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Abstract
Kernel mean embeddings are a powerful tool to
represent probability distributions over arbitrary
spaces as single points in a Hilbert space. Yet, the
cost of computing and storing such embeddings
prohibits their direct use in large-scale settings.
We propose an efficient approximation procedure
based on the Nyström method, which exploits a
small random subset of the dataset. Our main
result is an upper bound on the approximation
error of this procedure. It yields sufficient condi-
tions on the subsample size to obtain the standard
n−1/2 rate while reducing computational costs.
We discuss applications of this result for the ap-
proximation of the maximum mean discrepancy
and quadrature rules, and illustrate our theoretical
findings with numerical experiments.

1. Introduction
Owing to the increasing complexity of modern datasets,
designing compact and meaningful representations of data
collections and probability distributions is a key problem
in machine learning. Kernel methods, which have proven
in the last decades to be a convenient and powerful tool to
design feature spaces capturing complex relations between
data points, via the choice of a single kernel function, can
be used towards this goal. Initially introduced by Smola
et al. (2007), kernel mean embeddings (KME) indeed allow
to represent a probability distribution via a single mean el-
ement in such feature spaces (Muandet et al. 2017). They
have found applications in various areas such as anomaly
detection (Zou et al. 2014), approximate Bayesian compu-
tation (Park et al. 2016), domain adaptation (Zhang et al.
2013), imitation learning (Kim et al. 2018), nonparametric
inference in graphical models (Song et al. 2013), functional
data analysis (Hayati et al. 2020), discriminative learning for
probability measures (Muandet et al. 2012) and differential
privacy (Balog et al. 2018; Chatalic et al. 2021).
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In machine learning applications, one is typically interested
in computing the kernel mean embedding of the data dis-
tribution, which is most often unknown and approximated
using empirical data. Yet, in its basic form, the empirical
estimator still requires to store and manipulate the whole
dataset, which can be impractical or even, in the worst case,
impossible.

Finite-dimensional approximations of the feature map can
be used to reduce the memory requirement of this approach
(Liu et al. 2021; Rahimi et al. 2008). However, these meth-
ods are either generic and thus fail to capture the complexity
of the data distribution with a low-dimensional represen-
tation, or adaptive, in which case costly data-dependent
quantities need to be computed and/or stored (e.g., lever-
age scores (Shahrampour et al. 2019)). Furthermore, the
resulting embeddings belong to a different space than the
kernel mean embeddings and thus these approaches cannot
be compared directly.

In this paper, we tackle the problem of efficiently approx-
imating the kernel mean embedding of an unknown prob-
ability distribution for which samples are available. We
introduce an estimator based on Nyström approximation,
which can be computed efficiently using a random subset
of the data, and provide an upper bound on its approxima-
tion error. Under mild assumptions on the kernel and data
distribution, we show that the size of this random subset
is much smaller than the number of available samples and
yields an optimal error rate. We characterize this fact using
the spectral properties of the covariance operator associ-
ated to the considered kernel. For instance, assuming an
exponential decay of this spectrum, we show that a subsam-
ple size of the order of

√
n log(

√
n) is sufficient to obtain

an error of order O(1/
√
n), that is the same as that of the

empirical estimator, and thus demonstrating that it is pos-
sible to preserve statistical performance while drastically
reducing computational costs. We then show that our main
result can be used to derive bounds on the approximation
of the maximum mean discrepancy, which is the standard
metric between probability distributions in the context of
kernel methods. Finally we present numerical experiments
supporting our theory both on synthetic and real datasets.

The paper is organized as follows. We begin by formalizing
the problem of mean embeddings estimation and presenting
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related works in Section 2. Then, in Section 3, we introduce
our Nyström estimator and detail its computational aspects.
Section 4 contains our main result – a bound on the approx-
imation error of our estimator. We discuss applications of
this result in Section 5. Finally, we present the results of
our numerical experiments in Section 6 and provide some
perspectives in Section 7.

2. Mean embeddings estimation
Let ρ be a probability measure with support in some space X .
We consider the problem of approximating its kernel mean
embedding

µ(ρ) :=

∫
X
ϕ(x) dρ(x) (1)

where ϕ : X → H is a feature map taking values in a
Hilbert feature space H with inner product ⟨·, ·⟩H and norm
∥·∥. By abuse of notation, we denote by µ = µ(ρ) the
embedding of the data distribution. We assume that ϕ is
bounded so that the integral is well defined, and provide
further technical details in Section 4. The choice of the
feature map ϕ implicitly defines a positive definite kernel
function κ : X × X → R via the equation κ(x, y) =
⟨ϕ(x), ϕ(y)⟩H. Strictly speaking, a kernel mean embedding
corresponds to the case where ϕ is the canonical feature
map of the kernel, i.e. ϕ(x) = κ(x, ·), however (1) can be
defined for any integrable feature map and our results hold
in this general setting.

Maximum mean discrepancy Mean embeddings natu-
rally induce a semi-metric on the space of probability dis-
tributions P(X ) known as the maximum mean discrepancy
(Smola et al. 2007) and defined as

MMD(ρ1, ρ2) := ∥µ(ρ1)− µ(ρ2)∥,

for any two distribution probabilities ρ1 and ρ2. It satis-
fies all the properties of a metric except, in general, the
definiteness, depending on whether the mean embedding
ρ 7→ µ(ρ) is injective or not (we refer the interested reader
to Sriperumbudur et al. (2010) for more details). Such met-
rics have found applications in many contexts such as, to
cite a few, two-sample testing (Borgwardt et al. 2006; Gret-
ton et al. 2012), neural networks optimization (Borgwardt
et al. 2006), generative models (Li et al. 2017; Sutherland
et al. 2017). Given their wide applicability, maximum mean
discrepancies are naturally one of the main motivations for
better approximating mean embeddings. An interesting
property of the MMD is that it is an integral probability
metric (Müller 1997), a class of metrics which uses test
functions to compare distributions. More precisely, we have

MMD(ρ1, ρ2)= sup
f∈H:∥f∥≤1

|EX1∼ρ1f(X1)−EX2∼ρ2f(X2)|

where H denotes the reproducing kernel Hilbert space as-
sociated to the chosen kernel. These two representations
of the MMD allow to leverage the wide set of tools from
both kernel methods and integral probability metric theories
(see Sriperumbudur et al. 2009, 2012b for examples of the
latter).

Empirical estimator Given a collection of samples
X = {X1, . . . , Xn} with empirical distribution ρ̂n =
1
n

∑
1≤i≤n δ(Xi), where δ(·) denotes the Dirac delta, a

natural empirical estimator of (1) is given by

µ̂ := µ(ρ̂n) =
1

n

n∑
i=1

ϕ(Xi) (2)

which approximates the true kernel mean embedding at
the rate O(1/

√
n) in ∥·∥ norm as discussed in Section 2.2.

The time complexity for this evaluation grows linearly with
the number n of samples in the dataset. When the feature
map ϕ is finite-dimensional, this estimator can be explicitly
computed and stored, which might be reasonable when the
feature map can efficiently be computed. However, when
this is not the case, the whole dataset X must be stored in
memory, which can not only become prohibitive when the
amount of available memory is limited, but also makes the
manipulation of such embeddings unpractical. For instance,
computing the maximum mean discrepancy between two
empirical estimators computed from n samples has a Θ(n2)
cost, which is not reasonable in applications where such
distances must be computed repeatedly.

2.1. Problem

In this paper, we consider the problem of designing a new
estimator µ̂m computed from m points X̃1, . . . , X̃m, which

1. can be computed more efficiently than µ̂;

2. preserves the statistical accuracy of µ̂.

The first requirement implies that m should be smaller than
the actual sample size n while the second requirement can
be expressed more formally as

∥µ− µ̂m∥ = O(∥µ− µ̂∥), (3)

provided that m is large enough. Those two requirements
induce a trade-off between statistical accuracy and com-
putational efficiency of the desired estimator. We con-
sider in particular the setting where the landmark points
(X̃j)1≤j≤m are randomly sampled from the dataset X , so
that the bound (3) must hold with high probability on the
draw of these points.

A related problem that we tackle in Section 5 is that of the
approximation of the maximum mean discrepancy. The ap-
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proach that we explore consists in finding computationally-
efficient approximations µ̂m(ρ1), µ̂m(ρ2) of the kernel
mean embeddings such that it holds with high probability

∥µ̂m(ρ1)− µ̂m(ρ2)∥ = O(∥µ(ρ1)− µ(ρ2)∥).

2.2. Related work

The kernel mean embedding (1) can be approximated via
its empirical counterpart (2) given n samples from the dis-
tribution ρ, yielding an approximation error decreasing in
O(n−1/2). Without any assumption on the probability dis-
tribution ρ, the empirical average is asymptotically efficient
and minimax optimal (Van der Vaart 2000, Theorem 25.21,
Example 25.24) (see also (Lopez-Paz et al. 2015, Theorem
4)) thus there is no hope to get a better rate without any extra
assumption on ρ. Tolstikhin et al. (2017) also showed that
the minimax optimal rate for estimating kernel mean embed-
dings defined by continuous translation-invariant kernels on
Rd is of order O(n−1/2) for discrete measure and measures
with infinitely differentiable densities (e.g., Gaussian and
exponential). Approximation of the maximum mean dis-
crepancy using empirical embeddings has also been studied
by Sriperumbudur et al. (2012a).

Muandet et al. (2014) introduced shrinkage estimators of the
form θf+(1−θ)µ̂, where θ ∈ (0, 1), f ∈ H is independent
of the data and showed that those estimators perform better
than the empirical average under mild assumptions on the
probability distribution of interest. Such shrinkage strategies
are complementary to our approach in the sense that they can
be combined with any estimator of µ̂. In a different direction,
Lerasle et al. (2019) proposed an outlier-robust estimator for
the kernel mean embedding based on the median-of-means
technique.

The principal way to efficiently approximate a kernel mean
embedding is to consider an estimator of the form∑

1≤j≤m

αjϕ(yj) (4)

with m ≪ n. Multiple strategies exist to choose the points
(yj)1≤j≤m. For instance Cortes et al. (2014) proposed a
greedy heuristic based on a notion of incoherence. Ker-
nel herding (Y. Chen et al. 2010) is another deterministic
way to select the points, which can be interpreted as an
instance of the Frank-Wolfe algorithm (Bach et al. 2012)
and has also connections with generalizations of orthogonal
matching pursuit used in compressive sensing (Keriven et al.
2017). Depending on the context, the weights (αj)1≤j≤m

might be chosen uniform or directly optimized to minimize
the approximation error or another related criterion. In a
slightly different setting, Grünewälder et al. (2012) derive
an equivalence between conditional mean embeddings and
vector-valued regressors which allows them to use vector-
valued regression methods to learn such embeddings.

These techniques are closely related to the quadrature
problem, which consists in finding points (yj)1≤j≤m and
weights (αj)1≤j≤m approximating the integral∫

f(x) dρ(x) ≈
∑

1≤j≤m

αjf(yj).

In the context of kernel methods, one typically wants to
find an approximation scheme minimizing this error for all
functions f belonging to a reproducing kernel Hilbert space
H. In this case the approximation should not depend on the
function f , and we have for any f ∈ H such that ∥f∥ ≤ 1
via the reproducing property

QuadratureError :=

∣∣∣∣∣∣
∫

f(x) dρ(x)−
∑

1≤j≤m

αjf(yj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
〈
f, µ−

∑
1≤j≤m

αjϕ(yj)

〉
H

∣∣∣∣∣∣
≤

∥∥∥∥∥∥µ−
∑

1≤j≤m

αjϕ(yj)

∥∥∥∥∥∥.
where µ is the mean embedding associated with ρ. This sim-
ple manipulation shows that approximate kernel mean em-
beddings are a way to design quadratures when the function
f to integrate is taken in a reproducing Hilbert space. Kernel
quadrature bounds have in particular been obtained when
sampling randomly and i.i.d the points (yj)1≤j≤m (Bach
2017), which includes approximation in the reproducing ker-
nel Hilbert space as a special case. The sampling procedure
in this work is however based on leverage scores, which
are not exactly computable. Although algorithms exist to
approximate these scores, the existing analysis does not
cover this setting and further work would be needed in this
direction. Bounds on the quadrature error have also been
obtained for points sampled according to a determinantal
point process (Belhadji et al. 2019), however sampling from
such processes is also an expensive operation.

More generally, one can also consider mean embeddings as-
sociated to a finite-dimensional feature map ϕm approximat-
ing the kernel in the sense that ⟨ϕm(x), ϕm(y)⟩ ≈ κ(x, y)
for any x, y. One example would be to build ϕm using ran-
dom features (Liu et al. 2021; Rahimi et al. 2008). This
setting is particularly interesting from an algorithmic per-
spective, as the mean embedding can then be computed
online and efficiently stored. As such representations lie in
a different space, it is in general not possible to relate them
to the original mean embedding. Yet, they remain a highly
practical way to manipulate distributions, and the distance
between such embeddings can still be interpreted as an esti-
mator of the mean max discrepancy. However, because they
are generic these methods might not adapt well to the data
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at hand, and we expect that our Nyström estimator might
lead to a lower error for an equivalent complexity.

3. The Nyström estimator
As suggested above, our strategy to design an efficient algo-
rithm is to consider an approximation of the form (4). More
precisely, in our approach the points (yj)1≤j≤m on which
the approximation is built are sampled uniformly and inde-
pendently from the dataset. For this reason we denote them
in the sequel X̃1, . . . , X̃m, and our estimator will thus be
in the space Hm := span

{
ϕ(X̃1), . . . , ϕ(X̃m)

}
spanned

by their features. Denoting Pm the orthogonal projection
on this subspace, the best estimator of the kernel mean
embedding µ (1) in this space is Pmµ. As this quantity
can obviously not be computed when the distribution ρ is
unknown, we use instead

µ̂m := Pmµ̂.

Computation It turns out that the weights of this embed-
ding can be computed exactly. Denoting Km ∈ Rm×m

and Kmn ∈ Rm×n be the partial kernel matrices with en-
tries (Km)ij = ⟨ϕ(X̃i), ϕ(X̃j)⟩H for any 1 ≤ i, j ≤ m

and (Kmn)ij = ⟨ϕ(X̃i), ϕ(xj)⟩H for any 1 ≤ i ≤ m and
1 ≤ j ≤ n, one can indeed check (see Appendix B) that
our Nyström kernel mean embedding estimator can be ex-
pressed as

µ̂m =
∑

1≤j≤m

αjϕ(X̃j) with α =
1

n
K+

mKmn1n, (5)

where 1n denotes a n-dimensional vector of ones and K+
m

the (Moore-Penrose) pseudo-inverse of Km.

Complexity The space complexity of the method is
Θ(m2 + md) for storing Km and the landmarks. Note
that Kmn does not need to be stored as Kmn1n can be com-
puted sequentially in Θ(m) space. The time complexity
is Θ(nmcκ + m3) where cκ corresponds to the cost of a
kernel evaluation. The first term corresponds to the compu-
tation of Kmn1n while the second correspond to computing
the pseudo-inverse of Km (numerically stable algorithms
can be used instead, but the complexity will be of this or-
der regardless). When X = Rd, we will most often have
cκ = d.

4. Theoretical analysis
4.1. Setting and notations

We consider a probability space (X ,B, ρ) where X is a
locally compact second countable topological space, B the
Borel σ-algebra and ρ is the data probability distribution
with support in X .

We define the (uncentered) covariance operator C : H → H
as

C :=

∫
ϕ(x)⊗H ϕ(x)dρ(x)

where ϕ(x)⊗H ϕ(x) denotes the rank one operator

(ϕ(x)⊗H ϕ(x))(f) = ⟨f, ϕ(x)⟩Hϕ(x),

and denote by Cλ = C + λI its regularized version, for
λ > 0. We now define, for any λ > 0 the functions

∀x ∈ X , Nx(λ) := ⟨ϕ(x), C−1
λ ϕ(x)⟩H (6a)

N (λ) := ExNx(λ) = tr(CC−1
λ ) (6b)

N∞(λ) := sup
x∈X

Nx(λ). (6c)

The quantity N (λ) is known as the effective dimension,
and is a measure of the interaction between the kernel (or
feature map) and the data probability distribution. It is
tightly linked to the notion of leverage scores and has been
shown to constitute a proper measure of hardness of kernel
ridge regression problems (Alaoui et al. 2015). Finally, we
denote by L(H) the set of bounded linear operators on H
endowed with the operator norm ∥·∥L(H).

The main assumption we make concerns the boundedness
of the feature map.

Assumption 4.1. There exists a positive constant K < ∞
such that supx∈X ∥ϕ(x)∥ ≤ K.

This assumption ensures in particular that ϕ is integrable
for any probability distribution over X , and thus the ker-
nel mean embedding (1) is well defined, interpreting the
integral in (1) as a Bochner integral (Diestel et al. 1977,
Chapter 2). Furthermore, it implies the two inequalities
N∞(λ) ≤ K2/λ < ∞ for any λ > 0, the latter being a
crucial parameter to control the error of Nyström sampling.
Finally, Assumption 4.1 implies that the operator C is a
positive trace class operator on H and allows to leverage
tools from spectral theory. We refer the reader to Rudi et al.
(2015, Assumption 3) for a more detailed discussion around
a similar assumption.

Assumption 4.1 is satisfied for feature maps derived from a
large class of standard kernels such as, e.g., Gaussian and
Laplacian radial basis functions kernels on the Euclidean
space Rd. It is also satisfied for polynomial kernels on a
bounded space X .

4.2. Error decomposition

In order to break down the approximation error, we intro-
duce the quantity

µ̃m =
1

m

m∑
j=1

ϕ(X̃j),
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which is an unbiased estimate of the empirical kernel mean
embedding µ̂. Note that, by definition, µ̃m is an element
of Hm and it corresponds to choosing uniform weights
to average the landmarks. Furthermore, we introduce the
orthogonal projection operator on the orthogonal of Hm,
P⊥
m := I − Pm.

Our main result relies on the following deterministic error
decomposition.

Lemma 4.1 (Error decomposition). For any λ > 0, it
holds (almost surely)

∥µ− µ̂m∥ ≤ ∥µ− µ̂∥+ ∥P⊥
mC

1/2
λ ∥L(H)∥C

−1/2
λ (µ̂− µ̃m)∥.

Proof of Lemma 4.1: We use the decomposition

∥µ− µ̂m∥ ≤ ∥µ− µ̂∥+ ∥µ̂− µ̂m∥

Note that

∥µ̂− µ̂m∥ = ∥(I − Pm)µ̂∥ = ∥P⊥
m(µ̂− µ̃m)∥

where the last inequality follows from P⊥
m µ̃m = 0. Hence

we get

∥µ− µ̂m∥ ≤ ∥µ− µ̂∥+ ∥P⊥
m(µ̂− µ̃m)∥

≤ ∥µ− µ̂∥+ ∥P⊥
mC

1/2
λ ∥L(H)∥C

−1/2
λ (µ̂− µ̃m)∥

which concludes the proof. □

Our strategy to bound the error ∥µ−µ̂m∥ essentially consists
in bounding those three terms separately using probabilistic
concentration results in Hilbert spaces.

4.3. Main result

We now state our main result, and then specialize this result
using additional knowledge on the spectral properties of the
covariance operator.

Theorem 4.1. Let Assumption 4.1 hold, and m ≥ 4. Fur-
thermore, assume that the data points X1, . . . , Xn are
drawn i.i.d. from the distribution ρ and that m ≤ n sub-
samples X̃1, . . . , X̃m are drawn uniformly with replace-
ment from the dataset {X1 . . . , Xn}. Then, it holds with
probability at least 1− δ that

∥µ− µ̂m∥ ≤ c1√
n
+

c2
m

+
c3
√
log(m/δ)

m

√
N
(
12K2 log(m/δ)

m

)
,

provided that

m ≥ max(67, 12K2∥C∥−1
L(H)) log

(
m

δ

)
,

where c1, c2, c3 are constants (made explicit in the proof)
of order K log(1/δ).

A few remarks are in order regarding Theorem 4.1. First
of all, denoting by W the smallest branch of the Lambert’s
W function on ]− e−1, 0[ (Weisstein 2002), the condition
on the sub-sample size m can also be expressed as m ≥
−W (−δ/c)c with c = max(67, 12K2∥C∥−1

L(H)) and can
easily be checked on a computer.

Then, the bound on the error is split in three parts: the
first part corresponds to the usual rate one gets estimating
the kernel mean embedding by its standard empirical coun-
terpart (as discussed in Section 2.2) while the second part
and the third part result from our Nyström approximation
scheme. Note that the first two terms already illustrate (at
least partially) the trade-off between computational cost and
statistical performance of our estimator: a small value of m
(i.e m <

√
n), while lightening the computational burden,

yields a worst rate than the O(1/
√
n) rate; a large value of

m >
√
n does not improve the error rate, as it is governed

by the first term in this case, and requires more computa-
tional and storage resources. This is expected since our
estimator does not use more information on the distribution
than the empirical estimator from which it is derived.

The precise trade-off should be settled by the third term.
However, in its current form, it depends simultaneously
on the subsample size m and on the effective dimension
N . Extra assumptions about the effective dimension – i.e.,
about the interaction between the kernel and the probability
distribution – are needed to obtain a more explicit and work-
able bound. To get a clearer picture, we derive sufficient
conditions in the following corollary to get a O(n−1/2) rate
under various assumptions on the decay of the effective
dimension.

Corollary 4.1. Let the assumptions of Theorem 4.1 hold.
Assume furthermore that the effective dimension N satisfies,
for some c > 0,

• either N (λ) ≤ cλ−γ for some γ ∈]0, 1],

• or N (λ) ≤ log(1 + c/λ)/β, for some β > 0.

Then, choosing the subsample size m to be

• m = n1/(2−γ) log(n/δ) in the first case;

• or m =
√
n log(

√
nmax(1/δ, c/(6K2)) in the sec-

ond case,
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we get

∥µ− µ̂m∥ = O

(
1√
n

)
.

Let us comment on the assumptions on the decay of the
effective dimension. Those assumptions can be linked to
the decay of the eigenvalues (σi)i of the covariance matrix.
First, note that the λ−γ rate always holds for γ = 1. More
generally, it holds when the eigenvalues decay polynomially
as σi ≲ i−1/γ , see e.g. Della Vecchia et al. (2021, Proposi-
tion 4). Similarly, the second rate holds for instance when
the eigenvalues decay exponentially σi ≤ ce−λi, see e.g.
Della Vecchia et al. (2021, Proposition 5).

Corollary 4.1 shows that, under mild assumptions on the
kernel and on the decay of the effective dimension, our
estimator fulfills the goals set in Section 2.1: it preserves
the O(1/

√
n) error rate of the empirical estimator while

reducing computational and storage costs.

Finally, we stress that our result only holds for uniform
subsampling. While other sampling strategies, and in par-
ticular sampling proportionally to the so-called leverage
scores (Alaoui et al. 2015), are known to be more effective
in practice (in the sense that the same error might be ob-
tained with a comparatively smaller value of m), it is not
clear if and how our proof can be adapted to this setting.

Note that the quantity ∥µ− µ̂m∥2 can also be bounded by
1
n∥Kn −Knys∥ where Kn and Knys denote respectively the
full kernel matrix and its Nyström approximation, and ∥·∥
the operator norm. However, the works providing bounds
in this context such as Kumar et al. (2012) and Musco et al.
(2017) work in a fixed design. For this reason, such results
would not directly be applicable in our setting, and it does
not seem at first sight that any of the results imply the other.

5. Application: efficient estimation of the
maximum mean discrepancy

The maximum mean discrepancy being built from kernel
mean embeddings, its empirical estimation suffers as well
from the computational issues discussed above. In this
section, we introduce a sample-efficient estimator of the
maximum mean discrepancy based on the kernel mean
embedding estimator introduced in (5), and derive a high-
probability upper bound on its approximation error.

We begin by stating the formal setting of this section. Let ρ1
and ρ2 be two probability measures whose supports are in
the same space X (but not necessarily identical). We assume
that we are given nk ≥ 1 i.i.d. samples Xk

1 , . . . , X
k
nk

from
ρk, for k ∈ {1, 2}. Let Pk denote the orthogonal projec-
tion onto Hk = span{X̃k

1 , . . . , X̃
k
mk

} where the landmarks
X̃k

1 , . . . , X̃
k
mk

are independently sampled from the empiri-

cal distribution ρ̂k = 1
nk

∑n
i=1 δ(X

k
i ).

Since the maximum mean discrepancy between two proba-
bility distributions corresponds to the norm of the difference
between the mean embeddings of those distributions, our
Nyström mean embedding estimator from (5) yields a natu-
ral estimator for the MMD:

M̂MD := ∥µ̂(ρ1)
m1

− µ̂(ρ2)
m2

∥,

where for k ∈ {1, 2},

µ̂(ρk)
mk

= Pkµ̂(ρk).

The next result provides a high-probability upper bound
on the difference (measured w.r.t. the norm of the feature
space) between the true maximum mean discrepancy and
our estimator,

Err(nk,mk)k := |MMD(ρ1, ρ2)− M̂MD|.

Theorem 5.1 (Estimation error for the approximation
of the MMD). Let Assumption 4.1 hold. Furthermore,
assume that for k ∈ {1, 2}, the data points Xk

1 , . . . , X
k
nk

are drawn i.i.d. from the distribution ρk and that mk ≤
nk sub-samples X̃k

1 , . . . , X̃
k
mk

are drawn uniformly with
replacement from the dataset {Xk

1 . . . , Xk
nk
}. Then, for

any δ ∈]0, 1[, it holds with probability at least 1− 2δ

Err(nk,mk)k ≤
∑

k∈{1,2}

c1√
nk

+
c2
mk

+

√
log(mk/δ)

mk

√
N (ρk)

(
12K2 log(mk/δ)

mk

)
,

provided that, for k ∈ {1, 2},

mk ≥ max(67, 12K2∥Ck∥−1
L(H)) log

(
mk

δ

)
,

where c1 = 2K
√
2 log(6/δ), c2 = 4

√
3K log(12/δ) and

c3 = 6K
√
log(12/δ). The notation N (ρk) denotes the

effective dimension associated to the distribution ρk.

The high-probability upper bound provided in the above
theorem is similar in spirit to that of Theorem 4.1. It follows
by replicating the proof of Theorem 4.1 for each measure ρ1
and ρ2 separately. As in Corollary 4.1, the third term can be
made more explicit by making assumptions on the effective
dimensions N (ρk), k ∈ {1, 2} and setting the right subsam-
ple sizes (mk)k∈{1,2}. For more flexibility we allowed the
sample and subsample sizes to differ between the two prob-
ability distributions. In the case of large sample imbalance,
it might be interesting to choose a larger subsample size
for the smallest sample to improve the statistical error rate,
since it is guided by the smallest (sub)sample sizes.
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As a direction for future work, we note that, in a similar
spirit to Gretton et al. (2012), it is possible to derive a two-
sample test from our bound in Theorem 5.1.

Designing efficient MMD-based tests remains an impor-
tant research direction, and the simplicity of our approach
should allow to reduce computational costs compared to
state-of-the-art algorithms (Jitkrittum et al. 2016). How-
ever, this requires further development that are outside the
scope of this paper, and for this reason we do not compare
our approach to works focusing on efficient testing in the
following section.

6. Numerical experiments
In this section, we provide experimental results to illustrate
our theoretical findings on the decay of the approximation
error. We provide a proof of work in a simple experimental
setting, but extending these results to broader families of
datasets and kernel types would be interesting in the future.

6.1. Synthetic data

We first generate data according to a Gaussian mixture, i.e.
we choose X = Rd and ρ =

∑
1≤i≤p

1
pN (µi, I) where

the centers (µi)1≤i≤p are themselves drawn according to a
multivariate normal distribution N (0, 5I). For our exper-
iments, we choose d = 10, p = 8. We use the Gaussian
kernel k(x, y) = exp(−∥x − y∥22/(2σ2

k)), which satisfies
Assumption 4.1.

To efficiently compute the approximation error of the em-
bedding

∑m
j=1 αiϕ(xi), we use the decomposition

∥∥∥∥∥∥µ−
m∑
j=1

αiϕ(xi)

∥∥∥∥∥∥
2

=

∫∫
k(x, y) dρ(x) dρ(y) + αTKXα

− 2

m∑
j=1

αi

∫
k(x, xi) dρ(x)

which follows from the definition of µ (1), where KX

denotes the kernel matrix of the (xj)1≤j≤m and α =
[α1, . . . , αm]. Both integrals in this expression can be com-
puted in closed form for the considered distribution and
kernel as detailed in Appendix G.

Figure 1 shows the obtained error for both the empirical
estimator and the Nyström estimator when varying the size
of the support m. Both estimators are computed using
a sample of n =

{
103, 104, 105

}
points drawn from ρ,

and the standard deviation σk of the kernel is chosen to
be the median of the inter-points distance, estimated for
efficiency on a random subset of 1000 points. In this set-
ting the data distribution is sub-Gaussian, and as we are
using a Gaussian kernel the spectrum of the covariance

matrix decays exponentially (Widom 1963), i.e. we are in
the second setting of Corollary 4.1 and we expect to need
m ≥

√
n log(

√
n) to achieve the same rate as the empirical

estimator. This is indeed quite close to what is observed in
practice. We recall that the time complexity of our method
is Θ(nmd+m3), and we also include in the settings where
n is moderate results for the greedy methods of Cortes et al.
(2014) (which runs in Θ(nmd+m3) and Θ(nm) space), L.
Chen et al. (2018) (Θ(nm(m+d))) and Keriven et al. (2017)
(Θ(nd2m+ Id2m3) where I is a fixed number of iterations,
using a sketch of size md; although this method makes use
of random features, we use the recovered landmarks to build
an estimate in the reproducing kernel Hilbert space). Our
method performs similarly to the first two, which come with
no statistical approximation guarantees, while the method
of Keriven et al. (2017) yields better approximations but at
a significantly higher cost.

Although we only plot the error of the mean embedding
estimation for conciseness, the error of the MMD estimation
has exactly the same behavior.

6.2. Real datasets

We then perform experiments with data from the
Fasttext1 (Bojanowski et al. 2016) (english features),
FMA2 (Defferrard et al. 2016) (MFCC features), Intel Lab3

and Gowalla4 (Cho et al. 2011) datasets, which respectively
consist of text features in dimension 300, audio features
in dimension 20, physical measurements in dimension 5
and geolocation data in dimension 2. We use the whole
dataset for FMA, resulting in N = 106574 points, while
for Fasttext, Gowalla and Intel Lab we limit ourselves to
N = 100000 randomly selected points. For each dataset,
we consider ρ to be the uniform distribution over these
points, and we build the empirical estimator using a random
sample of size n = 104.

Results are presented in Figure 2, and display the same
behavior as with synthetic data. While we don’t have any
particular guarantees on the spectrum’s decay in this setting,
it is still verified empirically than choosing m of the order
of

√
n log(

√
n) is sufficient to obtain an error of the same

order as the empirical estimator for all datasets but Fasttext.
Note that we did not optimize the kernel choice for all our
experiments. It could be the case that an even faster de-
cay of the error happens for an optimized choice of kernel.
The slower error decrease for the Nyström estimator on the

1https://fasttext.cc/docs/en/
english-vectors.html

2https://github.com/mdeff/fma
3http://db.csail.mit.edu/labdata/labdata.

html
4https://snap.stanford.edu/data/

loc-gowalla.html

https://fasttext.cc/docs/en/english-vectors.html
https://fasttext.cc/docs/en/english-vectors.html
https://github.com/mdeff/fma
http://db.csail.mit.edu/labdata/labdata.html
http://db.csail.mit.edu/labdata/labdata.html
https://snap.stanford.edu/data/loc-gowalla.html
https://snap.stanford.edu/data/loc-gowalla.html
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Figure 1: Estimation errors ∥µ− µ̂∥ (in blue) and ∥µ− µ̂m∥ (in orange) as well as for other heuristics for synthetic Gaussian
data. Means (solid lines), 5-percentiles and 95-percentiles over 100 trials (shaded regions). The data distribution is fixed and
identical for the 3 values of n.
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Figure 2: Estimation errors for the empirical estimator ∥µ− µ̂∥ (in blue) and the Nyström estimator ∥µ− µ̂m∥ (in orange)
for real datasets. Means (solid lines), 5-percentiles and 95-percentiles over 100 trials (shaded regions). The data distribution
is fixed and identical for the 3 values of n.

Fasttext dataset could be explained by many factors such as,
for instance, a slow decay of the covariance operator eigen-
values. This issue requires further empirical exploration,
which is out of scope for this paper. On the other side, on
the Intel Lab dataset it seems that the error of the Nyström
estimator decays even faster and only m ≈ 20 features are
sufficient to obtain the same error as the empirical estimator.
Here again, similar results can be obtained for the maximum
mean discrepancy but are omitted for conciseness.

7. Conclusion
In this article, we introduced a simple and efficient estima-
tor of the kernel mean embedding based on the Nyström
approximation. Both theoretical and empirical results show
that in most settings, an approximation supported on the
features of m ≪ n points (typically m ≈

√
n) will have

the same error than that of the empirical estimator while
enjoying much better computational properties and being
efficiently storable.

An interesting question for future work is to see whether
our results can be improved with other sampling strategies:
while it is well known that leverage scores sampling allows
in many related contexts to achieve the same error with a
smaller number of landmarks, it is not clear for now how
to obtain meaningful theoretical guarantees under this sam-
pling scheme.
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Belhadji, Ayoub, Rémi Bardenet, and Pierre Chainais
(Dec. 31, 2019). “Kernel Quadrature with DPPs”. In:
Advances in Neural Information Processing Systems.
Vol. 32, pp. 12927–12937. arXiv: 1906.07832 [cs,
stat].

Bojanowski, Piotr, Edouard Grave, Armand Joulin, and
Tomas Mikolov (2016). “Enriching Word Vectors with
Subword Information”. arXiv: 1607.04606.

Borgwardt, Karsten M., Arthur Gretton, Malte J. Rasch,
Hans-Peter Kriegel, Bernhard Schölkopf, and Alexander
J. Smola (2006). “Integrating structured biological data by
Kernel Maximum Mean Discrepancy”. In: Proceedings
14th International Conference on Intelligent Systems for
Molecular Biology 2006, Fortaleza, Brazil, August 6-10,
2006, pp. 49–57.

Chatalic, Antoine, Vincent Schellekens, Florimond Hous-
siau, Yves-Alexandre De Montjoye, Laurent Jacques, and
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Defferrard, Michaël, Kirell Benzi, Pierre Vandergheynst,
and Xavier Bresson (2016). “FMA: A Dataset for Music
Analysis”. In: ISMIR. arXiv: 1612.01840.

Della Vecchia, Andrea, Jaouad Mourtada, Ernesto De Vito,
and Lorenzo Rosasco (Feb. 25, 2021). “Regularized ERM
on Random Subspaces”. arXiv: 2006.10016 [cs,
stat].

Diestel, Joseph and John Jerry Uhl (1977). Vector Mea-
sures. Mathematical Surveys and Monographs 15. Ameri-
can Mathematical Soc. ISBN: 0-8218-1515-6 978-0-8218-
1515-1.

Gretton, Arthur, Karsten M. Borgwardt, Malte J. Rasch,
Bernhard Schölkopf, and Alexander J. Smola (2012). “A
Kernel Two-Sample Test”. In: J. Mach. Learn. Res. 13,
pp. 723–773.
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Structure of the Appendix
We begin by introducing additional notations in Appendix A. Then, in Appendix B, we prove how to obtain the claim
made in Eq. (5). Appendix C contains the proof of Theorem 4.1 as well as its corollaries. Appendix D contains the proof
of Theorem 5.1. We gather in Appendix E the concentration results that our proof of Theorem 4.1 rely on. We recall in
Appendix F a key result for Nyström subsampling. Finally we detail some computations used in the numerical experiments
in Appendix G.

A. Additional notations
We define the empirical covariance operator as

Ĉn =

n∑
i=1

ϕ(xi)⊗H ϕ(xi).

For any operator Q : H :→ H and any real number λ > 0, we denote by Qλ : H → H the regularized operator
Qλ = Q+ λI . We denote the (Moore-Penrose) pseudo-inverse of an operator A by A+.

Given a random variable X , we write ess supX to denote its essential supremum.

1n ∈ Rn denotes the n-dimensional vector of ones.

B. Derivation of the weights
This section provides a proof for the claim in Eq. (5). For ease of exposition, let us introduce the operators

Φm : Rm → Hm, α 7→
m∑
j=1

αjϕ(X̃j),

Φn : Rn → H, α 7→
n∑

i=1

αiϕ(Xi).

Since, by definition, µ̂m is the orthogonal projection of µ̂ onto the space Hm, it can be expressed as µ̂m = Φmα where the
weights α ∈ Rm minimize the mapping β 7→ ∥µ̂− Φmβ∥2. Setting the gradient of this mapping to zero, we obtain that α
must satisfy

Φ∗
mΦmα = Φ∗

mµ̂.

The minimum norm solution of the above equation is given by α = (Φ∗
mΦm)+Φ∗

mµ̂ (Laub 2004). Noting that the empirical
measure µ̂ can be expressed as µ̂ = 1

nΦn1n and using the fact that Φ∗
mΦm = Km, Φ∗

mΦn = Kmn, we obtain the claimed
equality

α = K+
mΦ∗

m(n−1Φn1n) =
1

n
K+

mKmn1n.

C. Proof of the main result
C.1. Generic bound

Theorem 4.1 is a consequence of a generic bound which we state now.

Lemma C.1. Let Assumption 4.1 hold. Furthermore, assume that the data points X1, . . . , Xn are drawn i.i.d. from
the distribution ρ and that m ≤ n sub-samples X̃1, . . . , X̃m are drawn uniformly with replacement from the dataset
{X1 . . . , Xn}. Then, for any λ ∈]0, ∥C∥L(H)] and δ ∈]0, 1[, with probability at least 1− δ

∥µ− µ̂m∥ ≤
2K
√
2 log(6/δ)√

n
+
√
λ

(
4
√
3N∞(λ) log(12/δ)

m
+ 6

√
N (λ) log(12/δ)

m

)
,
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provided that

• m ≥ max(67, 5N∞(λ)) log 12K2

λδ ,

• λn ≥ 12K2 log(4/δ).

Proof of Lemma C.1: Let δ ∈ (0, 1) be the desired confidence level. Let λ > 0, m ∈ N and n ∈ N satisfy the conditions
of the theorem. Using the error decomposition of Lemma 4.1, we get

∥µ− µ̂m∥ ≤ ∥µ− µ̂∥+ ∥P⊥
mC

1/2
λ ∥L(H)∥C

−1/2
λ (µ̂− µ̃m)∥.

Controlling the first term amounts to measuring the concentration of an empirical mean around its true mean in a Hilbert
space. Multiple variants of such results can be found in the literature (see, e.g., (Pinelis 1994)). We apply here Lemma E.1
on the random variables ηi := ϕ(Xi)− µ, 1 ≤ i ≤ n. Note that they are indeed bounded since, for any index 1 ≤ i ≤ n,
∥ηi∥ ≤ 2 supx∈X ∥ϕ(x)∥ = 2K. Thus, it holds with probability at least 1− δ/3 on the draw of the the dataset X1, . . . , Xn

that

∥µ− µ̂∥ ≤
2K
√
2 log(6/δ)√

n
.

Next, we rely on Lemma F.1 to bound the term ∥P⊥
mC

1/2
λ ∥L(H) with high probability. Since the Nyström landmarks are

uniformly drawn and m ≥ max(67, 5N∞(λ)) log 12K2

λδ , we have, for any λ > 0, with probability at least 1− δ/3 on the
draw of the landmarks X̃1, . . . , X̃m,

∥P⊥
mC

1/2
λ ∥L(H) ≤

√
3λ.

Finally, the last term can be bounded using Lemma E.5 which implies that, since λ satisfies 0 < λ ≤ ∥C∥L(H) and
λn ≥ 12K2 log(4/δ), it holds with probability at least 1− δ/3

∥∥∥C−1/2
λ (µ̂− µ̃m)

∥∥∥ ≤
4
√
N∞(λ) log(4/δ3)

m
+

√
12N (λ) log(4/δ3)

m
.

Taking the union bound over the three events yields the desired result: with probability at least 1− δ (over all sources of
randomness), it holds that

∥µ− µ̂m∥ ≤
2K
√

2 log(6/δ)√
n

+
√
3λ

(
4
√

N∞(λ) log(12/δ)

m
+

√
12N (λ) log(12/δ)

m

)
.

□

C.2. Proof of Theorem 4.1

Proof of Theorem 4.1: Assuming that our choice of m and λ satisfies the constraints
m ≥ max(67, 5N∞(λ)) log 12K2

λδ
λn ≥ 12K2 log(4/δ)
0 < λ ≤ ∥C∥L(H)

, (7)

we can apply Lemma C.1 and use the fact that N∞(λ) ≤ K2/λ to get

∥µ− µ̂m∥ ≤
2K
√
2 log(6/δ)√

n
+

4
√
3K log(12/δ)

m
+ 6
√

log(12/δ)

√
λN (λ)

m
.

Setting λ = 12K2 log(m/δ)
m we obtain the claimed result with constants c1 = 2K

√
2 log(6/δ), c2 = 4

√
3K log(12/δ), and

c3 = 12
√

3 log(12/δ)K.
Let us now check that our choices are consistent with the constraints. We will also obtain a more user-friendly expression for
the constraints and express the sub-sample size m as a function of the sample size n. Using the fact that N∞(λ) ≤ K2/λ,
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one can easily check that a sufficient set of conditions to satisfy (7) is given by
m ≥ 67 log

(
1
δ

m
log(m/δ)

)
m ≥ 5m

12 log(m
δ )

log
(

1
δ

m
log(m/δ)

)
log(4/δ)

n ≤ log(m/δ)
m

12K2 log(m/δ)
m ≤ ∥C∥L(H)

.

As m ≤ n, the third condition is satisfied as soon as m ≥ 4. Moreover, with this choice of m, we have log(m/δ) > 1,
hence the second constraint always holds and we are left with

m ≥ max(67, 12K2∥C∥−1
L(H)) log

(
m

δ

)
Note that this can be rewritten y − c log(y) ≥ 0 with y = m/δ and c = max(67, 12K2∥C∥−1

L(H))/δ.
By looking at asymptotic rates, it is clear that it is always possible to satisfy this equation by taking m large enough.
To find the threshold, we look for real solutions of −y

c + log
(

−y
c

)
+ log(−c) = 0. Taking the exponential we get

exp(−y
c )
(

−y
c

)
<
(
− 1

c

)
. Since δ < max(67, ∥C∥−1

L(H))/e always holds, the previous inequality is satisfied when

m ∈ −W (− 1
c )δc, where W denote the (multivariate) Lambert’s W function. This concludes the proof. □

Proof of Corollary 4.1: Under the conditions of Theorem 4.1, the latter gives

∥µ− µ̂m∥ ≤ c1√
n
+

c2
m

+
c3
√
log(m/δ)

m

√
N
(
12K2 log(m/δ)

m

)
We split the proof of the corollary in two parts, one for each family of assumptions on the effective dimension N (polynomial
and logarithmic growth).

Polynomial growth assumption: N (λ) ≤ cγλ
−γ . Setting m = n1/(2−γ) log(n/δ), we get

∥µ− µ̂m∥ ≤ c1√
n
+

c2
m

+ c3(12K
2)−γ/2 log(m/δ)

1−γ
2

m
2−γ
2

(8)

≤ 1√
n

(
c1 +

c2n
1/2

log(n/δ)n1/(2−γ)
+

c3(12K
2)−γ/2

log(n/δ)1/2

)
= O

(
1√
n

)
(9)

Logarithmic growth assumption: N (λ) ≤ log(1 + c/λ)/β. Since m ≥ 12K2 log(m/δ)
c , using the fact that log(1 + x) ≤

log(2x) for x > 1 we get√
log(m/δ)√

βm

√
log

(
1 +

cm

12K2 log(m/δ)

)
≤ 1√

βm

√
log(m/δ) log

(
cm

6K2 log(m/δ)

)
≤ 1√

βm
log(mmax(1/δ, c/(6K2)))

One can easily check that the choice m =
√
n log(

√
nmax(1/δ, c/(6K2)) yields the bound√

log(m/δ)√
βm

√
log

(
1 +

cm

12K2 log(m/δ)

)
≤ 2√

βn
.

Plugging the latter bound in (8), we obtain

∥µ− µ̂m∥ ≤ c1√
n
+

c2√
n log(

√
nmax(1/δ, c/(6K2))

+
2c3√
βn

= O

(
1√
n

)
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This concludes the proof.

□

D. Maximum Mean Discrepancy

Theorem D.1 (MMD). Let Assumption 4.1 hold. Furthermore, assume that for k ∈ {1, 2}, the data points Xk
1 , . . . , X

k
nk

are
drawn i.i.d. from the distribution ρk and that mk ≤ nk sub-samples X̃k

1 , . . . , X̃
k
mk

are drawn uniformly with replacement
from the dataset {Xk

1 . . . , Xk
nk
}. Then, for any λk ∈]0, ∥Ck∥L(H)] and δ ∈]0, 1[, with probability at least 1− 2δ

|MMD(ρ1, ρ2)− M̂MD| ≤
∑

k∈{1,2}

2K
√

2 log(6/δ)
√
nk

+
√

λk

4

√
3N (ρk)

∞ (λk) log(12/δ)

mk
+ 6

√
N (ρk)(λ) log(12/δ)

mk

,

provided that, for k ∈ {1, 2},

• mk ≥ max(67, 5N (ρk)
∞ (λk)) log

12K2

λkδ
,

• λknk ≥ 12K2 log(4/δ).

Proof of Theorem D.1: By definition of M̂MD, a reverse triangle inequality followed by a triangle inequality yields

|MMD(ρ1, ρ2)− M̂MD| =
∣∣∥µ(ρ1)− µ(ρ2)∥ − ∥P1µ̂(ρ1)− P1µ̂(ρ2)∥

∣∣
≤ ∥µ(ρ1)− µ(ρ2)− P1µ̂(ρ1) + P2µ̂(ρ2)∥

≤
∑

k∈{1,2}

∥µ(ρk)− Pkµ̂(ρk)∥.

We now apply twice Lemma C.1, and conclude via a union bound. □

E. Concentration inequalities
This section contains concentration results that we rely on to prove our main result.

The first lemma provides a high-probability control on the norm of the average of bounded random variables taking values
in a separable Hilbert space.

Lemma E.1. Let X1, . . . , Xn be i.i.d. random variables on a separable Hilbert space (X , ∥·∥) such that supi=1,...,n∥Xi∥ ≤
A almost surely, for some real number A > 0. Then, for any δ ∈ (0, 1), it holds with probability at least 1− δ that∥∥∥∥∥∥ 1n

n∑
i=1

Xi

∥∥∥∥∥∥ ≤ A

√
2 log(2/δ)√

n
.

The proof of Lemma E.1 relies on (Pinelis 1994, Theorem 3.5) which we recall now for clarity of exposition.

Lemma E.2. Let M = (Mi)i∈N be a martingale on a (2, D)-smooth separable Banach space (X , ∥·∥). Define∑∞
j=1 ess sup∥Mj −Mj−1∥2 ≤ b2∗, for some real number b∗ > 0. Then, for all r ≥ 0,

Pr

[
sup
j∈N

∥Mj∥ ≥ r

]
≤ 2 exp

(
− r2

2D2b2∗

)
.

We now prove Lemma E.1.
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Proof of Lemma E.1: Since X is a Hilbert space, it is 2-smooth with 2-smoothness constant D = 1. We define the
martingale (Mn)n∈N as M0 = 0, Mk =

∑
1≤i≤k Xk for 1 ≤ k ≤ n and Mk = Mn for k ≥ n, so that

dk := Mk −Mk−1 =

{
Xk, if 1 ≤ k ≤ n

0, otherwise
.

As a consequence, we have
∑∞

j=1 ess sup∥dj∥2 =
∑n

j=1 ess sup∥Xj∥2 ≤ nA2. Applying Pinelis’ inequality (Lemma E.2)
with b2∗ = nA2 yields

Pr


∥∥∥∥∥∥ 1n

n∑
i=1

Xi

∥∥∥∥∥∥ > ϵ

 = Pr
[
∥Mn∥ > nϵ

]
≤ Pr

[
sup

1≤j≤n

∥∥Mj

∥∥ > nϵ

]
≤ 2 exp

(
− nϵ2

2A2

)
.

We get the desired result by choosing ϵ = A
√
2 log(2/δ)n−1/2. □

The next result is a Bernstein-type inequality for random vectors defined in a Hilbert space.

Lemma E.3 (Bernstein inequality for Hilbert space-valued random vectors). Let X1, . . . , Xn be i.i.d. random variables
in a Hilbert space (H, ∥·∥) such that

• ∀i ∈ [n],EXi = µ,

• ∃σ > 0,∃H > 0,∀i ∈ [n],∀p ≥ 2, E∥Xi − µ∥p ≤ 1/2p!σ2Hp−2.

Then, for any δ ∈]0, 1[, we have with probability at least 1− δ,∥∥∥∥∥∥ 1n
n∑

i=1

Xi − µ

∥∥∥∥∥∥ ≤ 2H log(2/δ)

n
+

√
2σ2 log(2/δ)

n
.

Proof of Lemma E.3: Fix a confidence level δ ∈ (0, 1). Applying (Yurinsky 1995, Theorem 3.3.4) on the i.i.d. centered
random variables ξi = Xi − µ with B2 = σ2n, we get

Pr


∥∥∥∥∥∥ 1n

n∑
j=1

ξj − µ

∥∥∥∥∥∥ ≥ t

 ≤ Pr

 max
1≤k≤n

k

∥∥∥∥∥∥1k
k∑

j=1

ξj − µ

∥∥∥∥∥∥ ≥
(
tn

B

)
B

 ≤ 2 exp

(
−1/2

(tn)2

B2

(
1 +

tHn

B2

)−1
)
.

The RHS of the above is smaller than δ if and only if

t2n2 − t(2Hn log(2/δ))− 2B2 log(2/δ) ≥ 0.

Denoting ∆ = 4H2n2 log(2/δ)2+8n2B2 log(2/δ) > 0, this holds in particular if t ≥ H log(2/δ)
n +

√
∆

2n2 , and thus a fortiori
(using

√
∆ ≤

√
4H2n2 log(2/δ)2 +

√
8n2B2 log(2/δ)) when

t ≥ 2H log(2/δ)

n
+

√
2σ2 log(2/δ)

n
.

□

The following lemma provides a Bernstein-type bound for the empirical mean of Hilbert space-valued centered random
variables ’whitened” by regularized linear operator.

Lemma E.4. Let X1, . . . , Xn be i.i.d. random variables taking values in a separable Hilbert space (H, ⟨·, ·⟩) with associated
norm ∥·∥. We denote their mean by µX := EX1 and their covariance by C := E[X1 ⊗X1].
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Let Q : H → H be a linear operator. For any λ > 0 and δ ∈]0, 1[, it holds with probability at least 1− δ that∥∥∥∥∥∥Q−1/2
λ

 1

n

n∑
i=1

Xi − µX

∥∥∥∥∥∥ ≤
4 ess sup

∥∥∥Q−1/2
λ X1

∥∥∥ log(2/δ)
n

+

√
4 tr(Q−1

λ C) log(2/δ)

n
.

Proof of Lemma E.4: To prove the stated result we will apply Lemma E.3 on the random variables (ζi)1≤i≤n defined by

ζi = Q
−1/2
λ Xi. Let NQ(λ) = tr(Q−1

λ C) and NQ,∞(λ) := ess sup
∥∥∥Q−1/2

λ X1

∥∥∥.

For any index 1 ≤ i ≤ n, we have Eζ1 = Q
−1/2
λ µX ,

ess sup∥ζi −E[ζi]∥ ≤ 2 ess sup∥ζi∥ = 2N∞(λ)1/2,

and,

E∥ζi −E[ζi]∥2 = tr(E⟨ζi −E[ζi], ζi −E[ζi]⟩)
= tr(E

[
(ζi −E[ζi])⊗ (ζi −E[ζi])

]
)

= tr(E[ζi ⊗ ζi]−Eζi ⊗Eζi)

≤ tr(E[ζi ⊗ ζi])

= tr(Q
−1/2
λ CQ

−1/2
λ )

= NQ(λ).

Moreover, for any p ≥ 2,

∥ζi −E[ζi]∥p ≤ (E∥ζi −E[ζi]∥2)(ess sup∥ζi −E[ζi]∥p−2)

≤ 1/2(2NQ(λ))(2NQ,∞(λ)1/2)p−2

≤ 1/2p!(2NQ(λ))(2NQ,∞(λ)1/2)p−2.

The result follows from Lemma E.3 with constants σ2 = 2NQ(λ) and H = 2NQ,∞(λ)1/2. □

Lemma E.5 is a specialization of Lemma E.4 to bound the last term appearing in Lemma 4.1 in our setting of Nyström
uniform sampling.

Lemma E.5. Assume that the m ≥ 1 Nyström landmarks are sampled uniformly with replacement from the dataset
X1, . . . , Xn. If 0 < λ ≤ ∥C∥L(H) and λn ≥ 12K2 log(4/δ), it holds with probability at least 1− δ,

∥∥∥C−1/2
λ (µ̂− µ̃m)

∥∥∥ ≤
4
√
N∞(λ) log(4/δ)

m
+

√
12N (λ) log(4/δ)

m
.

Proof of Lemma E.5: Fix the desired confidence level δ ∈ (0, 1). Let us beginning by conditioning w.r.t. to the dataset
X1, . . . , Xn. As the landmarks are assumed to be drawn i.i.d., we can apply Lemma E.4 with Q = C on the i.i.d. random
variables hj := ϕ(X̃j), 1 ≤ j ≤ m, satisfying E[h1] = µ̂, E[h1 ⊗ h1] = Ĉn and ess sup∥C−1/2

λ h1∥2 ≤ N∞(λ): it holds
with probability at least 1− δ/2 (over the drawing of the landmarks) that

∥∥∥Q−1/2
λ (µX − µ̂X)

∥∥∥ ≤
4
√
N∞(λ) log(4/δ)

m
+

√
4 tr(C−1

λ Ĉn) log(4/δ)

m
.

Then, since we assumed λ ≤ ∥C∥L(H) and λn ≥ 12K2 log(4/δ), Lemma E.6 ensures that tr(C−1
λ Ĉn) ≤ 3N (λ) with

probability at least 1− δ/2 w.r.t. the dataset X1, . . . , Xn.
Finally, since the drawing of dataset and that of the indexes of the landmark are independent, the claimed bound holds with
probability at least (1− δ/2)(1− δ/2) ≥ 1− δ. □



Nyström Kernel Mean Embeddings

The next lemma

Lemma E.6. Let δ > 0, λ > 0 and n ∈ N be such that λ ≤ ∥C∥L(H) and n ≥ 12N∞(λ) log(2/δ). Then it holds with
probability at least 1− δ that

tr(C−1
λ Ĉn) ≤ 3N (λ).

Proof of Lemma E.6: Let us control the deviation of tr(C−1
λ Ĉn) from its expectation N (λ). We have

tr(C−1
λ Ĉn)−N (λ) = tr(C−1

λ (Ĉn − C)) =
1

n

n∑
i=1

ξi −E[ξi],

where we define ξi := tr(C−1
λ ϕ(Xi)⊗ ϕ(Xi)), i = 1, . . . , n. The random variables ξi, 1 ≤ i ≤ n, satisfy

|ξi −E[ξi]| =
∣∣∣tr(C−1

λ (ϕ(Xi)⊗ ϕ(Xi)− C))
∣∣∣ ≤ ∥∥∥C−1/2

λ ϕ(Xi)
∥∥∥2 +N (λ) ≤ 2N∞(λ)

and

E[(ξi −E[ξi])
2] = E[ξ2i ]− (Eξi)

2 ≤ ess sup |ξi|E[ξi] ≤ 2N∞(λ)N (λ).

Lemma E.3 with H = 2N∞(λ) and σ2 = 2N∞(λ)N (λ) ensures that with probability at least 1− δ,

| tr(C−1
λ Ĉn)−N (λ)| ≤ 4N∞(λ) log(2/δ)

n
+

√
4N∞(λ)N (λ) log(2/δ)

n
.

Since λ ≤ ∥C∥L(H), we have N (λ) = tr(CC−1
λ ) ≥

∥∥∥CC−1
λ

∥∥∥
L(H)

=
∥C∥L(H)

∥C∥L(H)+λ ≥ 1/2. Furthermore, using the

assumption n ≥ 12N∞(λ) log(2/δ), it holds with probability at least 1− δ,

tr(C−1
λ Ĉn) ≤ N (λ)

1 +
1

3N (λ)
+

√
1

3N (λ)

 ≤ N (λ)

(
1 +

2

3
+

√
2

3

)
≤ 2.5N (λ).

□

F. Nyström approximation result
To control the term involving P⊥

m , we rely on the following lemma from Rudi et. al (Rudi et al. 2015, Lemma 6).

Lemma F.1 (Uniform Nyström approximation). When the set of m landmarks is drawn uniformly from all partitions of
cardinality m, for any λ ∈]0, ∥C∥L(H)] we have

∥P⊥
m(C + λI)1/2∥2L(H) ≤ 3λ

with probability at least 1− δ provided

m ≥ max(67, 5N∞(λ)) log
4K2

λδ
.

G. Experiments
We provide here two expressions which are used to compute the exact error in Section 6.1.

We denote by Nx(µ,Γ) the evaluation of the Gaussian density of mean µ and covariance matrix Γ at point x.

Let d ≥ 1, µ, µ̃ ∈ Rd, and Γ = diag(γ1, . . . , γd), Γ̃ = diag(γ̃1, . . . , γ̃d). For any x, x̃ ∈ Rd, using (Petersen et al. 2008,
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Eq. 371),

Ex∼N (µ,Γ)k(x, x̃) =

∫
Rd

(2πτ2)d/2Nx(x̃, τ
2Id)Nx(µ,Γ)dx

= (2πτ2)d/2Nx̃(µ,Γ + τ2Id)

∫
Nx(mc,Σc)dx

= (2πτ2)d/2Nx̃(µ,Γ + τ2Id),

and

Ex̃∼N (µ̃,Γ̃)Ex∼N (µ,Γ)k(x, x̃) = (2πτ2)d/2
∫
Rd

Nx̃(µ,Γ + τ2Id)Nx̃(µ̃, Γ̃)dx

= (2πτ2)d/2Nµ̃(µ,Γ + Γ̃ + τ2Id).
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