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Abstract
An extractive rationale explains a language
model’s (LM’s) prediction on a given task in-
stance by highlighting the text inputs that most
influenced the prediction. Ideally, rationale ex-
traction should be faithful (reflective of LM’s ac-
tual behavior) and plausible (convincing to hu-
mans), without compromising the LM’s (i.e., task
model’s) task performance. Although attribution
algorithms and select-predict pipelines are com-
monly used in rationale extraction, they both rely
on certain heuristics that hinder them from sat-
isfying all three desiderata. In light of this, we
propose UNIREX, a flexible learning framework
which generalizes rationale extractor optimization
as follows: (1) specify architecture for a learned
rationale extractor; (2) select explainability ob-
jectives (i.e., faithfulness and plausibility crite-
ria); and (3) jointly train the task model and ra-
tionale extractor on the task using selected objec-
tives. UNIREX enables replacing prior works’
heuristic design choices with a generic learned
rationale extractor in (1) and optimizing it for
all three desiderata in (2)-(3). To facilitate com-
parison between methods w.r.t. multiple desider-
ata, we introduce the Normalized Relative Gain
(NRG) metric. On five English text classification
datasets, our best UNIREX configuration outper-
forms baselines by an average of 32.9% NRG.
Plus, UNIREX rationale extractors’ faithfulness
can even generalize to unseen datasets and tasks.

1. Introduction
In recent years, neural language models (LMs) have yielded
state-of-the-art performance on a wide range of natural lan-
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guage processing (NLP) tasks (Devlin et al., 2018; Liu et al.,
2019). However, LMs’ complex processes are notoriously
opaque (Rudin, 2019), posing concerns about the societal
implications of using LMs for high-stakes decision-making
(Bender et al., 2021). Thus, explaining LMs’ behavior is
crucial for promoting trust, ethics, and safety in NLP sys-
tems (Doshi-Velez & Kim, 2017; Lipton, 2018). Given a
LM’s (i.e., task model’s) predicted label on a text classifica-
tion instance, an extractive rationale is a type of explanation
that highlights the tokens that most influenced the model to
predict that label (Luo et al., 2021). To provide meaningful
explanations, rationale extraction should be faithful (reflec-
tive of LM’s actual behavior) (Ismail et al., 2021; Jain et al.,
2020) and plausible (convincing to humans) (DeYoung et al.,
2019), without compromising the LM’s task performance
(DeYoung et al., 2019; Jacovi & Goldberg, 2020) (Fig. 1).

Configuring the rationale extractor and its training process
can greatly impact these desiderata, yet prior works have
commonly adopted at least one of the following suboptimal
heuristic design choices. First, many works rely in some
way on attribution algorithms (AAs), which extract ratio-
nales via handcrafted functions (Sundararajan et al., 2017;
Ismail et al., 2021; Situ et al., 2021). AAs may have built-in
faithfulness-related properties but cannot be directly trained
and tend to be compute-intensive (Bastings & Filippova,
2020). The most similar work to ours is SGT (Ismail et al.,
2021), which regularizes a task model to produce faithful
AA-based rationales. Still, AAs can be a bottleneck for
plausibility, as producing human-like rationales is a com-
plex objective requiring high capacity rationale extractors
(Narang et al., 2020; DeYoung et al., 2019). Second, many
works use a specialized select-predict pipeline (SPP), where
a predictor module is trained to solve the task using only
tokens chosen by a selector module (Jain et al., 2020; Yu
et al., 2021; Paranjape et al., 2020). Instead of faithfulness
optimization, SPPs heuristically aim for “faithfulness by
construction” by treating the selected tokens as a rationale
for the predictor’s output (which depends only on those to-
kens). Still, SPPs typically have worse task performance
than vanilla LMs since SPPs hide the full input from the
predictor and are hard to train end-to-end (Jain et al., 2020;
Bastings et al., 2019; Lei et al., 2016). Both AAs and SPPs
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utilize heuristics that fundamentally limit the rationale ex-
tractor from achieving all three desiderata.

To tackle this challenge, we propose the UNIfied Learning
Framework for Rationale EXtraction (UNIREX), which
generalizes rationale extractor optimization as follows: (1)
specify architecture for a learned rationale extractor; (2)
select explainability objectives (i.e., faithfulness and plau-
sibility criteria); and (3) jointly train the task model and
rationale extractor on the task using selected objectives (Sec.
3). UNIREX enables replacing prior works’ heuristic de-
sign choices in (1) with a generic learned rationale extractor
and optimizing it for all three desiderata in (2)-(3).

UNIREX provides great flexibility in performing (1)-(3).
For (1), any model architecture is applicable, but we study
Transformer LM based rationale extractors in this work (Za-
heer et al., 2020; DeYoung et al., 2019). We focus on two
architectures: (A) Dual LM, where task model and ratio-
nale extractor are separate; and (B) Shared LM, where task
model and rationale extractor share parameters. For (2), any
faithfulness and plausibility criteria can be used. Following
DeYoung et al. (2019), we focus on comprehensiveness and
sufficiency as faithfulness criteria, while using similarity
to gold rationales as plausibility criteria. For (3), trade-
offs between the three desiderata can be easily managed
during rationale extractor optimization by setting arbitrary
loss weights for the faithfulness and plausibility objectives.
Furthermore, although computing the faithfulness criteria
involves discrete (non-differentiable) token selection, using
the Shared LM architecture can approximate end-to-end
training and enable both task model and rationale extractor
to be optimized w.r.t. all three desiderata (Sec. 3.4).

To evaluate all three desiderata in aggregate, we introduce
the Normalized Relative Gain (NRG) metric. On five En-
glish text classification datasets – SST, Movies, CoS-E,
MultiRC, and e-SNLI (Carton et al., 2020; DeYoung et al.,
2019) – our best UNIREX configuration outperforms the
strongest baselines by an average of 32.9% NRG (Sec. 4.3),
showing that UNIREX can optimize rationale extractors
for all three desiderata. In addition, we verify our UNIREX
design choices via extensive ablation studies (Sec. A.3).
Moreover, UNIREX-trained extractors have considerable
generalization power, yielding high plausiblity with minimal
gold rationale supervision (Sec. 4.4) and high faithfulness
on unseen datasets/tasks (Sec. 4.5). Finally, our user study
shows that humans judge UNIREX rationales as more plau-
sible than rationales extracted via other methods (Sec. A.5).

2. Problem Formulation
We formalize rationale extraction and discuss how extracted
rationales are evaluated, in the context of text classification.

Figure 1: Desiderata of Rationale Extraction. Ideally, rationale
extraction should be faithful and plausible, without compromising
the task model’s task performance. Unlike prior works, UNIREX
enables optimizing the rationale extractor for all three desiderata.

2.1. Rationale Extraction
Here, we consider Ftask = ftask(fenc(·)) as a task model
for M -class text classification (Sec. A.2), where fenc is the
text encoder while ftask is the task output head. In modern
NLP systems, Ftask usually has a BERT-style architecture
(Devlin et al., 2018), in which fenc is a Transformer net-
work (Vaswani et al., 2017) while ftask is a linear layer
with softmax classifier. Let xi = [xt

i]
n
t=1 be the n-token

input sequence (e.g., a sentence) for task instance i, and
Ftask(xi) ∈ RM be the logit vector for the output of the
task model. We use yi = argmax j Ftask(xi)j to denote the
class predicted by Ftask. Given Ftask, xi, and yi, the goal of
rationale extraction is to output vector si = [sti]

n
t=1 ∈ Rn,

such that each sti ∈ R is an importance score indicating how
strongly token xt

i influenced Ftask to predict class yi.

Let Fext denote a rationale extractor, such that si =
Fext(Ftask,xi, yi). Fext can be a learned or heuristic func-
tion. In practice, the final rationale is typically obtained
by binarizing si as ri ∈ {0, 1}n, via the top-k% strategy:
rti = 1 if sti is one of the top-k% scores in si; otherwise,
rti = 0 (DeYoung et al., 2019; Jain et al., 2020; Pruthi
et al., 2020; Chan et al., 2021). While other binarization
strategies can be used (e.g., score threshold, highest-scoring
contiguous k-token span), we focus on top-k% in this study,
since this strategy is most prevalent. For top-k%, let r(k)i

denote the “important” (i.e., ones) tokens in ri, when using
0 ≤ k ≤ 100.
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2.2. Three Desiderata of Rationale Extraction

To provide meaningful explanations, rationale extraction via
Fext should be faithful and plausible, without significantly
hurting Ftask’s task performance (DeYoung et al., 2019).

Faithfulness Faithfulness means how accurately a ratio-
nale reflects Ftask’s true reasoning process for predicting
yi (Jacovi & Goldberg, 2020). Hence, faithfulness metrics
aim to measure the extent to which the r(k)i tokens influence
pyi(xi), which denotes Ftask’s confidence probability for yi
when using xi as input (DeYoung et al., 2019; Shrikumar
et al., 2017; Hooker et al., 2018; Pruthi et al., 2020). Re-
cently, comprehensiveness and sufficiency have emerged as
popular faithfulness metrics in the explainability literature
(DeYoung et al., 2019). Comprehensiveness (comp) mea-
sures the change in pyi

when r
(k)
i is removed from the input:

comp = pyi
(xi)− pyi

(xi\r(k)i ). That is, if the r
(k)
i tokens

are truly influential, then removing them from the input
should decrease Ftask’s predicted probability for yi. Thus,
higher comp indicates higher faithfulness. Sufficiency (suff)
measures the change in pyi

when only r
(k)
i is kept in the

input: suff = pyi
(xi)−pyi

(r
(k)
i ). That is, if the r(k)i tokens

are truly influential, only keeping them in the input should
not decrease Ftask’s predicted probability for yi. Thus, lower
suff indicates higher faithfulness.

Plausibility Plausibility is defined as how convincingly a
rationale explains a given model’s prediction, as judged by
humans (Jacovi & Goldberg, 2020). This can be measured
either by automatically computing the similarity between
Fext’s rationales (either si or ri) and human-annotated gold
rationales (DeYoung et al., 2019), or by asking human anno-
tators to rate whether Fext’s rationales make sense for pre-
dicting yi (Strout et al., 2019; Doshi-Velez & Kim, 2017).
Typically, a gold rationale is a binary vector r∗i ∈ {0, 1}n,
where ones and zeros indicate important and unimportant
tokens, respectively (Lei et al., 2016; DeYoung et al., 2019).

Task Performance Task performance, in the context of
rationale extraction, concerns how much Ftask’s task per-
formance (on the test set) drops when Ftask is trained with
explainability objectives (i.e., faithfulness, plausibility) for
Fext. As long as Ftask is trained with non-task losses, Ftask’s
task performance can be affected. Note that this means post
hoc (i.e., introduced after Ftask training is over) rationale
extraction will not affect Ftask’s task performance. In gen-
eral, the main goal of Ftask is high task performance, so
we should ideally improve Fext w.r.t. the other desiderata
without hurting Ftask’s task performance. To measure task
performance, we use standard dataset-specific performance
metrics (e.g., accuracy, F1).

3. UNIREX
We present the UNIREX learning framework, which en-
ables jointly optimizing the task model and rationale extrac-
tor, w.r.t. faithfulness, plausibility, and task performance.

3.1. Framework Overview
Given task model Ftask, UNIREX generalizes rationale
extractor optimization as follows: (1) choose architecture for
a learned rationale extractor Fext; (2) select explainability
objectives (i.e., faithfulness loss Lfaith and plausibility loss
Lplaus); and (3) jointly train Ftask and Fext using Ltask (task
loss), Lfaith, and Lplaus. As shown in Fig. 2, UNIREX
training consists of two backpropagation paths. The first
path is used to update Ftask w.r.t. Ltask and Lfaith. Whereas
Ltask is computed w.r.t. the task target y∗i , Lfaith is computed
only using the task input xi and the top-k% important tokens
r
(k)
i (obtained via Fext), based on some combination of

comp and suff (Sec. 2.2). The second path is used to update
Fext w.r.t. Lplaus, which encourages importance scores si to
approximate gold rationale r∗i .

Thus, UNIREX frames rationale extraction as the following
optimization problem:

min
Ftask,Fext

Ltask(xi, y
∗
i ;Ftask)

+ αfLfaith(xi, r
(k)
i ;Ftask)

+ αpLplaus(xi, r
∗
i ;Fext),

(1)

where αf and αp are loss weights. If Ftask and Fext share
parameters, then the shared parameters will be optimized
w.r.t. all losses. During inference, for task input xi, we first
use Ftask to predict y∗i , then use Fext to output a rationale
ri for Ftask’s prediction yi. Below, we discuss options for
UNIREX’s rationale extractor and explainability objectives.

3.2. Rationale Extractor
In UNIREX, Fext is a learned function by default. Here,
we first introduce heuristic Fext (i.e., AA), then discuss why
a learned Fext should typically be preferred (Sec. 2.1). For
each Fext type, we present several possible design choices
and the pros/cons of the given type.

3.2.1. HEURISTIC RATIONALE EXTRACTORS

Heuristic Fext refers to AAs, which can be any handcrafted
function that calculates an importance score sti for each input
token xt

i (Bastings & Filippova, 2020). AAs are typically
gradient-based (Sundararajan et al., 2017; Denil et al., 2014;
Lundberg & Lee, 2017; Li et al., 2015) or perturbation-
based (Li et al., 2016; Poerner et al., 2018; Kádár et al.,
2017) methods. Recall that pyi

(xi) denotes Ftask’s pre-
dicted probability for class yi (Sec. 2.2). Gradient-based
methods compute sti via the gradient of pyi(xi) w.r.t. xt

i.
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Figure 2: UNIREX Framework. UNIREX enables jointly optimizing the task model (Ftask) and rationale extractor (Fext), w.r.t.
faithfulness (Lfaith), plausibility (Lplaus), and task performance (Ltask). In this example, we consider the sentiment analysis task. For task
performance, Ftask is trained via gold label y∗

i to predict the sentiment – either positive (pos) or negative (neg) – of sentence xi. Here,
Ftask’s predicted label for xi is yi = pos. For plausibility, Fext is trained via gold rationale r∗i to output human-aligned token importance
scores si for xi (Sec. 3.3.2). For faithfulness, si is binarized as rationale ri via top-k% selection, then used to construct the comp
(xi\r(k)i ) and suff (r(k)i ) inputs for Ltask. With Ltask’s predicted probabilities for yi, given xi, xi\r(k)i , and r

(k)
i , respectively, the comp

and suff losses are computed. The comp and suff losses align Ltask’s output with ri, such that ri becomes a faithful explanation of Ltask’s
behavior. (Sec. 3.3.1). Note that some parts of UNIREX are non-differentiable. Still, by having Ltask and Lext share a text encoder, we
can approximate end-to-end training of both models, jointly w.r.t. all three desiderata (Sec. (3.4).

These methods require one or more Ftask backward passes.
Perturbation-based methods measure sti as pyi(xi)’s change
when perturbing (e.g., removing) xt

i. These methods require
multiple Ftask forward passes – typically, one forward pass
per token in xi.

AAs can be used out of the box without training and are de-
signed to satisfy certain faithfulness-related axiomatic prop-
erties (Sundararajan et al., 2017; Lundberg & Lee, 2017).
However, AAs’ lack of learnable parameters means they
cannot be optimized for faithfulness/plausibility. Thus, if
Ftask is trained for explainability using AA-based rationales,
then only Ftask is optimized. Also, faithful AAs tend to be
compute-intensive, requiring many Ftask backward/forward
passes per instance (Sundararajan et al., 2017; Lundberg &
Lee, 2017; Li et al., 2016).

3.2.2. LEARNED RATIONALE EXTRACTORS

Learned Fext can be any learned model that transforms xt
i

into sti. Given their success in NLP explainability (DeY-
oung et al., 2019), we focus on pre-trained Transformer
LMs and highlight two key architectures: Dual LM (DLM)
and Shared LM (SLM) (Fig. 6). For DLM, Ftask and Fext
are two separate Transformer LMs with the same encoder
architecture. Formally, we define the DLM extractor as
Fext = fext(f

′
enc(·)), where f ′

enc and fext are Fext’s encoder
and output head, respectively. DLM provides more capacity

for Fext, which can help Fext output plausible rationales. For
SLM, Ftask and Fext are two Transformer LMs sharing en-
coder fenc, while Fext has its own output head fext. Formally,
the SLM extractor is defined as Fext = fext(fenc(·)). SLM
leverages multitask learning between Ftask and Fext, which
can improve faithfulness since Fext has greater access to in-
formation about Ftask’s reasoning process. By default, Fext
takes xi as input and uses a linear layer for fext, although
these settings can be changed if desired.

Unlike heuristic Fext, learned Fext can be optimized for faith-
fulness/plausibility and only require one Ftask forward pass
during inference (e.g., perturbation-based AAs require n
forward passes per n-token instance). However, they cannot
be used out of the box without explainability training and do
not have built-in axiomatic properties – e.g., sensitivity and
implementation invariance in the IG (Sundararajan et al.,
2017) AA – which are designed to promote faithfulness.

Overall, learned Fext is preferred if: (A) the goal is to op-
timize for both faithfulness and plausibility, and (B) gold
rationales – even a small amount – are available for plausibil-
ity optimization. (B) is true because gold rationale annotated
instances can be provided in every batch via oversampling
(Sec A.4), which works surprisingly well in low-resource
settings (Sec. 4.4). Otherwise, UNIREX allows for the
learned Fext to be replaced with a heuristic Fext.
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3.3. Explainability Objectives
After selecting Fext, we specify the explainability objec-
tives, which can be any combination of faithfulness and
plausibility criteria. In prior approaches (e.g., AA, SPPs),
the rationale extractor is not optimized for both faithfulness
and plausibility, but UNIREX makes this possible. For any
choice of learned Fext, UNIREX lets us easily “plug and
play” different criteria and loss weights, based on our needs
and domain knowledge, to find those that best balance the
rationale extraction desiderata.

3.3.1. FAITHFULNESS

Faithfulness refers to how accurately a rationale (output by
Fext) reflects Ftask’s decision process for a given instance.
Evaluating rationale faithfulness is still an open problem
with numerous applicable metrics, and UNIREX is not tai-
lored for any specific metric. However, given the prevalence
of comp and suff (Sec. 2.1) in the explainability literature
(DeYoung et al., 2019; Ismail et al., 2021), we focus on
comp and suff related objectives.

Recall that comp measures the importance of tokens in r
(k)
i

as how pyi
(xi) changes when those tokens are removed

from xi. Intuitively, we want pyi
(xi) to be higher than

pyi
(xi\r(k)i ), so higher comp is better. Since comp is de-

fined for a single class’ probability rather than the label
distribution, we can define the comp loss Lcomp via cross-
entropy loss LCE (which is computed w.r.t. the target class),
as in the following difference criterion instantiation of Lcomp:

Lcomp-diff =LCE(Ftask(xi), y
∗
i )

− LCE(Ftask(xi\r(k)i ), y∗i )
(2)

LCE(Ftask(xi), y
∗
i ) = −y∗i log(Ftask(xi)) (3)

For training stability, we compute comp loss for target class
y∗i here instead of Ftask’s predicted class yi, since yi is a
moving target during training. Using Lcomp-diff, it is possible
for LCE(Ftask(xi\r(k)i ), y∗i )) to become much larger than
LCE(Ftask(xi), y

∗
i ), leading to arbitrarily negative losses.

To prevent this, we can use margin mc to impose a lower
bound on Lcomp-diff, yielding the following margin criterion:

Lcomp-margin = max(−mc,Lcomp-diff) +mc (4)

Recall that suff measures the importance of tokens in r
(k)
i

as how pyi
(xi) changes when they are the only tokens kept

in xi. Based on suff’s definition, we want pyi
(r

(k)
i ) to be

higher than pyi
(xi), so lower suff is better. For suff loss

Lsuff, we define the difference and margin criteria analo-
gously to Lcomp, using margin ms but the opposite sign for
Lsuff-diff (since lower suff is better):

Lsuff-diff = LCE(Ftask(r
(k)
i ), y∗i )− LCE(Ftask(xi), y

∗
i ) (5)

Lsuff-margin = max(−ms,Lsuff-diff) +ms (6)

In our experiments, we find that the margin-based comp
and suff criteria are effective (Sec. A.3), though others
(e.g., KL divergence, MAE) can be used too (Sec. A.6.1).
Note that r(k)i is computed via top-k% thresholding (Sec.
2.1), so we also need to specify a set K of threshold values.
We separately compute the comp and suff losses for each
k ∈ K, then obtain the final comp and suff losses by averag-
ing over all k values via area-over-precision-curve (AOPC)
(DeYoung et al., 2019). To reflect this, we denote the comp
and suff losses as Lcomp,K and Lsuff,K , respectively. Let
αfLfaith = αcLcomp,K + αsLsuff,K , where αc and αs are
loss weights. In this case, we can abstractly consider αf as
an aggregate loss weight for the faithfulness objectives.

3.3.2. PLAUSIBILITY

Plausibility is defined as how convincing a rationale (output
by Fext) is to humans as an explanation for Ftask’s prediction
on a given instance (Jacovi & Goldberg, 2020). Since Ftask’s
predictions may change throughout its training, optimiz-
ing for plausibility should ideally involve continual human-
in-the-loop feedback. However, obtaining such human-in-
the-loop feedback is prohibitive, so many works consider
human-annotated gold rationales as a cheaper form of plau-
sibility supervision (DeYoung et al., 2019; Narang et al.,
2020; Jain et al., 2020). Even so, gold rationales r∗i are
generally only annotated w.r.t. the gold task label y∗i (as op-
posed to Ftask’s predicted label y∗i , which cannot be known
a priori). Consequently, if y∗i ̸= y∗i , then gold rationale
supervision may be noisy.

Still, this is not a significant issue if Ftask is jointly trained
with Fext. In UNIREX, Ftask and Fext are jointly trained to
predict y∗i (via Ltask) and r∗i (via Lplaus), respectively, while
Ftask is also regularized (via Lfaith) such that its output y∗i
aligns with Fext’s output ri. In other words, y∗i may be an
acceptable approximation of y∗i when training Fext to pre-
dict r∗i (which is based on y∗i ) because: (A) Ftask is jointly
trained such that its output y∗i approximates y∗i , and (B) Fext
is also trained such that its output ri aligns with y∗i . As a
result, if gold rationale supervision is available, then we can
optimize for plausibility via UNIREX. Specifically, given
gold rationale r∗i for input xi, plausibility optimization en-
tails training Fext to predict binary importance label r∗,ti for
each token xt

i. This is essentially binary token classification,
so one natural choice for Lplaus is the token-level binary
cross-entropy (BCE) criterion:

Lplaus-BCE = −
∑
t

r∗,ti log(Fext(x
t
i)) (7)

Besides BCE loss, we can also consider other criteria like
sequence-level KL divergence and linear loss. See Sec.
A.6.2 for discussion of these and other plausibility criteria.
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3.4. Training and Inference
After setting Fext, Lfaith, and Lplaus, we can move on to train-
ing Ftask and Fext. Since top-k% rationale binarization (Sec.
3.3) is not differentiable, by default, we cannot backprop-
agate Lfaith through all of Fext’s parameters. Thus, Ftask is
trained via Ltask and Lfaith, while Fext is only trained via
Lplaus. This means Fext’s rationales ri are indirectly opti-
mized for faithfulness by regularizing Ftask such that its
behavior aligns with ri. The exception is if we are using the
SLM variant, where encoder fenc is shared by Ftask and Fext.
In this case, fenc is optimized w.r.t. all losses, task head ftask
is optimized w.r.t. Ltask and Lfaith, and extractor head fext
is optimized w.r.t. Lplaus. SLM is a simple way to approxi-
mate end-to-end training of Ftask and Fext. In contrast, past
SPPs have used more complex methods like reinforcement
learning (Lei et al., 2016) and the reparameterization trick
(Bastings et al., 2019), whose training instability has been
shown hurt task performance (Jain et al., 2020).

Now, we summarize the full learning objective. Given that
cross-entropy loss Ltask = LCE(Ftask(xi), y

∗
i ) is used to

train Ftask to predict y∗i , the full learning objective is:

L = Ltask + αfLfaith + αpLplaus

= Ltask + αcLcomp,K + αsLsuff,K + αpLplaus.
(8)

During inference, we use Ftask to predict y∗i , then use Fext
to output ri for Ftask’s predicted label yi.

4. Experiments
We present empirical results showing UNIREX’s effec-
tiveness in trading off faithfulness, plausibility, and task
performance during rationale extractor optimization. First,
our main experiments compare rationale extraction methods
w.r.t. all three desiderata (Sec. 4.3). Second, we perform
various ablation studies to verify our design choices for
UNIREX (Sec. A.3). Third, we present experiments show-
ing UNIREX’s strong data efficiency, w.r.t. limited gold
rationale supervision (Sec. 4.4) and zero-shot faithfulness
transfer (Sec. 4.5). Fourth, to account for the limitations of
gold-rationale-based plausibility evaluation, we conduct a
user study to further demonstrate the improved plausibility
of UNIREX-extracted rationales (Sec. A.5).

4.1. Evaluation Protocol
4.1.1. DATASETS

We primarily experiment with the SST (Socher et al., 2013;
Carton et al., 2020), Movies (Zaidan & Eisner, 2008), CoS-
E (Rajani et al., 2019), MultiRC (Khashabi et al., 2018),
and e-SNLI (Camburu et al., 2018) datasets, all of which
have gold rationale annotations. The latter four datasets
were taken from the ERASER benchmark (DeYoung et al.,
2019). For the zero-shot faithfulness transfer experiments

(Sec. 4.5), we consider five additional datasets, which are
described further in Sec. 4.5.

4.1.2. METRICS

To measure faithfulness, plausibility, and task performance,
we use the metrics from the ERASER benchmark (DeYoung
et al., 2019). For faithfulness, we use comp and suff, for
k = [1, 5, 10, 20, 50] (DeYoung et al., 2019). For plausi-
bility, we use area under precision-recall curve (AUPRC)
and token F1 (TF1) to measure similarity to gold ratio-
nales (DeYoung et al., 2019; Narang et al., 2020). For task
performance, we follow the dataset-specific metrics used
in ERASER: accuracy for SST and CoS-E; macro F1 for
Movies, MultiRC, and e-SNLI (DeYoung et al., 2019). That
is, we only use one task performance metric per dataset.

Normalized Relative Gain (NRG) After computing these
raw metrics for faithfulness, plausibility, and task perfor-
mance, we would like to compare different rationale extrac-
tion methods w.r.t. all three desiderata. However, aggre-
gating the raw metrics across the three desiderata may not
be straightforward. In light of this, we introduce the Nor-
malized Relative Gain (NRG) metric, which is based on the
Average Relative Gain (ARG) metric (Ye et al., 2021). For
each raw metric, NRG transforms all raw scores to normal-
ized scores in [0, 1] (higher is better). After all raw metrics
are in the same [0, 1] space, we can simply aggregate them
via averaging. We formally describe this process below.

For each raw metric (e.g., comp, suff, AUPRC, accuracy),
we are given a set of raw scores Z = {z1, z2, ...}. Each raw
score zi ∈ Z corresponds to a different rationale extraction
method i. NRG(zi) captures zi’s relative gain over the worst
score in Z, normalized w.r.t. score range max(Z)−min(Z).
The definition of “worst score” depends on whether higher
or lower raw scores are better for the given metric. If
higher raw scores are better (e.g., comp, AUPRC, accu-
racy), then the worst score would be min(Z), which yields:
NRG(zi) =

zi−min(Z)
max(Z)−min(Z) . If lower values are better (e.g.,

sufficiency), then the worst score would be max(Z), which
yields: NRG(zi) =

max(Z)−zi
max(Z)−min(Z) .

After computing the individual NRG for each raw metric,
we obtain the desiderata NRG scores by averaging the in-
dividual NRG scores within each desideratum. Let FNRG,
PNRG, and TNRG be the desiderata NRG scores for faithful-
ness, plausibility, and task performance, respectively. FNRG
is the average of the individual NRG scores for comp and
suff; PNRG is the average of the individual NRG scores for
AUPRC and TF1; and TNRG is just the individual NRG
for the task performance metric (since there is only one
task performance metric per dataset). Finally, to summarize
all of the raw metrics as a single score, we compute the
composite NRG (CNRG) by averaging the three desider-
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ata NRG scores: CNRG = FNRG+PNRG+TNRG
3 . By default,

we compute CNRG as an unweighted average of the three
desiderata NRG scores, under the assumption that all three
desiderata are equally important. On the other hand, for
situations where certain desiderata are more important than
others, we can also compute CNRG as a weighted average.

Generally, the computation of NRG should involve globally
aggregating the raw metrics across all available methods,
which is done in the main results (Sec. 4.3). However, for
a number of more focused experiments (Sec. A.3 and 4.5),
only a subset of the available methods are considered. Thus,
for these experiments, we report the raw metrics instead of
NRG (Tables 2 and 1).

4.1.3. RESULTS REPORTING

For all results, we report the average over three seeds and
five k faithfulness thresholds (i.e., k = [1, 5, 10, 20, 50]), a
total of 15 settings. We denote each UNIREX configuration
with a parenthetical “([rationale extractor]-[explainability
objectives])”. For the rationale extractor, AA, DLM,
and SLM denote attribution algorithm, Dual LM, and
Shared LM, respectively. For explainability objectives,
F, P, and FP denote faithfulness, plausibility, and faith-
fulness+plausibility, respectively. For example, DLM-FP
means Dual LM with faithfulness+plausibility objectives.

4.2. Baselines

We consider a wide range of representative rationale ex-
traction baselines, spanning three key categories. Note
that some methods do not assume access to gold rationales,
which prevents such methods from optimizing for plausibil-
ity. This means that not all of the methods are directly com-
parable. Therefore, when comparing methods, we generally
group them by whether they use optimize for plausibility
and only compare methods within the same group.

The first category is vanilla attribution algorithm (AA),
which does not involve training Fext and is applied post hoc
(i.e., they do not impact Ftask’s training). Included baselines
from this category are: Gradient (Grad) (Simonyan et al.,
2013), Input*Gradient (Input*Grad) (Denil et al., 2014),
DeepLIFT (Lundberg & Lee, 2017), and Integrated Gradi-
ents (IG) (Sundararajan et al., 2017). These four baselines
are among the most popular AAs in the explainability litera-
ture (Luo et al., 2021; Pruthi et al., 2020). In the results, we
denote these baselines as “AA ([AA name])”, e.g., AA (IG).

The second category is AA-based training, which uses AAs
in some way to train a learned Fext. One baseline in this
category is L2E (Situ et al., 2021), which distills knowledge
from an AA to an LM-based Fext. Specifically, after training
Ftask, then using an AA to extract rationales for Ftask, L2E
entails training Fext to output rationales that are similar to

the AA’s rationales. Another baseline is SGT (Ismail et al.,
2021), which uses a suff-based criterion to regularize Ftask,
such that the AA yields faithful rationales for Ftask. We
also consider a variant called SGT+P, which augments SGT
with plausibility optimization via gold rationales. For all
baselines in this category, we use IG as the AA.

The third category is select-predict pipeline (SPP), where
Ftask (predictor) only takes input tokens chosen via Fext’s
(selector) rationale output. One baseline in this category
is FRESH (Jain et al., 2020), which trains Ftask and Fext
separately. For FRESH, we use a stronger variant (com-
pared to those in the FRESH paper) where IG rationales
are directly provided to the predictor, rather than output by
a trained Fext. Another baseline is A2R (Yu et al., 2021),
a recently proposed SPP which aims to improve Ftask’s
task performance by regularizing Ftask with an attention-
based predictor that uses the full input. Also, we introduce
FRESH+P and A2R+P, which respectively augment FRESH
and A2R with plausibility optimization.

4.3. Main Results

Figs. 3-7 display the main results, in terms of NRG. For
conciseness, we omit AA (Grad), AA (Input*Grad), and AA
(DeepLIFT) results from these NRG figures, since AA (IG)
is representative of vanilla AA methods. Please refer to Sec.
A.11 for all raw and NRG empirical results.

In Figs. 3-4, we use CNRG to compare rationale extrac-
tion methods for each dataset. Here, the Dataset Mean
group reports the mean CNRG across all datasets. First, Fig.
3 compares methods that do not optimize for plausibility
(since they do not have access to gold rationales). Overall,
we find that UNIREX (AA-F) achieves the best CNRG on
Dataset Mean (and on all datasets except Movies), showing
the effectiveness of UNIREX’s faithfulness optimization.
On Dataset Mean, UNIREX (AA-F) beats the strongest
baseline (i.e., SGT) by 9.2%. Second, Fig. 4 compares
methods that do optimize for plausibility. Overall, we find
that UNIREX (SLM-FP) and UNIREX (DLM-FP) achieve
the best CNRG – both beating the strongest baseline (i.e.,
A2R+P) by over 30% on Dataset Mean – demonstrating
UNIREX’s ability to jointly optimize Ftask and Fext for all
three desiderata. Meanwhile, UNIREX (DLM-P) performs
slightly worse but still significantly better than all baselines,
showing the effectiveness of UNIREX’s plausibility opti-
mization.

Fig. 7 compares rationale extraction methods w.r.t. the
desiderata NRG, averaged over all datasets. First, Fig. 7
(left) compares rationale extraction methods without plau-
sibility optimization, so PNRG is low for all methods here.
Here, we see that UNIREX (AA-F)’s FNRG is highest,
while its TNRG is close to highest. As shown in Fig.
3, UNIREX (AA-F) achieves the best composite NRG



UNIREX: A Unified Learning Framework for Language Model Rationale Extraction

Figure 3: Composite NRG Comparison (w/o Plausibility Optimization). The composite NRG (CNRG) is the mean of the three
desiderata NRG scores. For each dataset, we use CNRG to compare rationale extraction methods that do not optimize for plausibility.
Overall, UNIREX (AA-F) achieves the best CNRG on Dataset Mean (and on all datasets except Movies), showing the effectiveness of
UNIREX’s faithfulness optimization. On Dataset Mean, UNIREX (AA-F) beats the strongest baseline (i.e., SGT) by 9.2%.

(CNRG) because UNIREX training enables effective bal-
ancing of faithfulness and task performance. On the other
hand, baselines with high FNRG (i.e., FRESH, A2R) have
low TNRG, while baselines with high TNRG (i.e., AA
(IG), L2E, SGT) have low FNRG. Second, Fig. 7 (right)
compares rationale extraction methods with plausibility op-
timization. Here, we see that UNIREX (DLM-FP) and
UNIREX (SLM-FP) have moderate FNRG, but the highest
(or near-highest) PNRG and TNRG. Meanwhile, UNIREX
(DLM-P) achieves the highest PNRG and TNRG, but the
worst FNRG, since UNIREX (DLM-P) does not optimize
for faithfulness. As shown in Fig. 4, UNIREX (DLM-FP)
and UNIREX (SLM-FP) achieve the best CNRG because
UNIREX training enables effective balancing of faithful-
ness and task performance. Meanwhile, baselines with high
FNRG (i.e., FRESH+P, A2R+P) have low TNRG, while
baselines with high TNRG (i.e., SGT+P) have low PNRG.

4.4. Gold Rationale Efficiency
UNIREX supports arbitrary amounts of gold rationale su-
pervision, allowing plausibility optimization even in low-
resource settings. In Fig. 5, we compare plausibility (w.r.t.
AUPRC) for γ = [0.5, 1, 5, 10, 20, 100] (i.e., % of train in-
stances with gold rationales). We compare AA (IG) and
four UNIREX variants (AA-F, AA-FP, DLM-FP, SLM-FP),
with standard deviation shown by the error bands. First, AA
(IG) and UNIREX (AA-F) do not optimize for plausibility
via gold rationales, so their low AUPRC scores are con-
stant for all γ. Second, UNIREX (AA-FP)’s AUPRC varies
directly with γ at a modest rate, but is still always lower

than AA (IG)’s and UNIREX (AA-F)’s AUPRC. UNIREX
(AA-FP)’s plausibility optimization is not effective, since
plausibility optimization (i.e., learning to generate human-
like rationales) typically requires high learning capacity, yet
AAs do not have any learnable parameters. Third, UNIREX
(DLM-FP) and UNIREX (SLM-FP) dominate across all
γ values, with AUPRC slowly decreasing as γ decreases.
Even at γ = 0.5, they can still achieve high AUPRC scores
of around 0.75. This suggests that UNIREX’s gold ratio-
nale batching procedure (Sec. A.4) is helpful for learning
from minimal gold rationale supervision, thus enabling ef-
fective plausibility optimization. In addition to these results
on SST, see Fig. 8 for similar results on CoS-E.

4.5. Zero-Shot Faithfulness Transfer

In Table 1, we investigate if Fext’s faithfulness, obtained
via UNIREX training on some source (seen) dataset, can
generalize to target (unseen) datasets/tasks in a zero-shot
setting (i.e., no fine-tuning on target datasets/tasks). In this
experiment, we consider SST and sentiment analysis as the
source dataset and task, respectively. We compare six meth-
ods: AA (IG), AA-F (Rand), UNIREX (AA-F), UNIREX
(DLM-P), UNIREX (DLM-FP), and UNIREX (SLM-FP).
For AA (IG), only Ftask is trained on SST, since its Fext is
heuristic. Meanwhile, for the UNIREX variants, both Ftask
and Fext are trained on SST. First, as an in-domain reference
point, we report faithfulness and task performance on SST.
Second, we evaluate on unseen target datasets for a seen
task (i.e., sentiment analysis): Yelp (Zhang et al., 2015) and
Amazon (McAuley & Leskovec, 2013). Third, we evaluate
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Figure 4: Composite NRG Comparison (w/ Plausibility Optimization). The composite NRG (CNRG) is the mean of the three
desiderata NRG scores. For each dataset, we use CNRG to compare rationale extraction methods that do optimize for plausibility. Overall,
UNIREX (SLM-FP) and UNIREX (DLM-FP) achieve the best CNRG – both beating the strongest baseline (i.e., A2R+P) by over 30%
on Dataset Mean – demonstrating UNIREX’s ability to jointly optimize Ftask and Fext for all three desiderata.

Figure 5: Gold Rationale Efficiency on SST.

on unseen target datasets for unseen target tasks: Storm-
front (hate speech detection, binary F1) (de Gibert et al.,
2018), OffenseEval (offensive speech detection, macro F1)
(Zampieri et al., 2019), and SemEval2018 (irony detection,
binary F1) (Van Hee et al., 2018).

We want to show that, even if Ftask yields poor task per-
formance on unseen datasets, Fext’s rationales can still be
faithful. As expected, all methods achieve much lower task
performance in the third setting than in the first two settings.
However, faithfulness does not appear to be strongly cor-
related with task performance, as unseen tasks’ comp/suff
scores are similar to seen tasks’. Across all datasets, DLM-

FP has the best faithfulness and is the only method whose
comp is always higher than suff. The other UNIREX vari-
ants are not as consistently strong as DLM-FP, but almost al-
ways beat non-UNIREX methods on comp and suff. Mean-
while, AA (IG) has the worst comp and suff overall. Ulti-
mately, these results suggest that UNIREX-trained models’
faithfulness (i.e., alignment between Ftask’s and Fext’s out-
puts) is a dataset/task agnostic property (i.e., can generalize
across datasets/tasks), further establishing UNIREX’s util-
ity in low-resource settings.
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A. Appendix
A.1. Related Work

Faithfulness Many prior works have tried to improve the
faithfulness of extractive rationales through the use of AAs
(Bastings & Filippova, 2020). Typically, this involves de-
signing gradient-based (Sundararajan et al., 2017; Denil
et al., 2014; Lundberg & Lee, 2017; Li et al., 2015) or
perturbation-based (Li et al., 2016; Poerner et al., 2018;
Kádár et al., 2017) AAs. However, attribution algorithms
cannot be optimized and tend to be compute-intensive (often
requiring multiple LM forward/backward passes). Recently,
Ismail et al. (2021) addressed the optimization issue by reg-
ularizing the task model to yield faithful rationales via the
AA, while other works (Situ et al., 2021; Schwarzenberg
et al., 2021) addressed the compute cost issue by training
an LM (requiring only one forward pass) to mimic an AA’s
behavior. Another line of work aims to produce faithful
rationales by construction, via SPPs (Jain et al., 2020; Yu
et al., 2021; Paranjape et al., 2020; Bastings et al., 2019; Yu
et al., 2019; Lei et al., 2016). Still, SPPs’ faithfulness can
only guarantee sufficiency – not comprehensiveness (DeY-
oung et al., 2019). Also, SPPs generally perform worse than
vanilla LMs because they hide much of the original text
input from the predictor and are hard to train end-to-end.

Plausibility Existing approaches for improving extrac-
tive rationale plausibility typically involve supervising LM-
based extractors (Bhat et al., 2021) or SPPs (Jain et al.,
2020; Paranjape et al., 2020; DeYoung et al., 2019) with
gold rationales. However, existing LM-based extractors
have not been trained for faithfulness, while SPPs’ faith-
fulness by construction comes at the great cost of task per-
formance. Meanwhile, more existing works focus on im-
proving the plausibility of free-text rationales (Narang et al.,
2020; Lakhotia et al., 2020; Camburu et al., 2018), often
with task-specific pipelines (Rajani et al., 2019; Kumar &
Talukdar, 2020).

Connection to UNIREX Unlike prior works, UNIREX
enables both the task model and rationale extractor to be
jointly optimized for faithfulness, plausibility, and task per-
formance. As a result, UNIREX-trained rationale extrac-
tors achieve a better balance of faithfulness and plausibility,
without compromising the task model’s performance. Also,
by using a learned rationale extractor, which generally only
requires one model forward pass, UNIREX does not have
the computational expenses that limit many AAs.

A.2. Text Classification

Here, we formalize the text classification problem in more
detail. Let D = {X ,Y}Ni=1 be a dataset, where X =
{xi}Ni=1 are the text inputs, Y = {y∗i }Ni=1 are the labels,
and N is the number of instances (xi, y

∗
i ) in D. We also as-
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Figure 6: Rationale Extractor Types. In general, rationale extractor Lext can be either heuristic or learned. A heuristic Lext is a
handcrafted attribution algorithm, which cannot be trained (Sec. 3.2.1). By default, UNIREX uses a learned Lext, which can be
optimized for faithfulness, plausibility, and task performance. For learned Lext, we focus on two architectures (w.r.t. task model Ltask):
Dual LM designs Ltask and Lext as two fully separate LMs, while Shared LM designs Ltask and Lext to share the same text encoder
(Sec. 3.2.2). Although some operations within UNIREX are non-differentiable, Shared LM’s shared encoder allows us to approximate
end-to-end training of both models w.r.t. all three desiderata (Sec. 3.4, Fig. 2).

sume D can be partitioned into train set Dtrain, dev set Ddev,
and test set Dtest. Let Ftask = ftask(fenc(·)) be a task LM,
where fenc is the text encoder, and ftask is the task output
head. Typically, Ftask has a BERT-style architecture (Devlin
et al., 2018), in which fenc is a Transformer (Vaswani et al.,
2017) while ftask is a linear layer. Below, we define the se-
quence classification (SST, Movies, MultiRC, e-SNLI) and
multi-choice QA (CoS-E) tasks, which are different types
of text classification.

Sequence Classification In sequence classification, xi is a
token sequence (e.g., a single sentence, a pair of sentences),
while y∗i is the target class for xi. Here, we assume a
fixed label space Y = {1, ...,M} of size M , where y∗i ∈
Y for all i. Thus, ftask outputs a vector of size M , such
that Ftask(xi) = ftask(fenc(xi)) = ŷi ∈ RM is the logit
vector used to classify xi. Given ŷi = [ŷi,j ]

M
j=1, let yi =

argmax j ŷi,j be the class predicted by Ftask. The goal of
sequence classification is to learn Ftask such that y∗i = yi,
for all (xi, y

∗
i ) (Minaee et al., 2021).

Multi-Choice QA Instead of a fixed label space, multi-
choice QA has a different (but fixed-size) set of answer
choices per instance. For instance i, let qi be the question
(e.g., “A friend is greeting me, what would they say?”) and
Ai = {ai,j}Mj=1 be the corresponding answer choices (e.g.,
{“say hello”, “greet”, “associate”, “socialize”, “smile”}),

where M is now the number of answer choices. Define
xi,j = qi ⊕ ai,j , where ⊕ denotes concatenation. In multi-
choice QA, we have xi = {xi,j}Mj=1, while y∗i ∈ Ai is the
correct answer for xi. Thus, ftask outputs a scalar, such that
Ftask(xi,j) = ftask(fenc(xi,j)) = ŷi,j ∈ R is the logit for
xi,j . Given ŷi = [ŷi,j ]

M
j=1, let j′ = argmax j ŷi,j , where

yi = ai,j′ is the answer predicted by Ftask. The goal of
multi-choice QA is to learn Ftask such that y∗i = yi, for all
(xi, y

∗
i ) (Talmor et al., 2018).

A.3. Ablation Studies
We present five ablation studies to validate the effectiveness
of our UNIREX design choices. The results of these ab-
lation studies are displayed in Table 2, where each of the
five sections contains results for a different ablation. Thus,
all numbers within the same section (ablation) and column
(metric) are comparable.

Extractor Type (F) In the Ext Type (F) section, we com-
pare four heuristic rationale extractors, using AA-F. In this
case, besides task performance, we can only optimize (the
task model) for faithfulness. Rand uses random importance
scores, Gold directly uses the gold rationales, Inv uses the
inverse of the gold rationales, and IG uses IG rationales. All
heuristics yield similar task performance, but IG dominates
on all faithfulness metrics. This makes sense because IG is
computed using Ftask’s inputs/parameters/outputs, while the
others do not have this information. For plausibility, Gold
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Figure 7: Desiderata NRG Comparison. For each rationale extraction method, we show the desiderata NRG for faithfulness (FNRG),
plausibility (PNRG), and task performance (TNRG), averaged over all datasets. Left: This plot compares methods without plausibility
optimization. UNIREX (AA-F)’s FNRG is highest, while its TNRG is close to highest. Meanwhile, baselines with high FNRG (i.e.,
FRESH, A2R) have low TNRG, while baselines with high TNRG (i.e., AA (IG), L2E, SGT) have low FNRG. Right: This plot compares
methods with plausibility optimization. UNIREX (DLM-FP) and UNIREX (SLM-FP) have moderate FNRG, but the highest (or
near-highest) PNRG and TNRG. Meanwhile, baselines with high FNRG (i.e., FRESH+P, A2R+P) have low TNRG, while baselines with
high TNRG (i.e., SGT+P) have low PNRG.

is the best, Inv is the worst, and Rand and IG are about the
same, as none of the heuristics are optimized for plausibility.

Extractor Type (P) In the Ext Type (FP) section, we com-
pare four learned rationale extractors. In this case, besides
task performance, we can optimize for both faithfulness and
plausibility. By default, attribution algorithms’ dimension
scores are pooled into token scores via sum pooling. AA-FP
(Sum) uses IG with sum pooling, while AA-FP (MLP) re-
places the sum pooler with a MLP-based pooler to increase
capacity for plausibility optimization. Task performance
for all four methods is similar, AA-FP (Sum) dominates
on faithfulness, and DLM-FP and SLM-FP dominate on
plausibility. AA-FP (MLP) does not perform as well on
faithfulness but slightly improves on plausibility compared
to AA-FP (Sum).

Comp/Suff Losses The Comp/Suff Loss section compares
different combinations of Comp and Suff losses, using SLM-
FP. Note that SLM-FP (Comp+Suff) is equivalent to SLM-
FP shown in other tables/sections. As expected, SLM-FP
(Comp) does best on Comp, but SLM-FP (Comp+Suff)
actually does best on Suff. Meanwhile, SLM-FP, (Suff) does
second-best on Suff but is much worse on Comp. This shows
that Comp and Suff are complementary for optimization.

Suff Criterion The Suff Criterion section compares differ-
ent Suff criteria, using SLM-FP. SLM-FP (KLDiv) uses the
KL divergence criterion, SLM-FP (MAE) uses the MAE cri-
terion, and SLM-FP (Margin) uses the margin criterion.

SLM-FP (Margin) is equivalent to SLM-FP in other ta-
bles/sections. All criteria yield similar performance and
plausibility, while Margin is slightly better on faithfulness.

SLM Extractor Head The SLM Ext Head section com-
pares different extractor heads, using SLM-FP. Linear is the
default choice and uses a linear layer. MLP-2048-2 uses a
MLP with two 2048-dim hidden layers. MLP-4096-3 uses
a MLP with three 4096-dim hidden layers. All three output
head types yield similar performance, but decreasing head
capacity yields better faithfulness, while increasing head
capacity heads yields better plausibility. This trades off
faithfulness and plausibility, although larger heads will be
more compute-intensive.

A.4. Gold Rationale Supervision

If a learned rationale extractor is chosen, UNIREX enables
users to specify how much gold rationale supervision to
use. Ideally, each train instance would be annotated with a
gold rationale. In this case, we could directly minimize the
plausibility loss for each train instance. However, since gold
rationales can be expensive to annotate, UNIREX provides
a special batching procedure for training with limited gold
rationale supervision.

Given Ntrain = |Dtrain| train instances, let 0 < γ < 100
be the percentage of train instances with gold rationales,
Ngold = ⌈ γ

100Ntrain⌉ ≥ 1 be the number of train instances
with gold rationales, b be the desired train batch size, and



UNIREX: A Unified Learning Framework for Language Model Rationale Extraction

β > 1 be a scaling factor. Define Dgold ⊆ Dtrain as the set of
train instances with gold rationales, where |Dgold| = Ngold.
Note that, if all train instances have gold rationales, then
Dgold = Dtrain and γ = 100.

Each batch is constructed as follows: (1) randomly sample
bgold = max(1, b

β ) instances from Dgold without replace-
ment, then (2) randomly sample b − bgold instances from
Dtrain\Dgold without replacement. This results in a batch
with b total train instances, bgold with gold rationales and the
rest without. Since Ngold is generally small, we only sample
from Dgold without replacement for a given batch, but not a
given epoch. Thus, instances from Dgold may appear more
than once in the same epoch. However, we do sample from
Dtrain\Dgold without replacement for each batch and epoch,
so every instance in Dtrain\Dgold appears exactly once per
epoch.

After constructing the batch, we compute the plausibil-
ity loss for the batch as follows:

∑b
i=1 1(xi,y∗

i )∈Dgold

Lplaus(Fext(xi), r∗i ), where Lplaus is the plausibility loss for
train instance (xi, y∗i ). This function zeroes out the plau-
sibility loss for instances without gold rationales, so that
plausibility is only being optimized with respect to instances
with gold rationales. However, in Sec. 4.4, we show that it is
possible to achieve high plausibility via rationale extractors
trained on minimal gold rationale supervision.

A.5. Plausibility User Study

Gold rationale based plausibility evaluation is noisy because
gold rationales are for the target label, not a Ftask’s predicted
label. Thus, we conduct two five-annotator user studies
(Table 3) to get a better plausibility measurement. Given
50 random test instances from SST, we get the rationales
for SGT+P, A2R+P, UNIREX (AA-FP), and UNIREX
(DLM-FP), plus the gold rationales. For each instance, we
threshold all rationales to have the same number of positive
tokens as the gold rationale. The first user study is forward
simulation (Hase & Bansal, 2020; Jain et al., 2020). Here,
the annotator is given an input and a rationale for some
model’s prediction, then asked what (binary) sentiment la-
bel the model most likely predicted. For forward simulation,
we also consider a No Rationale baseline, where no to-
kens are highlighted. For No Rationale and Gold (which
we call “oracle methods”), the target label is the correct
choice. Annotators are also asked to rate their confidence
(4-point Likert scale) in their answer to this question. The
second user study involves giving a subjective rating of how
plausible the rationale is (Hase & Bansal, 2020). Here, the
annotator is given the input, rationale, and model’s predicted
label, then asked to rate (5-point Likert scale) how aligned
the rationale is with the prediction.

In both accuracy and subjective rating, we find that DLM-
FP performs best among all non-oracle methods and even

slightly beats Gold on accuracy, further supporting our claim
that DLM-FP rationales are plausible. As expected, the fact
that Gold does not achieve near-100% accuracy shows the
discrepancy between evaluating plausibility based on the tar-
get label (i.e., gold rationale similarity) and Ftask’s predicted
label (forward simulation). Meanwhile, SGT+P and AA-FP,
which had lower AUPRC and TF1 in our automatic evalua-
tion, also do worse in accuracy and alignment. Also, users
found SGT+P and AA-FP rationales harder to understand,
as shown by their lower confidence scores. Meanwhile,
A2R+P had high AUPRC and TF1, but gets very low accu-
racy and alignment because A2R+P’s predicted label was
often not the target label, leading to misalignment with its
gold-like rationale. Nonetheless, users were still most confi-
dent in their predictions using A2R+P’s rationales. A2R+P
is a great example of how automatic plausibility evaluation
can be misleading. For the accuracy, confidence, and align-
ment questions, we achieved Fleiss’ Kappa (Fleiss, 1971)
inter-annotator agreement scores of 0.2456 (fair), 0.1282
(slight), and, 0.1561 (slight), respectively. This lack of
agreement demonstrates the difficulty of measuring ratio-
nale plausibility.

A.6. Explainability Objectives

A.6.1. FAITHFULNESS

Sufficiency In addition, to the criteria presented in Sec.
3.3, we consider two other sufficiency loss functions.
The first is the KL divergence criterion used in (Ismail
et al., 2021), which considers the entire label distribution
and is defined as Lsuff-KL = KL(Ftask(r

(k)
i )) || Ftask(xi)).

The second is the mean absolute error (MAE) criterion,
which is defined as Lsuff-MAE = |LCE(Ftask(r

(k)
i )), y∗i ) −

LCE(Ftask(xi), y∗i )|. Unlike the difference criterion Lsuff-diff
and margin criterion Lsuff-margin (Sec. 3.3), the MAE crite-
rion assumes that using r

(k)
i as input should not yield better

task performance than using xi as input. In our experiments,
we find that Lsuff-margin is effective, though others (e.g., KL
divergence, MAE) can be used too.

A.6.2. PLAUSIBILITY

Similar to faithfulness, UNIREX places no restrictions
on the choice of plausibility objective. As described in
Sec. 3.3, given gold rationale r∗i for input xi, plausibility
optimization entails training Fext to predict binary impor-
tance label r∗,ti for each token xt

i. This is essentially bi-
nary token classification, so one natural choice for Lplaus
is the token-level binary cross-entropy (BCE) criterion:
Lplaus-BCE = −

∑
t r

∗,t
i log(Fext(x

t
i)) (Sec. 3.3). Another

option is the sequence-level KL divergence criterion, which
is defined as: Lplaus-KL = KL(Fext(xi) || r∗i ).

Additionally, we can directly penalize Fext(xi) in the
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Figure 8: Gold Rationale Efficiency on CoS-E.

logit space via a linear loss, defined as: Lplaus-linear =
Φ(r∗i ) Fext(xi), where Φ(u) = −2u + 1 maps positive
and negative tokens to −1 and +1, respectively. The lin-
ear loss directly pushes the logits corresponding to pos-
itive/negative tokens to be higher/lower and increase the
margin between them. To prevent linear loss values from
becoming arbitrarily negative, we can also lower bound
the loss with a margin mp, yielding: Lplaus-linear-margin =
max(−mp,Lplaus-linear) +mp.

A.7. Implementation Details

For the LM architecture of Ftask and Fext, we use BigBird-
Base (Zaheer et al., 2020) in all our experiments, in order
to handle input sequences with up to 4096 tokens. For
all AA-based methods besides vanilla AA, we use the IG
(Sundararajan et al., 2017) AA, which has been commonly
adopted in the explainability literature (Pruthi et al., 2020;
Sanyal & Ren, 2021; Ismail et al., 2021). By default,
IG requires 50 steps (i.e., backward passes) per instance
(Kokhlikyan et al., 2020), which is prohibitive when regu-
larizing the LM via IG, so we use 3 steps in both training
and evaluation. For all experiments, we use a learning rate
of 2e−5 and effective batch size of 32. We train for a maxi-
mum of 10 epochs, with early stopping patience of 5 epochs.
We only tune faithfulness and plausibility loss weights,
sweeping αc = [0.5, 0.7, 1.0], αs = [0.5, 0.7, 1.0], and
αp = [0.5, 0.7, 1.0]. We find that αc = 0.5 and αs = 0.5
are usually best. For each method variant, we tuned hyperpa-
rameters w.r.t. dev CNRG, computed across all hyperparam-
eter configurations for the variant. For the batching factor
β (Sec. A.4), we use 2. All experiments are implemented
using PyTorch-Lightning (Paszke et al., 2019; Falcon & The
PyTorch Lightning team, 2019).

A.8. Gold Rationale Efficiency

Fig. 8 shows the gold rationale data efficiency results for
CoS-E, using the same setup as Sec. 4.4. Overall, we see
that the CoS-E results are quite similar to the SST results.
Again, UNIREX (DLM-FP) and UNIREX (SLM-FP) dom-
inate across all γ values, with AUPRC slowly decreasing
as γ decreases. Interestingly, UNIREX (AA-FP) yields a
noticeable dip in AUPRC for lower γ values. Since AA-FP
has limited capacity (via the task model) for plausibility
optimization, it is possible that this fluctuation is due to
random noise. We leave further analysis of this for future
work.

A.9. Compute Efficiency

Besides faithfulness, plausibility, and task performance,
compute efficiency is also an important desideratum of ratio-
nale extraction. With that in mind, the number of IG steps
is a critical design choice. A higher number of IG steps
means a more accurate IG approximation, which should
may yield more faithful rationales. On the other hand, a
higher number of IG steps means greater computational
costs. As stated in Sec. A.7, we use 3-step IG in all of
our experiments, in order to make all methods computa-
tionally comparable. 3-step IG requires three backward
passes, while all other compared methods require either
one forward pass or one backward pass. We would like
to empirically characterize this trade-off between faithful-
ness and compute efficiency. Thus, we compare IG perfor-
mance for η = [3, 5, 10, 30, 50, 70, 100, 500, 1000] steps,
denoted as AA (IG-η). In Table 4, we report faithfulness,
plausibility, task performance, convergence delta (i.e., IG
approximation error), and inference time for each IG-based
method. Additionally, we compare these IG settings to
UNIREX (AA-F) (which uses 3-step IG), UNIREX (DLM-
FP), and UNIREX (SLM-FP). Since UNIREX (DLM-FP)
and UNIREX (SLM-FP) are not IG-based, we do not report
convergence delta for them.

As expected, we find that convergence delta decreases as η
increases. Furthermore, AA (IG) faithfulness scores gen-
erally improve as η increases, although the improvement
begins to saturate at around η = 50. Similarly, we find that
AA (IG) plausibility scores for IG also tend to improve as
η increases, with the improvement also saturating around
η = 50. This makes sense because plausibility optimiza-
tion involves regularizing the task model to yield rationales
that are similar to gold rationales, but this regularization is
less effective if the yielded rationales are less faithful to the
task model. However, despite these faithfulness and plausi-
bility improvements, we see that inference time increases
roughly linearly w.r.t. η. In particular, AA (IG-1000) is
over 200 times slower than AA (IG-3). Meanwhile, despite
only using 3-step IG, UNIREX (AA-F) beats all AA (IG)
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variants on faithfulness, while achieving similar plausibility
to AA (IG-3). On the other hand, UNIREX (DLM-FP) and
UNIREX (SLM-FP) achieve the best faithfulness, while
also achieving the best plausibility and inference time by
far, without sacrificing task performance. Both UNIREX
(DLM-FP) and UNIREX (SLM-FP) are over 2000 times
faster than AA (IG-1000) and over nine times faster than
AA (IG-3). These results show that UNIREX (esp. using
learned rationale extractor) is an effective framework for
jointly optimizing rationale extraction for faithfulness, plau-
sibility, and task performance, while also achieving high
compute efficiency.

A.10. Qualitative Analysis

In Sec. A.5, we presented a user study of fifty SST test
instances to further evaluate the plausibility of rationales
produced by various methods. To get additional insights
about rationale plausibility, we conduct qualitative analysis
of selected instances from the user study. In Table 5, for
each selected instance and a given method, we show the
method’s rationale, Ftask’s corresponding prediction, and
the user-annotated alignment score for the rationale w.r.t. the
prediction. We consider two groups of selected instances.

First, we select the top-3 instances w.r.t. mean alignment
score (across five annotators), averaged over all methods
(i.e., Instances 30, 41, and 35). Not surprisingly, we find
that Ftask’s prediction is very consistent across all methods.
For these three instances, all of the predicted labels happen
to be both positive and correct (i.e., same as gold label).
Similarly, the rationales are also rather consistent across
methods. In particular, A2R+P, UNIREX (DLM-FP), and
Gold consistently yield the highest alignment scores. In
Instance 30, these three methods plausibly highlight “good”
and “actress”. In Instance 41, these three methods plausi-
bly highlight “understands”, “medium”, “amazingly”, and
“well”. In Instance 35, these three methods plausibly high-
light “admirable” and “achievement”. Of course, this is ex-
pected for Gold, since gold rationales are human-annotated
w.r.t. the gold label. The high alignment scores for A2R+P
and UNIREX (DLM-FP) also make sense since A2R+P
and UNIREX (DLM-FP) yielded high PNRG (Fig. 7).

Second, we select the top-3 instances w.r.t. standard devi-
ation (std) alignment score (across five annotators), aver-
aged over all methods (i.e., Instances 9, 12, 19). This time,
there is greater variance in the per-instance alignment scores
across methods. For these three instances, the negative
label is predicted by all methods except A2R+P. Like be-
fore, UNIREX (DLM-FP) and Gold consistently yield the
highest alignment scores. In Instance 9, these two methods
plausibly highlight “bad” and “ridiculous”. In Instance 12,
these two methods plausibly highlight “avoid”. In Instance
19, these two methods plausibly highlight “lameness” and

“bad”. However, this time, A2R+P consistently yields the
lowest alignment scores. Even though A2R+P produces ra-
tionales that are similar to those of UNIREX (DLM-FP) and
Gold (i.e., aligning with the gold label), A2R+P’s rationales
do not support A2R+P’s predicted label. This illustrates
the limitation of automatically evaluating plausibility via
gold rationale similarity, as A2R+P achieved high PNRG.
Meanwhile, we see that UNIREX (DLM-FP) consistently
yields the highest plausibility across various types of eval-
uation (i.e., gold rationale similarity, forward simulation,
subjective rating).

A.11. Additional Empirical Results

In this subsection, we present additional results from our
experiments. Besides the aggregated results shown in Sec.
4 of the main text, Tables 6-12 contain more detailed results,
using both raw and NRG metrics. Specifically, Tables 6-
10 show all raw/NRG results for each dataset, Table 11
shows the ablation results for all raw metrics, and Table
12 includes the zero-shot explainability transfer results for
UNIREX (SLM-FP). Generally, the computation of NRG
should involve globally aggregating the raw metrics for all
available methods, as done in the main results. However, for
a number of more focused experiments (Tables 11-12), only
a subset of the available methods are considered. Thus, to
make the faithfulness results in Tables 11-12 easier to digest,
we introduce a metric called Comp-Suff Difference (CSD),
which locally aggregates comp and suff as: CSD = comp−
suff. Therefore, since higher/lower comp/suff signal higher
faithfulness, then higher CSD signals higher faithfulness.
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Task Dataset Method Faithfulness Task Performance

CSD (↑) Comp (↑) Suff (↓) Perf (↑)

SA

SST

AA (IG) -0.138 (±0.040) 0.119 (±0.009) 0.258 (±0.031) 93.81 (±0.55)
AA-F (Rand) -0.156 (±0.018) 0.171 (±0.040) 0.327 (±0.050) 94.05 (±0.35)

UNIREX (AA-F) 0.120 (±0.055) 0.292 (±0.051) 0.171 (±0.038) 92.97 (±0.44)
UNIREX (DLM-P) -0.113 (±0.040) 0.142 (±0.008) 0.255 (±0.007) 94.86 (±0.41)

UNIREX (DLM-FP) 0.151 (±0.056) 0.319 (±0.090) 0.167 (±0.036) 93.81 (±0.54)
UNIREX (SLM-FP) 0.189 (±0.030) 0.302 (±0.039) 0.113 (±0.013) 93.68 (±0.67)

Yelp

AA (IG) -0.149 (±0.028) 0.069 (±0.004) 0.219 (±0.028) 92.50 (±2.07)
AA-F (Rand) -0.177 (±0.056) 0.127 (±0.022) 0.305 (±0.060) 86.27 (±7.88)

UNIREX (AA-F) 0.013 (±0.036) 0.138 (±0.078) 0.126 (±0.059) 83.93 (±13.20)
UNIREX (DLM-P) -0.004 (±0.028) 0.138 (±0.009) 0.143 (±0.023) 93.33 (±0.90)

UNIREX (DLM-FP) 0.169 (±0.060) 0.265 (±0.094) 0.097 (±0.033) 92.37 (±0.46)
UNIREX (SLM-FP) 0.114 (±0.056) 0.175 (±0.055) 0.060 (±0.001) 86.60 (±1.57)

Amazon

AA (IG) -0.148 (±0.038) 0.076 (±0.010) 0.224 (±0.037) 91.13 (±0.28)
AA-F (Rand) -0.166 (±0.035) 0.120 (±0.021) 0.286 (±0.035) 81.52 (±6.95)

UNIREX (AA-F) 0.057 (±0.106) 0.130 (±0.077) 0.073 (±0.039) 77.90 (±13.12)
UNIREX (DLM-P) -0.017 (±0.027) 0.142 (±0.001) 0.158 (±0.026) 90.92 (±0.93)

UNIREX (DLM-FP) 0.133 (±0.039) 0.232 (±0.072) 0.098 (±0.033) 89.35 (±2.22)
UNIREX (SLM-FP) 0.097 (±0.027) 0.147 (±0.012) 0.050 (±0.017) 81.82 (±7.62)

HSD Stormfront

AA (IG) -0.109 (±0.053) 0.135 (±0.010) 0.245 (±0.059) 10.48 (±1.66)
AA-F (Rand) -0.147 (±0.021) 0.150 (±0.020) 0.297 (±0.005) 10.66 (±2.86)

UNIREX (AA-F) 0.127 (±0.015) 0.219 (±0.009) 0.092 (±0.025) 10.36 (±1.94)
UNIREX (DLM-P) -0.125 (±0.092) 0.122 (±0.008) 0.246 (±0.099) 10.10 (±1.73)

UNIREX (DLM-FP) 0.052 (±0.027) 0.167 (±0.084) 0.115 (±0.059) 10.37 (±2.66)
UNIREX (SLM-FP) 0.049 (±0.041) 0.110 (±0.039) 0.062 (±0.043) 4.51 (±1.87)

OSD OffenseEval

AA (IG) -0.146 (±0.044) 0.097 (±0.009) 0.244 (±0.052) 33.51 (±0.99)
AA (Rand) -0.148 (±0.046) 0.101 (±0.020) 0.249 (±0.065) 34.08 (±2.34)

UNIREX (AA-F) -0.029 (±0.040) 0.074 (±0.040) 0.102 (±0.024) 32.62 (±4.85)
UNIREX (DLM-P) -0.102 (±0.073) 0.112 (±0.010) 0.214 (±0.081) 33.67 (±1.01)

UNIREX (DLM-FP) 0.053 (±0.012) 0.140 (±0.049) 0.087 (±0.045) 35.52 (±1.26)
UNIREX (SLM-FP) 0.039 (±0.031) 0.087 (±0.016) 0.048 (±0.024) 38.17 (±0.96)

ID SemEval2018

AA (IG) -0.120 (±0.061) 0.128 (±0.014) 0.248 (±0.064) 29.63 (±4.72)
AA-F (Rand) -0.133 (±0.043) 0.124 (±0.013) 0.258 (±0.053) 32.39 (±9.73)

UNIREX (AA-F) -0.028 (±0.051) 0.069 (±0.041) 0.096 (±0.011) 49.95 (±8.31)
UNIREX (DLM-P) -0.112 (±0.095) 0.140 (±0.017) 0.252 (±0.112) 27.78 (±5.08)

UNIREX (DLM-FP) 0.047 (±0.017) 0.149 (±0.052) 0.102 (±0.053) 31.97 (±2.80)
UNIREX (SLM-FP) 0.027 (±0.047) 0.091 (±0.027) 0.064 (±0.033) 17.42 (±4.04)

Table 1: Zero-Shot Faithfulness Transfer from SST. We investigate whether the faithfulness of UNIREX rationale extractors (AA-F,
DLM-FP) trained on SST can generalize to unseen datasets/tasks, even when the task model’s task performance cannot. Also, we include
AA (IG) as a heuristic extractor baseline (i.e., only the task model is trained). Here, the seen task is sentiment analysis (SA), while the
unseen tasks are hate speech detection (HSD), offensive speech detection (OSD), and irony detection (ID). For SA, the unseen datasets are
Yelp and Amazon. For HSD, OSD, and ID, the unseen datasets are Stormfront, OffenseEval, and SemEval2018, respectively. Overall, we
find that faithfulness is not strongly correlated with task performance, as unseen tasks’ comp/suff scores are similar to seen tasks’. In
particular, though all methods achieve poor task performance on unseen tasks, UNIREX (DLM-FP)’s comp/suff scores are consistently
good across all tasks, demonstrating its faithfulness generalization ability.
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Ablation UNIREX Config Faithfulness Plausibility Performance

Comp (↑) Suff (↓) AUPRC (↑) Acc (↑)

Ext Type (F)

AA-F (Rand) 0.171 (±0.040) 0.327 (±0.050) 44.92 (±0.00) 94.05 (±0.35)
AA-F (Gold) 0.232 (±0.088) 0.249 (±0.021) 100.00 (±0.00) 93.81 (±0.54)
AA-F (Inv) 0.242 (±0.010) 0.357 (±0.019) 20.49 (±0.00) 93.47 (±1.81)
AA-F (IG) 0.292 (±0.051) 0.171 (±0.038) 48.13 (±1.14) 92.97 (±0.44)

Ext Type (FP)

AA-FP (Sum) 0.296 (±0.067) 0.185 (±0.048) 47.60 (±2.44) 93.25 (±0.45)
AA-FP (MLP) 0.285 (±0.051) 0.197 (±0.100) 54.82 (±1.97) 93.23 (±0.92)

DLM-FP 0.319 (±0.090) 0.167 (±0.036) 85.80 (±0.74) 93.81 (±0.18)
SLM-FP 0.302 (±0.039) 0.113 (±0.013) 82.55 (±0.84) 93.68 (±0.67)

Comp/Suff Loss
SLM-FP (Comp) 0.350 (±0.048) 0.310 (±0.049) 82.79 (±0.62) 93.59 (±0.11)
SLM-FP (Suff) 0.166 (±0.003) 0.152 (±0.012) 83.74 (±0.84) 94.16 (±0.39)

SLM-FP (Comp+Suff) 0.302 (±0.039) 0.113 (±0.013) 82.55 (±0.84) 93.68 (±0.67)

Suff Criterion
SLM-FP (KL Div) 0.306 (±0.098) 0.131 (±0.005) 82.62 (±0.88) 93.06 (±0.25)
SLM-FP (MAE) 0.278 (±0.058) 0.143 (±0.008) 82.66 (±0.61) 93.78 (±0.13)

SLM-FP (Margin) 0.302 (±0.039) 0.113 (±0.013) 82.55 (±0.84) 93.68 (±0.67)

SLM Ext Head
SLM-FP (Linear) 0.302 (±0.039) 0.113 (±0.013) 82.55 (±0.84) 93.68 (±0.67)

SLM-FP (MLP-2048-2) 0.323 (±0.071) 0.144 (±0.012) 83.82 (±0.77) 93.67 (±0.18)
SLM-FP (MLP-4096-3) 0.295 (±0.057) 0.154 (±0.027) 84.53 (±0.61) 93.19 (±0.79)

Table 2: UNIREX Ablation Studies on SST.

Method Forward Simulation Subjective Rating

Accuracy (%) Confidence (1-4) Alignment (1-5)

No Rationale 92.00 (±3.35) 3.02 (±0.39) -

SGT+P 80.80 (±9.73) 2.34 (±0.31) 3.64 (±0.28)
A2R+P 41.20 (±4.71) 2.83 (±0.28) 2.97 (±0.12)

UNIREX (AA-FP) 72.00 (±7.78) 2.00 (±0.31) 3.26 (±0.31)
UNIREX (DLM-FP) 83.60 (±5.41) 2.77 (±0.28) 3.96 (±0.22)

Gold 81.20 (±3.03) 2.88 (±0.30) 4.00 (±0.20)

Table 3: Plausibility User Study on SST.

Method Faithfulness Plausibility Performance IG Compute Efficiency

CSD (↑) Comp (↑) Suff (↓) AUPRC (↑) TF1 (↑) Acc (↑) Conv. Delta (↓) Inference Time (↓)

AA (IG-3) -0.138 (±0.040) 0.119 (±0.009) 0.258 (±0.031) 49.94 (±1.77) 50.75 (±0.54) 93.81 (±0.55) 8.07 (±1.47) 7.94E-03 (±5.30E-05)
AA (IG-5) -0.141 (±0.031) 0.134 (±0.015) 0.275 (±0.021) 49.38 (±1.00) 50.85 (±0.70) 93.81 (±0.55) 6.83 (±0.92) 1.15E-02 (±6.03E-05)

AA (IG-10) 0.011 (±0.043) 0.222 (±0.015) 0.210 (±0.031) 55.87 (±0.51) 52.06 (±0.33) 93.81 (±0.55) 6.55 (±0.48) 2.08E-02 (±1.14E-04)
AA (IG-30) 0.056 (±0.058) 0.258 (±0.020) 0.202 (±0.038) 57.23 (±1.16) 52.74 (±0.43) 93.81 (±0.55) 4.91 (±1.82) 5.80E-02 (±3.03E-04)
AA (IG-50) 0.066 (±0.057) 0.265 (±0.017) 0.199 (±0.040) 57.70 (±1.02) 52.66 (±0.37) 93.81 (±0.55) 2.89 (±0.34) 9.54E-02 (±5.64E-04)
AA (IG-70) 0.072 (±0.055) 0.269 (±0.016) 0.197 (±0.039) 58.11 (±1.21) 52.96 (±0.32) 93.81 (±0.55) 2.50 (±0.25) 1.33E-01 (±8.10E-04)

AA (IG-100) 0.074 (±0.055) 0.271 (±0.016) 0.197 (±0.039) 58.25 (±1.27) 53.00 (±0.42) 93.81 (±0.55) 2.01 (±0.13) 1.89E-01 (±1.62E-03)
AA (IG-500) 0.082 (±0.055) 0.276 (±0.016) 0.195 (±0.039) 58.61 (±1.10) 53.25 (±0.29) 93.81 (±0.55) 0.99 (±0.23) 9.38E-01 (±5.44E-03)

AA (IG-1000) 0.083 (±0.057) 0.278 (±0.017) 0.195 (±0.040) 58.64 (±1.15) 53.17 (±0.39) 93.81 (±0.55) 0.74 (±0.16) 1.88E+00 (±1.67E-03)
UNIREX (AA-F) 0.120 (±0.055) 0.292 (±0.051) 0.171 (±0.038) 48.13 (±1.14) 50.96 (±0.93) 92.97 (±0.44) 8.07 (±1.47) 7.94E-03 (±5.30E-05)

UNIREX (DLM-FP) 0.151 (±0.056) 0.319 (±0.090) 0.167 (±0.036) 85.80 (±0.74) 72.76 (±0.19) 93.81 (±0.54) - 8.51E-04 (±7.82E-07)
UNIREX (SLM-FP) 0.189 (±0.030) 0.302 (±0.039) 0.113 (±0.013) 82.55 (±0.84) 70.65 (±0.44) 93.68 (±0.67) - 8.81E-04 (±5.67E-06)

Table 4: Compute Efficiency Results on SST.
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Instance Ranking Instance ID Method Rationale Ftask’s Prediction Alignment (1-5)

Top Alignment Mean

30

SGT+P good actress . positive 5.00 (±0.00)
A2R+P good actress . positive 5.00 (±0.00)

UNIREX (AA-FP) good actress . positive 4.80 (±0.45)
UNIREX (DLM-FP) good actress . positive 5.00 (±0.00)

Gold good actress . positive 5.00 (±0.00)

41

SGT+P a cop story that understands the medium amazingly well . positive 5.00 (±0.00)
A2R+P a cop story that understands the medium amazingly well . positive 4.80 (±0.45)

UNIREX (AA-FP) a cop story that understands the medium amazingly well . positive 4.20 (±0.45)
UNIREX (DLM-FP) a cop story that understands the medium amazingly well . positive 4.80 (±0.45)

Gold a cop story that understands the medium amazingly well . positive 5.00 (±0.00)

35

SGT+P chicago is , in many ways , an admirable achievement . positive 4.60 (±0.55)
A2R+P chicago is , in many ways , an admirable achievement . positive 5.00 (±0.00)

UNIREX (AA-FP) chicago is , in many ways , an admirable achievement . positive 3.20 (±0.45)
UNIREX (DLM-FP) chicago is , in many ways , an admirable achievement . positive 5.00 (±0.00)

Gold chicago is , in many ways , an admirable achievement . positive 5.00 (±0.00)

Top Alignment Std

9

SGT+P bad beyond belief and ridiculous beyond description . negative 4.60 (±0.55)
A2R+P bad beyond belief and ridiculous beyond description . positive 1.00 (±0.00)

UNIREX (AA-FP) bad beyond belief and ridiculous beyond description . negative 2.60 (±0.89)
UNIREX (DLM-FP) bad beyond belief and ridiculous beyond description . negative 4.80 (±0.45)

Gold bad beyond belief and ridiculous beyond description . negative 4.80 (±0.45)

12

SGT+P these are names to remember , in order to avoid them in the future . negative 2.40 (±0.89)
A2R+P these are names to remember , in order to avoid them in the future . positive 1.20 (±0.45)

UNIREX (AA-FP) these are names to remember , in order to avoid them in the future . negative 2.60 (±0.89)
UNIREX (DLM-FP) these are names to remember , in order to avoid them in the future . negative 4.80 (±0.45)

Gold these are names to remember , in order to avoid them in the future . negative 4.80 (±0.45)

19

SGT+P the title ’s lameness should clue you in on how bad the movie is . negative 4.00 (±0.00)
A2R+P the title ’s lameness should clue you in on how bad the movie is . positive 1.20 (±0.45)

UNIREX (AA-FP) the title ’s lameness should clue you in on how bad the movie is . negative 2.60 (±0.89)
UNIREX (DLM-FP) the title ’s lameness should clue you in on how bad the movie is . negative 4.80 (±0.45)

Gold the title ’s lameness should clue you in on how bad the movie is . negative 4.80 (±0.45)

Table 5: Qualitative Analysis on SST.

Method Composite Faithfulness Plausibility Performance

NRG (↑) NRG (↑) Comp (↑) Suff (↓) NRG (↑) AUPRC (↑) TF1 (↑) NRG (↑) Acc (↑)

AA (Grad) 0.488 0.337 0.142 (±0.010) 0.256 (±0.006) 0.192 58.86 (±3.65) 27.40 (±0.00) 0.935 93.81 (±0.55)
AA (Input*Grad) 0.420 0.107 0.078 (±0.013) 0.342 (±0.014) 0.218 44.16 (±1.43) 45.02 (±0.39) 0.935 93.81 (±0.55)
AA (DeepLIFT) 0.453 0.122 0.085 (±0.006) 0.340 (±0.018) 0.302 46.50 (±1.32) 50.18 (±0.32) 0.935 93.81 (±0.55)

AA (IG) 0.526 0.297 0.119 (±0.009) 0.258 (±0.031) 0.347 49.94 (±1.77) 50.75 (±0.54) 0.935 93.81 (±0.55)
L2E 0.557 0.487 0.012 (±0.004) 0.009 (±0.024) 0.250 44.84 (±0.32) 47.24 (±0.87) 0.935 93.81 (±0.55)
SGT 0.632 0.555 0.147 (±0.024) 0.113 (±0.031) 0.371 51.38 (±2.47) 51.35 (±1.64) 0.971 94.40 (±0.57)

FRESH 0.330 0.837 0.219 (±0.057) 0.000 (±0.000) 0.152 42.06 (±8.84) 41.19 (±4.01) 0.000 78.78 (±6.48)
A2R 0.479 0.941 0.283 (±0.104) 0.000 (±0.000) 0.457 63.36 (±6.01) 46.74 (±6.65) 0.038 79.39 (±11.67)

UNIREX (AA-F) 0.639 0.706 0.292 (±0.051) 0.171 (±0.038) 0.329 48.13 (±1.14) 50.96 (±0.93) 0.882 92.97 (±0.44)

SGT+P 0.596 0.507 0.139 (±0.032) 0.137 (±0.026) 0.355 50.38 (±1.45) 50.98 (±0.46) 0.928 93.70 (±0.88)
FRESH+P 0.582 0.765 0.175 (±0.043) 0.000 (±0.000) 0.970 84.35 (±0.87) 71.54 (±0.53) 0.011 78.95 (±5.18)

A2R+P 0.695 0.953 0.290 (±0.016) 0.000 (±0.000) 0.978 85.56 (±1.01) 70.97 (±1.03) 0.154 81.26 (±0.52)
UNIREX (DLM-P) 0.770 0.339 0.142 (±0.008) 0.255 (±0.007) 0.970 84.35 (±0.87) 71.54 (±0.53) 1.000 94.86 (±0.41)
UNIREX (AA-FP) 0.636 0.339 0.296 (±0.067) 0.185 (±0.048) 0.315 47.60 (±2.44) 50.23 (±2.26) 0.900 93.25 (±0.45)

UNIREX (DLM-FP) 0.897 0.756 0.319 (±0.090) 0.167 (±0.036) 1.000 85.80 (±0.74) 72.76 (±0.19) 0.935 93.81 (±0.54)
UNIREX (SLM-FP) 0.891 0.807 0.302 (±0.039) 0.113 (±0.013) 0.940 82.55 (±0.84) 70.65 (±0.44) 0.927 93.68 (±0.67)

Table 6: Main Results on SST.
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Method Composite Faithfulness Plausibility Performance

NRG (↑) NRG (↑) Comp (↑) Suff (↓) NRG (↑) AUPRC (↑) TF1 (↑) NRG (↑) F1 (↑)

AA (Grad) 0.481 0.457 0.184 (±0.023) 0.107 (±0.017) 0.028 13.31 (±0.91) 5.02 (±0.00) 0.957 95.33 (±0.65)
AA (Input*Grad) 0.503 0.359 0.148 (±0.031) 0.137 (±0.019) 0.194 8.68 (±0.37) 37.58 (±0.55) 0.957 95.33 (±0.65)
AA (DeepLIFT) 0.468 0.259 0.122 (±0.029) 0.172 (±0.022) 0.187 9.00 (±0.16) 36.15 (±1.45) 0.957 95.33 (±0.65)

AA (IG) 0.439 0.173 0.134 (±0.016) 0.219 (±0.044) 0.188 8.88 (±0.21) 36.39 (±1.29) 0.957 95.33 (±0.65)
L2E 0.550 0.445 0.000 (±0.007) 0.026 (±0.015) 0.248 16.68 (±10.20) 38.92 (±4.07) 0.957 95.33 (±0.65)
SGT 0.553 0.474 0.124 (±0.053) 0.071 (±0.064) 0.184 10.05 (±1.23) 34.64 (±1.67) 1.000 96.33 (±0.76)

FRESH 0.645 0.732 0.234 (±0.034) 0.000 (±0.000) 0.305 17.02 (±6.22) 48.26 (±5.87) 0.899 94.00 (±1.44)
A2R 0.431 0.764 0.267 (±0.050) 0.000 (±0.000) 0.244 35.44 (±21.69) 19.78 (±25.56) 0.284 79.78 (±7.14)

UNIREX (AA-F) 0.601 0.744 0.505 (±0.134) 0.122 (±0.100) 0.189 9.14 (±2.51) 36.28 (±1.84) 0.870 93.33 (±1.61)

SGT+P 0.586 0.604 0.152 (±0.013) 0.022 (±0.004) 0.183 9.16 (±1.59) 35.33 (±0.41) 0.971 95.66 (±1.16)
FRESH+P 0.587 0.691 0.193 (±0.062) 0.000 (±0.000) 1.000 94.32 (±0.12) 89.53 (±1.63) 0.070 74.84 (±12.22)

A2R+P 0.585 0.764 0.267 (±0.076) 0.000 (±0.000) 0.991 93.53 (±0.93) 88.77 (±1.22) 0.000 73.22 (±0.75)
UNIREX (DLM-P) 0.667 0.024 0.024 (±0.003) 0.238 (±0.004) 1.000 94.32 (±0.12) 89.53 (±1.63) 0.978 95.83 (±0.29)
UNIREX (AA-FP) 0.543 0.514 0.428 (±0.174) 0.195 (±0.105) 0.193 8.53 (±0.46) 37.71 (±3.12) 0.921 94.50 (±1.00)

UNIREX (DLM-FP) 0.744 0.326 0.283 (±0.217) 0.216 (±0.005) 0.991 93.65 (±0.36) 88.68 (±2.29) 0.913 94.33 (±1.61)
UNIREX (SLM-FP) 0.754 0.362 0.313 (±0.059) 0.213 (±0.014) 0.965 91.70 (±1.84) 86.17 (±1.20) 0.935 94.83 (±0.76)

Table 7: Main Results on Movies.

Method Composite Faithfulness Plausibility Performance

NRG (↑) NRG (↑) Comp (↑) Suff (↓) NRG (↑) AUPRC (↑) TF1 (↑) NRG (↑) Acc (↑)

AA (Grad) 0.537 0.504 0.331 (±0.012) 0.352 (±0.007) 0.130 37.33 (±0.62) 22.65 (±0.00) 0.977 63.56 (±1.27)
AA (Input*Grad) 0.573 0.361 0.249 (±0.018) 0.385 (±0.008) 0.383 39.56 (±0.54) 44.43 (±0.40) 0.977 63.56 (±1.27)
AA (DeepLIFT) 0.605 0.346 0.254 (±0.035) 0.403 (±0.042) 0.491 42.82 (±1.83) 51.72 (±1.26) 0.977 63.56 (±1.27)

AA (IG) 0.578 0.327 0.216 (±0.007) 0.378 (±0.010) 0.429 40.07 (±5.47) 48.34 (±3.16) 0.977 63.56 (±1.27)
L2E 0.544 0.493 0.005 (±0.003) 0.010 (±0.008) 0.161 23.56 (±1.09) 37.80 (±1.10) 0.977 63.56 (±1.27)
SGT 0.618 0.367 0.197 (±0.040) 0.324 (±0.015) 0.491 43.68 (±4.68) 51.00 (±3.05) 0.995 64.35 (±0.46)

FRESH 0.302 0.546 0.037 (±0.036) 0.000 (±0.000) 0.261 32.35 (±7.66) 39.37 (±0.70) 0.101 24.81 (±3.46)
A2R 0.277 0.516 0.014 (±0.021) 0.000 (±0.000) 0.282 41.61 (±3.85) 33.12 (±9.06) 0.032 21.77 (±1.31)

UNIREX (AA-F) 0.690 0.538 0.297 (±0.141) 0.286 (±0.084) 0.554 46.97 (±3.41) 53.99 (±1.66) 0.978 63.58 (±0.61)

SGT+P 0.601 0.367 0.201 (±0.032) 0.328 (±0.022) 0.436 41.30 (±6.70) 47.95 (±1.65) 1.000 64.57 (±0.33)
FRESH+P 0.504 0.515 0.013 (±0.021) 0.013 (±0.021) 0.997 76.07 (±1.63) 69.76 (±0.27) 0.000 20.36 (±0.66)

A2R+P 0.488 0.500 0.001 (±0.001) 0.000 (±0.000) 0.951 73.59 (±0.81) 67.63 (±1.54) 0.012 20.91 (±0.48)
UNIREX (DLM-P) 0.751 0.267 0.180 (±0.016) 0.390 (±0.035) 0.997 76.07 (±1.63) 69.76 (±0.27) 0.990 64.13 (±0.46)
UNIREX (AA-FP) 0.685 0.551 0.395 (±0.109) 0.381 (±0.101) 0.537 45.21 (±4.46) 53.91 (±3.23) 0.968 63.14 (±0.33)

UNIREX (DLM-FP) 0.814 0.492 0.293 (±0.043) 0.321 (±0.070) 0.997 76.38 (±0.57) 69.52 (±0.24) 0.953 62.50 (±1.34)
UNIREX (SLM-FP) 0.807 0.494 0.390 (±0.087) 0.424 (±0.110) 0.983 75.12 (±0.41) 69.25 (±0.41) 0.944 62.09 (±2.12)

Table 8: Main Results on CoS-E.

Method Composite Faithfulness Plausibility Performance

NRG (↑) NRG (↑) Comp (↑) Suff (↓) NRG (↑) AUPRC (↑) TF1 (↑) NRG (↑) F1 (↑)

AA (Grad) 0.498 0.462 0.222 (±0.028) 0.120 (±0.018) 0.035 22.27 (±0.17) 13.81 (±0.00) 0.997 69.80 (±0.60)
AA (Input*Grad) 0.506 0.289 0.225 (±0.048) 0.260 (±0.059) 0.231 18.51 (±0.23) 43.45 (±0.05) 0.997 69.80 (±0.60)
AA (DeepLIFT) 0.493 0.249 0.225 (±0.012) 0.292 (±0.014) 0.234 18.80 (±0.19) 43.51 (±0.04) 0.997 69.80 (±0.60)

AA (IG) 0.499 0.280 0.162 (±0.086) 0.222 (±0.086) 0.220 18.71 (±0.40) 41.79 (±1.33) 0.997 69.80 (±0.60)
L2E 0.522 0.366 0.007 (±0.006) 0.042 (±0.024) 0.205 24.48 (±2.71) 32.63 (±6.12) 0.997 69.80 (±0.60)
SGT 0.594 0.564 0.214 (±0.105) 0.033 (±0.077) 0.224 18.60 (±0.42) 42.42 (±0.51) 0.995 69.73 (±0.13)

FRESH 0.675 0.571 0.176 (±0.029) 0.000 (±0.000) 0.617 24.68 (±7.98) 48.02 (±3.04) 0.838 64.47 (±3.41)
A2R 0.217 0.404 -0.010 (±0.029) 0.000 (±0.000) 0.249 18.72 (±0.67) 45.45 (±0.02) 0.000 36.39 (±0.00)

UNIREX (AA-F) 0.711 0.956 0.505 (±0.050) -0.071 (±0.020) 0.236 18.82 (±0.40) 43.68 (±0.38) 0.939 66.17 (±4.58)

SGT+P 0.630 0.665 0.280 (±0.029) 0.283 (±0.039) 0.226 18.63 (±0.52) 42.71 (±0.39) 1.000 69.91 (±0.81)
FRESH+P 0.491 0.413 0.000 (±0.013) 0.000 (±0.000) 0.999 71.80 (±0.27) 77.94 (±0.57) 0.060 38.41 (±5.34)

A2R+P 0.516 0.422 0.011 (±0.024) 0.000 (±0.000) 0.977 70.86 (±1.30) 76.21 (±1.68) 0.150 41.42 (±8.73)
UNIREX (DLM-P) 0.708 0.123 0.127 (±0.010) 0.322 (±0.017) 0.999 71.80 (±0.27) 77.94 (±0.57) 1.000 69.91 (±0.76)
UNIREX (AA-FP) 0.706 1.000 0.545 (±0.045) -0.077 (±0.099) 0.231 19.13 (±0.71) 42.66 (±1.18) 0.888 66.17 (±4.58)

UNIREX (DLM-FP) 0.751 0.327 0.135 (±0.072) 0.165 (±0.029) 0.998 71.89 (±0.41) 77.63 (±0.62) 0.929 67.53 (±1.06)
UNIREX (SLM-FP) 0.784 0.377 0.198 (±0.038) 0.171 (±0.027) 0.997 71.69 (±0.21) 77.79 (±0.09) 0.979 69.20 (±1.58)

Table 9: Main Results on MultiRC.
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Method Composite Faithfulness Plausibility Performance

NRG (↑) NRG (↑) Comp (↑) Suff (↓) NRG (↑) AUPRC (↑) TF1 (↑) NRG (↑) F1 (↑)

AA (Grad) 0.587 0.518 0.313 (±0.009) 0.380 (±0.025) 0.244 59.80 (±1.32) 15.27 (±0.00) 0.999 90.78 (±0.27)
AA (Input*Grad) 0.503 0.287 0.205 (±0.005) 0.446 (±0.020) 0.223 32.98 (±1.37) 43.13 (±0.86) 0.999 90.78 (±0.27)
AA (DeepLIFT) 0.508 0.270 0.195 (±0.012) 0.448 (±0.014) 0.254 33.47 (±1.31) 46.44 (±0.04) 0.999 90.78 (±0.27)

AA (IG) 0.596 0.473 0.308 (±0.011) 0.414 (±0.020) 0.317 47.83 (±1.04) 37.87 (±1.39) 0.999 90.78 (±0.27)
L2E 0.606 0.460 0.009 (±0.015) 0.036 (±0.022) 0.358 58.11 (±0.97) 31.35 (±0.27) 0.999 90.78 (±0.27)
SGT 0.595 0.503 0.288 (±0.025) 0.361 (±0.038) 0.298 42.46 (±3.03) 41.70 (±1.78) 0.985 90.23 (±0.16)

FRESH 0.518 0.661 0.120 (±0.075) 0.000 (±0.000) 0.361 38.77 (±6.82) 53.71 (±3.30) 0.530 72.92 (±8.71)
A2R 0.273 0.564 0.053 (±0.048) 0.000 (±0.000) 0.256 48.48 (±11.14) 29.54 (±24.72) 0.000 52.72 (±14.08)

UNIREX (AA-F) 0.622 0.539 0.330 (±0.018) 0.383 (±0.055) 0.340 45.29 (±3.02) 43.69 (±1.98) 0.987 90.31 (±0.19)

SGT+P 0.608 0.524 0.286 (±0.034) 0.339 (±0.032) 0.311 43.03 (±1.69) 42.59 (±1.63) 0.988 90.36 (±0.08)
FRESH+P 0.746 0.695 0.143 (±0.072) 0.000 (±0.000) 1.000 87.85 (±0.13) 77.63 (±0.35) 0.544 73.44 (±12.88)

A2R+P 0.800 0.751 0.182 (±0.097) 0.000 (±0.000) 0.992 87.30 (±0.44) 77.31 (±0.72) 0.656 77.31 (±0.72)
UNIREX (DLM-P) 0.842 0.525 0.311 (±0.011) 0.371 (±0.032) 1.000 87.85 (±0.13) 77.63 (±0.35) 1.000 90.80 (±0.33)
UNIREX (AA-FP) 0.626 0.529 0.341 (±0.008) 0.406 (±0.046) 0.363 44.79 (±0.81) 47.18 (±0.83) 0.985 90.21 (±0.08)

UNIREX (DLM-FP) 0.857 0.588 0.335 (±0.018) 0.346 (±0.023) 0.991 86.99 (±0.40) 77.53 (±0.15) 0.992 90.51 (±0.12)
UNIREX (SLM-FP) 0.864 0.603 0.353 (±0.017) 0.356 (±0.015) 0.994 87.58 (±0.14) 77.22 (±0.28) 0.994 90.59 (±0.09)

Table 10: Main Results on e-SNLI.

Ablation Method Performance Faithfulness Plausibility

Acc (↑) CSD (↑) Comp (↑) Suff (↓) AUPRC (↑) TF1 (↑)

Ext Type (F)

UNIREX (AA-F, Rand) 94.05 (±0.35) -0.156 (±-0.156) 0.171 (±0.040) 0.327 (±0.050) 44.92 (±0.00) 46.15 (±0.00)
UNIREX (AA-F, Gold) 93.81 (±0.54) -0.017 (±0.070) 0.232 (±0.088) 0.249 (±0.021) 100.00 (±0.00) 100.00 (±0.00)
UNIREX (AA-F, Inv) 93.47 (±1.81) -0.115 (±0.018) 0.242 (±0.010) 0.357 (±0.019) 20.49 (±0.00) 0.00 (±0.00)
UNIREX (AA-F, IG) 93.81 (±0.55) -0.138 (±0.040) 0.119 (±0.009) 0.258 (±0.031) 49.94 (±1.77) 50.75 (±0.54)

Ext Type (FP)

UNIREX (AA-FP, Sum) 93.81 (±0.55) -0.138 (±0.040) 0.119 (±0.009) 0.258 (±0.031) 49.94 (±1.77) 50.75 (±0.54)
UNIREX (AA-FP, MLP) 93.23 (±0.92) 0.087 (±0.134) 0.285 (±0.051) 0.197 (±0.100) 54.82 (±1.97) 49.62 (±0.65)

UNIREX (DLM-FP) 93.81 (±0.18) 0.151 (±0.056) 0.319 (±0.090) 0.167 (±0.036) 85.80 (±0.74) 72.76 (±0.19)
UNIREX (SLM-FP) 93.68 (±0.67) 0.189 (±0.030) 0.302 (±0.039) 0.113 (±0.013) 82.55 (±0.84) 70.65 (±0.44)

Comp/Suff Loss
UNIREX (SLM-FP, Comp) 93.59 (±0.11) 0.040 (±0.096) 0.350 (±0.048) 0.310 (±0.049) 82.79 (±0.62) 70.74 (±0.81)
UNIREX (SLM-FP, Suff) 94.16 (±0.39) 0.014 (±0.010) 0.166 (±0.003) 0.152 (±0.012) 83.74 (±0.84) 70.94 (±0.86)

UNIREX (SLM-FP, Comp+Suff) 93.68 (±0.67) 0.189 (±0.030) 0.302 (±0.039) 0.113 (±0.013) 82.55 (±0.84) 70.65 (±0.44)

Suff Criterion
UNIREX (SLM-FP, KL Div) 93.06 (±0.25) 0.174 (±0.100) 0.306 (±0.098) 0.131 (±0.005) 82.62 (±0.88) 70.43 (±0.65)
UNIREX (SLM-FP, MAE) 93.78 (±0.13) 0.135 (±0.053) 0.278 (±0.058) 0.143 (±0.008) 82.66 (±0.61) 70.25 (±0.45)

UNIREX (SLM-FP, Margin) 93.68 (±0.67) 0.189 (±0.030) 0.302 (±0.039) 0.113 (±0.013) 82.55 (±0.84) 70.65 (±0.44)

SLM Ext Head
UNIREX (SLM-FP, Linear) 93.68 (±0.67) 0.189 (±0.030) 0.302 (±0.039) 0.113 (±0.013) 82.55 (±0.84) 70.65 (±0.44)

UNIREX (SLM-FP, MLP-2048-2) 93.67 (±0.18) 0.179 (±0.060) 0.323 (±0.071) 0.144 (±0.012) 83.82 (±0.77) 70.93 (±0.87)
UNIREX (SLM-FP, MLP-4096-3) 93.19 (±0.79) 0.141 (±0.030) 0.295 (±0.057) 0.154 (±0.027) 84.53 (±0.61) 71.41 (±0.91)

Table 11: UNIREX Ablation Studies on SST (Full).
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Task Dataset Method Performance Faithfulness

Perf (↑) CSD (↑) Comp (↑) Suff (↓)

Sentiment Analysis

SST

Vanilla 93.81 (±0.74) -0.070 (±0.061) 0.145 (±0.023) 0.215 (±0.038)
UNIREX (AA-F) 93.19 (±0.40) 0.360 (±0.055) 0.405 (±0.031) 0.045 (±0.024)

UNIREX (DLM-FP) 93.81 (±0.18) 0.151 (±0.056) 0.319 (±0.090) 0.167 (±0.036)
UNIREX (SLM-FP) 93.68 (±0.67) 0.189 (±0.030) 0.302 (±0.039) 0.113 (±0.013)

Yelp

Vanilla 92.50 (±2.07) -0.156 (±0.028) 0.067 (±0.004) 0.222 (±0.031)
UNIREX (AA-F) 90.75 (±1.30) -0.138 (±0.120) 0.096 (±0.026) 0.233 (±0.096)

UNIREX (DLM-FP) 92.37 (±0.46) 0.169 (±0.060) 0.265 (±0.094) 0.097 (±0.033)
UNIREX (SLM-FP) 86.60 (±1.57) 0.114 (±0.056) 0.175 (±0.055) 0.060 (±0.001)

Amazon

Vanilla 91.13 (±0.28) -0.120 (±0.038) 0.096 (±0.008) 0.217 (±0.033)
UNIREX (AA-F) 86.60 (±0.95) -0.111 (±0.161) 0.100 (±0.042) 0.210 (±0.122)

UNIREX (DLM-FP) 89.35 (±2.22) 0.133 (±0.039) 0.232 (±0.072) 0.098 (±0.033)
UNIREX (SLM-FP) 81.82 (±7.62) 0.097 (±0.027) 0.147 (±0.012) 0.050 (±0.017)

Hate Speech Detection Stormfront

Vanilla 10.48 (±1.66) -0.066 (±0.072) 0.153 (±0.002) 0.219 (±0.071)
UNIREX (AA-F) 9.43 (±1.45) 0.329 (±0.104) 0.337 (±0.073) 0.008 (±0.031)

UNIREX (DLM-FP) 10.37 (±2.66) 0.052 (±0.027) 0.167 (±0.084) 0.115 (±0.059)
UNIREX (SLM-FP) 4.51 (±1.87) 0.049 (±0.041) 0.110 (±0.039) 0.062 (±0.043)

Offensive Speech Detection OffenseEval

Vanilla 33.51 (±0.99) -0.125 (±0.068) 0.104 (±0.007) 0.229 (±0.064)
UNIREX (AA-F) 35.69 (±2.30) -0.028 (±0.084) 0.076 (±0.008) 0.104 (±0.076)

UNIREX (DLM-FP) 35.52 (±1.26) 0.053 (±0.012) 0.140 (±0.049) 0.087 (±0.045)
UNIREX (SLM-FP) 38.17 (±0.96) 0.039 (±0.031) 0.087 (±0.016) 0.048 (±0.024)

Irony Detection SemEval2018-Irony

Vanilla 29.63 (±4.72) -0.058 (±0.075) 0.154 (±0.001) 0.212 (±0.074)
UNIREX (AA-F) 47.99 (±6.33) 0.026 (±0.080) 0.087 (±0.022) 0.061 (±0.071)

UNIREX (DLM-FP) 31.97 (±2.80) 0.047 (±0.017) 0.149 (±0.052) 0.102 (±0.053)
UNIREX (SLM-FP) 17.42 (±4.04) 0.027 (±0.047) 0.091 (±0.027) 0.064 (±0.033)

Table 12: Zero-Shot Explainability Transfer from SST to Unseen Datasets/Tasks (Full).


