
Adaptive Gaussian Process Change Point Detection

Edoardo Caldarelli * 1 Philippe Wenk 2 Stefan Bauer 3 Andreas Krause 2

Abstract
Detecting change points in time series, i.e., points
in time at which some observed process suddenly
changes, is a fundamental task that arises in many
real-world applications, with consequences for
safety and reliability. In this work, we propose
ADAGA, a novel Gaussian process-based solu-
tion to this problem, that leverages a powerful
heuristics we developed based on statistical hy-
pothesis testing. In contrast to prior approaches,
ADAGA adapts to changes both in mean and co-
variance structure of the temporal process. In
extensive experiments, we show its versatility and
applicability to different classes of change points,
demonstrating that it is significantly more accu-
rate than current state-of-the-art alternatives.

1. Introduction
Many real-world scenarios, such as quality control (Page,
1954), network analysis (Kurt et al., 2018) and fi-
nance (Lavielle & Teyssiere, 2007), posit the problem of
detecting sudden changes in a data-generating process, espe-
cially in time series (Chandola et al., 2009; van den Burg &
Williams, 2020). Finding such changes allows for isolating
different patterns in the data, and has pivotal consequences
in terms of safety and reliability of the predictive algorithms
used, e.g., for risk or malfunction monitoring (Basseville
et al., 1993; Skates et al., 2001; Galceran et al., 2017). In
particular, the notion of change point (CP) refers to a point
at which the hyperparameters of the model used to represent
the data change suddenly.

CP detection in time series has been extensively studied over
the years, e.g., by Scott & Knott (1974), Killick et al. (2012).
In particular, a classical solution to the problem of CP detec-

*This work was done while the author was at ETH Zurich
1Institut de Robòtica i Informàtica Industrial, CSIC-UPC,
Barcelona, Spain 2Department of Computer Science, ETH Zurich,
Zurich, Switzerland 3Department of Intelligent Systems, KTH,
Stockholm, Sweden. Correspondence to: Edoardo Caldarelli
<ecaldarelli@iri.upc.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

tion is offered by Adams & MacKay (2007). They propose a
Bayesian message-passing algorithm, called BOCPD, that
relies on the concept of run length, i.e., time between sub-
sequent CPs. In its original form, however, this algorithm
assumes i.i.d. data between CPs. This is problematic in
many time series applications, where temporal correlation
between samples is the norm, as discussed by Saatçi et al.
(2010). In particular, Saatçi et al. (2010) suggest to combine
BOCPD with Gaussian processes (GPs), so as to model
the time series. As a flexible and powerful tool to directly
model the mapping from time to the signal (Williams &
Rasmussen, 2006), GPs are well suited for this task.

Although extremely flexible, these BOCPD-based detec-
tion schemes heavily rely on the choice of the prior hyper-
parameters, and this might worsen their performance, as
discussed by Han et al. (2019). In particular, Han et al.
(2019) observe that statistical hypothesis testing offers a
more robust, yet effective way of dealing with CPs, as it
allows for error thresholds to be derived. These thresholds
can in turn be used to control false positive and false neg-
ative rates, which is crucial if the CP detection algorithm
is to be used in a real-world scenario (Tartakovsky et al.,
2014). These test-based approaches can be combined with
deep learning methods, as done, e.g., by Chang et al. (2019),
or with Gaussian processes. In particular, in the latter case,
finding CPs translates into finding points at which the mean
or covariance function of the underlying GP model changes.
In particular, Keshavarz et al. (2018) devise a hypothesis
testing procedure based on a generalized likelihood ratio
test, to detect a single CP in the mean function of a Gaussian
process with a fixed covariance function. Conversely, Han
et al. (2019) propose a similar test, in combination with
BOCPD, for a fixed mean function, which detects CPs in
the covariance.

However, assuming either constant mean or a global co-
variance structure might reduce the class of anomalies that
a CP detection algorithm can find, reducing in turn its ap-
plicability. We will show this in our experiments, where
different types of CPs are considered. In particular, it will
be clear that some phenomena, such as a gradual increase
in the frequency of a sinusoidal signal, cannot be detected
by an algorithm that only considers shifts in the mean.

In our work, we tackle the problem of GP-based CP detec-
tion from a heuristic point of view, designing a powerful

Adaptive Gaussian Process Change Point Detection

(a) RBF kernel. (b) Linear kernel. (c) Periodic kernel.
Figure 1. Function samples drawn from some GP priors with different hyperparameters. The kernel function determines the shape of the
function, and the class of CPs that can occur.

algorithm, based on statistical testing, which is able to de-
tect CPs based on the GP hyperparameters inferred from
the data, without relying on any assumptions of either the
mean or the covariance being constant. In presence of a CP,
our statistical test detects that a globally trained GP relies
on unreliable hyperparameters, and partitions the dataset
accordingly. For instance, a global GP might have an overly
large noise variance, that actually accommodates for a shift
in the mean of the series. Our algorithm is therefore par-
ticularly suitable for those real-world scenarios where the
GP hyperparameters are not known a priori, and acts as an
effective tool for validating the results of, e.g., a maximum-
likelihood inference (Williams & Rasmussen, 2006; Clifton
et al., 2012; Deisenroth et al., 2013). Furthermore, since
every portion of the dataset between two subsequent CPs
is standardized separately, the algorithm retrieves the best
piece-wise constant mean function. Since it is set up in an
online fashion and can easily be combined with different
GP approximation methods, it can directly deal with stream-
ing or big data problems, avoiding the well-known cubic
complexity of GP regression. Thus, it efficiently and simul-
taneously handles several types of CPs, and can be applied
to a wide range of practical scenarios, as we demonstrate
empirically in our experiments, Section 4.

Contributions In summary, we

• devise a novel heuristics based on hypothesis testing
and (approximate) GPs, to detect change points in our
data-generating process,

• combine this framework with streaming data process-
ing, to create a new algorithm, called ADAGA, that
performs efficient CP detecion in the realistic scenario
of ever-growing input domains,

• provide a publicly available implementation of
ADAGA1 and use it to in the context of CP detec-
tion, with different types of CPs being processed. In all
cases, ADAGA substantially outperforms the state-of-
the-art algorithms, in terms of accuracy and versatility.

1Code available at https://github.com/lasgroup/
adaga. The implementation uses scipy (Virtanen et al., 2020),
tensorflow (Abadi et al., 2016) and gpflow (De G. Matthews
et al., 2017).

2. Background: GP Regression
In this section, we recall the main preliminaries of GP re-
gression that form the basis of our work. An extensive
presentation of these topics can be found in Williams &
Rasmussen (2006).

GP Regression For notational simplicity, we consider
in this section the task of 1-dimensional GP regression.
Given a vector of input points t ∈ Rn, we aim at learning
a function x : R → R at these points, from a set of n noisy
observations, which we denote by y ∈ Rn. We call the
tuple (t,y) dataset. Moreover, we denote a datapoint in
the dataset as the tuple (tj , yj), for j ∈ {1, . . . , n}. The
approach easily extends to multidimensional input, where
the domain is a subset of Rd, d > 1, and the element ti in a
datapoint is a vector in Rd.

A kernel function k(·, ·), parameterized with a set of hyper-
parameters ϕ, and a mean function µ(·) allow us to define a
Gaussian prior distribution over the functions among which
the function x(·) is sampled:

p(x(t)|ϕ) = N (µ(t),C). (1)

Each element in the covariance matrix C is given by

Ci,j = k(ti, tj). (2)

If the kernel depends only on the distance between input
points, then it is called stationary.

W.l.o.g., we choose µ(·) to be 0. Moreover, we assume that
the observations are corrupted by additive, zero-mean Gaus-
sian noise with variance σ2. This results in the Gaussian
likelihood model

p(y|x,ϕ, σ2) = N (x, σ2I). (3)

From this, we can derive the Gaussian posterior of the func-
tion values, given the noisy observations, p(x|y,ϕ, σ2),
with mean and covariance

µpost = C(C+ σ2I)−1y, (4)

Cpost = σ2(C+ σ2I)−1C. (5)

The prior hyperparameters and the noise variance are in-
ferred by maximizing the marginal log-likelihood of the

https://github.com/lasgroup/adaga
https://github.com/lasgroup/adaga

Adaptive Gaussian Process Change Point Detection

observations

2 log p(y|ϕ, σ2) =− yT
(
C+ σ2I

)−1
y

− log
[
det

(
C+ σ2I

)]
− n log 2π. (6)

Approximating the Kernel Due to matrix inversions in
Equations (4), (5) and (6), standard GP regression scales
cubically in the number of observations. To improve the
computational complexity, the most common approach is
to replace the covariance matrix with a low-rank approxi-
mation. In this paper, we consider two families of approxi-
mations, namely inducing points (Snelson & Ghahramani,
2006; Titsias, 2009; Hensman et al., 2013) and feature ap-
proximations.

Inducing points are a small set of pseudo-inputs summariz-
ing the whole dataset. In this case, we assume that the ma-
trix in Equation (2) factorizes as Cn,mC−1

m,mCm,n. Cn,m

represents the correlation between inputs and the inducing
points, Cm,m the correlation among the inducing points
themselves, and Cm,n = CT

n,m. The optimal location of
the inducing points, along with the usual optimization pa-
rameters of GP regression, is learned by maximizing the
well-known SGPR bound on the marginal log-likelihood of
the observations as presented by Titsias (2009).

On the other hand, feature approximation
schemes (Williams & Seeger, 2001; Rahimi & Recht, 2008;
Mutny & Krause, 2018) approximate the value of the kernel
function at timesteps ti, tj as the inner product of two
finite-dimensional vectors. These vectors form the column
of the the so-called feature embedding matrix Φ, meaning
that the covariance matrix factorizes as ΦTΦ. We can
observe that this approximation is formally equivalent to
the inducing points’ one, when we substitute Cm,m with
the identity matrix, and Cm,n with Φ. Although there exist
several methods for computing feature embeddings, we
consider the deterministic and provably accurate scheme
provided by quadrature Fourier features (QFFs), presented
by Mutny & Krause (2018).

Partitioning Schemes Instead of approximating the ker-
nel, an additional way to reduce the complexity of GP regres-
sion consists of training multiple local models. For this pur-
pose, we cluster the datapoints into p subsets P1, . . . ,Pp ⊆
D, creating a partition of the dataset. This approach is par-
ticularly suitable for streaming scenarios (Nguyen-Tuong
et al., 2009; Stork & Stoyanov, 2020), as it allows to control
the size of the GPs’ supports, and prevents the runtime from
becoming prohibitive, even with an ever-increasing dataset.

3. Adaptive Streaming GP Regression
In this section, we describe ADAGA, our algorithm for
GP-based change point detection. Unless explicitly stated,

all the theoretical results are our novel contributions and
proven in the supplementary material, Sections E, F.

3.1. CPs and Kernel Function
Before presenting our algorithm in detail, we can observe
that the notion of CP is strictly related to the kernel function
used, for a GP-based CP detection scheme. As shown in
Figure 1, the choice of the kernel dictates the shape of the
functions that can be drawn from the prior distribution. This
in turn means that the type of CPs that can be detected by
a GP-based algorithm is determined by the process that
is used as prior model. For instance, a change in a linear
trend can be interpreted as a change in the variance of a
linear kernel, k(ti, tj) = σ2

lineartitj , whereas a change in
the variance and smoothness of the data can be related to
the hyperparameters of a radial-basis-function (RBF) kernel,
k(ti, tj) = σ2

RBF exp
{
−|ti − tj |2/2l2

}
.

3.2. Streaming Problem Setup
Having clarified the notion of CP within a GP-based frame-
work, we can introduce the fundamental concepts that form
the basis of our algorithm, ADAGA, and then character-
ize them in two well-known streaming scenarios, described
by Keshavarz et al. (2018).

Windows and Subwindows ADAGA is designed to work
with a streaming data source. That is, we consider a se-
quence of datapoints (ti, yi) to be sampled for a potentially
infinite amount of time. We allow the datapoints to be sam-
pled in batches with arbitrary size. At this stage, we do not
make any assumptions on the location of the datapoints with
respect to each other. As ADAGA gathers new datapoints,
it creates and updates a partition of the dataset D. We de-
note by windows the subsets W1, . . . ,Wp belonging to this
partition. In addition to the standard properties of a partition,
all the windows created by ADAGA contain datapoints that
are adjacent, w.r.t. to the order in which they are sampled.
This is encoded in the following condition:

∀i ∈ {1, . . . , p}, ∃ m,M ∈ {1, . . . , n} s. t.

Wi = {(tw, yw) ∈ D| m ≤ w ≤ M}. (7)

We can observe that the general definition of a window is
independent of the location of the sampled points in the
function’s domain. The partition is created dynamically.
During streaming, the batches are appended to the same
window, until it is found to contain a CP. Such a window is
then said to be spoiled. Thus, a reset is performed, and a
new window is created with the newly arriving datapoints.

In the next subsection, we design a criterion that implicitly
guarantees that the current window is not spoiled at each
step of the streaming, determining the size of each window
adaptively w.r.t. the dynamics of the process. This criterion
is based on the definition of subwindow, S, which is a

Adaptive Gaussian Process Change Point Detection

(a) Original data. (b) Mc, trained on W . (c) Mn, trained on S.
Figure 2. Figure 2a shows all datapoints in the current window W and the corresponding subwindow S of one step of ADAGA, for
temporal streaming. In red, we show mean and standard deviations of the posterior of Mc and Mn, the two GP models considered by the
statistical test. Clearly, a CP should be detected, as training on S leads to a more accurate posterior than W . W is spoiled.

(a) x(t) = sin(t) (b) x(t) = sin(t1.5)

Figure 3. Log-likelihoods involved in our test, on 2 different functions, processed with ADAGA, using an RBF kernel with 10 inducing
points and 1000 observations in [0, 10]. The function on the left can be modeled without the need of splitting its domain. However, the
likelihood based on just the subwindow is steadily larger than the null likelihood, which is not desirable. This is due to Mn being trained
via maximum marginal likelihood. Conversely, our PoE alternative likelihood is not larger than the null likelihood, unless the current
window is becoming spoiled (at 5.5s and 8.5s in the figure on the right), and a CP is detected. This is because the function on the right is
gradually accelerating, and a single, global RBF kernel cannot model it properly.

subset of a window fulfilling Equation (7). S is placed
on the last part of the window, so as to include the most
recent data. Contrary to the size of the windows, the size
of the subwindows |S| must be fixed throughout the whole
execution of the algorithm. While |S| can be chosen to be a
hyperparameter, we can also leverage prior knowledge about
the data distribution to derive a theoretically grounded size,
as shown in the supplementary material, Section C. In the
same section, we also show how a wrong subwindow’s size
affects the CP detection. We can observe that the definition
of subwindow requires that, at each step of the streaming,

|Wi| ≥ |S|. (8)

This automatically prevents ADAGA from working with
excessively small windows, making the optimization less
prone to overfitting.

Increasing-domain Streaming The type of streaming we
consider in our work is the increasing-domain streaming,
which arises when considering, e.g., time series data. The
key assumption is that the streaming follows the ordering
of the points in the domain. For 1-dimensional data, this
assumption can be formalized as follows:

∀(th, yh), (tk, yk) ∈ D, h < k ⇒ th < tk. (9)

This means that the size of the domain of x(·) increases dur-
ing streaming, while the sampling frequency stays constant.
If the domain of the function is multidimensional, we can
consider a suitable ordering for the points (e.g., a spatial
ordering). The points belonging to a window, and the ones
in a subwindow, are adjacent within the function’s domain.

Fixed-domain Streaming Another type of streaming is
fixed-domain streaming, where the function’s domain is
fixed, and the points are sampled from it, leading to a denser
dataset over time. In this case, a window comprises the most
recently sampled points, and ADAGA can be used to detect
abrupt changes in the process from which the function is
drawn, occurring during the streaming. However, due to the
limited practical applicability of this scenario, we do not
investigate it in this work.

3.3. Partitioning Heuristics
ADAGA’s partitioning strategy relies on detecting when a
window has grown excessively, so as to include a CP. Intu-
itively, we can observe that a window is spoiled if introduc-
ing a local GP on the subwindow improves the regression.
More specifically, the following set of hypotheses allows us
to quantify the beneficial effect of a GP trained on the sub-

Adaptive Gaussian Process Change Point Detection

window only. We will first give a high-level description and
then state them more formally in Definition 3.1. Note that
our alternative hypothesis is heurisics-based by definition.
Thus, it leads to a surrogate likelihood function. This should
not be confused with the true underlying data-generating
process, which is not explicitly modeled.

H0: The null hypothesis assumes that the function values
in the subwindow come from the same observational model
as the rest of the window.

H1: The alternative hypothesis assumes that the function
values in the subwindow come from the superposition of two
GP experts: Mc, potentially spoiled, which has the same
parameters as the rest of the window, and Mn, potentially
much better, whose parameters are inferred from the sub-
window only. To prevent the likelihood from collapsing to
the likelihood of a single component, the two likelihoods are
multiplied together (instead of being, e.g., summed). The re-
sulting model is a combination of a mixture-of-experts (Ma-
soudnia & Ebrahimpour, 2014) and a product-of-experts
heuristics (Hinton, 2002). The density of the subwindow is
a product of experts, since the likelihood of both GP experts
is multiplied together. The overall data is modelled via a
mixture of experts. While we use the product of experts
likelihood on the subwindow, the first part of the data is
modelled via the first GP only.

Definition 3.1. Let ϕH0
and σ2

H0
be the GP hyperparam-

eters and noise variance learned from the whole current
window. The null hypothesis H0 is that the marginal likeli-
hood of the observations ys in the subwindow is

p(ys|H0) = p(ys|ts,ϕH0
, σ2

H0
).

Moreover, let ϕnew and σ2
new be the GP hyperparameters

and noise variance learned from the subwindow, and Z1 ̸= 0
be a proper normalization constant. The alternative hypoth-
esis H1 is that the marginal likelihood of the observations
ys in the subwindow is

p(ys|H1) =
p(ys|ts,ϕH0

, σ2
H0

)p(ys|ts,ϕnew, σ
2
new)

Z1
.

On the subwindow, we now have two different likelihood
models for the same points ys. Thus, we can compare them
with a likelihood ratio test. In particular, we can define our
test statistic as follows:

Definition 3.2. Let Znew be the normalization constant
for the GP expert whose hyperparameters are learned from
the subwindow only, and let Vnew be its covariance matrix.
Given null and alternative hypotheses, the likelihood ratio is

R = 2 ln
p(ys|H1)

p(ys|H0)
= 2 ln

1

Z1
− 2 lnZnew − yT

s V
−1
newys.

For a given threshold value T specified later, we accept the
alternative hypothesis (i.e., we say that the current window

is spoiled) if
R ≥ T . (10)

The resulting algorithm is summarized in Algorithm 1. The
threshold values used there are presented in the next subsec-
tion. As presented in Algorithm 1, when a window is found
to be spoiled, a reset is performed. The end of the current
window is located |S| points before the current end, and so
is the beginning of the new window, which comprises the
last |S| points seen. This choice is motivated by the obser-
vation that, if a CP has occurred, these points are known to
belong to a new data-generating process. The initial size of
a window is set to 2|S|, so that, if a reset occurs, the con-
dition described in Equation (8) holds. Moreover, Figure 2
qualitatively compares the posteriors of Mc and Mn, on a
spoiled window.

Algorithm 1 ADAGA

1: Input: |S|, t, y, δ.
2: Output: p disjoint subsets of (t,y).
3: while ∃(tnew,ynew) do
4: twindow ⇐ [twindow, tnew].
5: ywindow ⇐ [ywindow,ynew].
6: if |(twindow, ywindow)| < 2|S| then
7: continue
8: end if
9: Standardize twindow, ywindow.

10: Train a GP Mc on twindow, ywindow.
11: Initialize ts, ys with the last |S| points in the win-

dow.
12: Train a GP Mn on ts, ys.
13: Compute R, using Mc and Mn.
14: Compute the thresholds TI , TII using δ.
15: Perform the statistical test using R, TI , TII .
16: if the test rejects H0 then
17: Save (twindow,ywindow) without the last |S| dat-

apoints.
18: twindow ⇐ Last |S| points in twindow.
19: ywindow ⇐ Last |S| points in ywindow.
20: end if
21: end while

3.4. Thresholds
The threshold used in Equation (10) needs to be chosen
so as to bound the probability of making errors, that is,
accepting the alternative hypothesis when the null one holds
and vice versa.

Controlling Type I Errors For the so-called type I
errors, we are interested in bounding the probability
P [R ≥ TI |H0], where TI is the alternative hypothesis’ ac-
ceptance threshold. The following theorem provides us with
a criterion for choosing a threshold that controls the type I
error probability.

Adaptive Gaussian Process Change Point Detection

Theorem 3.3. Let VH0
be the covariance matrix of the

likelihood in the null hypothesis. Moreover, let δ ∈ (0, 1),
λi,H0

be the i-th eigenvalue of the matrix V
1/2
H0

V−1
newV

1/2
H0

,
and µH0

= E [R|H0]. Setting

TI = µH0
+max{C0,H0

, C1,H0
},

where

C0,H0 =

√
8 ln (1/δ)

∑
i

λ2
i,H0

,

C1,H0
= 8 ln (1/δ)max

i
{λi,H0

} ,

guarantees a type I error probability of at most δ.

Controlling Type II Errors A similar procedure can be
followed to determine the acceptance threshold for control-
ling the so called type II errors. In this case, we are inter-
ested in bounding the probability P [R ≤ TII |H1], where
TII is the alternative hypothesis’ acceptance threshold. We
can derive the following criterion for choosing a threshold
that controls the type II error probability.

Theorem 3.4. Let VH1 be the covariance matrix of the
likelihood in the alternative hypothesis, that is, according
to the PoE formulation,

VH1
=

(
V−1

H0
+V−1

new

)−1
.

Moreover, let δ ∈ (0, 1), λi,H1
be the i-th eigenvalue of the

matrix V
1/2
H1

V−1
newV

1/2
H1

, and µH1
= E [R|H1]. Setting

TII = µH1 −max {C0,H1 , C1,H1} ,
where

C0,H1 =

√
8 ln (1/δ)

∑
i

λ2
i,H1

,

C1,H1 = 8 ln (1/δ)max
i

{λi,H1} ,

guarantees a type II error probability of at most δ.

Combining the Thresholds We can observe that, if TI ≤
TII , we have thresholds that guarantee low error probability
for both type I and type II (namely, the ones between TI and
TII). Thus, in the test, we actually compare the test statistic
against the threshold TI , only when such condition holds.

Further Discussion on the PoE Heuristics Note that in
the alternative hypothesis, the PoE is taken between the
marginal likelihoods p(ys|ts), not on the level of priors.
Thus, it can not be directly expressed as a structural change
in the kernel. Intuitively, we might be tempted to get rid
of the PoE in H1 completely and just consider the newly

trained hyperparameters. As we found in our preliminary ex-
periments, the new hyperparameters can be prone to overfit-
ting (see an example in Figure 3). This is no surprise, as the
hyperparameters are trained by maximizing the likelihood.
While there exist alternatives to this training scheme, e.g. the
work of Vehtari et al. (2017), we found that our choice of H1

solves this problem most reliably in practice. In principle,
a perfect likelihood ratio test should be able to catch these
issues and absorb it into its type I and type II error probabil-
ities and the related thresholds. However, up to our knowl-
edge, it is currently an open question how to analytically
calculate the quantities in question, and loose thresholds
might prevent the statistical test from working at all. Fortu-
nately, as we see in Definition 3.2, the PoE in H1 allows for
the H0 density to cancel and we thus obtain positive definite
matrices V1/2

H0
V−1

newV
1/2
H0

and V
1/2
H1

V−1
newV

1/2
H1

, which the
thresholds depend on. With these matrices, we can deploy
efficient, subexponential bounds. Thus, to facilitate a theo-
retical analysis, it is crucial that the alternative hypothesis
does not incorporate soft transitions, as e.g. done in Lloyd
et al. (2014), and has a clearly defined change point at the
beginning of the subwindow, in contrast to e.g. Han et al.
(2019), as this would not allow for similarly tight bounds
as we obtain in Theorems 3.3 and 3.4, whose tightness is
crucial for empirical performance. As we shall see later, the
resolution of change point locations can always be adjusted
by choosing the batch size of our algorithm.

3.5. Efficient Implementation of ADAGA
In this part, we discuss some details related to the statistical
test. These are relevant in order to get an efficient implemen-
tation of ADAGA, when the low-rank factorizations of the
kernel matrix, described in Section 2, are used to overcome
the cubic complexity of naive GP regression.

Simplified Test Since the expectation of a constant is the
constant itself, we have the following Lemma.

Lemma 3.5. Let Tr[·] be the trace operator, k ∈ {0, 1},
and Vnew be the covariance of Mn, the expert trained on
the subwindow. Let µ̂Hk

= E
[
yTV−1

newy
]
. Then,

µ̂Hk
= Tr

[
VHk

V−1
new

]
.

This can be used to simplify the statistical test, as it is
no longer required to compute the normalization constants.
Thus, instead of considering R as in Definition 3.2, we can
use −yTV−1

newy as test statistic, and replace the complete
µ in the thresholds with −µ̂ from Lemma 3.5.

Eigenvalues for the Thresholds In addition to the previ-
ously outlined results, we can now observe that the quanti-
ties involved in the thresholds do not require an explicit cal-
culation of the eigenvalues. In particular, let us first assume
that the matrices VH0 , VH1 and V−1

new can be computed
efficiently. We have that the following lemmas hold.

Adaptive Gaussian Process Change Point Detection

Table 1. Average F-1 scores (with standard deviation) of ADAGA for CP detection, implemented both with QFFs and inducing points
(IPs), and six comparable algorithms across three synthetic datasets (for 10 noisy realizations). A margin of 5 points was used. Bold
values indicate the highest average score for the dataset. Last column shows the overall average score across all noisy realizations of the
datasets. Precision, recall, and a visualization of the CPs can be found in the supplementary material.

ALGORITHM MEAN SHIFT DATA VARIANCE SHIFT DATA PERIODICITY SHIFT DATA AVERAGE
ADAGA (QFFs, RBF) 0.68± 0.12 0.75± 0.24 0.53± 0.2 0.65
ADAGA (IPs, RBF) 1.0± 0 0.6± 0.2 0.58± 0.15 0.73

ADAGA (IPs, Matern52) 1.0± 0 0.6± 0.2 0.59± 0.19 0.73
ADAGA (IPs, RQ) 1.0± 0 0.6± 0.2 0.6± 0.18 0.73

ADAGA (IPs, periodic) − − 0.29± 0 0.29
BINSEG (mean) 0.67± 0 0.5± 0 0.4± 0.04 0.52

BINSEG (mean & var) 0.67± 0 0.32± 0.02 0.36± 0.1 0.45
PELT (mean) 0.67± 0 0.51± 0.1 0.34± 0.04 0.51

PELT (mean & var) 0.53± 0.08 0.55± 0.12 0.38± 0.08 0.49
BOCPD 0.71± 0.09 0.65± 0.12 0.47± 0.12 0.61

RBOCPDMS 0.31± 0.02 0.43± 0.08 0.52± 0.17 0.42
GPTS-CP (RQ+const) 0.94± 0.15 0.59± 0.18 0.5± 0 0.68

ZERO 0.5± 0 0.5± 0 0.5± 0 0.5

Table 2. F-1 scores of ADAGA for CP detection, implemented both with QFFs and inducing points (IPs), and six comparable algorithms
across six real-world datasets. A margin of 5 points was used. Bold values indicate the highest score for the dataset. Last column shows
the average score across the datasets. Precision, recall, and a visualization of the CPs can be found in the supplementary material.

ALGORITHM RUN LOG BUSINV OZONE GDP IRAN GDP ARGENTINA GDP JAPAN AVERAGE
ADAGA (exact, linear) 0.57 0.77 − − − − 0.67
ADAGA (IPs, linear) 0.60 0.63 − − − − 0.62

ADAGA (QFFs, RBF) − − 0.97 0.87 0.82 0.89 0.89
ADAGA (IPs, RBF) − − 0.78 0.80 0.89 0.62 0.77

ADAGA (IPs, Matern52) − − 0.97 0.80 0.82 0.89 0.87
ADAGA (IPs, RQ) − − 0.97 0.80 0.82 0.62 0.8
BINSEG (mean) 0.43 0.37 0.65 0.49 0.89 0.62 0.57

BINSEG (mean & var) 0.35 0.24 0.56 0.39 0.8 0.57 0.49
PELT (mean) 0.31 0.37 1.0 0.49 0.89 0.62 0.61

PELT (mean & var) 0.45 0.20 0.60 0.44 0.67 0.50 0.48
BOCPD 0.52 0.27 0.75 0.39 0.80 0.80 0.59

RBOCPDMS 0.42 0.27 0.78 0.49 0.58 0.47 0.50
GPTS-CP (linear+const) 0.84 0.62 − − − − 0.73
GPTS-CP (RQ+const) − − 0.65 0.87 0.95 0.66 0.78

ZERO 0.45 0.59 0.72 0.65 0.82 0.89 0.69

Lemma 3.6. The eigenvalues of V
1/2
H0

V−1
newV

1/2
H0

resp.

V
1/2
H1

V−1
newV

1/2
H1

are the same as the ones of VH0
V−1

new

resp. VH1
V−1

new.
Lemma 3.7. Let λH0

and λH1
be the vectors of the eigen-

values of VH0
V−1

new resp. VH1
V−1

new. Moreover, let
k ∈ {0, 1}. Then,∑

i

λ2
i,Hk

= ||λHk
||22 = Tr

[
VHk

V−1
newVHk

V−1
new

]
.

Moreover, by the definition of infinity norm of a vector,
|| · ||∞, we have

max
i

{λi,Hk
} = ||λHk

||∞, (11)

which can be computed efficiently via the Arnoldi method
(Lehoucq et al., 1998).

We are then left with the question of whether the |S| × |S|
matrices VH0 , V−1

new and VH1 can be computed efficiently

when using our low-rank approximations of the covariance
matrix, described in Section 2. By applying the well known
Woodbury identity, a.k.a. matrix inversion lemma (Wood-
bury, 1950), we obtain the following proposition.

Proposition 3.8. Let m be the number of inducing points
(or QFFs) used. Then, the matrices VH0

, VH1
and V−1

new

can be computed in O(m3).

An extensive discussion on the computational complexity
of ADAGA can be found in the supplementary material,
Section D.

4. Experiments
This section reports the empirical results obtained using
ADAGA in the context of CP detection in time series. This
scenario allows us to test ADAGA with different kernels
and both the approximation schemes described in Section 2,

Adaptive Gaussian Process Change Point Detection

Table 3. Average delay (with standard deviation) of ADAGA for CP detection, across three synthetic datasets (for 10 noisy realizations).
A margin of 5 points was used.

ALGORITHM MEAN SHIFT DATA VARIANCE SHIFT DATA PERIODICITY SHIFT DATA
ADAGA (QFFs, RBF) 15.08± 2.02 11.86± 1.6 16.6± 3.44
ADAGA (IPs, RBF) 15.25± 0.89 10.8± 0.75 14.33± 3.4

ADAGA (IPs, Matern52) 15± 0 11.0± 0.89 15.25± 3.83
ADAGA (IPs, RQ) 15± 0 10.8± 0.75 16± 4.06

ADAGA (IPs, periodic) − − NA

and, most importantly, showcase the benefits offered by our
algorithm. All the experiments were performed on a custom
laptop (Macbook Pro 2019). The experiments with CP
detection consist of two parts. Firstly, we use some synthetic
datasets. Secondly, we consider some real-world datasets
described by van den Burg & Williams (2020). The goal of
these experiments is to show that a suitable kernel choice
allows ADAGA to flexibly detect a broad set of different
types of CPs, outperforming its competitors. The extended
empirical results can be found in the supplementary material,
Sections G, H.

Synthetic Time Series Our three synthetic series have
known CPs. In particular, we consider a series with two
shifts in mean, one with two shifts in the noise variance,
and one with two shifts in the periodicity of the signal.
A detailed description of these series can be found in the
supplementary material. For each series, we consider 10
different noisy realizations. These are processed with the
RBF kernel, both with 30 QFFs and 10 inducing points;
the Matern52 kernel, with 10 inducing points; the rational
quadratic (RQ) kernel, with 10 inducing points. In addition,
the last series is processed with a periodic kernel (MacKay,
1998).

Real-world Time Series Secondly, we use some of
the real-world benchmarks described by van den Burg &
Williams (2020). In our work, we choose the following
sets, whose detailed description is reported in the supple-
mentary material: Run Log, Business Inventories, Ozone,
Iran’s GDP, Argentina’s GDP, Japan’s GDP. Since the Run
Log and the Business Inventories datasets consist of varying
linear trends, we use a linear kernel in order to process these
series. This kernel is tested both with 10 inducing points,
and using σlinearti as the exact 1-dimensional embedding
for the i-th timestep. In all the other cases, we used 3 related
types of kernels: the RBF kernel, both with 30 QFFs and
10 inducing points; the Matern52 kernel, with 10 inducing
points; the rational quadratic (RQ) kernel, with 10 inducing
points. As described by van den Burg & Williams (2020),
the datasets were annotated by experts. This allows us to
quantitatively evaluate the performance of the algorithms of
interest against a ground truth.

F-1 Score As described by van den Burg & Williams
(2020), the exact location of a CP can be affected by some
degree of arbitrariness. This can be observed in the annota-
tions of the real-world time series, where the experts rarely
agree on the exact location of a CP. To overcome this issue,
as proposed by van den Burg & Williams (2020), we choose
a modified F-1 score as evaluation metric. Basically, a CP
is considered correctly identified if the algorithm chooses
any candidate within a certain margin around a true CP. As
reported in the supplementary material, choosing a margin
of 0 leads to meaningless results. Thus, a slightly larger
margin is needed. We choose a margin of 5 points, but
report a margin of 10 points in the supplementary material
to demonstrate robustness of the evaluation scheme.

Benchmarking For both synthetic and real-world
series, ADAGA’s performance is compared against
five state-of-the-art algorithms for finding CPs, in
terms of F-1 score: BOCPD (Adams & MacKay,
2007), RBOCPDMS (Knoblauch et al., 2018),
BINSEG (Scott & Knott, 1974), PELT (Killick et al.,
2012), GPTS-CP (Saatçi et al., 2010). The first four
algorithms are used with the default initialization provided
by their implementations2. For the latter algorithm,
following Saatçi et al. (2010), we trained the overall model
hyperparameters on a portion of the data (the first 30
observations), before running the CP detection algorithm3.
In line with the protocol used by van den Burg & Williams
(2020), from which we obtain the algorithms and the
datasets, all algorithms were provided with t and y, that
is, the time indices and the series’ observations. Note
however that t is ignored by BOCPD, BINSEG, PELT
and RBOCPDMS, mirroring the exact protocol used by
the respective authors in their analyses of time series, as
done, e.g., by Adams & MacKay (2007). A discussion
on the choice of the hyperparameters can be found in the
supplementary material. Moreover, following van den

2These algorithms are available in the R pack-
ages changepoint (https://CRAN.R-project.
org/package=changepoint) and ocp (https:
//CRAN.R-project.org/package=ocp), and at
https://github.com/alan-turing-institute/
rbocpdms.

3For GPTS-CP, we use the Matlab code accompanying the
Doctoral Thesis of Turner (2012).

https://CRAN.R-project.org/package=changepoint
https://CRAN.R-project.org/package=changepoint
https://CRAN.R-project.org/package=ocp
https://CRAN.R-project.org/package=ocp
https://github.com/alan-turing-institute/rbocpdms
https://github.com/alan-turing-institute/rbocpdms

Adaptive Gaussian Process Change Point Detection

Burg & Williams (2020), we use a ZERO method, that
returns an empty CP set. For BINSEG and PELT, we use
two versions of the algorithms, the first aimed at finding
CPs in the mean only, the second aimed at finding CPs
both in the mean and the variance of the signal. Since
GPTS-CP is a GP-based detection scheme, we tested it
with different kernels, according to the type of CPs of
interest. In particular, the linear kernel was used in the Run
Log and Business Inventories datasets, whereas a the sum
of an RQ and a constant kernel was used with the rest of the
datasets. The minimum window size |S| for ADAGA is
set to 15 points. We run ADAGA with a batch size of 1, to
achieve maximum resolution in the location of the CPs. To
avoid overly conservative estimates, we set δ = 0.6. An
additional comparision with the standard CUSUM detection
algorithm (Page, 1954) can be found in the supplementary
material. Tables 1 and 2 report F-1 scores, across the
datasets, for the aforementioned algorithms. ADAGA is
able to outperform its competitors, both on the synthetic
and on the real-world datasets. The first interesting result to
be noted is the beneficial effect of the GP-based modeling
used by ADAGA and GPTS-CP, which both exhibit
good results in the datasets with varying linear trends.
Conversely, the other algorithms fail at identifying those
CPs, and cannot capture the behavior of the signal properly.
However, GPTS-CP is heavily influenced by the choice
of the prior hyperparameters, which are fixed through the
execution of the algorithm. This means that the algorithm
struggles to identify those CPs that could be specifically
interpreted as sudden changes in the hyperparameters of the
underlying GP, such as heteroscedasticity and changes in
periodicity, as of Table 1. Furthermore, we can observe that
increasing the complexity of the kernel function (e.g., by
using an RQ instead of an RBF kernel) does not invalidate
the CP detection mechanism used by ADAGA, which gives
satisfactory results even in presence of more elaborated
kernels.

Detection Delay Besides the F-1 score, another equally
important performance metric for online CP detection is the
delay exhibited by the detection algorithm (Basseville et al.,
1993). This quantity describes how many new datapoints an
algorithm is required to see after the occurrence of a CP, in
order to notify the event. When considering ADAGA, we
can observe that its partitioning strategy is based on the GP
hyperparameter estimate from the subwindow. Therefore,
we need its size, |S|, to be large enough so that maximum
likelihood estimation can give meaningful results. Under
this assumption, we would expect our algorithm to detect
the CP with high probability, once the subwindow includes
mainly points coming from the new data-generating process
(i.e., after the CP). Thus, our algorithm incurs in a delay
that is roughly equal to |S|. This claim is strengthened by
the results shown in Table 3. There, we report the average

delay (with standard deviation) between the occurrence of
a CP in the synthetic time series, and the time at which
ADAGA detects it, when the CP is detected (i.e, it is within
a margin of 5 points around the true CP). As expected, in
the majority of experiments, this delay is smaller than or
approximately equal to the subwindow’s size, i.e., 15 points.
We choose the synthetic time series so as to have multiple
noisy realizations. An average delay smaller than the |S|
means that the CP is detected based on just a few samples
from the new data-generating process.

5. Conclusion
We have presented ADAGA, an algorithm for scalable GP-
based CP detection in time series. We tested our algorithm
with two different approximation schemes, namely QFFs
and inducing points, and a variety of kernels, showing its
ability to model a wide class of CPs, and outperforming
state-of-the-art competitors.

Acknowledgements
This research was supported by the Max Planck ETH Cen-
ter for Learning Systems. This project has received fund-
ing from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation
programme grant agreement No 815943.

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., et al. Tensorflow: A system for large-
scale machine learning. OSDI’16, pp. 265–283. USENIX
Association, 2016.

Adams, R. P. and MacKay, D. J. Bayesian online change-
point detection. arXiv preprint arXiv:0710.3742, 2007.

Basseville, M., Nikiforov, I. V., et al. Detection of abrupt
changes: theory and application, volume 104. Prentice
Hall Englewood Cliffs, 1993.

Boucheron, S., Lugosi, G., and Massart, P. Concentration
inequalities: A nonasymptotic theory of independence.
Oxford University Press, 2013.

Chandola, V., Banerjee, A., and Kumar, V. Anomaly detec-
tion: A survey. ACM computing surveys (CSUR), 41(3):
1–58, 2009.

Chang, W.-C., Li, C.-L., Yang, Y., and Póczos, B. Kernel
change-point detection with auxiliary deep generative
models. In International Conference on Learning Repre-
sentations, 2019.

Clifton, L., Clifton, D. A., Pimentel, M. A., Watkinson,
P. J., and Tarassenko, L. Gaussian processes for person-
alized e-health monitoring with wearable sensors. IEEE

Adaptive Gaussian Process Change Point Detection

Transactions on Biomedical Engineering, 60(1):193–197,
2012.

De G. Matthews, A. G., Van Der Wilk, M., Nickson, T., Fu-
jii, K., Boukouvalas, A., León-Villagrá, P., Ghahramani,
Z., and Hensman, J. Gpflow: A Gaussian process library
using Tensorflow. The Journal of Machine Learning Re-
search, 18(1):1299–1304, 2017.

Deisenroth, M. P., Fox, D., and Rasmussen, C. E. Gaussian
processes for data-efficient learning in robotics and con-
trol. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 37(2):408–423, 2013.

Galceran, E., Cunningham, A. G., Eustice, R. M., and Olson,
E. Multipolicy decision-making for autonomous driv-
ing via changepoint-based behavior prediction: Theory
and experiment. Autonomous Robots, 41(6):1367–1382,
2017.

Han, J., Lee, K., Tong, A., and Choi, J. Confirmatory
Bayesian online change point detection in the covariance
structure of gaussian processes. In Proceedings of the
Twenty-Eighth International Joint Conference on Artifi-
cial Intelligence, IJCAI-19, pp. 2449–2455, 2019.

Hegglin, M. I., Fahey, D. W., McFarland, M., Montzka,
S. A., Nash, E. R., et al. Twenty questions and answers
about the ozone layer: 2014 update-scientific assessment
of ozone depletion: 2014. 2015.

Hensman, J., Fusi, N., and Lawrence, N. D. Gaussian
processes for big data. In Proceedings of the Twenty-
Ninth Conference on Uncertainty in Artificial Intelligence,
pp. 282–290, 2013.

Hinton, G. E. Training products of experts by minimizing
contrastive divergence. Neural computation, 14(8):1771–
1800, 2002.

Keshavarz, H., Scott, C., and Nguyen, X. Optimal change
point detection in Gaussian processes. Journal of Statisti-
cal Planning and Inference, 193:151–178, 2018.

Killick, R., Fearnhead, P., and Eckley, I. A. Optimal de-
tection of changepoints with a linear computational cost.
Journal of the American Statistical Association, 107(500):
1590–1598, 2012.

Knoblauch, J., Jewson, J. E., and Damoulas, T. Doubly ro-
bust Bayesian inference for non-stationary streaming data
with β -divergences. In Advances in Neural Information
Processing Systems, volume 31, 2018.

Kurt, B., Yıldız, Ç., Ceritli, T. Y., Sankur, B., and Cemgil,
A. T. A Bayesian change point model for detecting sip-
based ddos attacks. Digital Signal Processing, 77:48–62,
2018.

Lavielle, M. and Teyssiere, G. Adaptive detection of multi-
ple change-points in asset price volatility. In Long Mem-
ory in Economics, pp. 129–156. Springer, 2007.

Lehoucq, R. B., Sorensen, D. C., and Yang, C. ARPACK
users’ guide: solution of large-scale eigenvalue problems
with implicitly restarted Arnoldi methods. SIAM, 1998.

Lloyd, J., Duvenaud, D., Grosse, R., Tenenbaum, J., and
Ghahramani, Z. Automatic construction and natural-
language description of nonparametric regression models.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 28, 2014.

MacKay, D. J. Introduction to Gaussian processes. NATO
ASI Series F: Computer and Systems Sciences, 168:133–
166, 1998.

Masoudnia, S. and Ebrahimpour, R. Mixture of experts: a
literature survey. Artificial Intelligence Review, 42(2):
275–293, 2014.

Mutny, M. and Krause, A. Efficient high dimensional
Bayesian optimization with additivity and quadrature
fourier features. In Advances in Neural Information Pro-
cessing Systems, pp. 9005–9016, 2018.

Nguyen-Tuong, D., Peters, J. R., and Seeger, M. Local
Gaussian process regression for real time online model
learning. In Advances in Neural Information Processing
Systems, pp. 1193–1200, 2009.

Page, E. S. Continuous inspection schemes. Biometrika, 41
(1/2):100–115, 1954.

Petersen, K. and Pedersen, M. The matrix cookbook, ver-
sion 20121115. Technical Univ. Denmark, Kongens Lyn-
gby, Denmark, Tech. Rep, 3274, 2012.

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. In Advances in Neural Information
Processing Systems, pp. 1177–1184, 2008.

Saatçi, Y., Turner, R. D., and Rasmussen, C. E. Gaussian
process change point models. In International Conference
on Machine Learning, 2010.

Scott, A. J. and Knott, M. A cluster analysis method for
grouping means in the analysis of variance. Biometrics,
pp. 507–512, 1974.

Skates, S. J., Pauler, D. K., and Jacobs, I. J. Screening based
on the risk of cancer calculation from Bayesian hierar-
chical changepoint and mixture models of longitudinal
markers. Journal of the American Statistical Association,
96(454):429–439, 2001.

Adaptive Gaussian Process Change Point Detection

Snelson, E. and Ghahramani, Z. Sparse Gaussian processes
using pseudo-inputs. In Advances in Neural Information
Processing Systems, pp. 1257–1264, 2006.

Stork, J. A. and Stoyanov, T. Ensemble of sparse gaussian
process experts for implicit surface mapping with stream-
ing data. In IEEE International Conference on Robotics
and Automation (ICRA), pp. 10758–10764, 2020.

Tartakovsky, A., Nikiforov, I., and Basseville, M. Sequential
analysis: Hypothesis testing and changepoint detection.
CRC Press, 2014.

Titsias, M. Variational learning of inducing variables in
sparse Gaussian processes. In Artificial Intelligence and
Statistics, pp. 567–574, 2009.

Turner, R. D. Gaussian processes for state space models
and change point detection. PhD thesis, University of
Cambridge, 2012.

van den Burg, G. J. and Williams, C. K. An evaluation
of change point detection algorithms. arXiv preprint
arXiv:2003.06222, 2020.

Vehtari, A., Gelman, A., and Gabry, J. Practical Bayesian
model evaluation using leave-one-out cross-validation
and WAIC. Statistics and computing, 27(5):1413–1432,
2017.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., et al. SciPy 1.0: fundamental
algorithms for scientific computing in Python. Nature
methods, 17(3):261–272, 2020.

Wainwright, M. J. High-dimensional statistics: A non-
asymptotic viewpoint, volume 48. Cambridge University
Press, 2019.

Williams, C. K. and Rasmussen, C. E. Gaussian processes
for machine learning, volume 2. MIT Press Cambridge,
MA, 2006.

Williams, C. K. and Seeger, M. Using the Nyström method
to speed up kernel machines. In Advances in Neural
Information Processing Systems, pp. 682–688, 2001.

Woodbury, M. A. Inverting modified matrices. Statistical
Research Group, 1950.

Adaptive Gaussian Process Change Point Detection

Table 4. F-1 scores for our CP detection experiments on synthetic data, obtained with a margin of 5 points, and a varying subwindow’s
size |S|.

|S| = 5 10 40
MEAN SHIFT 0.5± 0 0.9± 0.2 0.5± 0

VARIANCE SHIFT DATA 0.5± 0 0.76± 0.12 0.5± 0
PERIODICITY SHIFT DATA 0.5± 0 0.54± 0.14 0.5± 0

A. Useful Definitions and Lemmas
In this section, we restate one definition and one lemma that are extensively used in our work. Definition A.1 was taken
from the work of Wainwright (2019). The lemma can be found in Petersen & Pedersen (2012), Subsection 3.2.2.

Definition A.1 (Subexponential random variable). A centered random variable X is subexponential with non-negative
parameters (ν, α) if and only if

E
[
esX

]
≤ e

ν2s2

2 , ∀|s| < 1

α
.

Lemma A.2 (Woodbury identity– a.k.a. matrix inversion lemma). Let A and C be invertible matrices. Then, for any
matrices U, V with proper dimensions, we have

(A+UCV)−1 = A−1 −A−1U(C−1 +VA−1U)−1VA−1.

B. Derivation of the Posterior Covariance Matrix of a GP
Our posterior covariance in Equation (5) of the main paper is not in standard form, but it can readily be retrieved from the
standard form found e.g. in (Williams & Rasmussen, 2006):

C−C(C+ σ2I)−1C = (I−C(C+ σ2I)−1)C (12)

= (C+ σ2I−C)(C+ σ2I)−1C (13)

= σ2(C+ σ2I)−1C. (14)

C. Choosing the Subwindow’s Size
While we chose the subwindow’s size, |S|, to be a hyperparameter, it is also possible to derive it from the experimental
setup used. For instance, let us assume that the CPs are given by a sequence of i.i.d. Bernoulli experiments with parameter
p ∈ (0, 1). Then, the distance between two CPs, D, is a geometric random variable, whose cumulative density function is
given by

P[D ≤ k] = 1− (1− p)k. (15)

Now, let α ∈ (0, 1). Then, we can derive a lower bound on the distance between two CPs that holds with probability 1− α:

P[D ≤ k] ≤ α ⇔ 1− (1− p)k ≤ α (16)

⇔ (1− p)k ≥ 1− α (17)
⇔ k ≤ log1−p(1− α) (18)

⇔ k ≤ ln(1− α)

ln(1− p)
(19)

Therefore, setting

|S| = ln (1− α)

ln (1− p)
(20)

guarantees that, with probability 1−α, S will not include 2 subsequent CPs. This ensures in turn that each final window will
at most contain one CP, for sufficiently well behaved CP-distributions, since the subwindow’s size is equal to the minimum
window’s size.

Adaptive Gaussian Process Change Point Detection

Figure 4. ADAGA’s run time is linear w.r.t. an increasing time horizon.

To better appreciate the effects of choosing a wrong |S|, we can consider Table 4. There, we show the F-1 score obtained
by processing our synthetic series presented in Section 4 with different subwindow’s sizes, an RBF kernel and 10 IPs. As
expected from the previous derivations, if |S| is too small to infer the GP hyperparameters (5 points) or too large, so as to
include multiple CPs at the same time (40 points), the performance of ADAGA worsens.

D. Computational Complexity
To calculate the computational complexity of ADAGA, we can proceed as follows. Assume a sequence of n datapoints and
a batch size b. Training 2 sparse GPs on the current window of size wi is known to be O(wim

2). Using a sliding window,
the worst-case number of tests being performed is in O(n/b). As of Proposition 3.8, the complexity of a single test is in
O(m3), leading to an overall complexity in

O

n/b ·m3 +

n/b∑
i=|S|

wim
2

 ≤ O(n/b ·m3 + n2/b ·m2). (21)

For a constant upper bound on the window size, e.g., maximum distance between CPs, this simplifies to O(n/b).

Following these derivations, it can be observed that the scalability of ADAGA emerges when considering potentially
infinitely long time series. For an approximately fixed maximum window’s size (i.e., distance between CPs being detected),
ADAGA enjoys a linear runtime. The approximate GP methods presented in Section 2 will only be necessary if these
windows grow prohibitively large, giving the practitioner an additional, well-known tool to use in combination with ADAGA.
To better understand this, we can consider Figure 4. There, we ran ADAGA (with RBF kernel and IPs) on the time series
y(t) = sin(0.5t) with an increase in mean of 2 units every 25 points, and an increasing horizon. The batch size is set to
10 points, and the mean runtime, along with the standard deviation, are computed over 10 independent noise realizations.
As expected, given that the maximum distance between CPs is upper bounded by a constant, our algorithm enjoys a linear
runtime. Note that the splits performed by ADAGA are triggered by the detection of CPs, i.e., the maximum window size is
not associated to a hardcoded upper bound. An exact GP would be slower (due to the GP trainings being cubic in the size of
the current window), but would still enjoy the same linear complexity.

While in our implementation, we used the default parameters provided by scipy, who keep it constant, it should be
mentioned that the accuracy of Arnoldi’s method suffers for increasing number of observations. Thus, it might make sense
to increase this number linearly with the amount of observations, which would increase the computational complexity of
ADAGA to O

(∑n/b
i=|S|(wi +m3 + wim

2)
)

However, in our experiments, this was not necessary.

E. Thresholds for the Statistical Test
Here, we provide a detailed proof for Theorems 3.3 and 3.4, which give the thresholds to be used in ADAGA’s statistical
test. The notation is the same as the one used in Definition 3.1.

E.1. Threshold for Type I Errors

As stated in Subsection 3.4, for the so-called type I errors, we are interested in bounding the probability P [R ≥ TI |H0] ,
where TI is the alternative hypothesis acceptance threshold.

Omitting the conditioning on the null hypothesis, we get the following lemma.

Adaptive Gaussian Process Change Point Detection

Lemma E.1. Let TI = E [R|H0] + t = µH0
+ t and µ̂H0

= E
[
yT
s V

−1
newys

]
. Then,

R ≥ TI ⇔ yT
s V

−1
newys − µ̂H0

≤ −t.

Proof. By linearity of expectation, we get

R ≥ TI ⇔ R ≥ µH0
+ t (22)

⇔ −R ≤ −µH0
− t (23)

⇔ −R ≤ E[−R]− t (24)

⇔ −2 ln
1

Z1
+ 2 lnZnew + yT

s V
−1
newys

≤ E
[
−2 ln

1

Z1
+ 2 lnZnew + yT

s V
−1
newys

]
− t.

(25)

Setting

c = −2 ln
1

Z1
+ 2 lnZnew, (26)

we have

R ≥ TI ⇔ yT
s V

−1
newys + c ≤ E

[
yT
s V

−1
newys + c

]
− t (27)

⇔ yT
s V

−1
newys − µ̂H0 ≤ −t. (28)

Let us now consider the random variable yT
s V

−1
newys. According to the definition of a subexponential random variable

(Definition A.1), we get the following useful characterization of the random variable yT
s V

−1
newys − µ̂H0 . We will prove the

following theorem using similar techniques to (Wainwright, 2019), Example 2.8, and (Han et al., 2019), Theorem 3.1.

Theorem E.2. Let VH0
be the covariance matrix of the likelihood in the null hypothesis, and let λi,H0

be the i-th
eigenvalue of the matrix V

1/2
H0

V−1
newV

1/2
H0

. The random variable yT
s V

−1
newys − µ̂H0

is subexponential with parameters(√∑
i 4λ

2
i,H0

, maxi {4λi,H0}
)

.

Proof. In the following, we assume that all the matrices of interest exist. Thus, to ensure their positive definiteness, required
since we are computing inverses, we can add a small jitter to their diagonal. We can now observe that the random variable
yT
s V

−1
newys is a linear combination of independent χ2 variables, which we denote by ui, with one degree of freedom each.

This can be obtained by defining the following two random vectors, with QTΛQ being the eigendecomposition of the
matrix V

1/2
H0

V−1
newV

1/2
H0

:

y′
s = V

−1/2
H0

ys ∼ N (y′
s|0, I), (29)

y′′
s = Qy′

s ∼ N (y′′
s |0, I). (30)

Thus, we have

yT
s V

−1
newys = yT

s V
−1/2
H0

V
1/2
H0

V−1
newV

1/2
H0

V
−1/2
H0

ys (31)

= y′T
s V

1/2
H0

V−1
newV

1/2
H0

y′
s (32)

= y′T
s QTΛQy′

s (33)

= y′′T
s Λy′′

s (34)

=
∑
i

λi,H0
ui. (35)

Adaptive Gaussian Process Change Point Detection

To lighten the notation, the eigenvalues λi,H0
of V1/2

H0
V−1

newV
1/2
H0

are simply called λi, in the rest of the proof. We can

now observe that the matrix V
1/2
H0

V−1
newV

1/2
H0

is positive definite. This can be checked by firstly observing that V1/2
H0

is
symmetric, and then applying the definition of positive definite matrices:

xTV
1/2
H0

V−1
newV

1/2
H0

x =
(
V

1/2
H0

x
)T

V−1
new

(
V

1/2
H0

x
)

(36)

= qTV−1
newq (37)

> 0. (38)

The last inequality holds since V−1
new is positive definite, as stated at the beginning of this proof. Thus, each λi is strictly

positive, and therefore λiui follows a Γ distribution with parameters
(
1
2 , 2λi

)
. We know that, if each one of these variables,

after centering, is subexponential, then the sum is also subexponential, as reported in (Wainwright, 2019). To see that each
centered addendum is subexponential, we can proceed as follows. For λiui ∼ Γ(12 , 2λi), we know that, after centering, the
moment generating function is given by

E
[
es(λiui−E[λiui])

]
= e−λis− 1

2 ln (1−2λis). (39)

For s ∈
(
0, 1

2λi

)
, using the fact, reported, e.g., in Boucheron et al. (2013), Chapter 2, that

−u− ln (1− u) ≤ u2

2(1− u)
, ∀u ∈ (0, 1), (40)

we get

E
[
es(λiui−E[λiui])

]
≤ e

1
2

(2λis)
2

2(1−2λis) . (41)

For s ∈
(
0, 1

4λi

)
, we have that

inf
s∈

(
0, 1

4λi

){1− 2λis} =
1

2
, (42)

and so we get

E
[
es(λiui−E[λiui])

]
≤ e2λ

2
i s

2

. (43)

Moreover, we have that the inequality

E
[
es(λiui−E[λiui])

]
≤ e2λ

2
i s

2

(44)

holds also ∀s ≤ 0. This can be seen by using the well-known logarithmic inequality

ln (1− u) ≥ −u

1− u
, ∀u ≤ 0, (45)

which gives an upper bound on the left hand side. Therefore, it suffices to check that

e
−λis− 1

2

−2λis

1−2λis ≤ e2λ
2
i s

2

⇔ −λis−
1

2

−2λis

1− 2λis
≤ 2λ2

i s
2 (46)

⇔ −λis(1− 2λis) + λis− 2λ2
i s

2(1− 2λis)

1− 2λis
≤ 0 (47)

⇔ 4λ3
i s

3

1− 2λis
≤ 0. (48)

The last inequality holds ∀s ∈ (−∞, 0] (the numerator is negative, but the denominator is positive over that interval).
Therefore,

E
[
es(λiui−E[λiui])

]
≤ e2λ

2
i s

2

(49)

Adaptive Gaussian Process Change Point Detection

holds ∀|s| < 1
4λi

, and thus λiui − E[λiui] is subexponential with parameters (2λi, 4λi). By linearity of expectation and
the aforementioned composition property of subexponential random variables, we get that

yT
s V

−1
newys − µ̂H0

=
∑
i

(λiui − E[λiui]) (50)

is subexponential with parameters
(√∑

i 4λ
2
i , maxi {4λi}

)
.

Subexponential random variables are known to obey to the following tail bound (see, e.g., (Wainwright, 2019), Proposition
2.9).

Theorem E.3. Let X be a subexponential random variable with parameters (ν, α). Then,

P [X ≤ −t] ≤ e
− 1

2 min
{

t2

ν2 , t
α

}
.

Hence, we can now restate and proof Theorem 3.3, which gives a criterion for choosing a threshold that controls the type I
error probability.

Theorem E.4. Let δ ∈ (0, 1), and let λi,H0
, µH0

be as before. Setting

TI = µH0
+max

{√
8 ln

(
1

δ

)∑
i

λ2
i,H0

, 8 ln

(
1

δ

)
max

i
{λi,H0

}

}

guarantees a type I error probability of at most δ.

Proof. To lighten the notation, λi,H0
is simply called λi, in this proof. Linearity of expectation and Theorem E.3 give

P
[
yT
s V

−1
newys − µ̂H0

≤ −t
]
= P

[∑
i

(λiui − E[λiui]) ≤ −t

]
(51)

≤ e
− 1

2 min
{

t2

ν2 , t
α

}
(52)

= e
− 1

2 min

{
t2∑
i 4λ2

i

, t
maxi 4λi

}
. (53)

Such probability is smaller than δ for

t ≥ max

{√
2 ln

(
1

δ

)∑
i

4λ2
i , 2 ln

(
1

δ

)
max

i
{4λi}

}
(54)

We can therefore choose TI as in the statement of the theorem.

E.2. Threshold for Type II Errors

Since the subexponential tail bound is symmetric, a similar procedure can be followed to determine the acceptance threshold
for controlling the so called type II errors. In this case, according to Subsection 3.4, we are interested in bounding the
probability P [R ≤ TII |H1] , where TII is the alternative hypothesis acceptance threshold.

Omitting the conditioning on the alternative hypothesis, we get the following lemma.

Lemma E.5. Let TII = E [R|H1]− t = µH1
− t and µ̂H1

= E
[
yT
s V

−1
newys

]
. Then,

R ≤ TII ⇔ yT
s V

−1
newys − µ̂H1

≥ +t.

Adaptive Gaussian Process Change Point Detection

Proof. By linearity of expectation, we get

R ≤ TII ⇔ R ≤ µH1
− t (55)

⇔ −R ≥ −µH1
+ t (56)

⇔ −R ≥ E[−R] + t (57)

⇔ −2 ln
1

Z1
+ 2 lnZnew + yT

s V
−1
newys

≥ E
[
−2 ln

1

Z1
+ 2 lnZnew + yT

s V
−1
newys

]
+ t.

(58)

Setting

c = −2 ln
1

Z1
+ 2 lnZnew, (59)

we get

⇔ yT
s V

−1
newys + c ≥ E[yT

s V
−1
newys + c] + t (60)

⇔ yT
s V

−1
newys − µ̂H1

≥ +t. (61)

Again, we get a subexponential characterization of the random variable yT
s V

−1
newys − µ̂H1

.

Theorem E.6. Let VH1
be the covariance matrix of the likelihood in the alternative hypothesis, and let λi,H1

be the i-th
eigenvalue of the matrix V

1/2
H1

V−1
newV

1/2
H1

. The random variable yT
s V

−1
newys − µ̂H1

is subexponential with parameters(√∑
i 4λ

2
i,H1

, maxi {4λi,H1
}
)

.

Proof. The proof is the same as in Theorem E.2, with VH1
replacing VH0

.

Furthermore, we have the following bound for the right tail of a subexponential random variables.

Theorem E.7. Let X be a subexponential random variable with parameters (ν, α). Then,

P [X ≥ t] ≤ e
− 1

2 min
{

t2

ν2 , t
α

}
.

Hence, we can now restate and proof Theorem 3.4, which gives a criterion for choosing a threshold that controls the type II
error probability.

Theorem E.8. Let δ ∈ (0, 1), and let λi,H1 , µH1 be as before. Setting

TII = µH1 −max

{√
8 ln

(
1

δ

)∑
i

λ2
i,H1

, 8 ln

(
1

δ

)
max

i
{λi,H1}

}
guarantees a type II error probability of at most δ.

Proof. To lighten the notation, λi,H1 is simply called λi, in this proof. We use the same approach as in Theorem 3.3.
Linearity of expectation and Theorem E.7 give

P
[
yT
s V

−1
newys − µ̂H1

≥ t
]
= P

[∑
i

(λiui − E[λiui]) ≥ t

]
(62)

≤ e
− 1

2 min
{

t2

ν2 , t
α

}
(63)

= e
− 1

2 min

{
t2∑
i 4λ2

i

, t
maxi 4λi

}
. (64)

We can thus choose the acceptance threshold that leads to a type II error probability smaller than δ as in the statement of the
theorem.

Adaptive Gaussian Process Change Point Detection

F. Lemmas for an Efficient Implementation of ADAGA
In this section, we restate and proof Lemmas 3.5, 3.6, 3.7, and Proposition 3.8 (in this order), which concern the design of
an efficient implementation of ADAGA.

Lemma F.1. Let Tr[·] be the trace operator, k ∈ {0, 1}, and Vnew be the covariance of Mn, the expert trained on the
subwindow. Then,

µ̂Hk
= Tr

[
VHk

V−1
new

]
.

Proof. Since yT
s V

−1
newys is a scalar, by using linearity of expectation and trace operators we have

µ̂Hk
= E

[
yT
s V

−1
newys

]
(65)

= Tr
[
E
(
yT
s V

−1
newys

)]
(66)

= E
[
Tr(yT

s V
−1
newys)

]
. (67)

By cyclicity of the trace and linearity again, we get

µ̂Hk
= E

[
Tr(ysy

T
s V

−1
new)

]
(68)

= Tr
[
E(ysy

T
s)V

−1
new

]
. (69)

Thus, under the null hypothesis, we get:
µ̂H0

= Tr
[
VH0

V−1
new

]
, (70)

and, under the alternative hypothesis,
µ̂H1

= Tr
[
VH1

V−1
new

]
. (71)

Lemma F.2. The eigenvalues of V1/2
H0

V−1
newV

1/2
H0

resp. V
1/2
H1

V−1
newV

1/2
H1

are the same as the ones of VH0
V−1

new resp.
VH1

V−1
new.

Proof. This well-known linear-algebraic result can be found, e.g., in Petersen & Pedersen (2012), Subsection 5.2.3.

Lemma F.3. Let λH0
and λH1

be the vectors of the eigenvalues of VH0
V−1

new resp. VH1
V−1

new. Moreover, let k ∈ {0, 1}.
Then, ∑

i

λ2
i,Hk

= ||λHk
||22 = Tr

[
VHk

V−1
newVHk

V−1
new

]
.

Proof. Let QTΛQ be the eigendecomposition of VHk
V−1

new. Then, orthogonality of Q and cyclicity of trace give

Tr
[
VHk

V−1
newVHk

V−1
new

]
= Tr

[
QTΛQQTΛQ

]
(72)

= Tr
[
Λ2

]
(73)

=
∑
i

λ2
i,Hk

. (74)

Proposition F.4. Let m be the number of inducing points (or quadrature Fourier features) used. Matrices VH0 , VH1 and
V−1

new can be computed in O(m3).

Proof. In the proof, we work with the inducing points, as described in Section 2. If the QFFs are used, the same
substitutions described in the aforementioned subsection apply. Firstly, we denote by K any prior covariance matrices
whose hyperparameters were learned from the whole current window, and H those whose hyperparameters were learned on
the subwindow only. Moreover, let σ2 denote the noise variance learned from the whole window, and ξ2 the one learned
from the subwindow only. Since

VH0 = Kn,mK−1
m,mKm,n + σ2I, (75)

Adaptive Gaussian Process Change Point Detection

this matrix can be computed in O(m3). Moreover, since

Vnew = Hn,mH−1
m,mHm,n + ξ2I, (76)

its inverse can also be computed efficiently by directly applying Lemma A.2. The same holds for the matrix

VH1 = (V−1
H0

+V−1
new)

−1, (77)

as we will show in the following. By matrix inversion lemma, we have

VH1 =
[
(Kn,mK−1

m,mKm,n + σ2I)−1 + (Hn,mH−1
m,mHm,n + ξ2I)−1

]−1
(78)

=

[
1

σ2
I− 1

σ2
Kn,m(σ2Km,m +Km,nKn,m)−1Km,n

+
1

ξ2
I− 1

ξ2
Hn,m(ξ2Hm,m +Hm,nHn,m)−1Hm,n

]−1 (79)

=

{[
σ2 + ξ2

σ2ξ2
I− 1

σ2
Kn,m(σ2Km,m +Km,nKn,m)−1Km,n

]
− 1

ξ2
Hn,m(ξ2Hm,m +Hm,nHn,m)−1Hm,n

}−1

.

(80)

Now, let

A =

[
σ2 + ξ2

σ2ξ2
I− 1

σ2
Kn,m(σ2Km,m +Km,nKn,m)−1Km,n

]
. (81)

We have

VH1 =

{
A− 1

ξ2
Hn,m(ξ2Hm,m +Hm,nHn,m)−1Hm,n

}−1

(82)

= A−1 +
1

ξ2
A−1Hn,m

·
(
ξ2Hm,m +Hm,nHn,m − 1

ξ2
Hm,nA

−1Hn,m

)−1

Hm,nA
−1.

. (83)

Thus, VH1 can be computed in O(m3), provided that A can be computed efficiently. This is also true, by matrix inversion
lemma:

A−1 =

[(
σ2 + ξ2

σ2ξ2

)
I− 1

σ2
Kn,m(σ2Km,m +Km,nKn,m)−1Km,n

]−1

(84)

=

[
αI− 1

σ2
Kn,m(σ2Km,m +Km,nKn,m)−1Km,n

]−1

(85)

=
1

α

[
I+

1

σ2
Kn,m

(
ασ2Km,m + αKm,nKn,m − 1

σ2
Km,nKn,m

)−1

Km,n

]
. (86)

G. Extended CP Detection Experiments
In this section, we discuss the CP detection experiments of Section 4 in detail, reporting additional plots and tables, along
with the description of the datasets used. Furthermore we show the location of the CPs detected by our algorithms.

G.1. Description of the Datasets and Annotations

In this subsection we describe the datasets used, and we show plots containing the ground truth and the CP locations
returned in our benchmarking. The first three datasets are synthetic. In the plots, we show only the first noisy realization

Adaptive Gaussian Process Change Point Detection

(a) Annotated (b) ADAGA

(c) Benchmarks

Figure 5. Series with CPs in the mean of the signal. Figure 5a shows the ground truth locations. Vertical lines correspond to the locations.
Figure 5b shows the locations detected by ADAGA, Figure 5c the ones computed by the competitors.

(a) Annotated (b) ADAGA

(c) Benchmarks

Figure 6. Series with CPs in the noise variance. Figure 6a shows the ground truth locations. Vertical lines correspond to the locations.
Figure 6b shows the locations detected by ADAGA, Figure 6c the ones computed by the competitors.

Adaptive Gaussian Process Change Point Detection

(a) Annotated (b) ADAGA

(c) Benchmarks

Figure 7. Series with CPs in the periodicity of the signal. Figure 7a shows the ground truth locations. Vertical lines correspond to the
locations. Figure 7b shows the locations detected by ADAGA, Figure 7c the ones computed by the competitors.

(a) Annotated (b) ADAGA

(c) Benchmarks

Figure 8. Run Log series. Figure 8a shows the ground truth locations. Vertical lines correspond to the locations. Figure 8b shows the
locations detected by ADAGA, Figure 8c the ones computed by the competitors.

Adaptive Gaussian Process Change Point Detection

(a) Annotated (b) ADAGA

(c) Benchmarks

Figure 9. Business Inventories series. Figure 9a shows the ground truth locations. Vertical lines correspond to the locations. Figure 9a
shows the ground truth locations. Vertical lines correspond to the locations. Figure 9b shows the locations detected by ADAGA, Figure9c
the ones computed by the competitors.

(a) Annotated (b) ADAGA

(c) Benchmarks

Figure 10. Ozone series. Figure 10a shows the ground truth locations. Vertical lines correspond to the locations. Figure 10b shows the
locations detected by ADAGA, Figure 10c the ones computed by the competitors.

Adaptive Gaussian Process Change Point Detection

(a) Annotated (b) ADAGA

(c) Benchmarks

Figure 11. Argentina’s GDP series. Figure 11a shows the ground truth locations. Vertical lines correspond to the locations. Figure 11b
shows the locations detected by ADAGA, Figure 11c the ones computed by the competitors.

(a) Annotated (b) ADAGA

(c) Benchmarks

Figure 12. Iran’s GDP series. Figure 12a shows the ground truth locations. Vertical lines correspond to the locations. Figure 12b shows
the locations detected by ADAGA, Figure 12c the ones computed by the competitors.

Adaptive Gaussian Process Change Point Detection

(a) Annotated (b) ADAGA

(c) Benchmarks

Figure 13. Japan’s GDP series. Figure 13a shows the ground truth locations. Vertical lines correspond to the locations. Figure 13b shows
the locations detected by ADAGA, Figure 13c the ones computed by the competitors.

Table 5. Average precision scores (with standard deviation) of ADAGA for CP detection, implemented both with QFFs and inducing
points (IPs), and six comparable algorithms across three synthetic datasets (10 noisy realizations per dataset). A margin of 5 points was
used. Bold values indicate the highest average score for the dataset. Last column shows the average score and standard deviation across
all noisy realizations.

ALGORITHM MEAN SHIFT DATA VARIANCE SHIFT DATA PERIODICITY SHIFT DATA AVERAGE
ADAGA (QFFs, RBF) 0.61± 0.11 0.72± 0.26 0.58± 0.17 0.64± 0.2
ADAGA (IPs, RBF) 1.0± 0 0.75± 0.25 0.95± 0.15 0.9± 0.2

ADAGA (IPs, Matern52) 1.0± 0 0.75± 0.25 0.9± 0.2 0.88± 0.21
ADAGA (IPs, RQ) 1.0± 0 0.75± 0.25 0.95± 0.15 0.9± 0.2

ADAGA (IPs, periodic) − − 0.25± 0 0.25± 0
BINSEG (mean) 0.67± 0 1.0± 0 0.53± 0.16 0.73± 0.22

BINSEG (mean & var) 0.5± 0 0.32± 0.03 0.27± 0.074 0.36± 0.11
PELT (mean) 0.67± 0 0.89± 0.22 0.37± 0.09 0.64± 0.26

PELT (mean & var) 0.37± 0.08 0.39± 0.1 0.27± 0.07 0.34± 0.1
BOCPD 0.57± 0.06 0.52± 0.1 0.37± 0.09 0.49± 0.12

RBOCPDMS 0.29± 0.04 0.52± 0.05 0.56± 0.12 0.46± 0.14
GPTS-CP (RQ+const) 0.91± 0.21 0.8± 0.26 1.0± 0 0.9± 0.21

Table 6. Precision scores of ADAGA for CP detection, implemented both with QFFs and inducing points (IPs), and six comparable
algorithms across six real-world datasets. A margin of 5 points was used. Bold values indicate the highest score for the dataset. Last
column shows the average score across the datasets.

ALGORITHM RUN LOG BUSINV OZONE GDP IRAN GDP ARGENTINA GDP JAPAN AVERAGE
ADAGA (exact, linear) 0.5 0.67 − − − − 0.59
ADAGA (IPs, linear) 0.55 0.5 − − − − 0.53

ADAGA (QFFs, RBF) − − 1.0 1.0 1.0 1.0 1.0
ADAGA (IPs, RBF) − − 1.0 1.0 1.0 0.5 0.88

ADAGA (IPs, Matern52) − − 1.0 1.0 1.0 1.0 1.0
ADAGA (IPs, RQ) − − 1.0 1.0 1.0 0.5 0.88
BINSEG (mean) 0.5 0.33 0.67 0.5 1.0 0.5 0.58

BINSEG (mean & var) 0.33 0.17 0.4 0.33 0.67 0.4 0.38
PELT (mean) 0.33 0.33 1.0 0.5 1.0 0.5 0.61

PELT (mean & var) 0.29 0.12 0.43 0.3 0.5 0.33 0.33
BOCPD 0.36 0.17 0.6 0.33 0.67 0.67 0.47

RBOCPDMS 0.67 0.2 0.67 0.5 0.5 0.33 0.48
GPTS-CP (linear+const) 0.8 0.44 − − − − 0.62
GPTS-CP (RQ+const) − − 0.67 1.0 1.0 0.5 0.79

Adaptive Gaussian Process Change Point Detection

Table 7. Average recall scores of ADAGA for CP detection (with standard deviation), implemented both with QFFs and inducing points
(IPs), and six comparable algorithms across three synthetic datasets (10 noisy realizations per dataset). A margin of 5 points was used.
Bold values indicate the highest average score for the dataset. Last column shows the average score and standard deviation across all
noisy realizations.

ALGORITHM MEAN SHIFT DATA VARIANCE SHIFT DATA PERIODICITY SHIFT DATA AVERAGE
ADAGA (QFFs, RBF) 0.77± 0.15 0.8± 0.22 0.5± 0.22 0.69± 0.24
ADAGA (IPs, RBF) 1.0± 0 0.5± 0.17 0.43± 0.15 0.64± 0.28

ADAGA (IPs, Matern52) 1.0± 0 0.5± 0.17 0.47± 0.22 0.66± 0.29
ADAGA (IPs, RQ) 1.0± 0 0.5± 0.17 0.47± 0.22 0.67± 0.29

ADAGA (IPs, periodic) − − 0.33± 0 0.33± 0
BINSEG (mean) 0.67± 0 0.33± 0 0.33± 0 0.44± 0.16

BINSEG (mean & var) 1.0± 0 0.33± 0 0.53± 0.16 0.62± 0.29
PELT (mean) 0.67± 0 0.4± 0.2 0.33± 0 0.47± 0.18

PELT (mean & var) 1.0± 0 0.93± 0.13 0.67± 0.15 0.87± 0.18
BOCPD 0.93± 0.13 0.87± 0.16 0.63± 0.18 0.81± 0.21

RBOCPDMS 0.33± 0 0.37± 0.1 0.5± 0.22 0.4± 0.16
GPTS-CP (RQ+const) 1.0± 0 0.53± 0.22 0.33± 0 0.62± 0.31

ZERO 0.33± 0 0.33± 0 0.33± 0 0.33± 0

Table 8. Recall scores of ADAGA for CP detection, implemented both with QFFs and inducing points (IPs), and six comparable
algorithms across six real-world datasets. A margin of 5 points was used. Bold values indicate the highest score for the dataset. Last
column shows the average score across the datasets.

ALGORITHM RUN LOG BUSINV OZONE GDP IRAN GDP ARGENTINA GDP JAPAN AVERAGE
ADAGA (exact, linear) 0.66 0.9 − − − − 0.78
ADAGA (IPs, linear) 0.66 0.85 − − − − 0.76

ADAGA (QFFs, RBF) − − 0.93 0.77 0.7 0.8 0.8
ADAGA (IPs, RBF) − − 0.63 0.67 0.8 0.8 0.73

ADAGA (IPs, Matern52) − − 0.93 0.67 0.7 0.8 0.78
ADAGA (IPs, RQ) − − 0.93 0.67 0.7 0.8 0.78
BINSEG (mean) 0.37 0.42 0.63 0.48 0.8 0.8 0.57

BINSEG (mean & var) 0.37 0.42 0.93 0.48 1.0 1.0 0.70
PELT (mean) 0.29 0.42 1.0 0.48 0.8 0.8 0.63

PELT (mean & var) 0.98 0.85 1.0 0.82 1.0 1.0 0.94
BOCPD 0.89 0.73 1.0 0.48 1.0 1.0 0.85

RBOCPDMS 0.31 0.42 0.93 0.48 0.7 0.8 0.61
GPTS-CP (linear+const) 0.89 1.0 − − − − 0.95
GPTS-CP (RQ+const) − − 0.63 0.77 0.9 1.0 0.83

ZERO 0.29 0.42 0.57 0.48 0.7 0.8 0.54

Adaptive Gaussian Process Change Point Detection

Table 9. Average F-1 scores (with standard deviation) of ADAGA for CP detection, implemented both with QFFs and inducing points
(IPs), and six comparable algorithms across three synthetic datasets (10 noisy realizations per dataset). A margin of 0 points was used.
Bold values indicate the highest average score for the dataset. Last column shows the average score and standard deviation across all noisy
realizations. As expected, since the annotations are arbitrary within a margin around the true CPs, all the algorithms are outperformed by
the ZERO method, which results in an empty CP set. A larger margin is needed to get meaningful results.

ALGORITHM MEAN SHIFT DATA VARIANCE SHIFT DATA PERIODICITY SHIFT DATA AVERAGE
ADAGA (QFFs, RBF) 0.3± 0.02 0.34± 0.11 0.37± 0.03 0.34± 0.07
ADAGA (IPs, RBF) 0.93± 0.13 0.4± 0 0.46± 0.05 0.6± 0.25

ADAGA (IPs, Matern52) 1.0± 0 0.4± 0 0.44± 0.06 0.61± 0.28
ADAGA (IPs, RQ) 1.0± 0 0.4± 0 0.45± 0.06 0.62± 0.27

ADAGA (IPs, periodic) − − 0.29± 0 0.29± 0
BINSEG (mean) 0.33± 0 0.5± 0 0.4± 0.04 0.41± 0.07

BINSEG (mean & var) 0.22± 0 0.32± 0.02 0.23± 0.01 0.26± 0.05
PELT (mean) 0.33± 0 0.46± 0.09 0.34± 0.04 0.38± 0.08

PELT (mean & var) 0.18± 0.03 0.27± 0.1 0.21± 0.03 0.22± 0.07
BOCPD 0.71± 0.09 0.28± 0.08 0.25± 0.01 0.41± 0.22

RBOCPDMS 0.31± 0.02 0.39± 0.02 0.36± 0.04 0.35± 0.05
GPTS-CP (RQ+const) 0.93± 0.15 0.43± 0.09 0.5± 0 0.62± 0.25

ZERO 0.5± 0 0.5± 0 0.5± 0 0.5± 0

Table 10. F-1 scores of ADAGA for CP detection, implemented both with QFFs and inducing points (IPs), and six comparable algorithms
across six real-world datasets. A margin of 0 points was used. Bold values indicate the highest score for the dataset. Last column
shows the average score across the datasets. As expected, since the annotations are arbitrary within a margin around the true CPs, all the
algorithms are outperformed by the ZERO method, which results in an empty CP set. A larger margin is needed to get meaningful results.

ALGORITHM RUN LOG BUSINV OZONE GDP IRAN GDP ARGENTINA GDP JAPAN AVERAGE

ADAGA (exact, linear) 0.12 0.39 − − − − 0.26
ADAGA (IPs, linear) 0.14 0.42 − − − − 0.28

ADAGA (QFFs, RBF) − − 0.53 0.49 0.82 0.89 0.68
ADAGA (IPs, RBF) − − 0.53 0.71 0.58 0.62 0.61

ADAGA (IPs, Matern52) − − 0.53 0.71 0.82 0.89 0.74
ADAGA (IPs, RQ) − − 0.53 0.71 0.82 0.62 0.67
BINSEG (mean) 0.27 0.37 0.42 0.49 0.58 0.62 0.46

BINSEG (mean & var) 0.21 0.24 0.30 0.39 0.27 0.32 0.29
PELT (mean) 0.31 0.37 0.42 0.49 0.58 0.62 0.46

PELT (mean & var) 0.06 0.13 0.23 0.17 0.21 0.28 0.18
BOCPD 0.21 0.19 0.30 0.39 0.27 0.47 0.30

RBOCPDMS 0.31 0.27 0.42 0.49 0.58 0.47 0.42
GPTS-CP (linear+const) 0.15 0.57 − − − − 0.36
GPTS-CP (RQ+const) − − 0.42 0.75 0.73 0.67 0.64

ZERO 0.45 0.59 0.72 0.65 0.82 0.89 0.69

being processed (out of 10), for illustrative purposes. The remaining datasets are presented by van den Burg & Williams
(2020). Omitted algorithms return an empty CP set for the dataset considered. BOCPDGPT is an alias for GPTS-CP,
PELT stands for the mean and variance version of PELT, and BinSeg stands for the mean and variance version of binary
segmentation. IPs stands for ADAGA implemented with inducing points, QFFs stands for ADAGA implemented with
QFFs.

CPs in Mean This series contains a signal with two CPs in mean. These were obtained by summing the function

x1(t) = sin(0.5t), (87)

and a constant offset of 0 (for the first 20 observations), 2 (between observations 20 and 49) and −1 (for the remaining 26
observations). In all segments, a zero-mean, additive Gaussian noise with standard deviation of 10−1 was used. Figure 5
shows the locations of these CPs, along with the ones computed in our benchmark study. Vertical dashed lines correspond to
such locations.

CPs in Variance This series contains a signal with two CPs in noise variance. These were obtained by corrupting the
function

x1(t) = sin(0.5t), (88)

with a zero-mean, additive Gaussian noise with standard deviation of 10−1 (for the first 23 observations), 3 · 10−1 (between
observations 23 and 44) and 0.8 · 10−1 (for the remaining 31 observations). Figure 6 shows the locations of these CPs, along
with the ones retrieved in our benchmark study. Vertical dashed lines correspond to such locations.

Adaptive Gaussian Process Change Point Detection

Table 11. Average F-1 scores (with standard deviation) of ADAGA for CP detection, implemented both with QFFs and inducing points
(IPs), and six comparable algorithms across three synthetic datasets (10 noisy realizations per dataset). A margin of 10 points was used.
Bold values indicate the highest average score for the dataset. Last column shows the average score and standard deviation across all
noisy realizations.

ALGORITHM MEAN SHIFT DATA VARIANCE SHIFT DATA PERIODICITY SHIFT DATA AVERAGE
ADAGA (QFFs, RBF) 0.82± 0.08 0.93± 0.07 0.87± 0.12 0.87± 0.1
ADAGA (IPs, RBF) 1.0± 0 0.8± 0 0.62± 0.15 0.81± 0.18

ADAGA (IPs, Matern52) 1.0± 0 0.8± 0 0.63± 0.19 0.81± 0.19
ADAGA (IPs, RQ) 1.0± 0 0.8± 0 0.64± 0 0.81± 0.18

ADAGA (IPs, periodic) − − 0.86± 0 0.86± 0
BINSEG (mean) 1.0± 0 0.5± 0 0.79± 0.11 0.76± 0.22

BINSEG (mean & var) 0.67± 0 0.32± 0.02 0.68± 0.03 0.56± 0.17
PELT (mean) 1.0± 0 0.51± 0.09 0.84± 0.11 0.78± 0.22

PELT (mean & var) 0.53± 0.08 0.59± 0.08 0.58± 0.09 0.57± 0.09
BOCPD 0.73± 0.05 0.75± 0 0.74± 0.02 0.74± 0.03

RBOCPDMS 0.31± 0.02 0.43± 0.08 0.55± 0.16 0.43± 0.14
GPTS-CP (RQ+const) 0.93± 0.15 0.69± 0.2 0.5± 0 0.43± 0.23

ZERO 0.5± 0 0.5± 0 0.5± 0 0.5± 0

Table 12. F-1 scores of ADAGA for CP detection, implemented both with QFFs and inducing points (IPs), and six comparable algorithms
across six real-world datasets. A margin of 10 points was used. Bold values indicate the highest score for the dataset. Last column shows
the average score across the datasets.

ALGORITHM RUN LOG BUSINV OZONE GDP IRAN GDP ARGENTINA GDP JAPAN AVERAGE
ADAGA (exact, linear) 0.85 0.8 − − − − 0.82
ADAGA (IPs, linear) 0.89 0.8 − − − − 0.85

ADAGA (QFFs, RBF) − − 0.97 0.87 0.82 0.89 0.89
ADAGA (IPs, RBF) − − 0.78 0.87 0.89 1.0 0.89

ADAGA (IPs, Matern52) − − 0.97 0.87 0.82 0.89 0.89
ADAGA (IPs, RQ) − − 0.97 0.87 0.82 1.0 0.91
BINSEG (mean) 0.71 0.37 1.0 0.49 0.89 1.0 0.74

BINSEG (mean & var) 0.35 0.24 0.75 0.71 0.8 0.57 0.57
PELT (mean) 0.48 0.37 1.0 0.49 0.89 1.0 0.70

PELT (mean & var) 0.52 0.32 0.60 0.67 0.67 0.50 0.55
BOCPD 0.62 0.34 0.75 0.71 0.80 0.80 0.67

RBOCPDMS 0.42 0.27 0.78 0.49 0.58 0.47 0.5
GPTS-CP (linear+const) 0.94 0.62 − − − − 0.78
GPTS-CP (RQ+const) − − 1.0 0.87 0.95 0.67 0.87

ZERO 0.45 0.59 0.72 0.65 0.82 0.89 0.69

Adaptive Gaussian Process Change Point Detection

CPs in Periodicity This series contains a signal with two CPs in periodicity. These were obtained by concatenating the
functions

x1(t) = sin(0.5t), (89)

for the first 27 observations,
x2(t) = sin(0.2t), (90)

between observations 27 and 47,
x3(t) = sin(0.6t), (91)

for the remaining 28 observations. In all segments, a zero-mean, additive Gaussian noise with standard deviation of 10−1

was used. Figure 7 shows the locations of these CPs, along with the ones retrieved in our benchmark study. Vertical dashed
lines correspond to such locations.

Run Log This dataset contains the second series of the Run Log dataset introduced by van den Burg & Williams (2020).
This consists of the cumulative distance traveled by a runner who alternates between walking and running. Figure 8 shows
the annotated and the computed plots.

Business Inventories This dataset contains the monthly number of business inventories, in USD, obtained from the US
Census Bureau. Figure 9 shows the annotated and the computed plots.

Ozone This dataset contains the levels of ozone depleting substances, obtained from www.ourworldindata.org,
and originally shown by Hegglin et al. (2015). Figure 10 shows the annotated and the computed plots.

Argentina’s GDP This dataset contains the GDP of Argentina in constant local currency, obtained from the World Bank.
Figure 11 shows the annotated and the computed plots.

Iran’s GDP This dataset contains the GDP of Iran in constant local currency, obtained from the World Bank. Figure 12
shows the annotated and the computed plots.

Japan’s GDP This dataset contains the GDP of Japan in constant local currency, obtained from the World Bank. Figure 13
shows the annotated and the computed plots.

G.2. Precision and Recall

In this subsection, we report tables showing the precision and recall in the experiments performed, for a margin of 5 points.
The QFF version of ADAGA for Run Log and Business Inventories uses the exact linear kernel, as described in the main
paper. Precision scores for ZERO are exactly 1.0 because van den Burg & Williams (2020) consider the point with index 0
as a CP detected by all the algorithms. Since this is not informative w.r.t. the performance of the algorithm, this value is not
shown in the tables. The values can be found in Tables 5, 6, 7, and 8.

G.3. Varying the Margin

In this subsection, we report tables of the F-1 scores computed with different margins. Again, the QFF version of ADAGA
for Run Log and Business Inventories uses the linear kernel. This shows robustness of the evaluation scheme. The values
can be found in Tables 9, 10, 11, and 12.

G.4. Default Hyperparameters

Table 14 reports, for each benchmark (except ADAGA), the best F-1 score obtained when tuning their parameters on a grid
for each dataset separately. Here, we consider only the real-world datasets. This is highly overestimating their performance,
and does not resemble a realistic scenario since we need the ground truth to evaluate the F-1 score. Conversely, ADAGA
uses only one set of hyperparameters for all datasets. Nevertheless, ADAGA still performs consistently well across all
datasets. Thus, we are confident that our hyperparameters can in principle be considered as good defaults. Furthermore,
the grid search does not favor a particular set of hyperparameters for the competitors, leading to different values for each
dataset, as shown in Table 13. Thus, this legitimates our comparison with the default hyperparameters of the benchmarks.

www.ourworldindata.org

Adaptive Gaussian Process Change Point Detection

Table 13. Results of the grid search. The optimal hyperparameters are different for each dataset. This means that there is no unique
candidate set of hyperparameters that can be used instead of the default ones, to improve the performance of the algorithms consistently.

ALGORITHM RUN LOG BUSINV OZONE GDP IRAN GDP ARGENTINA GDP JAPAN
BINSEG (mean) SIC MBIC None None SIC SIC

BINSEG (mean & var) SIC SIC SIC SIC SIC MBIC
PELT (mean) MBIC MBIC SIC MBIC SIC AIC

PELT (mean & var) MBIC SIC MBIC Hannan-Quinn SIC MBIC
BOCPD a = 0.001 a = 0.01 a = 0.1 a = 1.0 a = 0.001 a = 0.001

b = 0.001 b = 0.0001 b = 0.1 b = 0.1 b = 0.0001 b = 1.0
k = 0.01 k = 10.0 k = 0.01 k = 1.0 k = 10.0 k = 0.001

RBOCPDMS a = 0.01 a = 1.0 a = 0.1 a = 0.01 a = 0.01 a = 0.01
b = 0.0001 b = 0.0001 b = 0.0001 b = 0.0001 b = 0.0001 b = 0.01

GPTS-CP (linear+const) 30 30 − − − −
GPTS-CP (RQ+const) − − 45 15 30 30

Table 14. F-1 scores of ADAGA for CP detection and six benchmarks across six real-world datasets. A margin of 5 points was used. All
algorithms except ours have been overfit to the data, by tuning their parameters to the best F-1 score individually for each dataset.
Despite this unrealistic and unfavorable comparison, ADAGA performs consistently well across all datasets.

ALGORITHM RUN LOG BUSINV OZONE GDP IRAN GDP ARGENTINA GDP JAPAN AVERAGE
ADAGA (exact, linear) 0.57 0.77 − − − − 0.67
ADAGA (IPs, linear) 0.60 0.63 − − − − 0.62

ADAGA (QFFs, RBF) − − 0.97 0.87 0.82 0.89 0.89
ADAGA (IPs, RBF) − − 0.78 0.80 0.89 0.62 0.77

ADAGA (IPs, Matern52) − − 0.97 0.80 0.82 0.89 0.87
ADAGA (IPs, RQ) − − 0.97 0.80 0.82 0.62 0.8
BINSEG (mean) 0.43 0.37 0.67 0.62 0.95 0.62 0.61

BINSEG (mean & var) 0.35 0.24 0.67 0.41 0.8 0.57 0.51
PELT (mean) 0.31 0.37 1.0 0.49 0.95 0.8 0.65

PELT (mean & var) 0.45 0.22 0.60 0.56 0.67 0.50 0.50
BOCPD 0.67 0.39 0.86 0.86 0.95 1.0 0.79

RBOCPDMS 0.56 0.56 0.78 0.49 0.58 0.8 0.63
GPTS-CP (linear+const) 0.84 0.62 − − − − 0.78
GPTS-CP (RQ+const) − − 0.97 0.97 0.95 0.67 0.87

Adaptive Gaussian Process Change Point Detection

Table 15. Average F-1 scores scores (with standard deviation) of CUSUM for CP detection, across three synthetic datasets (10 noisy
realizations per dataset). A margin of 5 points was used.

ALGORITHM MEAN SHIFT DATA VARIANCE SHIFT DATA PERIODICITY SHIFT DATA AVERAGE
CUSUM 0.4± 0 0.5± 0 0.5± 0 0.47± 0.05

Table 16. Average F-1 scores of CUSUM for CP detection, across six real-world datasets. A margin of 5 points was used.
ALGORITHM RUN LOG BUSINV OZONE GDP IRAN GDP ARGENTINA GDP JAPAN AVERAGE

CUSUM 0.45 0.59 0.97 0.65 0.82 0.89 0.73

Grid search details:

• for BINSEG and PELT (mean, mean & var): the penalty was chosen from [“SIC”, “BIC”, “MBIC”, “None”, “AIC”,
“Hannan-Quinn”];

• for BOCPD: a ∈ [0.001, 0.01, 0.1, 1.0, 10.0], b ∈ [0.0001, 0.001, 0.01, 0.1, 1.0], k ∈ [0.001, 0.01, 0.1, 1.0, 10.0];

• for RBOCPDMS: a ∈ [0.01, 0.1, 1.0], b ∈ [0.0001, 0.001, 0.01];

• for GPTS-CP: the GP hyperparameters are inferred from the first [15, 30, 45] points.

H. Comparison with CUSUM Control Chart
Control charts constitute an interesting benchmark for our algorithm. We have processed our series with the Cumulative
sum control chart (Page, 1954), using a public Python implementation4, and we report the results in Tables 15 and 16 (with
a margin of 5 points). In particular, for Run Log and Business Inventories datasets, we differentiate the time series, since we
are interested in changes in trend of the series.

As the results show, CUSUM-based control chart is outperformed by our method, which can detect a wider class of CPs.

4The code is available at https://github.com/BorgwardtLab/PyChange.

https://github.com/BorgwardtLab/PyChange

