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Abstract
We study reinforcement learning for partially ob-
served Markov decision processes (POMDPs)
with infinite observation and state spaces, which
remains less investigated theoretically. To this
end, we make the first attempt at bridging partial
observability and function approximation for a
class of POMDPs with a linear structure. In detail,
we propose a reinforcement learning algorithm
(Optimistic Exploration via Adversarial Integral
Equation or OP-TENET) that attains an ε-optimal
policy within O(1/ε2) episodes. In particular, the
sample complexity scales polynomially in the in-
trinsic dimension of the linear structure and is in-
dependent of the size of the observation and state
spaces. The sample efficiency of OP-TENET is
enabled by a sequence of ingredients: (i) a Bell-
man operator with finite memory, which repre-
sents the value function in a recursive manner, (ii)
the identification and estimation of such an oper-
ator via an adversarial integral equation, which
features a smoothed discriminator tailored to the
linear structure, and (iii) the exploration of the
observation and state spaces via optimism, which
is based on quantifying the uncertainty in the ad-
versarial integral equation.

1. Introduction
Partial observability poses significant challenges for rein-
forcement learning, especially when the observation and
state spaces are infinite. Given full observability, reinforce-
ment learning is well studied empirically (Mnih et al., 2015;
Silver et al., 2016; 2017) and theoretically (Auer et al., 2008;
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Osband et al., 2016; Azar et al., 2017; Jin et al., 2018; Yang
& Wang, 2020; Jin et al., 2020b; Ayoub et al., 2020; Kakade
et al., 2020; Du et al., 2021). In particular, for infinite state
spaces, neural function approximators achieve remarkable
successes empirically (Mnih et al., 2015; Berner et al., 2019;
Arulkumaran et al., 2019), while linear function approxima-
tors become better understood theoretically (Yang & Wang,
2020; Jin et al., 2020b; Ayoub et al., 2020; Kakade et al.,
2020; Du et al., 2021). In contrast, reinforcement learning
in partially observed Markov decision processes (POMDPs)
is less investigated theoretically despite its prevalence in
practice (Cassandra et al., 1996; Hauskrecht & Fraser, 2000;
Brown & Sandholm, 2018; Rafferty et al., 2011).

More specifically, partial observability poses both statistical
and computational challenges. From a statistical perspec-
tive, it is challenging to predict future rewards, observations,
or states due to a lack of the Markov property. In particular,
predicting the future often involves inferring the distribution
of the state (also known as the belief state) or its functionals
as a summary of the history, which is already challenging
even assuming the (observation) emission and (state) transi-
tion kernels are known (Vlassis et al., 2012; Golowich et al.,
2022). Meanwhile, learning the emission and transition ker-
nels faces various issues commonly encountered in causal
inference (Zhang & Bareinboim, 2016). For example, they
are generally nonidentifiable (Kallus et al., 2021). Even
assuming they are identifiable, their estimation possibly re-
quires a sample size that scales exponentially in the horizon
and dimension (Jin et al., 2020a). Such statistical challenges
are already prohibitive even for the evaluation of a policy
(Nair & Jiang, 2021; Kallus et al., 2021; Bennett & Kallus,
2021), which forms the basis of policy optimization. From a
computational perspective, it is known that policy optimiza-
tion is generally intractable (Vlassis et al., 2012; Golowich
et al., 2022). Moreover, infinite observation and state spaces
amplify both statistical and computational challenges. On
the other hand, most existing results are restricted to the tab-
ular setting (Azizzadenesheli et al., 2016; Guo et al., 2016;
Jin et al., 2020a; Xiong et al., 2021), where the observation
and state spaces are finite.

In this paper, we study linear function approximation in
POMDPs to address the statistical challenges amplified by
infinite observation and state spaces. In particular, our con-
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tribution is fourfold. First, we define a class of POMDPs
with a linear structure and identify an ill conditioning mea-
sure for sample-efficient reinforcement learning. Such an
ill conditioning measure corresponds to the undercomplete-
ness in the tabular setting (Jin et al., 2020a). Second, we
propose a reinforcement learning algorithm (OP-TENET),
which applies to any POMDP admitting the aforementioned
linear structure. Moreover, we use a minimax optimization
formulation in OP-TENET such that the algorithm can be
implemented in a computation-efficient manor even if the
dataset is large. Third, we prove in theory that OP-TENET
attains an ε-optimal policy within O(1/ε2) episodes. In par-
ticular, the sample complexity scales polynomially in the
intrinsic dimension of the linear structure and is independent
of the size of the observation and state spaces. Fourth, our
algorithm and analysis are based on new tools. In partic-
ular, the sample efficiency of OP-TENET is enabled by a
sequence of ingredients: (i) a Bellman operator with finite
memory, which represents the value function in a recursive
manner, (ii) the identification and estimation of such an op-
erator via an adversarial integral equation, which features a
smoothed discriminator tailored to the linear structure, and
(iii) the exploration of the observation and state spaces via
optimism, which is based on quantifying the uncertainty in
the adversarial integral equation.

1.1. Related Work

Our work is related to a line of recent work on the sample
efficiency of reinforcement learning for POMDPs. In de-
tail, Azizzadenesheli et al. (2016); Guo et al. (2016); Xiong
et al. (2021) establish sample complexity guarantees for
searching the optimal policy in POMDPs whose models are
identifiable and can be estimated by spectral methods. How-
ever, Azizzadenesheli et al. (2016) and Guo et al. (2016)
add extra assumptions such that efficient exploration of the
POMDP can always be achieved by running arbitrary poli-
cies. In contrast, the upper bound confidence (UCB) method
is used in Xiong et al. (2021) for adaptive exploration. How-
ever, they require strictly positive state transition and obser-
vation emission kernels to ensure fast convergence to the
stationary distribution. The more related work is Jin et al.
(2020a), which considers undercomplete POMDPs, in other
words, the observations are more than the latent states. Their
proposed algorithm can attain the optimal policy without
estimating the exact model, but an observable component
(Jaeger, 2000; Hsu et al., 2012), which is the same for our
algorithm design, while only applies to tabular POMDPs.

In a broader context of reinforcement learning with partial
observability, our work is related to several recent works on
POMDPs with special structures. For example, Kwon et al.
(2021) considers latent POMDPs, where each process has
only one latent state, and the proposed algorithm efficiently
infers the latent state using a short trajectory. Kozuno et al.

(2021) considers POMDPs having tree-structured states with
their positions in certain partitions being the observations.
Compared with general POMDPs, these specially structures
reduce the complexity of finding the optimal actions, and
the corresponding algorithms use techniques closer to those
for MDPs. Also, the aforementioned literature only consider
tabular POMDPs.

In the contexture of reinforcement learning with function
approximations, our work is related to a vast body of recent
progress (Yang & Wang, 2020; Jin et al., 2020b; Cai et al.,
2020; Du et al., 2021; Kakade et al., 2020; Agarwal et al.,
2020; Zhou et al., 2021; Ayoub et al., 2020) on the sample
efficiency of reinforcement learning for MDPs with linear
function approximations. These works characterize the un-
certainty in the regression for estimating either the model
or value function of an MDP and use the uncertainty as a
bonus on the rewards to encourage exploration. However,
none of these approaches directly apply to POMDPs due to
the latency of the states.

1.2. Notation

For any discrete or continuous set X and p ∈ N, we denote
by Lp(X ) the Lp space of functions over X , and ∆(X )
the set of probability density functions over X when X is
continuous or probability mass functions whenX is discrete.
For any d ∈ N, we denote by [d] the set of integers from
1 to d. For a vector v and a matrix M , we denote by [v]i
the i-th entry of v and [M ]i,j the entry of M at the i-th
row and j-th column. We denote by ‖ · ‖p the `p-norm of a
vector or Lp-norm of a function. Also, for an operator M ,
we denote by ‖M‖p 7→q the operator norm of M induced
by the `p-norm or Lp-norm of the domain and `q-norm or
Lq-norm of the range. We use the notation linspan(·) and
conh(·) to represent the linear span and convex combination,
respectively.

2. Background
2.1. POMDPs

We consider an episodic POMDP (S,A,O, H, T , E , µ, r),
where S, A, and O are the state, action, and observation
spaces, respectively, H is the length of each episode, T
is the state transition kernel from a state-action pair to the
next state, E is the observation emission kernel from a state
to its observation, µ is the initial state distribution, and
r : O × A → [0, 1] is the reward function defined on the
observation and action for each step. We assume that the
action space A has a finite size A ∈ N, but the state space
S and observation space O can be infinite (with finite di-
mensions). Also, we consider the nonhomongeneous setting
so that the state transition kernel and observation emission
kernel can be different across each step. Hence, we use a
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Figure 1: Directed acyclic graph of a POMDP. Here, we denote by τh = (o1, . . . ,oh) the observation history and
τh = (o1,a1, . . . ,oh−1,ah−1,oh) the full history. See Section 2.1 for more details.

subscript h ∈ N to index the step. At the beginning of each
episode, the agent receives the initial state s1 ∼ µ. Then,
the agent interacts with the environment as follows. At the
h-th step, the agent receives the observation oh ∼ Eh(· | sh),
takes an action ah based on the observation history

τh = (o1, . . . ,oh), (2.1)

and receives the reward rh = r(oh,ah). Any mapping
π from the observation history to the action is called a
(deterministic) policy. We denote by Π the set of all such
mappings. Note that the policy does not use the action
history as an input. Such a restriction does not exclude the
optimal policy, as the action history can be decoded from
the observation history. Subsequently, the agent receives
the next state sh+1 following sh+1 ∼ Th(· | sh,ah). See
Figure 1 for an illustration.

In a reinforcement learning problem, the environment is
unknown, that is, the state transition kernel T and ob-
servation emission kernel E are unknown. We denote by
{(T θ, Eθ) : θ ∈ Θ} the candidate class of T and E , where
θ is the parameter and Θ is the set of the parameter. We
assume that the realizability condition holds, that is, there
exists a parameter θ∗ ∈ Θ such that T = T θ∗ and E = Eθ∗ .
Without loss of generality and for ease of presentation, we
assume that µ, T1, E1, and E2 are known, which only ac-
count for the initialization. The goal is to find a policy that
maximizes the expected total reward, that is,

π∗ = argmax
π∈Π

J(θ∗, π), (2.2)

where J(θ, π) = Eθ,π
[ H∑
h=1

rh

]
for any (θ, π) ∈ Θ×Π.

Here, we write θ and π as the subscripts of the expectation
to denote that the parameter of the state transition kernel

and observation emission kernel have the parameter θ and
the actions follow the policy π. In the sequel, we drop the
subscript π if the expectation does not depends on it.

Additional Notation: Recall that we denote by Π the set
of all policies. For notational simplicity, we denote by Π
the set of mixing policies. A mixing policy selects a policy
from Π randomly and executes such a policy throughout the
episode. For any h ∈ N, we denote by τh the full history,

τh = (o1,a1, . . . ,oh−1,ah−1,oh), (2.3)

which includes the action history. We denote by Γh and Γh
the sets of all histories τh and τh, respectively. Through-
out the paper, we use bold letters for states, actions, and
observations to emphasize that they are random variables
in a POMDP, whose parameter and policy are specified
in the context, while we use regular letters when they are
deterministic values.

2.2. Linear Function Approximations

We specify the candidate class of the state transition kernel
T and observation emission kernel E . We define the follow-
ing function classes of the conditional state distribution. In
detail, we define

Fs = {pθ(sh = · | sh−1 = s,ah−1 = a) :

(h, θ, s, a) ∈ [H]×Θ× S ×A},
F ′s = {pθ,π(sh = · |oh+1 = o,ah = a) :

(h, θ, o, a, π) ∈ [H]×Θ×O ×A×Π}.

Here, p(·) is the probability density function when the state
space S is continuous and the probability mass function
when S is discrete. The subscripts θ and π follow from
(2.2). Note that conditioning on ah = a means that the
agent takes the action a at the h-th step regardless of the
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observation history, while the agent takes the other actions
following the policy π as specified in the subscript. In the
causal inference literature (Pearl, 2009), our notation cor-
responds to do(ah = a), which denotes the interventional
distribution and differs from the observational distribution.
Throughout this paper, we follow such a convention. Also,
note that Fs corresponds to the state distribution condition-
ing on the past, while F ′s corresponds to that conditioning
on the future. As a special case, we have µ ∈ Fs for h = 1
since s0 and a0 do not exist. We define the following func-
tion class of the conditional observation distribution,

Fo = {pθ,π(oh:h+2 = ·
∣∣ah = a,ah+1 = a′) :

(h, θ, a, a′, π) ∈ [H]×Θ×A2 ×Π}.

The following assumption restricts the above function
classes to two low-dimensional subspaces.

Assumption 2.1 (Linear Function Approximations). There
exist ds, do ∈ N and known distribution functions
{ψi}dsi=1 ⊂ ∆(S) and {φi}doi=1 ⊂ ∆(O3) such that we
have

• Fs,F ′s ⊂ conh({ψi}dsi=1),

• Fo ⊂ conh({φi}doi=1).

For ease of presentation, we denote {ψi}dsi=1 and {φi}doi=1 by
ψ and φ, respectively, for the rest of the paper. Assumption
2.1 requires that Fs, F ′s, and Fo are linearly represented by
known bases ψ and φ. See, for example, Du et al. (2021) for
the corresponding assumption in MDPs. Note that, when ψ
and φ are the one-hot functions over S andO3, respectively,
we recover the tabular setting (Jin et al., 2020a).

The following assumption ensures that the observation is
informative for the state. For any (h, θ) ∈ [H] × Θ, we
define the observation operator Oθh : L1(S)→ L1(O) by

(Oθhf)(o) =

∫
S
Eθh(o | s) · f(s) ds, (2.4)

for any f ∈ L1(S) and o ∈ O, which maps a state distribu-
tion to the observation distribution.

Assumption 2.2 (Invertible Observation Operators). For
any (h, θ) ∈ [H] × Θ, there exist a known function Zθh :
S ×O → R and the linear operator Zθh : L1(O)→ L1(S)
defined by

(Zθhf)(s) =

∫
O
Zθh(s, o) · f(o) do,

for any f ∈ L1(O) and s ∈ S such that we have

• ZθhOθhf = f for any f ∈ linspan(ψ),

• ‖Zθh‖17→1 ≤ γ for a constant γ > 0.

Assumption 2.2 requires that the observation operator Oθh
defined on linspan(ψ) is injective, which implies that it has
a left inverse Zθh. Note that the domain of Zθh naturally ex-
tends to L1(O). In other words, the observation distribution
carries the full information of the state distribution. The
(upper bound of the) operator norm γ is a measure of ill
conditioning, which quantifies the fundamental difficulty, in
terms of the information-theoretic limit, of reinforcement
learning in the POMDP. See more discussion in Section B,
where we prove that both Assumptions 2.1 and 2.2 hold if
the state transition kernel and observation emission kernel
admit certain a structure. Correspondingly, we provide a
detailed form of the function Zθh in Section B. Also, we
illustrate the connection to the tabular setting (Jin et al.,
2020a) therein.

3. Algorithm
In this section, we first introduce the finite-memory Bellman
operator in Section 3.1 and discuss its estimation in Section
3.2. Then, we present Algorithm 1, which performs opti-
mistic exploration on top of operator estimation, in Section
3.3.

3.1. Finite-Memory Bellman Operator

To cast a POMDP as an MDP, it is necessary to aggregate
the observation history and action history as the “state” in
an MDP to retrieve the Markov property. In detail, for any
(h, θ, π) ∈ [H]×Θ×Π, we define the full-memory Bellman
operator Pθ,πh : L∞(Γh+1)→ L∞(Γh) by

(Pθ,πh f)(τh) (3.1)
= Eθ,π[f(τh+1) | τh = τh]

=

∫
O
pθ
(
oh+1 = oh+1 | τh = τh,ah = π(τh)

)
· f
(
τh, π(τh), oh+1

)
doh+1,

for any f ∈ L∞(Γh+1) and τh ∈ Γh. Here, the second
equality follows from τh+1 = (τh,ah,oh+1) with ah =
π(τh), which is defined in (2.3). In the sequel, the function
f is set as the expected total reward conditioning on the
(h+ 1)-step full history τh+1 ∈ Γh+1 and Pθ,πh maps it to
the h-step counterpart, which resembles backward induction
or dynamic programming in MDPs. We denote by R :
ΓH+1 → [0, H] the function that maps the (H + 1)-step
full history to the total reward, that is,

R(τH+1) = r(o1, a1) + · · ·+ r(oH , aH), (3.2)

for any τH+1 ∈ ΓH+1. For any h ∈ [H], the expected total
reward satisfies

Eθ,π
[ H∑
i=1

ri

∣∣∣ τh = τh

]
= (Pθ,πh · · ·P

θ,π
H R)(τh), (3.3)
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for any τh ∈ Γh, where the equality follows from recur-
sively applying (3.1) and the tower property of conditional
expectation. A direct idea is to evaluate a policy π by esti-
mating the parameter θ in (3.3) and optimize π in an iterative
manner. However, estimating the operator Pθ,πh suffers from
the curse of dimensionality since it requires estimating a dis-
tribution conditioning on the h-step full history τh, which
is high-dimensional.

From Full Memory to Finite Memory: We propose to
bypass such an issue by exploiting the independence be-
tween the past observation and future observation condi-
tioning on the current state. In detail, for any (h, θ, π) ∈
[H]×Θ×Π, we define the finite-memory Bellman operator
Bθ,πh : L∞(Γh+1)→ L∞(Γh) by

(Bθ,πh f)(τh) =

∫
O2

f(τ †h, π(τ †h), õh+1) (3.4)

· Bθ
h,π(τ†h)

(oh, õh, õh+1) dõh dõh+1,

for any f ∈ L∞(Γh+1) and τh ∈ Γh. Here, the tail-
mirrored full history τ †h and tail-mirrored observation his-
tory τ †h are defined by

τ †h = (τh−1, ah−1, õh), τ †h = (τh−1, õh), (3.5)

which switch the last observation oh by õh in the full
history τh and observation history τh, that is, τh =
(τh−1, ah−1, oh) and τh = (τh−1, oh). Also, the function
Bθh,a : O3 → R is defined by

Bθh,a(oh, õh, õh+1) (3.6)

=

∫
S
pθ(õh = õh, õh+1 = õh+1 | s̃h = s̃h, ãh = a)

· Zθh(s̃h, oh) ds̃h,

for any oh, õh, õh+1 ∈ O and a ∈ A, where the function
Zθh is defined in Assumption 2.2. Figure 2 illustrates the
(random) variables in (3.4) and (3.6). In detail, s̃h is an
independent replicate of sh, that is, they are independent
and identically distributed conditioning on sh−1 and ah−1.
Note that s̃h is constructed for ease of presentation, and does
not exist in practice. Then, the action ãh, state s̃h+1, and
observations õh, õh+1 are similarly defined. In other words,
their distribution conditioning on s̃h and τh−1 mirrors the
distribution of the action ah, state sh+1, and observations
oh,oh+1 conditioning on sh and τh−1. When the state
transition kernel and observation emission kernel have a
specific parametrization, the function Zθh has a correspond-
ing parametrization by Assumption 2.2, which allows us to
parametrize the function Bθh,a in (3.6). See Section B for an
example where the state transition kernel and observation
emission kernel admit a linear structure. Compared with
the full-memory Bellman operator Pθ,πh , the finite-memory

Bellman operator Bθ,πh does not involve the distribution of
oh+1 conditioning on τh and ah. Instead, it involves the
distribution of õh and õh+1 conditioning on s̃h, where the
distribution of s̃h is implied by the distribution of the sin-
gle observation oh via the function Zθh. See the following
paragraph for more discussion. Moreover, estimating Bθ,πh
for each h ∈ [H] only involves the distribution of oh−1, oh,
and oh+1, which is low-dimensional. See Section 3.2 for
more discussion.

How Finite Memory Works: For notational simplicity, we
denote by σh−1 the event

τh−1 = τh−1, ah−1 = ah−1 (3.7)

for any h ∈ [H + 1]. The following lemma implies that the
finite-memory Bellman operator Bθ,πh is identical to the full-
memory Bellman operator Pθ,πh in expectation conditioning
on σh−1, which allows us to use Bθ,πh as a surrogate of Pθh,a.

Lemma 3.1 (Operators Equivalence in Expectation). For
any (h, θ, π, τh−1, ah−1) ∈ [H]×Θ×Π×Γh−1×A and
f ∈ L∞(Γh+1), we have

Eθ[(Bθ,πh f)(τh)− (Pθ,πh f)(τh) |σh−1] = 0.

Proof. See Section D.1 for a detailed proof.

To see the intuition behind Lemma 3.1, note that by the
definition of Zθh in Assumption 2.2, we have

Eθ[Zθh(s̃h,oh) |σh−1] = pθ(s̃h = s̃h |σh−1),

for any (s̃h, τh−1, ah−1) ∈ S × Γh−1 × A. See Section
D.1 for a derivation. In other words, Zθh serves as the bridge
function in causal inference (Shi et al., 2020), which recov-
ers the conditional distribution of s̃h from the conditional
distribution of oh. Then, by taking the same conditional
expectation on both sides of (3.6), we have

Eθ[Bθh,a(oh, õh, õh+1) |σh−1] (3.8)

= pθ(õh = õh, õh+1 = õh+1 |σh−1, ãh = a)

= pθ(oh = õh,oh+1 = õh+1 |σh−1,ah = a),

which is connected to the integral kernel pθ(oh+1 =
oh+1 | τh = τh,ah = a) on the right-hand side of (3.1)
via the same conditional expectation

Eθ[pθ(oh+1 = oh+1 | τh,ah = a) |σh−1] (3.9)
= Eθ[pθ(oh+1 = oh+1 |σh−1,oh,ah = a) |σh−1]

= pθ(oh+1 = oh+1 |σh−1,ah = a)

=

∫
O
pθ(oh = oh,oh+1 = oh+1 |σh−1,ah = a) doh.

Here the second equality in (3.8) follows from the fact that
(ãh, õh, ãh) is an independent replicate of (ah,oh,oh+1),



Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency

τh−1

sh−1 sh sh+1

s̃h s̃h+1ah−1

oh oh+1

õh õh+1
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Figure 2: Illustration of the variables in the definition of Bθ,πh in (3.4) and (3.6). In detail, s̃h is an independent replicate of
sh, that is, they are independent and identically distributed conditioning on sh−1 and ah−1. Note that s̃h is constructed for
ease of presentation, and does not exist in practice. Then, the action ãh, state s̃h+1, and observations õh, õh+1 are similarly
defined. In other words, their distribution conditioning on s̃h and τh−1 mirrors the distribution of the action ah, state sh+1,
and observations oh,oh+1 conditioning on sh and τh−1. For notational simplicity, we define the tail-mirrored full history
τ †h = (τh−1,ah−1, õh) and tail-mirrored observation history τ †h = (τh−1, õh).

that is, they follow the same distribution conditioning on
σh−1.

Backward Bellman Recursion: For any (h, θ, π) ∈ [H +

1]×A×Π, we define the value function V θ,πh ∈ L∞(Γh)
by

V θ,πh (τh) = (Bθ,πh · · ·B
θ,π
H R)(τh), (3.10)

for any τh ∈ Γh, which gives the backward Bellman recur-
sion

V θ,πh (τh) = (Bθ,πh V θ,πh+1)(τh), (3.11)

for any τh ∈ Γh. The following corollary is implied by
Lemma 3.1, which relates the value function V θ,πh to the
expected total reward. Note that V θ,πh does not correspond
to the “reward-to-go” in the usual value function definition
in MDPs since it involves all rewards across the H steps.
Corollary 3.2. For any (h, θ, π) ∈ [H + 1] × Θ × Π, we
have

Eθ,π
[
V θ,πh (τh)−

H∑
i=1

ri

∣∣∣σh−1

]
= 0, (3.12)

for any (τh−1, ah−1) ∈ Γh−1 × A. For h = 1, we have
J(θ, π) = E[V θ,π1 (o1)] since τ 1 = o1 and σ0 = ∅, which
follows from the definition of τh in (2.3).

Proof. See Section D.2 for a detailed proof.

Corollary 3.2 allows us to evaluate a policy π by esti-
mating {Bθ

∗,π
h }Hh=1 instead of {Pθ

∗,π
h }Hh=1. Meanwhile,

{V θ,πh }Hh=1 play a critical role in analyzing the sample com-
plexity.

3.2. Operator Estimation via Minimax Optimization

Although the finite-memory Bellman operator Bθ,πh defined
in (3.4) does not involve the observation distribution condi-
tioning on the history, that is, the distribution of oh+1 con-
ditioning on τh and oh, it remains unclear how to estimate
Bθ
∗,π
h in a sample-efficient manner. Note that, by the defi-

nition of Bθ
∗,π
h , it suffices to estimate functions {Bθ∗h,a}a∈A.

To this end, we define the operator Fθh,a : L∞(O3) →
L∞(O3) for any (h, a, θ) ∈ {2, . . . ,H} × A×Θ by

(Fθh,af)(oh−1, oh, oh+1) (3.13)

=

∫
O2

f(oh−1, õh, õh+1)

· Bθh,a(oh, õh, õh+1) dõh dõh+1,

for any f ∈ L1(O3) and oh−1, oh ∈ O. Note that Fθh,a is a
truncated version of Bθ,πh , which drops a few variables that
are redundant for operator estimation. The following lemma
motivates the estimator of Bθ∗h,a, which uses the definition
of Fθh,a.

Lemma 3.3. For any (h, a, a′, π) ∈ {2, . . . ,H}×A2×Π,



Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency

we have

EX∼ρπ
h,a,a′

[(Fθ
∗

h,a′f − f)(X)] = 0,

for any f ∈ L∞(O3). Here, the distribution ρπh,a,a′ ∈
∆(O3) is defined by

ρπh,a,a′(oh−1, oh, oh+1)

= pθ∗,π
(
oh−1 = oh−1,oh = oh,oh+1 = oh+1 |

ah−1 = a,ah = a′
)
,

for any oh−1, oh, oh+1 ∈ O. Also, we have

‖Fθ
∗

h,a′‖∞→∞ ≤ γ.

Proof. See Section D.3 for a detailed proof.

Minimax Optimization: For any (h, a′, π) ∈
{2, . . . ,H} × A × Π, Lemma 3.3 allows us to esti-
mate Bθ∗h,a′ based on a dataset {Dh,a,a′}a∈A, where the
data points in Dh,a,a′ are collected from the distribution
ρπh,a,a′ . In other words, each episode involves three
steps: (a) we execute the exploration policy π, which
takes the actions a1, . . . ,ah−2, (b) we take the actions
ah−1 = a and ah = a′ regardless of the observations,
and (c) we add the observation tuple (oh−1,oh,oh+1)
to Dh,a,a′ . Based on {Dh,a,a′}(h,a,a′)∈{2,...,H}×A2 , we
estimate {Bθ∗h,a′}(h,a′)∈{2,...,H}×A by solving the following
minimax optimization problem,

min
θ∈Θ

max
f∈L∞(O3):‖f‖∞≤1

max
(h,a,a′)∈{2,...,H}×A2

EX∼D̂h,a,a′ [(SF
θ
h,a′f − Sf)(X)]. (3.14)

Here, D̂h,a,a′ is the empirical distribution induced by
the dataset Dh,a,a′ . Also, the projection operator S :
L1(O3)→ L1(O3) satisfies that

EX∼p[(Sf)(X)] =

∫
O3

f(x) · p†(x) dx, (3.15)

for any f ∈ L∞(O3) and p ∈ ∆(O3). Here, p† ∈ L1(O3)
is the projection of p onto linspan({φi}doi=1). See the defini-
tion of S in the next paragraph. The minimax optimization
problem in (3.14) is motivated by generative adversarial
networks. To see the intuition behind (3.14), note that f
serves as the discriminator and F θh,a′ serves as the generator.
In detail, note that the function Fθh,af in (3.13) is constant
with respect to the variable oh+1. Thus, Lemma 3.3 im-
plies that the true generator F θ

∗

h,a′ recovers the distribution
of (oh−1,oh,oh+1) ∼ dπh,a,a′ (corresponding to the true
parameter θ∗) from the marginal distribution of (oh−1,oh).
In this case, the true distribution and the (fake) distribution
recovered by the generator can not be distinguished by any

discriminator in L∞(O3). When we train the generator and
discriminator on a dataset, the discriminator class L∞(O3)
has a too large capacity. Therefore, we employ the pro-
jection operator S to enforce the finite-dimensional linear
structure of dπh,a,a′ , which reduces the capacity of the dis-
criminator class. Such a projection operator guarantees the
generalization power of the solution to (3.14).

Projection Operator via RKHS: In the following, we de-
fine the projection operator S. To this end, we consider an
RKHS H induced by a kernel function K : O3 × O3 →
R. We define the corresponding RKHS embedding K :
L1(O3)→ H by

(Kp)(x) =

∫
O3

K(x, y)p(y) dy, (3.16)

for any p ∈ L1(O3) and x ∈ O3. Moreover, we define the
matrix G ∈ Rdo×do by

[G]i,j = 〈Kφi,Kφj〉H (3.17)
= EX∼φi,X′∼φj [K(X,X ′)],

for any i, j ∈ [do]. Recall that the distribution functions
{φi}doi=1 are defined in Assumption 2.2. The following
assumption specifies the regularity condition on K and
{φi}doi=1.
Assumption 3.4. The kernel function K is bounded and
continuous. In particular, we have |K(x, y)| ≤ 1 for any
x, y ∈ O3. Also, we have α = λmin(G) > 0, where we
denote by λmin(·) the minimum eigenvalue of a matrix and
the matrix G is defined in (3.17).

Here, the continuity ofK is defined with respect to the topol-
ogy space O3. For example, O3 is (embedded as) a subset
of some Euclidean space and the continuity of K is defined
with respect to the corresponding Euclidean distance. The
boundedness of K is satisfied by many kernel functions, for
example, the radial basis function (RBF) kernel (Smola &
Schölkopf, 1998). For the positive definiteness of the matrix
G, note that, for any v = (v1, . . . , vdo) ∈ Rdo , we have

v>Gv =

do∑
i,j=1

vivj · 〈Kφi,Kφj〉H =
∥∥∥ do∑
i=1

vi ·Kφi
∥∥∥2

H
.

Therefore, to make G positive definite, it suffices to require
Kφ1, . . . ,Kφdo to be linearly independent in H. With the
the kernel function K and matrix G defined above, we can
verify that (3.15) holds for the operator S defined by

(Sf)(x) (3.18)

=
∑

i,j∈[do]

[G−1]i,j · EY∼φi,Y ′∼φj
[
K(x, Y ) · f(Y ′)

]
,

for any f ∈ L∞(O3) and x ∈ O3. Here, the distance in the
projection from p to p† in (3.15) is defined by

d(p1, p2) = ‖Kp1 −Kp2‖H, (3.19)
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for any p1, p2 ∈ L1(O3). See Section G.1 for a derivation.

3.3. Online Exploration via Optimistic Planning

We present the Optimistic Exploration via Adversarial
Integral Equation (OP-TENET) algorithm, which incorpo-
rates operator estimation into optimistic planning to perform
online exploration. In other words, we update the explo-
ration policy in Section 3.2 in an iterative manner. We
initialize OP-TENET with any policy π0 ∈ Π and a dataset

{Dh,a,a′}(h,a,a′)∈{2,...,H}×A2 = ∅, (3.20)

which are updated subsequently in the K iterations. Each
iteration consists of an exploration phase and a planning
phase. In the following, we describe the k-th iteration for
any k ∈ [K].

Exploration Phase: Given the exploration policy πk−1, we
run an episode of the POMDP for each tuple (h, a, a′) ∈
{2, . . . ,H} × A2 following the data collecting scheme
defined in Section 3.2 to add an observation tuple
(oh−1, oh, oh+1) into the dataset Dh,a,a′ . After the explo-
ration phase of the k-th iteration, we have k observation
tuples in the dataset Dh,a,a′ for any (h, a, a′). Although the
dataset is collected by the exploration policies π0, . . . , πk−1

in the k iterations, we can regard it as a dataset collected by
the mixing policy

πk = mixing{π0, . . . , πk−1}. (3.21)

where each policy is sampled uniformly at random as de-
fined in Section 2.1.

Planning Phase: We apply the operator estimation method
defined in Section 3.2 to the updated dataset in (3.20) and
construct a confidence set of the model parameter θ

Θk =
{
θ ∈ Θ : L(θ) ≤ β · k−1/2

}
, (3.22)

for a constant β > 0, where L(θ) is defined as

L(θ) = max
f∈L∞(O3):‖f‖∞≤1

max
(h,a,a′)∈{2,...,H}×A2

EX∼D̂h,a,a′ [(SF
θ
h,a′f − Sf)(X)]. (3.23)

Given the confidence set defined in (3.22), we update the
exploration policy by

πk = argmax
π∈Π

max
θ∈Θk

J(θ, π), (3.24)

which is the optimal policy with respect to the optimistic
value estimator over parameters θ in the confidence set Θk.
Recall that J(θ, π) is defined in (2.2). Note that we can
perform the computation of (3.24) via a planning oracle
for POMDPs (Golowich et al., 2022). In detail, we can
reformulate (3.24) as

θk = argmax
θ∈Θk

J
(
θ, π̂(θ)

)
, πk = π̂(θk),

where the planning oracle π̂(·) outputs the optimal policy
with respect to any parameter. The constraint θ ∈ Θk can
be further transformed as a part of the objective via the
Lagrangian relaxation. Then, we can apply the stochastic
gradient method to obtain θk in a computation-efficient
manner. See Section C for more details. At the (k + 1)-th
iteration, we execute the exploration policy πk to collect
data, which serves as the next exploration phase. We present
OP-TENET in Algorithm 1.

Algorithm 1 OP-TENET

1: Input: number of iterations K, confidence level β
2: Initialization: set π0 as a deterministic policy
3: Initialization: update the dataset Dh,a,a′ ← ∅ for

(h, a, a′) ∈ {2, . . . ,H} × A2

4: For k = 1 to K do
5: For (h, a, a′) ∈ {2, . . . ,H} × A2 do
6: Start a new episode
7: Execute πk−1 to take the first (h− 2) actions
8: Receive the observation oh−1

9: Take the action a, receive the observation oh
10: Take the action a′, receive the observation oh+1

11: End the current episode
12: Update the dataset

Dh,a,a′ ← Dh,a,a′ ∪ {(oh−1, oh, oh+1)}

13: Construct the confidence set Θk by (3.22)
14: Update the policy

πk ← argmax
π∈Π

max
θ∈Θk

J(θ, π)

15: Output: policy set {π1, . . . , πK}

4. Theory
In this section, we analyze OP-TENET in Algorithm 1. In
Section 4.1, we prove that the policies generated by Algo-
rithm 1 converge to the optimal policy with a polynomial
sample complexity. Due to space limit, we defer the proof
sketch to Section A in the appendix, where we sketch the
proof by three key lemmas.

4.1. Sample Efficiency

The following theorem characterizes the sample complexity
of OP-TENET in Algorithm 1.

Theorem 4.1. Under Assumptions 2.1, 2.2, and 3.4, for any
δ > 0, if we choose a confidence level β in Algorithm 1 to
such that

β ≥ d3/2
o (γ + 1)/α ·

√
8 log(2KHA2/δ), (4.1)
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then, with probability at least 1− δ, we have

1

K

K∑
k=1

(
J(θ∗, π∗)− J(θ∗, πk)

)
(4.2)

≤ 4dsγ
2βH2A2 · logK

K1/2
+

4dsγH
2

K
.

Recall that ds and do are defined in Assumption 2.1, γ is
defined in Assumption 2.2, and α is defined in Assumption
3.4.

Note that the first term on the right-hand side of (4.2) is
the leading term for a sufficiently large number of itera-
tions K. Recall that the state distribution dimension ds

and observation distribution dimension do are defined in
Assumption 2.1. Also, quantities γ and α are defined in As-
sumptions 2.2 and 3.4, respectively. By Theorem 4.1, if we
run OP-TENET for K iterations and sample a policy from
{π1, πK} uniformly at random, the expected suboptimality
of such a policy converges to zero with high probability at
the rate of K−1/2 up to logarithmic factors. Meanwhile,
such a rate depends on H , A, ds, do, γ, and 1/α polynomi-
ally. In other words, to obtain an ε-optimal policy for any
suboptimality ε > 0, it suffices to run

K = poly(H,A, ds, do, γ, 1/α) · Õ(1/ε2) (4.3)

iterations in OP-TENET to collect the data set. Note that
the total number of episodes inK iterations is (H−1)A2K.
To our best knowledge, Theorem 4.1 is the first polynomial
sample complexity upper bound for reinforcement learning
in POMDPs that is independent of the number of states and
observations. Moreover, the order of ε is optimal even in the
MDP setting (Ayoub et al., 2020), which is a special case of
POMDPs. In contrast to the sample complexity results in
MDPs, a key difference of Theorem 4.1 is that it involves the
(upper bound of the) operator norm γ of the bridge operator
Zθh, which is the left inverse of the observation operator Oθh.
Recall that such a left inverse is defined with respect to the
finite-dimensional subspace linspan({φi}doi=1) of L1(O3)
in Assumption 2.2. The (upper bound of the) operator norm
γ is a measure of ill conditioning, which quantifies the fun-
damental difficulty, in terms of the information-theoretic
limit, of reinforcement learning in the POMDP. In the degen-
erate case where Oθh is not invertible, Theorem 4.1 provides
a trivial upper bound since we have γ = ∞. On the other
hand, such a case contains examples that are fundamentally
impossible to solve in a sample-efficient manner, which is
implied by information theory (Jin et al., 2020a).
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A. Proof Sketch
In this section, we sketch the proof of Theorem 4.1. In detail, we prove the theorem by three key lemmas. The following
lemma provides a decomposition of the difference of expected total rewards in two POMDPs when the parameters are
different and the policies are identical. Recall that the function J is defined in (2.2).

Lemma A.1 (Value Decomposition). Under Assumptions 2.1 and 2.2, we have

J(θ, π)− J(θ′, π)

=

H∑
h=1

Eθ′,π[(Bθ,πh V θ,πh+1)(τh)− (Bθ
′,π
h V θ,πh+1)(τh)],

for any θ, θ′ ∈ Θ and π ∈ Π. Here, the function V θ,πh+1 is defined in (3.10).

Proof. See Section F.1 for a detailed proof.

For any k ∈ [K], we denote by θk ∈ Θ the model parameter that is selected in the planning phase of the k-th iteration
OP-TENET (Algorithm 1), which is defined in (3.24), that is,

(θk, πk) = argmax
(θ,π)∈Θk×Π

J(θ, π). (A.1)

We define the state-dependent error ekh : S → R by

ekh(sh−1) =
∣∣Eθ∗,πk [(Bθk,πkh V θk,πkh+1 )(τh)− (Bθ

∗,πk
h V θk,πkh+1 )(τh) | sh−1 = sh−1]

∣∣, (A.2)

for any (k, h, sh−1) ∈ [K]× [H]× S . Conditioning on the event θ∗ ∈ Θk, which is shown to occur with high probability
in the following lemma, we have

J(θ∗, π∗)− J(θ∗, πk) ≤ J(θk, πk)− J(θ∗, πk) ≤
H∑
h=1

Eθ∗,πk [ekh(sh−1)], (A.3)

which follows from Lemma A.1. Also, the following lemma characterizes the right-hand side of (A.3) when we replace the
policy πk by the mixing policy πk defined in (3.21).

Lemma A.2 (Statistical Guarantee). Under Assumptions 2.1, 2.2, and 3.4, for any δ > 0, by choosing the confidence level
β in OP-TENET (Algorithm 1) such that it satisfies (4.1), with probability at least 1− δ, we have

• θ∗ ∈ Θk,

• Eθ∗,πk [ekh(sh−1)] ≤ 2HA2γ2β · k−1/2,

for any (k, h) ∈ [K]× [H].

Proof. See Section F.2 for a detailed proof.

To characterize the right-hand side of (A.3), it remains to connect Eθ∗,πk [ekh(sh−1)] with Eθ∗,πk [ekh(sh−1)], which involve
different state distributions. The connection is established in the following lemma.

Lemma A.3 (Telescope of Error). Under Assumptions 2.1 and 2.2, for any h ∈ [H], we have

K∑
k=1

Eθ,πk [ekh(sh−1)] ≤ 4γdsH + 2ds logK · max
k∈[K]

(
k · Eθ,πk [ekh(sh−1)]

)
.

Proof. See Section F.3 for a detailed proof.

Combining (A.3) with Lemmas A.2 and A.3, we obtain Theorem 4.1. See Section E for a detailed proof.
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B. Examples: Linear Kernel POMDPs
In this section, we show examples of the candidate class of the state transition kernels and observation emission kernels,
which satisfy our assumptions in the main paper. In particular, we consider the following definition of linear kernel POMDPs.

Definition B.1 (Linear Kernel POMDPs). We say that

L = {(S,A,O, H, T θ, Eθ, µ, r) : θ ∈ Θ}

is a linear kernel POMDP set, if each state transition kernel T θ and observation emission kernel Eθ in the set take the form,

T θh (s′ | s, a) = u(s′)>Mθ
h,av(s), Eθh(o | s) = q(o)>gθh(s), (B.1)

for any (h, θ, s, s′, a, o) ∈ [H] × Θ × S2 ×A ×O. Here, u, v, q, and gθh are non-negative vector-valued functions with
dimensions du, dv, dq, and dq, respectively. The matrix Mθ

h,a ∈ Rdu×dv has non-negative entries. Moreover, we have
µ ∈ conh({[u(·)]i}dui=1) and

[u(·)]i ∈ ∆(S), [q(·)]` ∈ ∆(O), for any (i, j) ∈ [du]× [dq].

The following lemma shows that tabular POMDPs are linear kernel POMDPs.

Lemma B.2. For any finite state space S , finite observation space O, action space A, episode length H , initial distribution
µ, and reward function r, we can define a linear kernel POMDP set {(S,A,O, H, T θ, Eθ, µ, r) : θ ∈ Θ} following
Definition B.1, which consists of all possible POMDPs with the aforementioned elements.

Proof. We define Θ as the set of all possible pair (T̃ , Ẽ) such that T̃ is a state transition kernel and Ẽ is an observation
emission kernel with respect to the state space S, action space A, observation space O, and episode length H . We let
du = dv = |S| and dq = |O|. For any θ = (T̃ , Ẽ) ∈ Θ, we define

[Mθ
h,a]s′,s = T̃h(s′ | s, a), [qθh(·)]o = Ẽh(o | ·),

for any (h, s, s′, a, o) ∈ [H]× S2 ×A×O. Also, we define

[u(·)]s = 1{s = ·}, [v(·)]s = 1{s = ·}, [q(·)]o = 1{o = ·},

for any (s, o) ∈ S × O. Then, by noting that we have T θ = T̃ and Eθ = Ẽ following the definitions of T θ and Eθ in
Definition B.1, we conclude the proof of Lemma B.2.

B.1. Verification of Assumption 2.1

Recall that in reinforcement learning for a POMDP, the state transition kernel and observation emission kernel are
unknown elements of the POMDP. We say that the candidate class of the POMDP is a linear kernel POMDP set L =
{(S,A,O, H, T θ, Eθ, µ, r) : θ ∈ Θ} when the candidate class of the state transition kernel and observation emission kernel
is {(T θ, Eθ) : θ ∈ Θ} and other elements of the POMDP are determined as (S,A,O, H, µ, r). The following lemma shows
that any linear kernel POMDP set satisfies the linear function approximation assumption (Assumption 2.1).

Lemma B.3. When the candidate class of the POMDP is a linear kernel POMDP set L as defined in Definition B.1, we
have that Assumption 2.1 holds with

ds ≤ du(dv + 1) and do ≤ d3
q.

Recall that du, dv, and dq are the vector-valued function dimensions in the definition of L, and ds, do are the number of
basis distribution functions in Assumption 2.1.

Proof. We prove the lemma by constructing the basis distribution functions {ψi}dsi=1 and {φi}doi=1 satisfying Assumption
2.1.
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State Distribution: Note that to make Fs ∈ conh({ψi}dsi=1), it suffices to let {[u]i}dui=1 be a subset of {ψi}dsi=1. In the
following, we construct the rest elements of {ψi}dsi=1 to make F ′s ∈ conh({ψi}dsi=1). For any (h, θ, π, sh, ah, oh+1) ∈
[H]×Θ× S ×A×O, we have

pθ,π(sh = sh,oh+1 = oh+1 |ah = ah)

=

∫
S
Eθh+1(oh+1 | sh+1) · T θh (sh+1 | sh, ah) dsh+1 · pθ,π(sh = sh)

=
(∫
S
Eθh+1(oh+1 | sh+1) · u(sh+1)>Mθ

h,ah
dsh+1

)
vh(sh) · pθ,π(sh = sh), (B.2)

where the second equality is by the form of T θh in Definition B.1. Similarly, we have

pθ,π(sh = sh) = Eθ,π[T θh−1

(
sh
∣∣ sh−1,ah−1)]

= u(sh)>Eθ,π[Mθ
h,ah−1

vh−1(sh−1)]. (B.3)

For notational simplicity, we define the vectors

ζ1 =
(∫
S
Eθh+1(oh+1 | sh+1) · u(sh+1)>Mθ

h,ah
dsh+1

)>
, (B.4)

ζ2 = Eθ,π[Mθ
h,ah−1

vh−1(sh−1)]. (B.5)

Then, combining (B.2)-(B.5), we can write

pθ,π(sh = sh |oh+1 = oh+1,ah = ah)

=
pθ,π(sh = sh,oh+1 = oh+1 |ah = ah)

pθ,π(oh+1 = oh+1 |ah = ah)
=

ζ>1 vh(sh)u(sh)>ζ2
pθ,π(oh+1 = oh+1 |ah = ah)

. (B.6)

Note that we can rewrite (B.6) in a linear form,

pθ,π(sh = · |oh+1 = oh+1,ah = ah) =
〈
v(·)u(·)>, ζ2ζ

>
1

pθ,π(oh+1 = oh+1 |ah = ah)

〉
tr
,

where 〈·, ·〉tr represents the trace inner product of matrices. Therefore, we know that any function in F ′s can be represented
as a convex combination of the functions

{[u(·)]i · [v(·)]j}i∈[du],j∈[dv]. (B.7)

Then, by normalizing each function in (B.7) as a probability distribution function, we obtain dvdu distribution functions,
whose convex combination contains all elements of F ′s. Thus, by denoting the set of such distribution functions plus {ui}dui=1

by {ψi}dsi=1, we have

ds = du(dv + 1), and F ′s,F ′s ⊂ conh({ψi}dsi=1).

Observation Distribution: In the following, we construct the basis distribution functions {φi}doi=1 such that Fo ⊂
conh({φi}doi=1). Note that, for any (h, π, oh, oh+1, oh+2, ah, ah+1) ∈ [H − 1]×Θ×O3 ×A2, we have

pθ,π(oh = oh,oh+1 = oh+1,oh+2 = oh+2 |ah = ah,ah+1 = ah+1) (B.8)

=

∫
S3

pθ,π(sh = sh) · Eθh(oh | sh, ah) · T θh (sh+1 | sh, ah) · Eθh+1(oh+1 | sh+1)

· T θh+1(sh+2 | sh+1, ah+1) · Eθh(oh | sh) dsh dsh+1 dsh+2

=

d∑
i,j,`=1

ωi,j,` · qi(oh) · qj(oh+1) · q`(oh+2)



Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency

where {ωi,j,`}i,j,`∈[dq ] are defined by

ωi,j,` =

∫
S3

pθ,π(sh = sh) · T θh (sh+1 | sh, ah) · T θh+1(sh+2 | sh+1, ah+1)

· [gθh(sh)]i · [gθh(sh+1)]j · [gθh(sh+2)]` dsh dsh+1 dsh+2.

following the definition of Eθ in Definition B.1. For any i, j, ` ∈ [dq], we define the distribution function φi,j,` ∈ ∆(O3) by

φi,j,`(oh, oh+1, oh+2) = qi(oh) · qj(oh+1) · q`(oh+2)

for any oh, oh+1, oh+2 ∈ O. Then, by (B.8), we have Fo ⊂ conh({φi,j,`}
dq
i,j,`=1). Reorganizing the index, we can write

{φi}doi=1 = {φi,j,`}
dq
i,j,`=1 with do = d3

q .

Therefore, we conclude the proof of Lemma B.3.

B.2. Verification of Assumption 2.2

For any (h, i) ∈ [H]× [ds], we define νh,i ∈ ∆(O) by

νh,i(o) =

∫
S
Eθh(oh | sh) · ψi(sh) dsh (B.9)

for any o ∈ O. Recall that {ψi}dsi=1 are the basis distribution functions in Assumption 2.1, and we prove their existence
when the candidate class of the POMDP is a linear kernel POMDP set in Section B.1. Let K̃ be a kernel function (different
from the kernel function K in Section 3.2) defined on O ×O. For any h ∈ [H], we define the matrix Λh ∈ Rds×ds by

[Λh]i,j = Eo∼νh,i,o′∼νh,j [K̃(o,o′)], for any i, j ∈ [ds]. (B.10)

Similar to Assumption 3.4, the following assumption specifies the regularity condition on K̃ and {νh,i}h∈[H],i∈[do].

Assumption B.4. The kernel function K̃ is bounded. In particular, we have |K̃(x, y)| ≤ 1 for any x, y ∈ O. Also, we have
Λh � 0 for any h ∈ [H].

Note that for any h ∈ [H], similar to the discussion under Assumption 3.4, the positive definiteness of the matrix Λh
requires the RKHS embedding of νh,1, . . . , νh,ds to be linearly independent. Here, the RKHS and the corresponding RKHS
embedding (operator) are defined with respect to the kernel function K̃. As a special case, when the state space S and
observation space O are finite, we let

K̃(x, y) = 1{x = y}, for any x, y ∈ O,

and {ψi}dsi=1 = {1{s = ·}}s∈S with ds = |S|. Note that for a finite state space S, the integral in (B.9) is defined with
respect to the counting measure over S . Then, Assumption B.4 is equivalent to requiring the vectors {Eh(· | s) ∈ R|O|}s∈S
to be linearly independent for any h ∈ [H], which recovers the undercompleteness assumption in (Jin et al., 2020a).

The following lemma shows that any linear kernel POMDP set satisfies the invertible observation operators assumption
(Assumption 2.2), given the aforementioned linear independence condition.

Lemma B.5. Suppose the candidate class of the POMDP is a linear kernel POMDP set L as defined in Definition B.1 and
Assumption B.4 holds. Then, we have that Assumption 2.2 holds with

Zθh(s, o) =

ds∑
i,j=1

ψi(s) · [(Λh)−1]i,j · Eo∼νh,j [K̃(o, o)] (B.11)

for any (h, θ, s, o) ∈ [H]×Θ× S ×O and

γ = d · max
h∈[H]

‖(Λh)−1‖1→1 = d · max
(h,j)∈[H]×[ds]

ds∑
i=1

∣∣[(Λh)−1]i,j
∣∣.

Here, the matrix Λh is defined in (B.10).
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Proof. By the definitions of the operators Zθh and Oθh, and function Zθh in Assumption 2.2, (2.4), and (B.11), respectively,
for any f ∈ L1(S), we have

(ZθhOθhf)(s) =

ds∑
i,j=1

∫
S×O2

ψi(s) · [(Λh)−1]i,j · νh,j(o′) · K̃(o′, o) · Eθh(o | s′) · f(s′) ds′ dodo′. (B.12)

When f ∈ linspan({ψi}dsi=1) with f =
∑ds
i=1 ψi · ci, we have∫

S
Eθh(o′ | s′) · f(s′) ds′ =

∫
S

ds∑
`=1

Eθh(o′ | s′) · ψ`(s′) · c` =

ds∑
`=1

νh,`(o
′) · c`, (B.13)

where the last equality is by the definition of νh,` in (B.9). Plugging (B.13) into the right-hand side of (B.12), we obtain

(ZθhOθhf)(s) =

ds∑
i,j=1

∫
O2

ψi(s) · [(Λh)−1]i,j · νh,j(o′) · K̃(o′, o) ·
ds∑
`=1

νh,`(o
′) · c` dodo′

=

ds∑
i,j,`=1

ψi(s) · [(Λh)−1]i,j ·
(∫
O2

νh,j(o
′) · K̃(o′, o) · νh,`(o′) do do′

)
· c`

=

ds∑
i,j,`=1

ψi(s) · [(Λh)−1]i,j · [Λh]j,` · c`.

Here, the last equality uses the definition of the matrix Λh in (B.10). By the definition of the inverse matrix, we have

ds∑
j=1

[(Λh)−1]i,j · [Λh]j,` = 1{i = `},

which implies

(ZθhOθhf)(s) =

ds∑
i=1

ψi(s) · ci = f(s), for any s ∈ S.

In the following, we characterize the operator norm ‖ · ‖1→1 of Zθh. For any (h, θ, o) ∈ [H]×Θ×O, we have∫
S
|Zθh(s, o)|ds =

∫
S

∣∣∣ ds∑
i,j=1

ψi(s) · [(Λh)−1]i,j ·
∫
O
νh,j(o

′) · K̃(o′, o) do′
∣∣∣ds (B.14)

≤
∫
S

ds∑
i=1

ψi(s) ·
∣∣∣ ds∑
j=1

[(Λh)−1]i,j ·
∫
O
νh,j(o

′) · K̃(o′, o) do′
∣∣∣ds

=

ds∑
i=1

∣∣∣ ds∑
j=1

[(Λh)−1]i,j ·
∫
O
νh,j(o

′) · K̃(o′, o) do′
∣∣∣,

where the last equality is by the fact that ψi is a distribution function over S for any i ∈ [ds]. The right-hand side of (B.14)
is upper bounded by

ds∑
i=1

∣∣∣ ds∑
j=1

[(Λh)−1]i,j ·
∫
O
νh,j(o

′) · K̃(o′, o) do′
∣∣∣ (B.15)

≤
ds∑
i=1

ds∑
j=1

∣∣[(Λh)−1]i,j
∣∣ · ∣∣∣∫

O
νh,j(o

′) · K̃(o′, o) do′
∣∣∣

≤
(

max
j∈[ds]

ds∑
i=1

∣∣[(Λh)−1]i,j
∣∣) · ds∑

j=1

∣∣∣∫
O
νh,j(o

′) · K̃(o′, o) do′
∣∣∣.
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For any (h, j) ∈ [H]× [ds], because the kernel function K̃ is uniformly bounded by 1, following Assumption B.4, and νh,j
is a distribution function over O, we have ∣∣∣∫

O
νh,j(o

′) · K̃(o′, o) do′
∣∣∣ ≤ 1. (B.16)

Combining (B.14)-(B.16), we have ∫
S
|Zθh(s, o)|ds ≤

(
max
j∈[ds]

ds∑
i=1

∣∣[(Λh)−1]i,j
∣∣) · d, (B.17)

for any (h, θ, o) ∈ [H]×Θ×O. Note that for any f ∈ L1(O), we have

‖Zθhf‖1 =

∫
S

∣∣∣∫
O
Zθh(s, o) · f(o) do

∣∣∣ds
≤
∫
S×O

|Zθh(s, o)| · |f(o)|dods

=

∫
O

(∫
S
|Zθh(s, o)|ds

)
· |f(o)|do,

combining which with (B.17), we obtain

‖Zθhf‖1 ≤
(

max
j∈[ds]

ds∑
i=1

∣∣[(Λh)−1]i,j
∣∣) · d · ‖f‖1.

Therefore, we conclude the proof of Lemma B.5.

C. Minimax Optimization in OP-TENET
In this section, we discuss the details on how to implement the computation of OP-TENET in practice. Recall that in the
planning phase (introduced in Section 3.2) of each iteration of OP-TENET, we only consider the parameter θ such that

L(θ) = max
f∈L∞(O3):‖f‖∞≤1

max
(h,a,a′)∈{2,...,H}×A2

EX∼D̂h,a,a′ [(SF
θ
h,a′f − Sf)(X)]

is sufficiently small. Here, S and Fθh,a′ are operators defined in (3.18) and (3.13), respectively. Also, D̂h,a,a′ is the empirical
distribution induced by Dh,a,a′ , which consists of k observation tuples with k being the iteration index. For ease of
presentation, we assume that we have access to the following planning oracle.

Oracle C.1. We denote by π̂ a planning oracle for any given POMDP. In other word, the mapping π̂ : Θ → Π satisfies
π̂(θ) ∈ argmaxπ∈Π J(θ, π) for any θ ∈ Θ.

With the planning oracle defined above, we select the parameter θk by solving the following constrained optimization
problem,

min
θ∈Θ

J
(
θ, π̂(θ)

)
s.t. L(θ) ≤ β · k−1/2. (C.1)

Then, we select the policy πk = π̂(θk).

C.1. Lagrangian Relaxation

In the sequel, we handle the constraint in (C.1) via the Lagrangian relaxation. In detail, solving (C.1) is equivalent to solving
the minimax optimization problem,

min
θ∈Θ

max
λ≥0

− J
(
θ, π̂(θ)

)
+

∑
(h,a,a′)∈I

λh,a,a′ ·
(
L̃h,a,a′(θ)− β · k−1/2

)
, (C.2)
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where λ = (λh,a,a′)(h,a,a′)∈J ∈ R(H−1)A2

and L̃h,a,a′(θ) is defined by

L̃h,a,a′(θ) = max
f∈L∞(O3):‖f‖∞≤1

EX∼D̂h,a,a′ [(SF
θ
h,a′f − Sf)(X)]. (C.3)

Here, for notational simplicity, we denote by I the set I = {2, . . . ,H} × A2. Note that for each (h, a, a′) ∈ I, we need to
search a function within a ball in L∞(O3). To this end, we propose to search functions within a large function approximator
class, for example, a sufficiently large neural network. In detail, we denote by fwh,a,a′ the parametrization of the function
approximator, where w is the parameter with a candidate setW . For example, we can build a neural network whose input
space is O3 and output space is R(H−1)A2

. Then, w represents the weights of all layers and(
fwh,a,a′(x)

)
(h,a,a′)∈I ∈ R(H−1)A2

is the output of the neural network corresponding any input x ∈ O3. Moreover, by properly choosing the activation function
of the output layer, we are able to make ‖fwh,a,a′‖∞ ≤ 1 for any w ∈ W and (h, a, a′) ∈ I. Then, we approximately
compute L̃h,a,a′(θ) in (C.3) by computing maxw∈W L̂wh,a,a′(θ), where

L̂wh,a,a′(θ) = EX∼D̂h,a,a′ [(SF
θ
h,a′f

w
h,a,a′ − Sfwh,a,a′)(X)], (C.4)

for any w ∈ W . Combining (C.2)-(C.4), we approximately solve the constrained optimization problem in (C.1) by solving

min
θ∈Θ

max
λ≥0,w∈W

− J
(
θ, π̂(θ)

)
+

∑
(h,a,a′)∈I

λh,a,a′ ·
(
L̂wh,a,a′(θ)− β · k−1/2

)
. (C.5)

C.2. Stochastic Gradient Method

We denote by

L(θ, λ, w) = −J
(
θ, π̂(θ)

)
+

∑
(h,a,a′)∈I

λh,a,a′ ·
(
L̂wh,a,a′(θ)− β · k−1/2

)
the minimax objective in (C.5). In the sequel, we consider the stochastic gradient method for solving the minimax
optimization problem in (C.5). In detail, suppose that we have unbiased stochastic gradient estimators gθ, gλ, and gw such
that

E[gθ(θ, λ, w)] = ∇θL(θ, λ, w),

E[gλ(θ, λ, w)] = ∇λL(θ, λ, w),

E[gw(θ, λ, w)] = ∇wL(θ, λ, w),

for any (θ, λ, w) ∈ Θ × R(H−1)A2 × W . Also, computing gθ, gλ, and gw does not require access to the full data set
D = {Dh,a,a′}h∈{2,...,H}×A2 and thus has a low computation cost. In each iteration, starting from any (θ, λ, w) within the
candidate set, we first update λ and w by running

λ← λ+ ηλ · gλ(θ, λ, w), w ← w + ηw · gw(θ, λ, w)

for Ndual steps. Then, we update θ by running

θ ← θ − ηθ · gθ(θ, λ, w).

for Nprimal steps. Here, ηθ, ηλ, ηw are constant stepsizes. Note that after each update, if the updated parameter is not in the
candidate set, we need to run an extra projection step, which replaces the updated parameter by its closest neighbor within
the candidate set. Because we need to call the planning oracle π̂ after updating θ, which has a relatively high computation
cost, it is better to set Nprimal = 1 and set Ndual as a large number.

In the sequel, we construct unbiased gradient estimators for the objective L(θ, λ, w).



Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency

Construction of gλ: To construct gλ(θ, λ, x), note that we have

∂λh,a,a′L(θ, λ, w) = L̂wh,a,a′(θ)− β · k−1/2

for any (h, a, a′) ∈ {2, . . . ,H} × A2. Let B be a batch of data sampled from Dh,a,a′ uniformly at random. Then, by
computing the batch average, we have

E
[ 1

|B|
∑
x∈B

(SFθh,a′fwh,a,a′ − Sfwh,a,a′)(x)− β · k−1/2
]

= ∂λh,a,a′L(θ, λ, w). (C.6)

For any (i, j, x) ∈ [do]×[do]×O3, let Yi,j,x and Y ′i,j,x be independent random variables inO3 sampled from the distributions
φi and φj , respectively. Then, by the definition of the operator S in (3.18), we have

(Sfwh,a,a′)(x) =
∑

i,j∈[do]

E
[
[G−1]i,j · K(x, Yi,j,x) · fwh,a,a′(Y ′i,j,x)

]
. (C.7)

Similarly, applying the definition of the operator Fθh,a′ in (3.13), we have

(SFθh,a′fwh,a,a′)(x) (C.8)

=
∑

i,j∈[do]

E
[
[G−1]i,j · K(x, Yi,j,x) ·

∫
O2

fwh,a,a′(oh−1, õh, õh+1) · Bθh,a(oh, õh, õh+1) dõh dõh+1

]
,

where we denote Y ′i,j,x = (oh−1,oh,oh+1). Moreover, let φip be a distribution supported on O2 and Ỹi,j,x = (õh, õh+1)

be a random variable in O2 sampled from φip. Then, following the idea of importance sampling, we can rewrite (C.8) as

(SFθh,a′fwh,a,a′)(x) (C.9)

=
∑

i,j∈[do]

E
[
[G−1]i,j · K(x, Yi,j,x) ·

fwh,a,a′(oh−1, õh, õh+1) · Bθh,a(oh, õh, õh+1)

φip(õh, õh+1)

]
.

Combining (C.6)-(C.9), we construct gλ(θ, λ, x) by

[gλ(θ, λ, x)]h,a,a′ =
1

|B|
∑
x∈B

( ̂SFθh,a′fwh,a,a′(x)− Ŝfwh,a,a′(x)
)
− β · k−1/2,

for any (h, a, a′) ∈ {2, . . . ,H} × A2, where

̂SFθh,a′fwh,a,a′(x) =
∑

i,j∈[do]

[G−1]i,j · K(x, Yi,j,x) ·
fwh,a,a′(oh−1, õh, õh+1) · Bθh,a(oh, õh, õh+1)

φip(õh, õh+1)
,

Ŝfwh,a,a′(x) =
∑

i,j∈[do]

[G−1]i,j · K(x, Yi,j,x) · fwh,a,a′(Y ′i,j,x).

Construction of gw: To construct gw(θ, λ, x), note that we have

∇wL(θ, λ, w) =
∑

(h,a,a′)∈I

λh,a,a′ · ∇wL̂wh,a,a′(θ)

=
∑

(h,a,a′)∈I

λh,a,a′ · EX∼D̂h,a,a′ [(∇wSF
θ
h,a′f

w
h,a,a′ −∇wSfwh,a,a′)(X)].

Thus, following the similar argument as in (C.7)-(C.9), we construct gw(θ, λ, w) as

gw(θ, λ, w) =
∑

(h,a,a′)∈I

λh,a,a′ ·
1

|B|
∑
x∈B

( ̂∇wSFθh,a′fwh,a,a′(x)− ̂∇wSfwh,a,a′(x)
)
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where

̂∇wSFθh,a′fwh,a,a′(x) =
∑

i,j∈[do]

[G−1]i,j · K(x, Yi,j,x) ·
∇wfwh,a,a′(oh−1, õh, õh+1) · Bθh,a(oh, õh, õh+1)

φip(õh, õh+1)
,

̂∇wSfwh,a,a′(x) =
∑

i,j∈[do]

[G−1]i,j · K(x, Yi,j,x) · ∇wfwh,a,a′(Y ′i,j,x).

Here, Yi,j,x, oh−1, oh, õh, and õh+1 are random variables defined the same as in the construction of gλ.

Construction of gθ: To construct gθ(θ, λ, x), note that we have

∇wL(θ, λ, w) = −∇θJ
(
θ, π̂(θ)

)
+

∑
(h,a,a′)∈I

λh,a,a′ · ∇θL̂wh,a,a′(θ)

= −∇θJ
(
θ, π̂(θ)

)
+

∑
(h,a,a′)∈I

λh,a,a′ · EX∼D̂h,a,a′ [(∇θSF
θ
h,a′f

w
h,a,a′)(X)]. (C.10)

Following the similar argument as in (C.8)-(C.9), we have the following unbiased estimator of the expectation in the second
term on the right-hand side of (C.10),

1

|B|
∑
x∈B

̂∇θSFθh,a′fwh,a,a′(x) (C.11)

=
1

|B|
∑
x∈B

∑
i,j∈[do]

[G−1]i,j · K(x, Yi,j,x) ·
fwh,a,a′(oh−1, õh, õh+1) · ∇θBθh,a(oh, õh, õh+1)

φip(õh, õh+1)
.

It remains to construct an unbiased estimator of the first term on the right-hand side of (C.10). Note that π̂(θ) is the
maximizer of J(θ, ·). Thus, by the envelop theorem, it suffices to estimate(

∇θJ(θ, π)
)∣∣
π=π̂(θ)

. (C.12)

Note that for any (θ, π) ∈ Θ×Π, we have

J(θ, π) =

∫
SH×OH

R
(
o1, π(τ1), . . . , oH , π(τH)

)
· µ(s1) · E1(o1 | s1)

·
(H−1∏
h=1

T θh
(
sh+1 | sh, π(τh)

)
· Eθh+1(oh+1 | sh+1)

)
do1 · · · doH ds1 · · · dsH .

Then, using the chain rule of the derivative, we have

∇θJ(θ, π) =

H−1∑
i=1

∫
SH×OH

R
(
o1, π(τ1), . . . , oH , π(τH)

)
· µ(s1) · E1(o1 | s1) (C.13)

·
(
∇θT θh

(
sh+1 | sh, π(τh)

)
· Eθh+1(oh+1 | sh+1)

+ T θh
(
sh+1 | sh, π(τh)

)
· ∇θEθh+1(oh+1 | sh+1)

)
·
( H−1∏
h=1,h6=i

T θh
(
sh+1 | sh, π(τh)

)
· Eθh+1(oh+1 | sh+1)

)
do1 · · · doH ds1 · · · dsH .

Using the relation∇ ln f = ∇f/f , we can rewrite the right-hand side of (C.13) to obtain

∇θJ(θ, π) =

H−1∑
i=1

∫
SH×OH

R
(
o1, π(τ1), . . . , oH , π(τH)

)
· µ(s1) · E1(o1 | s1)

·
(
∇θ ln T θi

(
si+1 | si, π(τi)

)
+∇θ ln Eθi+1(oi+1 | si+1)

)
·
(H−1∏
h=1

T θh
(
sh+1 | sh, π(τh)

)
· Eθh+1(oh+1 | sh+1)

)
do1 · · · doH ds1 · · · dsH .
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Therefore, we have the following unbiased estimator of∇θJ(θ, π),

∇̂θJ(θ, π) = R(o1,a1, . . . ,oH ,aH) ·
H−1∑
i=1

(
∇θ ln T θi (si+1 | si,ai) +∇θ ln Eθi+1(oi+1 | si+1)

)
,

where (s1,o1,a1, . . . , sH ,oH ,aH) is a trajectory of the POMDP with respect to the parameter θ and policy π. Note that
for the given parameter θ, the trajectory can be obtained from a simulator rather than the real environment, which does not
affect the sample complexity result in the main paper. Combining the above estimator with (C.10)-(C.12), we construct
gθ(θ, λ, w) as

gθ(θ, λ, w) = ∇̂θJ
(
θ, π̂(θ)

)
+

∑
(h,a,a′)∈I

λh,a,a′ ·
1

|B|
∑
x∈B

̂∇θSFθh,a′fwh,a,a′(x),

where the second term is defined in (C.11).

D. Proofs for Section 3
In this section, we present the proofs for the results in Section 3.

D.1. Proof of Lemma 3.1

Proof. Following the notation in Lemma 3.1 and by the definition of Bθ,πh in (3.4), we have

Eθ[(Bθ,πh f)(τh) |σh−1] (D.1)

=

∫
S×O3

f
(
τ †h, π(τ †h), õh+1

)
· pθ
(
oh = õh,oh+1 = õh+1 | sh = s̃h,ah = π(τ †h)

)
· Zθh(s̃h, oh) · pθ(oh = oh |σh−1) doh dõh dõh+1 ds̃h.

Here, invoking Lemma G.1, we have∫
O
Zθh(s̃h, oh) · pθ(oh = oh |σh−1) doh = pθ(sh = s̃h |σh−1).

Thus, we can rewrite (D.1) as

Eθ[(Bθ,πh f)(τh) |σh−1] (D.2)

=

∫
S×O2

f
(
τ †h, π(τ †h), õh+1

)
· pθ
(
oh = õh,oh+1 = õh+1 | sh = s̃h,ah = π(τ †h)

)
· p(sh = s̃h |σh−1) dõh dõh+1 ds̃h

=

∫
O2

f
(
τ †h, π(τ †h), õh+1

)
· pθ,π(oh = õh,oh+1 = õh+1 |σh−1) dõh dõh+1.

where the second equality uses the independence between (oh,oh+1) and τh−1 conditioning on (sh,ah). Replacing the
notations õh and õh+1 of the integral variables on the right-hand side of (D.2) by oh and oh+1, respectively, we obtain

Eθ[(Bθ,πh f)(τh) |σh−1] (D.3)

=

∫
O2

f
(
τh, π(τh), oh+1

)
· pθ,π(oh = oh,oh+1 = oh+1 |σh−1) doh doh+1

= Eθ,π[f(τh+1) |σh−1],

where we denote τh = (τh−1, ah−1, oh) and τh = (τh−1, oh). On the other hand, by the tower property of the expectation
and the definition of Pθ,πh in (3.1), we have

Eθ,π[f(τh+1) |σh−1] = Eθ,π
[
Eθ,π[f(τh+1) | τh]

∣∣σh−1

]
= Eθ,π[(Pθ,πh f)(τh) |σh−1]. (D.4)

Combining (D.3) and (D.4), we conclude the proof of Lemma 3.1.
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D.2. Proof of Corollary 3.2

Proof. We prove the result in (3.12) by induction over h ∈ [H + 1]. When h = H + 1, by the definition of the value
function in (3.10), we have

Eθ,π[V θ,πH+1(τH+1) |σH ] = Eθ,π[R(τH+1) |σH ] = Eθ,π
[ H∑
i=1

ri

∣∣∣σH].
for any (τH , aH) ∈ ΓH ×A. Recall that the variables τH and aH appear in the event σH , which is defined in (3.7).

Assume that (3.12) holds when h = j + 1 for some fixed j ≤ H . In other words, assume that we have

Eθ,π[V θ,πj+1(τ j+1) |σj ] = Eθ,π
[ H∑
i=1

ri

∣∣∣σj] (D.5)

for any (τ j , aj) ∈ Γj ×A. Then, by the definition of the value function in (3.10) and invoking Lemma 3.1, we have

Eθ,π[V θ,πj (τ j) |σj−1] = Eθ,π[(Bθ,πj V θ,πj+1)(τ j) |σj−1] (D.6)

= Eθ,π[(Pθ,πj V θ,πj+1)(τ j) |σj−1]

= Eθ,π[V θ,πj+1(τ j+1) |σj−1],

where the second equality uses the tower property of the conditional expectation. Combining (D.6) with the induction
assumption in (D.5), we have that (3.12) holds when h = j. Thus, by induction we have that (3.12) holds for any h ∈ [H+1].

Therefore, we conclude the proof of Corollary 3.2.

D.3. Proof of Lemma 3.3

We prove a more general version of Lemma 3.3. In detail, we replace the true parameter θ∗ in Lemma 3.3 by any parameter
θ ∈ Θ.

Lemma D.1 (General Version of Lemma 3.3). For any (h, θ, a, a′, π) ∈ {2, . . . ,H} ×Θ×A2 ×Π, we have

EX∼ρθ,π
h,a,a′

[(Fθh,a′f − f)(X)] = 0, for any f ∈ L∞(O3).

Here, the distribution ρθ,πh,a,a′ ∈ ∆(O3) is defined by

ρθ,πh,a,a′(oh−1, oh, oh+1) = pθ,π
(
oh−1 = oh−1,oh = oh,oh+1 = oh+1 |ah−1 = a,ah = a′

)
,

for any oh−1, oh, oh+1 ∈ O. Also, we have ‖Fθh,a′‖∞→∞ ≤ γ.

Proof. By the definition of Fθh,a′ in (3.13), we have

EX∼ρθ,π
h,a,a′

[(Fθh,a′f)(X)] (D.7)

=

∫
O3

(Fθh,a′f)(oh−1, oh, oh+1) · ρθ,πh,a,a′(oh−1, oh, oh+1) doh−1 doh doh+1

=

∫
O5

f(oh−1, õh, õh+1) · Bθh,a′(oh, õh, õh+1)

· ρθ,πh,a,a′(oh−1, oh, oh+1) doh−1 doh doh+1 dõh dõh+1.

Here, by the definition of ρθ,πh,a,a′ in Lemma 3.3, we have∫
O
ρθ,πh,a,a′(oh−1, oh, oh+1) doh+1 = pθ,π(oh−1 = oh−1,oh = oh |ah−1 = a). (D.8)
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Combining (D.7) and (D.8), we obtain

EX∼ρθ,π
h,a,a′

[(Fθh,a′f)(X)] (D.9)

=

∫
O4

f(oh−1, õh, õh+1) · Bθh,a′(oh, õh, õh+1)

· pθ,π(oh−1 = oh−1,oh = oh |ah−1 = a) doh−1 doh doh+1 dõh dõh+1,

where Bθh,a′(oh, õh, õh+1) takes the form

Bθh,a′(oh, õh, õh+1) =

∫
S
pθ(oh = õh,oh+1 = õh+1 | sh = s̃h,ah = a′) · Zθh(s̃h, oh) ds̃h

following the definition in (3.6). By the Markov property of the POMDP, we can write

pθ,π(oh−1 = oh−1,oh = oh |ah−1 = a) (D.10)

=

∫
S2

Eθh(oh | sh) · T θh (sh | sh−1, a) · pθ,π(sh−1 = sh−1,oh−1 = oh−1) dsh dsh−1

By Assumptions 2.1 and 2.2, we have∫
S×O

Zθh(s̃h, oh) · Eθh(oh | sh) · T θh (sh | sh−1, a) doh dsh = T θh (s̃h | sh−1, a). (D.11)

Combining (D.10) and (D.11), we obtain∫
O
Zθh(s̃h, oh) · pθ,π(oh−1 = oh−1,oh = oh |ah−1 = a) doh dsh

=

∫
S
T θh (s̃h | sh−1, a) · pθ,π(sh−1 = sh−1,oh−1 = oh−1) dsh dsh−1

= pθ,π(oh−1 = oh−1, sh = s̃h |ah−1 = a),

which implies ∫
O
Bθh,a′(oh, õh, õh+1) · pθ,π(oh−1 = oh−1,oh = oh |ah−1 = a) doh (D.12)

= pθ,π(oh−1 = oh−1,oh = õh,oh+1 = õh+1 |ah−1 = a,ah = a′)

= ρθ,πh,a,a′(oh−1, õh, õh+1).

Then, combining (D.9) and (D.12), we have

EX∼ρθ,π
h,a,a′

[(Fθh,a′f)(X)]

=

∫
O3

f(oh−1, õh, õh+1) · ρθ,πh,a,a′(oh−1, õh, õh+1) doh−1 dõh dõh+1 = EX∼ρθ,π
h,a,a′

[f(X)].

In the sequel, we prove ‖Fθh,a′‖∞→∞ ≤ γ. It suffices to prove

|(Fθh,a′f)(oh−1, oh, oh+1)| =
∣∣∣∫
O2

f(oh−1, õh, õh+1) · Bθh,a(oh, õh, õh+1) dõh dõh+1

∣∣∣ ≤ γ, (D.13)

for any f ∈ L∞(O3) such that ‖f‖∞ ≤ 1 and oh−1, oh, oh+1 ∈ O. By the definition of the function Bθh,a in (3.6), we have∣∣∣∫
O2

f(oh−1, õh, õh+1) · Bθh,a(oh, õh, õh+1) dõh dõh+1

∣∣∣ (D.14)

≤
∫
O2

|Bθh,a(oh, õh, õh+1)|dõh dõh+1

≤
∫
S×O2

pθ(õh = õh, õh+1 = õh+1 | s̃h = s̃h, ãh = a) · |Zθh(s̃h, oh)|ds̃h dõh dõh+1

=

∫
S
|Zθh(s̃h, oh)|ds̃h,
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for any oh−1, oh ∈ O. Note that by Assumption 2.2, we have∫
S
|Zθh(s̃h, oh)|ds̃h = ‖Zθhδoh‖1 ≤ γ · ‖δoh‖1 = γ, (D.15)

for any (h, θ, oh) ∈ [H] × Θ × O. Here, δoh is the Dirac delta function defined on O, whose value is zero everywhere
except at oh, and whose integral over O is equal to one. Combining (D.14) and (D.15), we have that (D.13) holds.

Therefore, we conclude the proof of Lemma D.1.

E. Proof of Theorem 4.1
Proof. For any δ > 0, by the definition of (θk, πk) in (A.1) and the first statement in Lemma A.2, with probability at least
1− δ, it holds that

J(θ∗, π∗)− J(θ∗, πk) ≤ J(θk, πk)− J(θ∗, πk) (E.1)

for all k ∈ [K]. By further applying Lemma A.1 to the right-hand side of (E.1) and using the definition of the error function
ekh in (A.2), we obtain

J(θ∗, π∗)− J(θ∗, πk) ≤
H∑
h=1

Eθ∗,πk [(Bθk,πkh V θk,πkh+1 )(τh)− (Bθ
∗,πk
h V θk,πkh+1 )(τh)]

=

H∑
h=1

Eθ∗,πk
[
Eθ∗,πk [(Bθk,πkh V θk,πkh+1 )(τh)− (Bθ

∗,πk
h V θk,πkh+1 )(τh)]

∣∣ sh−1

]
≤

H∑
h=1

Eθ∗,πk [ekh(sh−1)], (E.2)

where the equality uses the tower property of the expectation. Telescoping both sides of (E.2) for k ∈ [K] and applying
Lemma A.3, we obtain

K∑
k=1

J(θ∗, π∗)− J(θ∗, πk)

≤
H∑
h=1

K∑
k=1

Eθ∗,πk [ekh(sh−1)]

≤ Hds

(
4γH + 2 logK · max

k∈[K]

(
k · Eθ,πk [ekh(sh−1)]

))
(E.3)

By applying the second statement of Lemma A.2 to the right-hand side of (E.3), we further obtain

K∑
k=1

J(θ∗, π∗)− J(θ∗, πk)

≤ Hds

(
4γH + 2 logK · max

k∈[K]

(
k · 2HA2γ2β · k−1/2

))
≤ Hds

(
4γH + 2 logK · 2HA2γ2β ·K1/2

)
,

which concludes the proof of Theorem 4.1.

F. Proofs for Section A
In this section, we present the proofs for the results in Section A.
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F.1. Proof of Lemma A.1

Proof. By Corollary 3.2 and the definition of the value function in (3.10), we can write

J(θ, π) = Eθ′,π[V θ,π1 (τ 1)], J(θ′, π) = Eθ′,π[V θ,πH+1(τH+1)],

which implies

J(θ, π)− J(θ′, π) =

H∑
h=1

(
Eθ′,π[V θ,πh (τh)]− Eθ′,π[V θ,πh+1(τh+1)]

)
. (F.1)

By the definition of V θ,πh in (3.10), we have

Eθ′,π[V θ,πh (τh)] = Eθ′,π[(Bθ,πh V θ,πh+1)(τh)]. (F.2)

Also, by Lemma 3.1, we have

Eθ′,π[V θ,πh+1(τh+1)] = Eθ′,π[(Pθ
′,π
h V θ,πh+1)(τh)] = Eθ′,π[(Bθ

′,π
h V θ,πh+1)(τh)]. (F.3)

Plugging (F.2) and (F.3) into the right-hand side of (F.1), we obtain

J(θ, π)− J(θ′, π) =

H∑
h=1

Eθ′,π[(Bθ,πh V θ,πh+1)(τh)− (Bθ
′,π
h V θ,πh+1)(τh)],

which concludes the proof of Lemma A.1.

F.2. Proof of Lemma A.2

Before proving Lemma A.2, we present several auxiliary lemmas for the proof of Lemma A.2. Recall that we define the
projection operator S in (3.18). The following lemma verifies the projection property of S as mentioned in (3.15).
Lemma F.1. For any f ∈ L∞(O3) and ρ ∈ ∆(O3), we have

EX∼ρ[(Sf)(X)] =

∫
O3

f(x) · ρ̂(x) dx,

where ρ̂ is the projection of ρ onto linspan({φi}doi=1) with respect to the distance defined in (3.19) and takes the form

ρ̂(oh−1, oh, oh+1) =
∑
j∈[do]

φj(oh−1, oh, oh+1) ·
∑
i∈[do]

[G−1]i,j · EX∼φi,Y∼ρ[K(X,Y )], (F.4)

for any oh−1, oh, oh+1 ∈ O3.

Proof. See Section G.1 for a detailed proof.

Recall that {Dh,a,a′}(h,a,a′)∈{2,...,H}×A2 is the dataset in Algorithm 1, which is updated in each iteration. For any k ∈ [K],
we denote by Dkh,a,a′ the status of Dh,a,a′ after the exploration phase of the k-th iteration of Algorithm 1. We denote by
D̂kh,a,a′ the empirical distribution induced by the dataset Dkh,a,a′ . For any (k, h, a, a′) ∈ [K] × {2, . . . ,H} × A2, as a
special case of Lemma F.1 for ρ = D̂kh,a,a′ , we define the function ρ̂kh,a,a′ : O3 → R by

ρ̂kh,a,a′(oh−1, oh, oh+1) =
∑
j∈[do]

φj(oh−1, oh, oh+1) · [ŵkh,a,a′ ]j ,

where the vector ŵkh,a,a′ ∈ Rdo is defined by

[ŵkh,a,a′ ]j =
∑
i∈[do]

[G−1]i,j · EX∼φi,Y∼D̂kh,a,a′ [K(X,Y )], (F.5)

for any j ∈ [do]. Here, the matrix G ∈ Rdo×do is defined in (3.17). The following lemma shows that, with high probability,
ρ̂kh,a,a′ converges to ρπkh,a,a′ as k goes to infinity. The convergence is with respect to the L1-norm in O3, which guarantees
the generalization power of the solution to the minimax problem in (3.14).



Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency

Lemma F.2. For any fixed δ > 0, we define the event G as

‖ρ̂kh,a,a′ − ρ
πk
h,a,a′‖1 ≤ d

3/2
o /α ·

√
8 log(2KHA2/δ) · k−1/2,

for any (k, h, a, a′) ∈ [K]× {2, . . . ,H} × A2. Then, it holds that G happens with probability at least 1− δ.

Proof. See Section G.2 for a detailed proof.

Moreover, for ease of presentation, we define the operator Vθh,a : L1(O3)→ L1(O3) for any (h, a, θ) ∈ {2, . . . ,H}×A×Θ
by

(Vθhf)(oh−1, õh, õh+1) =

∫
O2

Bθh,a(oh, õh, õh+1) · f(oh−1, oh, oh+1) doh doh+1, (F.6)

for any f ∈ L1(O3) and oh−1, õh, õh+1 ∈ O, which is the conjugate (i.e., transpose) of the operator Fθh,a defined in (3.13).
Recall that we define ρθ,πh,a,a′ in Lemma D.1, which is the general form of ρπh,a,a′ for any θ ∈ Θ. The following lemma
mirrors Lemma D.1.

Lemma F.3. For any (h, θ, a, a′, π) ∈ {2, . . . ,H} ×Θ×A2 ×Π, we have

‖Vθh,a′ρ
θ,π
h,a,a′ − ρ

θ,π
h,a,a′‖1 = 0.

Also, we have ‖Vθh,a′‖1→1 ≤ γ.

Proof. See Section G.3 for a detailed proof.

Proof of Lemma A.2:

Proof. In the following, we condition on the event G defined in Lemma F.2, which happens with probability at least 1− δ.

Proof of the first statement: Recall that we denote by Dkh,a,a′ the status of Dh,a,a′ after the exploration phase of the k-th
iteration of Algorithm 1. Correspondingly, we define the function Lk : Θ→ R by

Lk(θ) = max
f∈L∞(O3):‖f‖∞≤1

max
(h,a,a′)∈{2,...,H}×A2

EX∼D̂k
h,a,a′

[(SFθh,a′f − Sf)(X)],

for any θ ∈ Θ, which corresponds to the function L in (3.23) in the planning phase of the k-th iteration of Algorithm 1. To
prove θ∗ ∈ Θk, it suffices to prove that

Lk(θ∗) ≤ β · k−1/2. (F.7)

For notational simplicity, we write ρkh,a,a′ in short for ρπkh,a,a′ . For any f ∈ L∞(O3) such that ‖f‖∞ ≤ 1 and (k, h, a, a′) ∈
[K]× {2, . . . ,H} × A2, we have

EX∼D̂k
h,a,a′

[(SFθ
∗

h,a′f − Sf)(X)] (F.8)

= EX∼D̂k
h,a,a′

[(SFθ
∗

h,a′f − Sf)(X)]− EX∼ρk
h,a,a′

[(Fθ
∗

h,a′f − f)(X)]

=
(∫
O3

(Fθ
∗

h,a′f)(x) · ρ̂kh,a,a′(x) dx− EX∼ρk
h,a,a′

[(Fθ
∗

h,a′f)(X)]
)

+
(∫
O3

f(x) · ρ̂kh,a,a′(x) dx− EX∼ρk
h,a,a′

[f(X)]
)
,

where the first equality uses

EX∼ρk
h,a,a′

[(Fθ
∗

h,a′f − f)(X)] = 0,
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following Lemma 3.3 and the second equality is by Lemma F.1. Recall that ‖f‖∞ ≤ 1. By Holder’s inequality and the
definition of the event G in Lemma F.2, we have∫

O3

f(x) · ρ̂kh,a,a′(x) dx− EX∼ρk
h,a,a′

[f(X)] (F.9)

≤ ‖f‖∞ · ‖ρ̂kh,a,a′ − ρkh,a,a′‖1 ≤ d3/2
o /α ·

√
8 log(2KHA2/δ) · k−1/2.

Similarly, we have ∫
O3

(Fθ
∗

h,a′f)(x) · ρ̂kh,a,a′(x) dx− EX∼ρk
h,a,a′

[(Fθ
∗

h,a′f)(X)] (F.10)

≤ ‖Fθ
∗

h,a′f‖∞ · ‖ρ̂kh,a,a′ − ρkh,a,a′‖1
≤ d3/2

o γ/α ·
√

8 log(2KHA2/δ) · k−1/2,

where the second inequality uses the fact ‖Fθ∗h,a′‖∞→∞ ≤ γ from Lemma 3.3. Then, by combining (F.8), (F.9), and (F.10)
with the condition of β in (4.1), we have that the inequality in (F.7) holds for all k ∈ [K].

Proof of the second statement: Invoking Lemma G.5, we have

Eθ∗,πk [ekh(sh)] ≤ γ2H ·
∑

a,a′∈A

∥∥Vθkh,a′ρπkh,a,a′ − ρπkh,a,a′∥∥1
, (F.11)

for any (k, h) ∈ [K]× {2, . . . ,H}. By the triangle inequality, we can write∥∥Vθkh,a′ρπkh,a,a′ − ρπkh,a,a′∥∥1

≤
∥∥Vθkh,a′ρπkh,a,a′ − Vθkh,a′ρ

k
h,a,a′

∥∥
1

+
∥∥Vθkh,a′ρkh,a,a′ − ρkh,a,a′∥∥1

+
∥∥ρkh,a,a′ − ρπkh,a,a′∥∥1

.

By the definition of Θk in (3.22) and the fact θk ∈ Θk, we have∥∥Vθkh,a′ρkh,a,a′ − ρkh,a,a′∥∥1
≤ β · k−1/2

By the definition of the event G in Lemma F.2, we have∥∥ρkh,a,a′ − ρπkh,a,a′∥∥1
≤ d3/2

o /α ·
√

8 log(2KHA2/δ) · k−1/2.

Similarly, we have ∥∥Vθkh,a′ρπkh,a,a′ − Vθkh,a′ρ
k
h,a,a′

∥∥
1
≤ ‖Vθkh,a′‖1→1 ·

∥∥ρπkh,a,a′ − ρkh,a,a′∥∥1
(F.12)

≤ d3/2
o γ/α ·

√
8 log(2KHA2/δ) · k−1/2,

where the second inequality uses the fact ‖Vθ∗h,a′‖1→1 ≤ γ from Lemma F.3. Combing (F.11)-(F.12) with the condition of β
in (4.1), we obtain

Eθ,πk [ekh(sh)] ≤ 2γ2βHA2 · k−1/2,

for any (k, h) ∈ [K]× {2, . . . ,H}.

Therefore, we conclude the proof of Lemma A.2.

F.3. Proof of Lemma A.3

Proof. For any h ∈ [H] and π ∈ Π, we denote by µπh the marginal distribution of sh with respect to the policy π and the
true parameter θ∗. By Assumption 2.1, we have

µπkh ∈ conh(ψ), µπkh =
1

k

k−1∑
i=0

µπih ∈ conh(ψ),
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for any (k, h) ∈ {0, . . . ,K} × [H]. Here, π0 is the initial policy and πk with k ∈ [K] is the trained policy in the k-th
iteration of Algorithm 1. Thus, there exist vector ckh, c

k
h ∈ ∆([ds]) ⊂ Rds such that

µπkh (·) = ψ(·)>ckh, µπkh (·) = ψ(·)>ckh, ckh = (1/k) ·
k−1∑
i=0

cih.

Also, we define the vector bkh ∈ Rds by

[bkh]i = Esh∼ψi [e
k
h+1(sh)], for any i ∈ [ds]. (F.13)

Then, it holds that

Eθ∗,πk [ekh+1(sh)] = (bkh)>ckh, Eθ∗,πk [ekh+1(sh)] = (bkh)>ckh. (F.14)

For any i ∈ [ds], we define ki by

ki = min
{
k ∈ [K] :

k∑
j=1

[cjh]i ≥ 1 or k = K
}
. (F.15)

Then, we can write

K∑
k=1

Eθ∗,πk [ekh+1(sh)] =

ds∑
i=1

K∑
k=1

[bkh]i · [ckh]i (F.16)

=

ds∑
i=1

( ki∑
k=1

[bkh]i · [ckh]i +

K∑
k=ki+1

[bkh]i · [ckh]i

)
The first summation term on the right-hand side of (F.16) can be upper bounded as

ds∑
i=1

ki∑
k=1

[bkh]i · [ckh]i ≤ 2γH ·
ds∑
i=1

ki∑
k=1

[ckh]i ≤ 4dsγH. (F.17)

Here, the first inequality uses Lemma G.6, which provides an upper bound 2γH for each [bkh]i. Recall that [bkh]i is defined in
(F.13). Also, the second inequality uses the fact

ki∑
k=1

[ckh]i = [c
ki
h ]i +

ki−1∑
k=1

[ckh]i ≤ 1 + 1 ≤ 2,

which is by the definition of ki in (F.15) and the fact [c
ki
h ]i ≤ 1 since ckih ∈ ∆([ds]). In the sequel, we characterize the

second summation term on the right-hand side of (F.16). For any i ∈ [ds] and k ≥ ki + 1, we have

[bkh]i · [ckh]i ≤ Eθ∗,πk [ekh+1(sh)] · [bkh]i · [ckh]i

[bkh]i · [ckh]i
(F.18)

=
(
k · Eθ∗,πk [ekh+1(sh)]

)
· [ckh]i∑k−1

j=0 [cjh]i

≤
(

max
j∈[K]

` · Eθ∗,π` [e`h+1(sh)]
)
· [ckh]i∑k−1

j=1 [cjh]i
,

where the first inequality is by (F.14) and the second inequality uses the fact [cjh]0 ≥ 0. Note that for any (i, k) specified
above, we have

[ckh]i∑k−1
j=0 [cjh]i

∈ [0, 1]
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since it holds that [ckh]i ∈ [0, 1] and
∑k−1
j=0 [cjh]i ≥ 1 by the definition of ki. Then, by applying the inequality x ≤ 2 log(1+x)

for any x ∈ [0, 1], we have

[ckh]i∑k−1
j=1 [cjh]i

≤ 2 log
(

1 +
[ckh]i∑k−1
j=1 [cjh]i

)
= 2 log

k∑
j=1

[cjh]i − 2 log

k−1∑
j=1

[cjh]i (F.19)

Combining (F.18) and (F.19), we obtain

ds∑
i=1

K∑
k=ki+1

[bkh]i · [ckh]i ≤
(
max
`∈[K]

` · Eθ∗,π` [e`h+1(sh)]
)
·
ds∑
i=1

K∑
k=ki+1

(
2 log

k∑
j=1

[cjh]i − 2 log

k−1∑
j=1

[cjh]i
)

= 2
(
max
`∈[K]

` · Eθ∗,π` [e`h+1(sh)]
)
·
ds∑
i=1

(
log

K∑
j=1

[cjh]i − log

ki∑
j=1

[cjh]i
)

≤ 2
(
max
`∈[K]

` · Eθ∗,π` [e`h+1(sh)]
)
· ds · logK. (F.20)

Plugging (F.17) and (F.20) into the right-hand side of (F.16), we obtain

K∑
k=1

Eθ∗,πk [ekh+1(sh)] ≤ 4dsγH + 2
(
max
`∈[K]

` · Eθ∗,π` [e`h+1(sh)]
)
· ds · logK,

which concludes the proof of Lemma A.3.

G. Auxiliary Lemmas
In this section, we present (the proofs for) the auxiliary lemmas invoked in previous sections.

G.1. Proof of Lemma F.1

Proof. To see that ρ̂ defined in (F.4) is the projection, we consider the minimization problem

min
ρ′∈linspan({φi}doi=1)

‖Kρ′ −Kρ‖2H (G.1)

for any ρ ∈ ∆(O3). Note that the objective can be written as

‖Kρ′ −Kρ‖2H
= 〈Kρ′,Kρ′〉H − 2 · 〈Kρ′,Kρ〉H + 〈Kρ,Kρ′〉H
= EX∼ρ′,Y∼ρ′ [K(X,Y )]− 2 · EX∼ρ′,Y∼ρ[K(X,Y )] + EX∼ρ,Y∼ρ[K(X,Y )]. (G.2)

Since we have ρ′ ∈ linspan({φi}doi=1), there exists w = (w1, . . . , wdo)> ∈ Rdo such that

ρ′(x) =
∑
j∈[do]

wj · φj(x), for any x ∈ O3.

By the above form of ρ′ and the definition of the matrix G in (3.17), we can further rewrite the right-hand side of (G.2) to
obtain

‖Kρ′ −Kρ‖2H = w>Gw − 2 ·
do∑
i=1

wi · EX∼φi,Y∼ρ[K(X,Y )] + EX∼ρ,Y∼ρ[K(X,Y )] (G.3)

Plugging (G.3) into (G.1) and solving the obtained quadratic programming problem, we see that ρ̂ defined in (F.4) is the
projection of ρ.
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By the definition of S in (3.18), we have

EX∼ρ[(Sf)(X)] =
∑

i,j∈[do]

[G−1]i,j · EX∼ρ,Y∼φi,Y ′∼φj
[
K(X,Y ) · f(Y ′)

]
, (G.4)

whereX,Y, Y ′ are independent variables inO3. By reorganizing terms in the summation, we can further write the right-hand
side of (G.4) as ∑

i,j∈[do]

[G−1]i,j · EX∼p,Y∼φi,Y ′∼φj
[
K(X,Y ) · f(Y ′)

]
=
∑
j∈[do]

EY ′∼φj [f(Y ′)] ·
∑
i∈[do]

[G−1]i,j · EX∼p,Y∼φi [K(X,Y )]

=

∫
O
f(x) ·

∑
j∈[do]

φj(x) ·
∑
i∈[do]

[G−1]i,j · EX∼p,Y∼φi [K(X,Y )] dx,

combining which with the definition of ρ̂ in (F.4), we conclude the proof of Lemma F.1.

G.2. Proof of Lemma F.2

Proof. For any (k, h, a, a′) ∈ [K]× [2, . . . ,H]×A2, let wkh,a,a′ ∈ Rdo be the vector such that

ρπkh,a,a′(oh−1, oh, oh+1) =
∑
j∈[do]

φi(oh−1, oh, oh+1) · [wkh,a,a′ ]j , (G.5)

for any oh−1, oh, oh+1 ∈ O, where {φi}doi=1 are distribution functions defined in Assumption 2.1 and the existence of
wkh,a,a′ is guaranteed by the assumption therein. Also, recall that we define ŵkh,a,a′ ∈ Rdo in (F.5) and we have

ρ̂kh,a,a′(oh−1, oh, oh+1) =
∑
j∈[do]

φj(oh−1, oh, oh+1) · [ŵkh,a,a′ ]j . (G.6)

For notational simplicity, we denote φ = (φ1, . . . , φdo) and write ρkh,a,a′ in short for ρπkh,a,a′ . Then, we can rewrite (G.5)
and (G.6) as

ρkh,a,a′(·) = φ(·)>wkh,a,a′ , ρ̂kh,a,a′(·) = φ(·)>ŵkh,a,a′ .

Following the above definitions, we have

‖ρ̂kh,a,a′ − ρkh,a,a′‖1 (G.7)

=

∫
O3

|φ(oh−1, oh, oh+1)>(ŵkh,a,a′ − wkh,a,a′)|doh−1 doh doh+1

≤
∫
O3

‖φ(oh−1, oh, oh+1)‖2 · ‖ŵkh,a,a′ − wkh,a,a′‖2 doh−1 doh doh+1

≤ do · ‖ŵkh,a,a′ − wkh,a,a′‖2,

where the first inequality is by the Cauchy-Schwarz inequality and the last inequality uses∫
O3

‖φ(oh−1, oh, oh+1)‖2 doh−1 doh doh+1

≤
∫
O3

‖φ(oh−1, oh, oh+1)‖1 doh−1 doh doh+1

=

do∑
j=1

∫
O3

φj(oh−1, oh, oh+1) doh−1 doh doh+1 = do,
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as {φi}doi=1 are distribution functions over O3. Thus, to upper bound ‖ρ̂kh,a,a′ − ρkh,a,a′‖1, it suffices to upper bound
‖ŵkh,a,a′ − wkh,a,a′‖2.

To this end, we define the vector Ukh,a,a′ ∈ Rdo by

[Ukh,a,a′ ]i = EX∼φi,Y∼D̂kh,a,a′ [K(X,Y )], (G.8)

where D̂kh,a,a′ is the empirical distribution over O3 induced by the dataset Dkh,a,a′ . Then, we can rewrite the definition of
ŵkh,a,a′ in (F.5) as

ŵkh,a,a′ = G−1Ukh,a,a′ ,

where the matrix G ∈ Rdo×do is defined in (3.17). Then, we can write

‖ŵkh,a,a′ − wkh,a,a′‖2 = ‖G−1Ukh,a,a′ −G−1Gwkh,a,a′‖2 ≤ 1/α · ‖Ukh,a,a′ −Gwkh,a,a′‖2. (G.9)

Moreover, by the definition of G in (3.17), we have

[Gwkh,a,a′ ]i =
∑
j∈[do]

[G]i,j · [wkh,a,a′ ]j (G.10)

=
∑
j∈[do]

EX∼φi,Y∼φj [K(X,Y )] · [wkh,a,a′ ]j

=

∫
O3×O3

φi(x) · K(x, y) ·
∑
j∈[do]

φj(y) · [wkh,a,a′ ]j dxdy,

By the definition of wkh,a,a′ in (G.5), we can write (G.10) as

[Gwkh,a,a′ ]i =

∫
O3×O3

φi(x) · K(x, y) · ρkh,a,a′(y) dxdy = EX∼φi,Y∼ρkh,a,a′ [K(X,Y )] (G.11)

Using the notation of the RKHSH, we can further rewrite (G.8) and (G.11) as

[Ukh,a,a′ ]i = 〈Kφi,KD̂kh,a,a′〉H, [Gwkh,a,a′ ]i = 〈Kφi,Kρkh,a,a′〉H.

Recall that K is defined in (3.16). Therefore, using the Cauchy-Schwarz inequality for the inner product inH, we have

‖Ukh,a,a′ −Gwkh,a,a′‖22 =
∑
i∈[do]

(
〈Kφi,KD̂kh,a,a′ −Kρkh,a,a′〉H

)2
(G.12)

≤
∑
i∈[do]

‖Kφi‖2H · ‖KD̂kh,a,a′ −Kρkh,a,a′‖2H.

Since K is uniformly bounded by 1 as specified in Assumption 3.4, we have

‖Kφi‖2H = EX∼φi,Y∼φi [K(X,Y )] ≤ 1. (G.13)

In the sequel, we characterize ‖KD̂kh,a,a′ − Kρkh,a,a′‖H on the right-hand side of (G.12) for any fixed (h, a, a′) ∈
{2, . . . ,H} × A2. For notational simplicity, we denote by Yj the data point that is added to Dh,a,a′ in the j-th itera-
tion of Algorithm 1. In other words, we have

Dkh,a,a′ = {Y1, . . . , Yk}, for any k ∈ [K].

Then, the random function process {Mj}j≥1 defined by

Mj(·) = (1/k) ·
(min{j,k}∑

i=1

K(Yi, ·)−
min{j,k}∑
i=1

(Kρπi−1

h,a,a′)(·)
)

(G.14)
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is a martingale in H adapted to the data filtration {Uj}j≥0 of Algorithm 1. In detail, for any j ∈ [K], we have that Uj
contains the information of all data collected in the first j iterations of Algorithm 1. Note that the data point Yj follows from
the distribution ρπj−1

h,a,a′ conditioning on Uj−1. Therefore, we have

E[K(Yj , x)− (Kρπj−1

h,a,a′)(x) | Uj−1] = E[K(Yj , x) | Uj−1]− E
Y∼ρ

πj−1

h,a,a′
[K(Y, x)] = 0,

for any fixed x ∈ O3, which implies that {Mj}j≥1 defined above is a martingale. Moreover, we have that the total quadratic
variation of {Mj}j≥1 is upper bounded by

k∑
i=1

(1/k2) · ‖K(Yi, ·)− (Kρπih,a,a′)(·)‖
2
H ≤

k∑
i=1

(1/k2) · 4 = 4/k,

where the inequality uses the fact

‖K(Yi, ·)− (Kρπih,a,a′)(·)‖
2
H

= K(Yi, Yi) + EY∼ρπi
h,a,a′ ,Y

′∼ρπi
h,a,a′

[K(Y, Y ′)]− 2 · EY∼ρπi
h,a,a′

[K(Yi, Y )] ≤ 4

following the same argument of (G.13). Then, invoking Lemma G.7 with

c2 = 4/k and ε =
√

8 log(2KHA2/δ) · k−1/2

for any δ > 0, with probability at least 1− δ/(KHA2), it holds that

‖Mk‖H = ‖KD̂kh,a,a′ −Kρkh,a,a′‖H ≤
√

8 log(2KHA2/δ) · k−1/2. (G.15)

Here, the equality uses the definition of ρkh,a,a′ = ρπkh,a,a′ . Recall that πk is the mixing policy that uniformly selects a policy
from {π0, . . . , πk−1} at random, which implies

ρkh,a,a′ =
1

k

k−1∑
i=0

ρπih,a,a′ and Kρkh,a,a′ =
1

k

k−1∑
i=0

Kρπih,a,a′ .

Then, by further applying the union bound, we have that, with probability at least 1− δ, the inequality in (G.15) holds for
any (k, h, a, a′) ∈ [K]× {2, . . . ,H} × A2. Combining such an upper bound with (G.9), (G.12) and (G.13), we have

‖ŵkh,a,a′ − wkh,a,a′‖2 ≤ d1/2
o /α ·

√
8 log(2KHA2/δ) · k−1/2. (G.16)

Combining (G.7) and (G.16), we know that, for any δ > 0, we have

‖ρ̂kh,a,a′ − ρkh,a,a′‖1 ≤ d3/2
o /α ·

√
8 log(2KHA2/δ) · k−1/2,

for any (k, h, a, a′) ∈ [K]× {2, . . . ,H} ×A2, with probability at least 1− δ. Therefore, we conclude the proof of Lemma
F.2.

G.3. Proof of Lemma F.3

Proof. By the definition of Vθh,a in (F.6), we have

EX∼p[(Fθh,af)(X)] =

∫
O3

f(x) · (Vθh,aρ)(x) dx. (G.17)

for any f ∈ L∞(O3) and ρ ∈ ∆(O3). By combining (G.17) and Lemma D.1, we have∫
O3

f(x) · (Vθh,aρ
θ,π
h,a,a′ − ρ

θ,π
h,a,a′)(x) dx,
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for any f ∈ L∞(O3), which implies

‖Vθh,aρ
θ,π
h,a,a′ − ρ

θ,π
h,a,a′‖1 = 0.

For any ρ ∈ L1(O3) such that ‖ρ‖1 = 1, we have

‖Vθh,aρ‖1 =

∫
O3

∣∣∣∫
O2

Bθh,a(oh, õh, õh+1) · ρ(oh−1, oh, oh+1) doh doh+1

∣∣∣doh−1 dõh dõh+1 (G.18)

≤
∫
S×O5

pθ(õh = õh, õh+1 = õh+1 | s̃h = s̃h, ãh = a) · |Zθh(s̃h, oh)|

· |ρ(oh−1, oh, oh+1)|ds̃h doh doh+1 doh−1 dõh dõh+1

=

∫
S×O3

|Zθh(s̃h, oh)| · |ρ(oh−1, oh, oh+1)|ds̃h doh doh+1 doh−1,

where the inequality is by the definition of Bθh,a in (3.6). Combining (G.18) with (D.15) from the proof of Lemma D.1, we
have

‖Vθh,aρ‖1 ≤
∫
×O3

γ · |ρ(oh−1, oh, oh+1)|doh doh+1 doh−1 = γ,

which implies ‖Vθh,a‖1→1 ≤ γ.

Therefore, we conclude the proof of Lemma F.3.

G.4. Property of the Bridge Operator

Lemma G.1 (Bridge Property). Recall that we denote by σh−1 the event

τh−1 = τh−1, ah−1 = ah−1.

For any (h, θ, τh−1, ah−1) ∈ [H]×Θ× Γh−1 ×A, we have

Eθ[Zθh(s̃h,oh) |σh−1] = pθ(s̃h = s̃h |σh−1).

Proof. By the tower property of the expectation and the Markov property of the POMDP, we have

Eθ[Zθh(s̃h,oh) |σh−1] = Eθ
[
Eθ[Zθh(s̃h,oh) | sh−1,ah−1 = ah−1]

∣∣σh−1

]
. (G.19)

Note that, for any sh−1 ∈ S, we have

Eθ[Zθh(s̃h,oh) | sh−1 = sh−1,ah−1 = ah−1] (G.20)

=

∫
O
Zθh(s̃h, oh) · pθ(oh = oh | sh−1 = sh−1,ah−1 = ah−1) doh

=

∫
O×S

Zθh(s̃h, oh) · Eθh(oh | sh) · pθ(sh = sh | sh−1 = sh−1,ah−1 = ah−1) dsh doh.

We define the function f : S → R by

f(sh) = pθ(sh = sh | sh−1 = sh−1,ah−1 = ah−1), for any sh ∈ S.

Then, we have f ∈ Fs and we can write the right-hand side of (G.20) as

(ZθhOθhf)(s̃h) = f(s̃h) = pθ(sh = s̃h | sh−1 = sh−1,ah−1 = ah−1)

following Assumptions 2.1 and 2.2. In other words, we have

Eθ[Zθh(s̃h,oh) | sh−1 = sh−1,ah−1 = ah−1] (G.21)
= pθ(sh = s̃h | sh−1 = sh−1,ah−1 = ah−1).
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Combining (G.19) and (G.21) and using the Markov property of the POMDP, we obtain

Eθ[Zθh(s̃h,oh) |σh−1]

=

∫
S
pθ(sh = s̃h | sh−1 = sh−1,ah−1 = ah−1) · pθ(sh−1 = sh−1 |σh−1) dsh−1

=

∫
S
pθ(sh = s̃h | sh−1 = sh−1, σh−1) · pθ(sh−1 = sh−1 |σh−1) dsh−1

= pθ(sh = s̃h |σh−1),

which concludes the proof of lemma G.1.

The following lemma is a variant of Lemma 3.1, which adds the state information to the expectation condition.

Lemma G.2 (Variant of Lemma 3.1). For any (h, θ, π, sh−1, τh−1, ah−1) ∈ [H] × Θ × Π × S × Γh−1 × A and f ∈
L∞(Γh+1), we have

Eθ[(Bθ,πh f)(τh)− f(τh+1) | sh−1 = sh−1, σh−1] = 0.

Proof. The proof is very similar to the proof of Lemma 3.1. Following the notation in Lemma 3.1, by the definition of Bθ,πh
in (3.4), we have

Eθ[(Bθ,πh f)(τh) | sh−1 = sh−1, σh−1] (G.22)

=

∫
S×O3

f
(
τ †h, π(τ †h), õh+1

)
· pθ
(
oh = õh,oh+1 = õh+1 | sh = s̃h,ah = π(τ †h)

)
· Zθh(s̃h, oh) · pθ(oh = oh | sh−1 = sh−1, σh−1) doh dõh dõh+1 ds̃h.

Here, by (G.20)-(G.21) in the proof of Lemma G.1, we have∫
O
Zθh(s̃h, oh) · pθ(oh = oh | sh−1 = sh−1, σh−1) doh

=

∫
O
Zθh(s̃h, oh) · pθ(oh = oh | sh−1 = sh−1,ah−1 = ah−1) doh

= pθ(sh = s̃h | sh−1 = sh−1,ah−1 = ah−1)

= pθ(sh = s̃h | sh−1 = sh−1, σh−1).

Thus, we can rewrite (G.22) as

Eθ[(Bθ,πh f)(τh) | sh−1 = sh−1, σh−1] (G.23)

=

∫
S×O2

f
(
τ †h, π(τ †h), õh+1

)
· pθ
(
oh = õh,oh+1 = õh+1 | sh = s̃h,ah = π(τ †h)

)
· p(sh = s̃h | sh−1 = sh−1, σh−1) dõh dõh+1 ds̃h

=

∫
O2

f
(
τ †h, π(τ †h), õh+1

)
· pθ,π(oh = õh,oh+1 = õh+1 | sh−1 = sh−1, σh−1) dõh dõh+1.

where the second equality uses the independence between (oh,oh+1) and τh−1 conditioning on (sh,ah). Replacing the
notations õh and õh+1 of the integral variables on the right-hand side of (G.23) by oh and oh+1, respectively, we obtain

Eθ[(Bθ,πh f)(τh) | sh−1 = sh−1, σh−1] (G.24)

=

∫
O2

f
(
τh, π(τh), oh+1

)
· pθ,π(oh = oh,oh+1 = oh+1 | sh−1 = sh−1, σh−1) doh doh+1

= Eθ,π[f(τh+1) | sh−1 = sh−1, σh−1],

where we denote τh = (τh−1, ah−1, oh) and τh = (τh−1, oh). Therefore, we conclude the proof of Lemma G.2.
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G.5. Properties of the Value Functions

Lemma G.3. For any (h, π, θ, τh) ∈ [H]×Π×Θ× Γh, it holds that

V θ,πh (τh) =

∫
S
Eθ,π

[ H∑
i=1

ri

∣∣∣ sh = sh, τh−1 = τh−1,ah−1 = ah−1

]
· Zθh(sh, oh) dsh. (G.25)

Here, we denote τh = (τh−1, ah−1, oh) following the definition in (2.3).

Proof. We prove the lemma by induction over h ∈ [H]. When h = H , by the definition of the value function in (3.10) and
the definition of Bθ,πH in (3.4), we have

V θ,πH (τH) = (Bθ,πH R)(τH) (G.26)

=

∫
O2

(
r
(
õH , π(τ †H)

)
+

H−1∑
i=1

r(oh, ah)
)
· Bθ

h,π(τ†H)
(oH , õH , õH+1) dõH dõH+1

=

∫
O

(
r
(
õH , π(τ †H)

)
+

H−1∑
i=1

r(oh, ah)
)
·
(∫
O
Bθ
h,π(τ†H)

(oH , õH , õH+1) dõH+1

)
dõH .

Recall that τ †H is the tail-mirrored observation history defined in (3.5). Note that, by the definition of {BθH,a}a∈A in (3.6),
we have ∫

O
Bθ
h,π(τ†H)

(oH , õH , õH+1) dõH+1 (G.27)

=

∫
S×O

pθ(õH = õH , õH+1 = õH+1 | s̃H = sH , ãH = a) · ZθH(sH , oH) dsH dõH+1

=

∫
S
pθ(oh = õH | sH = sH ,aH = a) · ZθH(sH , oH) dsH ,

where we use the fact that s̃H , ãH , õH , and õH+1 in (3.6) have the same distribution of sH , aH , oH , and oH+1. Combining
(G.26) and (G.27), we have that (G.25) holds for h = H .

Assume that (G.25) holds when h = j + 1 for some fixed j ≤ H − 1. Then, by the definition of the value function in (3.10),
we have

V θ,πj (τ j) = (Bθ,πj V θ,πj+1)(τ j), for any τ j ∈ Γj .

Applying the induction assumption and definition of Bθ,πj in (3.4), we obtain

(Bθ,πj V θ,πj+1)(τ j) =

∫
S×O2

Eθ,π
[ H∑
i=1

ri

∣∣∣ sj+1 = sj+1, τ j = τ †j ,aj = π(τ †j )
]
· Zθh(sj+1, õj+1)

· Bθ
j,π(τ†j )

(oj , õj , õj+1) dsj+1 dõj dõj+1. (G.28)

Recall that τ †j and τ †j are the tail-mirrored observation history and full history defined in (3.5), respectively. Note that, by
the definition of {Bθj,a}a∈A in (3.6), we have

Bθ
j,π(τ†j )

(oj , õj , õj+1) (G.29)

=

∫
S
pθ
(
oj = õj ,oj+1 = õj+1 | sj = sj ,aj = π(τ †j )

)
· Zθj (sj , oj) dsj

=

∫
S
Eθh(õj | sj) · pθ

(
oj+1 = õj+1 | sj = sj ,aj = π(τ †j )

)
· Zθj (sj , oj) dsj
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Following the same argument in (G.20)-(G.21), we have∫
O
Zθh(sj+1, õj+1) · pθ

(
oj+1 = õj+1 | sj = sj ,aj = π(τ †j )

)
dõj+1

= pθ
(
sj+1 = sj+1 | sj = sj ,aj = π(τ †j )

)
,

combining which with (G.29), we obtain∫
O
Zθh(sj+1, õj+1) · Bθ

j,π(τ†j )
(oj , õj , õj+1) dõj+1

=

∫
S
Eθh(õj | sj) · pθ

(
sj+1 = sj+1 | sj = sj ,aj = π(τ †j )

)
· Zθj (sj , oj) dsj

=

∫
S
pθ
(
oj = õj , sj+1 = sj+1 | sj = sj ,aj = π(τ †j )

)
· Zθj (sj , oj) dsj . (G.30)

Plugging (G.30) into the right-hand side of (G.28), we obtain

(Bθ,πj V θ,πj+1)(τ j) (G.31)

=

∫
S2×O

Eθ,π
[ H∑
i=1

ri

∣∣∣ sj+1 = sj+1, τ j = τ †j ,aj = π(τ †j )
]

· pθ
(
oj = õj , sj+1 = sj+1 | sj = sj ,aj = π(τ †j )

)
· Zθj (sj , oj) dsj dsj+1 dõj .

Using the Markov property of the POMDP, we can simplify the right-hand side of (G.31) to obtain

(Bθ,πj V θ,πj+1)(τ j) =

∫
S
Eθ,π

[ H∑
i=1

ri

∣∣∣ sj = sj , τ j−1 = τ j−1,aj−1 = aj−1

]
· Zθj (sj , oj) dsj ,

which implies that (G.25) holds when h = j.

Therefore, we conclude the proof of Lemma G.3 by induction.

Lemma G.4. For any (h, θ, τh, π) ∈ [H]×Θ× Γh ×Π, we have

|V θ,πh (τh)| ≤ γH.

Recall that γ is defined in Assumption 2.2.

Proof. By Lemma G.3 and Assumption 2.2, we have

|V θ,πh (τh)| =
∣∣∣∫
S
Eθ,π

[ H∑
i=1

ri

∣∣∣ sh = sh, τh−1 = τh−1,ah−1 = ah−1

]
· Zθh(sh, oh) dsh

∣∣∣
≤ H ·

∫
S
|Zθh(sh, oh)|dsh = H · ‖Zθhδoh‖1 ≤ γH · ‖δoh‖1 = γH,

for any (h, θ, τh, π) ∈ [H]×Θ×Γh×Π. Here, δoh is the Dirac delta function defined onO, whose value is zero everywhere
except at oh, and whose integral over O is equal to one. Thus, we conclude the proof of Lemma G.4.

G.6. Properties of the State-Dependent Error

Lemma G.5. For any (k, h) ∈ [K]× {2, . . . ,H}, we have

Eθ∗,πk [ekh(sh)] ≤ γ2H ·
∑

a,a′∈A

∥∥Vθkh,a′ρπkh,a,a′ − ρπkh,a,a′∥∥1
.
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Proof. By the definition of ekh in (A.2), we have

ekh(sh−1) =
∣∣Eθ∗,πk [(Bθk,πkh V θk,πkh+1 )(τh)− (Bθ

∗,πk
h V θk,πkh+1 )(τh) | sh−1 = sh−1]

∣∣, (G.32)

for any sh−1 ∈ S. Note that, by the definition of Bθ,πh in (3.4), we have

Eθ∗,πk [(Bθk,πkh V θk,πkh+1 )(τh)− (Bθ
∗,πk
h V θk,πkh+1 )(τh) | sh−1 = sh−1, τh−1 = τh−1] (G.33)

=

∫
O3

V θk,πkh+1

(
τ †h, πk(τ †h), õh+1

)
·∆Bθk,θ

∗

h,πk(τ†h)
(oh, õh, õh+1)

· pθ∗
(
oh = oh

∣∣ sh−1 = sh−1,ah−1 = πk(τh−1)
)

doh dõh dõh+1,

for any (sh−1, τh−1) ∈ S × Γh−1, where τ †h = (τh−1, ah−1, õh), τ †h = (τh−1, õh), and

∆Bθk,θ
∗

h,πk(τ†h)
(oh, õh, õh+1) = Bθk

h,πk(τ†h)
(oh, õh, õh+1)− Bθ

∗

h,πk(τ†h)
(oh, õh, õh+1). (G.34)

By replacing the actions πk(τh−1) and πk(τ †h) on the right-hand side of (G.33) by all possible action combinations, we have
the inequality ∣∣Eθ∗,πk [(Bθk,πkh V θk,πkh+1 )(τh)− (Bθ

∗,πk
h V θk,πkh+1 )(τh) | sh−1 = sh−1, τh−1 = τh−1]

∣∣ (G.35)

≤
∑

a,a′∈A

∣∣∣∫
O3

V θk,πkh+1 (τ †h, a
′, õh+1) ·∆Bθk,θ

∗

h,a′ (oh, õh, õh+1)

· pθ∗
(
oh = oh

∣∣ sh−1 = sh−1,ah−1 = a
)

doh dõh dõh+1

∣∣∣.
Invoking Lemma G.4, we can further upper bound the left-hand side of (G.36) as∣∣Eθ∗,πk [(Bθk,πkh V θk,πkh+1 )(τh)− (Bθ

∗,πk
h V θk,πkh+1 )(τh) | sh−1 = sh−1, τh−1 = τh−1]

∣∣ (G.36)

≤
∑

a,a′∈A
sup

(τ†h,õh+1)∈Γh×O
|V θk,πkh+1 (τ †h, a

′, õh+1)| ·
∫
O2

∣∣∣∫
O

∆Bθk,θ
∗

h,a′ (oh, õh, õh+1)

· pθ∗(oh = oh | sh−1 = sh−1,ah−1 = a) doh

∣∣∣ dõh dõh+1

≤
∑

a,a′∈A
γH ·

∫
O2

∣∣∣∫
O

∆Bθk,θ
∗

h,a′ (oh, õh, õh+1)

· pθ∗(oh = oh | sh−1 = sh−1,ah−1 = a) doh

∣∣∣ dõh dõh+1.

Combining (G.32) and (G.36), and applying Jensen’s inequality, we obtain

ekh(sh−1) ≤
∑

a,a′∈A
γH ·

∫
O2

∣∣∣∫
O

∆Bθk,θ
∗

h,a′ (oh, õh, õh+1) (G.37)

· pθ∗(oh = oh | sh−1 = sh−1,ah−1 = a) doh

∣∣∣dõh dõh+1,

for any sh−1 ∈ S.

In the sequel, we characterize the expectation of both sides of (G.37) with respect to the marginal distribution of sh−1. We
define the function f : S → R by

f(sh−1) =

∫
O

∆Bθk,θ
∗

h,a′ (oh, õh, õh+1) · pθ∗,πk(oh = oh, sh−1 = sh−1 |ah−1 = a) doh, (G.38)

for any sh−1 ∈ S. With f defined above and the inequality in (G.37), we have

Eθ∗,πk [ekH(sh−1)] = γH ·
∑

a,a′∈A

∫
O
‖f‖1 dõhõh+1, (G.39)
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where we take the expectation of both sides of (G.37) with respect to the marginal distribution of sh−1, following the policy
πk. Note that we can write the probability on the right-hand side of (G.38) as

pθ∗,πk(oh = oh, sh−1 = sh−1

∣∣ah−1 = a)

= pθ∗,πk(sh−1 = sh−1 |oh = oh,ah−1 = a) · pθ∗,πk(oh = oh |ah−1 = a),

which implies f ∈ F ′s ⊂ linspan({ψi}dsi=1) following Assumption 2.1. Then, by further applying Assumption 2.2, we
obtain

‖f‖1 = ‖Zθh−1Oθh−1f‖1 ≤ γ · ‖Oθh−1f‖1. (G.40)

With f defined in (G.38) and Oθh−1 defined in (2.4), we can write

‖Oθh−1f‖1 (G.41)

=

∫
O

∣∣∣∫
O×S

∆Bθk,θ
∗

h,a′ (oh, õh, õh+1) · pθ∗,πk(oh = oh, sh−1 = sh−1 |ah−1 = a)

· Eθh−1(oh−1 | sh−1) doh dsh−1

∣∣∣doh−1

=

∫
O

∣∣∣∫
O

∆Bθk,θ
∗

h,a′ (oh, õh, õh+1) · pθ∗,πk(oh−1 = oh−1,oh = oh |ah−1 = a) doh

∣∣∣ doh−1

Here, we can rewrite the probability on the right-hand side as

pθ∗,πk(oh−1 = oh−1,oh = oh |ah−1 = a)

=

∫
O
pθ∗,πk(oh−1 = oh−1,oh = oh,oh+1 = oh+1 |ah−1 = a,ah = a′) doh+1

=

∫
O
ρπkh,a,a′(oh−1, oh, oh+1) doh+1.

Recall that ∆Bθk,θ
∗

h,a′ is defined in (G.34). Then, by applying the definition of Vθh,a′ in (F.6) for θ = θk and θ = θ∗ to the
right-hand side of (G.41) and integrating for õh, õh+1 over O2 for both sides, we have∫

O3

‖Oθh−1f‖1 dõh dõh+1 = ‖Vθkh,a′ρ
πk
h,a,a′ − Vθ

∗

h,a′ρ
πk
h,a,a′‖1 = ‖Vθkh,a′ρ

πk
h,a,a′ − ρ

πk
h,a,a′‖1, (G.42)

where the second equality is by Lemma F.3. Then, by combining (G.39), (G.40) and (G.42), we obtain

Eθ∗,πk [ekh(sh−1)] ≤ γH ·
∑

a,a′∈A

∫
O3

‖f‖1 dõh dõh+1

≤ γ2H ·
∑

a,a′∈A

∫
O3

‖Oθh−1f‖1 dõh dõh+1

= γ2H ·
∑

a,a′∈A
‖Vθkh ρ

πk
h,a,a′ − ρ

πk
h,a,a′‖1,

which concludes the proof of Lemma G.5.

Lemma G.6. For any (k, h) ∈ [K]× {2, . . . ,H} and sh−1 ∈ S, we have

ekh(sh−1) ≤ 2γH.

Proof. For any (k, h, sh−1, τh−1, ah−1) ∈ [K]× {2, . . . ,H} × S × Γh−1 ×A, we have∣∣Eθ∗ [(Bθk,πkh V θk,πkh+1 )(τh) | sh−1 = sh−1, τh−1 = τh−1,ah−1 = ah−1]
∣∣ (G.43)

=
∣∣Eθ∗ [V θk,πkh (τh) | sh−1 = sh−1, τh−1 = τh−1,ah−1 = ah−1]

∣∣ ≤ γH,
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where the equality uses the definition of the value function in (3.10) and the inequality is by Lemma G.4. Similarly, by
Lemma G.2, we have∣∣Eθ∗ [(Bθ∗,πkh V θk,πkh+1 )(τh) | sh−1 = sh−1, τh−1 = τh−1,ah−1 = ah−1]

∣∣ (G.44)

=
∣∣Eθ∗,πk [V θk,πkh+1 (τh+1) | sh−1 = sh−1, τh−1 = τh−1,ah−1 = ah−1]

∣∣ ≤ γH.
Combining (G.43) and (G.44), and using the triangle inequality, we have∣∣Eθ∗ [(Bθk,πkh V θk,πkh+1 − Bθ

∗,πk
h V θk,πkh+1 )(τh) | sh−1 = sh−1, τh−1 = τh−1,ah−1 = ah−1]

∣∣ ≤ 2γH,

which, by Jensen’s inequality, implies

ekh(sh−1) =
∣∣Eθ∗,πk [(Bθk,πkh V θk,πkh+1 − Bθ

∗,πk
h V θk,πkh+1 )(τh) | sh−1 = sh−1]

∣∣ ≤ 2γH.

Therefore, we conclude the proof of Lemma G.6.

G.7. Concentration Inequality

Lemma G.7. Suppose that {Mj}j≥1 is a martingale defined on a Hilbert spaceH. For any c > 0, if we have

∞∑
j=1

‖Mj+1 −Mj‖2H ≤ c2, (G.45)

then, for any ε > 0, it holds that

P
(

sup
j≥1
‖Mj‖H ≥ ε

)
≤ 2 exp

{
− ε2

2c2

}
.

Proof. The lemma is a special case of Theorem 3.5 in (Pinelis, 1994) (see also, Theorem 3 in (Pinelis, 1992)), which is a
more general result for martingales in Banach spaces.


