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Abstract
We revisit the incremental autonomous explo-
ration problem proposed by Lim & Auer (2012).
In this setting, the agent aims to learn a set of near-
optimal goal-conditioned policies to reach the L-
controllable states: states that are incrementally
reachable from an initial state s0 within L steps in
expectation. We introduce a new algorithm with
stronger sample complexity bounds than existing
ones. Furthermore, we also prove the first lower
bound for the autonomous exploration problem.
In particular, the lower bound implies that our
proposed algorithm, Value-Aware Autonomous
Exploration, is nearly minimax-optimal when the
number of L-controllable states grows polyno-
mially with respect to L. Key in our algorithm
design is a connection between autonomous ex-
ploration and multi-goal stochastic shortest path,
a new problem that naturally generalizes the clas-
sical stochastic shortest path problem. This new
problem and its connection to autonomous explo-
ration can be of independent interest.

1. Introduction
Reinforcement learning (RL) with a known state space has
been studied in a wide range of settings (e.g., Schmidhu-
ber, 1991; Oudeyer et al., 2007; Oudeyer & Kaplan, 2009;
Baranes & Oudeyer, 2009). When the state space is large, it
is difficult for a learning agent to discover the whole envi-
ronment. Instead, the agent can only explore a small portion
of the environment. At a high level, we hope that the agent
can discover states near the initial state, expand the range of
known states by exploration, and learn near-optimal goal-
conditioned policies for the known states. Because the agent
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discovers its known states of the environment incrementally,
this learning problem was named Autonomous Exploration
(AX) (Lim & Auer, 2012; Tarbouriech et al., 2020).

The autonomous exploration problem generalizes the
Stochastic Shortest Path (SSP) problem (Bertsekas et al.,
2000) where the agent aims to reach a predefined goal state
while minimizing its total expected cost. However, in the
autonomous exploration setting, the agent aims to discover
a set of reachable states in a large environment and find
the optimal policies to reach them. The autonomous explo-
ration formulation is applicable to an increasing number of
real-world RL problems, ranging from navigation in mazes
(Devo et al., 2020) to game playing (Mnih et al., 2013). For
example, in the maze navigation problem, a robot aims to
follow a predefined path in an unknown environment, and
the robot has to discover and expand the size of regions
known to itself autonomously without prior knowledge of
the environment. See (Lim & Auer, 2012) for more discus-
sions.

Related Work. The setting of autonomous exploration
(AX) was introduced by Lim & Auer (2012), who gave
the first algorithm, UcbExplore, with sample complexity
Õ(L3S2A/ε3). Here L denotes the distance within which
we hope the learning agent to discover, S denotes the num-
ber of states we need to explore,1 A denotes the size of the
action space, and ε denotes the error that we can tolerate. Re-
cent work by Tarbouriech et al. (2020) designed the DisCo
algorithm with a sample complexity bound Õ(L3S2A/ε2)2,
which improves the 1/ε dependency. We will briefly discuss
the two algorithms in Sect. 2.1. In this paper, we present
a new algorithm, VALAE (Alg. 2), to further improve the
sample complexity, and we also derive the first lower bound.

1.1. Contributions

In this paper, we take important steps toward resolving the
autonomous exploration problem. We compare our results

1In AX, S is often significantly smaller than the size of the
entire state space.

2We translate their absolute error εabs to the relative error εrel,
and εabs = εrelL. We will explain the difference of two definitions
of ε in Sect. 2.1.
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Algorithm Sample Complexity

UcbExplore
(Lim & Auer, 2012) Õ(L3S2A/ε3)

DisCo
(Tarbouriech et al., 2020) Õ

(
L3S2A/ε2

)
VALAE Õ

(
LSA/ε2

)
Lower Bound Ω(LSA/ε2)

Table 1: Comparisons between our results and prior results.
Algorithms and results in this paper are in grey cells. L
is the exploration radius, A is the number of actions, S is
the number of states we need to explore, and ε is the target
accuracy. We will define them in Sect. 2. For simplicity, we
only display the leading term in terms of the scaling in 1/ε.

with prior ones in Table 1.3 and we summarize our contri-
butions below:

1. We propose a new algorithm for autonomous ex-
ploration problem, Value-Aware Autonomous
Exploration (VALAE), which uses DisCo algo-
rithm (Tarbouriech et al., 2020) and Re-MG-SSP (cf.
Alg. 1) as initial steps and then uses the estimated value
functions to guide our exploration. By doing so, for each
state-action pair (s, a), we derive an (s, a)-dependent
sample complexity bound, which can exploit the vari-
ance information, and yield a sharper sample complexity
bound than the bounds for UcbExplore algorithm and
DisCo algorithm (cf. Table 1). In particular, VALAE im-
proves the dependency on L from cubic to linear, and
improves the dependency on S from square to linear.

2. We connect the autonomous exploration problem to a
new problem, multi-goal stochastic shortest path, which
generalizes classical SSP. And we show that VALAE also
applies to multi-goal SSP.

3. We give the first lower bound of the autonomous ex-
ploration problem. This lower bound shows VALAE is
nearly minimax-optimal when the number of states we
need to explore grows polynomially with respect to L.

1.2. Main Difficulties and Technique Overview

While our work borrows ideas from prior work on au-
tonomous exploration (Lim & Auer, 2012; Tarbouriech et al.,
2020) and recent advances in SSP (Tarbouriech et al., 2021),
we develop new techniques to overcome additional difficul-
ties that are unique in autonomous exploration.

Connection between Autonomous Exploration and
3In (Lim & Auer, 2012), the cost is 1 uniformly for all state-

action pairs. In this paper, we allow non-uniform costs. In Table 1,
we consider uniform costs for fair comparisons.

Multi-Goal SSP. In standard RL setting, it is known that in
order to obtain a tight dependency on L, one needs to exploit
the variance information in the value function (Azar et al.,
2017). However, in autonomous exploration, it is unclear
how to exploit the variance information because even which
state is reachable is unknown.

To this end, we first consider a simpler problem, multi-goal
SSP, and extend the technique for single-goal SSP (Tar-
bouriech et al., 2021) to this new problem (cf. Alg. 2). We
also present a reduction from autonomous exploration to
multi-goal SSP (cf. Alg. 1). These two techniques together
yield the first tight dependency on L for autonomous explo-
ration.

Using Regret to Bound the Sample Complexity. To esti-
mate the sample complexity of VALAE, we need to bound
the total number of rounds r. Inspired by (Lim & Auer,
2012), we classify each round into three categories: failure
round, success round, and skipped round. Moreover, we
adopt the idea of using regret bound.

A failure round has regret larger than Ω̃(L/ε), but the num-
ber of failure rounds rf is hard to estimate. The number of
success rounds and skipped rounds are bounded by Õ(SA),
but the regret in a success round or skipped round can be
negative. Hence, to bound the total number of failure rounds
rf , careful analyses of both the upper bound and the lower
bound of regret are required.

For the upper bound, we extend the techniques of variance
analysis from classical SSP (cf. (Tarbouriech et al., 2021))
to this problem, and we obtain the upper bound of regret
scaling as Õ(

√
rf ). For the lower bound, the total regret in

all the failure rounds grows linearly with respect to rf , and
we use concentration inequalities to lower bound the total
regret in success rounds and skipped rounds (cf. Lem. D.3.)
By solving the inequality that the lower bound of regret
is no more than the upper bound, we can obtain an upper
bound of rf , and we can finally bound the total number of
rounds r.

2. Preliminaries
Notations. For any two vectors X,Y ∈ RS , we write
their inner product as XY :=

∑
s∈S X(s)Y (s). We denote

‖X‖∞ := maxs∈S |X(s)|, and if X is a probability distri-
bution on S, we define V(X,Y ) :=

∑
s∈S X(s)Y (s)2 −

(
∑
s∈S X(s)Y (s))2, i.e. the variance of random variable Y

over distribution X .

Markov Decision Process. We consider an MDP M :=
〈S,A, P, c, s0〉, where S is the state space with size S, A is
the action space with size A, and s0 ∈ S is the initial state.
In state s, taking action a has a cost drawn i.i.d. from a distri-
bution on [cmin, 1] (where cmin > 0) with expectation c(s, a),
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and transits to the next state s′ with probability P (s′|s, a).
For convenience, we use Ps,a and Ps,a,s′ to denote P (·|s, a)
and P (s′|s, a), respectively. A deterministic and stationary
policy π : S → A is a mapping, and the agent following the
policy π will take action π(s) at state s.

For a fixed state g ∈ S we define the random variable
tπg (s) as the number of steps it takes to reach state g start-
ing from state s when executing policy π, i.e. tπg (s) :=
inf{t ≥ 0 : st+1 = g | s1 = s, π}. A policy π is a proper
policy if for any state s ∈ S , tπg (s) < +∞ with probability
1. Then we define the value function of a proper policy
π with respect to the goal state g and its corresponding
Q-function as follows:

V πg (s) = E
[∑tπg (s)

t=1 ct(st, π(st)) | s1 = s
]
,

Qπg (s, a) = E
[∑tπg (s)

t=1 ct(st, π(st)) | s1 = s, π(s1) = a
]
,

where ct ∈ [cmin, 1] is the instantaneous cost at step t in-
curred by the state-action pair (st, π(st)), and the expecta-
tion is taken over the random sequence of states generated
by executing π starting from state s ∈ S. Here we have
V πg (g) = 0. We use πQ to denote the greedy policy over a
vector Q ∈ RS×A, i.e. πQ(s) := arg min

a∈A
Q(s, a).

For a fixed state g ∈ S , we denote V ∗g as the value function
of the optimal policy on MDP M with respect to goal state
g, and here we list some important properties of V ∗g : there
exists a stationary, deterministic and proper policy π∗, such
that its value function V ∗g := V π

∗

g and its corresponding
Q-function Q∗g := Qπ

∗

g satisfies the following Bellman
optimality equations (cf. Lem. A.1):

Q∗g(s, a) = c(s, a) + Ps,aV
∗
g , V ∗g (s) = min

a∈A
Q∗g(s, a).

We stress that in our setting, given an MDP M , the agent
knows the state space S, the action space A, the constant
cmin, but the agent has no prior knowledge of the transition
model P or the cost function c. In each step t, the agent
knows its current state st ∈ S , and taking an action at ∈ A
will transit to another state s′t with some cost ct.

IncrementallyL-controllable States. Before we introduce
the Autonomous Exploration problem, we need to define
incrementally L-controllable states, which are the states we
need to explore. To formally discuss the setting, we need
the following assumption on our MDP M .

Assumption 2.1. The action space contains a RESET ac-
tion s.t. P (s0|s,RESET) = 1 for any s ∈ S. Moreover,
taking RESET in any state s will incur a cost cRESET with
probability 1, where cRESET is a constant in [cmin, 1].

Given any fixed length L ≥ 1, the agent needs to learn the
set of incrementally controllable states S→L . To introduce

the concept of S→L , we first give the definition of policies
restricted on a subset:

Definition 2.2 (Policy restricted on a subset). For any S ′ ⊆
S, a policy π is restricted on the set S ′ if π(s) = RESET
for all s /∈ S ′.

Now we discuss the optimal policy restricted on a set of
states K ⊆ S with respect to goal state g. We denote
V ∗K,g ∈ RS as the value function of the optimal policy
restricted onK with goal g ∈ S , andQ∗K,g as theQ-function
corresponding to V ∗K,g . We consider the case that there exists
at least one proper policy restricted on K with the goal state
g. Then, V ∗K,g and Q∗K,g are finite, and they satisfy the
following Bellman equations:

Q∗K,g(s, a) = c(s, a) + Ps,aV
∗
K,g, ∀(s, a) ∈ S ×A,

V ∗K,g(s) = min
a∈A

Q∗K,g(s, a), ∀s ∈ K, s 6= g,

V ∗K,g(s) = cRESET + V ∗K,g(s0), ∀s /∈ K, s 6= g,

V ∗K,g(g) = 0.

We note that when K1 ⊆ K2, for any g ∈ S, if V ∗K1,g
is

finite, then V ∗K2,g
is also finite, and we have V ∗K2,g

≤ V ∗K1,g

component-wise. Also, we have V ∗g = V ∗S,g component-
wise.

Now we introduce the definition of incrementally control-
lable states S→L (see (Tarbouriech et al., 2020) for more
intuitions on this definition.):

Definition 2.3 (Incrementally L-controllable states S→L ).
Let ≺ be any partial order on S . We denote S≺L as the set of
states reachable from s0 with expected cost no more than L
w.r.t. ≺, which is defined as follows:

• s0 ∈ S≺L ,
• if there is a policy π restricted on {s′ ∈ S≺L : s′ ≺ s} such

that V πs (s0) ≤ L, then s ∈ S≺L .

The set of incrementally L-controllable states S→L is given
by S→L =

⋃
≺
S≺L . And we denote SL = |S→L |.

Multi-Goal Stochastic Shortest Path. Now we define the
multi-goal SSP problem, a natural generalization of the
classical SSP problem. In multi-goal SSP, we consider
an MDP M that satisfies Asmp. 2.1, and all of its states
are incrementally L-controllable, i.e. S→L = S. Also, we
assume that the agent knows L.

A learning algorithm for multi-goal SSP takes the error
parameter ε ∈ (0, 1), confidence δ ∈ (0, 1), and the goal
space G ⊆ S as input, and with probability over 1− δ, the
algorithm outputs a set of policies {πs}s∈G , such that

∀s ∈ G, V πss (s0) ≤ V ∗s (s0) + εL,

i.e., the algorithm learns near-optimal policies to reach each
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s ∈ G. We note that when the goal space G contains a single
element, the problem will reduce to classical SSP.

In multi-goal SSP problem, the learning agent interacts with
MDP M in this way: the agent knows its current state s and
action space A, but it does not know the model P (s′ | s, a)
and cost function c(s, a). Each time, the agent can choose
an action a ∈ A, and the agent will observe that it transits
to a new state s′ with a cost c, where s′ and c are revealed
to the agent. The agent can stop and output the policies
anytime when the agent thinks that it has collected enough
samples to ensure that it can output near-optimal policies.

The performance of the learning algorithm is measured by
the cumulative cost CT , which is defined as follows. We
denote T as the total number of steps the agent uses, and
we remark that T is random and chosen by the agent. We
denote (st, at) as the state-action pair at the t-th step. We
denote by ct(st, at) the instantaneous cost incurred at the

t-th step. Then we can define CT :=
T∑
t=1

ct(st, at).

We want to find an algorithm with a probably approximately
correct (PAC) bound of CT , i.e., with probability over 1− δ,
CT is bounded by some polynomial of L, S,A, ε−1, c−1

min,
and log(1/δ).

Here we explain the reason why we need the RESET action
(Asmp. 2.1). The classical SSP problem uses an episodic
learning protocol, i.e. when the agent reaches the goal state
g, the agent can "reset" to initial state s0 and start a new
episode. But in multi-goal SSP, we do not have episode
learning protocol because we need to ensure that for each
goal g ∈ G, the agent learns a near-optimal policy to reach
g. Therefore, each time when the agent arrives at any of the
goal, the agent has to “reset” to s0. Hence the RESET action
is necessary, and the previous works (Lim & Auer, 2012)
and (Tarbouriech et al., 2020) also assume the existence of
the RESET action.

We also remark that multi-goal SSP is fundamentally differ-
ent from reward-free RL (Jin et al., 2020). Reward-free RL
contains two phases: exploration phase and planning phase.
In exploration phase we have no knowledge of reward r,
and in planning phase we cannot interact with MDP. But in
multi-goal SSP, we can estimate the cost function c, and the
agent does not need to separate into two phases.

Autonomous Exploration. Now we introduce the au-
tonomous exploration (AX) problem, which generalizes
multi-goal SSP. AX problem was first introduced by (Lim
& Auer, 2012), and we use their definition of AX problem.

In AX, we consider an MDP M that satisfies Asmp. 2.1. A
learning algorithm of AX problem inputs the exploration
radius L ≥ 1, the error parameter ε ∈ (0, 1) and confidence
δ ∈ (0, 1), and with probability over 1 − δ, the algorithm

should output a set of "known" states K ⊆ S such that
S→L ⊆ K, i.e., the algorithm discovers all the states that we
want to explore. And the algorithm should also output a set
of policies {πs}s∈K, such that

∀s ∈ S→L , V πss (s0) ≤ (1 + ε)L,

i.e., the algorithm learns a policy to reach each s ∈ S→L and
the expected cost is no more than (1 + ε)L. In AX, we also
use cumulative cost CT to measure the performance, but we
hope CT depends on |S→L | instead of the global size |S|.

We note that different complexity bounds ofCT may depend
on SL, S2L, S(1+ε)L. But if we assume that SL grows poly-
nomially with respect to L, i.e., there exist constants C, d
independent of L, such that SL ≤ CLd for all L ≥ 1, we
will have S2L ≤ C2dLd = O(Ld), and S(1+ε)L = O(Ld).
Under this assumption, SL, S2L, S(1+ε)L are of the same
order O(Ld), thus we use S as the abbreviation for all these
quantities in Table 1. This assumption is implicitly consid-
ered in the literature, because otherwise one may need to
consider the logarithmic dependency on SL.

In AX, the learning agent does not know the set S→L or the
size of S→L , and it needs to discover and explore S→L by
itself and find policies to reach each state in S→L . This is
why the problem is called "autonomous exploration".

We remark that in Sect. 3, we will prove that our Alg. 2 out-
puts a set K ⊇ S→L and a set of policies {πs}s∈K restricted
on K, such that

∀s ∈ K, V πss (s0) ≤ V ∗K,s(s0) + εL.

This implies ∀s ∈ S→L , V πss (s0) ≤ (1 + ε)L, because when
S→L ⊆ K, we have V ∗K,s(s0) ≤ V ∗S→L ,s(s0), and for any
s ∈ S→L , we have V ∗S→L ,s(s0) ≤ L.

In the special case that S→L = S (i.e., in the setting of multi-
goal SSP), our Alg. 2 will output K = S , and the inequality
above will be reduced to ∀s ∈ S, V πss (s0) ≤ V ∗s (s0) + εL.
Hence our Alg. 2 for AX problem also solves multi-goal
SSP problem with goal space G = S .

2.1. Review of Prior Algorithms

We review prior algorithms because our algorithm also relies
on some components from prior algorithms.

DisCo Algorithm for Autonomous Exploration.

DisCo algorithm was introduced in (Tarbouriech et al.,
2020), and we use DisCo algorithm as a burn-in step for
Alg. 2. Here we give the lemma of the sample complexity
of DisCo algorithm for autonomous exploration.

Lemma 2.4 (Corollary 1, (Tarbouriech et al., 2020)). As-
sume that L ≥ 1, 0 < ε ≤ 1 and 0 < δ < 1. For any
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MDP M = 〈S,A, P, c, s0〉 satisfying Asmp. 2.1, with prob-
ability at least 1− δ, DisCo algorithm will terminate and
output a set of states K such that S→L ⊆ K ⊆ S→(1+ε)L,
and a set of policies {πs}s∈K restricted on K, such that
∀s ∈ K, V πss (s0) ≤ V ∗K,s(s0) + εL, and the cumulative
cost CT = Õ(L3S2

(1+ε)LAc
−2
minε

−2).

Here we clarify that the definitions of ε in our work and in
(Tarbouriech et al., 2020) are different. Tarbouriech et al.
(2020) denotes absolute error as ε (i.e., they require that the
output policies satisfy V πss (s0) ≤ L + ε and V πss (s0) ≤
V ∗K,s(s0) + ε), and our paper denotes relative error as ε (i.e.,
we require V πss (s0) ≤ (1 + ε)L and V πss (s0) ≤ V ∗K,s(s0) +
εL). And their absolute error εabs and our relative error εrel
satisfies the following equation: εabs = εrelL.

We also remark that when cmin = 1, the original form of
sample complexity in Theorem 1, (Tarbouriech et al., 2020)
was Õ(L5ΓL+εabsSL+εabsAε

−2
abs + L3S2

L+εabs
Aε−1

abs ), where

ΓL := max
(s,a)∈S→L ×A

∥∥∥{P (s′ | s, a)}s′∈S→L
∥∥∥

0
, and ΓL+εabs =

SL+εabs in the worst case. By setting εabs = εrelL and
ΓL+εabs = SL+εabs , we can obtain the sample complexity
bound Õ(L3S2

(1+εrel)L
Aε−2

rel ) in Lem. 2.4 when cmin = 1.
And in Corollary 1, (Tarbouriech et al., 2020), they dis-
cussed the case when cmin ∈ (0, 1), which incurs an addi-
tional c−2

min in their sample complexity.

3. Algorithms and Sample Complexity
Bounds

Now we are ready to describe our main algorithm VALAE
(cf. Alg. 2), and currently we focus on autonomous explo-
ration problem. There are three key components in Alg. 2.
The first component is running DisCo algorithm (cf. (Tar-
bouriech et al., 2020)) with ε = 1. Our aim is to discover
a set of states K such that S→L ⊆ K ⊆ S→2L, and compute
a set of policies {πs}s∈K to reach each state s ∈ K with
expected cost V πss (s0) no more than 2L. After the first
component, we will fix our set K, and to solve the AX prob-
lem, we need only learn a set of policies {πs}s∈K such that
V πss (s0) ≤ V ∗K,s(s0) + εL for all s ∈ K.

The second component reduces the autonomous exploration
problem to multi-goal SSP (cf. Alg. 1) using the set K
computed from the first component. Alg. 1 first constructs
a new MDP M† by "merging" all the states s /∈ K to a
single artificial state x, and to solve AX problem, we need
only solve multi-goal SSP problem on MDP M† with goal
space G = K. Then the algorithm collects fresh samples
of the form (s, a, s′, c) for all state-action pairs (s, a) ∈
K ×A, and the aim is to compute the empirical probability
P̂ (s′|s, a) and the average cost ĉ(s, a) with small error.

In the third component, inspired by recent advances in

Algorithm 1 Reduce Autonomous Exploration to Multi-
Goal SSP (Re-MG-SSP)
1: Input: Confidence δ ∈ (0, 1), exploration radius L ≥ 1,
2: Input: a set of states K, and a set of policies {πs}s∈K.
3: Define MDPM† = 〈K†,A, P †, c†, s0〉 whereK†, P †, c† are

defined in Sect. 3.2.
4: ∀(s, a, s′) ∈ K†×A×K†, setN(s, a, s′)← 0; P̂s,a,s′ ← 0.

5: ∀(s, a) ∈ K† × A, set N(s, a) ← 0; n(s, a) ←
0; θ(s, a)← 0; ĉ(s, a)← 0.

6: Set ψ ← 12000L2|K|c−2
min ln(

|K|A
δ

), and φ← 2dlog2 ψe.
7: for each (s, a) ∈ K ×A do
8: while N(s, a) < φ do
9: Execute policy πs on MDP M† until reaching state s.

10: Take action a, incur cost c and observe next state s′ ∼
P †(· | s, a).

11: Set N(s, a) ← N(s, a) + 1, θ(s, a) ← θ(s, a) + c,
N(s, a, s′)← N(s, a, s′) + 1.

12: end while
13: Set ĉ(s, a)← θ(s,a)

N(s,a)
and θ(s, a)← 0.

For all s′ ∈ K†, set n(s, a) ← N(s, a), P̂s,a,s′ ←
N(s, a, s′)/N(s, a).

14: end for
15: For all a ∈ A, set N(x, a) ← φ, n(x, a) ← φ, ĉ(x, a) ←

cRESET, P̂x,a,s0 ← 1.
16: For all a ∈ A, s′ ∈ S, set P̂x,a,s′ ← 0.
17: Output: N(), n(), P̂ , θ(), ĉ.

stochastic shortest path (Tarbouriech et al., 2021), we design
a policy evaluation step to obtain near-optimal estimates of
the costs of getting to each s ∈ S→L (cf. Alg. 2).

Below we give detailed descriptions for each component.

3.1. Running DisCo Algorithm with ε = 1

In the first component of our main algorithm VALAE (cf.
Alg. 2), we use DisCo algorithm with (relative) error ε = 1
as a subroutine. By Lem. 2.4, we can obtain a setK such that
S→L ⊆ K ⊆ S→2L, and a set of policies {πs}s∈K such that
∀s ∈ K, V πss (s0) ≤ 2L, and the total cost is bounded by
Õ(L3S2

(1+ε)LAc
−2
min). In the next subsection, we will focus

on a fixed set K, and reduce the autonomous exploration
problem to multi-goal SSP problem.

3.2. Connection between Autonomous Exploration and
Multi-Goal SSP

In our main algorithm VALAE (Alg. 2), after running DisCo
with ε = 1, we have obtained a set of known statesK ⊇ S→L
and discovered all the states that we want to explore, and we
denote K = |K|. Now we focus on the second component
of VALAE (cf. Alg. 1). We will fix our set of known statesK,
and focus only on the policies restricted onK. Therefore, for
all the states s /∈ K, we can regard them as one artificial state
x, and the only action at state x is RESET. To this purpose,
we will construct an MDPM† := 〈K†,A, P †, c†, s0〉where
we first define the artificial state x, and we setK† = K∪{x},
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and we denoteK ′ = |K†| = K+1. For any (s, a) ∈ K×A,
we define P †s,a,s′ as follows:

P †s,a,s′ = Ps,a,s′ , ∀s′ ∈ K, and P †s,a,x =
∑
s′ /∈K

Ps,a,s′ .

We also define P †x,a,s′ = I[s′ = s0] for any a ∈ A, s′ ∈ K†.
Finally, we define c†(s, a) = c(s, a) for all (s, a) ∈ S ×A,
and c†(x, a) = cRESET for all a ∈ A. In this way, the AX
problem reduces to multi-goal SSP problem on MDP M†

with the set of states being K† and goal space G = K, and
all states in K are incrementally 2L-controllable from s0.

Next, we collect φ = Ω̃(L2|K|/c2min) fresh samples for
each state-action pair (s, a) ∈ K × A. Our aim is that for
each state-action pair (s, a) ∈ K × A, we can obtain φ
samples of the form (s, a, s′, c) and compute the empirical
probability P̂ (s′|s, a) and the average cost ĉ(s, a), so that
our estimation P̂ (s′|s, a) and ĉ(s, a) are close enough to
P †(s′|s, a) and c†(s, a), respectively. In DisCo algorithm,
we have computed a policy πs for each s ∈ K, such that
we can execute πs to reach state s from s0 with expected
cost no more than 2L. Hence, to obtain a sample (s, a, s′, c)
at any state-action pair (s, a) ∈ K ×A, we need only first
execute πs to arrive at state s, then execute action a.

We remark that using fresh samples is essential for Alg. 2 to
ensure these samples are independent of K, and we cannot
use the samples collected in DisCo algorithm because they
are dependent of K. Also, we note that in Alg. 1 and Alg. 2,
the estimated transition probability P̂ (s′ | s, a) and the
estimated cost ĉ(s′ | s, a) are only evaluated for all (s, a) ∈
K† ×A on MDP M†, rather than for all (s, a) ∈ S ×A on
MDP M , hence the computational complexity of Alg. 1 and
Alg. 2 does not depend on "global" |S|.

We note that the idea of uniformly connecting φ samples
for each state-action pair (s, a) ∈ K × A is similar with
DisCo algorithm. The difference is that DisCo algorithm
collects Ω̃(L2|K|c−2

minε
−2) samples for each state-action pair

(s, a) ∈ K ×A, but in Alg. 1 our φ = Ω̃(L2|K|c−2
min) and is

smaller than that in DisCo.

3.3. Value-Aware Algorithms for Autonomous
Exploration and Multi-Goal SSP

Finally we describe our main algorithm, Value-Aware
Autonomous Exploration (VALAE, cf. Alg. 2).
First, VALAE uses DisCo algorithm with ε = 1 as a sub-
routine, and DisCo algorithm computes a set K such that
S→L ⊆ K. We discard all the samples collected in DisCo
algorithm, in order to ensure the independence of K and
P̂s,a. Second, we use Alg. 1 as a burn-in step to collect
Ω̃(L2|K|/c2min) samples for each of the state-action pair
(s, a) so that the empirical model P̂ and the true model P †

are close enough. This guarantees that with high probability,

Algorithm 2 Value-Aware Autonomous Exploration
(VALAE)

1: Input: Confidence δ ∈ (0, 1), error ε ∈ (0, 1], and L ≥ 1.
2: Input (for multi-goal SSP only): Goal Space G ⊆ S.
3: (For autonomous exploration, set G = ∅.)
4: Specify: Trigger setN ← {2j−1 : j = 1, 2, . . .}.

\\We run DisCo algorithm with ε = 1 and get a set K such
that S→L ⊆ K ⊆ S→2L.

5: Run DisCo algorithm with input (δ, ε = 1, L) and we get a
set K and a set of policies {πs}s∈K.

6: Run Alg. 1 with input (δ, L,K, {πs}s∈K), and we obtain the
variables N(), n(), P̂ , θ(), ĉ.

7: Set time step t← 1 and trigger index j ← 5 + log2
1
cmin

.

8: Set ε← ε/3, B ← 10L, λ = Õ(1/ε2), and g ← s0.
9: Initialize G ← K if G = ∅.

10: \\Solve multi-goal SSP problem on M† with goal space G.
11: for round r = 1, 2, · · · do
12: \\Phase (a): Compute Optimal Policy
13: Compute (Q,V ) := VISGO(g, 2−j/(|K†|A)).
14: Set the policy π̃ as the greedy policy over Q, and τ̂ ← 0.
15: \\Phase (b): Policy Evaluation
16: for episode k = 1, 2, · · · , λ do
17: Set st ← s0 and reset to the initial state s0, and τ̂k → 0.
18: while st 6= g do
19: Take action at = argmina∈AQ(st, a) on M†, incur

cost ct and observe next state st+1 ∼ P †(· | st, at).
20: Set (s, a, s′, c)← (st, at, st+1, ct) and t← t+ 1.
21: SetN(s, a) ← N(s, a) + 1, θ(s, a) ← θ(s, a) + c,

N(s, a, s′)← N(s, a, s′) + 1.
22: if N(s, a) ∈ N then
23: Set j ← j+1, ĉ(s, a)← 2θ(s,a)

N(s,a)
and θ(s, a)← 0.

24: For all s′ ∈ K†, set n(s, a)← N(s, a), P̂s,a,s′ ←
N(s, a, s′)/N(s, a).

25: Return to line 11, start a new round (the current
round has been a skipped round).

26: end if
27: Set τ̂ ← τ̂ + c

λ
, τ̂k ← τ̂k + c.

28: end while
29: if τ̂ > V (s0) + εL then
30: Return to line 11, start a new round. (the current round

has been a failure round).
31: end if
32: end for
33: Set πg ← π̃. Remove g from G. (The current round has

been a success round.)
34: Choose another state g ∈ G.
35: Stop the algorithm if G is empty.
36: end for

Output: The states s in K and their corresponding policy πs.

in any round r, the expected cost of the greedy policy π̃
in Phase (a) on model P † is no more than O(L), which is
proved in Lem. C.5.

From now on we work on the MDP M†, and we will
solve the multi-goal SSP problem on M† and compute near-
optimal policies πg for all the goal states g ∈ K. We choose
the goal state g ∈ K one by one, and we move to another
goal state g if the average performance of the policy πg is
close to our estimation of the optimal policy. In each round,
we have two phases. In the first phase, we use VISGO (cf.
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Alg. 3 in Appendix C) to estimate the value function of the
optimal policy with goal state g (denoted as V ), and we set
the policy π̃ as the greedy policy over its output Q. We note
that V is optimistic, i.e., V (s) ≤ V ∗K,g(s) ≤ 2L+ 1. Since
we do not know whether the policy π̃ is close enough to the
optimal policy, in the second phase, we will execute π̃ for
λ = Õ(1/ε2) times and check whether the average perfor-
mance is close enough to our estimation of the optimal cost
(i.e., check whether τ̂ ≤ V (s0) + εL). By setting

λ = d2048

ε2
ln2(

256

ε
) ln(

2|K|
δ

)e

and using concentration inequalities (Lem. D.1), we can
prove that the average performance τ̂ in λ episodes is close
enough to the expected cost of π̃. In this process, we also
collect samples, and use them to help us estimate the value
function of the optimal policy.

In the second phase, the current round will be classified
into three cases: failure round, skipped round, and success
round. This borrows the idea from (Lim & Auer, 2012).
If the average performance of the policy π̃ is too bad (i.e.,
τ̂ is larger than V (s0) + εL), we will consider the current
round as a failure round. If the number of samples N(s, a)
meets the trigger set (i.e. is a power of 2), we will consider
the current round as a skipped round, following the idea
in (Jaksch et al., 2010). Otherwise, the current round is a
success round. In the case of a failure round or a skipped
round, we will not change the goal state g, and in the next
round, we compute a new policy by VISGO using the sam-
ples collected in this round. In the case of a success round,
as the average performance of the policy π̃ is close to opti-
mal, we can set the π̃ as the policy πg for the goal state g,
and choose another goal state g.

Theorem 3.1 (Cumulative Cost for AX). Assume that
L ≥ 1, 0 < ε ≤ 1 and 0 < δ < 1. For any
MDP M = 〈S,A, P, c, s0〉 satisfying Asmp. 2.1, with
probability at least 1 − δ, our Alg. 2 will terminate and
output a set of states K such that S→L ⊆ K ⊆ S→2L,
and a set of policies {πs}s∈K restricted on K, such that
∀s ∈ K, V πss (s0) ≤ V ∗K,s(s0) + εL, and the cumulative
cost CT = Õ(LS2LAε

−2 + LS2
2LAε

−1 + L3S2
2LAc

−2
min).

And when ε ≤ min(S−1
2L , L

−1cmin), we have CT =

Õ(LS2LAε
−2).

Thm.3.1 shows that Alg.2 solves autonomous exploration
problem. Note that in Thm. 3.1, the dependency on L is
tight when ε→ 0, because we leverage the variance infor-
mation in the policy-evaluation phase, which is necessary
in RL problems generally. DisCo algorithm does not use
the variance information because it collects equal number
of samples on each state-action pair (s, a), i.e., the sample
collection in DisCo algorithm does not use the estimated
value function as the guidance.

We highlight that the leading term of CT does not have cmin.
This is because the variance fundamentally does not scale
with cmin (cf. Lem. D.2 and Lem. D.3). While we discover a
larger set K ⊆ S→2L compared with (Lim & Auer, 2012) and
(Tarbouriech et al., 2020), we note that if the number of the
L-controllable states grows polynomially with respect to L,
SL and S2L will be of the same order. Hence under this
assumption, our sample complexity bound strictly improves
the existing ones and is nearly minimax optimal.

Lastly, we note that Alg. 2 also solves the multi-goal SSP
problem, and it enjoys a near-optimal sample complexity
for multi-goal SSP:

Theorem 3.2 (Cumulative Cost for Multi-Goal SSP). As-
sume that L ≥ 1, 0 < ε ≤ 1, 0 < δ < 1 and goal
space G ⊆ S. For any MDP M = 〈S,A, P, c, s0〉 sat-
isfying Asmp. 2.1 and S→L = S, with probability at least
1 − δ, our Alg. 2 will terminate and output a set of poli-
cies {πs}s∈G such that ∀s ∈ G, V πss (s0) ≤ V ∗s (s0) + εL,

and the cumulative cost CT = Õ(LSAε−2 + LS2Aε−1 +
L3S2Ac−2

min). And when ε ≤ min(S−1, L−1cmin), we have
CT = Õ(LSAε−2).

4. A Minimax Lower Bound for Autonomous
Exploration

s0 s1 g
2
L

1− 2
L

1− 2
(1+6ε)L

1− 2
L

2
L

2
(1+6ε)L

1

Figure 1: Illustration of our construction of the hard MDP.
Here we present our lower bound of sample complexity for
the autonomous exploration problem, and we follow the
definitions in (Domingues et al., 2021).
We define a learning algorithm as a history-dependent policy
π used to interact with an MDP M , and the rigorous defi-
nition of π is in Appendix E. We recall that in AX setting,
the algorithm eventually stops and output a set K ⊆ S and
a set of policies {πs}s∈K. Hence we define an algorithm
for the AX problem as a tuple (π, τ,K, {πs}s∈K), where τ
is the stopping time (total number of steps) chosen by the
algorithm, K and {πs}s∈K are the output of the algorithm.
Now we formally write the definition of an algorithm for
AX problem.

Definition 4.1. An algorithm (π, τ,K, {πs}s∈K) is
(ε, δ, L)-PAC for AX problem on MDP M , if with prob-
ability over 1− δ, the algorithm returns a set of states K and
a set of policies {πs}s∈K after τ steps, such that K ⊇ S→L
and ∀s ∈ S→L , V πss (s0) ≤ (1 + ε)L.
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We note that τ is a random variable over the probability dis-
tribution Pπ,M , where Pπ,M is determined by algorithm π
and MDP M , and Pπ,M is defined in Appendix E. Also, we
denote the operator Eπ,M as the expectation under Pπ,M .
Then for any real numbers L, cmin and positive integers
S,A, SL, we define a class of MDPs M(L, SL) as follows:
M(L, SL) contains all the MDPs M = 〈S,A, P, c, s0〉,
such that |S| ≤ S, |A| ≤ A, c(s, a) ∈ [cmin, 1] for all
(s, a) ∈ S ×A, and M satisfies Asmp. 2.1 and |S→L | ≤ SL.
Finally, the following theorem states the lower bound for
the autonomous exploration problem.

Theorem 4.2. Assume that L > 4, S > 8, A > 4, 4 ≤
SL ≤ min{(A − 1)b

L
2 c, S}, 0 < ε < 1

4 , 0 < δ < 1
16 , and

0 < cmin ≤ 1. Then for any algorithm (π, τ,K, {πs}s∈K)
that is (ε, δ, L)-PAC for AX problem on any MDP M ∈
M(L, SL), there exists an MDPM∈M(L, SL) such that

Eπ,M[τ ] = Ω(
LSLA

cminε2
log

1

δ
).

As τ is the total number of steps used in the algorithm π,
the lower bound of cumulative cost CT is cmin multiplies
the lower bound of τ , i.e., Ω(LSLAε

−2 log 1
δ ). This lower

bound further implies our upper bound (Theorem 3.1) is
nearly minimax-optimal when SL and S2L are of the same
order. We also have a lower bound for multi-goal SSP (cf.
Appendix F).

4.1. Proof Sketch
We briefly sketch our proof of the lower bound. We consider
the case cmin = 1 and L > 2 for convenience, and we first
construct our family of hard MDPs for S = 3 states (cf.
Fig. 1), where s0 is initial state, s1 is middle state and g is
goal state. In the initial state s0, taking any action a will
transit to state s1 with probability 2

L , and stay at state s0

with probability 1− 2
L . In state s1, there is only one optimal

action a∗. When we take the action a∗ in s1 (the blue edges),
the agent will transit to the goal state g with probability 2

L
and stay at s1 with probability 1 − 2

L . When we take an
action a 6= a∗ in s1 (the dashed edges), the agent will transit
to the goal state g with smaller probability 2

(1+6ε)L . We
note that the RESET action is not drawn in Fig. 1.
We can verify that V ∗g (s0) = L

2 + L
2 = L, and g ∈ S→L

(hence g should be contained in the learning algorithm’s
output K). Let πg be the output policy of the learning
algorithm with respect to goal state g. If πg(s1) = a∗, we
have V πgg (s0) = L. Otherwise, we have V πgg (s0) = L

2 +
(1+6ε)L

2 > (1 + ε)L, i.e., the policy πg is not valid output
for AX if πg(s1) 6= a∗. Hence, if the algorithm solves
AX problem on this MDP, it has to discriminate between
two Bernoulli distributions with p1 = 2

L and p2 = 2
(1+6ε)L

among all the A actions, and the KL divergence of the two
distributions is O(ε2/L). Hence we can prove that we need
at least Ω̃(LA/ε2) to solve AX on this MDP. The technique
of KL divergence is similar with (Domingues et al., 2021).

Then we can generalize our hard MDP to larger SL. We
first construct an MDPM′0 with SL − 1 states, and each
middle state si can be reached from s0 in L/2 steps in ex-
pectation. Then we add a goal states g, and we choose
one optimal state-action pair (s∗i , a

∗) among all the middle
states and actions. Finally, we set the transition probability
P (g|s∗i , a∗) = 2

L , and P (g|si, a) = 2
(1+6ε)L for other pair

of middle state and action (si, a). In intuition, this extends
the construction in Fig. 1 from A actions to O(SLA) ac-
tions. The full construction is in Appendix E. Under this
construction, we can prove that the lower bound scales as
Ω̃(LSLA/ε

2).

5. Conclusion
We introduced a new algorithm for the autonomous explo-
ration problem, which improves existing ones. Along the
way, we also introduced a new problem, multi-goal SSP
problem, which can be of independent interest. The natu-
ral future directions include designing an algorithm with
Õ
(
LSLA
ε2

)
sample complexity instead of Õ

(
LS2LA
ε2

)
, and

improving the lower order terms in existing bounds.
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A. Basic Property of the Optimal Policy
Lemma A.1 (Bertsekas & Tsitsiklis, 1991;Yu & Bertsekas, 2013). Suppose that there exists a proper policy with respect to
the goal state g and that for every improper policy π′ there exists at least one state s ∈ S such that V π

′

g (s) = +∞. Then
the optimal policy π∗ is stationary, deterministic, and proper. Moreover, V ∗g = V π

∗

g is the unique solution of the optimality
equations V ∗g = LV ∗g and V ∗g (s) < +∞ for any s ∈ S, where for any vector V ∈ RS the optimal Bellman operator L is
defined as

LV (s) := min
a∈A

{
c(s, a) + Ps,aV

}
.

Furthermore, the optimal Q-value, denoted by Q∗g = Qπ
∗

g , is related to the optimal value function as follows

Q∗g(s, a) = c(s, a) + Ps,aV
∗
g , V ∗g (s) = min

a∈A
Q∗g(s, a), ∀(s, a) ∈ S ×A.

B. High-Probability Event
First we define the high-probability event E to do concentration on all the samples collected in Alg. 1 and Alg. 2. We note
that in Alg. 2, after running DisCo algorithm, the set of known states K is fixed, and our algorithm focuses on the new MDP
M† = 〈K†,A, P †, c†, s0〉, whereM† is defined in Sect. 3.2.
We recall that for any two vectors X,Y ∈ RK′ (K ′ = |K†|), we write their inner product as XY :=

∑
s∈K† X(s)Y (s),

and we denote ‖X‖∞ := maxs∈K† |X(s)|. If X is a probability distribution on K†, we denote V(X,Y ) :=∑
s∈K† X(s)Y (s)2 − (

∑
s∈K† X(s)Y (s))2, i.e. the variance of random varianble Y over distribution X . And we use P †s,a

and P †s,a,s′ to denote P †(·|s, a) and P †(s′|s, a), respectively.
Here for any g ∈ K, we denote the vector V ∗g ∈ RK′ as the value function of the optimal policy on MDPM† with respect
to goal g, and we denote V ∗g (s) as the expected cost of the optimal policy to reach state g from s on MDP M†. Also, we
define B∗ := max

(s,g)∈K†×K
V ∗g (s), and we denote Q∗g ∈ RK′×A as the Q-function corresponding to V ∗g .

In Alg. 2, we set B = 10L. Thus when K ⊆ S→2L, we have ∀(s, g) ∈ K† ×K, V ∗g (s) ≤ 2L+ 1 ≤ B, and B∗ ≤ B.
Then we define the high-probability event E . We note that our definition of E is similar with Definition 12 in Sect. D.1,
(Tarbouriech et al., 2021).

Definition B.1 (High-probability event E). We define the event E := E1 ∩ E2 ∩ E3, where

E1 :=

{
∀(s, a) ∈ K† ×A,∀n(s, a) ≥ 1 : |ĉ(s, a)− c†(s, a)| ≤ 2

√
2ĉ(s, a)ιs,a
n(s, a)

+
28ιs,a

3n(s, a)

}
,

E2 :=

∀(s, a, s′) ∈ K† ×A×K†, ∀n(s, a) ≥ 1 : |P †s,a,s′ − P̂s,a,s′ | ≤

√
2P †s,a,s′ιs,a

n(s, a)
+

ιs,a
n(s, a)

,
E3 :=

∀(s, a, g) ∈ K† ×A×K,∀n(s, a) ≥ 1 : |(P̂s,a − P †s,a)V ∗g | ≤ 2

√
V(P̂s,a, V ∗g )ιs,a

n(s, a)
+

14B∗ιs,a
3n(s, a)

,
where ιs,a := 4 ln

(
12K′An(s,a)

δ

)
.

Lemma B.2. It holds that P(E) ≥ 1− δ.

Proof. The proof is the same with Lemma 13 in Sect. D.1, (Tarbouriech et al., 2021).
The event E1 holds with probability 1− δ/3 by Lem. 27 in Sect. F, (Tarbouriech et al., 2021) and by union bound over all
(s, a) ∈ K† ×A.
The event E2 holds with probability 1− δ/3 by Lem. 26 and Lem. 33 in Sect. F, (Tarbouriech et al., 2021) and by union
bound over (s, a, s′) ∈ K† ×A×K†.
The event E3 holds with probability 1− δ/3 by Lem. 27 in Sect. F, (Tarbouriech et al., 2021) and by union bound over all
(s, a, g) ∈ K† ×A×K.

The lemma above is a direct consequence of concentration inequalities. We note that we do not use the samples collected in
DisCo algorithm, and the set K is fixed after running DisCo algorithm. Hence for any g ∈ K, the vector V ∗g depends only on
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the set K, and V ∗g is fixed after running DisCo algorithm and does not depend on the samples collected in Alg.1 and Alg.2.
Thus P̂s,a and V ∗g are independent for any (s, a, g) ∈ K† ×A×K and n(s, a) ≥ 1.

Lemma B.3 ((Cohen et al., 2020), Lem. B.5). Let π be a proper policy such that for some d > 0, the expected cost
V πg (s) ≤ d for every non-goal state s 6= g. Then the probability that the cumulative cost of π to reach the goal state from
any state s is more than m, is at most 2e−m/(4d) for all m ≥ 0.

Lemma B.4. Let τ be a random variable on [0,+∞) such that Pr(τ > m) ≤ 2e−m/4d for any m ≥ 0, where d > 0 is a

constant. We define the random variable τ̂ = 1
n

n∑
k=1

τ̂k, where each τ̂k is i.i.d. and has the same distribution with τ . Then

for any ε > 0, we have Pr(E(τ) > τ̂ + εd) ≤ exp(− nε2

128 ln2(64/ε)
).

Proof. We set the constant Γ = b8d ln(64/ε)c. Then we define the random variables τΓ = min(τ,Γ), τ̌k = min(τ̂k,Γ),

and τ̌ = 1
n

n∑
k=1

τ̌k.

As each τ̌k is a random variable on [0,Γ], by Hoeffding’s inequality, we have

Pr(E(τΓ) > τ̌ +
1

2
εd) ≤ exp(−nε

2d2

2Γ2
) ≤ exp(− nε2

128 ln2(64/ε)
).

Moreover, we have

E(τ) ≤ E(τΓ) +

∞∑
i=1

i · Pr(Γ + i− 1 < τ ≤ Γ + i) = E(τΓ) +

∞∑
m=Γ

Pr(τ > m)

≤ E(τΓ) + 2

∞∑
m=Γ

exp(−m/4d) ≤ E(τΓ) +
1

2
εd.

Therefore, we obtain

Pr(E(τ) > τ̂ + εd) ≤ Pr(E(τ) > τ̌ + εd) ≤ Pr(E(τΓ) > τ̌ +
1

2
εd) ≤ exp(− nε2

128 ln2(64/ε)
).

C. Analysis of a VISGO Procedure
In this section, we fix the known states K and the goal state g and we analysis an execution of the VISGO procedure in
Alg. 3. We use the value iteration of the form V (i+1) = L̃V (i) to estimate the value funtion of the optimal policy. Here, we
define the operator L̃ in the following way. For any U ∈ RK′ such that U ≥ 0, U(g) = 0, and ‖U‖∞ ≤ B, we first define

L̃U(s, a) := ĉ(s, a) + P̃s,aU − b(U, s, a),

for any s ∈ K \ {g} and a ∈ A, where we define

b(U, s, a) := max

c1
√

V(P̂s,a, U)ιs,a
n(s, a)

, c2
Bιs,a
n(s, a)

+ c3

√
ĉ(s, a)ιs,a
n(s, a)

, (4)

for any s ∈ K \ {g} and a ∈ A. Here we recall that B = 10L, ιs,a = 4 ln
(

12K′An(s,a)
δ

)
(cf. Def. B.1), and V(X,Y ) :=∑

s∈K† X(s)Y (s)2 − (
∑
s∈K† X(s)Y (s))2 is the variance of random varianble Y over distribution X . And we define the

transition probability P̃s,a,s′ = n(s,a)
n(s,a)+1 P̂s,a,s′ + I[s′=g]

n(s,a)+1 that slightly increases the probability to reach the goal g at each
state-action pair.
Then, we set L̃U(s) := mina∈A L̃U(s, a) for s ∈ K and s 6= g, and we set L̃U(x) := cRESET + U(s0). Finally, we set
L̃U(g) := 0.
We note that in Alg. 2, before we executed VISGO procedure, we have collected φ = Õ(L2|K|/c2min) samples for each
state-action pair (s, a) ∈ K ×A in Alg. 1. Thus we have n(s, a) ≥ φ for each (s, a) ∈ K ×A. We stress that the lemmas
of this section are based on the conditions that n(s, a) ≥ φ for all (s, a) ∈ K ×A.
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Algorithm 3 Subroutine VISGO
1: Input: Goal state g and εVI.
2: Global variables: B, L, N(), n(), P̂ , θ(), ĉ().
3: Specify: Constants c1 = 6, c2 = 72, c3 = 2

√
2.

4: For all (s, a, s′) ∈ K ×A×K†, set

P̃s,a,s′ ←
n(s, a)

n(s, a) + 1
P̂s,a,s′ +

I[s′ = g]

n(s, a) + 1
.

5: For all (s, a) ∈ K ×A, set ιs,a ← 4 ln
(

12K′An(s,a)
δ

)
.

6: Set i← 0, V (0) ← 0, V (−1) ← +∞.
7: while ‖V (i) − V (i−1)‖∞ > εVI do
8: For all s ∈ K \ {g} and a ∈ A, set

b(i+1)(s, a) ← max
{
c1

√
V(P̂s,a, V (i))ιs,a

n(s, a)
, c2

Bιs,a
n(s, a)

}
+ c3

√
ĉ(s, a)ιs,a
n(s, a)

, (1)

Q(i+1)(s, a) ← ĉ(s, a) + P̃s,aV
(i) − b(i+1)(s, a), (2)

V (i+1)(s) ← min
a∈A

Q(i+1)(s, a). (3)

9: Set V (i+1)(x)← cRESET + V (i)(s0).
10: Set V (i+1)(g)← 0, i← i+ 1.
11: end while
12: return Q(i), V (i).

We note that the variance V(P̂s,a, U) ≤ O(L2) when ‖U‖∞ ≤ B = 10L, and ιs,a contains only logarithmic terms, thus
b(U, s, a) = Õ(L/

√
n(s, a)). As n(s, a) ≥ φ = Ω(L2Kc−2

min), we have b(U, s, a) ≤ cmin/18 ≤ cmin for any (s, a) ∈ K×A.
Therefore, if U(g) = 0, ‖U‖∞ ≤ B, and U ≥ 0 component-wise, when n(s, a) ≥ φ for any (s, a) ∈ K × A, we have
L̃U(s, a) ≥ 0 for any (s, a) ∈ K ×A. Hence the output of VISGO (Q,V ) satisfies Q ≥ 0 and V ≥ 0 component-wise.
For convenience, we define b(U, x, a) := 0 and b(U, g, a) := 0 for any a ∈ A.

Lemma C.1 ((Tarbouriech et al., 2021), Lemma 12). For any non-negative vector U ∈ RK′ such that U(g) = 0, for any
(s, a) ∈ K ×A, it holds that

P̃s,aU ≤ P̂s,aU ≤ P̃s,aU +
‖U‖∞

n(s, a) + 1
.

The proof of the following Lem. C.2 is similar with Lem. 16 in (Tarbouriech et al., 2021), but here we have two distributions
p̃ and p. We give the whole proof for completeness.

Lemma C.2. Let Υ := {v ∈ RK′ : v ≥ 0, v(g) = 0, ‖v‖∞ ≤ B}. Let f : ∆K′ ×∆K′ × Υ × R × R × R → R with

f(p̃, p, v, n,B, ι) := p̃v −max
{
c1

√
V(p,v)ι
n , c2

Bι
n

}
, with constants c1 = 6 and c2 ≥ 2c21. Then f satisfies, for all v ∈ Υ,

n, ι > 0, p̃, p ∈ ∆K′ s.t. p̃(s)− 1
2p(s) ≥ 0 for all s 6= g,

1. f(p̃, p, v, n,B, ι) is non-decreasing in v(s), i.e.

∀(v, v′) ∈ Υ2, v ≤ v′ =⇒ f(p̃, p, v, n,B, ι) ≤ f(p̃, p, v′, n,B, ι);

2. f(p̃, p, v, n,B, ι) ≤ p̃v − c1
2

√
V(p,v)ι
n − c2

2
Bι
n ≤ p̃v − 2

√
V(p,v)ι
n − 14Bιn ;

3. If p̃(g) > 0, then f(p̃, p, v, n,B, ι) is ρp̃-contractive in v(s), with ρp̃ := 1− p(g) < 1, i.e.

∀(v, v′) ∈ Υ2, |f(p̃, p, v, n,B, ι)− f(p̃, p, v′, n,B, ι)| ≤ ρp̃‖v − v′‖∞.

Proof. We use the idea in (Tarbouriech et al., 2021), Lemma 14 to finish the proof.

The second claim holds by max{x, y} ≥ (x + y)/2,∀x, y, by the choices of c1, c2 and because both
√

V(p,v)ι
n and Bι

n

are non-negative. To verify the first and third claims, we fix all other variables but v(s) and view f as a function in v(s).
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Because the derivative of f in v(s) does not exist only when c1
√

V(p,v)ι
n = c2

Bι
n , where the condition has at most two

solutions, it suffices to prove
∂f

∂v(s)
≥ 0 when c1

√
V(p,v)ι
n 6= c2

Bι
n . Direct computation gives that for any s ∈ K† and

s 6= g,

∂f

∂v(s)
= p̃(s)− c1I

[
c1

√
V(p, v)ι

n
≥ c2

Bι

n

]
p(s)(v(s)− pv)ι√

nV(p, v)ι

≥ min
{
p̃(s), p̃(s)− c21

c2B
p(s)

(
v(s)− pv

)}
(i)
≥ min

{
p̃(s), p̃(s)− c21

c2
p(s)

}
≥ 0.

Here (i) is by v(s)− pv ≤ v(s) ≤ B. In addition, we have

∑
s6=g

∣∣∣∣ ∂f

∂v(s)

∣∣∣∣ =
∑
s6=g

[
p̃(s)− c1I

[
c1

√
V(p, v)ι

n
≥ c2

Bι

n

]
p(s)(v(s)− pv)ι√

nV(p, v)ι

]

= 1− p̃(g)− c1I

[
c1

√
V(p, v)ι

n
≥ c2

Bι

n

]√
ι

nV(p, v)
[pv − (1− p(g)) · pv]

≤ 1− p̃(g).

Therefore, we obtain that f is ρp̃-contractive.

We note that by definition of P̃s,a, we have P̃s,a,s′ − 1
2 P̂s,a,s′ ≥ 0 for all (s, a, s′) ∈ K ×A×K†.

The following two lemmas follow the same proof with Lem.18, Lem.19 in (Tarbouriech et al., 2021), respectively.

Lemma C.3. The sequence (V (i))i≥0 is non-decreasing.

Lemma C.4. L̃ is a ρ-contractive operator with modulus ρ := 1 − ν < 1, where ν = min
(s,a)∈K×A

P̃s,a,g, i.e. for any two

vectors U1, U2 ∈ Υ (where Υ is defined in Lem. C.2), ‖L̃U1 − L̃U2‖∞ ≤ ρ‖U1 − U2‖∞. Hence, the VISGO procedure
will terminate after at most dlog(1/εVI)/ log(1/ρ)e iterations.

C.1. The Bounded Error Property of VISGO
Now we focus on Alg. 2. We give the following lemma of the bounded error property (Lem. C.5), which indicates that
the value function of the policy πs is close to our estimation. The proof of Lem. C.5 uses the techniques of Lem. 2 in
(Tarbouriech et al., 2020). Our Lem. C.5 focuses on a more general operator L̃. In our L̃, we involve the bonus function
b(U, s, a), which is not contained in (Tarbouriech et al., 2020). And we note that in our proof of the following Lem. C.5, we
use the condition that n(s, a) ≥ φ = Ω̃(L2Kc−2

min) for each (s, a) ∈ K ×A. Also, we have εVI ≤ cmin/18 because we set
the initial trigger index j = 5 + log2 c

−1
min and εVI = 2−j .

We note that by optimism property (Lem. C.6), whenK ⊆ S→2L, we have V (s) ≤ 2L+1 for all s ∈ K†. Hence the following
bounded error property (Lem. C.5) implies that in any round, the expected cost of the greedy policy π̃ on model P † is no
more than 2(2L+ 1) = O(L).

Lemma C.5 (Bounded Error Property). In Alg. 2, under the event E , for any output (Q,V ) of the VISGO procedure in any
round, let π be the greedy policy with respect to Q. Then π is proper on the model P †s,a,s′ , and for all s ∈ K†, we have
V πg (s) ≤ 2V (s), where g is the goal state in that round.

Proof. We define Ṽ πg (s) as the value function of π with goal state g on the model P̃s,a,s′ . We will first prove that
Ṽ πg (s) ≤ 4

3V (s), and then prove that V πg (s) ≤ 4
3 Ṽ

π
g (s) using the simulation lemma on the two models P̃s,a,s′ and P †s,a,s′ .

Combining them together yields V πg (s) ≤ 2V (s).
First we focus on model P̃s,a,s′ . We recall that for any s ∈ K and s 6= g,

L̃u(s) := min
a∈A

{
ĉ(s, a)− b(u, s, a) + P̃s,au

}
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where b(u, s, a) is defined in Eq. 4, i.e., for any s ∈ K \ {g} and a ∈ A,

b(u, s, a) = max

c1
√√√√V

(
P̂s,a, u

)
ιs,a

n(s, a)
, c2

Bιs,a
n(s, a)

+ c3

√
ιs,a

n(s, a)
,

and we define b(u, x, a) = 0 and b(u, g, a) = 0.
We observe that when ‖u‖∞ ≤ B = 10L, the variance V

(
P̂s,a, u

)
≤ B2, and ιs,a contains only logarithmic terms. Thus

we have b(u, s, a) = Õ(L/
√
n(s, a)).

As we set

φ = Θ(
L2|K|
c2min

ln(
|K|A
δ

)),

and n(s, a) ≥ φ, we can obtain b(u, s, a) ≤ cmin/18 when ‖u‖∞ ≤ B.
In addition, under the event E1, we have |ĉ(s, a)− c(s, a)| ≤ Õ(1/

√
n(s, a)).

Thus when n(s, a) ≥ φ, we have |ĉ(s, a)− c(s, a)| ≤ cmin/18 for all (s, a) ∈ K† ×A.
We denote l as the final iteration index of VISGO, and V = V (l). In VISGO, we have V (i) = L̃V (i−1) for all i = 1, 2, · · · , l.
As V (l−1) ≤ V (l) component-wise, we have for any s ∈ K†, V (s) ≤ V (l−1)(s0)+1 ≤ 2L+1. Thus, ‖V ‖∞ ≤ 2L+1 ≤ B.
We set γ = cmin/6. As εVI ≤ cmin/18, we have b(u, s, a) + |ĉ(s, a)− c(s, a)|+ εVI ≤ γ when ‖u‖∞ ≤ B.
Given the policy π restricted on K, we introduce the following operators on RK′ :

Lπu(s) = ĉ(s, π(s))− b(u, s, π(s)) + P̃s,π(s)u,

T πγ u(s) := c(s, π(s))− γ + P̃s,π(s)u.

We can write component-wise

T πγ V ≤ LπV − εVI
(a)
= L̃V − εVI

(b)

≤ V,

where (a) uses that π is the greedy policy with respect to V . To prove (b), we recall that V = V (l) = L̃V (l−1). By
contraction property of L̃ (Lem. C.4), we have ‖L̃V − V ‖∞ ≤ ‖V (l) − V (l−1)‖∞. By stopping condition of VISGO, we
have ‖V (l) − V (l−1)‖∞ ≤ εVI, thus (b) is proved. By monotonicity of the Bellman operator T πγ , we have for all m > 0,
(T πγ )mV ≤ (T πγ )m−1V ≤ · · · ≤ V .
We observe that the vector (T πγ )mV does not increase element-wise when m increases, and (T πγ )mV ≥ 0 element-wise
because V ≥ 0 element-wise. Hence when m→∞, it will converge to some vector Wπ

γ , where Wπ
γ is the value function

of policy π in the model P̃ with γ subtracted to all the costs, and we have Wπ
γ ≤ V component-wise. We define the random

variable t̃πg (s) as the number of steps it takes to reach g starting from s on model P̃ when executing policy π. Thus

Wπ
γ (s) := EP̃

t̃πg (s)∑
t=1

c(st, π(st))− γ | s1 = s

 = Ṽ πg (s)− γEP̃
[
t̃πg (s)

]
.

Moreover, we have cminE
[
t̃πg (s)

]
≤ Ṽ πg (s). Therefore, we get

Ṽ πg (s) ≤
Wπ
γ (s)

1− γ/cmin
≤ V (s)

1− γ/cmin
≤ 4

3
V (s).

Under the event E2, we have
∣∣∣P †s,a,s′ − P̂s,a,s′ ∣∣∣ = Õ(

√
P †s,a,s′/n(s, a) + n(s, a)−1). As n(s, a) ≥ φ = Ω̃(L2|K|), and

B = 10L, we can obtain ∀(s, a, s′) ∈ K† ×A×K†,

∣∣∣P †s,a,s′ − P̂s,a,s′ ∣∣∣ ≤ cmin

24B

√
P †s,a,s′

|K†|
+

cmin

24B|K†|
.
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By the Cauchy–Schwarz’s inequality,
∑

s′∈K†

√
P †s,a,s′ ≤

√
|K†|, hence we obtain

∑
s′∈K†

∣∣∣P †s,a,s′ − P̂s,a,s′ ∣∣∣ ≤ cmin

12B
, ∀(s, a) ∈ K† ×A.

Also, as |P̃s,a,s′ − P̂s,a,s′ | ≤ 1/n(s, a) ≤ cmin/(12B|K†|), and Ṽ πg (s) ≤ 4
3 (2L+ 1) ≤ B for all s ∈ K†, we can obtain that∑

s′∈K†

∣∣∣P †s,a,s′ − P̃s,a,s′ ∣∣∣ ≤ cmin

6‖Ṽ πg ‖∞
, ∀(s, a) ∈ K† ×A.

Thus by simulation lemma for SSP (Lemma 3 in (Tarbouriech et al., 2020)), π is proper on true model P †s,a,s′ , and for all
s ∈ K†, V πg (s) ≤ (1 + 1

3 )Ṽ πg (s) = 4
3 Ṽ

π
g (s) ≤ 2V (s). The proof is completed.

C.2. Optimistic Property of VISGO
Now we will give the optimistic property. We still focus on Alg. 2, and we will prove that the output of the VISGO procedure
(Q,V ) is optimistic. And we recall that we denote V ∗g as the value function of the optimal policy on MDPM† to reach g,
and Q∗g as the Q-function corresponding to V ∗g .

Lemma C.6 (Optimistic Property). In Alg.2, under the event E , for any output (Q,V ) of the VISGO procedure, it holds that

Q(s, a) ≤ Q∗g(s, a), ∀s ∈ K \ {g}, a ∈ A,
V (s) ≤ V ∗g (s), ∀s ∈ K†,

where g is the goal state in VISGO procedure.

Proof. We prove by induction that for any inner iteration i of VISGO, Q(i)(s, a) ≤ Q∗g(s, a) for any (s, a) ∈ K ×A, and
V (i)(s) ≤ V ∗g (s) for any s ∈ K†. By definition we have Q(0) = 0 ≤ Q∗g, and V (0) = 0 ≤ V ∗g . Assume that the optimistic
property holds for iteration i, then for any (s, a) ∈ K ×A and s 6= g,

Q(i+1)(s, a) = ĉ(s, a) + P̃s,aV
(i) − b(i+1)(s, a),

where

ĉ(s, a) + P̃s,aV
(i) − b(i+1)(s, a)

= ĉ(s, a) + P̃s,aV
(i) −max

{
c1

√
V(P̂s,a, V (i))ιs,a

n(s, a)
, c2

Bιs,a
n(s, a)

}
− c3

√
ĉ(s, a)ιs,a
n(s, a)

(i)
≤ c(s, a) + P̃s,aV

(i) −max
{
c1

√
V(P̂s,a, V (i))ιs,a

n(s, a)
, c2

Bιs,a
n(s, a)

}
+

28ιs,a
3n(s, a)

= c(s, a) + f(P̃s,a, P̂s,a, V
(i), n(s, a), B, ιs,a) +

28ιs,a
3n(s, a)

(ii)
≤ c(s, a) + f(P̃s,a, P̂s,a, V

∗
g , n(s, a), B, ιs,a) +

28ιs,a
3n(s, a)

(iii)
≤ c(s, a) + P̃s,aV

∗
g − 2

√
V(P̂s,a, V ∗g )ιs,a

n(s, a)
− 14Bιs,a

3n(s, a)

(iv)
≤ c(s, a) + P̂s,aV

∗
g − 2

√
V(P̂s,a, V ∗g )ιs,a

n(s, a)
− 14Bιs,a

3n(s, a)
(v)
≤ c(s, a) + Ps,aV

∗
g︸ ︷︷ ︸

=Q∗g(s,a)

−(B −B∗)
14ιs,a

3n(s, a)

≤ Q∗g(s, a),
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where (i) is by definition of G1 and choice of c3, (ii) uses the first property of Lem. C.2 and the induction hypothesis that
V (i) ≤ V ∗g , (iii) uses the second property of Lem. C.2 and assumption B ≥ max{B∗, 1}, (iv) uses Lem. C.1, (v) is by
definition of G3. Ultimately, for any (s, a) ∈ K ×A and s 6= g,

Q(i+1)(s, a) ≤ Q∗g(s, a).

Then for any s ∈ K and s 6= g, we have V (i+1)(s) = min
a∈A

Q(i+1)(s, a) ≤ min
a∈A

Q∗g(s, a) = V ∗g (s).

In addition, V (i+1)(g) = 0 = V ∗g (g), and we have

V (i+1)(x) = cRESET + V (i)(s0) ≤ cRESET + V ∗g (s0) = V ∗g (x).

This completes the proof of this lemma.

D. Proof of Thm. 3.1
Here we give a proof of Thm. 3.1 and we focus on the fixed set K† and our constructed MDP M† = 〈K†,A, P †, c†, s0〉. We
denote K = |K|, and K ′ = |K†| = K + 1.

Proof idea. First we prove that Alg.2 solves AX problem (cf. Lem. D.1), i.e., K ⊇ S→L , and ∀s ∈ K, V πss (s0) ≤
V ∗K,s(s0) + εL. By running DisCo algorithm with ε = 1, we have S→L ⊆ K ⊆ S→2L. To prove that each output policy πs is
near-optimal, we observe that in the success round with respect to goal s, the average cost of executing πs (denoted as τ̂ )
in λ episodes is no more than V (s0) + εL. As we set λ = Õ(1/ε2), by concentration inequalities (cf. Lem. B.4), we can
obtain that the expected cost of πs is close to the average cost τ̂ , i.e., V πss (s0) ≤ τ̂ + εL ≤ V (s0) + 2εL. By optimistic
property of VISGO (Lem. C.6), we have V (s0) ≤ V ∗K,s(s0), i.e., our estimation of the value function V (s0) is no more than
the optimal cost. Hence we obtain V πss (s0) ≤ V ∗K,s(s0) + 2εL ≤ V ∗K,s(s0) + εL for all s ∈ K.
Then we bound the cumulative cost CT . We first bound the total cost in DisCo algorithm and Alg. 1. By Lem. 2.4, with
probability over 1 − δ, DisCo algorithm with ε = 1 uses no more than Õ(L3S2

2LA/c
2
min) samples. In Alg. 1, for each

state-action pair (s, a) ∈ K ×A, we collected Õ(L2K/c2min) samples. And to reach each s ∈ K, we executed the policy
πs, and the cost to reach s is no larger than Õ(L) with high probability. Thus the total cost in Alg. 1 can be bounded by
Õ(L3S2

2LA/c
2
min).

Now we will bound the cumulative cost of Alg. 2 after running DisCo algorithm and Alg. 1. It’s straightforward to show that
the total cost in each round is bounded by Õ(Lλ) = Õ(L/ε2). Hence to bound the cumulative cost CT , we need only to
bound the total number of rounds r. The number of success rounds is at most K. As the trigger condition holds for at most
log2(2T ) times for each state-action pair (s, a), the number of skipped rounds can be bounded by K ′A log2(2T ) (where T
is the total number of samples we collected in Alg. 2). Now we need only to bound the number of failure rounds rf .
To bound rf , we borrow the idea from (Lim & Auer, 2012). We first define the regret of an episode as the total cost in this
episode minus our estimation of the optimal cost V (s0), and define the total regret as the sum of the regret in each episode
(cf. Eq. 5). Then we will give both the upper bound and lower bound of the regret, where the upper bound scales as Õ(

√
rf )

and the lower bound scales as Ω̃(rf ). For the upper bound, we extend the techniques in (Tarbouriech et al., 2021) from
classical SSP to multi-goal SSP, and we obtain an upper bound that scales as Õ(Lε−1

√
KArf + LKAε−1 + LK2A) (cf.

Eq. 6).
For the lower bound, as the regret in each failure round is at least λεL = Ω̃(L/ε), we need only to give a lower bound for
the regret of all the success rounds and skipped rounds (which can be negative). We observe that the regret in any round is
larger than the total cost of executing policy π̃ in this round minus the expected cost of π̃, hence we can use concentration
inequalities to bound the regret in all the success rounds and skipped rounds (which scales as −Õ(LKAε−1)). The lower
bound of the total regret scales as Ω̃(Lε−1rf − LKAε−1) (cf. Lem. D.3). Hence we can prove that the number of failure
rounds rf = Õ(KA+ εK2A), and the total number of rounds r = Õ(S2LA+ εS2

2LA) (here we used K ≤ S2L).
As the cost in each round is bounded by Õ(L/ε2), the cumulative cost after running Alg. 1 is bounded by Õ(LS2LAε

−2 +

LS2
2LAε

−1). And the cumulative cost in DisCo algorithm and Alg. 1 is bounded by Õ(L3S2
2LAc

−2
min), hence we complete

the proof of Thm. 3.1.

Now we give the full proof. We recall that we denote V ∗g (s) as the expected cost of the optimal policy on MDPM† to reach
goal g from state s, which equals to V ∗K,g(s) for all s ∈ K.
First we prove the correctness of Alg. 2, i.e., with probability over 1− δ, Alg. 2 outputs a set K ⊇ S→L and a set of policies
{πs}s∈K, such that

∀s ∈ K, V πss (s0) ≤ V ∗K,s(s0) + εL.
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The main intuition is that each policy πs has been tested for λ times in a success round, and the average cost it takes to reach
s from s0 is less than our estimate for optimal cost V (s0) plus εL. Thus by concentration inequalities, the expected cost of
πs is close to optimal.

Lemma D.1 (VALAE Solves AX Problem). Let {πs}s∈K be the set of policies output by Alg.2. With probability at least
1− δ, V πss (s0) ≤ V ∗s (s0) + εL for all s ∈ K.

Proof. We fix any state s ∈ K. In any given round where the chosen target is s, let τ̂k be the total cost in the k-th episode of
that round. Recall that for the algorithm to output a policy πs, its empirical performance after λ episodes must satisfy that
τ̂ ≤ V (s0) + εL, where τ̂ =

∑λ
k=1 τ̂k
λ and V is the output of VISGO in that round. By optimism property (Lem. C.6), when

K ⊆ S→2L, we have V (s) ≤ 2L+ 1 for all s ∈ K†.
We define the random variable τ as the total cost it takes to reach the goal state s from the start state s0 when executing
policy πs, and we have E(τ) = V πss (s0) by definition. We note that we have collected φ = Ω̃(L2K/c2min) samples for
each of the state-action pair (s, a) (cf. Alg. 1). By Lem. C.5, under event E , the policy πs is proper, and we have E(τ) ≤
2V (s0) ≤ 4L+ 2. Moreover, we have d := ‖V πss ‖∞ ≤ 4L+ 2. By Lem B.3, we obtain Pr(τ > m) ≤ 2 exp(−m/4d) for
any m > 0. As we set

λ = d2048

ε2
ln2(

256

ε
) ln(

2|K|
δ

)e,

by Lem. B.4, we obtain that with probability at least 1− δ/(2K ′), we have

V πss (s0) = E(τ) ≤ τ̂ + εL.

We note that τ̂ ≤ V (s0) + εL ≤ V ∗s (s0) + εL by the optimistic property (Lem. C.6). Hence, as we set ε = ε/3 in initial,
we obtain that with probability at least 1− δ/(2K),

V πss (s0) ≤ V ∗s (s0) + εL.

Finally, as there are at most K states in total, and the event E holds with probability at least 1− δ, by the union bound and
setting δ → δ/C in initial (C is a large constant), the total success probability is at least 1− δ.

Now we focus on bounding the cumulative cost of Alg.2.
First, we bound the total cost in DisCo algorithm and Alg. 1. Disco algorithm has sample complexity
Õ(L3S2

(1+ε)LA/(c
2
minε

2)), and when ε = 1, the total cost is bounded by Õ(L3S2
2LA/c

2
min). In Alg. 1, we collect

φ = Õ(L2K/c2min) samples for each state-action pair (s, a) ∈ K × A. To collect each sample (s, a, s′, c), we exe-
cuted a policy πs to reach the state s, and the expected cost V πss (s0) ≤ 2L. By Lem. B.3, we obtain that with probability
at least 1− δ, for any state s, each time when the policy πs is executed, the total cost to reach s from s0 is no larger than
O(L log(K/δ)). Therefore, the total cost of Alg. 1 can be bounded by O(KAφL log(K/δ)) = Õ(L3S2

2LA/c
2
min). We

note that we used Lem. B.3 no more than φKA times, the total failure probability is no more than φKAδ. Substituting
δ by δ/(2φKA) in the proof, we can obtain that the total cost of DisCo and Alg. 1 is bounded by Õ(L3S2

2LA/c
2
min) with

probability 1− δ.
Then we bound the total cost of Alg.2 after running Alg. 1.
The key idea lies in bounding the "regret". We will use the regret to bound the total number of rounds. We first define the
regret in the k-th episode of the j-th round. We denote Hj,k as the number of steps it takes in the k-th episode of the j-th
round. The regret in an episode k is defined as

(

Hj,k∑
h=1

cj,kh )− V j(s0),

where cj,kh is the empirical cost in the h-th step in the k-th episode in the j-th round, and V j(s0) is the value of V (s0) in
the j-th round. Let nj be the total number of episodes executed in the j-th round, we define the regret in the j-th round as
follows:

nj∑
k=1

((

Hj,k∑
h=1

cj,kh )− V j(s0)).

Then we will define the total regret of Alg.2. Let r be the total number of rounds, nj be the total number of episodes
executed in the j-th round, and 0 ≤ nj ≤ λ. Then we know that the total number of episodes in the whole process of Alg.2
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is M =
r∑
j=1

nj . For notation convenience, we define Hm as the number of steps it takes in the m-th episode of the whole

process of Alg.2, and denote cmh as the empirical cost in the h-step of episode m. Finally we define the total regret of all the
rounds as

R :=

r∑
j=1

nj∑
k=1

((

Hj,k∑
h=1

cj,kh )− V j(s0)) =

M∑
m=1

((

Hm∑
h=1

cmh )− V m(s0)). (5)

We will give both the upper bound and the lower bound of the regret. Here we give the upper bound.

Lemma D.2 (Upper Bound of Regret). Under event E , the total regret in M episodes is at most

R = Õ(L
√
KAM + LK2A).

This upper bound comes from the regret bound of the EB-SSP algorithm (cf. (Tarbouriech et al., 2021)), which solves the
classical SSP problem with a single goal state g. To extend their result to multi-goal SSP, instead of only concentrating on
P̂s,aV

∗
g for a single goal g and one vector V ∗g , in our high probability event E3, we use concentration over (P̂s,a − P †s,a)V ∗g

for all the goal states g ∈ K. Then following similar proof with Thm.3, (Tarbouriech et al., 2021), we can obtain the regret
upper bound in Lem. D.2.
We note that the original form of the regret upper bound in Thm.3, (Tarbouriech et al., 2021) was Õ(B∗

√
SAM +BS2A),

where B∗ := max
s∈S

V ∗g (s) in their work, B is an upper bound of B∗ which is used in VISGO, and M is the number of

episodes. In our Alg. 2, we work on MDPM†, and all the states in K are incrementally 2L-controllable from s0. Hence in
our settings, B∗ := max

(s,g)∈K†×K
V ∗g (s) ≤ 2L+ 1, and the number of states in MDPM† is K ′ = K + 1. And in our Alg. 2,

we set B = 10L. Therefore, by setting B∗ = O(L), B = O(L), S = K + 1 in their regret bound Õ(B∗
√
SAM +BS2A),

we can obtain the regret bound Õ(L
√
KAM + LK2A).

We observe that there are at most Õ(KA) skipped rounds and K success rounds. We denote by rf the number of failure
rounds, and we have the total number of episodes M = Õ((KA+ rf )λ) = Õ((KA+ rf )/ε2). Thus the total regret in r
rounds can be bounded by rf sublinearly:

R = Õ(
L

ε

√
KArf +

LKA

ε
+ LK2A). (6)

Then we gives the lower bound of the total regret in terms of the number of failure rounds rf .

Lemma D.3 (Lower Bound of Regret). With probability 1− δ, when r = Õ((KA)2), the total regret in the first r rounds is
at least

R = Ω̃(
Lrf
ε
− LKA

ε
),

where rf is the number of failure rounds in the r rounds.

Proof. By the criterion of our performance check, in any failure round, we have τ̂ > V (s0) + εL, and in round j, we have

τ̂ = 1
λ

nj∑
k=1

(
Hj,k∑
h=1

cj,kh ) by definition. Hence, in any failure round j, the regret is λτ̂ − njV j(s0) ≥ λ(τ̂ − V j(s0)) ≥ λεL =

Ω̃(
Lrf
ε ).

Then we focus on skipped rounds and success rounds. We denote gj as the goal state in the j-th round, and πj as the policy
π̃ in the j-th round, which is the greedy policy over the Q-function in the j-th round. We observe that the regret in any round
j satisfies

nj∑
k=1

((

Hj,k∑
h=1

cj,kh )− V j(s0)) ≥ −L+

nj−1∑
k=1

((

Hj,k∑
h=1

cj,kh )− V ∗gj (s0)) ≥ −L+

nj−1∑
k=1

((

Hj,k∑
h=1

cj,kh )− V πjgj (s0)),

where we used the optimism property in Lem. C.6. We note that
Hj,k∑
h=1

cj,kh is the empirical cost of policy πj in episode k, and

we will use the concentration inequality to give a lower bound of the regret in round j. As the last episode in a skipped
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round can terminate before reaching the goal, we should take special considerations the last episode of each round. We
directly use −L to lower bound the regret of the last episode in round j. Then we denote n = nj − 1, and focus on the
previous n episodes in round j.
Now we fix the round index j. We denote the random variable τ as the cost to reach gj from s0, and we recall that

τ̂k =
Hj,k∑
h=1

cj,kh . By Lem. B.4 with d = 4L, with probability at least 1− δ
(KA)2 , we have

n∑
k=1

(τ̂k − E(τ)) ≥ −2Γ

√
n ln(

KA

δ
) ≥ −2Γ

√
λ ln(

KA

δ
) ≥ −Õ(

L

ε
),

where Γ = b8d ln(64/ε)c. Thus the regret in any round j is larger than −Õ(Lε ). As there are at most Õ(KA) skipped
rounds and K success rounds, we obtain that the total regret R has the lower bound

R = Ω̃(
Lrf
ε
− LKA

ε
).

Now we bound the total failure probability. The number of rounds r = Õ((KA)2), in each round the failure probability is
at most δ

(KA)2 , and the events E fails with probability δ. By replacing δ by δ/C throughout the proof (C is a large constant),
we obtain that the total failure probability is at most δ.

As the lower bound is linear in rf , and the upper bound is sublinear in rf , we can solve it and obtain that rf = Õ(KA+

εK2A), thus the total number of rounds can be bounded by Õ(KA+ εK2A).
To get the cumulative cost bound in Thm. 3.1, we need only to bound the cost in a round. In any round, we observe
that except for the last episode, the average cost τ̂ for all the other episodes is no larger than V (s0) + εL ≤ 2L, thus
the total cost in these episodes is no larger than 2Lλ = Õ(L/ε2). Also, we know that in the any episode, the expected
cost of the policy π̃ to reach the goal from s0 is no larger than 2L. Thus by Lem. B.3, in any round, with probability at
least 1 − δ

(KA)2 , the cost in the last episode is no larger than Õ(L). Hence, the total cost in each round is no larger than

Õ(L/ε2). By multiplying it with Õ(KA+ εK2A) and using K ≤ S2L, the cumulative cost in Alg.2 can be bounded by
Õ(LS2LA/ε

2 + LS2
2LA/ε+ L3S2LA/c

2
min), where the term L3S2LA/c

2
min comes from the subroutine of DisCo algorithm

and Alg. 1. Hence we obtain the bound in Thm. 3.1.
Now we count the total failure probability. First, DisCo algorithm fails with probability δ, the event E fails with probability
δ, and the lower bound of the total regret R fails with probability δ. And in the previous paragraph, to bound the cost in the
last episode of each round using Lem. B.3, the failure probability in each episode is at most δ

(KA)2 . We observe that the total
number of these failures is no larger than the total number of rounds, and the total number of rounds can be bounded by
Õ(KA+ εK2A), where we omit the logarithmic factors. Thus by setting δ → δ/C in the proof (C is a large constant), we
can bound the total failure probability by δ, and the proof of Thm. 3.1 is completed.
Here we briefly discuss the time complexity and space complexity of our algorithm VALAE. The time complexity scales as
Õ(TK3A2(KA+ εK2A)), where T is the total number of samples collected, and Õ(KA+ εK2A) is the total number of
rounds. The bottleneck is on the VISGO procedure, and the time complexity of a VISGO procedure is analyzed in Appendix
G, (Tarbouriech et al., 2021), which scales as Õ(TK3A2). The space complexity scales as Õ(T +K2A) = Õ(T ), and the
bottleneck is on storing the samples and the empirical model P̂ .

E. Analysis of the Lower Bound
Here we discuss the lower bound of the autonomous exploration problem. We recall that our algorithm needs output a
set K ⊇ S→L and a set of policies {πs}s∈K, and when s ∈ S→L , the policy πs satisfies V πss (s0) ≤ (1 + ε)L. Moreover,
we note that in our proof of the lower bound, we allow the algorithm to output Markov policies, i.e. non-stationary and
non-deterministic policies, which is defined in the next paragraph.
We recall the some basic concepts about the definition of a learning algorithm, and we use the notations in (Domingues
et al., 2021). Let It = (S ×A)t−1 × S be the set of all possible histories up to t steps, i.e., be the set of tuples of the form(
s1, a1, s2, a2, . . . , st

)
∈ It. Let ∆(A) be the set of probability distributions over the action space A, and N∗ be the set of

positive integers. A Markov policy is a function π : S × N∗ → ∆(A) such that π(a | s, h) denotes the probability of taking
action a in state s at step h. And we note that the Markov policy π is history-independent.
A history-dependent policy is a family of functions denoted as π , (πt)t≥1, where πt : It → ∆(A) describes the
probability of taking action a ∈ A after observing some history it ∈ It.
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Given an MDPM = 〈S,A, p, c, s0〉, a policy π interacting with the MDPM defines a stochastic process denoted by
(St, At)t≥1, where (St, At) is the state-action pair at time t. The Ionescu-Tulcea theorem ensures the existence of the
probability space (Ω,F ,PM) such that

PM
[
S1 = s

]
= I[s = s0],PM

[
St+1 = s | At, It

]
= p
(
s | St, At

)
, and PM

[
At = a | It

]
= πt

(
a | It

)
,

where π = (πt)t≥1 and for any t, It ,
(
S1, A1, S2, A2, . . . St

)
is the random vector in It containing all state-action pairs

observed up to step t. We denote the σ-algebra generated by It as F t. And we denote by PITM the measure of IT under PM
as follows:

PI
T

M
[
iT
]
, PM

[
IT = iT

]
= I(s1 = s0)

T−1∏
t=1

πt
(
at | it

)
p
(
st+1 | st, at

)
.

Then we denote EM as the expectation under PM. Note that the dependence of PM and EM on the policy π is denoted
implicitly in the definition of PM. We will denote them explicitly as Pπ,M and Eπ,M respectively when we need to stress
π.
We recall that we define an algorithm for the AX problem as a tuple (π, τ,K, {πs}s∈K), where π is a history-dependent
policy, τ is the stopping time chosen by the algorithm, K and {πs}s∈K are the output of the algorithm. And given the
algorithm π and the MDPM for AX problem, we can regard the number τ , the set of states K, and the set of policies
{πs}s∈K as random variables on distribution Pπ,M.
Moreover, for any the MDPM = 〈S,A, p, c, s0〉, given a Markov policy π with goal state g, we denote V πM,g(s) as the

expected cost of policy π to reach state g from state s in MDPM. Formally, V πM,g(s) = Eπ,M
[∑tπg (s)

t=1 ct(st, π(st))
]
,

where tπg (s) := inf{t ≥ 0 : st+1 = g}. And we denote V ∗M,g(s) as the expected cost of the optimal policy π to reach the
goal state g from the state s on MDPM.
Here we introduce the basic definitions and the technical lemmas used in our proof.

Definition E.1 (KL divergence). The Kullback-Leibler divergence between two distributions P1 and P2 on a measurable
space (Ω,G) is defined as

KL(P1,P2) ,
∫

Ω

log

(
dP1

dP2
(ω)

)
dP1(ω),

if P1 � P2 and +∞ otherwise. For Bernoulli distributions, we define ∀(p, q) ∈ [0, 1]2,

kl(p, q) , KL(B(p),B(q)) = p log

(
p

q

)
+ (1− p) log

(
1− p
1− q

)
.

Lemma E.2 (Lemma 5, (Domingues et al., 2021), modified). LetM andM′ be two MDPs that are identical except for
their transition probabilities, denoted by p and p′, respectively. Assume that we have ∀(s, a), p(· | s, a)� p′(· | s, a). Then,
for any stopping time τ with respect to (F t)t≥1 that satisfies PM[τ <∞] = 1,

KL
(
PI

τ

M,PI
τ

M′
)

=
∑
s∈S

∑
a∈A

EM
[
Nτ
s,a

]
KL(p(· | s, a), p′(· | s, a)),

where Nτ
s,a ,

∑τ
t=1 1{(St, At) = (s, a)} and Iτ is the random vector representing the history of τ samples.

Lemma E.3 (Lemma 1, (Garivier et al., 2019)). Consider a measurable space (Ω,F) equipped with two distributions P1

and P2. For any F-measurable function Z : Ω→ [0, 1], we have

KL(P1,P2) ≥ kl(E1[Z],E2[Z]),

where E1 and E2 are the expectations under P1 and P2 respectively.

Lemma E.4. For any p, q ∈ (0, 1
2 ], kl(p, q) ≤ 2(p− q)2/q.

Lemma E.5 (Lemma 15, (Domingues et al., 2021)). For any p, q ∈ [0, 1], kl(p, q) ≥ −(1− p) log(1− q)− log(2).

Now we construct a family of adversarial MDPs to obtain the lower bound of sample complexity.
The construction of hard MDPs with general SL. Now we fix L, S,A, SL, ε, cmin such that L > 4, S > 8, A > 4,
4 ≤ SL ≤ min{(A− 1)b

L
2 c, S}, 0 < ε < 1

4 , and 0 < cmin ≤ 1.
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We first construct an MDPM′0 = 〈S,A, p′0, c′, s0〉 with |S| = SL − 1 states and |A| = A actions (M′0 does not contain
the goal state g in Fig. 2). As is illustrated in Fig. 2, the construction onM′0 follows a tree structure. This is inspired
from (Domingues et al., 2021). We denote S ′ as all the leaf states, and for any s /∈ S ′ and a ∈ A (a 6= RESET), we set
c(s, a) = 1 with probability 1, and the transition p′0(·|s, a) is deterministic, i.e., taking any action a at a non-leaf node s will
transit to one of its son s′ ∈ S with probability 1.
As SL ≤ (A− 1)b

L
2 c, there exists a tree structure with depth d0 ≤ L/2 (d0 ∈ N), such that the number of leaves |S ′| ≥ SL

2 ,
and V ∗M′0,s(s0) = d0 for all s ∈ S ′, i.e., all the leaf nodes can be reached within d0 steps from s0. Hence in MDPM′0, all
the states in S are incrementally d0-controllable. And we denote d1 = L− d0.

s0

s1 s2 s3 s4

g

cmin
(1+6ε)d1

1− cmin
(1+6ε)d1

cmin
d1

1− cmin
d1

Figure 2: Illustration of the hard MDP with general SL.

Then we construct the MDPM0 = 〈S ∪ {g},A, p0, c, s0〉 based onM′0 by adding a new state g. The state g can only
be reached from all the leaf nodes s ∈ S ′. And for any leaf state s ∈ S ′ and any action a ∈ A (a 6= RESET), we set
c(s, a) = cmin, and

p0(g|s, a) =
cmin

(1 + 6ε)d1
, p0(s|s, a) = 1− cmin

(1 + 6ε)d1
.

Finally, we set p0(g|g, a) = 1 for any action a 6= RESET.
In this way, we have V ∗M0,s

(s0) = d0 for any s ∈ S ′, and V ∗M0,g
(s0) = d0 + (1 + 6ε)d1 > (1 + ε)L. Hence g /∈ S→L for

MDPM0. Also, we note that in MDPM0, with probability 1, the goal state g cannot be reached from s0 within d0 steps.
Now we will construct other adversarial MDPs based onM0. We choose any (s∗, a∗) ∈ S ′ ×A (a∗ 6= RESET), and we
define the MDPM(s∗,a∗) = 〈S ∪ {g},A, p(s∗,a∗), c, s0〉 by slightly increasing p0(g|s∗, a∗), i.e., we set

p(s∗,a∗)(g|s∗, a∗) =
cmin

d1
, p(s∗,a∗)(s

∗|s∗, a∗) = 1− cmin

d1
.

In this way, we have V ∗M0,g
(s0) = d0 + d1 = L. Hence g ∈ S→L for MDPM(s∗,a∗).

Finally, we define the family of our adversarial MDPs as {M0}∪ {M(s,a)}(s,a)∈S′×A. We note that for each MDPM(s,a),
its |S→L | = SL, and it satisfies Asmp. 2.1. Also, for the MDPM0, its |S→L | = SL − 1, and it also satisfies Asmp. 2.1. Thus
the family is valid for the AX problem.
We note that in MDPM(s∗,a∗), for any Markov policy π,

V πM(s∗,a∗),g
(s0) = Eπ,M(s,a)

tπg (s)∑
t=1

ct(st, π(st))


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= Eπ,M(s∗,a∗)

tπg (s)∑
t=1

ct(st, π(st)) | (sd0 , ad0) = (s∗, a∗)

Pπ,M(s∗,a∗) [(sd0 , ad0) = (s∗, a∗)]

+ Eπ,M(s∗,a∗)

tπg (s)∑
t=1

ct(st, π(st)) | (sd0 , ad0) 6= (s∗, a∗)

Pπ,M(s∗,a∗) [(sd0 , ad0) 6= (s∗, a∗)]

With probability 1, we need at least d0 steps to reach any of the leaf state. And the expected cost to reach g from state-action
pair (s∗, a∗) is d1.

Hence we have Eπ,M(s∗,a∗)

[∑tπg (s)

t=1 ct(st, π(st)) | (sd0 , ad0) = (s∗, a∗)
]
≥ d0 + d1 = L.

Also, when (sd0 , ad0) 6= (s∗, a∗), the expected cost to reach g from state-action pair (sd0 , ad0) is at least (1 + 6ε)d1.

Hence we have Eπ,M(s∗,a∗)

[∑tπg (s)

t=1 ct(st, π(st)) | (sd0 , ad0) 6= (s∗, a∗)
]
≥ d0 + (1 + 6ε)d1 ≥ (1 + 3ε)L.

Therefore, if V πM(s∗,a∗),g
(s0) ≤ (1 + ε)L, we have Pπ,M(s∗,a∗) [(sd0 , ad0) = (s∗, a∗)] ≥ 2/3. We will use it in our proof of

Thm. 4.2.
Now we give our proof of Thm. 4.2 through the adversarial family of MDPs. Here we use the techniques of Thm. 7 in
(Tarbouriech et al., 2020).

Proof. We denote by P(s∗,a∗) , Pπ,M(s∗,a∗) and E(s∗,a∗) , Eπ,M(s∗,a∗) the probability measure and expectation in the
MDPM(s∗,a∗) by following π and by P0 and E0 the corresponding operators in the MDPM0. We fix any algorithm
(π, τ,K, {πs}s∈K) that solves the AX problem. We will prove that when working on the MDPM0, the algorithm will cost
at least Ω(LSLAcminε2

log 1
δ ) samples in expectation, i.e.

E0[τ ] = Ω(
LSLA

cminε2
log

1

δ
),

which yields that the lower bound of the total cost is Ω(LSLAε2 log 1
δ ).

Now we fix the state-action pair (s∗, a∗) ∈ S ′ × A (a∗ 6= RESET). Also, we denote the random variable Nτ
(s,a) as the

number of samples that the algorithm takes at the state-action pair (s, a) ∈ S ×A. For any Fτ -measurable random variable
Z taking values in [0, 1], we have

E0

[
Nτ

(s∗,a∗)

]144cminε
2

L
(a)
≥ E0

[
Nτ

(s∗,a∗)

]
kl

(
cmin

(1 + 6ε)d1
,
cmin

d1

)
(b)
= KL

(
PI

τ

0 ,PI
τ

(s∗,a∗)

)
(c)
≥ kl

(
E0[Z],E(s∗,a∗)[Z]

)
,

where (a) uses Lemma E.4 and d1 ≥ L/2; (b) uses Lemma E.2; (c) uses Lemma E.3.
For any (s, a) ∈ S ′ × A, we define the event Zs,a = 1{The algorithm’s output satisfies g ∈ K and V πgM(s,a),g

(s0) ≤
(1 + ε)L}. And we set the event Z = Zs∗,a∗ . We note that Zs,a can be viewed as a random event on distribution P(s,a), and
can also be viewed as a random event on distribution P0 (i.e., Pπ,M0

).
First we focus on distribution P(s∗,a∗). We observe that as the algorithm (π, τ,K, {πs}s∈K) solves the AX problem, when
working on the MDPM(s∗,a∗), with probability at least 1− δ, its output should satisfy g ∈ K and the expected cost of the
policy πg to reach g from state s0 is no more than (1 + ε)L. Therefore, for any (s∗, a∗) ∈ S ′ ×A (a∗ 6= RESET), we have

P(s∗,a∗)[Zs∗,a∗ ] ≥ 1− δ.

Then we focus on probability distribution P0 (i.e., Pπ,M0
). We recall that the event Zs,a implies Pπg,M0

[(sd0 , ad0) =
(s, a)] ≥ 2/3. And for any two distinct state-action pairs (s, a) and (s′, a′), the event Pπg,M0

[(sd0 , ad0) = (s, a)] ≥ 2/3
and the event Pπg,M0

[(sd0 , ad0) = (s′, a′)] ≥ 2/3 are mutually exclusive. Hence Zs,a and Zs′,a′ are mutually exclusive on
P0, and we have ∑

(s,a)∈S′×A

P0[Zs,a] ≤ 1.
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We recall that we set Z = Zs∗,a∗ , and we can obtain

kl
(
E0[Z],E(s∗,a∗)[Z]

)
= kl

(
P0[Zs∗,a∗ ],P(s∗,a∗)[Zs∗,a∗ ]

)
(a)
≥ (1− P0[Zs∗,a∗ ]) log

(
1

1− P(s∗,a∗)[Zs∗,a∗ ]

)
− log(2)

(b)
≥ (1− P0[Zs∗,a∗ ]) log

(
1

δ

)
− log(2),

where (a) uses Lem. E.5; (b) uses that P(s∗,a∗)[Zs∗,a∗ ] ≥ 1− δ. Therefore, we have

E0

[
Nτ

(s∗,a∗)

]
≥ L

144cminε2
((1− P0[Zs∗,a∗ ]) log

(
1

δ

)
− log(2)).

We recall that
∑

(s,a)∈S′×A P0[Zs,a] ≤ 1. Thus summing up all the state-action pairs (s∗, a∗) ∈ S ′ ×A, we can obtain that

∑
(s∗,a∗)∈S′×A

E0

[
Nτ

(s∗,a∗)

]
≥ L

144cminε2
((|S ′||A| − 1) log

(
1

δ

)
− log(2)|S ′||A|).

Hence provided that |S ′| ≥ SL
2 , L > 4, S > 8, A > 4, 4 ≤ SL ≤ min{(A− 1)b

L
2 c, S}, 0 < ε < 1

4 , and 0 < δ < 1
16 , we

can eventually obtain the lower bound of the total number of steps τ ,

E0[τ ] =
∑

(s,a)∈S×A

E0[Nτ
(s,a)] ≥

∑
(s∗,a∗)∈S′×A

E0

[
Nτ

(s∗,a∗)

]
≥ Ω(

LSLA

cminε2
log

1

δ
).

F. Lower Bounds for Multi-goal SSP
Here we formulize the lower bound for the multi-goal SSP problem. First we define an algorithm for the multi-goal SSP
problem with goal space G as a triple (π, τ, {πs}s∈G), which means the algorithm executes a history-dependent policy π,
and returns a set of policies {πs}s∈G after sampling τ times. Also, we allow πs to be Markov policies. And we release the
multi-goal SSP problem in this way: we only require the algorithm output policies πs such that V πss (s0) ≤ (1 + ε)L.

Definition F.1. An algorithm (π, τ, {πs}s∈S) is (ε, δ, L)-PAC for multi-goal SSP problem on MDP M with goal space
G ⊆ S, if with probability over 1 − δ, the algorithm returns a set of policies {πs}s∈G after τ steps, such that ∀s ∈
G, V πss (s0) ≤ (1 + ε)L.

Then for any real numbers L, cmin and positive integers S,A, we define a class of MDPs MMSSP(L, S) as follows:
MMSSP(L, S) contains all the MDPs M = 〈S,A, P, c, s0〉, such that |S| ≤ S, |A| ≤ A, c(s, a) ∈ [cmin, 1] for all
(s, a) ∈ S ×A, and M satisfies Asmp. 2.1 and S→L = S.
We remark that our constructed adversarial examples (cf. Fig. 2) for the autonomous exploration problem can also be applied
to multi-goal SSP using the similar proof with Thm. 4.2. Thus we obtain the following lower bound for multi-goal SSP,
which implies that our Alg. 2 is also minimax for multi-goal SSP problem. See Appendix E for more details.

Theorem F.2. Assume that L > 4, A > 4, 8 < S ≤ (A− 1)b
L
2 c, 0 < ε < 1

4 , 0 < δ < 1
16 , and 0 < cmin ≤ 1. Then for any

algorithm (π, τ,K, {πs}s∈K) that is (ε, δ, L)-PAC for multi-goal SSP problem on any MDP M ∈MMSSP(L, S) with any
goal space G ⊆ S, there exists an MDPM∈MMSSP(L, S) such that

Eπ,M[τ ] = Ω(
LSA

cminε2
log

1

δ
).

We note that in our construction of adversarial examples (cf. Fig. 2) and in our proof of Thm. 4.2, we only involved one
goal state g. Hence we can also prove that for the classical single-goal SSP problem with G = {g}, learning a policy πg
such that V πgg (s0) ≤ (1 + ε)L also requires Ω( LSAcminε2

log 1
δ ) samples, and the lower bound of cumulative cost scales as

Ω(LSAε−2 log 1
δ ).
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