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Abstract
The Approximate-Proximal Point (APROX) fam-
ily of model-based stochastic optimization algo-
rithms improve over standard stochastic gradient
methods, as they are robust to step size choices,
adaptive to problem difficulty, converge on a
broader range of problems than stochastic gradi-
ent methods, and converge very fast on interpola-
tion problems, all while retaining nice minibatch-
ing properties (Asi & Duchi, 2019b; Asi et al.,
2020). In this paper, we propose an acceleration
scheme for the APROX family and provide non-
asymptotic convergence guarantees, which are
order-optimal in all problem-dependent constants
and provide even larger minibatching speedups.
For interpolation problems where the objective
satisfies additional growth conditions, we show
that our algorithm achieves linear convergence
rates for a wide range of stepsizes. In this setting,
we also prove matching lower bounds, identify-
ing new fundamental constants and showing the
optimality of the APROX family. We corroborate
our theoretical results with empirical testing to
demonstrate the gains accurate modeling, acceler-
ation, and minibatching provide.

1. Introduction
We move beyond stochastic and “minibatch”-gradient meth-
ods for stochastic optimization problems to extend (Asi
et al., 2020)’s work on parallelizable and minibatch aware
model-based and (approximate) proximal point methods for
the problem

minimize
x∈X

f(x) := EP [F (x;S)] =
∫
S
F (x; s)dP (s) (1)
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Here, S denotes the sample space, and S ∼ P is an S-
valued random variable, where for each sample s ∈ S,
F (·; s) : Rn → R ∪ {+∞} is a closed convex function,
subdifferentiable on the closed convex domain X .

First order stochastic methods are the default choice for
solving problem (1). They enjoy numerous convergence
guarantees (Zinkevich, 2003; Nemirovski et al., 2009; Bot-
tou & Bousquet, 2007; Shalev-Shwartz et al., 2011), and
extensions to parallelism and distributed computing that
make them practically attractive (Lan, 2012; Dekel et al.,
2012; Duchi et al., 2012). However, they are not robust
to noise and hyperparameter tuning (Li et al., 2017; Asi &
Duchi, 2019a;b); in fact, they may even diverge with slightly
mis-specified stepsizes (Asi & Duchi, 2019b; Nemirovski
et al., 2009). Motivated by the limitations of gradient meth-
ods, researchers (Bertsekas, 2011; Kulis & Bartlett, 2010;
Davis & Drusvyatskiy, 2019; Duchi & Ruan, 2018; Asi
& Duchi, 2019b) have developed stochastic (approximate)
proximal-point (APROX) and model-based methods as a
more robust alternative.

These APROX methods, as we explain in Section 2, construct
a model of the function and iterate by minimizing regular-
ized versions of the model. They improve over standard
stochastic gradient methods, as they are adaptive to problem
difficulty, converge on a broader range of problems than
stochastic gradient methods, while retaining nice minibatch-
ing properties (Duchi & Ruan, 2018; Asi & Duchi, 2019b;
Asi et al., 2020). Argubly most excitingly APROX also
converge very fast on interpolation problems—that is, prob-
lems for which there exists x⋆ ∈ X minimizing F (·; s) with
P -probability 1—for a (very) wide selection of step size
choices. Such problems arise in numerous modern machine
learning applications (Belkin et al., 2018; 2019)—where one
can achieve zero training error—or, for example, in finding
a point in the intersection of convex sets ∩Ni=1Ci, where one
takes S = {1, . . . , N} and F (x; i) = dist(x,Ci).

In spite of this progress, many questions remain open.
APROX does not attain the classical smooth optimization
lower bound as the noise tends to 0 (Nesterov, 2004); an
improvement here could lead to even larger minibatching
speedups. Additionally, the minibatch convergence rates
(Asi et al., 2020) shown in the interpolation setting require
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a small step size to work, dampening the message of the
original APROX paper (Asi & Duchi, 2019b) that APROX is
robust to step size choices. Finally, it is not clear whether
further improvements to APROX can be made in the interpo-
lation setting, as no optimality results have been shown.

In this paper, we answer these open questions. Like (Asi
et al., 2020), we study methods to parallelize the APROX
family via minibatched samples S1:m ∈ Sm, that is, where
each iteration of the method receives an independent batch
S1:m iid∼ P , developing several new results for model-based
methods the problem (1) more generally along the way.
Concretely, we provide the following:

1. Non-asymptotic rates and accelerated convergence: We
develop an accelerated and minibatched version of the
APROX family in Section 3 which improves on previous
convergence results and is minimax optimal. This algo-
rithm enjoys linear speedups in minibatch size up to the
cube of the total number of iterations run.

2. Optimal convergence and interpolation problems: In Sec-
tions 4 and 5, for interpolation problems, we develop new
lower bound results, characterizing (worst-case) problem
difficulty based on a particular growth condition (Asi &
Duchi, 2019b) introduce, which is (by these results) evi-
dently fundamental; this result also shows that APROX
is minimax optimal, with the correct problem dependent
constants. We give some sufficient conditions for mini-
batching to yield improved convergence, and we further
improve on the minibatching upper bounds presented in
(Asi et al., 2020), by showing that the same (near)-linear
convergence rates hold for a (very) wide range of step
size schedules.

3. Experimental evaluation: We conclude with an exper-
imental evaluation in Section 6, where we study the
robustness and acceleration properties of the methods;
performance profiles highlight the benefits of using these
better models.

1.1. Related work

First order stochastic methods (Robbins & Monro, 1951) are
the most popular method for minimizing stochastic objec-
tives; an enormous literature gives numerous convergence
results (Polyak, 1987; Polyak & Juditsky, 1992; Zinkevich,
2003; Nemirovski et al., 2009; Zhang, 2004; Kushner &
Yin, 2003; Bach & Moulines, 2011). The growth of parallel
computing has motivated the development of “minibatch”
methods that use multiple samples S in each iteration, where
researchers have shown how stochastic gradient-like meth-
ods enjoy linear speedups as batch sizes increase (Lan, 2012;
Dekel et al., 2012; Duchi et al., 2012; Niu et al., 2011; Chat-
urapruek et al., 2015). Other work proposes accelerated

stochastic optimization methods, showing faster (worst-case
optimal) associated convergence rates (Lin et al., 2018; Lan,
2012). In spite of their successes, stochastic gradient meth-
ods still suffer a number of drawbacks. For example, mis-
specified stepsizes may force slow convergence for these
methods (Nemirovski et al., 2009); objective functions with-
out appropriate scaling or that grow too quickly may cause
divergence (Asi & Duchi, 2019a;b); they can fail to adapt
to problem geometry (Duchi et al., 2011; Levy & Duchi,
2019). To circumvent this, (Asi & Duchi, 2019b;a) show
how better models in stochastic optimization yield improved
stability, robustness, and convergence guarantees over clas-
sical stochastic gradient methods. The aim of our develop-
ment is to extend accelerated convergence rates (as available
for gradient-based methods (Lan, 2012; Nesterov, 2004)) to
such model-based methods.

2. Preliminaries & Methods
The foundation of our methods is the model-based approxi-
mate proximal-point (APROX) framework (Davis & Drusvy-
atskiy, 2019; Duchi & Ruan, 2018; Asi & Duchi, 2019b),
which approximates the functions F via models Fx of F
localized at x, which satisfy the following conditions:

(C.i) Convexity: The function y 7→ Fx(y; s) is convex and
subdifferentiable on X .

(C.ii) Lower bounds and local accuracy: For all y ∈ X ,

Fx(y; s) ≤ F (y; s) and Fx(x; s) = F (x; s).

Note that Condition (C.ii) immediately implies that
∂Fx(y; s)|y=x ⊂ ∂F (x; s). With such a model, APROX

algorithms iteratively sample Sk
iid∼ P and update

xk+1 := argmin
x∈X

{
Fxk

(x;Sk) +
1

2αk
∥x− xk∥22

}
. (2)

Typical choices for the models include the following three:

• Stochastic gradient methods: for any F ′(x; s) ∈
∂F (x; s), use the linear model

Fx(y; s) := F (x; s) + ⟨F ′(x; s), y − x⟩. (3)

• Stochastic proximal point methods: use the true function

Fx(y; s) := F (y; s). (4)

• Truncated methods: for any F ′(x; s) ∈ ∂F (x; s), use

Fx(y; s) := max { F (x; s) + ⟨F ′(x; s), y − x⟩,
inf
z∈X

F (z; s) } . (5)
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The model (5) is often simple to apply: in many applica-
tions, the objective is non-negative, so infz∈X F (z; s) =
0 and the model is simply the positive part of the linear
approximation (3).

Now, we provide extensions to APROX to the minibatch set-
ting, where instead of having one sample function at every
iteration, we havem sample functions. (Asi et al., 2020) pro-
posed using the model F (x;S1:m

k ) := 1
m

∑m
i=1 F (x;S

i
k)

which exhibits improved rates with minibatching.

It minimizes a model of the average at every iteration. With
any model F xk

(x;S1:m
k ) of the average satisfying Condi-

tions (C.i) and (C.ii), we can perform the update

xk+1 := argmin
x∈X

{
F xk

(x;S1:m
k ) +

1

2αk
∥x− xk∥22

}
.

(6)
In the case of truncated models (5), this leads to the
following two natural algorithms, which can be parallelized
efficiently (see (Asi et al., 2020) for details):

Truncated Average (TruncAv): For any lower bound
Λ(s1:m) on F (·, s1:m), choose the model as F x(y; s1:m) :=

max
{
F (x; s1:m) + ⟨F ′

(x; s1:m), y − x⟩,Λ(s1:m)
}
. This

results in the update,

xk+1 = xk

−min

{
αk,

F (xk;S
1:m
k )− Λ(S1:m)

∥F ′
(xk;S1:m

k )∥22

}
F

′
(xk;S

1:m
k ).

(7)

Average of Truncated Models (AvMod):

xk+1 := argmin
x∈X

{
1

m

m∑
i=1

Fxk
(x;Sik) +

1

2αk
∥x− xk∥22

}
.

(8)

Notation For a convex function f , ∂f(x) denotes its sub-
gradient set at x, and f ′(x) ∈ ∂f(x) denotes an arbitrary
element of the subdifferential. We follow (Bertsekas, 1973),
where we take F ′(x; s) to be any measureable selection in
∂F (x; s), that is,

F ′(x; s) = g(x; s) ∈ ∂F (x; s)

where s 7→ g(x, s) is P -measurable. We set f ′(x) =∫
F ′(x; s)dP (s) =

∫
g(x; s)dP (s) accordingly. We let

X ⋆ = argminx∈X f(x) denote the optimal set of prob-
lem (1) and x⋆ ∈ X ⋆ denote a single minimizer.

3. Non-Asymptotic Convergence Results
Our first set of theoretical results extends the familiar non-
asymptotic rates of convergence for smooth convex stochas-

tic optimization (Lan, 2012) to model-based methods. Here,
we show that model-based methods for problem (1) enjoy
optimal dependence on the variance of stochastic gradients,
and, building off of (Tseng, 2008) and (Lan, 2012), can
be accelerated to achieve worst-case optimal complexity.
To present our results in the most generality, we allow non-
Euclidean geometries to generalize mirror descent (Beck &
Teboulle, 2003; Nemirovski et al., 2009).

To that end, recall that a differentiable convex function h
is a distance generating function for X if it is strongly
convex with respect to a norm ∥·∥ over X , meaning
h(y) ≥ h(x)+ ⟨∇h(x), y− x⟩+ 1

2 ∥x− y∥2 for x, y ∈ X .
The associated Bregman divergence is then Dh(x, y) :=
h(x) − h(y) − ⟨∇h(y), x − y⟩, which evidently satis-
fies Dh(x, y) ≥ 1

2 ∥x− y∥2. Recalling the dual norm
∥z∥∗ = sup∥x∥≤1⟨z, x⟩, throughout this section, we will
work with the following standard assumption (Lan, 2012).

Assumption 1. The function f has L-Lipschitz gradient
with respect to the norm ∥·∥, meaning that

∥∇f(x)−∇f(y)∥∗ ≤ L ∥x− y∥ ,

and there exists σ2
0 <∞ such that for each x ∈ X ,

E[∥∇f(x)−∇F (x;S)∥2∗] ≤ σ2
0 .

When Dh(x, y) ≤ R2 for all x, y ∈ X and Assumption 1
holds, mirror descent methods achieve convergence guaran-
tees of the form LR2

k + σ0R√
k

, while accelerated methods (Lan,

2012) can achieve LR2

k2 + σ0R√
k

. The latter is worst-case
optimal (Nemirovski & Yudin, 1983). We develop an accel-
erated analogue of the iteration (2), which gives a leading
minimax-optimal O(1/k2) rate, by building off of the ideas
of (Lan, 2012) and (Tseng, 2008). We consider a modified
iteration, which augments the model-based update (2) with
two auxiliary sequences whose momentum allows acceler-
ated convergence. For full generality and completeness, we
consider an augmented version of problem (1), where we
wish to minimize

f(x) + r(x) = EP [F (x;S)] + r(x),

where r is a known convex function (typically a regularizer
of some type). We require a non-increasing sequence θk ∈
[0, 1] of stepsizes and consider the three term iteration

yk = (1− θk)xk + θkzk

zk+1 = argmin
x∈X

{
Fyk(x;Sk) + r(x) +

1

αk
Dh(x, zk)

}
xk+1 = (1− θk)xk + θkzk+1. (9)

All our analysis requires is that the additional stepsizes
θk satisfy θ0 = 1, 1−θk

θ2k
≤ 1

θ2k−1
for all k, and are non-

increasing; for example, our choice θk = 2
k+2 satisfies
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these desiderata, as does taking any constant stepsize. We
then have the following theorem; proof in Appendix A.1.
Theorem 1. Let Assumption 1 hold, and assume that
Dh(x

⋆, x) ≤ R2 for all x ∈ X . Let (yk, zk, xk) fol-
low the three term iteration (9) for any model satisfying
Conditions (C.i) and (C.ii). Take stepsizes θk = 2

k+2 and
αk = 1

L+ηk
for ηk = η0

√
k + 1, where η0 ≥ 0. Then

E[f(xk+1) + r(xk+1)− f(x⋆)− r(x⋆)]

≤ 4LR2

(k + 2)2
+ 2

R2

√
k

[
σ2
0

η0
+ η0

]
.

Specializing to the “minibatch” setting with h(x) = 1
2 ∥x∥

2
2

again yields a minimax optimal algorithm for the class of
problems we consider.
Corollary 3.1. Let the conditions of Theorem 1 hold, ex-
cept that we use a minibatch S1:m

k
iid∼ P of size m at each

iteration, and F yk(·;S1:m
k ) is a model of 1

m

∑m
i=1 F (·;Sik)

satisfying Conditions (C.i) and (C.ii). Set η0 = σ0
√
m

R . Then

E[f(xk+1)+r(xk+1)−f(x⋆)−r(x⋆)] ≤
4LR2

(k + 2)2
+3

Rσ0√
km

.

The error rate O(1/k2+1/
√
km) is faster than the O(1/k+

1/
√
km) rate we showed for the basic minibatched APROX

algorithm (2), and it is minimax rate optimal.

4. Interpolation Problems
In interpolation problems, there exists a consistent solu-
tion x⋆ ∈ X satisfying F (x⋆;S) = infz∈X F (z;S) with
probability 1. While this is a strong assumption, it holds
in numerous practical scenarios: in machine learning prob-
lems, where a perfect predictor (at least on training data)
exists (Belkin et al., 2018; 2019; Ma et al., 2018); in prob-
lems of finding a point in the intersection C⋆ = ∩Ni=1Ci
of convex sets Ci, assuming C⋆ ̸= ∅, where we may
take F (x; i) = dist(x,Ci) (e.g. (Bauschke & Borwein,
1996)); or in least-squares problems with consistent solu-
tions (Needell et al., 2014; Strohmer & Vershynin, 2009).
We show a few results in this section, first that model-
based methods (often) enjoy linear convergence on these
problems—in analogy to the results available for stochastic
gradient methods (Ma et al., 2018)—while also demonstrat-
ing improvement via mini-batching and reducing variance.
Second, we revisit the convergence guarantees that Asi and
Duchi (Asi & Duchi, 2019b) provide, giving a unified treat-
ment and some discussion of the possibilities of parallelism.
These conditions appear on their face to be somewhat non-
standard, but as we show, they capture the essential diffi-
culty of interpolation problems, and we can provide sharp
(matching to within numerical constants) lower bounds for
optimization using them.

Definition 4.1. Let X ⋆ := argminx∈X f(x). Then
problem (1) is an interpolation problem if there exists
x⋆ ∈ X ⋆ such that for P -almost all s ∈ S, we have
infx∈X F (x; s) = F (x⋆; s).

We develop two sets of upper bounds for such interpolation
problems. The first applies to any model-based method,
while the second relies on the models having more fidelity
to the functions F .

4.1. Upper bounds under smoothness and quadratic
growth

Our first set of upper bounds relies on two assumptions
about the growth of the function f at the optimum—which
is weaker than typical strong convexity assumptions (Ma
et al., 2018) that require quadratic growth everywhere—and
the noise in its gradients.

Assumption 2 (Quadratic Population Growth). There exist
λ > 0 such that for all x ∈ X ,

f(x)− f(x⋆) ≥ λdist(x,X ⋆)2.

Assumption 3. There exists σ2
2 < ∞ such that for

every x ∈ X , we have E[∥∇f(x)−∇F (x;S)∥22] ≤
σ2
2 dist(x,X ⋆)2.

It is straightforward to give examples satisfying the assump-
tions; noiseless linear regression problems provide the sim-
plest such approach.

Example 1: Consider a linear regression problem with data
s = (a, b) ∈ Rn×R, where aTx⋆ = b for all (a, b), and set
F (x; (a, b)) = 1

2 (a
Tx− b)2. If the data a belong to a sub-

space V ⊂ Rn (which may be V = Rn), then Assumption 2
holds with λ = inf∥v∥2=1{vTE[aaT ]v/2 | v ∈ V }, and it
is immediate that Var(F ′(x;S)) ≤ E[∥a∥22 ⟨a, x − x⋆⟩2],
so Assumption 3 holds with σ2

2 = λmax(E[∥a∥22 aaT ]). For
example, if a is uniform on the scaled sphere

√
nSn−1, then

λ = 1 and σ2
2 = n. 3

Alternatively, we may follow (Ma et al., 2018) by consider-
ing a problem where the functions have Lipschitz gradients:

Example 2: If F (·; s) has L(s)-Lipschitz gradient and
problem (1) is an interpolation problem with x⋆ ∈ intX ,
then ∇F (x⋆;S) = 0 with probability 1, and so

E[∥∇f(x)−∇F (x;S)∥22]

= E[∥∇f(x)−∇f(x⋆)− (∇F (x⋆;S)−∇F (x;S))∥22]

≤ 2 ∥∇f(x)−∇f(x⋆)∥22
+ 2E[∥∇F (x⋆;S)−∇F (x;S)∥22]

≤ 4E[L(S)2] ∥x− x⋆∥22 .

We may thus take σ2
2 ≲ E[L(S)2]. 3
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We present a linear convergence result (Proposition 1) for
model-based methods with constant and decaying stepsize
choices. This is a cleaner, generalized, and unified version of
Proposition 1 and Theorem 2 from (Asi et al., 2020) that uses
a more standard and simpler definition of quadratic growth.
We primarily present these results for the completeness of
the story and to contrast them with results later in the paper.

Proposition 1. Assume problem (1) is an interpolation prob-
lem (Definition 4.1) and let f have L-Lipschitz gradient and
satisfy Assumptions 2 and 3 , where L ≥ λ. Let xk follow
the model-based iteration (6) with any model F x(y;S1:m)
satisfying conditions (C.i) and (C.ii) with minibatch size m.
Then

(i) Let αk = 1
L+ηk

for ηk ≥ 0. Then

E[dist(xk,X ⋆)2] ≤

exp

(
−1

2

k∑
i=1

λαk +

k∑
i=1

σ2
2

m

αi
ηi

)
dist(x0,X ⋆)2.

(ii) With the constant stepsize choice αk = (L+ η)−1 and
η = max{L, 8σ

2
2

mλ },

E[dist(xk,X ⋆)2] ≤

exp

(
−kmin

{
λ

8L
,
mλ2

64σ2
2

})
E[dist(x0,X ⋆)2].

The results in Proposition 1 imply that when the batch size
is large enough thatm ≳ σ2

2/(λL), we achieve convergence
rate E[dist(xk,X ⋆)] ≲ (1 − c λL )

kE[dist(x0,X ⋆)], where
c > 0 is a numerical constant, which is the rate of con-
vergence for (deterministic) gradient methods with optimal
stepsize choices (Nesterov, 2004). More generally, we see a
roughly linear speedup in the batch sizem to achieve a given
accuracy until m ≥ σ2

2

λL : to obtain E[dist(xk,X ⋆)2] ≤ ϵ
takes

k = O(1)max

{
L

λ
,
σ2
2

λ2m

}
log

1

ϵ

iterations with appropriately chosen stepsize α. That is,
we expect to see a linear improvement in the number of
iterations to achieve a given accuracy ϵ until the condition
number Lλ dominates the variance of the gradient estimates.

4.2. Upper bounds under an expected growth condition

In Proposition 1 above, we restrict the stepsizes to have
the form αk = 1

L+ηk
. With more accurate models and an

alternative growth assumption on the functions F and f , we
can remove this weakness, highlighting the robustness of
more accurate models. To that end, we revisit a few results
of Asi and Duchi (Asi & Duchi, 2019b), beginning with
a slight generalization of their growth assumption (which
corresponds to the choices γ ∈ {0, 1} below):

Assumption 4 (γ-Growth). There exist constants λ0, λ1 >
0 and γ ∈ [0, 1], such that for all α ∈ R+, x ∈ X , x⋆ ∈ X ⋆,
we have

E

[
(F (x;S)− F (x⋆;S))min

{
α,
F (x;S)− F (x⋆, S)

∥F ′(x;S)∥22

}]
≥ min{λ0α, λ1dist(x,X ⋆)1−γ} dist(x,X ⋆)1+γ .

As we will show in the coming section, while Assumption 4
looks like a technical assumption, it actually fairly closely
governs the complexity of solving interpolation problems, in
that the λ1 parameter describes lower bounds on the conver-
gence of any method. Essentially, the assumption states that
the functions F must grow relative to the magnitude of their
gradients at a particular rate, so that it provides a type of
stochastic growth condition. We shall revisit this in the next
section when we prove our lower bounds, for now focusing
on algorithms and their convergence under the assumption.
First, however, we may again rely on linear regression-type
objectives for an example satisfying Assumption 4.

Example 3: Consider a problem with data s = (a, b) ∈
Rn × R, where b = ⟨a, x⋆⟩ for all (a, b), and set
F (x; (a, b)) = 1

1+γ |⟨a, x−x⋆⟩|1+γ , so ∥F ′(x; (a, b))∥22 =

∥a∥22 |⟨a, x− x⋆⟩|2γ . If a ∼ N(0, In), then |⟨a, x− x⋆⟩| ≥
1
2 ∥x− x⋆∥2 with probability at least 3

5 , and similarly
∥a∥22 ≤ 2n with probability at least 3

5 , so that both occur
with probability at least 1

5 . We then obtain

E

[
F (x;S)min

{
α,

F (x;S)

∥F ′(x;S)∥22

}]
≥

1

5

∥x− x⋆∥1+γ2

21+γ(1 + γ)
min

{
α,

∥x− x⋆∥1−γ2

21−γ(1 + γ) · 2n

}
,

so that Assumption 4 holds with λ0 ≥ 1
5(1+γ)21+γ and

λ1 ≥ 1
22−γ(1+γ)n . 3

To give stronger convergence results under Assumption 4,
we require one additional condition on our models, which
Asi and Duchi (Asi & Duchi, 2019b) introduce:

(C.iii) For all s ∈ S, the models Fx(·; s) satisfy

Fx(y; s) ≥ inf
z∈X

F (z; s).

In minibatch settings, where one considers a batch S1:m of
samples in each model, the condition (C.iii) can be some-
what challenging to verify, as it requires accuracy for the
average infz F (z; s1:m), though (obviously) proximal meth-
ods (4) satisfy this condition, and in typical situations (e.g.
linear regression) where the batch size m ≤ n, the average
of truncated models (8) will be similarly accurate.
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Theorem 2. Let Assumption 4 hold, and let xk be gen-
erated by the stochastic iteration (2) for a model sat-
isfying conditions (C.i)–(C.iii). Take stepsizes αk =
α0k

−β for some β ∈ [0, 1]. Define K0 :=
⌊(λ0α0/(λ1 dist(x1,X ⋆)1−γ))1/β⌋. Then

E[dist(xk+1,X ⋆)2] ≤ exp (−λ1 min{k,K0}

− λ0
dist(x1,X ⋆)1−γ

k∑
i=K0+1

αi

)
dist(x1,X ⋆)2.

In the best case—when the stepsizes αk ↑ ∞
in Theorem 2—we achieve convergence scaling as
E[dist(xk,X ⋆)2] ≲ exp(−λ1k) dist(x1,X ⋆)2, and more-
over (as we show in the next section) this dependence on the
growth constant λ1 is unimprovable. With this as motiva-
tion, one might hope that increased sampling (minibatching)
might increase the growth constant λ1 in Assumption 4;
here we provide a sketch of such a result, which also makes
it somewhat easier to check the conditions of Assumption 4,
by giving three growth conditions.

(G.i) There exists µ > 0 and a probability p > 0 such that
for all x ∈ X , we have

P(F (x;S)− F (x⋆;S) ≥ µdist(x,X ⋆)1+γ) ≥ p.

(G.ii) The (sub)gradient f ′ is (L, γ)-Holder continuous,
meaning ∥f ′(x)− f ′(y)∥2 ≤ L ∥x− y∥γ2 , and 0 ∈
∂f(x⋆).

(G.iii) There exists ρ such that

ρ ≥ sup
g measurable

{
Var(g(x;S))

∥f ′(x)∥22
| g(x; s) ∈ ∂F (x; s),
f ′(x) = E[g(x;S)]

}
for all x ∈ X .

Our typical situation is to think of µ and p numerical con-
stants, where the scaling ρ measures the noise inherent to
the problem. In any case, a short calculation shows how
Conditions (G.i)–(G.iii) suffice to give Assumption 4.

Lemma 4.1. Let conditions (G.i)–(G.iii) hold. Then the
average F (x; s1:m) = 1

m

∑n
i=1 F (x; s

i) satisfies the γ-
growth condition of Assumption 4 with

λ0 =
⌊mp⌋
4m

µ and λ1 =
(⌊mp⌋ /m)2µ2

16L2(1 + ρ
m )

.

In brief, we see that mini-batches of size m suggest im-
proved convergence related to the noise-to-signal ratio
ρ := supx

Var(F ′(x;S))

∥f ′(x)∥2
2

: once the sample size m is large
enough that ρ/m ≲ 1, we expect relatively little improve-
ment, though we do see a linear improvement in the growth

constant λ1 as m grows whenever m ≪ ρ. To see this,
let us for simplicity assume that in Conditions (G.i)–(G.iii)
we have p ≳ 1 and L/µ ≲ 1 (that is, the problem is well-
conditioned). Then applying Theorem 2, we see that for
large enough stepsizes α,

k = O(1)
(
1 +

ρ

m

)
log

1

ϵ
(10)

iterations of any model-based method (2) with mini-
batches of size m—assuming that Conditions (C.i)–(C.iii)
hold for the models F x—are sufficient to guarantee
E[dist(xk,X ⋆)2] ≤ ϵ.

5. Optimality in Interpolation Problems
We conclude the theoretical portion of this paper by de-
veloping several new optimality results for interpolation
problems, that is, those satisfying Definition 4.1. In brief,
we shall show that the dependence of Theorem 2 on the
growth constant λ1 is sharp and unimprovable, and that
in some cases, the dependence on the signal-to-noise ratio
ρ−1 := infx

∥f ′(x)∥2
2

Var(F ′(x;S)) is essentially sharp as well. We
do so via information-theoretic lower bounds on estimation
of optimal points, the first in a stylized n = 1 dimensional
problem that gives the correct dependence on the growth
constants in Assumption 4, the second in standard regres-
sion problems but where we choose the dimension n ∈ N
more carefully.

We define our minimax risk as follows. Let P be a fam-
ily of problems, where a problem is a pair (F, P ) con-
sisting of a probability distribution P supported on S
and function F as defined in the introduction. We let
X ⋆(F, P ) = argminx∈X EP [F (x;S)] be the collection of
minimizers, and define the minimax squared error

Mk(P,X ) := inf
x̂k

sup
(F,P )∈P

EPk

[
dist(x̂k,X ⋆(F, P ))2

]
,

(11)
where the infimum is over all measurable x̂k : Sk → Rn,
the supremum is over problems (F, P ) ∈ P , and the inner
expectation is over the samples S1, . . . , Sk

iid∼ P .

5.1. A lower bound for one-dimensional problems

We first focus on problems for which we can isolate the
contributions of the growth constant λ1 in Assumption 4,
letting the dimension n = 1 to show that our complexity
bounds hold independent of dimension; higher dimensions
can only yield increased complexity. We consider a collec-
tion of well-conditioned problems, where we analogize the
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typical condition number of f by defining

λγ(f) := inf
x ̸∈X⋆

f(x)− f(x⋆)
1

1+γ dist(x,X ⋆)1+γ
and

Lγ(f) := sup
x ̸=y

|f ′(x)− f ′(y)|
|x− y|γ

,

calling κγ(f) := L
λ the condition number. We also note in

passing that the constant λ1 ≤ 1 in Assumption 4, as by
convexity we have

(F (x; s)− F (x⋆; s))2

F ′(x; s)2
≤ ⟨F ′(x; s), x− x⋆⟩2

F ′(x; s)2
≤ |x−x⋆|2,

so taking α ↑ ∞ in Assumption 4 guarantees λ1 ∈ [0, 1].
Thus, for our first collection of problems, we let Pγ(λ1)
be those problems satisfying Assumption 4 with a given
γ, λ1 ∈ [0, 1], any λ0 ≥ λ1, our standing assumption of
the interpolation condition in Definition 4.1, and condition
number κγ(f) = 1. The choice of the condition number
serves to highlight the difficulties from stochasticity in the
problem, eliminating the contributions of hardness from the
population (deterministic) objective f ; an identical lower
bound will of course hold in the coming theorem for more
poorly conditioned problems with κγ(f) ≥ 1, as this is
simply a larger collection.

Theorem 3. Let Pγ(λ1) be the collection Pγ(λ1), assume
that X contains an ℓ2-ball of radius R ≥ 0. Then

Mk(Pγ(λ1),X ) ≥ R2

2

[
1− (1 + γ)2λ1

]k
+
.

We defer the proof to the appendix and make a few remarks
here. First, the convergence guarantees in Section 4.2 show
that appropriate model-based methods converge to ϵ accu-
racy in O( 1

λ1
log 1

ϵ ) iterations, which by the theorem is op-
timal. Thus, in a strong sense, the a priori esoteric-seeming
growth condition in Assumption 4 is indeed fundamental.

5.2. A lower bound for well-conditioned regression
problems

The proof of Theorem 3 relies on constructing certain power
functions and a very careful choice of growth and proba-
bility. An alternative approach is to mimic those ideas in
proving complexity results for deterministic problems (Ne-
mirovski & Yudin, 1983; Nesterov, 2004; Carmon et al.,
2019), where one takes the dimension larger. By allowing
high-dimensional problems, we can show that the noise-to-
signal ratio ρ := supx

Var(F ′(x;S))

∥∇f(x)∥2 and growth constant λ1
from Assumption 4 remain fundamental, even in noiseless
linear regression.

To make the proof cleaner we make a slight modification
to the class of problems we consider: instead of assuming

a bounded domain X , we instead assume X = Rn, but
now we consider a randomized (instead of minimax/worst
case) adversary that chooses a problem (F, P ) ∈ P ac-
cording to a measure π on the space of problems; in par-
ticular, we assume that Eµ[∥x0 − x⋆∥22] ≤ R2, that is,
the expected distance of x0 to x⋆ is at most R. Letting
X ⋆(F, P ) = argminx EP [F (x;S)] be the optimal set for a
given problem (F, P ), we define the minimum average risk

Mk(P, π) := inf
x̂k

∫
EPk [dist(x̂k,X ⋆(F, P ))2]dπ(F, P ).

We note that the minimum average risk defined here natu-
rally lower bounds the minimax risk (11), redefined analo-
gously for our problem.

We specialize this randomized risk for each n ∈ N, let-
ting Pn be a collection of noiseless linear regression prob-
lems on Rn, where we identify the prior measure π with
x⋆ ∼ N(0, R

2

n In×n). Then certainly E[∥x⋆∥22] = R2. We
consider samples s consisting of a pair A ∈ Rm×n and
b = Ax⋆, considering the quadratic loss

F (x; s) = F (x; (A, b)) =
1

2
∥Ax− b∥22 , (12)

and we call the resulting objective f(x) = E[F (x;S)] per-
fectly conditioned if f(x) = c ∥x− x⋆∥22 for a constant
c ∈ R+. We have the following theorem.
Theorem 4. Let λ1 ∈ [0, 14 ] and γ = 1. Then there exists
a collection P of perfectly conditioned interpolating prob-
lems with squared error (12), satisfying Assumption 4 and
Eπ[∥x⋆∥22] = R2, such that

Mk(P, π) ≥ R2(1− 4λ1)
k.

Alternatively, let ρ ∈ [1,∞]. There exists a collection
P of perfectly conditioned interpolating problems with
squared error (12), with noise-to-signal ratio satisfying
supx

Var(∇F (x;S))

∥∇f(x)∥2
2

≤ ρ, such that

Mk(P, π) ≥ R2

(
1− 1

ρ

)k
.

Thus, one cannot hope to achieve (much) better convergence
even for quadratics than that we have outlined: the depen-
dence on either the growth λ1 or the signal-to-noise ρ−1 is
unavoidable, and one must collect at least k ≳ 1

λ1
log 1

ϵ or
k ≳ ρ log 1

ϵ samples S to achieve accuracy ϵ, again high-
lighting that these quantities—as we (inspired by (Asi &
Duchi, 2019b)) identify in Theorem 2 and the iteration
bound (10)—are fundamental for interpolation problems.

6. Experiments
We now study and demonstrate the speedup and robustness
of APROX methods with minibatches, comparing the relative
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performance of the proposed methods on several stochastic
optimization problems. We consider the following methods
in our experiments, where we use both single sample (m =
1) and minibatch (m > 1) versions: (SGM(3), Proximal(4),
IA (averaging individual APROX iterates from (Asi et al.,
2020)), TruncAv (7), AvMod (8))

We use stepsizes αk = α0k
−1/2, varying α0, and for

each algorithm a report the number Ta,m(α0) of total
samples used to reach ε accuracy using minibatches of
size m; that is, Ta,m(α0) = km where k is the first
iteration to satisfy f(xk) − f(x⋆) ≤ ε. We also let
T ⋆a,m = minα0 Ta,m(α0) denote the fewest iterations to
convergence for a method a using batch size m. Each of
our experiments involves data (A, b) ∈ RN×n×RN , where
fA,b(x) = 1

N

∑N
i=1 F (x; ai, bi) for a given loss F , and

we vary the condition number of A, taking N = 103 and
n = 40. We present three types of results:

1. Best speedups for minibatching: For each method a,
we plot

T⋆
a,1

T⋆
a,m

against the minibatch size m to show the
speedup minibatching provides using the best step sizes.

2. Performance profiles (Dolan & Moré, 2002): For each
method a, we evaluate for each r ≥ 1 the fraction of the
total executed experiments for which the Ta,m(α0) ≤
rTa⋆,m(α0), where a⋆ is the best performing method in
each experiment, giving r on the horizontal axis and the
proportion on the vertical. Here, to evaluate robustness,
we define a single experiment as one execution of each
of the 5 methods for a particular step size α0, minibatch
size m, and condition number combination. We discard
the experiments where more than 3 of the methods fail
to complete before the max number of iterations.

3. Iterations to convergence w.r.t. stepsize: For each
method a and minibatch size m, we plot Ta,m(α0)
against the initial step size α0.

We use minibatch sizes m ∈ {1, 4, 8, 16, 32, 64} and initial
steps α0 ∈ {10i/2, i ∈ {−4,−3, . . . , 5}}. For all experi-
ments we run 30 trials with different seeds and plot the 95%
confidence sets. We use and extend the code provided by
(Asi et al., 2020). We describe the objective function and
noise mechanism for each problem below.

6.1. Linear Regression

We have f(x) = 1
2N ∥Ax− b∥22. We generate rows of A

and x⋆ i.i.d. N(0, In) and, setting b = Ax⋆ + σv with v ∼
N(0, IN ). In the noisy setting for our experiments, we set
σ = 0.5. In Figure 1, we plot the minibatch speedups of the
accelerated and non-accelerated methods; acceleration gives
a ∼ 16× improvement for AvMod and TruncAv. Figure 2
outlines the performance profiles for the linear regression

experiments. The fully proximal, AvMod, and TruncAv
methods are noticeably better than IA and SGM.
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Figure 1: Speed ups vs. batch size for noiseless absolute
regression. Note the difference in scales.
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Figure 2: Performance profiles for linear regression.

6.2. Absolute loss regression

We have f(x) = 1
2N ∥Ax− b∥1. Again we generate rows

of A and x⋆ i.i.d. N(0, In), setting b = Ax⋆+σv and draw-
ing v ∼ Lap(1)N . In the noisy setting for our experiments,
we set σ = 0.5. In Figure 3, we plot the speedup up of
each algorithm (relative to minibatch size m = 1) against
minibatch size in the noiseless setting. We observe that the
speedups in the acclerated setting are more pronounced than
in the non-accelerated setting. We provide performance pro-
files for the non-accelerated and accelerated algorithms in
Figure 4. Similar to the linear regression setting, we see that
AvMod, TruncAv, and full-prox, outperform IA and SGM.
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Figure 3: Speed ups vs. batch size for noiseless absolute
regression. Note the difference in scales.

6.3. Logistic Regression

We have f(x) = 1
2N

∑N
i=1 log(1 + exp(−bi⟨ai, x⟩)). We

generate rows of A and x⋆ i.i.d. N(0, In), setting bi =
sign(⟨ai, x⋆⟩). To add noise, we flip each label bi inde-
pendently with probability p = .01. In Figure 5, we plot
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Figure 4: Performance profiles for absolute regression.
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Figure 5: Iterations to convergence of the accelerated meth-
ods vs. initial stepsizes for logistic regression

the iterations to convergence against initial step size for
accelerated methods in this setting. We observe that even
accelerated versions of model-based methods exhibit the at-
tractive property of robustness to problem parameters (initial
step size choice) like their non-accelerated counterparts.
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A. Proofs of non-asymptotic upper bounds
We collect our proof of Theorem 1 in this section. It relies on a standard claim on minimizers of sums of convex functions,
which we state and prove here for convenience.
Claim A.1. Let u and ψ be convex, ψ be differentiable on X , and Dψ(x, y) = ψ(x) − ψ(y) − ⟨∇ψ(y), x − y⟩. If x+

minimizes u(x) + ψ(x) over x ∈ X , then

u(x+) + ψ(x+) ≤ u(x) + ψ(x)−Dψ(x, x
+) for all x ∈ X .

Proof By convexity and the optimality of x+, there exists u′(x+) ∈ ∂u(x+) such that ⟨u′(x+) +∇ψ(x+), x− x+⟩ ≥ 0
for all x ∈ X . Using the standard first-order convexity inequality, we thus obtain

u(x) ≥ u(x+) + ⟨u′(x+), x− x+⟩
= u(x+) + ⟨u′(x+) +∇ψ(x+), x− x+⟩ − ⟨∇ψ(x+), x− x+⟩
≥ u(x+)− ⟨∇ψ(x+), x− x+⟩
= u(x+) + ψ(x+)− ψ(x) +Dψ(x, x

+),

as desired.

A.1. Proof of Theorem 1

In this proof, we begin with a deterministic one-step progress bound and then iterate the bound. In analogy to Lemma B.1,
we rely on the conditionally mean-zero function and gradient errors

ek := F (x⋆;Sk)− f(x⋆) + f(yk)− F (yk;Sk) and ξk := ∇f(yk)−∇F (yk;Sk).

We have the one-step progress bound
Lemma A.1. Let αk ≤ 1

Lθk+ηk
and ∆k = f(xk) + r(xk)− f(x⋆)− r(x⋆). Then

∆k+1

≤ (1− θk)∆k + θk

[
ek + ⟨ξk, zk − yk⟩+

∥ξk∥2∗
2ηk

+
1

αk
(Dh(x

⋆, zk)−Dh(x
⋆, zk+1))

]
.

Proof We follow the proof of Tseng, Proposition 1 (Tseng, 2008). For shorthand, let

linf (x, y) := f(y) + ⟨∇f(y), x− y⟩+ r(x),

which linearly approximates f and does not approximate the additive component r. Then by the L-smoothness of ∇f , we
obtain

f(xk+1)+ r(xk+1) ≤ linf (xk+1, yk) +
L

2
∥xk+1 − yk∥2

= linf ((1− θk)xk + θkzk+1, yk) +
Lθ2k
2

∥zk+1 − zk∥2

(i)

≤ (1− θk)linf (xk, yk) + θklinf (zk+1, yk) +
Lθ2k
2

∥zk+1 − zk∥2

(ii)

≤ (1− θk)(f(xk) + r(xk)) + θk

[
linf (zk+1, yk) +

Lθk
2

∥zk+1 − zk∥2
]
, (13)

where the inequality (i) used that r is convex and (ii) that f is convex.

We consider the final two terms in the bound (13), and with function and gradient errors e(1)k := f(yk)− F (yk;Sk) and
ξk := ∇f(yk)−∇F (yk;Sk), we expand the first in terms of the random samples to write

linf (zk+1, yk) = F (yk;Sk) + ⟨∇F (yk;Sk), zk+1− yk⟩+ r(zk+1) + e
(1)
k +⟨ξk, zk+1− yk⟩

≤ Fyk(zk+1;Sk) + r(zk+1) + e
(1)
k + ⟨ξk, zk+1 − yk⟩, (14)
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where the inequality uses that the models Fyk necessarily upper bound the first-order (linear) approximation to F at yk
(recall the discussion following Condition (C.ii)). To control term (14), we apply Claim A.1 with u(x) = Fyk(x;Sk),
ψ(x) = Dh(x, zk), and x+ = zk+1, so that inequality (14) implies

linf (zk+1, yk) ≤ Fyk(x;Sk) + r(x) +
1

αk
[Dh(x, zk)−Dh(x, zk+1)−Dh(zk+1, zk)]

+ e
(1)
k + ⟨ξk, zk+1 − yk⟩

for any x ∈ X . Rearranging terms and using the Fenchel-Young inequality to see that

⟨ξk, zk+1 − yk⟩ = ⟨ξk, zk − yk⟩+ ⟨ξk, zk+1 − zk⟩ ≤ ⟨ξk, zk − yk⟩+
∥ξk∥2∗
2ηk

+
ηk
2

∥zk+1 − zk∥2

and using the strong convexity bound Dh(zk+1, zk) ≥ 1
2 ∥zk+1 − zk∥2 then implies

linf (zk+1, yk) ≤ Fyk(x;Sk) + r(x) +
1

αk
[Dh(x, zk)−Dh(x, zk+1)] + e

(1)
k

+ ⟨ξk, zk − yk⟩+
∥ξk∥2∗
2ηk

+
ηk
2

∥zk+1 − zk∥2 −
1

2αk
∥zk+1 − zk∥2 .

Our modeling assumptions guarantee that Fyk(x;Sk) ≤ F (x;Sk), so writing the function error ek = F (x;Sk)− f(x) +
f(yk)− F (yk;Sk) and substituting this upper bound on linf (zk+1, yk) into the bound (13) gives the single-step progress
guarantee

f(xk+1) + r(xk+1) ≤ (1− θk)(f(xk) + r(xk)) + θk(f(x) + r(x))

+ θk

[
ek + ⟨ξk, zk − yk⟩+

∥ξk∥2∗
2ηk

+
1

αk
[Dh(x, zk)−Dh(x, zk+1)]

+
Lθk + ηk

2
∥zk+1 − zk∥2 −

1

2αk
∥zk+1 − zk∥2

]
.

Any stepsize αk ≤ 1
Lθk+ηk

cancels the the ∥zk+1 − zk∥2 terms, and setting x = x⋆ gives the lemma.

Iterating Lemma A.1 with ∆k = f(xk) + r(xk) − f(x⋆) − r(x⋆) ≥ 0 yields the following deterministic convergence
guarantee.

Lemma A.2. Let the conditions of Theorem 1 hold. Define the error terms ζk := ek + ⟨ξk, zk − yk⟩+
∥ξk∥2

∗−σ
2
0

2αk
. Then

1

θ2k
[f(xk+1) + r(xk+1)− f(x⋆)− r(x⋆)] ≤

k∑
i=0

σ2
0

2θiηi
+

(
L+

ηk
θk

)
R2 +

k∑
i=0

1

θi
ζi.

Proof Lemma A.1 yields

1

θ2k
∆k+1 ≤ 1− θk

θ2k
∆k +

1

θkαk
[Dh(x

⋆, zk)−Dh(x
⋆, zk+1)] +

σ2
0

2ηkθk

+
1

θk

[
ek + ⟨ξk, zk − yk⟩+

∥ξk∥2∗ − σ2
0

2ηk︸ ︷︷ ︸
=:ζk

]

≤ 1

θ2k−1

∆k +
1

θkαk
[Dh(x

⋆, zk)−Dh(x
⋆, zk+1)] +

σ2
0

2ηkθk
+

1

θk
ζk.

where we recalled that (1− θk)/θ
2
k ≤ 1/θ2k−1. Iterating the inequality and using 1−θ0

θ20
= 0, we find that

1

θ2k
∆k+1 ≤

k∑
i=0

σ2
0

2ηiθi
+

k∑
i=0

1

θiαi
(Dh(x

⋆, zi)−Dh(x
⋆, zi+1)) +

k∑
i=0

1

θi
ζi. (15)
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We bound the middle summation above as
k∑
i=0

1

θiαi
(Dh(x

⋆, zi)−Dh(x
⋆, zi+1)) ≤

k∑
i=2

(
1

θiαi
− 1

θi−1αi−1

)
Dh(x

⋆, xi)−
1

θk+1αk+1
Dh(x

⋆, xk+1)

+
1

θ1α1
Dh(x

⋆, x1)

≤ R2

θkαk

≤ LR2 +
ηk
θk
R2

where the last step uses Dh(x
⋆, y) ≤ R2 and 1

θiαi
= L+ ηi

θi
. Substituting this in (15) we get the result.

Now take expectations in Lemma A.2. We have E[ζk] ≤ 0, and

k∑
i=0

i+ 2√
i+ 1

≤
k+1∑
i=1

√
i+

k+1∑
i=1

1√
i

≤
∫ k+2

1

√
tdt+

∫ k+1

0

1√
t
dt =

2

3
((k + 2)3/2 − 1) + 2

√
k + 1

(i)

≤ (k + 2)3/2,

where inequality (i) holds for k > 2. Multiplying by θ2k = 4/(k + 2)2 and using ηkθk = η0
2
√
k

k+2 ≤ 2η0/
√
k gives the

deterministic bound

θ2k

k∑
i=0

σ2

2θiηi
+ θ2k

(
L+

ηk
θk

)
R2 ≤ 4LR2

(k + 2)2
+

2R2η0√
k

+
2σ2

η0
√
k + 2

,

as desired.

B. Proofs from Section 4
B.1. Proof of Proposition 1

We assume without loss of generality that f(x⋆) = 0 = F (x⋆; s) for notational simplicity. We first begin by proving a
single step guarantee in the following lemma (Lemma B.1).
Lemma B.1. Let the conditions of Theorem 1 hold, and define the function value errors ek = [F (x⋆;Sk) − f(x⋆)] −
[F (xk;Sk)− f(xk)]. Then

f(xk+1)− f(x⋆)

≤ 1

αk
[Dh(x

⋆, xk)−Dh(x
⋆, xk+1)] + ek +

1

2ηk
∥∇F (xk;Sk)−∇f(xk)∥2∗ .

Proof Setting u(·) = Fxk
(·;Sk) and ψ(x) = 1

αk
Dh(x, xk) in Claim A.1, and taking x+ = xk+1 and x = x⋆, we have

the progress bound

Fxk
(xk+1;Sk) +

1

αk
Dh(xk+1, xk) ≤ Fxk

(x⋆;Sk) +
1

αk
[Dh(x

⋆, xk)−Dh(x
⋆, xk+1)] . (16)

We turn to bounding the difference Fxk
(x⋆;Sk) − Fxk

(xk+1;Sk). Let gk = ∇F (xk;Sk) and define the gradient error
ξk := gk −∇f(xk). Using the convexity of Fxk

(·;Sk) and recalling that gk ∈ ∂Fxk
(xk;Sk) as in our discussion following

Condition (C.ii), we have Fxk
(xk+1;Sk) ≥ Fxk

(xk;Sk) + ⟨gk, xk+1 − xk⟩. As a consequence, we have

Fxk
(x⋆;Sk)− Fxk

(xk+1;Sk) ≤ Fxk
(x⋆;Sk)− F (xk;Sk) + ⟨gk, xk − xk+1⟩

= Fxk
(x⋆;Sk)− F (xk;Sk) + ⟨∇f(xk), xk − xk+1⟩+ ⟨ξk, xk − xk+1⟩

(C.ii)
≤ F (x⋆;Sk)− F (xk;Sk) + ⟨∇f(xk), xk − xk+1⟩+ ⟨ξk, xk − xk+1⟩
= f(x⋆)− f(xk) + ⟨∇f(xk), xk − xk+1⟩+ ek + ⟨ξk, xk − xk+1⟩,
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where we used the error ek = [F (x⋆;Sk) − f(x⋆)] − [F (xk;Sk) − f(xk)]. Finally, the smoothness of f implies
f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+ L

2 ∥xk − xk+1∥2, so

Fxk
(x⋆;Sk)− Fxk

(xk+1;Sk)

≤ f(x⋆)− f(xk+1) +
L

2
∥xk − xk+1∥2 + ek + ⟨ξk, xk − xk+1⟩.

Substituting this into inequality (16) and rearranging, we obtain

f(xk+1)− f(x⋆) ≤ 1

αk
[Dh(x

⋆, xk)−Dh(x
⋆, xk+1)−Dh(xk, xk+1)]

+ ek + ⟨ξk, xk − xk+1⟩+
L

2
∥xk − xk+1∥2 .

(17)

We apply the Fenchel-Young inequality to control the error ⟨ξk, xk − xk+1⟩: we have ⟨ξk, xk − xk+1⟩ ≤ 1
2ηk

∥ξk∥2∗ +
ηk
2 ∥xk − xk+1∥2, so

f(xk+1)− f(x⋆) ≤ 1

αk
[Dh(x

⋆, xk)−Dh(x
⋆, xk+1)]

+ ek +
1

2ηk
∥ξk∥2∗ +

L+ ηk
2

∥xk − xk+1∥2 −
1

αk
Dh(xk, xk+1),

which with αk = 1
L+ηk

gives the lemma once we apply the strong convexity of h, that is, that Dh(xk, xk+1) ≥
1
2 ∥xk − xk+1∥2.

To complete the proof of Proposition 1, we proceed as follows. LetDk = dist(xk,X ⋆) for shorthand, and recall our notations
ek = (F (x⋆;Sk)− f(x⋆))− (F (xk;Sk)− f(xk)) = f(xk)− F (xk;Sk) (in this case) and ξk = ∇F (xk;Sk)−∇f(xk).
Then Lemma B.1 implies

1

2
D2
k+1 ≤ 1

2
D2
k − αkf(xk+1) + αkek +

αk
2ηk

∥ξk∥2∗

≤ 1

2
D2
k −

αkλ

2
D2
k+1 + αek +

αk
2ηk

∥ξk∥2∗ ,

where the second inequality follows from Assumption 2 that f(xk+1) ≥ λ
2D

2
k+1. Noting that E[∥ξk∥2∗ | xk] ≤ σ2

2

mD
2
k by

Assumption 3, we rearrange and take expectations on both sides to obtain

E[D2
k+1] ≤

1

αkλ+ 1︸ ︷︷ ︸
≤exp(−αkλ/2)

(
1 +

αkσ
2
2

ηm

)
︸ ︷︷ ︸
≤exp(

αkσ2
2

ηm )

E[D2
k] ≤ exp

(
−λαk
2

+
σ2
2αk
ηkm

)
E[D2

k].

Iterate this inequality to achieve the result (i) in the theorem.

For result (ii), we simply note that if αk = 1
L+η , then using 2max{L, η} > L+ η > η, we have

E[D2
k+1] ≤ exp

(
−λ

4max{L, η}
+

σ2
2

η2m

)
E[D2

k].

Substituting η = max{L, 8σ
2
2

mλ } gives the result.

B.2. Proof of Theorem 2

Proof Let Dk = dist(xk,X ⋆) and Fk = σ(S1, . . . , Sk) be the σ-field generated by the first k samples Si. Then Lemma
4.1 of the paper (Asi & Duchi, 2019b) immediately yields

E[D2
k+1 | Fk−1] ≤ D2

k −min{λ0αkD1+γ
k , λ1D

2
k}.
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As D1 ≥ Dk (again, by (Asi & Duchi, 2019b), Lemma 4.1), we in turn obtain

E[D2
k+1 | Fk−1] ≤ max

{
1− λ1, 1− λ0αk/D

1−γ
1

}
D2
k.

The remainder of the argument is algebraic manipulations, as in the proof of Proposition 2 from (Asi & Duchi, 2019b).

B.3. Proof of Lemma 4.1

Proof For shorthand, we assume w.l.o.g. that F (x⋆;S) = 0 with probability 1. The event that F (x;Si) ≥
µdist(x,X ⋆)1+γ has probability at least p, and as the median of a Binomial(m, p) distribution lies in {⌊mp⌋ , ⌈mp⌉},
we have

P
(
F (x;S1:m) ≥ ⌊mp⌋

m
µdist(x, x⋆)1+γ

)
≥ 1

2
. (18)

Thus, the event

A :=

{∥∥F ′
(x;S1:m)

∥∥2
2
≤ 4E

[∥∥F ′
(x;S1:m)

∥∥2
2

]
, F (x;S1:m) ≥ ⌊mp⌋

m
µdist(x, x⋆)1+γ

}
satisfies

P(A) = 1− P(Ac) ≥ 1− P
(∥∥F ′

(x;S1:m)
∥∥2
2
≥ 4E

[∥∥F ′
(x;S1:m)

∥∥2
2

])
− 1

2
≥ 1

4
,

where we use inequality (18). We also have

E
[∥∥F ′

(x;S1:m)
∥∥2
2

]
= ∥f ′(x)∥22

(
1 +

Var(F ′(x;S))

∥f ′(x)∥22

)
≤
(
1 +

ρ

m

)
∥f ′(x)∥22

≤
(
1 +

ρ

m

)
L2 dist(x,X ⋆)2γ ,

where we have used Conditions (G.iii) and (G.ii). Applying these observations gives

E

[
min

{
αF (x;S1:m),

F (x;S1:m)2∥∥F ′
(x;S1:m)

∥∥2
2

}]

≥ 1

4
min

{
α
⌊mp⌋
m

µdist(x,X ⋆)1+γ ,
(⌊mp⌋ /m)2µ2 dist(x,X ⋆)2+2γ

4E[∥F ′
(x;S1:m)∥22]

}

≥ 1

4
min

{
α
⌊mp⌋
m

µdist(x,X ⋆)1+γ ,
(⌊mp⌋ /m)2µ2 dist(x,X ⋆)2

4L2(1 + ρ
m )

}
,

as desired.

C. Proofs from Section 5
C.1. Proof of Theorem 3

Proof Let P = Pγ(λ1) for short, and assume w.l.o.g. that λ1 ≤ 1/(1 + γ)2, as the result is trivial otherwise. We base
our argument on Le Cam’s two point method (see, e.g., (Wainwright, 2019), Eq. (15.14)). We consider two probability
distributions P1, P−1, and let X ⋆

v be (for now) arbitrary sets indexed by v ∈ {±1}. Then recall the variation distance
∥P −Q∥TV = supA |P (A)−Q(A)| between distributions P and Q, we have Le Cam’s two-point method:

Lemma C.1 (Le Cam). Let x̂k be an arbitrary function of S1, . . . , Sk. Then

max
v∈{−1,1}

EPk
v

[
dist(x̂k,X ⋆

v )
p
]
≥ 1

8
dist(X ⋆

−1,X ⋆
1 )

2
(
1− ∥P k−1 − P k1 ∥TV

)
.
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To use Lemma C.1 to lower bound the minimax risk it suffices to choose a pair of problems (F, Pv) ∈ P whose optimal sets
are well-separated and apply the lemma. To that end, let δ ∈ (0, 1) to be chosen later, and consider the choices

P−1 :

{
S = 0 w.p. 1− δ

S = −1 w.p. δ
P1 :

{
S = 0 w.p. 1− δ

S = 1 w.p. δ.
(19)

Our functions F are trivial to construct: given the radius R, we define

F (x; 1) =
1

1 + γ
|x−R|1+γ , F (x;−1) =

1

1 + γ
|x+R|1+γ , F (x; 0) = 0. (20)

The intuition here is that given a sample S ∈ {−1, 0, 1}, we either completely identify the distribution or receive no
information.

It remains to show that the pairs (F, Pv) ∈ P and to bound the variation distance ∥P k1 − P k−1∥TV. For the latter, we have

Lemma C.2. Let P−1, P1 be as in Eq. (19). Then ∥P k−1 − P k1 ∥TV = 1− (1− δ)k.

Proof For any distributions P,Q, with densities p, q w.r.t. a base measure µ, we have ∥P −Q∥TV = P (p > q)−Q(p > q).
For P−1, P1 as above, we thus have

∥P k−1 − P k1 ∥TV = P k1 (there exists i ∈ [k] s.t. Si = 1)

= 1− P1(S1 = 0, . . . , Sk = 0) = 1− (1− δ)k.

Now, consider the functions

fv(x) := EPv [F (x;S)] =
δ

1 + γ
|x− vR|1+γ .

We have κγ(f) = 1, so that the problem is well-conditioned, and the optimal sets X ⋆
v := argminx∈X fv(x) are the

singletons X ⋆
v = {x⋆v = vR}. Additionally, we have

Ev

[
(F (x;S)− F (x⋆v;S))min

{
α,
F (x;S)− F (x⋆v;S)

∥F ′(x;S)∥22

}]

=
δ

1 + γ
|x− vR|1+γ min

{
α,

|x− vR|1+γ

(1 + γ)|x− vr|2γ

}
= min

{
δα

1 + γ
,

δ

(1 + γ)2
dist(x,X ⋆

v )
1−γ
}
dist(x,X ⋆

v )
1+γ ,

so by choosing δ = (1 + γ)2λ1 ≤ 1, our problems (F, Pv) belong to Pγ(λ1). Le Cam’s Lemma C.1 and the variation
distance bound in Lemma C.2 imply that

max
v∈{±1}

EPk
v

[
|x̂k − x⋆v|2

]
≥ 1

8
|x⋆1 − x⋆−1|2(1− δ)k =

R2

2
(1− δ)k.

Substituting δ = (1 + γ)2λ1 gives the result.

C.2. Proof of Theorem 4

Proof Let U = [u1 · · · un] ∈ Rn×n be an arbitrary orthogonal matrix, so UTU = UUT = In. Let Pn be the collection
of linear regression problems with data matrices A ∈ Rm×n chosen by taking m ≤ n columns (ui(1), . . . , ui(m)) of U
uniformly at random and setting A =

√
n/m[ui(1) · · · ui(m)]

T , so that E[ATA] = In and (ATA)2 = (n/m)ATA, and let
b = Ax⋆, where x⋆ ∼ π = N(0, R

2

n In) follows a Gaussian prior. Each observation Si corresponds to releasing (perfectly)
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a random linear projection of x⋆, so that given the k observations, if we let Ck = [A1 · · · Ak] ∈ Rn×mk denote the
concatenated data matrix after k observations, the posterior on x⋆ is

x⋆ | (S1, . . . , Sk) ∼ N

(
E[x⋆ | S1, . . . , Sk],

R2

n
(In − Ck(C

T
k Ck)

−1CTk )

)
,

that is, the covariance projects out Ck. By a standard Bayesian argument,

inf
x̂k

E
[∥∥x̂k − x⋆

∥∥2
2

]
= E

[∥∥E[x⋆ | Sk1 ]− x⋆
∥∥2
2

]
= R2E

[
n− rank(Ck)

n

]
, (21)

as In − Ck(C
T
k Ck)

−1CTk is a rank n − rank(Ck) projection matrix. Let rk = rank(Ck) for shorthand. Then we may
compute E[rk] exactly by noting that

E[rk | rk−1] = rk−1 +m
n− rk−1

n
=
(
1− m

n

)
rk−1 +m,

so that with r1 = m we obtain

E[rk] = m

k∑
i=1

(
1− m

n

)k−i
= m

1− (1−m/n)k

1− (1−m/n)
= n− n

(
1− m

n

)k
,

and substituting this into expression (21) gives

inf
x̂k

E
[∥∥x̂k − x⋆

∥∥2
2

]
= R2

(
1− m

n

)k
. (22)

We now use expression (22) to prove the two results in the theorem. For the first, we note that for s = (A, b), we have
∇F (x; s) = AT (Ax− b) = ATA(x− x⋆), and as (ATA)2 = n

mA
TA by construction and E[ATA] = In,

E

[
(F (x;S)− F (x⋆;S))min

{
α,
F (x;S)− F (x⋆;S)

∥∇F (x;S)∥22

}]

= E

[
min

{
α

2
∥A(x− x⋆)∥22 ,

∥A(x− x⋆)∥42
4 ∥ATA(x− x⋆)∥22

}]
= min

{α
2
,
m

4n

}
∥x− x⋆∥22 .

In particular, we can choose m,n so that m
4n ≥ λ1 the problem satisfies Assumption 4 with γ = 1 and λ0 = 1

2 . This gives
the first result by substituting into expression (22) and taking m,n so that mn is arbitrarily close to 4λ1.

For the second result, we recognize the noise-to-signal ratio

Var(∇F (x;S))
∥∇f(x)∥22

≤
n
m ∥x− x⋆∥22
∥x− x⋆∥22

=
n

m
.

Making appropriate substitutions by taking n
m ≤ ρ gives the second lower bound.


