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Abstract
Fairness is now an important issue in machine
learning. There are arising concerns that auto-
mated decision-making systems reflect real-world
biases. Although a wide range of fairness-related
methods have been proposed in recent years, the
under-representation problem has been less stud-
ied. Due to the uneven distribution of samples
from different populations, machine learning mod-
els tend to be biased against minority groups when
trained by minimizing the average empirical risk
across all samples. In this paper, we propose a
novel adaptive reweighing method to address rep-
resentation bias. The goal of our method is to
achieve group-level balance among different de-
mographic groups by learning adaptive weights
for each sample. Our approach emphasizes more
on error-prone samples in prediction and enhances
adequate representation of minority groups for
fairness. We derive a closed-form solution for
adaptive weight assignment and propose an effi-
cient algorithm with theoretical convergence guar-
antees. We theoretically analyze the fairness of
our model and empirically verify that our method
strikes a balance between fairness and accuracy.
In experiments, our method achieves comparable
or better performance than state-of-the-art meth-
ods in both classification and regression tasks.
Furthermore, our method exhibits robustness to
label noise on various benchmark datasets.

1. Introduction
As machine learning techniques are widely applied in many
fields, the fairness of machine learning has become an im-
portant issue. Automated decision-making algorithms, if
not properly constrained, may make decisions that are dis-
criminated to certain population groups. These groups are
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characterized by sensitive attributes, including age, gender,
race, etc. There have been many cases showing that fair-
ness is not a trivial problem in machine learning, and that
fairness could not be achieved by simply removing the sen-
sitive attributes from data. Research on COMPAS dataset
(Chouldechova, 2017) shows that a well-calibrated classi-
fication algorithm tends to classify black defendants as of
higher risk while classify white defendants as of lower risk.
This discrimination results in much higher false positive rate
for black defendants. Offers of same-day delivery coverage
by Amazon are severely biased with respect to race, even
if the algorithm does not take into consideration the race of
customers (Ingold & Soper, 2016). For machine learning al-
gorithms used in various fields of society, only having high
classification accuracy is not enough. It is crucial to make
sure that the algorithm is not biased against specific popula-
tions and does not reveal real-world discrimination, as many
real-world datasets are unevenly distributed or biased.

Current approaches for fairness are mainly based on two
different assumptions. Works including (Krasanakis et al.,
2018) and (Jiang & Nachum, 2020) assume that the discrim-
ination arises from the biased labeling process, which could
result in wrongly labelled samples, and that there exists an
underlying unbiased label mapping which maps the origi-
nal label to the unbiased label based on different fairness
criteria. The goal is to approximate the mapping by label-
based methods, like adjusting the labels of sensitive groups
(Jiang & Nachum, 2020) or adjusting the loss function val-
ues in sensitive groups (Krasanakis et al., 2018). Another
widely applied assumption in fairness approaches is that
the discrimination arises from the sensitive information that
is correlated to sensitive attributes, and by removing the
sensitive information from input data we are able to build
classifiers that meet the specified fairness constraints. Meth-
ods including (Creager et al., 2019) are proposed based on
this assumption. However, few methods on fairness have
explicitly addressed the issue of representation bias, which
arises due to insufficient amount of data in certain groups
or subgroups. This kind of bias is also referred to as under-
representation. One intuitive idea regarding this problem
is: if all the groups and subgroups are adequately repre-
sented with enough data, the bias would be greatly reduced,
if not eliminated. For representation bias, the sensitive at-
tributes are not necessarily correlated with input features,



Fairness with Adaptive Weights

while most works on fairness assume that the sensitive at-
tributes are correlated with input features. Thus, conven-
tional methods on fairness do not always work regarding
underrepresentation. One related area regarding this issue is
imbalanced classification, where the goal is to improve the
classification accuracy of minor groups. However, methods
on imbalanced classification are more concerned about over-
all classification accuracy, and fairness is not considered as
an important metric in imbalanced classification.

We draw inspiration from cost-sensitive learning on imbal-
anced classification, where the goal is to improve classifica-
tion accuracy of minor groups by assigning different weights
to major groups and minor groups. These methods, how-
ever, have one drawback that all samples within the same
group are assigned with equal weight. During the training
stage, samples that are very far from the decision boundary
are very unlikely to be wrongly classified, while samples
that lie close to the decision boundary are more likely to be
misclassified. One simple solution to this issue is to assign
weights proportional to classification error. However, such
attempt does no guarantee fairness, and training under such
assignment could be very unstable and fail to converge.

In this paper, we propose an adaptive weight assignment
strategy to improve fairness. Compared to the two reweigh-
ing methods mentioned above, our method is a sample-based
method that addresses representation bias by constraining
the model to be more careful with minority groups, which
differs from previous methods by estimating the underly-
ing labels or by removing the correlation between sensitive
attributes and modified input features. Our method learns
adaptive weights for samples within the same group based
on the probability of the samples being misclassified. Dur-
ing the training stage, only partial samples (those that are
more likely to be misclassified) within one group are as-
signed with positive weights, while other samples (those
that are easier to be correctly classified) are assigned with
zero weights. By controlling the amounts of samples as-
signed with positive weights, our method controls the trade-
off between accuracy and fairness, and fairness criteria is
guaranteed by constraining the sum of weights in different
groups. The algorithm is trained and tested on the original
datasets with features and labels unaffected, but the desired
fairness criteria are still achieved. This improves the inter-
pretability of learning algorithms since the natural meaning
of features is preserved.

We summarize our contribution as follows:

1. We formulate a novel sample-based reweighing method
with a closed-form solution on weight assignment for miti-
gating representation bias.

2. By balancing between demographic groups without
specifying fairness metrics during training, our reweighing

method improves fairness and robustness under different
metrics with theoretical guarantee.

3. Our model improves fairness in both classification and
regression tasks and is robust to label noise.

2. Related Work
Most works on fairness focus on binary classification under
binary sensitive attributes. Generally, these methods can be
divided into three categories: preprocessing, in-processing
and post-processing. Methods on preprocessing are pro-
posed to modify the input data to eliminate potentially bi-
ased information and the classifier is subsequentially trained
and applied on the modified data. Approaches to preprocess
data include sample selection (Roh et al., 2021), fair rep-
resentation learning (Tan et al., 2020; Madras et al., 2018),
disentanglement of sensitive information and preprocessed
data (Creager et al., 2019), fair data generation (Xu et al.,
2019; Jang et al., 2021b), data mapping (Calmon et al.,
2017), etc. In-processing methods achieves fairness by im-
posing extra constraints during training to obtain a fairer
classifier. Methods in this category add fairness constraints
to the objective in terms of model regularization (Aghaei
et al., 2019; Berk et al., 2017), adversarial layers (Adel et al.,
2019), uncorrelation constraints between decision bound-
ary and sensitive attribute (Zafar et al., 2017), and mutual
information (Roh et al., 2020), etc. Post-processing focuses
on how to modify output in different demographic groups
to achieve fairness (Hardt et al., 2016; Jang et al., 2021a),
which adjusts decision thresholds of different groups accord-
ing to specific fairness criteria.

Compared with fair classification, fair regression has re-
ceived less attention. Agarwal et al. (2019) propose two
criteria for fair regression and propose a reduction-based
fair regression model. Chzhen et al. (2020) derive a close
form expression for the optimal fair predictor based on opti-
mal transport. Steinberg et al. (2020) propose an efficient
way to estimate mutual information between the prediction
and sensitive information, and uses such information as
regularization for fair regression.

Imbalanced classification methods are generally divided
into two parts: resampling and cost-sensitive learning. Con-
ventionally, methods on resampling try to achieve balance
between groups by either oversampling the minority or un-
dersampling the majority. Recent works seek to preform
resampling in both major groups and minor groups. Bao
et al. (2019) perform classification using clustering centers
in learned latent space, which is equivalent to undersampling
all demographic groups. Cost-sensitive learning targets at
solving the problem by assigning different weights to differ-
ent samples, instead of directly sampling the dataset, such
that samples within minor groups or samples of greater
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importance are more carefully treated compared with unit
weights. One intuitive idea is to assign higher weights to
minor groups during training such that the cost of misclassi-
fication of minor groups are higher than that of major groups.
Zhang et al. (2018) propose to improve the performance of
deep belief network for imbalanced classification by assign-
ing weights optimized by evolutionary algorithm. Huang
et al. (2019) propose to achieve representation balance be-
tween groups by constraining the embedding to maintain
inter-cluster margins both within and between classes. Other
methods, including (Wang et al., 2017), propose to use trans-
fer learning to transfer representation of major groups to
minor groups for an imbalanced dataset.

There are other works that address the problem of biased
distribution. Methods including (Choi et al., 2019) and (Kim
et al., 2019) are proposed based on minimizing the mutual
information of bias label and embedding through adversarial
training. Alvi et al. (2018) propose to add extra confusion
loss in the training objective to make sure that the learned
feature embeddings are invariant to bias information.

Our work is different from previous works on fairness in
that we achieve fairness from a perspective of group balance,
instead of data rectification, which we fulfill by adaptively
assigning weights to ensure a fair and sufficient represen-
tation of samples within each group. Our method does not
impose particular fairness constraints in the objective func-
tion. The weakness of imposing specific constraints is that
the model could only perform well in terms of the specific
fairness notion imposed, and linear relaxations of fairness
constraints could be too relaxed (Lohaus et al., 2020) in
terms of bias mitigation. Compared with methods on cost-
sensitive learning, our method takes into consideration both
the protection of minor groups and the difference of samples
within each group. Kamiran & Calders (2012) propose to
assign weight per sample with the goal of achieving inde-
pendence between sensitive attribute and label.

3. Method
3.1. Fairness Notions

Consider a binary classifier fθ with parameter θ which maps
input features x to binary label ŷ ∈ {0, 1}. Denote as
y ∈ {0, 1} the original label of feature x, and s ∈ {0, 1} the
sensitive attribute. The learned mapping of classifier can be
formulated as: ŷ = fθ(x, s).

Disparate treatment (Zafar et al., 2017) exists when the clas-
sifier makes different predictions on samples from different
demographic groups given that the input features are identi-
cal. To eliminate disparate treatment, the classifier should
achieve calibration across groups: p(ŷ|x, s) = p(ŷ|x).

Disparate impact (Kamiran & Calders, 2012) measures the
statistical parity, i.e. the difference in positive outcome

Figure 1. Demonstration of our adaptive reweighing method.
Points of different shapes indicate samples of different labels,
different colors refer to different groups and darker color indicates
higher weight. In equal reweighing, all points within one group
are assigned with the same weight, while our method takes into
account both how likely samples are to be misclassified and bal-
ance among different groups. In this way, samples in each group
are better represented, and fairness is achieved.

rate between different groups. Disparate impact between
different groups is eliminated when the prediction ŷ is in-
dependent of s: p(ŷ|s = 0) = p(ŷ|s = 1). However, by
simply eliminating disparate impact we are not guaranteed
a fair classifier. Under the condition that the distribution
of training samples is uneven, by restricting this fairness
objective the classifier could make good decisions on major
group, while making poor (or even random) decisions on mi-
nor group. Besides, achieving zero disparate impact could
be against an optimal classifier when statistical features of
different demographic groups vary.

Disparate mistreatment (Hardt et al., 2016) arises when the
misclassification rates, measured by false positives and false
negatives of different groups are different. Compared with
disparate impact, disparate mistreatment relies on the origi-
nal labels, and is thus a post-hoc criterion. Works including
(Chouldechova, 2017) demonstrate that unless the classi-
fier achieves accuracy of 100%, it is impossible to achieve
all disparate mistreatment criteria at once. Thus, disparate
FPR (false positive rate) and FNR (false negative rate) are
commonly adopted to measure disparate mistreatment:

p(ŷ ̸= y|y = 1, s) = p(ŷ ̸= y|y = 1),

p(ŷ ̸= y|y = 0, s) = p(ŷ ̸= y|y = 0).

Fairness notions for regression problem shares similar prop-
erties as those of classification problems. Consider a train-
ing set {(xi, yi, si), 1 ≤ i ≤ N} and a regression model
which maps input feature x to ŷ ∈ [0, 1], a common way to
measure the performance of regression model is by mean
squared loss (MSE):

lmse =
1

N

N∑
i=1

(ŷi − yi)
2.
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One way to measure disparity of regression model is
bounded group loss, which requires that the predictor’s
average remains under acceptable level for each group. As
proposed by Agarwal et al. (2019), the MSE of each demo-
graphic group should be upper-bounded by a certain value:
1
Ns

∑
si=s(ŷi − yi)

2 ≤ ϵs,∀s.

Another way to measure disparity is statistical parity (Agar-
wal et al., 2019). A predictor satisfies statistical parity
if the output is independent of the protected attribute:
p[f(x) ≥ a|s] = p[f(x) ≥ a].

3.2. Problem Formulation

For a given dataset {x1, x2, ... xn} of n samples, the vanilla
training objective without reweighing can be formulated as:

min
θ

1

n

n∑
i=1

L(yi, fθ(xi)). (1)

One problem of this unweighted training is that the classifier
tends to focus more on major group. To resolve representa-
tion bias in learning algorithm, one simple way is to assign
weight to samples in each group as wi = c

n′ , where n′

denotes the number of samples in the group that the i-th
sample belongs to, and c is a constant. This method, how-
ever, does not take into account difference between samples
within groups, and does not always improve fairness con-
sidering different metrics. By assigning weight to samples
of different groups, we want to make sure that the classifier
pays more attention to samples that are wrongly or likely to
be wrongly classified. Besides, we want to make sure that
the weighted samples are balanced between groups. This
can be achieved by constraining the sum of weights within
groups. Thus, the reweighing problem can be formulated as:

max
w

∑
s

∑
i∈gs

wiL(yi, ŷi) s.t.
∑
i∈gs

wi = c, w ≥ 0, (2)

where gs collects the indices of samples belonging to the
demographic group s.

The optimization problem in (2) can be partitioned by
groups as follows for each demographic group:

max
w

n′∑
i=1

wiL(yi, ŷi) s.t. wT 1 = c, w ≥ 0.

Here we use n′ instead of n to denote samples within one
group because we want to perform reweighing within each
specific group. It is very easy to tell that the solution to this
problem is to assign all the weight to samples of the largest
loss in each group and all other weights zero. However,
for group fairness we are concerned about the partial of
samples that are likely to be wrongly classified, not the only
one sample that are most likely to be misclassified. Besides,

such one-hot encoding would lead to very unstable training,
and the algorithm could possibly fail to converge. To address
this problem, we introduce one more regularization term,
and the overall optimization problem regarding w for each
group is:

max
w

n′∑
i=1

wiL(yi, ŷi)− α ∥w∥22

s.t. wT 1 = c, w ≥ 0 .

(3)

And by adjusting the value of α we can adjust the amount
of samples that receive non-zero weights. As α approaches
infinity, the first term gradually becomes trivial, and the
solution changes from that of (2) to equal weight c

n′ .

3.3. Solution of Adaptive Weights

We derive the closed-form solution of adaptive weights w
in Problem (3) as follows:

Theorem 3.1. Consider a classifier with parameter θ such
that ŷi = fθ(xi). Without loss of generality, assume that
losses li = L(yi, ŷi), i = 1, 2, . . . , n′ in a given sensitive
group are sorted in descending order such that li ≥ lj ,∀i >
j. Then the optimal solution w∗ ∈ Rn′

of Problem (3) is:

w∗
i = max(

li − λ

2α
, 0), i = 1, 2, ..., n′,

where λ =

k′∑
j=1

lj−2αc

k′ , and k′ is determined by
k′∑
j=1

lj −

k′lk′+1 > 2αc >
k′∑
j=1

lj−k′lk′ . When
k′∑
j=1

lj−2αc ≤ 0,∀k′,

we can still follow the update rule except that we now have
k′ = n′ and λ ≤ 0.

Proof Sketch: The closed-form solution of Problem (3)
can be obtained using the method of Lagrange multipli-
ers. We discuss the optimal Lagrange multiplier λ via
Karush–Kuhn–Tucker (KKT) conditions. Detailed proof of
Theorem 3.1 is in the Appendix.

Insights: From Theorem 3.1 we can see that both α and c
have an impact on the optimal w∗. When α and c are rela-
tively large, all samples within the group receive non-zero
weights, and part of the samples receive loss-based adap-
tive weights, while the other samples receive equal weights.
Under this condition our method acts like a combination of
adaptive weighing and equal weighing.

We also notice that our training objective within each sub-
group is similar to that of (Hashimoto et al., 2018). In this
way, our method can be seen as a combination of group-level
balance and robustness within each group, i.e., our method
not only achieves fairness, but also introduces distributional
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robustness within each subgroup to the predictor. We val-
idate the effectiveness of robustness within each group in
experimental section.

Intuitively, our method achieves two goals: group balance
and error-prone reweighing. During training, the constraint
c for each subgroup is chosen as the number of samples
in the major subgroup. In this way, our method can also
be seen as adjusting the distribution of reweighed training
samples in minor groups to ensure fairness. Connection
between our reweighed minimization problem and fairness
metric is stated as below:

Theorem 3.2. Consider a classifier fθ with parameter θ
such that ŷi = fθ(xi). Given the adaptive weight w∗ by
optimizing Problem (3), under the L1-norm loss or the cross-
entropy loss for L(yi, ŷi), the following fairness metrics

• Disparate mistreatment:∑
s

(|p(ŷ ̸= y|y = 1, s)− p(ŷ ̸= y|y = 1)|

+ |p(ŷ ̸= y|y = 0, s)− p(ŷ ̸= y|y = 0)|)

• Equal opportunity:∑
s

(|p(ŷ ̸= y|y = 1, s)− p(ŷ ̸= y|y = 1)|)

are upper bounded by our weighted loss up to a multiplica-

tive constant:
n∑

i=1

w∗
iL(yi, ŷi).

Proof Sketch: The proof of Theorem 3.2 is obtained by us-
ing the formulation of w∗ in (3). Since w∗ is the closed-form
solution for the maximization problem in (3), the weighted
loss upper bounds the equal loss (where samples in each
demographic share the same weight). Detailed proof of
Theorem 3.2 can be founded in Appendix.

Insights: Theorem 3.2 indicates that disparate mistreatment
and equal opportunity of the classifier fθ is bounded by
optimizing the adaptively weighted loss function, i.e., our
method optimizes simultaneously w.r.t. both classification
accuracy and fairness.

3.4. Training Algorithm and Convergence

Our training algorithm follows the idea of (Lu et al., 2020).
We directly update new weights per sample rather than
partially editing existing ones. In r-th iteration, the training
algorithm performs the following optimization:

w = arg max
wT 1=c,w≥0

N∑
i=1

wili − (c1 + α)∥w∥2,

θ = argmin
θ

N∑
i=1

wili + c2 ∥θ − θr∥2 ,

where θ represents the parameters of classifier fθ and li =
L(yi, fθ(xi)).

To adaptively adjust the sample weights based on the per-
formance of classifier, we first pre-train the unconstrained
classifier with equal weights to find hard samples and obtain
training loss. We then update the weight according to the
closed-form solution as stated in the previous subsection and
train the classifier with such weight. This process is iterated
until the weight w converges. The detailed training is shown
in Algorithm 1. Compared with the baseline classifier, our
Algorithm 1 has only one extra step – updating w in Step
3. This step takes O(nlogn) time due to the sorting of li in
Theorem 3.1, where n is the number of training samples.

As proved by Lu et al. (2020), if the training objective
satisfies strong convexity and Lipschitz continuity w.r.t. the
minimization problem, and satisfies strongly concavity w.r.t.
the maximization problem, then with a proper α, the training
objective is guaranteed to converge:

Fr+1 − Fr < −c1
∥∥wr+1 − wr

∥∥2 − c2
∥∥θr+1 − θr

∥∥2 .
where Fr is the objective value of (3) at the r-th iteration,
c1 and c2 are constants.

Algorithm 1 Adaptive Reweighing Algorithm
Pre-train a classifier f with parameter θprev by optimizing
(1). Set wi ← 1, wprev

i ←∞, ∀i. Set c1 to be sufficiently
small, and c2 = 1.
while

∑
i

(wi − wprev
i )2 > δ2 do

1. Set wprev
i ← wi,∀i;

2. Set θ ← θprev;
3. Update w by solving (3) in each group:

max
w

n′∑
i=1

wiL(yi, ŷi)− (c1 + α) ∥w∥2 ,

s.t. wT 1 = c, w ≥ 0;

4. Train the classifier fθ by minimizing the weighted
training loss with penalty:

argmin
θ

n∑
i=1

wiL(yi, fθ(xi)) + c2 ∥θ − θprev∥2 .

end while
Return fθ, w

4. Experiments
4.1. Experimental Setup

We evaluate our model on three benchmark classification
datasets: Adult dataset (Dua & Graff, 2017), the UCI Ger-
man credit risk dateset (Dua & Graff, 2017), the ProPublica
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(a) COMPAS (b) German (c) Adult

Figure 2. Pareto frontier on COMPAS, Adult, and German credit datasets.

Table 1. Experimental results on Adult dataset.
Method Baseline Reweighing Undersampling Oversampling ASR Postprocessing Covariance Ours

Accuracy 84.14±0.34 78.36±0.82 79.48±0.31 79.34±0.42 81.52±0.26 82.21±0.44 81.67±0.42 82.44±0.33
Disparate 18.40±0.29 23.22±0.26 18.49±0.43 19.65±0.36 0.31±0.07 13.02±1.02 19.11±2.67 17.14±0.47Impact
Disparate 14.60±0.95 1.59±4.70 8.90±1.12 6.49±1.52 29.81±3.46 4.11±0.76 9.20±1.41 1.74±1.01TPR
Disparate 7.87±0.63 13.76±3.41 4.18±0.84 13.76±0.68 2.84±0.85 4.02±1.21 12.24±2.03 7.17±0.62TNR

Table 2. Experimental results on German dataset.
Method Baseline Reweighing Undersampling Oversampling ASR Postprocessing Covariance Ours

Accuracy 71.62±2.02 68.24±2.96 65.52±3.25 67.32±2.45 70.14±1.51 70.61±0.22 71.23±0.36 70.60±1.37
Disparate 14.23±5.56 7.06±5.94 11.17±6.01 9.16±4.23 5.13±0.95 4.25±0.47 4.72±0.13 3.46±1.34Impact
Disparate 8.34±7.46 21.02±3.47 13.81±11.79 12.14±8.31 1.13±0.52 2.51±0.12 1.23±0.20 0.64±0.43TPR
Disparate 6.35±4.82 9.96±4.23 14.59±4.84 11.37±4.17 1.27±0.61 1.03±0.07 1.15±0.31 0.14±0.12TNR

Table 3. Experimental results on COMPAS dataset.
Method Baseline Reweighing Undersampling Oversampling ASR Postprocessing Covariance Ours

Accuracy 65.23±1.39 62.24±2.47 63.34±2.41 63.50±2.42 63.75±1.27 63.42±1.14 64.11±1.46 63.41±1.35
Disparate 22.29±4.76 9.13±3.16 8.45±2.68 8.55±2.83 2.31±0.25 2.33±0.10 7.36±1.03 1.82±0.11Impact
Disparate 21.14±7.14 6.46±2.14 9.32±3.86 7.02±3.44 1.07±0.33 1.06±0.16 3.38±0.71 1.02±0.09TPR
Disparate 17.41±3.72 19.11±3.22 5.77±1.73 5.25±1.40 1.14±0.21 1.20±0.21 10.28±2.33 0.24±0.17TNR

Table 4. Experimental results of nonlinear classifier on Adult dataset.
Method Baseline Reweighing Undersampling Oversampling ASR Postprocessing Covariance Ours

Accuracy 83.14±0.54 77.63±0.74 77.76±0.81 78.73±0.47 80.67±0.53 81.47±0.63 80.21±0.47 81.78±0.17
Disparate 17.62±0.63 23.61±0.31 18.21±0.25 18.23±0.26 0.31±0.04 13.17±1.67 18.37±2.67 15.52±0.16Impact
Disparate 15.37±1.33 1.76±5.16 8.24±1.12 7.73±2.13 27.21±3.37 4.27±1.06 9.14±1.34 1.67±0.92TPR
Disparate 7.47±1.16 13.34±4.21 4.17±1.26 13.26±2.41 2.31±0.95 4.43±1.65 11.34±1.84 6.87±0.62TNR
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Table 5. Experimental results of nonlinear classifier on German dataset.
Method Baseline Reweighing Undersampling Oversampling ASR Postprocessing Covariance Ours

Accuracy 71.62±1.76 68.19±2.75 66.24±2.67 67.74±2.46 70.13±1.51 70.63±0.67 71.06±0.52 70.62±1.14
Disparate 15.26±7.27 8.14±5.13 11.47±6.67 9.86±3.67 6.17±1.51 4.21±0.87 4.43±0.44 3.16±1.11Impact
Disparate 8.45±6.67 19.94±4.46 13.71±12.34 12.67±7.74 1.53±0.81 3.01±0.83 1.16±0.21 0.63±0.58TPR
Disparate 6.32±4.17 9.41±4.47 15.52±5.67 11.84±5.14 1.77±0.41 1.21±0.17 1.15±0.36 0.32±0.15TNR

Table 6. Experimental results of nonlinear classifier on COMPAS dataset.
Method Baseline Reweighing Undersampling Oversampling ASR Postprocessing Covariance Ours

Accuracy 64.17±1.13 61.18±1.78 62.76±2.26 62.35±2.13 63.17±1.21 63.14±1.16 63.64±1.31 63.23±1.64
Disparate 21.37±5.24 10.17±2.27 8.83±2.69 8.67±3.12 2.41±0.31 3.24±0.11 7.43±1.22 2.23±0.87Impact
Disparate 22.21±8.17 6.85±2.13 8.86±3.11 7.44±2.57 1.82±0.46 1.31±0.17 3.13±0.76 1.16±0.08TPR
Disparate 17.64±3.46 18.85±4.41 5.41±1.68 6.13±1.25 1.71±0.43 1.24±0.23 11.47±2.63 0.69±0.34TNR

COMPAS dataset (Larson et al., 2016), and two regression
datasets: Law School (Wightman, 1998), Communities &
Crime (CRIME) dataset. Details of the datasets are in the
Appendix. For pre-processing of the above datasets, We
perform one-hot coding on each non-numerical feature and
normalize each numerical feature by subtracting the mean
value and scaling to unit variance.

For classification, we build all classifiers based on logistic
regression. We use accuracy as the evaluation metric. For
fairness metrics we adopt disparate impact, disparate TPR
and disparate TNR. We compare our method with six re-
lated methods: Baseline: logistic regression without fairness
constraints; Reweighing: logistic regression with assigning
balancing weights to different population groups; Under-
sampling: balancing between different demographic groups
by randomly selecting samples and form the new training
dataset such that samples in each group are of the same
number; Oversampling: balancing between different groups
by duplicating samples in minor groups such that samples
in each group are of the same number; Adaptive sensitive
reweighing (ASR): logistic regression with adaptive sensitive
reweighing (Krasanakis et al., 2018). Covariance: logis-
tic regression with linear covariance constraints to mitigate
disparate impact and mistreatment (Zafar et al., 2017). Post-
processing: logistic regression with postprocessing (Hardt
et al., 2016).

For regression task, we build all models based on Regu-
larized Least Squares (RLS). We use mean squared error
(MSE) as the evaluation metric and statistical parity (SP)
as fairness metric. Similar to the idea of fair classification,
we define subgroups of each training set based on the sen-
sitive information and the cutoff threshold 1[y ≥ 0.5]. For

Table 7. Experimental results on Law school dataset.
Method MSE SP
Baseline 0.114±0.003 15.20±4.34%
Oversampling 0.152±0.004 9.62±3.17%
Undersampling 0.163±0.002 8.57±4.52%
FWB 0.141±0.004 2.13±0.13%(Chzhen et al., 2020)
Our method 0.135±0.004 2.16±0.19%

instance, we treat all samples of s = s0 and y ≥ 0.5 as one
subgroup. We compare our method with four related meth-
ods: Baseline: RLS without fairness constraints. Reweigh-
ing: RLS with assigning balancing weights to different
subgroups. Oversampling: RLS with duplicating samples in
minor groups such that each group contains same number of
samples. Undersampling: RLS with major group randomly
sampled such that each group contains same number of sam-
ples. Fair Wasserstein barycenters (FWB) : RLS with fair
Wasserstein barycenter (Chzhen et al., 2020).

We repeat experiments on each dataset five times and be-
fore each repetition we randomly spilt data into 80% train-
ing data and 20% test data. All the methods evaluated are
trained and tested on the same data partitions each time.
Values of hyperparameter α in our method are set by per-
forming cross-validation on training data in the value range
of 1 to 20. The hyperparameters for the comparing methods
are tuned as suggested by the authors (Krasanakis et al.,
2018; Hardt et al., 2016; Zafar et al., 2017).
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(a) Classification Accuracy: COMPAS (b) Classification Accuracy: German (c) Classification Accuracy: Adult

(d) Disparate impact: COMPAS (e) Disparate impact: German (f) Disparate impact: Adult

(g) Disparate TPR: COMPAS (h) Disparate TPR: German (i) Disparate TPR: Adult

(j) Disparate TNR: COMPAS (k) Disparate TNR: German (l) Disparate TNR: Adult

Figure 3. Change of accuracy and fairness under different noise ratio on COMPAS, Adult and German credit datasets.

4.2. Fairness in Classification

For classification dataset, we first evaluate the trade-off be-
tween fairness and accuracy using Pareto frontier. Kim
et al. (2020) propose to model the classifier performance in
terms of both accuracy and fairness using an 8-dimensional
fairness vector z. In this way, the fairness constraints can
be modelled as a linear system with specific fairness ma-

trices. As suggested by the authors, by solving the opti-
mization problem of z with model-specific constraints and
fairness regularization terms, we can obtain the Pareto fron-
tier with the (ϵ, δ) solutions. In Figure 2, the blue curve
is the model-specific Pareto frontier, which represents the
optimal trade-off that could be achieved for a post-processed
logistic regression classifier. Smaller distance to the Pareto



Fairness with Adaptive Weights

Table 8. Experimental results on CRIME dataset.
Method MSE SP
Baseline 0.037±0.003 50.63±6.75%
Oversampling 0.052±0.004 21.37±7.73%
Undersampling 0.047±0.006 19.42±6.63%
FWB 0.042±0.004 12.10±1.19%(Chzhen et al., 2020)
Our method 0.043±0.004 11.47±1.63%

frontier means better fairness-accuracy trade-off, and solu-
tions lie right on the curve represent an ideal classifier. As
can be seen from the figures, our method lies closer to the
frontier than other methods, which demonstrates that our
method achieves better fairness-accuracy trade-off.

We further show more fairness and accuracy results in Ta-
bles 1 to 3. Among all the compared methods, our method
achieves the best fairness metrics on German credit dataset
and COMPAS dataset and the best accuracy on Adult dataset
excluding baseline. Our method achieves low disparate
TPR and TNR on both German credit dataset and COMPAS
dataset, and low disparate TPR on Adult dataset. It can be
seen clearly from Table 1 that ASR achieves low disparate
impact and disparate TNR, but at the cost of much higher
disparate TPR than baseline. Covariance achieves relatively
good performance on German credit dataset, but the dis-
parate TNR on Adult dataset and COMPAS dataset are rela-
tively high. Our method achieves low disparate TPR without
increasing disparate TNR and disparate impact, and works
better in removing imbalance between positive subgroups.
Methods including reweighing and resampling achieve good
performance in terms of one certain fairness metric, but their
performance in terms of other fairness metrics is not satis-
factory, and the classification accuracies are relatively low.
Besides, the standard deviation of metrics of these methods
are relatively high, which shows the instability of simply
performing reweighing or resampling on training data with-
out imposing further constraints. By contrast, our method
achieves fairness with more stable performance.

We further show results on non-linear classifiers in Table
4 to 6. Specifically, we build all classifiers based on multi-
layer perceptron (MLP). Our method still achieves best or
comparable performance on all three datasets, which also
validates the effectiveness of our method.

It is noteworthy that our method achieves relatively bad per-
formance on Adult dataset in disparate impact. However as
discussed before, disparate impact alone is not an adequate
metric to evaluate fairness as it merely computes the differ-
ence in positive outcome rates, without considering the base
rate. And our method achieves comparable disparate TPR
and TNR than the best results with less standard deviation.
More results on sensitivity w.r.t. hyperparameters are shown
in the Appendix.

4.3. Classification with Noisy Label

Results on fair classification under average noisy label are
shown in Figure 3. Specifically, we apply half the noise
corruption on major group and half the corruption on mi-
nor group. Due to distribution disparity in different groups,
this would result in a group-dependent noise. As proved
by Wang et al. (2021), imposing fairness constraints un-
der group-dependent noise would induce a deviation on
fairness under clean data. However, our method naturally
bypasses such problem, since our method achieves fairness
through group balance and loss-based reweighing, without
directly imposing fairness constraints. Besides, our loss-
based reweighing achieves distributionally robust within
each subgroup. Compared with other methods, our method
achieves better robustness in terms of both fairness and accu-
racy under different noise ratios, while performance of other
methods become very unstable as the noise ratio increases.

4.4. Regression Results

We further validate our method for fair regression. As the
results shown in Table 7 and 8, amongst all compared meth-
ods, our method achieves the lowest MSE on Law school
dataset excluding baseline and the lowest SP on Commu-
nities & crime dataset. Compared with Oversampling and
Undersampling, our method better achieves fairness and
MSE, which validates the effectiveness of our loss-based
reweighing. Besides, the results show that our method is
competitive with state-of-the-art methods regarding both
MSE and SP.

5. Conclusion
Representation bias is an important yet less studied problem
in fairness. In this paper we discuss how reweighing helps in
mitigating representation bias. We propose a sample-level
adaptive reweighing method to flexibly solve this problem.
Instead of considering specific fairness criteria, our method
achieves fairness by balancing different groups. The objec-
tive function for weight assignment consists of two parts:
the first part underscoring wrongly-classified samples in dif-
ferent groups, and the second part addressing the trade-off
between fairness and equal weights. We derive closed-form
solution for the weight assignment, and experiments on
five benchmark datasets show that our method can achieve
fairness with relatively small sacrifice in accuracy or MSE.
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A. Proof of Theorem 1
Proof. Problem (4) can be written as

min
w

L(w) =

nc∑
k=1

L(wk)

nc∑
k=1

L(wk) =

nc∑
k=1

[
−

nk∑
i=1

n∑
j=1

wkij lkij + α
( nk∑

i=1

n∑
j=1

|wkij |
)2

]
, s.t.

nk∑
i=1

n∑
j=1

wkij = c, wk ≥ 0. (4)

We can handle the nc groups in Problem (4) separately. The optimization problem w.r.t. the k-th group can be formulated as
follows:

min
u
−lTu+ uTu, s.t. u ≥ 0,uT1 = c, (5)

where u = [wk11, wk12, . . . , wknk1, wk21, . . . , wknkn]. The Lagrangian function of Problem (5) is

min
u
−lTu+ uTu− ηTu+ λ(uT1− c), (6)

where η ≥ 0 and λ ≥ 0 are Lagrangian multipliers. Take derivative of Problem (6) w.r.t. u and set it to zero, we get

η − λ1+ 1 = 2m1,

where m = 1Tu. From the KKT condition we can derive ηTu = 0. Consequently, we can derive

{
wq = 0 =⇒ ηq > 0 =⇒ lq − λ < 0 ,
wq > 0 =⇒ ηq = 0 =⇒ lq − λ ≥ 0 ,

(7)

where q ∈ {1, ..., n × nk}. Without loss of generality, suppose l is a sorted vector such that l1 > l2 > · · · > lnkn, and
suppose there is a k′ ∈ {1, ..., n× nk} that satisfies lk′ ≥ λ > lk′+1 where then according to Eq. (7) we can derive{

uq = 0 if i > k′,

uq = li−λ
2α if 1 ≥ i ≥ k′.

And notice that uT1 = c. we can derive the value of λ as follows:

k′∑
j=1

li − λ

2α
= c =⇒ λ =

k′∑
j=1

lj − 2αc

k′
.

Combining (7), we know the value of k′ satisfies:

k′∑
j=1

lj − k′lk′+1 > 2αc >

k′∑
j=1

lj − k′lk′ .

Here the optimal solution lies within feasible region when
k′∑
j=1

li − 2αc ≥ 0 holds true. When 2αc is very large, all samples

within the group receive non-zero weights.
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B. Proof of Theorem 2
Proof. Our proposed optimization problem can be divided into two parts:

w∗ = max
w

wT l− α ∥w∥22 , (8)

l∗ = argmin
l

wT l− α ∥w∥22 , (9)

During k-th iteration, both w and l is updated to the optimum. Consider the baseline reweighing method, where samples
within each demographic group are assigned with equal weight c

N . Denote such weight as u, in current iteration we have

w∗T l− α ∥w∗∥22 ≥ uT l− α ∥u∥22 , (10)

Since u assigns equal weight per sample, it is same as calculating average loss within each group, and uT l can be further
written as

uT l = c(| ¯l∗a=0|+ | ¯l∗a=1|), (11)

Where ¯l∗a=i represents average loss in each subgroup and c represents the sum of weight in each subgroup. In our experiment,
the classifier is chosen as logistic regression, and l represents cross-entropy loss. As proved by (Feng et al., 2020), the
cross-entropy loss l is lower-bounded by its corresponding mean absolute error lMAE , thus we have

| ¯l∗a=0|+ | ¯l∗a=1| ≥ | ¯l∗MAE,a=0|+ | ¯l∗MAE,a=1|, (12)

Since lMAE = |hpred − ytrue|, denote as ly the corresponding 0− 1 classification loss, on correctly-classified samples the
following inequality always hold:

lMAE ≥ ly, (13)

And on wrongly classified samples:
lMAE + 0.5 ≥ ly, (14)

Thus (12) can be further lower-bounded by:

| ¯l∗MAE,a=0|+ | ¯l∗MAE,a=1| ≥ | ¯l∗y,a=0|+ | ¯l∗y,a=1| − c′ ≥ | ¯l∗y,a=0 − ¯l∗y,a=1| − c′ (15)

Where c′ = 0.5
∑N

n=1 1(ypred ̸= y). Denote as Ni,a=j the number of samples with label i in j-th group, we can express
the average 0− 1 loss within each subgroup as:

¯l∗0,a=j =
1

N0,a=j
1(ypred ̸= 0) (16)

¯l∗1,a=j =
1

N1,a=j
1(ypred ̸= 1) (17)

Which corresponds exactly to the FPR and FNR of j-th group. Combining (10), (12), (15), (16), and (17), we have

w∗T l ≥ c(|FPRa=0 − FPRa=1|+ |FNRa=0 − FNRa=1|)− c′ (18)
≥ c(|FPRa=0 − FPRa=1|+ |FNRa=0 − FNRa=1|)− 0.5N. (19)

Which shows that our reweighed minimization problem corresponding exactly to minimizing the upper bound of equalized
odds during each iteration.
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(a) COMPAS (b) German (c) Adult

Figure 4. Change of disparate FPR and accuracy with varying α on three datasets. Lower disparate FPR shows better fairness. Higher
accuracy shows better classification.

C. Experiments Supplement
C.1. Dataset Details

We evaluate our model on five benchmark datasets. The first three are for classification tasks, and the last two are for
regression:

• Adult: The Adult dataset (Dua & Graff, 2017) contains 65,123 samples with 11 attributes and one binary label
indicating whether an individual’s annual income exceeds 50K. The sensitive attribute in this dataset is sex.

• German: The UCI German credit risk dateset (Dua & Graff, 2017) contains 1,000 samples with 20 attributes and one
binary label indicating whether a client is classified highly risky. The sensitive attribute in this dataset is sex.

• COMPAS: The ProPublica COMPAS dataset (Larson et al., 2016) contains 7,215 samples with 11 attributes. The
goal is to predict whether the defendant re-offend within two years. Following the protocol in earlier fairness methods
(Zafar et al., 2017), we only select white and black individuals in COMPAS dataset, which contains 6,150 samples in
total. The sensitive attribute in this dataset is race.

• Law School: The Law School Admissions Councils National Longitudinal Bar Passage Study (Wightman, 1998)
contains 20,649 samples with 38 attributes. The goal is to predict a student’s GPA. Following the protocol in (Chzhen
et al., 2020), we normalize GPA to [0,1]. The sensitive attribute in this dataset is race.

• Communities & Crime (CRIME): The Communities and Crime dataset contains 1,994 samples with 128 attributes.
The goal is to predict the number of violent crimes per 105 population. Following (Calders et al., 2013), we normalize
the number of crimes to [0,1] and treat black population and non-black population as the sensitive groups.

C.2. Sensitivity to Hyperparameters

Here we discuss the trade-off between performance and fairness on three datasets. Figure 4 show the change of accuracy
and disparate TNR (same as disparate FPR) with increasing α. As discussed in Section 3, higher α means more samples
are assigned with non-zero weights and the difference of weights within groups become smaller. On COMPAS dataset
and German credit dataset, as α increases, the disparate FPR first decreases, then gradually increases and finally stabilizes.
On COMPAS dataset, as α increases, the classification accuracy also increases from 61.5% to 63.5%, which shows that
more training samples with non-zero weights benefit the performance of classifier. However, the effect of α on accuracy on
German credit dataset and Adult dataset are relatively small, and the change of accuracy is only about 0.7%.

It is worth noticing that although there is no consistent trade-off between fairness and accuracy as α changes, on all the
three datasets, as α increases, the fairness discrepancy also increases, which shows α has direct control over fairness, i.e.,
focusing on hard samples helps the classifier to achieve fairness. However, focusing on hard samples does not always harm
classification accuracy. Our assumption about accuracy is that if easy samples lie far apart from classification hyperplane,
i.e., such samples are unlikely to be wrongly classified, then focusing on hard samples will also help improve accuracy.
However, if hard samples are relatively close to easy samples, then strictly forcing the classifier to focus on hard samples
will have a negative affect on accuracy.


