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Abstract

We study reinforcement learning for partially ob-
served Markov decision processes (POMDPs)
with infinite observation and state spaces, which
remains less investigated theoretically. To this
end, we make the first attempt at bridging partial
observability and function approximation for a
class of POMDPs with a linear structure. In detail,
we propose a reinforcement learning algorithm
(Optimistic Exploration via Adversarial Integral
Equation or OP-TENET) that attains an e-optimal
policy within O(1/€?) episodes. In particular, the
sample complexity scales polynomially in the in-
trinsic dimension of the linear structure and is in-
dependent of the size of the observation and state
spaces. The sample efficiency of OP-TENET is
enabled by a sequence of ingredients: (i) a Bell-
man operator with finite memory, which repre-
sents the value function in a recursive manner, (ii)
the identification and estimation of such an oper-
ator via an adversarial integral equation, which
features a smoothed discriminator tailored to the
linear structure, and (iii) the exploration of the
observation and state spaces via optimism, which
is based on quantifying the uncertainty in the ad-
versarial integral equation.

1. Introduction

Partial observability poses significant challenges for rein-
forcement learning, especially when the observation and
state spaces are infinite. Given full observability, reinforce-
ment learning is well studied empirically (Mnih et al., 2015;
Silver et al., 2016; 2017) and theoretically (Auer et al., 2008;
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Osband et al., 2016; Azar et al., 2017; Jin et al., 2018; Yang
& Wang, 2020; Jin et al., 2020b; Ayoub et al., 2020; Kakade
et al., 2020; Du et al., 2021). In particular, for infinite state
spaces, neural function approximators achieve remarkable
successes empirically (Mnih et al., 2015; Berner et al., 2019;
Arulkumaran et al., 2019), while linear function approxima-
tors become better understood theoretically (Yang & Wang,
2020; Jin et al., 2020b; Ayoub et al., 2020; Kakade et al.,
2020; Du et al., 2021). In contrast, reinforcement learning
in partially observed Markov decision processes (POMDPs)
is less investigated theoretically despite its prevalence in
practice (Cassandra et al., 1996; Hauskrecht & Fraser, 2000;
Brown & Sandholm, 2018; Rafferty et al., 2011).

More specifically, partial observability poses both statistical
and computational challenges. From a statistical perspec-
tive, it is challenging to predict future rewards, observations,
or states due to a lack of the Markov property. In particular,
predicting the future often involves inferring the distribution
of the state (also known as the belief state) or its functionals
as a summary of the history, which is already challenging
even assuming the (observation) emission and (state) transi-
tion kernels are known (Vlassis et al., 2012; Golowich et al.,
2022). Meanwhile, learning the emission and transition ker-
nels faces various issues commonly encountered in causal
inference (Zhang & Bareinboim, 2016). For example, they
are generally nonidentifiable (Kallus et al., 2021). Even
assuming they are identifiable, their estimation possibly re-
quires a sample size that scales exponentially in the horizon
and dimension (Jin et al., 2020a). Such statistical challenges
are already prohibitive even for the evaluation of a policy
(Nair & Jiang, 2021; Kallus et al., 2021; Bennett & Kallus,
2021), which forms the basis of policy optimization. From a
computational perspective, it is known that policy optimiza-
tion is generally intractable (Vlassis et al., 2012; Golowich
et al., 2022). Moreover, infinite observation and state spaces
amplify both statistical and computational challenges. On
the other hand, most existing results are restricted to the tab-
ular setting (Azizzadenesheli et al., 2016; Guo et al., 2016;
Jin et al., 2020a; Xiong et al., 2021), where the observation
and state spaces are finite.

In this paper, we study linear function approximation in
POMDPs to address the statistical challenges amplified by
infinite observation and state spaces. In particular, our con-
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tribution is fourfold. First, we define a class of POMDPs
with a linear structure and identify an ill conditioning mea-
sure for sample-efficient reinforcement learning. Such an
ill conditioning measure corresponds to the undercomplete-
ness in the tabular setting (Jin et al., 2020a). Second, we
propose a reinforcement learning algorithm (OP-TENET),
which applies to any POMDP admitting the aforementioned
linear structure. Moreover, we use a minimax optimization
formulation in OP-TENET such that the algorithm can be
implemented in a computation-efficient manor even if the
dataset is large. Third, we prove in theory that OP-TENET
attains an e-optimal policy within O(1/¢2) episodes. In par-
ticular, the sample complexity scales polynomially in the
intrinsic dimension of the linear structure and is independent
of the size of the observation and state spaces. Fourth, our
algorithm and analysis are based on new tools. In partic-
ular, the sample efficiency of OP-TENET is enabled by a
sequence of ingredients: (i) a Bellman operator with finite
memory, which represents the value function in a recursive
manner, (ii) the identification and estimation of such an op-
erator via an adversarial integral equation, which features a
smoothed discriminator tailored to the linear structure, and
(iii) the exploration of the observation and state spaces via
optimism, which is based on quantifying the uncertainty in
the adversarial integral equation.

1.1. Related Work

Our work is related to a line of recent work on the sample
efficiency of reinforcement learning for POMDPs. In de-
tail, Azizzadenesheli et al. (2016); Guo et al. (2016); Xiong
et al. (2021) establish sample complexity guarantees for
searching the optimal policy in POMDPs whose models are
identifiable and can be estimated by spectral methods. How-
ever, Azizzadenesheli et al. (2016) and Guo et al. (2016)
add extra assumptions such that efficient exploration of the
POMDP can always be achieved by running arbitrary poli-
cies. In contrast, the upper bound confidence (UCB) method
is used in Xiong et al. (2021) for adaptive exploration. How-
ever, they require strictly positive state transition and obser-
vation emission kernels to ensure fast convergence to the
stationary distribution. The more related work is Jin et al.
(2020a), which considers undercomplete POMDPs, in other
words, the observations are more than the latent states. Their
proposed algorithm can attain the optimal policy without
estimating the exact model, but an observable component
(Jaeger, 2000; Hsu et al., 2012), which is the same for our
algorithm design, while only applies to tabular POMDPs.

In a broader context of reinforcement learning with partial
observability, our work is related to several recent works on
POMDPs with special structures. For example, Kwon et al.
(2021) considers latent POMDPs, where each process has
only one latent state, and the proposed algorithm efficiently
infers the latent state using a short trajectory. Kozuno et al.

(2021) considers POMDPs having tree-structured states with
their positions in certain partitions being the observations.
Compared with general POMDPs, these specially structures
reduce the complexity of finding the optimal actions, and
the corresponding algorithms use techniques closer to those
for MDPs. Also, the aforementioned literature only consider
tabular POMDPs.

In the contexture of reinforcement learning with function
approximations, our work is related to a vast body of recent
progress (Yang & Wang, 2020; Jin et al., 2020b; Cai et al.,
2020; Du et al., 2021; Kakade et al., 2020; Agarwal et al.,
2020; Zhou et al., 2021; Ayoub et al., 2020) on the sample
efficiency of reinforcement learning for MDPs with linear
function approximations. These works characterize the un-
certainty in the regression for estimating either the model
or value function of an MDP and use the uncertainty as a
bonus on the rewards to encourage exploration. However,
none of these approaches directly apply to POMDPs due to
the latency of the states.

1.2. Notation

For any discrete or continuous set X’ and p € N, we denote
by LP(X) the LP space of functions over X, and A(X)
the set of probability density functions over X when X is
continuous or probability mass functions when X is discrete.
For any d € N, we denote by [d] the set of integers from
1 to d. For a vector v and a matrix M, we denote by [v];
the 4-th entry of v and [M]; ; the entry of M at the i-th
row and j-th column. We denote by || - ||, the £’-norm of a
vector or LP-norm of a function. Also, for an operator M,
we denote by || M ||, the operator norm of M induced
by the /P-norm or LP-norm of the domain and ¢?-norm or
L?-norm of the range. We use the notation linspan(-) and
conh(+) to represent the linear span and convex combination,
respectively.

2. Background
2.1. POMDPs

We consider an episodic POMDP (S, A, O, H, T,&, u,r),
where S, A, and O are the state, action, and observation
spaces, respectively, H is the length of each episode, T
is the state transition kernel from a state-action pair to the
next state, £ is the observation emission kernel from a state
to its observation, y is the initial state distribution, and
r: O x A — [0,1] is the reward function defined on the
observation and action for each step. We assume that the
action space A has a finite size A € N, but the state space
S and observation space O can be infinite (with finite di-
mensions). Also, we consider the nonhomongeneous setting
so that the state transition kernel and observation emission
kernel can be different across each step. Hence, we use a
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Figure 1: Directed acyclic graph of a POMDP. Here, we denote by 7, = (01,...,0p
On—1,ap—1,0y,) the full history. See Section 2.1 for more details.

Th = (01,(11,...,

subscript i € N to index the step. At the beginning of each
episode, the agent receives the initial state s; ~ . Then,
the agent interacts with the environment as follows. At the
h-th step, the agent receives the observation oy, ~ Ep(-| 8p),
takes an action aj, based on the observation history

2.1

Th = (017"'70h)7

and receives the reward r;, = r(0p,ar). Any mapping
7 from the observation history to the action is called a
(deterministic) policy. We denote by II the set of all such
mappings. Note that the policy does not use the action
history as an input. Such a restriction does not exclude the
optimal policy, as the action history can be decoded from
the observation history. Subsequently, the agent receives
the next state sy following sp4+1 ~ Trn(-| sn,an). See
Figure 1 for an illustration.

In a reinforcement learning problem, the environment is
unknown, that is, the state transition kernel 7 and ob-
servation emission kernel £ are unknown. We denote by
{(T?,£%) : 6 € O} the candidate class of 7 and £, where
0 is the parameter and © is the set of the parameter. We
assume that the realizability condition holds, that is, there
exists a parameter #* € © such that 7 = 7% and £ = £%°.
Without loss of generality and for ease of presentation, we
assume that p, 77, &1, and & are known, which only ac-
count for the initialization. The goal is to find a policy that
maximizes the expected total reward, that is,

7" = argmax J (0", ), (2.2)

mell

H
where J(0,7) = Eg » {Z rh} for any (6,7) € © x IL.
h=1

Here, we write 6 and 7 as the subscripts of the expectation
to denote that the parameter of the state transition kernel

) the observation history and

and observation emission kernel have the parameter 6 and
the actions follow the policy 7. In the sequel, we drop the
subscript 7 if the expectation does not depends on it.

Additional Notation: Recall that we denote by II the set
of all policies. For notational simplicity, we denote by II
the set of mixing policies. A mixing policy selects a policy
from II randomly and executes such a policy throughout the
episode. For any i € N, we denote by T}, the full history,

Th = (01,a1,...,04_1,an_1,0p), (2.3)
which includes the action history. We denote by I';, and T,
the sets of all histories 7, and T}, respectively. Through-
out the paper, we use bold letters for states, actions, and
observations to emphasize that they are random variables
in a POMDP, whose parameter and policy are specified
in the context, while we use regular letters when they are
deterministic values.

2.2. Linear Function Approximations

We specify the candidate class of the state transition kernel
T and observation emission kernel £. We define the follow-
ing function classes of the conditional state distribution. In
detail, we define

Fs={po(sn=-|sn-1=s,ap1=a):
(h,0,s,a) € [H] x © x S x A},

]_-; = {pom(sh = ‘|0h+1 = 0,ap = a) :
(h,0,0,a,m) € [H] x © x O x A x II}.

Here, p(-) is the probability density function when the state
space S is continuous and the probability mass function
when S is discrete. The subscripts 6 and 7 follow from
(2.2). Note that conditioning on a;, = a means that the
agent takes the action a at the h-th step regardless of the
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observation history, while the agent takes the other actions
following the policy 7 as specified in the subscript. In the
causal inference literature (Pearl, 2009), our notation cor-
responds to do(ay, = a), which denotes the interventional
distribution and differs from the observational distribution.
Throughout this paper, we follow such a convention. Also,
note that 7 corresponds to the state distribution condition-
ing on the past, while F, corresponds to that conditioning
on the future. As a special case, we have u € Fyforh =1
since so and ag do not exist. We define the following func-
tion class of the conditional observation distribution,

Fo ={po,x(0On:n42 = | ap =a,ap41 =a'):
(h,0,a,d’,7) € [H] x © x A% x TI}.

The following assumption restricts the above function
classes to two low-dimensional subspaces.

Assumption 2.1 (Linear Function Approximations). There
exist ds,d, € N and known distribution functions
{:}%= c A(S) and {¢;}%>, C A(O3) such that we
have

o Fi, F. C COnh({wi}?iﬂ’
o F, C conh({d%}?&)

For ease of presentation, we denote {; g;l and {¢; ?;1 by
1 and ¢, respectively, for the rest of the paper. Assumption
2.1 requires that Fs, F., and F, are linearly represented by
known bases ) and ¢. See, for example, Du et al. (2021) for
the corresponding assumption in MDPs. Note that, when v
and ¢ are the one-hot functions over S and O3, respectively,
we recover the tabular setting (Jin et al., 2020a).

The following assumption ensures that the observation is
informative for the state. For any (h,0) € [H] x ©, we
define the observation operator Qf : L*(S) — L'(O) by

(Wﬂ@zé%wﬁf@ﬁ, 24)

for any f € L'(S) and o € O, which maps a state distribu-
tion to the observation distribution.

Assumption 2.2 (Invertible Observation Operators). For
any (h,0) € [H] x ©, there exist a known function Z :
S x O — R and the linear operator Z§ : L'(0) — L'(S)
defined by

(ﬁMﬁz/%@@f@®,

(@]

forany f € L'(O) and s € S such that we have

e 7900 f = f forany f € linspan(v),

e [|Z%||1—1 <~y for a constant iy > 0.

Assumption 2.2 requires that the observation operator @Z
defined on linspan(v)) is injective, which implies that it has
a left inverse Z9 . Note that the domain of Z naturally ex-
tends to L!(O). In other words, the observation distribution
carries the full information of the state distribution. The
(upper bound of the) operator norm + is a measure of ill
conditioning, which quantifies the fundamental difficulty, in
terms of the information-theoretic limit, of reinforcement
learning in the POMDP. See more discussion in Section B,
where we prove that both Assumptions 2.1 and 2.2 hold if
the state transition kernel and observation emission kernel
admit certain a structure. Correspondingly, we provide a
detailed form of the function Zg in Section B. Also, we
illustrate the connection to the tabular setting (Jin et al.,
2020a) therein.

3. Algorithm

In this section, we first introduce the finite-memory Bellman
operator in Section 3.1 and discuss its estimation in Section
3.2. Then, we present Algorithm 1, which performs opti-
mistic exploration on top of operator estimation, in Section
3.3.

3.1. Finite-Memory Bellman Operator

To cast a POMDP as an MDP, it is necessary to aggregate
the observation history and action history as the “state” in
an MDP to retrieve the Markov property. In detail, for any
(h,0,7) € [H] x © xII, we define the full-memory Bellman
operator ]P’Z’W : L®(Thy1) — L>=(T) by

(BY™ ) (7n)

= ]Ea,ﬂ'[.f(?h-ﬁ-l) ‘?h = ?h]

3.1)

= / Do (Oh,+1 = Ont1|Th =Th,an = W(Th))
o
- f(Tr, 7(Th), 0n41) dop,

for any f € L>(T'},41) and 75, € T',. Here, the second
equality follows from 71 = (Tp, ap, Op+1) With ap, =
7 (T1), which is defined in (2.3). In the sequel, the function
f is set as the expected total reward conditioning on the
(h + 1)-step full history 71,1 € T'j41 and ]P’(;L”T maps it to
the h-step counterpart, which resembles backward induction
or dynamic programming in MDPs. We denote by R :
Tyi1 — [0, H] the function that maps the (H + 1)-step

full history to the total reward, that is,
R(Tyy1) =r(o1,a1) + -+ r(om,an), (3.2)

forany 7rr41 € [gry1. Forany h € [H], the expected total
reward satisfies

H
EO,Tr [Z T

i=1

Th :?h} = (By" -+ Py R)(Th), (3.3)
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for any 75, € I'j,, where the equality follows from recur-
sively applying (3.1) and the tower property of conditional
expectation. A direct idea is to evaluate a policy 7 by esti-
mating the parameter ¢ in (3.3) and optimize 7 in an iterative
manner. However, estimating the operator IP’,G;”T suffers from
the curse of dimensionality since it requires estimating a dis-
tribution conditioning on the h-step full history 75, which
is high-dimensional.

From Full Memory to Finite Memory: We propose to
bypass such an issue by exploiting the independence be-
tween the past observation and future observation condi-
tioning on the current state. In detail, for any (h, 0, 7) €
[H] x © x II, we define the finite-memory Bellman operator
B+ L(Thya) — L(T) by

(BY™ f)(7) = / £ (), Bsn) 3.4)
02

9 ~ ~ ~ ~
. ma(_r:) (Oh7 Op, 0h+1) dOh d0h+1,

for any f € L°>(Ty41) and 7, € T),. Here, the tail-
mirrored full history ?;rb and tail-mirrored observation his-
tory T;I are defined by

7= (Tho1,an-1,08), T} = (Th-1,0n), (3.5

which switch the last observation op by 0y in the full
history 7; and observation history 7, that is, 7, =
(Th-1,an—1,0p) and 7, = (Th—1,0p). Also, the function
Bj . : O3 — Ris defined by

B . (0n,0n, On41) (3.6)

= / P6(Oh = Oh,Oh41 = Ohy1 | Sh = Sp, A, = a)
S
9 ~ ~
- 2, (8n, 0n) dsp,

for any oy, op,0n+1 € O and a € A, where the function
ZY is defined in Assumption 2.2. Figure 2 illustrates the
(random) variables in (3.4) and (3.6). In detail, s}, is an
independent replicate of sy, that is, they are independent
and identically distributed conditioning on s;,_; and ap_1.
Note that s}, is constructed for ease of presentation, and does
not exist in practice. Then, the action ay, state $p. 1, and
observations 0y, Op+1 are similarly defined. In other words,
their distribution conditioning on s}, and 7 _1 mirrors the
distribution of the action a,, state s 1, and observations
op, 0n,+1 conditioning on sy and T5,_;. When the state
transition kernel and observation emission kernel have a
specific parametrization, the function Zﬁ has a correspond-
ing parametrization by Assumption 2.2, which allows us to
parametrize the function Bz’a in (3.6). See Section B for an
example where the state transition kernel and observation
emission kernel admit a linear structure. Compared with
the full-memory Bellman operator ]P"z’w, the finite-memory

Bellman operator IB%Z’” does not involve the distribution of
op,+1 conditioning on T, and aj. Instead, it involves the
distribution of 0, and 0511 conditioning on s, where the
distribution of s;, is implied by the distribution of the sin-
gle observation oy, via the function Z{. See the following
paragraph for more discussion. Moreover, estimating IB%Z’”
for each h € [H] only involves the distribution of 05,_1, 0y,
and oy,1, which is low-dimensional. See Section 3.2 for
more discussion.

How Finite Memory Works: For notational simplicity, we
denote by o1 the event

Th-1=Th-1, Qh—1=0p_1 (3.7

for any h € [H + 1]. The following lemma implies that the
finite-memory Bellman operator IB%Z’7r is identical to the full-
memory Bellman operator IP’Z”r in expectation conditioning
on oy,—1, which allows us to use IB%Z’” as a surrogate of IP’?MI.
Lemma 3.1 (Operators Equivalence in Expectation). For
any (h,0, 7, Tp—1,an-1) € [H] x © x I x ',y x Aand
f € L®(The1), we have

Eo[(B, ™ )(Th) — (B f)(Tn) | on-1] = 0.
Proof. See Section D.1 for a detailed proof. O

To see the intuition behind Lemma 3.1, note that by the
definition of Z,(i in Assumption 2.2, we have

Eo[Z) (5h,0n) | on_1] = po(8h = 3n | on_1),

for any (35,7h-1,an-1) € S x T',_1 x A. See Section
D.1 for a derivation. In other words, Z,f serves as the bridge
function in causal inference (Shi et al., 2020), which recov-
ers the conditional distribution of s}, from the conditional
distribution of o;,. Then, by taking the same conditional
expectation on both sides of (3.6), we have

Eo[B] o (0n, 0n, Ohs+1) | oh—1] (3.8)
= po(On = Oh, Oht1 = Opt1 | Oh—1,an = a)

= pg(On = Oh, 041 = Opt1 | Oh—1,Gh = a),

which is connected to the integral kernel py(on+1 =
Oh+1|Th = Th,ap = a) on the right-hand side of (3.1)
via the same conditional expectation

Eg[po(On+1 = 0pt1 | Th, an = a) | op—1] (3.9
=Eo[pe(Ont1 = Ont1|Onh—1,0n,an = a) | op_1]

= pg(Oht1 = Oht1 | On—1,an = a)

= / P6(0On = On, Oht1 = Opy1 | Oh—1,an = a) dop.
o

Here the second equality in (3.8) follows from the fact that
(ap, on, ay) is an independent replicate of (ap, Op, Op+1),
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Figure 2: Tllustration of the variables in the definition of IB%Z’” in (3.4) and (3.6). In detail, s, is an independent replicate of
s, that is, they are independent and identically distributed conditioning on s, _1 and a,_1. Note that s}, is constructed for
ease of presentation, and does not exist in practice. Then, the action ay, state S 1, and observations oy, 0,11 are similarly
defined. In other words, their distribution conditioning on s}, and 7 _1 mirrors the distribution of the action ay, state sp,, 1,
and observations oy, 05,41 conditioning on s;, and 7,1 . For notational simplicity, we define the tail-mirrored full history
?,Tl = (Th—1,ap_1, 0p,) and tail-mirrored observation history T,Ji = (Th-1,0n).

that is, they follow the same distribution conditioning on
Oh—1-

Backward Bellman Recursion: For any (h,6,7) € [H +
1] x A x II, we define the value function V}? e L*(Ty)
by

VT (TR) = (BT BYTR)(Th), (3.10)

for any 73, € I'y,, which gives the backward Bellman recur-
sion

VI (Fn) = (B VD) (T)s (G.11)

for any 7, € T'j,. The following corollary is implied by
Lemma 3.1, which relates the value function V,f’” to the

expected total reward. Note that Vhe "™ does not correspond
to the “reward-to-go” in the usual value function definition
in MDPs since it involves all rewards across the H steps.

Corollary 3.2. Forany (h,0,7) € [H + 1] x © x II, we
have

-3

i=1

Eﬁ'n'[ L’

oh 1} —0, (3.12)

forany (Fr,_1,an_1) € Tp,_1 x A. For h = 1, we have

J(0,7) = E[V{"™(01)] since T, = 0, and o = @, which
follows from the definition of T, in (2.3).
Proof. See Section D.2 for a detailed proof. O

Corollary 3.2 allows us to evaluate a policy m by esti-
mating {IB%Z*’”},ZHZI instead of {]P)Z*’”}hHil. Meanwhile,
{V,?’7T },IL{:l play a critical role in analyzing the sample com-
plexity.

3.2. Operator Estimation via Minimax Optimization

Although the finite-memory Bellman operator IB%Z’Tr defined
in (3.4) does not involve the observation distribution condi-
tioning on the history, that is, the distribution of oy, con-
ditioning on T, and oy, it remains unclear how to estimate
BZ*’W in a sample-efficient manner. Note that, by the defi-

. 0% . . . 0
nition of B, ", it suffices to estimate functions {Bﬂ,a} acA-

To this end, we define the operator Fi,a . L°(0?) —
L>°(O3) for any (h,a,0) € {2,...,H} x A x O by
(Fh o f)(0n—1,0n,0n41) (3.13)

=/ f(on—1,0n,0n41)
o

0 ~ o~ ~ g~
: Bh,a(oh’ Oh,, 0h+l) dOh d.Oh+17

forany f € L'(O3) and 0;,_1, o, € O. Note that IE‘Z Lisa
truncated version of IB%Z’”, which drops a few variables that
are redundant for operator estimation. The following lemma
motivates the estimator of Bz ,» which uses the definition
of IE‘Z o

Lemma 3.3. Forany (h,a,a’,7) € {2,..., H} x A% x1I,
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we have
Exnpr . Fhof = HEX)] =0,

for any f € L>°(0O3). Here, the distribution Phaa €
A(O?) is defined by

pz,a,a’ (Oh—17 Oh, Oh+1)
= Pg 7 (Oh—1 = Oh—1,0h = Oh, Oht1 = Ony1
a1 =a,an =d),
for any op—1,0p,0p41 € O. Also, we have
-
||Fh,a’||00—>00 < -

Proof. See Section D.3 for a detailed proof. O
Minimax Optimization: For any (h,d’,m) €
{2,...,H} x A x II, Lemma 3.3 allows us to esti-
mate BZ .« based on a dataset {Dj, 4.q' }ac.a, Where the
data points in Dy, 4 o are collected from the distribution
Ph aa- 1n other words, each episode involves three
steps: (a) we execute the exploration policy mw, which
takes the actions a1, ...,a,_s, (b) we take the actions
an_1 = a and a;, = d regardless of the observations,
and (c) we add the observation tuple (0p—_1,0p,0n 1)
t0 Dpa,ar- Based on {Dp a0 }(h,a,a)ef2,.... H} x.A2> WE

estimate {BZTQ,}(h’a/)e{Qw’H}XA by solving the following
minimax optimization problem,

min max max
0€0 feL>(0%):||fllo<l (h,a,a’)E{2,....H}x A2

E [(SF) o f —SF(X)].  (3.14)

Xwﬁh,a,a’

Here, ﬁh,aﬂ/ is the empirical distribution induced by
the dataset Dy, 4. Also, the projection operator S :
LY(03) — LY(O3) satisfies that

Ex~pl(S8/)(X)] = (3.15)

f(z) - p'(z) da,
03

for any f € L>°(0O3%) and p € A(O?). Here, pf € L}(0?)
is the projection of p onto linspan({¢;}5° ). See the defini-
tion of S in the next paragraph. The minimax optimization
problem in (3.14) is motivated by generative adversarial
networks. To see the intuition behind (3.14), note that f
serves as the discriminator and F,f,a, serves as the generator.

In detail, note that the function IE‘?W fin (3.13) is constant
with respect to the variable o5,4+;. Thus, Lemma 3.3 im-
plies that the true generator F}/, recovers the distribution
of (0p—1,0n,0h41) ~ d’,{’a’a,,(corresponding to the true
parameter 6*) from the marginal distribution of (05,_1, o).
In this case, the true distribution and the (fake) distribution

recovered by the generator can not be distinguished by any

discriminator in L°°(03). When we train the generator and
discriminator on a dataset, the discriminator class L>(O?)
has a too large capacity. Therefore, we employ the pro-
jection operator S to enforce the finite-dimensional linear
structure of d}, . .., which reduces the capacity of the dis-
criminator class. Such a projection operator guarantees the
generalization power of the solution to (3.14).

Projection Operator via RKHS: In the following, we de-
fine the projection operator S. To this end, we consider an
RKHS # induced by a kernel function K : O3 x 03 —
R. We define the corresponding RKHS embedding K :
LY(03) — H by

®p)w) = [ KGe.sn) o,

for any p € L' (0?) and x € O3. Moreover, we define the
matrix G € R*d by

(Gli; = (Ko, Kepj) w
= Exrg,, x e, [K(X, X)),

for any ¢,j € [d,]. Recall that the distribution functions
{¢;}f, are defined in Assumption 2.2. The following
assumption specifies the regularity condition on X and
{pi}fe,.

Assumption 3.4. The kernel function X is bounded and
continuous. In particular, we have |IC(x,y)| < 1 for any
x,y € O3, Also, we have a = A\pin(G) > 0, where we
denote by Apin () the minimum eigenvalue of a matrix and
the matrix G is defined in (3.17).

(3.16)

(3.17)

Here, the continuity of X is defined with respect to the topol-
ogy space O3, For example, O3 is (embedded as) a subset
of some Euclidean space and the continuity of C is defined
with respect to the corresponding Euclidean distance. The
boundedness of K is satisfied by many kernel functions, for
example, the radial basis function (RBF) kernel (Smola &
Scholkopf, 1998). For the positive definiteness of the matrix
G, note that, for any v = (v1,...,v4,) € R%, we have
do do )
UTGU = Z 2 <K¢i, K¢j>7{ = HZ v; - K(bz 7—L.
i=1

4,5=1

Therefore, to make G positive definite, it suffices to require
K¢1,...,K¢q, to be linearly independent in H. With the
the kernel function /C and matrix GG defined above, we can
verify that (3.15) holds for the operator S defined by

(Sf)(z) (3.18)
= Y (G i Byagvins, [K(@,Y) - F(Y)],
i,5€[do]

for any f € L>°(0?) and x € O3. Here, the distance in the
projection from p to p' in (3.15) is defined by

d(p1,p2) = [[Kp1 — Kpa||2, (3.19)
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for any py1, p2 € L1(O3?). See Section G.1 for a derivation.

3.3. Online Exploration via Optimistic Planning

We present the Optimistic Exploration via Adversarial
Integral Equation (OP-TENET) algorithm, which incorpo-
rates operator estimation into optimistic planning to perform
online exploration. In other words, we update the explo-
ration policy in Section 3.2 in an iterative manner. We
initialize OP-TENET with any policy 7o € II and a dataset

{Dh,a,a’}(h,a,a’)E{Q,...,H}X.Az =4, (3.20)

which are updated subsequently in the K iterations. Each
iteration consists of an exploration phase and a planning
phase. In the following, we describe the k-th iteration for
any k € [K].

Exploration Phase: Given the exploration policy 7;_1, we
run an episode of the POMDP for each tuple (h,a,a’) €
{2,...,H} x A? following the data collecting scheme
defined in Section 3.2 to add an observation tuple
(on—1,0n,0n41) into the dataset Dy, , - After the explo-
ration phase of the k-th iteration, we have k observation
tuples in the dataset Dy, o o+ for any (h, a,a’). Although the
dataset is collected by the exploration policies g, . . ., Tk —1
in the k iterations, we can regard it as a dataset collected by
the mixing policy

T = mixing{mg, ..., Tp_1}- (3.21)

where each policy is sampled uniformly at random as de-

fined in Section 2.1.

Planning Phase: We apply the operator estimation method
defined in Section 3.2 to the updated dataset in (3.20) and
construct a confidence set of the model parameter 0

o) = {9 €O LO)<B- k*W}, (3.22)
for a constant § > 0, where L(6) is defined as
MO = e Bt toan BB e
Ex.5,, . [SF o f —SHX).  (3.23)

Given the confidence set defined in (3.22), we update the
exploration policy by

T = argmax max J(0,7), (3.24)

rell  9€Ok
which is the optimal policy with respect to the optimistic
value estimator over parameters 6 in the confidence set ©.
Recall that J (0, 7) is defined in (2.2). Note that we can
perform the computation of (3.24) via a planning oracle
for POMDPs (Golowich et al., 2022). In detail, we can
reformulate (3.24) as

0, = argmax J (0,7(0)),
[ASISI

T = %(Hk),

where the planning oracle 7(-) outputs the optimal policy
with respect to any parameter. The constraint § € Oy, can
be further transformed as a part of the objective via the
Lagrangian relaxation. Then, we can apply the stochastic
gradient method to obtain 6y in a computation-efficient
manner. See Section C for more details. At the (k + 1)-th
iteration, we execute the exploration policy 7 to collect
data, which serves as the next exploration phase. We present
OP-TENET in Algorithm 1.

Algorithm 1 OP-TENET

1: Imput: number of iterations K, confidence level 3

2: Initialization: set 7 as a deterministic policy

3: Initialization: update the dataset Dy, 4 < @ for
(h,a,a’) € {2,...,H} x A?

4: For k =1to K do

5 For (h,a,a’) € {2,...,H} x A% do

6: Start a new episode

7: Execute 751 to take the first (b — 2) actions

8.

9

Receive the observation oy, _1
Take the action a, receive the observation oy,

10: Take the action a’, receive the observation oy, 1
11: End the current episode
12: Update the dataset

Dha,a' < Dhiaar U{(0h—1,0n,0n41)}

13: Construct the confidence set Oy, by (3.22)
14: Update the policy

Ty, <— argmax max J (6, )
rell 0cOy

15: Output: policy set {71, ..., 7k}

4. Theory

In this section, we analyze OP-TENET in Algorithm 1. In
Section 4.1, we prove that the policies generated by Algo-
rithm 1 converge to the optimal policy with a polynomial
sample complexity. Due to space limit, we defer the proof
sketch to Section A in the appendix, where we sketch the
proof by three key lemmas.

4.1. Sample Efficiency

The following theorem characterizes the sample complexity
of OP-TENET in Algorithm 1.

Theorem 4.1. Under Assumptions 2.1, 2.2, and 3.4, for any
0 > 0, if we choose a confidence level 5 in Algorithm I to
such that

B>d?(y+1)/a- \/8log(2KHA2/5),  (4.1)
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then, with probability at least 1 — §, we have

K
1
2 2 (O 7) = J (0%, ) “2)
k=1
< 4dsy2BH?A? -log K 4dyyH?
- K1/2 K

Recall that dy and d,, are defined in Assumption 2.1, y is
defined in Assumption 2.2, and « is defined in Assumption
34.

Note that the first term on the right-hand side of (4.2) is
the leading term for a sufficiently large number of itera-
tions K. Recall that the state distribution dimension dg
and observation distribution dimension d, are defined in
Assumption 2.1. Also, quantities v and « are defined in As-
sumptions 2.2 and 3.4, respectively. By Theorem 4.1, if we
run OP-TENET for K iterations and sample a policy from
{71, 7k } uniformly at random, the expected suboptimality
of such a policy converges to zero with high probability at
the rate of X ~'/2 up to logarithmic factors. Meanwhile,
such a rate depends on H, A, ds, d,, 7, and 1/« polynomi-
ally. In other words, to obtain an e-optimal policy for any
suboptimality € > 0, it suffices to run

K = poly(H, A, d, do,v,1/a) - O(1/€2) 4.3)

iterations in OP-TENET to collect the data set. Note that
the total number of episodes in K iterations is (H — 1) A% K.
To our best knowledge, Theorem 4.1 is the first polynomial
sample complexity upper bound for reinforcement learning
in POMDPs that is independent of the number of states and
observations. Moreover, the order of ¢ is optimal even in the
MDP setting (Ayoub et al., 2020), which is a special case of
POMDPs. In contrast to the sample complexity results in
MDPs, a key difference of Theorem 4.1 is that it involves the
(upper bound of the) operator norm -y of the bridge operator
Z§, which is the left inverse of the observation operator Q.
Recall that such a left inverse is defined with respect to the
finite-dimensional subspace linspan({¢;}$,) of L'(O?)
in Assumption 2.2. The (upper bound of the) operator norm
~ is a measure of ill conditioning, which quantifies the fun-
damental difficulty, in terms of the information-theoretic
limit, of reinforcement learning in the POMDP. In the degen-
erate case where @Z is not invertible, Theorem 4.1 provides
a trivial upper bound since we have v = co. On the other
hand, such a case contains examples that are fundamentally
impossible to solve in a sample-efficient manner, which is
implied by information theory (Jin et al., 2020a).
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A. Proof Sketch

In this section, we sketch the proof of Theorem 4.1. In detail, we prove the theorem by three key lemmas. The following
lemma provides a decomposition of the difference of expected total rewards in two POMDPs when the parameters are
different and the policies are identical. Recall that the function J is defined in (2.2).

Lemma A.1 (Value Decomposition). Under Assumptions 2.1 and 2.2, we have

J(0,m) = J(0', )
H
0, SN (— 'O, =
= 3 Eoal BTV (Tn) — BTV )
forany 0,0 € © and 7 € 11. Here, the function V:’fl is defined in (3.10).

Proof. See Section F.1 for a detailed proof. O

For any k € [K], we denote by 0, € © the model parameter that is selected in the planning phase of the k-th iteration
OP-TENET (Algorithm 1), which is defined in (3.24), that is,

(0, m) = argmax J(0,n). (A1)
(0,7)€O ), xII

We define the state-dependent error e : S — R by

ek (sh-1) = [Egr o [(BL ™ VT ) (F0) — By ™ VT ) () | 851 = spol,

(A2)

for any (k, h,sp—1) € [K] x [H] x S. Conditioning on the event 8* € Oy, which is shown to occur with high probability
in the following lemma, we have

J(H*JT*) — J(e*,ﬂ'k> < J(@k,ﬂ'k) 9 7Tk ZE@* - eh Sp_ 1)] (A.3)

which follows from Lemma A.1. Also, the following lemma characterizes the right-hand side of (A.3) when we replace the
policy 7 by the mixing policy 7y defined in (3.21).

Lemma A.2 (Statistical Guarantee). Under Assumptions 2.1, 2.2, and 3.4, for any § > 0, by choosing the confidence level
B in OP-TENET (Algorithm 1) such that it satisfies (4.1), with probability at least 1 — §, we have

e 0* € Oy,
o Boe e (50 1)] < 2HA25 - 1112

forany (k,h) € [K] x [H].
Proof. See Section F.2 for a detailed proof. O

To characterize the right-hand side of (A.3), it remains to connect Eg« , [ (s,—1)] with Eg- =, [e¥ (s,_1)], which involve
different state distributions. The connection is established in the following lemma.

Lemma A.3 (Telescope of Error). Under Assumptions 2.1 and 2.2, for any h € [H|, we have

K

ZEG mlef(sno1)] < 4ydsH + 2dslog K - m[??{( (k- Eoz,lef(sn-1)])-
=1

Proof. See Section F.3 for a detailed proof. O

Combining (A.3) with Lemmas A.2 and A.3, we obtain Theorem 4.1. See Section E for a detailed proof.
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B. Examples: Linear Kernel POMDPs

In this section, we show examples of the candidate class of the state transition kernels and observation emission kernels,
which satisfy our assumptions in the main paper. In particular, we consider the following definition of linear kernel POMDPs.

Definition B.1 (Linear Kernel POMDPs). We say that
L={(S,A0 HTE nr):60co}
is a linear kernel POMDP set, if each state transition kernel 7% and observation emission kernel £? in the set take the form,
Ty (s [ 5,0) = u(s) "My yu(s),  E;(o]s) = a(0) gh(s), B.1)

for any (h,0,s,s",a,0) € [H] x © x §? x A x O. Here, u, v, ¢, and gz are non-negative vector-valued functions with
dimensions d.,, dy, dg, and dg, respectively. The matrix M, g o € R%uxdv hag non-negative entries. Moreover, we have

1 € conhi({[u(-)];},) and

[u()]i € AS),  [q()]e € A(O),  forany (i, ) € [du] X [dg].

The following lemma shows that tabular POMDPs are linear kernel POMDPs.

Lemma B.2. For any finite state space S, finite observation space O, action space A, episode length H, initial distribution
u, and reward function v, we can define a linear kernel POMDP set {(S, A, O, H,T% % u,r) : 0 € ©} following
Definition B.1, which consists of all possible POMDPs with the aforementioned elements.

Proof. We define O as the set of all possible pair (%, £ ) such that T is a state transition kernel and £ is an observation
emission kernel with respect to the state space S, action space A, observation space O, and episode length . We let
dy =d, =|S|and d, = |O|. Forany § = (T, &) € O, we define

s =Tals [s,0), [ah()]o = Enlo]-),

for any (h, s,s’,a,0) € [H] x S x A x O. Also, we define

Ol =15 ="}, POl=1{s="1} [0 =1{o=",

[Ml?,a]sl

for any (s,0) € S x O. Then, by noting that we have 7% = T and £¢ = £ following the definitions of 7% and £? in
Definition B.1, we conclude the proof of Lemma B.2. O

B.1. Verification of Assumption 2.1

Recall that in reinforcement learning for a POMDP, the state transition kernel and observation emission kernel are
unknown elements of the POMDP. We say that the candidate class of the POMDP is a linear kernel POMDP set £ =
{(S,A,0,H, T? &% pn,r) : 6 € ©} when the candidate class of the state transition kernel and observation emission kernel
is {(7?,€%) : 0 € ©} and other elements of the POMDP are determined as (S, A, O, H, j1, ). The following lemma shows
that any linear kernel POMDP set satisfies the linear function approximation assumption (Assumption 2.1).

Lemma B.3. When the candidate class of the POMDP is a linear kernel POMDP set L as defined in Definition B.1, we
have that Assumption 2.1 holds with

ds < dy(dy+1) and do <ds.

Recall that d.,, d.,, and d, are the vector-valued function dimensions in the definition of L, and ds, d, are the number of
basis distribution functions in Assumption 2.1.

Proof. We prove the lemma by constructing the basis distribution functions {t;}%= | and {¢;}%°, satisfying Assumption
2.1.
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State Distribution: Note that to make F, € conh({t;}%= ), it suffices to let {[u];}?*, be a subset of {t;}% . In the
following, we construct the rest elements of {wi}fil to make F, € conh({z/)i}fil). For any (h,0, 7, sp, an,0n11) €
[H] x © x 8 x A x O, we have
Po.x(8h = Sh,Ont1 = Opt1|an = ap)
= / E p1(ons | Sna1) - T (st | Snoan) dsnir - Po,x(Sn = sn)
S

= (/ Enr(ongr | sni1) - ulsnn) "My, d8h+1)vh(8h) Do, (Sh = 5n), (B.2)
S

where the second equality is by the form of 7, in Definition B.1. Similarly, we have

Po.x(sh = sn) = Eo.[T_1 (sn | sh—1,an—1)]

= u(sn) "Eox[M} o, ,vn—1(sn-1)]. (B.3)

For notational simplicity, we define the vectors
G = (/S Enri(ongr | snir) - ulsngr) T MR, d5h+1)T7 (B.4)
G2 = Eo.x[M} a,_,vn-1(sn-1)]- (B.5)

Then, combining (B.2)-(B.5), we can write

P0,x(Sh = Sh | Ont1 = Opy1,an = ap)
_ Po,x(Sh = Sh, Opt1 = Opt1 | @p = ap) _ G on(sn)u(sn) "¢
pe,n(0h+1 = Oh+1 |ah = ah) pe,w(0h+1 = Oh+1 |ah = ah)

(B.6)

Note that we can rewrite (B.6) in a linear form,

Gl >
tr

T
Po,x\Sh = | Op 1:0h1ah=ah:<v~u-
7r( | + +1 ) () () ,pé,w(0h+1:0h+1|ah:ah)

where (-, -)4; represents the trace inner product of matrices. Therefore, we know that any function in F, can be represented
as a convex combination of the functions

{luO)]i - [v()]; Yielda) jeld.- (B.7)

Then, by normalizing each function in (B.7) as a probability distribution function, we obtain d,,d,, distribution functions,
whose convex combination contains all elements of F,. Thus, by denoting the set of such distribution functions plus {ui}?;l
by {1}, we have

ds = dy(d, +1), and F., F! C conh({1;}% ).
Observation Distribution: In the following, we construct the basis distribution functions {¢;}% such that F, C
conh({¢; f;l). Note that, for any (h, T, 0p, 0n11,0ns2, anyant1) € [H — 1] x © x O3 x A2, we have
pQ,Tr(Oh = Oph, Op+1 = Oh+41,0Kh4+2 = Op42 |ah = Qp, Ap41 = ah—i—l) (BS)
:/ Po,x(Sh = sn) - Ep(on | snsan) - Ty (Sne1 | Snran) - En i1 (0ng1 | Sng1)
SS

TR (Shea | Shats ang1) - € (on | sn) dsp dspy1 dspo
d

= > wije-qion) - gi(ons1) - ge(ons2)
irj,f=1
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where {wi j¢}i j,ec(a,) are defined by

Wi g0 = / Pox(sh = s1) T (sh1 | snoan) - T a (Snea | Sha1s angr)
83

lgh(sn)]i - g5 (sh+1)]; - g8 (Sha2)]e dsp dspi1 dspyo.

following the definition of £ in Definition B.1. For any i, j, £ € [d,], we define the distribution function ¢; ; , € A(O?) by
i,5,e(0n, On41, 0nt2) = Gi(on) - 4j(On+1) - qe(on+2)

for any o, 0p41,0p4+2 € O. Then, by (B.8), we have F, C Conh({qbi_’jyg}?‘;’g:l). Reorganizing the index, we can write
do _ dg : _
{oitizy = {qsi,jy@}i,jj:l with d, = d2~

Therefore, we conclude the proof of Lemma B.3. O

B.2. Verification of Assumption 2.2
For any (h, i) € [H] x [ds], we define vy, ; € A(O) by

Uns(0) = /S £9(on | s1) - i(sn) dsn (B.9)

for any o € O. Recall that {wi}fgl are the basis distribution functions in Assumption 2.1, and we prove their existence
when the candidate class of the POMDP is a linear kernel POMDP set in Section B.1. Let IC be a kernel function (different
from the kernel function K in Section 3.2) defined on O x O. For any h € [H], we define the matrix A;, € R%*4 by

[Ah]i,j = EOwV}L,ivo/NV’L.j [’C(O’ O/)]a forany:,j € [ds] (B.10)

Similar to Assumption 3.4, the following assumption specifies the regularity condition on K and {Vn,i}thermiclds)-

Assumption B.4. The kernel function K is bounded. In particular, we have |K(z,y)| < 1 forany z,y € O. Also, we have
Ay, = 0forany h € [H].

Note that for any h € [H], similar to the discussion under Assumption 3.4, the positive definiteness of the matrix Ay
requires the RKHS embedding of vy, 1, ..., v} 4. to be linearly independent. Here, the RKHS and the corresponding RKHS
embedding (operator) are defined with respect to the kernel function K. Asa special case, when the state space S and
observation space O are finite, we let

K(z,y) =1z =y}, foranyz,ye€ O,

and {;}%, = {1{s = -}}ses with dy; = |S|. Note that for a finite state space S, the integral in (B.9) is defined with
respect to the counting measure over S. Then, Assumption B.4 is equivalent to requiring the vectors {&(- | s) € RIOI }ses
to be linearly independent for any h € [H], which recovers the undercompleteness assumption in (Jin et al., 2020a).

The following lemma shows that any linear kernel POMDP set satisfies the invertible observation operators assumption
(Assumption 2.2), given the aforementioned linear independence condition.

Lemma B.5. Suppose the candidate class of the POMDP is a linear kernel POMDP set L as defined in Definition B.1 and
Assumption B.4 holds. Then, we have that Assumption 2.2 holds with

ds
20(s,0) = > ¥i(s) - [(An) iy - Eomw, , [K(0,0)] (B.11)
ij=1
forany (h,0,s,0) € [H] x © xS x O and

ds
— d . A -1 = d . A -1, .
v=d e ) oy =d- e ;“( W) i

Here, the matrix Ay, is defined in (B.10).
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Proof. By the definitions of the operators Zz and @Z, and function Z,‘? in Assumption 2.2, (2.4), and (B.11), respectively,
for any f € L'(S), we have

ds

(Z808 f)(s) = Z /S o Gi(s) - [(An) iy - vn () - K(0,0) - EL (0] s') - f(s')ds' dodd. (B.12)

7,7=1

When f € linspan({¢;}%,) with f = Zf;l ;- ¢;, we have

/52(0’\3’)~ " ds’ —/Zé’e "18") - abe(s Zl/hg - ¢y, (B.13)
s

where the last equality is by the definition of v}, ¢ in (B.9). Plugging (B.13) into the right-hand side of (B.12), we obtain

ds
(Ze@ f(s) = Z 02'1/12'(8)-[(/\}1) ] I/h] 0 ,0) Zl/h[ -cpdodo’
i,j=1
ds N
= i}j%:_l‘/’i(s) [(AR) i - </oz v, (0') - K(d, 0) - l/h,Z(OI)dOdOI) ¢y
ds
= Z Vi(s) - [(An) i - [Anlje - co
i,j,e=1

Here, the last equality uses the definition of the matrix Ay, in (B.10). By the definition of the inverse matrix, we have

ds

D AR i - [Anlje = 1{i = £},

=1

which implies

ds
(ZZ@ZJC)(S) = Z%(S) -¢; = f(s), foranyseS.
i=1

In the following, we characterize the operator norm || - |11 of Z9. For any (h, 0,0) € [H] x © x O, we have
/ |20 (s,0)|ds = / ’ Z Yi(s i / v ;(0") - K(o',0)do’| ds (B.14)
7,7=1 o
ds ds _
< [ 30 [0 [ (o) Ko 010 as
Si=1 =1 o
ds

ds B
= — ;[(Ah)l]i,j'/gvh,j(o/) ']C(OI,O) dOl,

where the last equality is by the fact that 1); is a distribution function over S for any i € [ds]. The right-hand side of (B.14)
is upper bounded by

2 ;[(Ah)_ ],Jw/oyh,j( )-K(o',0)do 1)
ds ds
Sl:1j:1|[(Ah) ]u‘-‘/@m,;( )-K(0',0)do
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For any (h, j) € [H] X [ds]. because the kernel function K is uniformly bounded by 1, following Assumption B.4, and U
is a distribution function over O, we have
‘ / U j( (0',0)do’

<1l (B.16)

Combining (B.14)-(B.16), we have

/S\Zﬁ(s,o)\ds < (max Z’ [(An) i ) -d, (B.17)

J€[ds]

for any (h,0,0) € [H] x © x O. Note that for any f € L*(O), we have

I1Z5 £l —/‘/ 2f(s,0) (O)do‘ds

/ 128(5,0)| - | (0)] dods
SxO

= [ ([ 1zis01as) 1o ao,

combining which with (B.17), we obtain

124 1l < (maxzy [(An) i) - 1 £

Therefore, we conclude the proof of Lemma B.5. O

C. Minimax Optimization in OP-TENET

In this section, we discuss the details on how to implement the computation of OP-TENET in practice. Recall that in the
planning phase (introduced in Section 3.2) of each iteration of OP-TENET, we only consider the parameter 6 such that

L(0) = max Ex.5, . ., |(SFhaf =SHX)]

FeL (@) [ Fllow <l (hasa)e 3es ) x A2

is sufficiently small. Here, S and IF(;L’Q, are operators defined in (3.18) and (3.13), respectively. Also, ﬁh%a/ is the empirical
distribution induced by Dy, , .-, wWhich consists of k observation tuples with k£ being the iteration index. For ease of
presentation, we assume that we have access to the following planning oracle.

Oracle C.1. We denote by 7 a planning oracle for any given POMDP. In other word, the mapping 7 : © — II satisfies
7(0) € argmax, ; J(0, m) for any 6 € ©.

With the planning oracle defined above, we select the parameter 85 by solving the following constrained optimization
problem,

gggj(a,%(e)) st. L(A) < Bk~ (C.1)

Then, we select the policy 7 = 7(0y).

C.1. Lagrangian Relaxation

In the sequel, we handle the constraint in (C.1) via the Lagrangian relaxation. In detail, solving (C.1) is equivalent to solving
the minimax optimization problem,

e ()
,a,a’ )€
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where A = (An,a,0') (h,a,0/)eT € RH-DA? 34 Ehﬂ,a/ (6) is defined by

Liaa(0) = Ex.5, . . [(SFhaf—SHX). (C3)

max
FEL®(O%):| flleo<1

Here, for notational simplicity, we denote by Z the set Z = {2, ..., H} x A2. Note that for each (h,a,a’) € Z, we need to
search a function within a ball in L>°(O3). To this end, we propose to search functions within a large function approximator
class, for example, a sufficiently large neural network. In detail, we denote by f’, ., the parametrization of the function
approximator, where w is the parameter with a candidate set V. For example, we can build a neural network whose input
space is O and output space is R/ ~DA* Then, w represents the weights of all layers and

_ 2
(fﬁa,a/(z))(h,aﬂ’)ez € R(H R

is the output of the neural network corresponding any input x € 3. Moreover, by properly choosing the activation function
of the output layer, we are able to make || f;’, ,/[loc < 1 forany w € W and (h,a,a’) € Z. Then, we approximately

compute Eh,a’a, (#) in (C.3) by computing max,,cyy E}‘;ma/ (0), where

1];},0,,0/ (9) = EXNﬁh_’a‘a, [(SFZ,a’ ;Ll,)a,a’ - Sf;:ia,a’)(X)L (C4)

for any w € W. Combining (C.2)-(C.4), we approximately solve the constrained optimization problem in (C.1) by solving

: _ -~ L (Tw _pB.1.-1/2
min | max J(6,7(0)) + Z Aasar  (Lf g (0) — B+ k71/7). (C.5)
(h,a,a’)ET
C.2. Stochastic Gradient Method
We denote by

LONw)==T(0.7O))+ Y. Muaa - (L aw(0) =Bk

(h,a,a’)e€T

the minimax objective in (C.5). In the sequel, we consider the stochastic gradient method for solving the minimax
optimization problem in (C.5). In detail, suppose that we have unbiased stochastic gradient estimators gg, g, and g,, such
that

E[ge (07 A, w)] = v9£(95 A, ’LU),
E[g/\((g, A, w)] = V,\£(97 A, w),
Elgw (0, \, w)] = Vo, L(0, A\, w),

for any (0, \,w) € © x R “DA* W, Also, computing gg, g, and g,, does not require access to the full data set
D = {Dh,a,a' fhe{2,..., H} x.42 and thus has a low computation cost. In each iteration, starting from any (6, A, w) within the
candidate set, we first update A and w by running

A= A+mc g0, w), W< w4 ny - gw(d, N\, w)
for Nqua steps. Then, we update 6 by running
0+ 0—no-go(0,\,w).

for Nprimal steps. Here, g, 7, 7, are constant stepsizes. Note that after each update, if the updated parameter is not in the
candidate set, we need to run an extra projection step, which replaces the updated parameter by its closest neighbor within
the candidate set. Because we need to call the planning oracle 7 after updating 6, which has a relatively high computation
cost, it is better to set Nprimal = 1 and set Nqyal as a large number.

In the sequel, we construct unbiased gradient estimators for the objective £(6, A\, w).
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Construction of g): To construct gy (0, A, z), note that we have
O LON W) = T o (0) — B k12

for any (h,a,a’) € {2,...,H} x A% Let B be a batch of data sampled from Dj, , o~ uniformly at random. Then, by
computing the batch average, we have

1

JE[@

> (SFh w fitaar = Sitaa) (@) = 8-k = n, L0 w). (C.6)
zeB

Forany (i, j, z) € [do] X [do] x O?, let Y; j , and Y} ; , be independent random variables in O® sampled from the distributions

¢; and ¢, respectively. Then, by the definition of the operator S in (3.18), we have

Sfitaa)@) = Y BlG i, K@, Yi ) fraw V)] (€7

i,5€[do]

Similarly, applying the definition of the operator Fz’a, in (3.13), we have

(SF s [0 (@) (C.8)
= Z E [[Gil]i,j K(2,Yij2) - / Iiaa (On—1,0n,0n41) - Bi,a(oh, Oh, On+1) dop, dopy1 |,
i,j€[do] o*
where we denote Yi’w = (Op—1,0n, 0n+1). Moreover, let ¢;, be a distribution supported on O? and 172” = (0h,On+1)
be a random variable in O? sampled from ¢;,,. Then, following the idea of importance sampling, we can rewrite (C.8) as
(SFZ,a’fﬁaﬂa’)(Z‘) (Cg)

St 4.0 (0Oh—1,0n,0111) - By, ,(0n,0n,0n11)
¢ip(Oh; On+1)

= 3 B[I67 i K Vi)

1,j€[do]

Combining (C.6)-(C.9), we construct gy (6, A, z) by

S (SFY o f o (@) = ST (@) = B K12,
zeB

1
[gA(Q,A,z)]h,a,a/ = T2
|B]
for any (h,a,a’) € {2,..., H} x A2, where

S 4.0 (Oh—1,0n,0111) - By, ,(On,0n, On11)
ip(On, On41)

)

SFz,a/f;ﬁa,a’ (1') = Z [Gil]i,j : ]C(x7}/;l,j,m) :

i,j€[do]
Sf;jja,a’ ($) = Z [G_l]iyj ' IC(QZ‘, Yi,j,w) ! f;Lija,a’ (}/z/,j,z)
i,5€[do]

Construction of g,,: To construct g,,(0, \, x), note that we have

Vw£(07 >\a U)) = Z )‘h,a,a' : vwi;ﬁa,a’ (0)
(h,a,a’)ET

= Y e Exop, [(VuSFh o filae = VauSfiaw) (X))
(h,a,a’)ET '

Thus, following the similar argument as in (C.7)-(C.9), we construct g,, (6, A\, w) as

—

1 —
gu@Aw) = Y Ahta,aw@Z(vaFz,a/ oo (@) = VuSFE, (7))
(h,a,a’)ET z€eB
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where
vwf}gja,a’ (oh—l? 5’17 6h+1) ' Bz’a(oha 5ha 6h+1)

bip(On, Ont1)

b

VuSFY o fiy (@) = > (G iy K(2,Yija) -

h,a,a’

i,j€[do]
VS, (2) = s Y, e 7
w fh,a,a’(a:) - Z [G ]1»] IC(%, 17J7‘/E) : vwfh,a,a’( i,j,z)'
i,je[do]

Here, Y; j 2, On_1, Op, O, and 0,11 are random variables defined the same as in the construction of gy.

Construction of gy: To construct gy (6, \, x), note that we have

VL0 w) =-Vol(0.7(0) + D Maa VoL ()
(h,a,a’)ET
==V (0.7O0) + D Anaw Exop, [(VSF] o il u) (X)) (C.10)
(h,a,a’)ET

Following the similar argument as in (C.8)-(C.9), we have the following unbiased estimator of the expectation in the second
term on the right-hand side of (C.10),

—

1
@ E VQS]FZ’Q, ;zlja,a’ (SC) (Cl])
reB

1 v (On-1,5h,Ons1) - VB (0n, 5n, O
:ﬁz 3 [G’l]i,j-IC(x,Y;,j,x).fh” (0h—1,04,0p+1) - VoBy, (0, 04, h+1).

2€Bi,je[do) Pip(Oh, On+1)

It remains to construct an unbiased estimator of the first term on the right-hand side of (C.10). Note that 7(9) is the
maximizer of J (0, -). Thus, by the envelop theorem, it suffices to estimate

(Vo (0,m))] ,_z0)- (C.12)
Note that for any (0, 7) € © x II, we have
J(9,7r) = / R(Ol,ﬂ'(’]’l), e 7OH77T(’7'H)) . ﬂ(Sl) . 51(01 | 81)
SHxOH
H-1
. ( H T? (Sh+1 | sn,m(h)) - €2+1(0h+1 | sh+1)) doy -+ dog dsy--- dsy.
h=1
Then, using the chain rule of the derivative, we have
H-1
VoJ(0,m) = / R(o1,7(1), ... 0m,m(Tr)) - pu(s1) - Ex o1 | 51) (C.13)
i—1 JSHxOH

: (VeThe(Sthl | s, 7(7h)) - Enyr(0ng1 | snp1)

+ ¢ (Snt1 | s, 7(7h)) - Vo&h 1 (0n41 | 8h+1))

H-1
: ( H TR (sngt | snm(m)) - Ep 41 (0n41 \Sh+1)) doy --- dogdsy--- dsy.
h=1,h#i

Using the relation V1n f = V f/ f, we can rewrite the right-hand side of (C.13) to obtain
H—-1
VoJ(0,7) = Z / R(o1,m(11),...,om,7(Th)) - u(s1) - Ex(o1 | s1)
i—1 J/SHxOH
. <VQ In 7;9 (Si+1 ‘ Si, W(Ti)) + VQ In 5f+1(0¢+1 ‘ 57;+1)>

H-1
. ( H T2 (Sh+1 | sn,m(Th)) - 52+1(0h+1 \ sh+1)) doy--- dog dsy--- dsg.
h=1
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Therefore, we have the following unbiased estimator of Vg.J (6, 7),

H-1
VoJ(0,7) = R(01,a1,...,0H,a5) Z Voln T (si1]8i,ai) + VoIn &l (0141 8i+1)),
i=1

where (81,01,a1,...,8,0m,a) is a trajectory of the POMDP with respect to the parameter 6 and policy 7. Note that
for the given parameter 6, the trajectory can be obtained from a simulator rather than the real environment, which does not
affect the sample complexity result in the main paper. Combining the above estimator with (C.10)-(C.12), we construct
go (97 >‘a w) as

90(0. ) w) = VoI (0,7(0)) + > )\haa,.|B|ZVgSIF P (),

(h,a,a’)€T z€B

where the second term is defined in (C.11).

D. Proofs for Section 3

In this section, we present the proofs for the results in Section 3.

D.1. Proof of Lemma 3.1

Proof. Following the notation in Lemma 3.1 and by the definition of ]B%‘Z”T in (3.4), we have
Eo[(BY™f)(Tn) | on-1] (D.1)
= /SXO3 F@hm(m))0n41) - po(0n = O, Ot = Ontt | 81 = 3n,ap, = (7))
- Z2 (3, 0n) - po(on = o | on_1) doy, Aoy, Aoy, 41 d3),.
Here, invoking Lemma G.1, we have
/o Zg(ghﬁh) -po(0op, = op | oh—1)don, = pe(sp = 5p|op-1).

Thus, we can rewrite (D.1) as

Eo[(BY™f)(Tn) |on-1] (D2)
= / FEL 7)), 0n41) - Po(0n = Ohy Ons1 = Ony1 | 81 = 3n, an = (7))
Sx0?

-p(sp, = Sy | op—1) doy, dop41 dsp,

=/ FEh () 0n41) - Po.x(0h = Oy Ont1 = Ot | Th—1) dBp dOp41.
02

where the second equality uses the independence between (0}, 05+1) and 73,_1 conditioning on (s, ap,). Replacing the
notations oy, and o0y, 1 of the integral variables on the right-hand side of (D.2) by o, and 0,1, respectively, we obtain

Eo[(B)™ f)(Fh) | on1] (D.3)
= /2 f(Tn,7(Th), 0n41) - Po,x (0O = 0Ohy Opt1 = 0nt1 | op—1) dop dop 1
o
=Eo[f(Ths1) | on-1]s

where we denote 7y, = (Tr,—1, ap—1,0n) and 7, = (75,1, 0p,). On the other hand, by the tower property of the expectation
and the definition of ]P’ft’7r in (3.1), we have

Eo,x[f (Fns1) | on-1] = Eox [Eox[f(Fas1) | Tn] | on1] = Eo [Py F)(Tn) | on-1]. (D4)

Combining (D.3) and (D.4), we conclude the proof of Lemma 3.1. O]
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D.2. Proof of Corollary 3.2

Proof. We prove the result in (3.12) by induction over h € [H + 1]. When h = H + 1, by the definition of the value
function in (3.10), we have

H
Eo VT (Frn) lon) = Boa[R(TFus) |on] = Box | ri|o

i=1

forany (Ty,an) € T'x x A. Recall that the variables 7 and azr appear in the event oz, which is defined in (3.7).

Assume that (3.12) holds when h = j + 1 for some fixed 5 < H. In other words, assume that we have

H
Eo Vi1 (Fis1) | 05] = Eox [Z

i=1

r a]} (D.5)

for any (7;,a;) € T'; x A. Then, by the definition of the value function in (3.10) and invoking Lemma 3.1, we have
0,7 (—
Eo V)™ (T;) | 0j-1] = Bo.[(B] V1) (T;) | 0] (D.6)

= Egﬁﬂ[ Pf J+1)(7 )| Uj—l]

= Eo V{3 (Fj41) | oj1],

(
(

where the second equality uses the tower property of the conditional expectation. Combining (D.6) with the induction
assumption in (D.5), we have that (3.12) holds when h = j. Thus, by induction we have that (3.12) holds for any h € [H +1].

Therefore, we conclude the proof of Corollary 3.2. O

D.3. Proof of Lemma 3.3

We prove a more general version of Lemma 3.3. In detail, we replace the true parameter 8 in Lemma 3.3 by any parameter
0 €0.

Lemma D.1 (General Version of Lemma 3.3). For any (h,0,a,a’,7) € {2,...,H} x © x A? x II, we have
EprZ:Z,a/ [(]F(?L,a’f - f)(X)] = 07 for any f € LOO(O?’)
Here, the distribution PZ’,Z, o € A(O3) is defined by
6,m _ _ _ _ _ !
Ph.a,a’ (0h71, Oh, 0h+1) = Po,r (0h71 = Oh—1,0n = Oph, Op41 = Op41 |Ap—1 = A, Ap = Q ),
for any op,_1, op, opy1 € O. Also, we have H]F,ew,Hooﬁoo <.
Proof. By the definition of F}, , in (3.13), we have
Ey o [(Fha f)(X)] (D.7)
Ph,a,a’ ’
:/ (B0 ) (0n—1,0m,0n41) - Py’ 4 (On—1,0n, 0 41) don—1 dop, dop 1
OB
= [ f(0on-1,0n,0n41) - B}, 4 (0n, 0n, 0n41)
(95
: PZ:Z,a/ (Oh—1,0n, 0n+1) dop—1 doy, dop41 doy, dop41.

Here, by the definition of ph aal in Lemma 3.3, we have

0,
/ Pha.ar (On—1,0n,0n41) doh 1 = Po,x(Op—1 = 0h—1,0n, = 0} | @p—1 = a). (D.8)
o
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Combining (D.7) and (D.8), we obtain
By [ o X))

= f(0n-1,0n,0n+1) - By, 2 (01, On, Ons1)
04
Po,x(Oh—1 = On—1,0, = 0y | @p—1 = a) dop—_1 doy, dop41 dop dop1,

where BZ@/ (O, On, On1) takes the form
B}, o (0n,0n,0n41) = /Spg(oh = 0n,0n41 = Oni1|8n = 3n,an =a')- 2L (3y, 0n) d3)
following the definition in (3.6). By the Markov property of the POMDP, we can write
p@,ﬂ'(ohfl = On—1,0n = Op, | ap—1 = a)
= /82 EN(on | sn) - T (s | sh-1,a) - Po.x(Sh—1 = Sn—1,0n—1 = 0p—1) dsp dsp_1
By Assumptions 2.1 and 2.2, we have

‘Zﬁ(gﬁ,oh)-Eg(oh\sh)-7f(sh|sh,1,a)d0hdsh =:7f(§ﬁ|sh,1,a)
SxO

Combining (D.10) and (D.11), we obtain

/ 20 (3h,01) - Po.r(On—1 = On_1,04 = 0y | @p—1 = a) doy, dsy,
o

= /877f(§h | Sh—1,a) - Do, x(8h—1 = Sh—1,0n—1 = 0p—1) dsp dsp—1
= Pg,x(Oh—1 = On—1, 8K = 5p | Qp—1 = a),
which implies
/O Bz,a/(oh,ah,ahﬂ) - po,x(Op—1 = 0p_1,0, = 0p |@p_1 = a)dop,
= pg,»(Oh—1 = Oh—1,0 = Op, Op41 = Op41 | @h—1 = G, @}, = a')

_ o ~ ~
= Ph,a,a’ (Oh—1,0nh,Ony1).

Then, combining (D.9) and (D.12), we have
Ey. e [(F X))

= f(on—1,0n,0n41) - pi’,’l,af (Oh—1,0n,0n+1) dop—1 dop, dop41 = EXNP?JW [f(X)].

’

o3 ,a,a

In the sequel, we prove ||IF2 o oo < . It suffices to prove

[(F), o £)(0n—1, 0n, 0n41)| = ‘/ f(0n-1,0n,0n41) - By, 4 (01, Ons On41) oy, dop41 | < 7,
02

(D.9)

(D.10)

(D.11)

(D.12)

(D.13)

for any f € L°°(0O3?) such that || f||oc < 1 and op_1,04,0n+1 € O. By the definition of the function BZ,a in (3.6), we have

‘/ f(0h71a5h75h+1) : Bz,a<0h75h75h+l)d5h d5h+l
02
< / ‘Bz7a(0hv5h35h+1)|d5h d5h+1
02
= / Po(On = On,On41 = Ont1|8h = Sh, @n = a) - |27 (S, 0n)| d5), dop don41
Sx0?

=/ |27, (3h, 0n)| d3h,
S

(D.14)
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for any 05,1, 0, € O. Note that by Assumption 2.2, we have
[ 128G 00105 = 1l < - ol = 2 (D.15)

for any (h,0,0;,) € [H] x © x O. Here, d,, is the Dirac delta function defined on O, whose value is zero everywhere
except at o, and whose integral over O is equal to one. Combining (D.14) and (D.15), we have that (D.13) holds.

Therefore, we conclude the proof of Lemma D.1. [

E. Proof of Theorem 4.1

Proof. For any ¢ > 0, by the definition of (0, 7 ) in (A.1) and the first statement in Lemma A.2, with probability at least
1 — 4, it holds that

JO ) = J(O 7)) < J(Op, ) — J (0%, 7x) (E.1)

for all k£ € [K]. By further applying Lemma A.1 to the right-hand side of (E.1) and using the definition of the error function
ek in (A.2), we obtain

J(O*,7) — ZEG* (BT VIET (Fy) — (B, VT ()]
h=1

M=M=

Eg my [Eoe m [(BrE ™ VT () — (B ™ V25T (Fn)] | sn-1)

IN

B« [ef (8h-1)], (E.2)

>
Il
—_

where the equality uses the tower property of the expectation. Telescoping both sides of (E.2) for k € [K] and applying
Lemma A.3, we obtain

K
> JOr, ) = J (0%, )

k=1

Eg« .z, [€) (Sh-1)]

NE
Wk

h
< Hd,

1

=~
Il

1

4vH + 2log K - grelflx] (k-Eoz, [eF (s 1)])) (E.3)

/—\

By applying the second statement of Lemma A.2 to the right-hand side of (E.3), we further obtain

K
> IO 7 = IO, ™)

k=1
. . 2,25 1.—1/2
SHdS(Zl’yH—l-QlogK grg%}((](k 2HA~B -k ))

< Hd(4vH + 2log K - 2HA*y*B - K/?),

which concludes the proof of Theorem 4.1. O

F. Proofs for Section A

In this section, we present the proofs for the results in Section A.
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F.1. Proof of Lemma A.1
Proof. By Corollary 3.2 and the definition of the value function in (3.10), we can write
J(0,7) =Eg [V (F1)], J(O',7) =Eo [ViyT,(Fris1)],

which implies
H
J(0,7) — = (B [V Fn)] = Eor 2 Vi) (Frsn)])- (F.1)
h=1

By the definition of Vhe "™ in (3.10), we have
Eo (Vi ™ ()] = Eor = [(BY Vi) ()] (F2)
Also, by Lemma 3.1, we have
Eor i« [V (Fri)] = Bor o [(Ph " V) (7)) = Eor o (B, " V) (F)]. (E3)
Plugging (F.2) and (F.3) into the right-hand side of (F.1), we obtain

H
J(0,7) = J(0',7) = Eo o [(BY V) () — (B), "V (7)),

which concludes the proof of Lemma A.1. O

F.2. Proof of Lemma A.2

Before proving Lemma A.2, we present several auxiliary lemmas for the proof of Lemma A.2. Recall that we define the
projection operator S in (3.18). The following lemma verifies the projection property of S as mentioned in (3.15).

Lemma F.1. Forany f € L>(O3) and p € A(O3), we have
Ex GNX)] = [ fe)-fia)da,

where p is the projection of p onto linspan({d)i}f;l) with respect to the distance defined in (3.19) and takes the form

plon-1,0n,0n11) = Y ¢i(0n-1,0n,0n11) - Y (G i Bxmg,yepK(X, V)], (F4)
J€[do] i€[do]

for any o1, 0p,0p41 € O3.
Proof. See Section G.1 for a detailed proof. O

Recall that {Dh,a@/}(h,a’a/)e@ ’’’’’ H}x.A2 is the dataset in Algorithm 1, which is updated in each iteration. For any k € [K],
we denote by Dh a,a the status of Dy, o o after the exploration phase of the k-th iteration of Algorithm 1. We denote by

Dh o, the empirical distribution induced by the dataset Df; , ... For any (k, h,a,a’) € [K] x {2,...,H} x A%, asa
special case of Lemma F.1 for p = Dh,u,a” we define the function pf Phoaa 0% = Rby

ﬁﬁ,a,a/ (Oh—1,0n, 0h41) = Z i (0n—1,0n,0n41) [@Z’a,a/]j,
J€ldo]
where the vector wh o € R is defined by
[@hawli= DG i Exoy yupe KX, Y), (E5)
i€(d) o

for any j € [d,]. Here, the matrix G € R% *do js defined in (3.17). The following lemma shows that, with high probability,
ﬁzﬂw, converges to pr.*, . as k goes to infinity. The convergence is with respect to the L!-norm in O3, which guarantees
the generalization power of the solution to the minimax problem in (3.14).
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Lemma F.2. For any fixed § > 0, we define the event G as

1haar = Phtaall < 5/ fer- /8log QK HA2/6) - k=172,
forany (k,h,a,d') € [K] x {2,...,H} x A% Then, it holds that G happens with probability at least 1 — 6.
Proof. See Section G.2 for a detailed proof. O

Moreover, for ease of presentation, we define the operator V%a : LYO3) — LY(O3) forany (h,a,0) € {2,..., H} x Ax©
by

(V) £)(0n—1,0n,0p+1) = /2 By o(0n,0n,0n+1) * f(0n—1,0n,0n+1) dop, dop1, (F.6)
o

forany f € Ll((’)3) and op,_1,0p,0n+1 € O, which is the conjugate (i.e., transpose) of the operator ]F,’;,a defined in (3.13).

Recall that we define pZ’Z « in Lemma D.1, which is the general form of pj , ,, for any 6 € ©. The following lemma
mirrors Lemma D.1.

Lemma F.3. Forany (h,0,a,a’,m) € {2,...,H} x © x A% x II, we have
0,
HVhaphaa’ ph,a,a’Hl =0.
Also, we have HVz,a,Hlﬁl <.
Proof. See Section G.3 for a detailed proof. O

Proof of Lemma A.2:

Proof. In the following, we condition on the event G defined in Lemma F.2, which happens with probability at least 1 — 4.

Proof of the first statement: Recall that we denote by D,’j,a,a, the status of Dy, 4, after the exploration phase of the k-th
iteration of Algorithm 1. Correspondingly, we define the function L : © — R by

L*(0) = max max EXNﬁ:,a,a’ [(SFZ,a,f - SHX)],

FEL® (O[Sl (hiaa’)E{2..... H}x A2

for any 6 € ©, which corresponds to the function L in (3.23) in the planning phase of the k-th iteration of Algorithm 1. To
prove 0* € ©F, it suffices to prove that

LFO*) < pB-k~Y2 (F7)

For notational simplicity, we write p’,?w)a, in short for pi*, .. Forany f € L>(O%) such that || f||c < 1 and (k, h,a,a’) €
[K] x {2,...,H} x A2, we have

Ex.py SFhof = SH)] (F.8)
=Byt JOFh o f =SHX] = Exvpr [Fh o f = HX))

- (/03 (FY o )(@) P go () dz — Exwpt [(]F,’;ta,f)(X)])
+( f(@) -ﬁz7a7a,(x)dx—EXNpﬁaa,[f(X)D,
03 ,a,

where the first equality uses

]EXNPZ,a,a’[( ha'f f)( )]
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following Lemma 3.3 and the second equality is by Lemma F.1. Recall that || f||.o < 1. By Holder’s inequality and the
definition of the event G in Lemma F.2, we have

| A@) Phaw@dr—Ex e f(X)] (F9)

< N fllos - 1P a0 = Phravarllt < d3/% /e \/8log(2KHA2/6) - k™12,

Similarly, we have

L E D@ @) de =By (LX) (F.10)

<IF o Flloo - 158 000 = Phavar I
< d¥*y/a-/8log(2KHA2/S) - k=42,

where the second inequality uses the fact H]Ff:a, [loo—00 < 7y from Lemma 3.3. Then, by combining (F.8), (F.9), and (F.10)
with the condition of 3 in (4.1), we have that the inequality in (F.7) holds for all k € [K].

Proof of the second statement: Invoking Lemma G.5, we have

Eo 7 [ef (sn)] S92 H - D> Vi uont, o = Pl (F.11)

a,a’ €A

17

for any (k,h) € [K] x {2,..., H}. By the triangle inequality, we can write

01 Tk Tk
th,a’ph,a,a’ - ph,a,a’ 1

O Tk O k
< HVh,a’ph,a,a’ _Vh,a'ph,a,a/

|1 + ||V}9L?a’pﬁ,a,a/ - pi,a,a’ 1 + lefcb,aya' B pz,k;z,a’ 1°

By the definition of O in (3.22) and the fact 6 € Oy, we have

0, k k —-1/2
"Vhl:a’ph,a,a’ - ph,a,a’ 1 < ﬁ -k /

By the definition of the event G in Lemma F.2, we have

0% aar = PRty < A2 /ac- \/8log(2KHA2/5) - k=12,

Similarly, we have

|, S IV s - 1oR s o = Ph el (E.12)

< d¥?y/a - \/8log(2KHA?/5) - k~1/2,

O T f 0 k
HVh,a/ph,a,a’ - Vh,a’ph,a,a/

where the second inequality uses the fact ||Vzta, |[1—1 < v from Lemma F.3. Combing (F.11)~(F.12) with the condition of 8
in (4.1), we obtain

Eox, lef(sn)] < 292 BHA? - k=12,
for any (k,h) € [K] x {2,...,H}.

Therefore, we conclude the proof of Lemma A.2. O

F.3. Proof of Lemma A.3

Proof. For any h € [H] and 7 € I, we denote by x7 the marginal distribution of s, with respect to the policy 7 and the
true parameter 6*. By Assumption 2.1, we have

™ T 1 Ty
ppk € conh(vp), ppt = e pp' € conh(v),
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for any (k,h) € {0,..., K} x [H]. Here, 7 is the initial policy and 7, with k € [K] is the trained policy in the k-th
iteration of Algorithm 1. Thus, there exist vector cf, ef € A([ds]) C R% such that

k—1
prE () =v0C) ek () =) e, @ = (1/k)- Z Ch-

Also, we define the vector b} € R% by

k)i = Espmuilehii(sn)],  foranyi € [d]. (F.13)
Then, it holds that
Eg+ mylef1(sn)] = (05) Ty Eoe mlen 1 (sn)] = (b7) "¢ (F.14)
For any ¢ € [ds], we define k; by
k .
@i:min{ké (K] :Z[ci]izlork‘:K}. (F.15)
j=1
Then, we can write
K ds K
D Eoemelefin(sn)] = DY bl - [h]s (F.16)
k=1 i=1 k=1
ds Kk, K
= (Z bk Ch i + Z )
i=1 k=1 k=k,+1

The first summation term on the right-hand side of (F.16) can be upper bounded as

k;

k;
k], < 27H - s < ddeyH. (F.17)
PCIRC! S5 ledls

i=1 k=1 i=1 k=1

ds

Qu
@

Here, the first inequality uses Lemma G.6, which provides an upper bound 2y H for each [b%];. Recall that [b¥]; is defined in
(F.13). Also, the second inequality uses the fact

k; k,—1

=4

= [+ Y ldli<i1+1<2,

k=1 k=1

which is by the definition of k; in (F.15) and the fact [c%]b < 1 since c%’ € A([ds]). In the sequel, we characterize the
second summation term on the right-hand side of (F.16). For any i € [ds] and k > k, + 1, we have

8]: - [ek: < o [k r (51)] - 12 E18)

= (k g =, [elfb-f-l(sh)]) : m
Ck i
< (max ¢-Ey- =, [efH_l(Sh)]) k[—hl]

JelK] Ej:1[czl]i

where the first inequality is by (F.14) and the second inequality uses the fact [Ci]o > 0. Note that for any (i, k) specified
above, we have

)
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since it holds that [c}]; € [0, 1] and Z [ ] > 1 by the definition of k,. Then, by applying the inequality x < 2log(1+x)
for any x € [0, 1], we have
s o )~ 2os 1
S T 2log( 7) = 2log ~2log S e (F.19)
k—1 hli
s lehli >iilehl: s

Combining (F.18) and (F.19), we obtain

ds K ds K k ) k—1 ]
b (Hel[alé 0By lehya(sn)]) - Y Y (2log ) [ef]i —2log > [ei)
i=1 k=k,+1 i=1 k=k,+1 j=1 j=1
ds K k; A
2(2% 0B =, (e 41 (s0)]) - > (log Y [eh]i —log Y _[ch]i)
i=1 j=1 j=1
< 2(52% - Eo =, [ehi1(sn)]) - ds - log K. (F.20)

Plugging (F.17) and (F.20) into the right-hand side of (F.16), we obtain

ZEQ* - e,H_l(sh)] < 4dsvyH + Q(max l-Eo- =, [eh+1(sh)]) ds - log K
k=1

which concludes the proof of Lemma A.3. [

G. Auxiliary Lemmas

In this section, we present (the proofs for) the auxiliary lemmas invoked in previous sections.
G.1. Proof of Lemma F.1
Proof. To see that p defined in (F.4) is the projection, we consider the minimization problem

min  [|Kp — Kl @D
p’Elinspan({@}?;J

for any p € A(O?). Note that the objective can be written as

IKp" = Kpll3,
= (Ko, Kp')u — 2+ (Kp', Kp)2 + (Kp, Kp')n
= EXN»U'»YNP' [IC(X, Y)} —2- ]EXN,)/,YN,,[K:(X7 Y)] + EXNp,YNp[IC(X’ Y)} (G.2)

Since we have p’ € linspan({e;}% ), there exists w = (w1, ..., wq,)! € R% such that

= Z w; - ¢j(x), foranyz € O
J€ldo]

By the above form of p’ and the definition of the matrix G in (3.17), we can further rewrite the right-hand side of (G.2) to
obtain

do
IKp' = Kpl3, = w'Gw =2 w; - Exng, yapK(X, V)] + Expymp[K(X,Y)] (G3)

=1

Plugging (G.3) into (G.1) and solving the obtained quadratic programming problem, we see that p defined in (F.4) is the
projection of p.
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By the definition of S in (3.18), we have
Ex~pl(SHX)) = D (G iy Exmpymgnyims, [K(X,Y) - f(Y)], (G.4)
i,j€[do]

where X, Y, Y” are independent variables in O3. By reorganizing terms in the summation, we can further write the right-hand
side of (G.4) as

D 1GMig  Bxapymgnyime, [K(X,Y) - f(Y)]
i,5€[do)

= 3 By, FY] D (67 g Exepy s [K(X,Y)]

J€[do] 1€[do)

- /O f@) S 650) - 316 iy Expyms, KX, V)] da,

j€ldo] i€[do]
combining which with the definition of p in (F.4), we conclude the proof of Lemma F.1. O

G.2. Proof of Lemma F.2

Proof. Forany (k,h,a,a’) € [K] x [2,..., H] x A2, let w,’fbﬁa’a, € R% be the vector such that

pf,ka,a/(ohflv Oh, Oh+1) = Z ¢i(0h*17 Oh, 0h+1) : [wz,a,a’]j’ (G.5)
J€ldo]

for any op,—1,0p,0n+1 € O, where {gbi}?;l are distribution functions defined in Assumption 2.1 and the existence of
w}’j .o 18 guaranteed by the assumption therein. Also, recall that we define f@}’i aa € R% in (F.5) and we have

~ ~k
Ph,a,a’ (Oh—lﬂ Oh, Oh-‘rl) = Z ¢j (Oh—la Oh;s 0h+1) : [wh,a,a’]j' (G.6)
J€Eldo]
For notational simplicity, we denote ¢ = (¢1, ..., ¢4, ) and write Plﬁ7a,a' in short for pﬁ’“@va,. Then, we can rewrite (G.5)

and (G.6) as

pZ,a,a’(') = qb(')—rwl]i,a,a’a ﬁﬁ,a,a’(') = ¢(')TU/}}I§,a,a"

Following the above definitions, we have

||Z)\lfb,a,a’ - pﬁ,a,a’ ||1 (G.7)

= / |$(0n—1,0n, 0n41) T (WF 4 0 — W 4 )| dop—1 dop, dop1
(93

< / 16(0n-1, 08, 0n41) 2 - [BF 000 — 105 o arll2 don—1 dop dopys
03
~L k
<d,- ”wh,a,a/ - wh,a,zﬂ”%

where the first inequality is by the Cauchy-Schwarz inequality and the last inequality uses
/ |¢(on—1,0n,0n+1)2 don—1 dop dop 41
O3

< / l6(0n—1,0n,0n+1)||1 dop—1 dop, dop41
03

do

= E / @i (0n—1,0n,0n41) dop—1 dop, dopy1 = do,
° 03
j=1
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as {¢7}d°1 are distribution functions over O3. Thus, to upper bound Hﬁz wa — p’fb w.a |1, 1t suffices to upper bound

Hwhaa wz,a,a’nz'

To this end, we define the vector U} , ., € R% by

Uk a0 =By g yonr KXY, (G.8)

h,a,a’

where ﬁ,’fb oo 1s the empirical distribution over O? induced by the dataset D , .. Then, we can rewrite the definition of

WF , o in (F5) as

s lrrk
wh,a,a’ =G Uh,a,a'7
where the matrix G € R% *% is defined in (3.17). Then, we can write
i k _ ll—l77k Lk k k
||wh,a,a’ - wh,a,a’||2 - ”G Uh,a,a’ -G C:u}h,az,o/H2 < 1/Oé : HUh,a,a’ - Gwh,a,a’ HQ (G9)

Moreover, by the definition of G in (3.17), we have

(Gl ouli= Y [Glij - [wh ol (G.10)
J€ldo]
= Z EXN(#MYN% [K:(Xa Y)] : [wz,ma’]j
J€ldo)
= @i(x) iy w o)y dz dy,
/(93><(93 ]%)] ’ h ]

By the definition of w,";}a)a, in (G.5), we can write (G.10) as

[Gwﬁ,a,a’}i = /(93 o bi (:C) ! ]C(‘Ta y) : plli,a,a/(y) dx dy = ]EXN¢77',,YNP’; a.al [’C(X7 Y)] (G.11)
% a,
Using the notation of the RKHS #, we can further rewrite (G.8) and (G.11) as

[Ullf,a,a/]i = <K¢17 Kﬁlli,a,a/>ﬂﬂ [Gwz,a,a/]i = <K¢Za Kp’lz,a,a’>7'l

Recall that K is defined in (3.16). Therefore, using the Cauchy-Schwarz inequality for the inner product in H, we have

fay 2
||Ul]f,a,a/ - wa]i,a,a’ng = Z (<K¢i7KDik7i,a,a’ - Kpﬁ,a,a’>7'l) (Glz)
i€[do]
< Z HKd)Z”%—[ ’ ||KDlli,a,a/ - sz,a,a/”?f{'
i€[do]

Since /C is uniformly bounded by 1 as specified in Assumption 3.4, we have
IK@:l1F, = Exngyy e, KX, Y)] < 1. (G.13)

In the sequel, we characterize ||K13’,§7a’a, — Kpj; 4o ll# on the right-hand side of (G.12) for any fixed (h,a,d’) €
{2,...,H} x A% For notational simplicity, we denote by Y; the data point that is added to Dy, 4, in the j-th itera-
tion of Algorithm 1. In other words, we have

Dy oo ={Y1,..., Y}, foranyk € [K].
Then, the random function process { M} ;>1 defined by

min{j,k} min{j,k}

M;() = (1/k) - ( > K- 3 (Kpp'ai)() (G.14)

i=1
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is a martingale in 7{ adapted to the data filtration {U{; } ;>0 of Algorithm 1. In detail, for any j € [K], we have that I{;
contains the information of all data collected in the first j iterations of Algorithm 1. Note that the data point Y; follows from
the distribution p,’ ., conditioning on U; _;. Therefore, we have

a,a’

E[K(Yj, ) = Koyl o) (@) [Uj1] = EK(Y), 2) |Uj 1] — B, | mi-1 [K(Y, 2)] =0,

h,a,a’

for any fixed z € O3, which implies that { M} ;> defined above is a martingale. Moreover, we have that the total quadratic
variation of {M};>1 is upper bounded by

k

k
(/) K (Y ) = (Kol )O3 < D2 (1/K?) -4 = 4k,

i=1
where the inequality uses the fact

||IC(YL7 ) - (Kpia,a’)(-)Hg-l

— K(Y;,Y:) +E KY,Y')] -2 E

- - [
Yoop, o ar Y P

following the same argument of (G.13). Then, invoking Lemma G.7 with

A =4/k and e=/8log(2KHA2/s) - k~1/?

for any § > 0, with probability at least 1 — § /(K H A?), it holds that

Ml = KD 4 o — Kpf 4ol < /8log(2K HA2/5) - k=12, (G.15)

Here, the equality uses the definition of p’g’a,a, = pz”“a’a,. Recall that 7y, is the mixing policy that uniformly selects a policy
from {mo, ..., m,—1} at random, which implies

1 k—1

k—1
1
k i k _ i
ph,a,a/ = E Z pZ@ﬂ’ and Kph,a,a/ - E Z KID‘IhT,a,a/'

=0 1=0

Then, by further applying the union bound, we have that, with probability at least 1 — 4, the inequality in (G.15) holds for
any (k,h,a,a’) € [K] x {2,..., H} x A% Combining such an upper bound with (G.9), (G.12) and (G.13), we have

[@F 40 — WF 4ol < dY?/a-\/8log(2KHA2/S) - k=12, (G.16)

Combining (G.7) and (G.16), we know that, for any > 0, we have

||ﬁl;z,a7a’ - pz,a,a’ ||1 < d2/2/a . \/8 10g(2KHA2/5) ' k_l/Q?

for any (k,h,a,a’) € [K] x {2,..., H} x A2, with probability at least 1 — J. Therefore, we conclude the proof of Lemma
F2. O

G.3. Proof of Lemma F.3
Proof. By the definition of V¢ in (F.6), we have

h,a

Exl LN = [ 1@)- (V)@ do. G17)

for any f € L>(0?) and p € A(O3). By combining (G.17) and Lemma D.1, we have

0,m 0,
03 f(x) ’ (V?L,aphl,a,a/ - ph,a,a’)(x) de,
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forany f € L°>°(03), which implies
VA abhfar = Phiasar =0
For any p € L'(0O3?) such that ||p||; = 1, we have
[Vh apll = /03‘/02 By o(0n,0n,0n41) - p(OR—1, 0, 0nt1) dop dopi1| dop—1 Aoy, dop41 (G.18)

< / Po(On = On,On41 = Ont1|8h = Sh,@n = a) - |27 (Sh, 0n)|
SxO5
- |p(on—1, 0n,0n41)| dsp dop, dopy1 dop—1 dop, dop41

= / |28 (3h,0n)| - |p(0n—1,0n, 0p41)| A3, doy, dop11 dop,—1,
Sx0O3

where the inequality is by the definition of Bfw in (3.6). Combining (G.18) with (D.15) from the proof of Lemma D.1, we
have

Vool < [ 2 10(0n1.00.0041)| don dory oy = 5.
X

which implies [V}, ,[l151 <.

Therefore, we conclude the proof of Lemma F.3. [

G .4. Property of the Bridge Operator
Lemma G.1 (Bridge Property). Recall that we denote by oy, _1 the event
Th-1=Th-1, Qh—1 = Qh—1.
For any (h,0,7,_1,an,_1) € [H] x © x T';,_1 x A, we have
Eo[Z] (3h, 0n) | on—1] = po(8h = 3n | on-1).
Proof. By the tower property of the expectation and the Markov property of the POMDP, we have
Eo[Z] (3h, 01) | on—1] = Eo[Eo[Z} (Sh, 0n) | Sh—1,@n—1 = an—1] | on_1]. (G.19)

Note that, for any s;,_; € S, we have

Eo[Z] (5h,0n) | Sh1 = Sh—1,@n—1 = ap—1] (G.20)

= / 2 (3h,0n) - po(on = op | Sh—1 = Sp—1,an_1 = ap_1) doy,
o

= 27 (3n,0n) - EL(on | 5n) - Po(8h = Sn | Sh—1 = Sh—1,@n—1 = ap—1) dsy, doy.
OxS

We define the function f : S — R by
f(sn) =po(sh = sn|Sh—1 = Sp—1,an—1 = ap—1), foranys, € S.
Then, we have f € F, and we can write the right-hand side of (G.20) as
(Z3 04 f)(5h) = f(5n) = po(sh = 5n | Sh-1 = Sh—1,@n_1 = ap_1)
following Assumptions 2.1 and 2.2. In other words, we have

Eo[Z] (5, 0n) | Sh—1 = Sh—1,@n—1 = ap_1] (G.21)

=po(8h = Sh | Sh—1 = Sh—1,8h—1 = Qp—1).
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Combining (G.19) and (G.21) and using the Markov property of the POMDP, we obtain

Eo[Z] (3h,0n) | on_1]

J

(

S
S
0

Po(Sn = Sh | Sh—1 = 8h—1,8h—1 = @p—1) - Po(Sh—1 = Sh—1|Oh—1) dSh—1

/pe(sh =5n|Sh—1=5n-1,0n-1) " Po(Sh—1 = Sp—1|op—1)dsp_1
=po(8h = 3n|on-1),

which concludes the proof of lemma G.1. O

The following lemma is a variant of Lemma 3.1, which adds the state information to the expectation condition.

Lemma G.2 (Variant of Lemma 3.1). For any (h, 0,7, 8h—1,Th_1,an-1) € [H x O x I xSxT)_1 x Aand f €
L>*°(T)41), we have

Ee[(BZ’wf)(?h) — f(Tht1) | Sh—1 = Sp—1,08-1] = 0.

Proof. The proof is very similar to the proof of Lemma 3.1. Following the notation in Lemma 3.1, by the definition of IB%Z”T
in (3.4), we have

Ee[(Bi’ﬂf)(?h) | Sh—1 = Sh—1,0n_1] (G.22)
= / . F@h 7)), 0n41) - po(0n = O, Ot = Ons1 | 81 = Bn,ap, = (7))
SxO
- 20 (3n,0n) - po(on = on | Sh_1 = $p_1,0n_1) doy, doy, dop4 1 d3y,.

Here, by (G.20)-(G.21) in the proof of Lemma G.1, we have
/ Z7(Sh,0n) - Po(0n = 0n | Sh—1 = sn_1,04_1) doy,
o

= / Z0(3h,0n) - po(on = on | Sh—1 = sn_1,an_1 = ap_1)doy,
o

=po(8h = Sh | Sh—1 = Sh—1,8h—1 = Qp—1)

= po(Sh = Sh | Sh—1 = Sh—1,0h—1).
Thus, we can rewrite (G.22) as
Eo[(B)™ £)(F1) | Sho1 = Sh—1,05—1] (G.23)
= /S><(92 f(7;rla77(7';]:),5h+1) P (On = Oh, Ont1 = Opt1|Sp = Sp,an = 7T(72))
-p(Sh = Sn | Sh—1 = Sh—1,0n—1) dop, dop11 dSp,

= / FEh (), 0hs1) - Po.x(0h = Ohy Ons1 = Oy | She1 = Sho1,0h—1) dO), dOpp1.
02

where the second equality uses the independence between (0}, 05+1) and 75,1 conditioning on (sy, ap,). Replacing the
notations oy, and o0j,41 of the integral variables on the right-hand side of (G.23) by o}, and op 1, respectively, we obtain

Eo[(BY™ £) (1) | $hot = Sh—1,0h1] (G.24)
= / fFn,m(Th), 0n+1) - Po,x (O = On, Ont1 = Ony1 | Sho1 = Sh—1,0h-1) dop, dop41
02
=Eox[f(Ths1) | Sh—1 = 8h—1,0n-1],

where we denote 7, = (Tr—1,a@n—1,0p) and 75, = (Th—1, 0p ). Therefore, we conclude the proof of Lemma G.2. O
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G.5. Properties of the Value Functions

Lemma G.3. Forany (h,m,0,7) € [H] x Il x © x 'y, it holds that

VT (7h) = /Eew[im

i=1

Sh = Sh, Th=1=Th-1,0h—1 = ah—l} - Z0(sn, on) dsp. (G.25)

Here, we denote Ty, = (Tp—1,an—1, 0p,) following the definition in (2.3).

Proof. We prove the lemma by induction over h € [H]. When h = H, by the definition of the value function in (3.10) and
the definition of IB%%’,7T in (3.4), we have

Vi (i) = (BY"R)(Tr) (G.26)

H-1
_ 9 ~ o~ ~ ~
= /02( (OH, + Z r(op, ap, ) . hﬁ(T;,)(OH’OH’OHH)doHdoHH

= om,™ )+ r(0n, an ) (/ B’ <0H75H75H+1)d5H+1) doy.
/O( r(@ ; o hm(rh)

Recall that T}; is the tail-mirrored observation history defined in (3.5). Note that, by the definition of {B%@}ae A in (3.6),
we have

/ BZ W(TT)(oH,5H,5H+1)d5H+1 (G.27)
O A H
= / pg(aH = 5H75H+1 = 5H+1 | gH = SH,aH = a) . ZZ(SH,OH) dSH d5H+1
Sx0O
= / po(on =0om | sy = sp,an = a) ZY(sy,on)dsy,
S

where we use the fact that sy, ag, o, and 041 in (3.6) have the same distribution of sy, ap, op, and 07 1. Combining
(G.26) and (G.27), we have that (G.25) holds for h = H.

Assume that (G.25) holds when h = j + 1 for some fixed j < H — 1. Then, by the definition of the value function in (3.10),

we have

Vf’”(?j) (IB%Q 7TVJQ_;{)( ;), foranyT; €T;.

Applying the induction assumption and definition of IB%?’” in (3.4), we obtain

H
@ VIE) = [ Eos[om

i=1
B 1/(04,05,0j41) dsj41 d0; doj 1. (G.28)

J77"(Tj

Sjt+1 = Sj4+1,Tj; = ﬂwag = ( ;)} Zh(SJ+170J+1)

Recall that 7' and T are the tail-mirrored observation history and full history defined in (3.5), respectively. Note that, by
the deﬁnltlon of { j,a}aeA in (3.6), we have

B (04,0/,041) (G.29)
gm(r])

:/SPO( j = 04,0511 = 0j4+1]|8; = 8j,a; =m(T j))'Zf(sjvoj)dsj

= /855(5]'|5j) -p9(0j41 = 0541 |85 = s5,a; =7(7))) - 2] (s;,0;) ds;
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Following the same argument in (G.20)-(G.21), we have

/ z (8415 0j41) - p9<07+1 =0j+1]8; =sj,a; =m(T )) doj 1
= po(8j41 = sj41 18 = 55,0, = 7(7])),

combining which with (G.29), we obtain
/O Zp(sj41,0541) 'Bfm@)(ojﬁjﬁjﬂ) doj 41
= /852(5]‘ |55)  Po(8j51 = sj1118; = s5,a; = (7)) - 20(s;,05) ds;
= /Spg (oj =0j,8j+1 = Sj41|8; =$;,a; = 71'(7';-[)) . Zj‘?(sj,oj) ds;. (G.30)
Plugging (G.30) into the right-hand side of (G.28), we obtain

BI"VT)(7) (G.31)

H
/SQXOEGF[ZT

=1

=t T
Sj41 = Sj41,Tj = T;,Q5 = W(TJ )]

po(0; =0, 8,11 = sj+1 |85 = sj,a; = (1)) - 2(s5,0;) ds; ds;j41 do;.

Using the Markov property of the POMDP, we can simplify the right-hand side of (G.31) to obtain

BVE) = [Eor[Sor]s

i=1

0
= S Tj—1 = Tj—1,Qj—1 = Gj— 1} 'Zj(sjvoj)dsja

which implies that (G.25) holds when h = j.

Therefore, we conclude the proof of Lemma G.3 by induction. [

Lemma G.4. Forany (h,0,7),7) € [H] x © x T'), x I, we have
V" ()] < 1.

Recall that vy is defined in Assumption 2.2.

Proof. By Lemma G.3 and Assumption 2.2, we have

H
el = | [ Eon[Sor
=1

<H-: / |Z) (shson)|dsy = H - || 2360, |1 < vH - ||60,

_ _ 0
Sp = 8p, Th=1=Th-1,0h—1 = ah—l] - Zp(sn,0n) dsp

IZ’YHv

for any (h, 0,7y, m) € [H] x © x T, x IL. Here, §,,, is the Dirac delta function defined on O, whose value is zero everywhere
except at oy, and whose integral over O is equal to one. Thus, we conclude the proof of Lemma G.4. O

G.6. Properties of the State-Dependent Error
Lemma G.5. Forany (k,h) € [K] x {2,...,H}, we have

Eo- 7 leh(sn)] SV2H - > |[Vikonk, o = oitarlly
aaEA
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Proof. By the definition of efl in (A.2), we have

ef(sn_1) = ’Ee*,m[(Bek’ﬂkVﬁp)( h) — (Bg TrkV}fi’lﬂk)(?h) | Sh—1 = sh—1]|, (G.32)
for any s,_1 € S. Note that, by the definition of B‘Z’” in (3.4), we have
Eg m, (B> ™ Vs ™) () — (B}, ™ V;fi’f”“)(ﬂ) | Sho1 = Sh1,Tho1 = Tho1] (G.33)
= / Vf?j-’lﬂk (Fhs 7 (7), On1) ABhk’ t,(0n;0n, Ony1)
03 7k (Ty,)
- po+ (0n = on | Sh—1 = sh—1,an—1 = T (Th—1)) dop doy, don+1,
for any (sp—1,7h-1) € S x Ty, where ?L = (Th—1,an-1,0n), Tg = (Th—1,0n), and
01,0 ~ ~ 0 ~ ~ 9* ~ ~
B ety (OO Onr) = BiE 43 (0n:0n, Oh1) = By, (1)(0h: On; Oh). (G.34)

By replacing the actions 7y (7,—1) and 7y, (TZ) on the right-hand side of (G.33) by all possible action combinations, we have

the inequality

Ege v, (B ™ Vios™ ) () — (B), ™ V™) (Fn) | sh—1 = sn—1. Tho1 = Th—1]] (G.35)
< Z / V:_}f_lﬂk Th,a Oh+1) ABha (Oh,ah,5h+1)
a,a’ €A

- o+ (0n = 0n | Sh—1 = Sp—1,ap—1 = a) do, dop, d5h+1‘.
Invoking Lemma G.4, we can further upper bound the left-hand side of (G.36) as
Ege n [(BY ™ VT (Fy) — (B ™ VST ) Th) | shot = She1, Thot = Tl (G.36)

Ok, ~ o~
< E sup |Vh-l|c-1k(7—h7a On+1)| / /ABha/ (Ohs0n, On+1)
02

a,a’ €A (?;75h+1)€fh, xO

- pg= (0O = on | Sh—1 = Sp—1,GH-1 = a) doh‘ doy, dop41

/ ABhk,/ (0h70h70h+1)

SZ’YH/Z

a,a’ €A

- po+ (0 = Op | Sh—1 = Sp—1,Qp—1 = a) dOh‘ doy, dop41-

Combining (G.32) and (G.36), and applying Jensen’s inequality, we obtain

¥ (sh-1) Z’YH/Q

aaG.A

/ ABZ?(;?* (Oh, 5h, 5h+1) (G.37)
(@]

“pg=(0n = op | Sp—1 = sp—1,ap—1 = a)doy| doy, dop41,

forany sp,_1 € S.

In the sequel, we characterize the expectation of both sides of (G.37) with respect to the marginal distribution of s;,_1. We
define the function f : S — R by

f(sh-1) = / BZ’“@ (On, On, Oh+1) - Do* 7, (Oh = On, Sh—1 = Sp—1|@p—1 = a)dop, (G.38)
o
for any sp_1 € S. With f defined above and the inequality in (G.37), we have

B el =28 3 [ 11 a0 (G.39)

a,a’ €A
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where we take the expectation of both sides of (G.37) with respect to the marginal distribution of s;,_1, following the policy
T . Note that we can write the probability on the right-hand side of (G.38) as

po+ 7, (On = On, Sh_1 = sp—1 | an—1 = a)

= po= 7 (Sh—1 = Sh_1|Op = On,ap_1 = a) - pg= =, (0n = o |@p_1 = a),

which implies f € F. C linspan({t; f;l) following Assumption 2.1. Then, by further applying Assumption 2.2, we
obtain

Iflle = 128100 _1 flls < v 05 _1 fl]1- (G.40)

With f defined in (G.38) and O}gkl defined in (2.4), we can write
1051 fIh (G.41)
= / ‘ ABZ'Z{? (OhsOh, Ont1) - P+ 7, (O = Ony Sp—1 = Sp—1 | A1 = @)
OxS
- Ep_1(op—1|8n-1)dop dsp—1|dop_1
/ ‘/ ABek’/ (0n,On, On+1) - Do+ 7, (Oh—1 = On—1, 01, = Op | @p—1 = @) dop | dop—1
Here, we can rewrite the probability on the right-hand side as
Po 7, (Oh—1 = Op—1,0n, = 0p | ap—1 = a)

!
= / Po* 7 (Oh—1 = Oh—1,0n = Oh, 041 = Opy1 | @p—1 = a,ap = a') dop 41
(@]
T,
=/ Phta.ar (Oh—1,0h,0n11) dOp 1.
(@]

Recall that ABZ’:‘(;‘?* is defined in (G.34). Then, by applying the definition of Vz,a' in (F.6) for 8 = 0, and § = 6* to the
right-hand side of (G.41) and integrating for oy,, 0,11 over O? for both sides, we have

~ ~ 0 * - _
/03 H@}Gl—lle dOh d0h+1 HV ka’ph a,a’ Viez,a’ijca,a ||1 - ||Vh a’ph a,a’ pZ,ka,a’Hl’ (G42)

where the second equality is by Lemma F.3. Then, by combining (G.39), (G.40) and (G.42), we obtain

Eg- gz, [ef(sh1)] <7H - Y / [ fllx don dop+1

a,a’€A
<vie S [ 100 s do ds,
a,a’€A
- 72H Z Hvzkphka ,a’ pz,ka,a/ ”1’
a,a’€A
which concludes the proof of Lemma G.5. O

Lemma G.6. Forany (k,h) € [K| x{2,...,H} and sp,—1 € S, we have
eﬁ(sh_l) < 27H.
Proof. Forany (k,h,sp_1,Th_1,an_1) € [K] x {2,...,H} x 8 x Tj,_1 x A, we have

|Eq- [(Byr ™ V;ffrlm )(Th) | She1 = Sh—1,Th—1 = Th-1,@p—1 = ap_1]| (G.43)

= |Eg- [V ™ (F1) | $h-1 = Sh1, Tho1 = Th-1, an—1 = ap_1]| < 7vH,
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where the equality uses the definition of the value function in (3.10) and the inequality is by Lemma G.4. Similarly, by
Lemma G.2, we have

|Eo- (B) ™ VT (F) | She1 = Sh—1,Th-1 = Th—1, @h—1 = aj_1]| (G.44)
= |Eg+ r, [V}?ifk (Tht1) | Sh—1 = Sh—1,Th—1 = Th—1,@p-1 = ap_1]| < VH.
Combining (G.43) and (G.44), and using the triangle inequality, we have
|Eg- [(BZ’“"M V;fi’lm - BZ*’M V;fiim)(?h) | Sh—1 = Sh—1,Th—1 = Th-1,an—1 = ap—1)| < 2vH,
which, by Jensen’s inequality, implies
el (sn-1) = |[Ege m [(BI ™ VI — B VI (F) [ spo1 = spo]| < 29H.
Therefore, we conclude the proof of Lemma G.6. O

G.7. Concentration Inequality

Lemma G.7. Suppose that {M};>1 is a martingale defined on a Hilbert space H. For any ¢ > 0, if we have

D My = Myl < ¢, (G45)

7j=1

then, for any € > 0, it holds that
52
P(itzlgll/\/ljlly > s) < 2€xp{7ﬁ}.

Proof. The lemma is a special case of Theorem 3.5 in (Pinelis, 1994) (see also, Theorem 3 in (Pinelis, 1992)), which is a
more general result for martingales in Banach spaces. O



