 for i ∈ [N − 1] and φ⊤

j w > 0 for some j ∈ [N − 2]. Thus, such w cannot exist and we have shown that
H1 ∩ · · · ∩HN−1 ⊆ R. Finally, the relation R ⊆ H1 ∩ · · · ∩HN−1 also holds as φ1, . . . , φN−1 are chosen orthogonal to
R and thus, φ⊤

i x = 0 for all i ∈ [N − 1] and x ∈ R.

Note that we can analogously prove that any line C = {λv : λ ∈ R} in RN can be uniquely characterised by N half-spaces.
In this case, we can find an orthogonal basis {φ1, . . . , φN−1, v} and define φN = −(φ1 + · · ·+ φN−1). The remainder of
the proof then follows the same line of argument as before.

Proof of Theorem 2. Let N = |S|. We will now show that under the assumptions of Theorem 2, there exists a policy π1

with optimal response π2 so that only positive affine transformations of r∗ are feasible under observation (π1, π2), i.e.
R((π1, π2) = Aff(r∗).

First we observe that we can w.l.o.g. assume only two actions for A2, i.e. |A2| = 2. To see this suppose that |A2| > 2 and
consider an action space A′

2 ⊂ A2 with |A′
2| ≥ 2 and transition kernel P ′

π1 : S × A′
2 → ∆(S) defined as P ′

π1(· | s, b) =
Pπ1(· | s, b) for b ∈ A′

2. If π2(s) ∈ A′
2 for all s ∈ S , then the feasible set under action space A2 is subset of the feasible set

under action space A′
2. Thus, we can assume w.l.o.g. that A2 = {b1, b2}. From hereon out, we assume that the true reward

function r∗ is non-constant. The special case of a constant true reward function is addressed at the end.

We first construct an orthogonal basis {φ1, . . . , φN} such that the corresponding half-spaces characterise Aff(r∗ and then
show that there exists π1 such that

(Pπ1,b1 − Pπ1,b2)(I − γPπ1,b1)
−1 = (φ1, . . . , φN )⊤.

For non-constant r∗ we have that R ≜ span(r∗,1) describes a plane in RN and Aff(r∗) ⊂ R. By Lemma A.1, there exist
vectors φ1, . . . , φN−1 ∈ RN such that φ⊤

i x = 0 for all x ∈ R and H1∩· · ·∩HN−1 = R with Hi = {x ∈ RN : φ⊤
i x ≥ 0}.

In particular, it holds that φ⊤
i 1 = 0, i.e. ∥φi∥1 = 0 for all i ∈ [N − 1].

Now, let us consider the orthogonal projection of r∗ given by r∗ = α1 + w for α ∈ R and w ∈ RN with w⊤1 = 0. It
follows that w⊤r∗ = w⊤(α1 + w) = w⊤w > 0, since r∗ is non-constant and thus, w ̸= 0. Let us define φN = ηw for
some scalar η > 0. Then, we have φ⊤

Nx ≥ 0 for all x ∈ {λ1r
∗ + λ21 : λ ≥ 0, λ2 ∈ R}, since w⊤r∗ > 0 and w⊤1 = 0.

Similarly, we have φ⊤
N x̂ < 0 for all x̂ ∈ {λ1r

∗ + λ21 : λ1 < 0, λ2 ∈ R}. It then follows that

H1 ∩ · · · ∩HN = R∩HN = Aff(r∗),

where HN = {x ∈ RN : φ⊤
Nx ≥ 0}. Note that every φi with i ∈ [N ] satisfies ∥φi∥1 = 0 and that the half-spaces Hi are

invariant under positive linear transformation of φi. We can therefore assume that φ1, . . . , φN take values in [ 1N − 1, 1
N ].

We denote with Φ = (φ1, . . . , φN )⊤ the matrix with rows φ1, . . . , φN .

Recall that A2 = {b1, b2}. We will now show that there exists a policy π1 such that

(Pπ1,b1 − Pπ1,b2)(I − γPπ1,b1)
−1 = Φ.

By assumption, there exists a π1 such that Pπ1,b1 ≡ B1 and Pπ1,b2 ≡ B2 for any two stochastic matrices B1 and B2. We
set Pπ1,b1(s

′ | s) = 1
N for all s, s′ ∈ S, which yields

Φ(I − γPπ1,b1) = Φ− γΦPπ1,b1 = Φ, (2)

since ∥φi∥1 = 0 for all i ∈ [N ] and Pπ1,b1 is a constant matrix. Now, set Pπ1,b2 ≡ Pπ1,b1 − Φ and note that since
∥φi∥1 = 0 for all i ∈ [N ], the matrix Pπ1,b2 is indeed stochastic. It then follows that

(Pπ1,b1 − Pπ1,b2)(I − γPπ1,b1)
−1 = Φ(I − γPπ1,b1)

−1 = Φ,

by equation (2). Note that this means that indeed action b1 is the optimal response to policy π1 as Φr∗ ⪰ 0 by construction
of Φ.5 Therefore, from Theorem 1 it follows that any feasible reward function r must satisfy

(Pπ1,b1 − Pπ1,b2)(I − γPπ1,b1)
−1r = Φr ⪰ 0,

5This can, for instance, be verified using Theorem 1.
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i.e. φ⊤
i r ≥ 0 for all i ∈ [N ]. Hence, any feasible reward function must be in H1 ∩ · · · ∩HN and thus element in Aff(r∗).

So, we have shown that the feasible set of reward functions under π1 with response π2 ≡ b1 is given by Aff(r∗).

In the special case of the constant reward function r∗, we have that the set Aff(r∗) = {λ1 : λ ∈ R} becomes not a plane,
but a line in RN . The proof for this case then progresses similarly to the proof above with the difference that we describe
Aff(r∗) by N many half-spaces and that there is no need to consider the orthogonal projection of r∗ as done before.

A.4. Proof of Corollary 2

Corollary 2. Under Assumptions (A) and (B) of Theorem 2, the learner can verify in any episode whether a reward function
r is a positive affine transformation of the actual and unknown reward function r∗.

Proof. Recall that it follows from Lemma 1 that Aff(r∗) ⊆ R((π1, π2)) for any policy π1 with optimal response π2. In
other words, the positive affine transformations of the unknown reward function r∗ are always feasible as r∗ is always
feasible. Now, let r ∈ R|S| be some reward function and suppose that A1 plays the “ideal” policy π1 with respect to r
as it is constructed in the proof of Theorem 2. Let π2 be an optimal response to π1. It follows from the combination of
Lemma 1 and Theorem 2 that R((π1, π2)) = Aff(r) if and only if r ∈ Aff(r∗). Now, using linear programming, we
can check whether R((π1, π2)) = Aff(r) holds true. If R((π1, π2)) = Aff(r), we know that r must be a positive affine
transformation of r∗. On the other hand, if we observe R((π1, π2)) ̸= Aff(r), then r cannot be element in Aff(r∗).

A.5. Proof of Lemma 2

Lemma 2. Let (π̄1, π̄2) be an optimal joint policy. If A2 responds optimally to the commitment of A1, then Vπ̄1,π2(π̄1) =
Vπ̄1,π̄2 . In particular, this entails that maxπ1 Vπ1,π2(π1) = maxπ1,π2 Vπ1,π2 .

Proof of Lemma 2. Let (π̄1, π̄2) ∈ argmaxπ1,π2 Vπ1,π2 . Suppose A1 commits to π̄1. Then, A2 responds with π2(π̄1) such
that Vπ̂1,π2(π̄1) ⪰ Vπ̄1,π2 for all π2 by optimality of A2. Now, since Vπ̄1,π̄2 ⪰ maxπ1 Vπ1,π2(π1) always, we also have

max
π1

Vπ1,π2(π1) ⪰ Vπ̄1,π2(π̄1) ⪰ Vπ̄1,π̄2 ⪰ max
π1

Vπ1,π2(π1).

Thus, maxπ1 Vπ1,π2(π1) = Vπ̄1,π̄2 = maxπ1,π2 Vπ1,π2 . In other words, Lemma 2 states that the optimal joint policy yields
an optimal commitment strategy for A1 when A2 responds optimally.

A.6. Proof of Proposition 1

Proposition 1. Suppose that for any non-constant reward function r ∈ ∆(S) it holds that if an optimal joint policy (π1, π2)
under r is suboptimal under r∗, then in return there exists an optimal response π2(π1) under r∗ that is suboptimal under r.
Moreover, assume that A2 responds optimally and breaks ties between equally good policies uniformly at random. Then, the
average regret suffered by Algorithm 1 converges to zero almost surely.

For the proof of Proposition 1, we will need the following sets: Let Πopt(r) denote the set of optimal joint policies under
reward function r, i.e. the set of optimal joint policies in the MDP (S, A1, A2,P, r, γ). Further, we denote the set of optimal
responses under policy π1 and reward function r by Πopt

2 (r, π1). A key object of interest is the following set of reward
functions. Let O be the set of reward functions in ∆(S) that always induce an optimal joint policy, i.e.

O = {r ∈ ∆(S) : Πopt(r) ⊆ Πopt(r∗)}.

Note that by Lemma 2 any optimal joint policy yields an optimal commitment strategy for agent A1, i.e. any r ∈ O induces
an optimal commitment strategy. We can easily check that O is a convex set.

Lemma A.2. The set O is convex.

Proof of Lemma A.2. Let r1, r2 ∈ O. We show that λr1 + (1− λ)r2 ∈ O for any λ ∈ [0, 1]. Recall that the value function
Vπ(r) = (I − γPπ)

−1r is linear in r and we therefore have Vπ(λr1 + (1− λ)r2) = λVπ(r1) + (1− λ)Vπ(r2). In a first
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step, we prove Πopt(λr1 + (1− λ)r2) ⊆ Πopt(r∗). Let π ∈ Πopt(λr1 + (1− λ)r2). Then, for all policies ν it must hold
that

Vπ(λr1 + (1− λ)r2) ⪰ Vν(λr1 + (1− λ)r2), (3)

where ≻ denotes element-wise inequality. Now, suppose that π /∈ Πopt(r∗). It follows that Vπ(r1) ⪯ Vν(r1) and
Vπ(r2) ⪯ Vν(r2) for some ν ∈ Πopt(r∗) = Πopt(r1) = Πopt(r2) with strict inequality for at least one s ∈ S. This
contradicts equation (3) and it follows that Πopt(λr1+(1−λ)r2) ⊆ Πopt(r∗). We will now verify the relation Πopt(r∗) ⊆
Πopt(λr1 + (1− λ)r2). For any π ∈ Πopt(r∗), we have Vπ(r1) ⪰ Vν(r1) and Vπ(r2) ⪰ Vν(r2) for all policies ν. It then
directly follows that π ∈ Πopt(λr1+(1−λ)r2) and thus, Πopt(r∗) ⊆ Πopt(λr1+(1−λ)r2), i.e. λr1+(1−λ)r2 ∈ O.

Interestingly, Lemma A.2 implies that the set of reward functions that induce an optimal commitment strategy is a connected
set. We will now prove Proposition 1.

Proof of Proposition 1. As Algorithm 1 only considers reward functions in the simplex ∆(S), we will simply write Rt

instead of Rt ∩∆(S) for notational convenience.

In episode t, Algorithm 1 chooses a vertex of the set of feasible solutions of the linear program, i.e. a reward function
rt ∈ Rt. Note that by construction of Algorithm 1 we never select the constant reward function in ∆(S). For any rt ∈ Rt

obtained from the LP (1) with uniformly random objective function c there are two possible cases: rt ∈ O or rt /∈ O. If
rt ∈ O, then rt induces an optimal joint policy, i.e. an optimal commitment strategy by Lemma 2. Accordingly, Algorithm 1
commits to an optimal commitment strategy and thus suffers zero regret in episode t+1. We want to highlight that the proof
does not require that the objective function in Algorithm 1 is being chosen in a randomised fashion. However, randomising
the choice of the objective improved exploration in our experiments.

In the following, we show that for the case of rt /∈ O, Algorithm 1 strictly decreases the set of feasible reward functions
with positive probability. In order to show this, we first construct a finite cover of ∆(S). Let Π1 and Π2 denote the sets of
deterministic policies for A1 and A2, respectively.6 Note that both Π1 and Π2 are finite as we assumed finite action spaces
A1 and A2. Let 2Π2 denote the power set of Π2. For π1 ∈ Π1 and Π̄2 ∈ 2Π2 , we define

B(π1, Π̄2) = {r ∈ ∆(S) : Π̄2 = Πopt
2 (r, π1)}.

The set B(π1, Π̄2) thus describes the reward functions that make the policies in Π̄2 optimal in response to π1. Indeed, for
any fixed π1 ∈ Π1, the collection B(π1) = {B(π1, Π̄2) : Π̄2 ∈ 2Π2} forms a finite partition of ∆(S)⋃

Π̄2∈2Π2
B(π1, Π̄2) = ∆(S),

as for any r ∈ ∆(S) there always exists at least one deterministic optimal policy in the MDP (S, A2,Pπ1 , r, γ) (Puterman,
2014). In other words, for any π1 ∈ Π1, we partition ∆(S) into sets that induce the same set of optimal responses to
π1. Naturally, due to B(π1) being a finite partition of ∆(S) for any π1, the Lebesgue-measure for all but finitely many
B(π1, Π̄2) must be larger than some constant ε > 0.

We now show that if rt /∈ O, then with positive probability the set of feasible solutions is decreased by at least ε. If rt /∈ O,
then Algorithm 1 computes an optimal commitment strategy π1

t+1 ∈ Πopt
1 (rt) (by computing the optimal joint policy under

rt, see Lemma 2), which may be suboptimal under r∗, i.e. π1
t+1 /∈ Πopt

1 (r∗).

Now, if π1
t+1 is suboptimal under r∗, then by assumption7 there exists an optimal response π2

t+1 ∈ Πopt
2 (r∗, π1

t+1) that is
suboptimal under rt, i.e. π2

t+1 /∈ Πopt
2 (rt, π

1
t+1). Recall that by our assumption A2 selects its response uniformly at random

from Πopt
2 (r∗, π1

t+1). Since Πopt
2 (r∗, π1

t+1) is finite, A2 will respond with π2
t+1 /∈ Πopt

2 (rt, π
1
t+1) with positive probability.

In that case, after observing π2
t+1 the reward function rt cannot be feasible anymore, i.e. rt /∈ Rt+1. In addition, we then

also have that B(π1
t+1,Π

opt
2 (rt, π

1
t+1)) ∩Rt+1 = ∅, as all reward functions in B(π1

t+1,Π
opt
2 (rt, π

1
t+1)) induce the same

optimal responses Πopt
2 (rt, π

1
t+1) and π2

t+1 is not in Πopt
2 (rt, π

1
t+1). In other words, any r ∈ B(π1

t+1,Π
opt
2 (rt, π

1
t+1))

cannot satisfy the constraints of Corollary 1.

6We assume here that A2 responds with deterministic policies in order to keep the proof as comprehensible as possible. However, this
assumption can be dropped as we can still give a finite partition of ∆(S) when A2 also responds with optimal stochastic policies.

7Note that if π1 is a suboptimal commitment strategy, then the joint policy (π1, π2) is suboptimal for any π2.
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Figure 5. Counterexample. All transitions are deterministic. The action of A2 alone determines the transitions from state s0 to states s1
and s2, whereas in state s2 only the action of A1 affects transitions. The green x, y and 0 denote the rewards obtained in states s1, s3, and
s4, respectively. States s0 and s2 yield zero reward.

As seen before, for all but finitely many Π̄2 ∈ 2Π2 we have λ(B(π1, Π̄2)) > ε, where λ is the Lebesgue-measure. As a
consequence, if rt /∈ O, then we have for all but finitely many cases that λ(Rt+1) ≤ λ(R \ B(π1

t+1,Π
opt
2 (rt, π

1
t+1)) ≤

λ(Rt)− ε.

Therefore, every time when Algorithm 1 chooses a reward function rt /∈ O8 inducing a suboptimal commitment strategy,
(with positive probability) rt will not be feasible anymore and (except for finitely many times) we reduce the size of the
feasible set by at least the constant amount ε. As a result, the feasible set of reward function Rt will eventually become
smaller than or equal to O, i.e. Rt ⊆ O. Consequently, Algorithm 1 will almost surely converge to choosing only reward
function in O and will thus only play optimal commitment strategies.

B. Proofs for Section 5
B.1. Proof of Theorem 3

Theorem 3. If π2(b | s) ∝ f(Q∗
π1(s, b)) for any strictly increasing function f : [0,∞) → [0,∞), then a dominating

commitment strategy for agent A1 may not exist.

Proof of Theorem 3. We provide a problem instance for which there exists no dominating policy for any strictly increasing
function f : [0,∞) → [0,∞). Consider the two-agent MDP in Figure 5. We omitted consecutive transitions in Figure 5, but
assume that states s1, s3, and s4 lead to the same (terminal) state with probability one.

We will show that the strictly optimal policy when in state s0 is strictly suboptimal when in state s2 for specific choices of
x > 0 and y > 0. For simplicity, we omit the discount factor γ in the following.

A1 only influences transitions in state s2 and thus there are essentially only two deterministic policies for A1, namely π1

with π1(s2) = a1 and π̄1 with π̄1(s2) = a2. Since y > 0, action a1 is optimal in state s2 and so π1 is the optimal policy in
state s2. We now show that there exists x, y > 0 such that Vπ1,π2(π1)(s0) < Vπ̄1,π2(π̄1)(s0), i.e. π̄1 is strictly better than π1

when in state s0.

Omitting the discount factor, we have Q∗
π1(s0, b1) = x and Q∗

π1(s0, b2) = y as well as Q∗
π̄1(s0, b1) = x and Q∗

π̄1(s1, b2) =
0. We therefore want to show that there exist x, y > 0 such that

Vπ1,π2(π1)(s1) = x
f(x)

f(x) + f(y)
+ y

f(y)

f(x) + f(y)

< x
f(x)

f(x) + f(0)
= Vπ̄1,π2(π̄1)(s1).

8Recall that the special case of the constant reward function (which is not in O) can be ignored.
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s0

s1

+1

s2
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s4

− 2(2−δ)(1−ε/2)
ε

s5

0

b1

b2 (a1, b1)

(a1, b2)

a2

Figure 6. Counterexample for ε-greedy responses. All transitions are deterministic. The actions from agent A2 alone determine the
transitions from state s0 to states s1 and s2. The green numbers denote the rewards obtained in the respective states. States s0 and s2
yield zero reward.

Suppose the contrary is true. Then, for all x, y > 0 it must hold that

x
f(x)

f(x) + f(y)
+ y

f(y)

f(x) + f(y)
≥ x

f(x)

f(x) + f(0)

⇔ x
( f(x)

f(x) + f(0)
− f(x)

f(x) + f(y)

)
≤ y

f(y)

f(x) + f(y)

⇔ xf(x)
(f(x) + f(y)

f(x) + f(0)
− 1

)
≤ yf(y)

⇔ xf(x)
f(y)− f(0)

f(x) + f(0)
≤ yf(y). (4)

Note that f(y)− f(0) > 0, since f is strictly increasing. Now, for any fixed y > 0, we have that f(x) f(y)−f(0)
f(x)+f(0) → 1 as

x → ∞, and the expression is therefore bounded from below by some positive value for x sufficiently large. Hence, for
any fixed y there exists an x > 0 such that (4) does not hold. This shows that in fact for any y > 0 there exists x > 0
such that Vπ1,π2(π1)(s0) < Vπ̄1,π2(π̄1)(s0), whereas we have seen before that Vπ1,π2(π1)(s2) > Vπ̄1,π2(π̄1)(s2). Hence, no
dominating commitment strategy exists for the MDP depicted in Figure 5.

B.2. Proof of Lemma 3

Lemma 3. If A2 plays ε-greedy responses, a dominating commitment strategy for A1 may not exist.

We define an ε-greedy response to a policy π1 as the policy

π2
ε(s, π

1) =

{
π2
∗(s, π

1) w.p. 1− ε

U(A2) w.p. ε,

where ε ∈ [0, 1], π2
∗(π

1) is an optimal response to π1, and U(A2) the uniform distribution over A2.

Proof of Lemma 3. We prove Lemma 3 by means of the counterexample shown in Figure 6. For convenience, we omit the
discount factor here and assume that states s1, s3, s4, and s5 lead to some terminal state with probability one. There are two
(deterministic) policies A1 can commit to: π1(s2) = a1 and π̄1(s2) = a2.

For notational convenience, we write Va1
(s) ≜ Vπ1,π2

ε(π
1)(s) and Va2

(s) ≜ Vπ̄1,π2
ε(π̄

1)(s). Note that if A1 commits to π1,
the optimal action for A2 in state s0 is to play b2 followed by b1 in state s2. Recall that A2 is assumed to play ϵ-greedy, i.e.
in any state, A2 plays the optimal response with probability (1− ϵ) and with probability ϵ selects an action uniformly at
random. As a result, we have

Va1(s2) = 2(1− ε/2)− (2− δ)(1− ε/2) = δ(1− ε/2) > 0

Va1
(s0) = δ(1− ε/2)2 + ε/2.
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On the other hand, if A1 commits to π̄1, it is optimal for A2 to play b1 in state s0, i.e. Va2
(s0) = (1−ε/2). We observe that in

state s2, playing a1 is optimal as Va1(s2) > Va2(s2) = 0. However, we also have Va1(s0)−Va2(s0) = ε+δ(1−ε/2)2−1.
As we can choose δ arbitrarily close to 0, we then have Va1(s0) < Va2(s0) for some δ > 0. Thus, π1 is strictly optimal in
state s2, whereas π̄1 is strictly optimal in state s0. Therefore, there exists no dominating commitment strategy for the MDP
in Figure 6.
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C. Approximate Algorithms for Cooperative Stackelberg Games with Suboptimal Followers
In this section, we first describe approximate value iteration algorithms for Boltzmann-rational policies as well as ε-greedy
policies. We then evaluate both algorithms in the Maze-Maker and Random MDP environment for different levels of
rationality (i.e. optimality) of agent A2.

C.1. A2 responds with Boltzmann-rational policies

Theorem 3 states that no dominating commitment strategy may exist when agent A2 responds with Boltzmann-rational
policies. In its essence, the approximate value iteration algorithm for Boltzmann-rational responses described in Algorithm 2
acts as if a dominating commitment strategy does exist and could therefore converge to suboptimal solutions. However,
it aims to account for the suboptimality of agent A2 and keeps track of two sets of value functions: one value function
corresponding to what A1 believes to be the actual value given that A2 plays Boltzmann, and one value function that aims
to approximate the belief of agent A2 about the value of the game.

Algorithm 2 Approximate Value Iteration for Boltzmann-Rational Responses

1: initialise V and V̂
2: repeat until V converges:
3: for s ∈ S do
4: for (a, b) ∈ A1 ×A2 do
5: Q̂(s, a, b) = r(s) + γ

∑
s′ P(s′|s, a, b)V̂ (s′)

6: π2(b | s, a) = exp(βQ̂(s, a, b))/Z
7: end for
8: π1(s) = argmaxa

∑
s′ Eb∼π2 [P(s′|s, a, b)]V (s′)

9: V (s) = r(s) + γ
∑

s′ Eb∼π2 [P(s′|s, π1(s), b)]V (s′)

10: V̂ (s) = maxb Q̂(s, π1(s), b)
11: end for

C.2. A2 responds with ε-greedy policies

The problem of planning with an agent that responds with ε-greedy policies is similar to the setting considered by
Dimitrakakis et al. (2017) in the sense that A2 plans with the original transition kernel P (by computing an optimal response
π2
∗(π

1)), whereas A1 plans (or should plan) with the “correct” transition kernel

Pε(· | s, a, b) ≡ εP(· | s, a,U(A2)) + (1− ε)P(· | s, a, b).

In particular, note that εP(s′ | s, a,U(A2)) is independent of the choice of b. Algorithm 3 approximately solves the planning
problem. While Lemma 3 states that a dominating commitment policy need not exist, Algorithm 3 simply acts as if one
exists. Similarly to Algorithm 2, the idea is to maintain two value functions, one representing the value from the perspective
of A1 and the other the value from the perspective of A2.

Algorithm 3 Approximate Value Iteration for ε-Greedy Responses

1: initialise V and V̂
2: repeat until V converges:
3: for s ∈ S do
4: for a ∈ A1 do
5: π2(s, a) = argmaxb

∑
s′ P(s′|s, a, b)V̂ (s′)

6: end for
7: π1(s) = argmaxa

∑
s′ Eb∼π2 [Pε(s

′|s, a, b)]V (s′)
8: V (s) = r(s) + γ

∑
s′ Eb∼π2 [Pε(s

′|s, π1(s), b)]V (s′)

9: V̂ (s) = r(s) + γ
∑

s′ Eb∼π2 [P(s′|s, π1(s), b)]V̂ (s′)
10: end for
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C.3. Evaluation of Algorithm 2 and Algorithm 3

In this section, we empirically evaluate our approximate value iteration algorithms for Boltzmann-rational responses
(Algorithm 2) and ε-greedy responses (Algorithm 3). We compare Algorithm 2 and Algorithm 3 in the Maze-Maker and
Random MDP environment against committing A1’s part of the optimal joint policy. Note that by Lemma 2, committing
A1’s part of an optimal joint policy is optimal when A2 responds optimally.

In both environments, we test the performance of our algorithms for different levels of rationality of A2. For the case
of Boltzmann-rational responses (Figure 7), we increase the inverse temperature of agent A2, which corresponds to the
rationality (i.e. optimality) of A2. We see in Figure 7 that Algorithm 2 consistently outperforms playing A′

1s part of the
optimal joint policy. In particular, the more suboptimal A2 is playing (lower values of β), the larger the advantage of
Algorithm 2 is compared to playing A1’s part of the optimal joint policy. If A2 responds almost optimally (β = 20), the
performance of both approaches is almost identical as expected.

For the case of ε-greedy responses (Figure 8), we increase the rationality of A2 by decreasing the probability ε of random
actions. Figure 8 shows that Algorithm 3 outperforms playing the optimal joint policy for all values of ε in both environments.
In particular, for ε = 0 agent A2 responds optimally and both approaches play an optimal commitment strategy.
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Figure 7. Evaluation of Approximate Value Iteration for Boltzmann-Rational Responses (Algorithm 2) in the Maze-Maker and Random
MDP environment for increasing values of β. The green line describes the return of playing A1’s part of an optimal joint policy.
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Figure 8. Evaluation of Approximate Value Iteration for ε-Greedy Responses (Algorithm 3) in the Maze-Maker and Random MDP
environment for decreasing values of ε. The green line describes the return of playing A1’s part of an optimal joint policy.
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D. Experimental Details
The experiments were carried out on a virtual machine with 32 CPUs, 60GB RAM, and CentOS Linux 8 operating system.
The experiments were implemented in Python 3.7 and the libraries matplotlib 3.2.1, numpy 1.20.1, and scipy 1.6.2 (for the
linear program) were used. The code is available at https://github.com/InteractiveIRL/src.

For the case of suboptimal responses and partial information, we assume that A2 responds with Boltzmann-rational policies
with inverse temperature β = 10 in both environments. We assume that the inverse temperature, that is, the optimality of
the second agent, is unknown to the learner and must therefore be inferred. We simulate the partial information setting
by generating trajectories according to policies π1

t and π2
t in episode t, where the length of the episode is random. More

precisely, we let an episode end with probability 1− γ = 0.1 each time step.9

D.1. Bayesian Interactive IRL

We employ a Bayesian approach using the Metropolis-Hastings algorithm to sample from the posterior, with a uniform prior
on the reward function and an exponential prior on the inverse temperature. Our approach is specified in Algorithm 4. As a
proposal distribution for the reward function, we consider a discretisation of the |S|-dimensional unit simplex ∆(S) with
step size δ, similarly to (Ramachandran & Amir, 2007). The Metropolis-Hastings algorithm then generates a Markov chain
on the discretised simplex. To sample from the posterior given the last candidate rtk−1 then means to choose a neighbour in
the discretised simplex. This type of proposal distribution, which we refer to as Simplex Walk, proved to be a more efficient
and robust sampling strategy as other proposal distributions (e.g. Dirichlet distributions). For the inverse temperature, we
use a Gamma proposal distribution. Similarly to Algorithm 1, we play greedily with respect to our current estimate of the
true reward function. After sampling K times from the posterior, we take the empirical means r̄t and β̄t and compute an
approximately optimal commitment strategy under r̄t and β̄t by means of Algorithm 2. As a natural burn-in we use the last
sampled reward and inverse temperature from episode t as the first candidate in episode t+ 1.

Algorithm 4 Bayesian Interactive IRL via Simplex Walk
1: input: (S, A1, A2,P, γ), priors P(r), P(β), proposal distributions g1, g2, sample size K
2: initialise: choose π1

1 uniformly at random, sample r00 ∼ P(r) and β0
0 ∼ P(β)

3: for t = 1, 2, . . . do
4: commit to policy π1

t

5: observe trajectory τt
6: // sample from posterior via Metropolis-Hastings
7: for k = 1, . . . ,K do
8: sample r ∼ g1(· | rtk−1)
9: sample β ∼ g2(· | βt

k−1)

10: compute p =
P((π1

1 ,τ1),...,(π
1
t ,τt)|r,β)P(r)P(β)

g1(r|rtk−1)g2(β|β
t
k−1)

11: w.p. min{1, p
pk−1

}: rtk = r, βt
k = β, ptk = p

12: else: rtk = rk−1, βt
k = βk−1, ptk = ptk−1

13: end for
14: set rt+1

0 = rtK , βt+1
0 = βt

K , pt+1
0 = ptK

15: calculate mean reward function r̄t and beta β̄t

16: compute π1
t+1 under r̄t and β̄t via Algorithm 2

17: end for

D.2. Environments: Maze-Maker

In the Maze-Maker environment, agents A1 and A2 jointly control a cart in a 7× 7 grid world. In this grid world, the doors
leading from one cell to the neighbouring ones are locked. However, A1 can unlock exactly two doors at any time step
before they fall shut again. A2 can attempt to move the cart through a door to a neighbouring cell. However, when the door
is locked, the cart stays where it was. We assume that any attempted move of the cart succeeds with probability 0.8 and
that with probability 0.2 the cart moves to a random neighbouring cell. Agents A1 and A2 are tasked with collecting three

9We impose a minimal trajectory length of 2 time steps to prevent vacuous episodes.
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rewards of different value (+1, +2, +3), which are scattered in the grid world and disappear once collected. While A2 knows
where the rewards are placed, A1 does not know their location. An illustration of the environment is given by Figure 2.
We model this environment as a two-agent MDP with 392 states (49× 8) and discount factor γ = 0.9, where A1 has six
actions (unlocking two out of four doors) and A2 four actions (attempting to move the cart North, East, South, West). As we
consider a Stackelberg game, A2 knows beforehand which doors A1 will unlock. Therefore, A1 essentially selects a maze
layout, which is communicated to A2 and through which A2 can move the cart.

D.3. Details on Figure 1

In Figure 1b, we assumed that A2 plays a Boltzmann-rational policy with inverse temperature β = 10. For simplicity
and proper comparison, we assume that we can observe the fully specified Boltzmann policy played by A2 in each of
the mazes. We use an adaption if Bayesian IRL (Ramachandran & Amir, 2007) and display the mean reward function in
Figure 1b, where the colour scale, i.e. colour transparency, is obtained from the mean reward function in a given cell. More
precisely, we use the Metropolis-Hastings algorithm with uniform prior and a Dirichlet proposal to sample from the posterior
distribution P(r | (π1, π2)), where π1 describes the maze layout.

E. Influence
Prior work on two-agent cooperation has considered measurements of how much one agent can influence the transition
probabilities. Dimitrakakis et al. (2017) define the influence of agent A1 (analogously for A2) on the transition probabilities
as

I(A1) = max
s

max
a1,a2,b

∥P(· | s, a1, b)− P(· | s, a2, b)∥1,

which has also been adopted by Radanovic et al. (2019) and Ghosh et al. (2019). They use this definition of influence to
bound the performance gap when the beliefs or the behaviour of the two agents are misaligned. In our setting, however, the
influence of an agent also relates to the IRL problem and our capacity to solve it. In particular, if I(A1) = 0, agent A1 does
not influence the transition probabilities and it is therefore irrelevant what actions A1 takes. In terms of the IRL problem,
we are then in the typical single-agent setting as A2 can ignore the presence of agent A1. On the other hand, if I(A2) = 0,
then A2 does not influence transitions at all and the IRL problem becomes intractable as A2’s actions yield no information
about the underlying reward function.


