
The Infinite Contextual Graph Markov Model

Daniele Castellana * 1 Federico Errica * 1 2 3 Davide Bacciu 1 Alessio Micheli 1

Abstract
The Contextual Graph Markov Model (CGMM)
is a deep, unsupervised, and probabilistic model
for graphs that is trained incrementally on a layer-
by-layer basis. As with most Deep Graph Net-
works, an inherent limitation is the need to per-
form an extensive model selection to choose the
proper size of each layer’s latent representation.
In this paper, we address this problem by in-
troducing the Infinite Contextual Graph Markov
Model (ICGMM), the first deep Bayesian non-
parametric model for graph learning. During train-
ing, ICGMM can adapt the complexity of each
layer to better fit the underlying data distribution.
On 8 graph classification tasks, we show that
ICGMM: i) successfully recovers or improves
CGMM’s performances while reducing the hyper-
parameters’ search space; ii) performs compara-
bly to most end-to-end supervised methods. The
results include studies on the importance of depth,
hyper-parameters, and compression of the graph
embeddings. We also introduce a novel approxi-
mated inference procedure that better deals with
larger graph topologies.

1. Introduction
It can be argued that one of the most daunting processes
in machine learning is the selection of appropriate hyper-
parameters for the task at hand. Indeed, due to the data-
dependent nature of the learning problem, there usually
exists no single model configuration that works well in all
contexts. The most straightforward approach to mitigate this
issue has typically been to rely on standard model selection
techniques such as grid and random searches (Bergstra &

*Equal contribution 1Department of Computer Sci-
ence, University of Pisa, Italy 2NEC Laboratories Eu-
rope, Heidelberg, Germany 3Work primarily done as a
PhD student at the University of Pisa. Correspondence
to: Daniele Castellana <daniele.castellana@di.unipi.it>,
Federico Errica <federico.errica@neclab.eu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

Bengio, 2012), where the range of values to try are fixed
a priori by the user. Nonetheless, there has always been
an interest in alternative methods that can estimate the
“right” values for some hyper-parameters (Gershman & Blei,
2012; He et al., 2021), thus intrinsically reducing the hyper-
parameters’ search space. In the Bayesian nonparametric
(BNP) literature, which is of particular interest for this work,
the complexity of Bayesian models can grow with the data
(Teh et al., 2006), e.g., a BNP mixture model can adjust the
number of its mixtures to better fit the empirical data distri-
bution, thus freeing the user from the burden of choosing
the most important (if not all) hyper-parameters.

In recent years, much research effort has been devoted to
the theoretical and practical development of Deep Graph
Networks (DGNs), which originated from Micheli (2009);
Scarselli et al. (2009) and were later re-discovered from a
spectral graph theory perspective (Defferrard et al., 2016;
Kipf & Welling, 2017). DGNs can deal with graphs of
varying topology without the need for human intervention,
and they rely on local and iterative processing of informa-
tion commonly known as message passing; for a thorough
description of some of the most popular DGNs in the litera-
ture (and of the more general graph representation learning
field), we refer the reader to recent surveys on the topic
(Bronstein et al., 2017; Battaglia et al., 2018; Bacciu et al.,
2020b; Wu et al., 2020). Despite most of these methods be-
longing to the neural world, the Contextual Graph Markov
Model (CGMM) stands out as a deep, unsupervised, con-
structive and fully probabilistic model that has shown com-
petitive performances on downstream graph classification
tasks (Bacciu et al., 2018; 2020a). CGMM trains a stack
of Bayesian networks, where each layer is conditioned on
the frozen posteriors of the nodes of the graph computed at
previous layers. Each layer optimizes the likelihood of the
data using the Expectation Maximization (EM) algorithm
(Moon, 1996) with closed-form solutions.

Like its neural counterparts, for which the number of hidden
units in each layer has typically been selected as a hyper-
parameter, CGMM relies on model selection to choose the
“reasonable” number of hidden states associated with the
categorical latent variables. Differently from the neural
methods though, CGMM is amenable to a BNP extension,
as each layer is essentially a conditional mixture model.

The Infinite Contextual Graph Markov Model

For these reasons, our goal is the design of a deep, Bayesian
nonparametric model for graph learning that can estimate
the value of most hyper-parameters, e.g., the number of
states, from the data itself. We achieve this by providing a
Bayesian nonparametric treatment of CGMM. The princi-
pal difficulty lies in how to handle the variable-size number
of neighbors of each node, which in CGMM is solved
by (possibly weighted) convex combinations of the neigh-
bors’ posterior distributions. The resulting model, called
Infinite Contextual Graph Markov Model (ICGMM), can
generate as many latent states as needed to solve the un-
supervised density estimation task at each layer. To the
extent of our knowledge, this is the first Bayesian nonpara-
metric model for adaptive graph processing. We compare
ICGMM against CGMM as well as end-to-end supervised
methods on eight different graph classification tasks, follow-
ing a fair, robust and reproducible experimental procedure
(Errica et al., 2020). The results demonstrate that ICGMM
can infer most of its hyper-parameters without sacrificing
its predictive performances. In particular, we will show
that ICGMM’s scores are on par or better than CGMM
and that these are comparable to state of the art supervised
methods. We complement the analysis with studies on how
depth affects the performances and how the remaining hyper-
parameters influence the number of chosen latent states. In
turn, the latter has a significant effect on the final unsuper-
vised graph embeddings’ size. As a further contribution, we
provide a faster implementation of our method that scales
to the social datasets considered in this work without any
performance variations. Our hope is to show how the cross-
fertilization of ideas from different research fields can help
us advance the state of the art, both in the methodological
and empirical sense.

2. Related Works
The fundamental Bayesian nonparametric literature that is
relevant to our work relates to the families of Dirichlet Pro-
cesses (DPs) (Gershman & Blei, 2012) and Hierarchical
Dirichlet Processes (HDPs) (Teh et al., 2006). In its most
essential definition, a DP is a stochastic process that defines
a probability distribution over other probability distributions.
A DP is parametrized by a base distribution G0, i.e., the
expected value of the process, and a scaling parameter α0

that controls the concentration of DP realizations around G0

(Teh, 2010). In particular, the Chinese Restaurant Process
(Aldous, 1985), the Stick-breaking Construction (Sethura-
man, 1994) and the Pòlya urn scheme (Hoppe, 1984) are
all alternative ways to formalize a DP. Moving to HDPs is
conceptually straightforward, in that it considers the base
distribution G0 as a draw from another DP parametrized
by a base distribution H and a scaling parameter γ. For a
detailed treatment of learning with DP and HDPs, the reader
can check a number of tutorials and surveys (Teh et al., 2006;

Orbanz & Teh, 2010; Gershman & Blei, 2012). Our work
shares similarities with the Infinite Hidden Markov Model
for temporal series (Beal et al., 2002), with the fundamental
differences that causality assumptions have to be relaxed to
deal with graphs and that the hidden variables’ distributions
are conditioned on a varying number of observations.

Most of the recent advances of the graph representation
learning field are based on the so-called feedforward DGNs
(Bacciu et al., 2020b). These models rely on “spatial” graph
convolutional layers, i.e., the state of each node in the graph
is determined by applying a permutation invariant function
to its neighboring states computed at the previous layers.
Combined with the depth of the architecture, these models
propagate contextual information across the graph, a process
also known as “message passing” (Gilmer et al., 2017).
However, to the best of our knowledge, the only neural
method for graphs that constructs part of its architecture in
a principled way is the pioneering work of Micheli (2009).
In fact, the Neural Network for Graphs (NN4G), known
to be the first spatial DGN (see Wu et al. 2020), relies on
the Cascade Correlation learning algorithm (Fahlman &
Lebiere, 1990) to determine a suitable number of layers
for the task under investigation. Recently, in this area of
research, other works apply regularization terms (Zhou et al.,
2021) and partial differential equations (Eliasof et al., 2021)
to dynamically control the behavior of the network and
counteract the oversmoothing effect.

Orthogonally to our research direction, the AutoML field
seeks to automatically choose the architectural details and
hyper-parameter values without the need for human inter-
vention (He et al., 2021). We fundamentally differ from
AutoML methods as ICGMM adapts its complexity during
training, thus reducing the search space of hyperparameters.
In contrast, AutoML strategies automatically explore the
given hyperparameters’ space in smarter ways than classical
grid/random search algorithms.

3. Method
This Section introduces the details of our method. Since we
borrow ideas from two relatively distant fields, we define a
unified mathematical notation and jargon as well as a high-
level overview of the CGMM and HDP models to ease the
subsequent exposition.

We define a graph as a tuple g = (Vg, Eg,Xg) where Vg

is the set of entities (also referred to as nodes or vertices),
Eg is the set of oriented edges (u, v) connecting node u to
v, and the symbol Xg stands for the set of node attributes
associated with the graph g. Also, the neighborhood of a
node u is the set of nodes connected to u, i.e., Nu = {v ∈
Vg|(v, u) ∈ Eg}. For the purpose of this work, we will
define the (categorical or continuous) node feature of a node

The Infinite Contextual Graph Markov Model

u with the term xu ∈ Xg .

3.1. Basics of CGMM

To best understand how and why this work extends CGMM,
we now give a brief but essential description of its main
characteristics. CGMM is, first and foremost, a deep archi-
tecture for the adaptive processing of graphs. Like other
DGNs, it maps the entities of a graph, if not the graph itself,
into latent representations. More specifically, we can get
one of such representations for each layer of the architecture
and then concatenate all of them to obtain richer node and
graph embeddings. The latter is usually obtained as a global
aggregation of the former.

The second peculiarity of CGMM is that it is constructive,
i.e., trained in an incremental fashion: after one layer is
trained, another one can be stacked atop of it and trained
using the frozen outputs of the previous layer. This idea
is borrowed from NN4G (Micheli, 2009), and it allows
CGMM to relax the mutual dependencies between latent
variables in a cyclic graph. However, because the local and
iterative message passing mechanism used by spatial meth-
ods (Micheli, 2009; Kipf & Welling, 2017) is responsible
for information propagation across the graph, this relaxation
is not restrictive.

Thirdly, the node/graph embedding construction is fully
probabilistic and unsupervised, since layer ℓ is represented
as the Bayesian network on the left-hand-side of Figure 1.
A latent variable qℓu is attached to each node u, and it is
responsible for the generation of the node feature xu. To
take into account structural information, the hidden state qℓu
is conditioned on the neighboring hidden states computed
at the previous layer, i.e., the set {qℓ−1

v | v ∈ Nu}. Im-
portantly, the constructive approach allows us to treat the
hidden (frozen) states of the previous layer as observable
variables. Each layer is trained to fit the data distribution
of node features using the EM algorithm, thus guaranteeing
the convergence to a local minimum. Once inference is
performed, the state of each node is frozen and we can move
to the subsequent layer. Lastly, the embedding of each node
at layer ℓ is encoded as the posterior of its hidden state.

3.2. Basics of HDP

The HDP is a Bayesian nonparametric prior for the genera-
tion of grouped data using different infinite mixture models
with shared mixture components. Let {x1, x2, . . . } be a set
of observations that are grouped into J groups, i.e., each ob-
servation xu belongs to the group ju ∈ {1, . . . , J}. Using
the stick-breaking representation (Sethuraman, 1994), the
HDP mixture model that generates the observations can be

defined as (Teh et al., 2006):

β | γ ∼ Stick(γ) qu | ju, (πj)
J
j=1 ∼ πju

πj | β, α0 ∼ DP(α0,β) xu | qu, (θc)∞c=1 ∼ F (θqu)

θ | H ∼ H,
(1)

where F (θqu) denotes the emission distribution,
parametrized by θqu , that generates the observation
xu. The latent state qu indicates which mixture component
should be used to generate xu. The value of qu is sampled
from the distribution πju , which stands for the mixture
weights of group ju. All (πj)

J
j=1 are obtained from a DP

with concentration parameter α0 and base distribution β.
Notably, all groups’ mixture weights are defined on the
same set of mixture components, meaning there is a form
of parameter sharing across different groups. Finally, we
sample the distribution β via the stick-breaking process
Stick(γ) of Sethuraman (1994).

To generate a possibly infinite number of emission distri-
butions, we exploit a prior distribution H that allows us to
create new mixture components on demand. Thanks to the
stick-breaking construction, even though an infinite number
of mixture components can be used, only a finite number of
them is instantiated during the inference phase. Hereinafter,
we indicate with the symbol C the number of mixture com-
ponents that are chosen by the HDP at inference time.

3.3. Model Definition

Architecturally speaking, ICGMM shares the same charac-
teristics of CGMM described in Section 3.1, whereas the
differences of each layer’s graphical model are highlighted
in Figure 1. In particular, ICGMM assumes that the gener-
ation of the node features xu at each layer is governed by
an HDP mixture model. Thus, following the stick-breaking
construction detailed in Section 3.2, the generative process
of a single ICGMM layer ℓ can be formalized as follows:

βℓ | γℓ ∼ Stick(γℓ) jℓu | qℓ−1
Nu

= ψ(qℓ−1
Nu

)

πℓ
j | βℓ, αℓ

0 ∼ DP(αℓ
0,β

ℓ) qℓu | jℓu, (πj)
Cℓ−1

j=1 ∼ πℓ
ju

θℓ | H ∼ H xu | qℓu, (θℓ
c)

∞
c=1 ∼ F (θℓ

qℓu
),

(2)
where we add the superscript ℓ to the HDP mixture
model quantities to highlight that they are different at each
ICGMM layer. Similarly to the HDP case, we use Cℓ to
denote the number of states chosen by the model at the cur-
rent layer. When clear from the context, we will omit such
a superscript to ease the notation.

As mentioned before, in any HDP mixture model each obser-
vation must belong to a group, and such group is typically
known in advance. In this work, instead, each ICGMM
layer can assign a group to each observation by exploiting
the structural information in the graph. This way, we effec-

The Infinite Contextual Graph Markov Model

...

γℓ βℓ

αℓ
0 πℓ

j

θℓ
c

c = 1 . . .∞

j = 1 . . . Cℓ−1

u = 1 . . . nj

qℓ−1
2

qℓ−1
1

qℓ−1
|Nu|

qℓu

xu

H

u ∈ Vg
g ∈ D

...

qℓ−1
2

qℓ−1
1

qℓ−1
|Nu|

qℓu

xu

CGMM

u ∈ Vg
g ∈ D

CGMMI

Figure 1. Differences between layer ℓ’s graphical model of the original CGMM and the proposed ICGMM. Observable variables are blue
circles, latent ones are empty circles, and white boxes denote prior knowledge. Each ICGMM is an HDP mixture model where the group
j for each node observation xu is pre-determined by the set of states of neighboring nodes qℓ−1

Nu
computed at layer ℓ− 1. Contrarily to

CGMM, the number of values that the latent indicator variable qu can assume is adjusted to fit the underlying data distribution. Dashed
arrows denote the flow of contextual information from previous layers through the neighbors of each node u.

tively let nodes propagate contextual information between
each other. In particular, we select the group jℓu of the fea-
ture node xu based on the neighbors’ observable posteriors
qℓ−1
Nu

= {qℓ−1
v ∈ [0, 1]C

l−1 | v ∈ Nu} approximated by
the inference phase of the previous layer (see Section 3.4):

jℓu = ψ(qℓ−1
Nu

) = argmax
j∈{1,...,Cℓ−1}

(1

|Nu|
∑
v∈Nu

qℓ−1
v

)
j
. (3)

As we can see, ju has been chosen as the most likely position
in the Cℓ−1-sized macrostate obtained by averaging the
neighbors’ probabilities in qℓ−1

Nu
.

It follows that nodes with the same feature may have a dif-
ferent latent state c, due to the fact that they are assigned
to different groups, i.e., different πj , on the basis of their
neighborhood; this mimics the role of CGMM neighbor-
hood aggregation but in an HDP mixture model. In the first
layer, where no previous layer exists, we shall just assume
that all observables belong to the same group.

Summing up, we depart from the basic CGMM layer of
Bacciu et al. (2020a) in more than one way. First and fore-
most, we do not parametrize nor learn the CGMM transition
distribution, which was responsible for the convex combina-
tion of neighboring states when computing the E-step of the
EM algorithm. Instead, we rely on the most probable choice
of the group ju that is encoded by the neighbors’ macrostate.
Secondly, due to the sheer complexity of the Bayesian non-
parametric treatment, we do not train the model via EM as
done with CGMM; instead, we will exploit Gibbs sampling
(Geman & Geman, 1984) to compute the quantities of in-
terest. Finally, ICGMM retains one important architectural

characteristic of CGMM, i.e., it prevents vanishing gradi-
ent effects and over-smoothing by default (Bacciu et al.,
2020a), thus allowing us to construct deeper architectures
that propagate contextual information.

3.4. Inference

The inference phase of every BNP method is meant to es-
timate the posterior of the model parameters. For each
ICGMM layer ℓ, we wish to compute the quantities
qℓ
u,β

ℓ,πℓ
j ,θ

ℓ. Thanks to the incremental construction of
the ICGMM architecture, we can do so one layer at a time.
Thus, since each ICGMM layer is an HDP mixture model,
we can infer its parameters, following the Gibbs sampling
schema of Teh et al. (2006). Crucially, the BNP approach
also allows us to estimate the value of αℓ

0 and γℓ, with
a further reduction of the hyper-parameters’ search space.
For the interested reader, we report the ICGMM complete
Gibbs sampling equations and pseudo-code in Appendix A
and B, respectively. Finally, it is worth mentioning that the
constructive approach of CGMM and ICGMM is not an
approximation of a more complex graphical model, rather it
is a design choice that applies the basic principle of iterative
computation underpinning all DGNs. At the same time, the
BNP extension is mostly suitable for graphical models like
CGMM, so, in general, it is not obvious how to extend
neural networks to obtain the same benefits provided by
ICGMM.

Graph Embedding Generation. In a similar vein with
(Bacciu et al., 2020a), we prefer to use the sample distribu-
tion of qu (Eq. (4)) at the last iteration, rather than the last

The Infinite Contextual Graph Markov Model

sampled state, as an approximation of node u’s posterior
distribution. This way, we encode more information about
state occupancy into node/graph embeddings.

As in Bacciu et al. (2020a), node embeddings of each layer
are represented as unibigrams. A unibigram concatenates
the posterior of a node, i.e., a vector called unigram, with
its bigram. A bigram counts, for each possible state qu, how
many of u’s neighbors are in another state, and it is repre-
sented as a vector of size C2. The final graph representation
is obtained by concatenation of node unibigrams across all
layers followed by global aggregation. To tackle supervised
tasks, we apply a “standard” predictor, e.g., a Multi-Layer
Perceptron (MLP), on top of the unsupervised node/graph
embeddings.

Faster Inference with Node Batches (ICGMMf). Due
to the sequential nature of the Gibbs sampling procedure,
a naive implementation is slow when applied to the larger
social graphs considered in this work. In the literature,
there exist several exact distributed inference methods for
HDP (Lovell et al., 2012; Williamson et al., 2013; Chang
& Fisher III, 2014; Ge et al., 2015), but their effectiveness
might be limited due to the unbalanced workload among
workers or the elevated rejection rate (Gal & Ghahramani,
2014).

In this work, we prefer to speed up the inference proce-
dure by introducing an approximation rather than relying
on an exact distributed computation. As suggested in Gal &
Ghahramani (2014), an approximated inference procedure
may indeed suffice for many problems. What we propose
is to perform sampling for a batch of node observations
in parallel. This way, the necessary statistics are updated
in batches rather than individually, and matrix operations
can be used to gain efficiency. To maintain a good trade-
off between the quality and speedup, we stick to 1 graph
as the size of our batch. Such a trade-off provides a CPU
speedup of up to 60× at training time, and we empirically
observed that performances remain unchanged with respect
to the original version on the smaller chemical tasks consid-
ered. While this faster version of ICGMM, which we call
ICGMMf , does not strictly adhere to the technical speci-
fications of the previous section, we believe that the pros
largely outperform the cons. The interested reader can refer
to Appendix D for an analysis of the speedup gains on the
different datasets.

3.5. Limitations

Due to the complexity of the BNP treatment, one limitation
of this work is that naive Gibbs sampling does not scale
to very large datasets. The node independence assumption
made by CGMM enables a faster batch computation, which
can also be run on GPU. Despite having provided a sim-

ple, but approximated, sampling process that guarantees
a substantial speedup and allows us to process graphs of
non-negligible size, it would be interesting in the future
to explore other inference methods to increase ICGMM’s
speedup, e.g., variational inference (Bryant & Sudderth,
2012; Wang & Blei, 2012; Hoffman et al., 2013; Hughes
et al., 2015). The second limitation of ICGMM is that edge
features are not taken into account. While there exist many
neural models that do the same, we know that CGMM and
its variant E-CGMM (Atzeni et al., 2021) can deal with
discrete and arbitrary features, respectively. Our research
directions for the future will investigate these aspects, pro-
viding an exact and efficient version of ICGMM that can
process edge features as well.

4. Experiments
We evaluated the performances of ICGMM using the fair,
robust, and reproducible evaluation setup for graph clas-
sification defined in Errica et al. (2020). It consists of an
external 10-fold cross validation for model assessment, fol-
lowed by an internal hold-out model selection for each of the
external folds. Stratified data splits were already provided;
in this respect, we had to re-assess CGMM and E-CGMM
(Atzeni et al., 2021), a recently proposed variant, by try-
ing all the hyper-parameters specified in the original papers
(in particular, the values of C tried were 5, 10 and 20).
We first experiment on the three chemical datasets D&D
(Dobson & Doig, 2003), NCI1 (Wale et al., 2008) and PRO-
TEINS (Borgwardt et al., 2005), where node features repre-
sent atom types. Then, we consider social datasets, includ-
ing IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY,
REDDIT-MULTI-5K, and COLLAB (Yanardag & Vish-
wanathan, 2015), where the degree of each node is the sole
continuous feature available. All datasets are publicly avail-
able (Kersting et al., 2016) and their statistics are summa-
rized in Appendix C. Finally, we relied on Pytorch Geomet-
ric (Fey & Lenssen, 2019) for the implementation of our
method.1

Apart from CGMM’s variants, we will compare ICGMM
against the following end-to-end supervised neural architec-
tures for graphs: DGCNN (Zhang et al., 2018), DIFFPOOL
(Ying et al., 2018), ECC (Simonovsky & Komodakis, 2017),
GIN (Xu et al., 2019), GRAPHSAGE (Hamilton et al.,
2017), and a structure-agnostic baseline method BASELINE,
described in Errica et al. (2020), which was competitive
on a number of benchmarks. We recall that these super-
vised methods construct the graph embeddings leveraging
the supervision information coming from the target label; on
the contrary, ICGMM embeddings are built in an unsuper-
vised and constructive way. This represents a challenging

1The code to rigorously reproduce our results is provided here:
https://github.com/diningphil/iCGMM.

https://github.com/diningphil/iCGMM

The Infinite Contextual Graph Markov Model

comparison for our approach, as partially supervised meth-
ods generally struggle against fully supervised ones when
trained on the same amount of supervised labels. In gen-
eral, however, unsupervised methods can also: i) exploit
large amounts of unlabeled data when there is a scarcity of
ground-truth labels; ii) tackle different tasks on the same
input data without retraining everything from scratch, by
separating the representation learning phase from the pre-
diction phase.. Results for the supervised models are taken
from (Errica et al., 2020).

The formalism introduced so far provides a principled way
to estimate the value of all hyper-parameters by introduc-
ing suitable hyper-priors. Moreover, it is known that in-
formation gain decreases as one considers higher levels
of hyper-parameters (Bernardo & Smith, 2009; Goel &
Degroot, 1981), so that the choice of the hyper-prior be-
comes less critical. That said, being this the first work
to study HDP methods in the context of graph classifica-
tion, we also explored the hyper-parameter space to best
assess and characterize the behavior of the model. From
now on, we refer to ICGMMαγ as the model that relies on
pre-defined values for α0 and γ, whereas we place unin-
formative Gamma(1, rate = 0.01) hyper-priors on both
αℓ
0, γ

ℓ hyper-parameters for ICGMM.

For the chemical tasks, the prior H over the emission pa-
rameters θc was the uniform Dirichlet distribution. The
range of the remaining ICGMM hyper-parameters tried in
this case were:

• Number of layers ∈ {5, 10, 15, 20},
• Unibigram aggregation ∈ {sum,mean},
• Gibbs sampling iterations ∈ {100} for ICGMM and
∈ {10, 20, 50, 100} for ICGMMαγ ,

• α0 ∈ {1, 5}, γ ∈ {1, 2, 3} (Only for ICGMMαγ)

Instead, for the social tasks we implemented a Normal-
Gamma prior H over a Gaussian distribution. Here the
prior is parametrized by the following hyper-priors: µ0, the
mean node degree extracted from the data; λ0, which is
inversely proportional to the prior variance of the mean;
and (a0, b0), whose ratio t = b0

a0
represents the expected

variance of the data. The ICGMM hyper-parameters here
were:

• Number of layers ∈ {5, 10, 15, 20},
• Unibigram aggregation {sum,mean},
• λ0 ∈ {1e-6} ({1e-4, 1e-5} for COLLAB),
• Gibbs Sampling iterations ∈ {100},
• a0 ∈ {1.}, b0 ∈ {0.09, 1.},
• α0 ∈ {1, 5, 10}, γ ∈ {2, 5, 10} (Only for ICGMMαγ)

To conclude, we list the hyper-parameters tried for the one-
layer MLP classifier trained on the unsupervised graph em-
beddings:

Table 1. Results on chemical datasets (mean accuracy and standard
deviation) are shown. Best performances are highlighted in bold.

D&D NCI1 PROTEINS

BASELINE 78.4± 4.5 69.8± 2.2 75.8± 3.7
DGCNN 76.6± 4.3 76.4± 1.7 72.9± 3.5
DIFFPOOL 75.0± 3.5 76.9± 1.9 73.7± 3.5
ECC 72.6± 4.1 76.2± 1.4 72.3± 3.4
GIN 75.3± 2.9 80.0± 1.4 73.3± 4.0
GRAPHSAGE 72.9± 2.0 76.0± 1.8 73.0± 4.5
CGMM 74.9± 3.4 76.2± 2.0 74.0± 3.9
E-CGMM 73.9± 4.1 78.5± 1.7 73.3± 4.1

ICGMMαγ 75.6± 4.3 76.5± 1.8 72.7± 3.4
ICGMMfαγ 75.0± 5.6 76.7± 1.7 73.3± 2.9

ICGMM 76.3± 5.6 77.6± 1.5 73.1± 3.9
ICGMMf 75.1± 3.8 76.4± 1.4 73.2± 3.9

• Adam optimizer with batch size 32 and learning rate
1e-3,

• Hidden units ∈ {32, 128},
• L2 regularization ∈ {0., 5e-4},
• epochs ∈ {2000},
• early stopping on validation accuracy, with patience

300 on chemical tasks and 100 on social ones.

Notably, we also experimented with 2 and 3 layer MLPs,
but found no advantage whatsoever in terms of validation
performance.

5. Results
The empirical results on chemical and social benchmarks
are reported in Tables 1 and 2, respectively. There are sev-
eral observations to be made, starting with the chemical
tasks. First of all, ICGMM performs similarly to CGMM,
E-CGMM, and most of the supervised neural models; this
suggests that the selection of ju based on the neighboring
recommendations is a subtle but effective form of informa-
tion propagation between the nodes of the graph. In addition,
results indicate that we have succeeded in effectively choos-
ing the number of latent states without compromising the
overall accuracy, which was the main goal of this work. Fi-
nally, ICGMMf performs as well as the exact version, and
for this reason we safely applied the faster variant to the
larger social datasets (including IMDB-B and IMDB-M to
ease the exposition).

Moving to the social datasets, we observe that ICGMM
achieves better average performances than other methods on
IMDB-B, REDDIT-B and COLLAB. One possible reason
for such an improvement with respect to CGMM variants
may be how the emission distributions are initialized. On the
one hand, and differently from the chemical tasks, CGMM
and E-CGMM use the k-means algorithm (with fixed k=C),
to initialize the mean values of the C Gaussian distributions,

The Infinite Contextual Graph Markov Model

Table 2. Results on social datasets (mean accuracy and standard deviation) are shown, where the node degree is used as the only node
feature. The best performances are highlighted in bold.

IMDB-B IMDB-M REDDIT-B REDDIT-5K COLLAB

BASELINE 70.8± 5.0 49.1± 3.5 82.2± 3.0 52.2± 1.5 70.2± 1.5
DGCNN 69.2± 3.0 45.6± 3.4 87.8± 2.5 49.2± 1.2 71.2± 1.9
DIFFPOOL 68.4± 3.3 45.6± 3.4 89.1± 1.6 53.8± 1.4 68.9± 2.0
ECC 67.7± 2.8 43.5± 3.1 - - -
GIN 71.2± 3.9 48.5± 3.3 89.9± 1.9 56.1± 1.7 75.6± 2.3
GRAPHSAGE 68.8± 4.5 47.6± 3.5 84.3± 1.9 50.0± 1.3 73.9± 1.7
CGMM 72.7± 3.6 47.5± 3.9 88.1± 1.9 52.4± 2.2 77.32± 2.2
E-CGMM 70.7± 3.8 48.3± 4.1 89.5± 1.3 53.7± 1.0 77.45± 2.3

ICGMMfαγ 73.0± 4.3 48.6± 3.4 91.3± 1.8 55.5± 1.9 78.6± 2.8

ICGMMf 71.8± 4.4 49.0± 3.8 91.6± 2.1 55.6± 1.7 78.9± 1.7

which can be stuck in a local minimum around the most
frequent degree values. On the other hand, ICGMM adopts
a fully Bayesian treatment, which combined with the selec-
tion of the latent states allows for better modeling of outliers
by adding a new state when the posterior probability of a
data point is too low.

By estimating all hyper-parameters of our models using
uninformative priors, we almost always (but for COLLAB)
managed to avoid the model selection for the unsupervised
graph embeddings creation. In turn, this amounts to a 6×
reduction in the number of configurations tried, but most
importantly it frees the user from making hard choices about
which values of hyper-parameters to use.

In what follows, we will try to shed more light on the im-
proved generalization performances of ICGMM, by analyz-
ing the exact model from a layer-wise perspective.

On the effectiveness of depth and hyper-parameters.
To confirm our intuition about the benefits of the proposed
information propagation mechanism, Figure 2(a) shows the
NCI1 training and validation performances of both CGMM
and ICGMM as we add more layers. For simplicity, we
picked the best ICGMM configuration on the first external
fold, and we compared it against the CGMM configuration
with the most similar performances. Note that C = 20 was
the most frequent choice of CGMM states by the best model
configurations across the 10 outer folds: this is because
having more emission distributions to choose from allows
the CGMM model to find better local minima, whereas
ICGMM can add new states whenever the data point’s sam-
pling probabilities are too low. We trained the same classifier
at different depths, and we averaged scores across the 10
outer folds. We observe that the validation performance of
both models is similar but in favor of ICGMM, with an
asymptotic behavior as we reach 20 layers; it follows that
depth remains fundamental to improve the generalization
performances (Bacciu et al., 2020a).

We now study how ICGMMαγ behaves as we vary the main
hyper-parameters α0 and γ. We continue our experimen-
tation on NCI1; Figure 2(b) depicts the average validation
performance and number of states C over all configura-
tions and folds, subject to changes of α0 and γ values. The
trend indicates how greater values for both hyper-parameters
achieve, on average, better validation performance. Also,
smaller values of the two hyper-parameters tend to strongly
regularize the model by creating fewer states, with a conse-
quent reduction in validation accuracy. The relation between
the number of states and these hyper-parameters remains
consistent with the mathematical details of Section 3.

On the quality of graph embeddings. So far, we have ar-
gued that ICGMM selects the appropriate number of states
for its unsupervised task at each layer (for more details,
see Appendix F). As a matter of fact, Figure 3(a) reports
such a statistic on the same NCI1 configuration as before:
ICGMM preferred a lower number of latent states than
CGMM, i.e., around 5 per layer. In turn, the resulting
graph embeddings become much smaller, with important
savings in terms of memory footprint and computational
costs to train the subsequent classifier. Figure 3(b) displays
the cumulative graph embedding size across layers, using
the unibigram representation without loss of generality. We
see that, when compared with CGMM (C=20), the size of
graph embeddings produced by ICGMM is approximately
7% of those of the original model, while still preserving
the same performance as CGMM. Additionally, we ob-
serve that the number of chosen states and the consequent
graph embedding size is very similar to that of ICGMMαγ

with α0 = 5, γ = 3, despite the fact that these two hyper-
parameters have been adjusted by ICGMM on the basis of
the data. Last but not least, we asked how many of the states
used by the model are actually populated. Figure 4 answers
this question: when compared with the quasi-linear trend
of CGMM, where training leads to solutions with a consis-
tent number of unused states, ICGMM creates near-zero

The Infinite Contextual Graph Markov Model

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
layer

60

65

70

75

80

85

90
ac

cu
ra

cy

CGMM w. C=20 - TR
CGMM w. C=20 - VL
iCGMM - TR
iCGMM - VL

(a) Effect of depth on training/validation accuracy

1 2 3

73.0

73.5

74.0

74.5

75.0

75.5

76.0

av
er

ag
e

VL
 a

cc
ur

ac
y

5

6

7

8

9

av
er

ag
e

C
pe

r l
ay

er

= 1
= 5

(b) Average VL accuracy (solid line) and number of chosen
states (dashed line) w.r.t α0 and γ values

Figure 2. Figures 2(a) and 2(b) analyze the relation between depth, performances, and the number of chosen states on NCI1.

1 2 3 4 5 6 7 8 9 1011121314151617181920
layer

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

ch
os

en
 C CGMM w. C=20

iCGMM w. 0: 5, : 3
iCGMM

(a) # states chosen at each layer

1 2 3 4 5 6 7 8 9 1011121314151617181920
layer

0

2000

4000

6000

8000

gr
ap

h
em

be
dd

in
g

siz
e CGMM w. C=20

iCGMM w. 0: 5, : 3
iCGMM

(b) Cumulative graph embedding size on NCI1

Figure 3. We show comparative results on the size and quality of graph embeddings between CGMM and ICGMM. Overall, ICGMM
generates fewer latent states, with consequent savings in terms of memory and compute time of the classifier with respect to CGMM. See
the text for more details.

1 2 3 4 5 6 7 8 9 1011121314151617181920
layer

0

25

50

75

100

125

150

175

un
us

ed
 st

at
es

CGMM w. C=20
iCGMM w. 0: 5, : 3
iCGMM

Figure 4. Cumulative unused states on NCI1. Overall, ICGMM
generates ≈ 0 unused latent states; in contrast, CGMM’s unused
states grow linearly with respect to the number of layers.

unpopulated states2.

To sum up, we have shown that: i) the information propaga-
tion mechanism introduced in the HDP is effective; ii) the
model can successfully infer its number of latent states; iii)
we can estimate the choice of ICGMM hyper-parameters
using uninformative hyper-priors, which further reduces the
cost of the model selection phase; iv) we can get a much
lower memory and computational footprints due to the pre-
vious points without sacrificing the predictive performance
(see Appendix E for a time-to-result comparison); v) our
model has very competitive performances with respect to
the state of the art.

2For simplicity, our code does not remove the possibly unpopu-
lated state in the last Gibbs sampling iteration.

The Infinite Contextual Graph Markov Model

6. Conclusions
With the Infinite Contextual Graph Markov Model, we have
bridged the gap between Bayesian nonparametric techniques
and machine learning for graphs. We have described how
our approach can infer the number of states and most hyper-
parameters at each unsupervised layer, thus reducing the
number of configurations to try during model selection. As
the empirical analyses show, not only can the model exploit
depth to increase its generalization performances, but it also
produces smaller embeddings than CGMM, with conse-
quent savings in terms of memory footprint and training
time of the subsequent classifier. For these reasons, we be-
lieve that ICGMM represents the first relevant step toward
the theoretically grounded construction of fully probabilistic
deep learning models for graphs.

References
Aldous, D. J. Exchangeability and related topics. In École

d’Été de Probabilités de Saint-Flour XIII—1983, pp. 1–
198. Springer, 1985.

Atzeni, D., Bacciu, D., Errica, F., and Micheli, A. Modeling
edge features with deep bayesian graph networks. In
Proceedings of the International Joint Conference on
Neural Networks (IJCNN), pp. 1–8. IEEE, 2021.

Bacciu, D., Errica, F., and Micheli, A. Contextual Graph
Markov Model: A deep and generative approach to graph
processing. In Proceedings of the 35th International
Conference on Machine Learning (ICML), volume 80, pp.
294–303. PMLR, 2018.

Bacciu, D., Errica, F., and Micheli, A. Probabilistic learn-
ing on graphs via contextual architectures. Journal of
Machine Learning Research, 21(134):1–39, 2020a.

Bacciu, D., Errica, F., Micheli, A., and Podda, M. A gentle
introduction to deep learning for graphs. Neural Net-
works, 129:203–221, 9 2020b.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., and others.
Relational inductive biases, deep learning, and graph net-
works. arXiv preprint arXiv:1806.01261, 2018.

Beal, M. J., Ghahramani, Z., and Rasmussen, C. E. The
infinite hidden markov model. Proceedings of the 16th
Conference on Neural Information Processing Systems
(NIPS), 1:577–584, 2002.

Bergstra, J. and Bengio, Y. Random search for hyper-
parameter optimization. Journal of machine learning
research, 13(2):281–305, 2012.

Bernardo, J. M. and Smith, A. F. Bayesian theory, volume
405. John Wiley & Sons, 2009.

Borgwardt, K. M., Ong, C. S., Schönauer, S., Vishwanathan,
S., Smola, A. J., and Kriegel, H.-P. Protein function
prediction via graph kernels. Bioinformatics, 21(suppl_1):
i47–i56, 2005.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Van-
dergheynst, P. Geometric deep learning: going beyond
Euclidean data. IEEE Signal Processing Magazine, 34
(4):25. 18–42, 2017.

Bryant, M. and Sudderth, E. Truly nonparametric online
variational inference for hierarchical dirichlet processes.
In Proceedings of the 26th Conference on Neural Infor-
mation Processing Systems (NIPS), 2012.

Chang, J. and Fisher III, J. W. Parallel sampling of hdps us-
ing sub-cluster splits. In Proceedings of the 28th Confer-
ence on Neural Information Processing Systems (NIPS),
2014.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. In Proceedings of the 30th Conference
on Neural Information Processing Systems (NIPS), pp.
3844–3852, 2016.

Dobson, P. D. and Doig, A. J. Distinguishing enzyme struc-
tures from non-enzymes without alignments. Journal of
molecular biology, 330(4):771–783, 2003.

Eliasof, M., Haber, E., and Treister, E. PDE-GCN: Novel
architectures for graph neural networks motivated by par-
tial differential equations. In Proceedings of the 35th
Conference on Neural Information Processing Systems
(NeurIPS), pp. 3836–3849, 2021.

Errica, F., Podda, M., Bacciu, D., and Micheli, A. A fair
comparison of graph neural networks for graph classifica-
tion. In Proceedings of the 8th International Conference
on Learning Representations (ICLR), 2020.

Fahlman, S. E. and Lebiere, C. The Cascade-Correlation
learning architecture. In Proceedings of the 3rd Confer-
ence on Neural Information Processing Systems (NIPS),
pp. 524–532, 1990.

Fey, M. and Lenssen, J. E. Fast graph representation learn-
ing with pytorch geometric. In Representation Learning
on Graphs and Manifolds Workshop, International Con-
ference on Learning Representations (ICLR), 2019.

Fox, E. B., Sudderth, E. B., Jordan, M. I., and Willsky, A. S.
The sticky hdp-hmm: Bayesian nonparametric hidden
markov models with persistent states. Preprint, 2007.

The Infinite Contextual Graph Markov Model

Fox, E. B., Sudderth, E. B., Jordan, M. I., and Willsky,
A. S. An hdp-hmm for systems with state persistence.
In Proceedings of the 25th International Conference on
Machine Learning (ICML), pp. 312–319, 2008.

Gal, Y. and Ghahramani, Z. Pitfalls in the use of parallel
inference for the dirichlet process. In Proceedings of
the 31st International Conference on Machine Learning
(ICML), volume 32, pp. 208–216. PMLR, 22–24 Jun
2014.

Ge, H., Chen, Y., Wan, M., and Ghahramani, Z. Distributed
inference for dirichlet process mixture models. In Pro-
ceedings of the 32nd International Conference on Ma-
chine Learning, volume 37, pp. 2276–2284. PMLR, 2015.

Geman, S. and Geman, D. Stochastic relaxation, gibbs dis-
tributions, and the bayesian restoration of images. IEEE
Transactions on pattern analysis and machine intelli-
gence, PAMI-6(6):721–741, 1984.

Gershman, S. J. and Blei, D. M. A tutorial on bayesian non-
parametric models. Journal of Mathematical Psychology,
56(1):1–12, 2012.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International Conference on Machine Learning,
pp. 1263–1272. PMLR, 2017.

Goel, P. K. and Degroot, M. H. Information about hy-
perparamters in hierarchical models. Journal of the
American Statistical Association, 76(373):140–147, 1981.
ISSN 01621459. URL http://www.jstor.org/
stable/2287059.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive rep-
resentation learning on large graphs. In Proceedings of
the 31st Conference on Neural Information Processing
Systems (NIPS), pp. 1024–1034. Curran Associates, Inc.,
2017.

He, X., Zhao, K., and Chu, X. Automl: A survey of the
state-of-the-art. Knowledge-Based Systems, 212:106622,
2021.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J.
Stochastic variational inference. Journal of Machine
Learning Research, 14(5), 2013.

Hoppe, F. M. Pólya-like urns and the ewens’ sampling
formula. Journal of Mathematical Biology, 20(1):91–94,
1984.

Hughes, M., Kim, D. I., and Sudderth, E. Reliable and scal-
able variational inference for the hierarchical dirichlet
process. In Proceedings of the 18th International Confer-
ence on Artificial Intelligence and Statistics (AISTATS),
2015.

Kersting, K., Kriege, N. M., Morris, C., Mutzel, P.,
and Neumann, M. Benchmark data sets for graph
kernels, 2016. URL http://graphkernels.cs.
tu-dortmund.de.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In 5th International
Conference on Learning Representations (ICLR), 2017.

Lovell, D., Adams, R. P., and Mansinghka, V. K. Parallel
markov chain monte carlo for dirichlet process mixtures.
In Workshop on Big Learning, Advances in Neural Infor-
mation Processing Systems (NIPS), 2012.

Micheli, A. Neural network for graphs: A contextual con-
structive approach. IEEE Transactions on Neural Net-
works, 20(3):498–511, 2009. Publisher: IEEE.

Moon, T. K. The expectation-maximization algorithm. IEEE
Signal Processing Magazine, 13(6):47–60, 1996. Pub-
lisher: IEEE.

Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel,
P., and Neumann, M. Tudataset: A collection of bench-
mark datasets for learning with graphs. In ICML 2020
Workshop on Graph Representation Learning and Beyond
(GRL+ 2020), 2020. URL www.graphlearning.
io.

Neal, R. M. Markov chain sampling methods for dirichlet
process mixture models. Journal of computational and
graphical statistics, 9(2):249–265, 2000.

Orbanz, P. and Teh, Y. W. Bayesian nonparametric models.
Encyclopedia of machine learning, 1, 2010.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2009.
Publisher: IEEE.

Sethuraman, J. A constructive definition of dirichlet priors.
Statistica sinica, pp. 639–650, 1994.

Simonovsky, M. and Komodakis, N. Dynamic edge-
conditioned filters in convolutional neural networks on
graphs. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 29–38,
2017.

Teh, Y. W. Dirichlet Process, pp. 280–287. Springer US,
Boston, MA, 2010. ISBN 978-0-387-30164-8.

Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M.
Hierarchical dirichlet processes. Journal of the american
statistical association, 101(476):1566–1581, 2006.

http://www.jstor.org/stable/2287059
http://www.jstor.org/stable/2287059
http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de
www.graphlearning.io
www.graphlearning.io

The Infinite Contextual Graph Markov Model

Wale, N., Watson, I. A., and Karypis, G. Comparison of
descriptor spaces for chemical compound retrieval and
classification. Knowledge and Information Systems, 14
(3):347–375, 2008.

Wang, C. and Blei, D. Truncation-free stochastic variational
inference for bayesian nonparametric models. In Pro-
ceedings of the 26th Conference on Neural Information
Processing Systems (NIPS), 2012.

Williamson, S., Dubey, A., and Xing, E. Parallel Markov
chain Monte Carlo for nonparametric mixture models. In
Proceedings of the 30th International Conference on Ma-
chine Learning (ICML), volume 28, pp. 98–106. PMLR,
2013.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip,
S. Y. A comprehensive survey on graph neural networks.
IEEE Transactions on Neural Networks and Learning
Systems, 2020.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In Proceedings of the 7th
International Conference on Learning Representations
(ICLR), 2019.

Yanardag, P. and Vishwanathan, S. V. N. Deep graph kernels.
In Proceedings of the 21th ACM International Conference
on Knowledge Discovery and Data Mining (SIGKDD),
pp. 1365–1374, 2015.

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., and
Leskovec, J. Hierarchical graph representation learning
with differentiable pooling. In Proceedings of the 32nd
Conference on Neural Information Processing Systems
(NeurIPS), pp. 4800–4810. Curran Associates, Inc., 2018.

Zhang, M., Cui, Z., Neumann, M., and Chen, Y. An end-to-
end deep learning architecture for graph classification. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI), pp. 4438–4445, 2018.

Zhou, K., Huang, X., Zha, D., Chen, R., Li, L., Choi, S.-
H., and Hu, X. Dirichlet energy constrained learning for
deep graph neural networks. In Proceedings of the 35th
Conference on Neural Information Processing Systems
(NeurIPS), pp. 21834–21846, 2021.

The Infinite Contextual Graph Markov Model

A. ICGMM Gibbs Sampling Procedure
HDP Gibbs sampling is an iterative procedure (Neal, 2000; Teh et al., 2006; Fox et al., 2007) that we use to estimate all
node latent states and ICGMM’s parameters at each layer. Hereinafter, to keep the notation less cluttered, we shall omit the
superscript ℓ of the current layer and define C̄=Cℓ−1.

Sampling qu. The conditional distribution qu of qu given all the other variables is given by:

P (qu = c | ju = j, q−u,β,θ,x) ∝ (α0βc + n−u
jc)f(xu | θc), c ∈ {1, . . . , C + 1}; (4)

where we recall that C denotes the number of current states in the mixture model, f is the p.d.f. associated with emission
distribution F (θ) and the distribution πj has been integrated out (Teh et al., 2006). Here, n−u

jc indicates the number of
observations assigned so far to the mixture component c of group j. Whenever we have that qu = C + 1, we create a
new state and sample a new emission distribution θC+1 from H . On the contrary, if at the end of an iteration there are
no observation of any group associated with a certain mixture component, we can remove that mixture component and
decrement the current number of states C. This is how ICGMM varies in complexity to fit the data distribution. Also, note
that qℓ

u will be used in Eq. 3 at the next layer ℓ+ 1. When inferring the latent states of a new data point, no statistics of the
model are updated.

Sampling β. In the HDP stick-breaking representation that we use to define the ICGMM in Section 3.3, we require an
auxiliary variable method to sample the base distribution β (Teh et al., 2006). We therefore introduce the auxiliary variables
m = {mjc | ∀j ∈ {1, . . . , C̄},∀c ∈ {1, . . . , C}} that need to be sampled in order to compute β. However, being mjc

dependent on njc, the sampling step of these variables is very inefficient for large values of njc, as the probability values are
proportional the Stirling number of the first-kind s(njc, ·) (Fox et al., 2008). Luckily, we can avoid this step by observing
that the value mjc corresponds to the number of tables where dish qu = c is served at restaurant j in the Chines Restaurant
Franchise (CRF) representation (Teh et al., 2006; Fox et al., 2007). Thus, we can compute each mjc by simply simulating
the table assignments process. We recall that, in the CRF representation, each customer (i.e., observation) of each restaurant
(i.e., group) is assigned to a table where just a single dish (i.e., mixture component) is served. Thus, while all customers
sitting at the same table must be eating the same dish, there can be multiple tables serving the same dish as well.

Knowing that customer u is eating the dish qu = c, its table assignment tu can be sampled according to:

P (tu = t | qu = c, ju = j, c, t−u,β, α0) ∝

{
ñ−u
jt , ∀t s.t. cjt = c;

α0βc, t = tnew,
(5)

where t−u represents the tables assigned to all the other nodes except u, cjt ∈ c specifies the dish assigned to table t at
restaurant j and ñ−u

jt denotes the number of customers (except u) sitting at table t of restaurant j. Since we know the dish
qu selected by the customer u, there is zero probability that the customer sits to a table where that dish is not served. The
creation and deletion of tables is very similar to that of Eq. 4, so we skip it in the interest of the exposition and refer to the
pseudocode in Appendix B for a complete treatment.

At last, after computing mjc as described above (i.e.,
∑

t′ I[cjt′ = c]), the base distribution β is sampled from:

β | q,m ∼ Dir(
C̄∑

j=1

mj1, . . . ,

C̄∑
j=1

mjC , γ), (6)

where Dir stands for the Dirichlet distribution.

Sampling θ. To update the emission parameters θ, we rely on its posterior given q and x:

P (θc | q,x) ∝ h(θc)
∏

∀u|qu=c

f(xu | θc). (7)

By choosing the family of the base distribution H to be a conjugate prior for F , e.g., a Dirichlet distribution for Categorical
emissions or a Normal-Gamma distribution for Normal emissions, we can compute the posterior in closed form.

The Infinite Contextual Graph Markov Model

Let the emission distribution be a categorical distribution with M possible states. When creating a new state, we can sample
the emission parameter according to a Dirichlet distribution, which is a conjugate prior for the categorical distribution:

θc ∼ Dir(η, . . . , η), (8)

where the subscript c indicates the mixture component. Thanks to the conjugate prior, the emission parameters can be
updated by sampling its Dirichlet posterior distribution:

θ′c ∼ Dir(η +N1
c , . . . , η +NM

c), (9)

where Nm
c indicates the number of times the visible label m has been associated with the latent state c, i.e., N c

m =∑
u I[qu = c ∧ xu = m].

Similarly to the categorical case, let the emission distribution be an univariate Gaussian. In this case, for each state, we can
sample the emission parameter according to a Normal-Gamma distribution:

µc ∼ N (µ0, 1/(λ0τc)) (10)
τc ∼ Gamma(a0, b0), (11)

where the subscript c indicates a mixture component ant τc is the inverse of the variance. Then, the emission parameters of
the Gaussian can be updated as follows:

µ′
c ∼ N

(
λ0µ0 +Ncx̄c
λ0 +Nc

,
1

(λ0 +Nc)τ ′c

)
(12)

τ ′c ∼ Gamma
(
a0 +

Nc

2
, b0 +

1

2

(
Ncsc +

λ0Nc(x̄c − µ0)
2

λ0 +Nc

))
, (13)

where Nc indicates the number of visible labels associated with the latent state c (i.e., Nc =
∑

u I[qu = c]), x̄c is the mean
of the data associated with the class c (i.e., x̄c = 1

Nc

∑
∀u|qu=c xu), and sc is the variance of the data associated with the

class c (i.e., sc = 1
Nc

∑
∀u|qu=c(xu − x̄u)

2).

Sampling α0. Following (Teh et al., 2006), the concentration parameter α0 can be updated between Gibbs sampling
iterations by exploiting an auxiliary variable schema. Assume that α0 has a Gamma prior distribution Gamma(a, b) (i.e.,
α0 ∼ Gamma(a, b)). Then, we define the auxiliary variables w1, . . . , wC̄ and s1, . . . , sC̄ , where each wj variable takes a
value between 0 and 1, and each sj is a binary variable. Then, the value of α0 can be sampled according to the following
schema:

wj ∼ Beta(α0 + 1, nj.), (14)

sj ∼ Bernoulli
(

nj.
nj. + α0

)
, (15)

α0 ∼ Gamma

a+m.. −
C̄∑

j=1

sj , b−
C̄∑

j=1

logwj

 , (16)

where nj. is the number of costumer eating in the j-th restaurant, and m.. is the total number of tables in all the restaurants.

Sampling γ. Similarly, assuming that the hyperparameter γ has a gamma prior distribution Gamma(a′, b′) (i.e., γ ∼
Gamma(a′, b′)), its value can be updated by following the auxiliary variable schema below (Teh et al., 2006; Fox et al.,
2008):

r ∼ Beta(γ + 1,m..), (17)

p ∼ Bernoulli
(

m..

m.. + γ

)
, (18)

γ ∼ Gamma(a′ + C − p, b′ − log r). (19)

B. ICGMM Pseudocode
To ease the understanding of our model, we provide the pseudocode of the Gibbs sampling method employed in this work.

The Infinite Contextual Graph Markov Model

Algorithm 1 Gibbs sampling method for exact ICGMM
Require: A dataset of graphs D = {g1, . . . , gN}. Initialize C = 1, θ = {θ1} (where θ1 ∼ H), Tj = ∅ (for all restaurant j),

q = t = c = ⊥, and n = ñ = 0.
repeat

for g ∈ D do ▷ For each graph
for u ∈ Vg do ▷ For each node

// assign the restaurant
ju ← ψ(qℓ−1

Nu
) ▷ Can be done once ∀u

// assign the dish
njuqu ← njuqu − 1 ▷ If qu ̸= ⊥, remove qu from the counting
qu ← SAMPLING(ju,n,θ,x,β, α0) ▷ Sample the dish according to Eq. (4)
if qu is new then ▷ Create a new state

θnew ∼ H
θ ← θ ∪ {θnew}
C ← C + 1
njqu ← 0 ∀j ∈ {1, . . . , C̄} ▷ Initialize the counters

end if
njuqu ← njuqu + 1 ▷ Update the counter

// assign the table
ñjutu ← ñjutu − 1 ▷ If tu ̸= ⊥, remove tu from the counting
tu ← SAMPLING(ju, qu, c, ñ,β, α0) ▷ Sample the table according to Eq. (5)
if tu is new then ▷ Create a new table
Tj ← Tj ∪ {tu}
cjutu ← qu ▷ Save the dish-table assignment
mjuqu ← mjuqu + 1 ▷ Update the table count
ñjutu ← 0 ▷ Initialize customer counter

end if
ñjutu ← ñjutu + 1

end for
end for

// remove unused dishes
for c ∈ {1, . . . , C} do

if
∑C̄

j=1 njc = 0 then ▷ No customers eats the dish c
θ ← θ \ {θc}
C ← C − 1

end if
end for

// remove empty tables
for j ∈ {1, . . . , C̄} do

for t ∈ Tj do
if ñjt = 0 then ▷ No customers eat at the table t in the restaurant j
Tj ← Tj \ {t}
mjcjt ← mjcjt − 1

end if
end for

end for

// update model parameters
β ← SAMPLING(q,m) ▷ Sample according to Eq. (6)
θ ← SAMPLING(q,x) ▷ Sample according to Eq. (7)

if not ICGMMαγ then
α0 ← SAMPLING(a, b,n) ▷ Sample according to Eq. (14), (15), (16)
γ ← SAMPLING(a′, b′,m) ▷ Sample according to Eq. (17), (18), (19)

end if
until stopping criteria

The Infinite Contextual Graph Markov Model

C. Dataset Statistics
Below we report some statistics for the chosen benchmarks.

Table 3. Dataset statistics.
Graphs # Classes # Nodes # Edges # Node labels

C
H

E
M

. DD 1178 2 284.32 715.66 89
NCI1 4110 2 29.87 32.30 37
PROTEINS 1113 2 39.06 72.82 3

S
O

C
IA

L

IMDB-BINARY 1000 2 19.77 96.53 -
IMDB-MULTI 1500 3 13.00 65.94 -
REDDIT-BINARY 2000 2 429.63 497.75 -
REDDIT-5K 4999 5 508.82 594.87 -
COLLAB 5000 3 74.49 2457.78 -

D. Speedup gains with faster inference
We compare the performances of the exact version of ICGMM against the faster implementation. As we can see, the
speedup increases for the datasets with a larger average number of nodes (see Table 3).

Table 4. Approximate speedup between the exact ICGMM and the faster version on all datasets.

ICGMM ICGMMf

ref. min/max

C
H

E
M

. DD 1× 17.8×/30.8×
NCI1 1× 3.1×/5.1×
PROTEINS 1× 4.2×/5.7×

S
O

C
IA

L

IMDB-B 1× 2.4×/5.1×
IMDB-M 1× 1.6×/3.6×
REDDIT-B 1× 11.1×/45.6×
REDDIT-5K 1× 36.7×/60.6×
COLLAB 1× 3.1×/8.6×

E. Time-to-result Comparison
A fair time comparison between all models requires to look at the “time to result” using the same resources - in our case
CPUs - which would imply a complete re-evaluation of all models in Errica et al. (2020). Due to the sheer amount of
experiments needed to do so, we did our best to compare the sequential time to result of the fastest network GraphSAGE
(72 configurations), against ICGMM on NCI1 and COLLAB. The results are shown below: while ICGMM is slower than
GraphSAGE when comparing single runs, we are able to save a considerable amount of time and energy with ICGMM due
to the ability to estimate most hyper-parameter’s values.

Dataset
iCGMM Total

(Embed + Classify) GraphSAGE
Relative CPU Speedup
(time to completion)

NCI1 58h+44h = 102h 2010h 19.7x
COLLAB 334h + 621h = 955h 35280h 36.9x

Table 5. Time-to-result to train ICGMM and GraphSAGE on NCI1 and COLLAB.

The Infinite Contextual Graph Markov Model

1 2 3 4 5 6 7 8 9 1011121314151617181920
layer

10

20

30

40

50

C

DD NCI1 PROTEINS

(a) Chemical datasets.

1 2 3 4 5 6 7 8 9 1011121314151617181920
layer

0

5

10

15

20

25

30

C

IMDB-BINARY
IMDB-MULTI
REDDIT-BINARY

REDDIT-MULTI-5K
COLLAB

(b) Social datasets.

Figure 5. Per-layer analysis of the average number of states generated by ICGMM.

Bin
100

101

102

103

104

Co
un

t

(a) IMDB-BINARY.

Bin
100

101

102

103

104

Co
un

t

(b) IMDB-MULTI.

Bin

101

102

103

104

105

106

Co
un

t
(c) REDDIT-BINARY

Bin

102

103

104

105

106

Co
un

t

(d) REDDIT-MULTI-5K.

Bin

101

102

103

104

Co
un

t

(e) COLLAB.

Figure 6. The node labels distribution of each social dataset considered. For the sake of clarity, we cluster the labels into 41 bins; in the
plots, each bar indicates the number of node labels in a bin. The first 40 bins (from left to right) have a width of 5; thus, they cover all the
labels between 0 and 200. The last bin is used to count all the nodes with a label that is greater than 200.

F. State Analysis
We additionally performed an analysis of the average number of states generated by each layer of ICGMM on the chemical
and social datasets. Results are shown in Figure 5. At each layer, ICGMM is trained to solve a node density estimation
problem. Thus, we argue that the number of states selected by the model in each dataset is at least related to the complexity
of the node label distributions.

In Figure 6, we report the node label distributions of the social datasets considered (we recall that in this datasets the node
label indicates the node out-degree). The node label distributions in the IMDB datasets are almost uni-modal. Thus, each
ICGMM layer can effectively represent them using a small number of states (around 5). In the REDDIT datasets, most
of the labels appear uniformly; thus, ICGMM exploits more states (around 10) to obtain a good representation of them.
Finally, in the COLLAB dataset, the missing peak among the first bins force ICGMM to use the highest number of states
(around 20) among the social datasets.

The Infinite Contextual Graph Markov Model

Label
100

101

102

103

104

Co
un

t
DD

(a) DD.

Label
100

101

102

103

104

105

Co
un

t

NCI1

(b) NCI1.

Label

104

Co
un

t

PROTEINS

(c) PROTEINS.

Figure 7. The node labels distribution of each chemical dataset considered. In the plots, each bar is related to a different node label. The
bar-label link follows the label id generated in the data pre-processing step (see Morris et al. 2020 for more details): the leftmost bar is
related to the label with id 0, while the rightmost one is related to the label with the highest id. The height of a bar indicates the number of
nodes in the dataset with the corresponding label.

On the chemical datasets, we expect a similar behavior. In Figure 7, we report the node label distributions of the chemical
datasets considered (we recall that in these datasets the node label is a categorical value). The DD dataset contains more
node labels than the NCI1 datasets. Accordingly, ICGMM exploits a higher number of states on the DD dataset than on the
NC11 dataset. The PROTEINS dataset does not follow this trend: even if it has the smallest number of node labels (only 3),
ICGMM uses the highest number of states (around 30). We believe that our model creates too many states due to a poor
initialization. Further investigations are required to shade the light on this behavior.

