State Transition of Dendritic Spines Improves
Learning of Sparse Spiking Neural Networks

Yangi Chen'? Zhaofei Yu'2?3 Wei Fang'? Zhengyu Ma "2 Tiejun Huang'?? Yonghong Tian " !?

Abstract

Spiking Neural Networks (SNNs) are considered
a promising alternative to Artificial Neural Net-
works (ANNGs) for their event-driven computing
paradigm when deployed on energy-efficient neu-
romorphic hardware. Recently, deep SNNs have
shown breathtaking performance improvement
through cutting-edge training strategy and flexi-
ble structure, which also scales up the number of
parameters and computational burdens in a single
network. Inspired by the state transition of den-
dritic spines in the filopodial model of spinogen-
esis, we model different states of SNN weights,
facilitating weight optimization for pruning. Fur-
thermore, the pruning speed can be regulated by
using different functions describing the growing
threshold of state transition. We organize these
techniques as a dynamic pruning algorithm based
on nonlinear reparameterization mapping from
spine size to SNN weights. Our approach yields
sparse deep networks on the large-scale dataset
(SEW ResNet18 on ImageNet) while maintain-
ing state-of-the-art low performance loss (~3%
at 88.8% sparsity) compared to existing pruning
methods on directly trained SNNs. Moreover, we
find out pruning speed regulation while learning is
crucial to avoiding disastrous performance degra-
dation at the final stages of training, which may
shed light on future work on SNN pruning.

1. Introduction

Spiking neural networks (SNNs), acclaimed as the third
generation of neural network models (Maass, 1997), have

'National Engineering Research Center of Visual Technology,
School of Computer Science, Peking University >Peng Cheng Lab-
oratory *Institute for Artificial Intelligence, Peking University. Cor-
respondence to: Zhaofei Yu <yuzfl2@pku.edu.cn>, Zhengyu Ma
<mazhy @pcl.ac.cn>, Yonghong Tian <yhtian@pku.edu.cn>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

drawn more and more attention from researchers in the past
few years. Compared to artificial neural networks (ANNs),
SNNs go a step further in mimicking the computing pat-
tern of human brains. Neurons in SNNs release discrete
events, namely “spikes”, to communicate with each other
and thereby called spiking neurons. As human brains con-
sume only around 20W (Mink et al., 1981) while processing
various complicated tasks, SNNs are also energy efficient
when deployed on neuromorphic hardwares (Merolla et al.,
2014; Furber et al., 2014; Ma et al., 2017; Davies et al.,
2018; Pei et al., 2019). Furthermore, the spiking neuron
models follow their biological counterparts and inherit com-
plex temporal dynamics from them, endowing SNNs with a
strong ability to extract spatio-temporal features on multi-
ple tasks such as recognition (Payeur et al., 2021; Stockl &
Maass, 2021; Wu et al., 2021; Fang et al., 2021a;b), detec-
tion (Kim et al., 2020), segmentation (Kirkland et al., 2020),
and tracking (Luo et al., 2019; 2021).

Larger and deeper SNNss are demanded to handle tasks with
growing scales of datasets. In the field of ANNS, large-scale
datasets like ImageNet require networks with an enormous
number of parameters, such as GoogLeNet (Szegedy et al.,
2015) or ResNet (He et al., 2016). The situation for SNNs
is similar, thereby large SNNs with the same structures like
Spiking ResNet (Zheng et al., 2021; Hu et al., 2021) and
SpikingGoogleNet (Zhou et al., 2021) are built. However,
the number of parameters in these architectures is far beyond
what neuromorphic chips can now support, especially for
those with one hundred or more layers. For example, a
48-node SpiNNaker board is able to simulate networks with
up to 250,000 neurons and 80 million synapses (Furber
et al., 2014), which is not enough for any single network
mentioned above. Therefore, pruning redundant weights in
SNNS is a promising approach to deploy large networks to
event-based hardware.

The sparsification of network weights, or pruning of net-
works has been a flourishing area (Han et al., 2015) since
deep ANNSs show their power on real-life tasks. Compared
with ANNs, SNNs make better use of unstructured sparsity
for their event-driven nature. This is because the computa-
tion on event-driven hardware is triggered only when both
incoming spikes and network weights are nonzero (Merolla

State Transition of Dendritic Spines Improves Learning of Sparse SNNs

et al., 2014), which does not require coarse-grained spar-
sity to reduce running costs as in ANNs. Based on the
above reason, we need a feasible unstructured pruning al-
gorithm. In previous studies of SNN pruning, researchers
show a preference for existing methods from ANN pruning.
These methods work well on smaller datasets like MNIST or
CIFAR-10, whereas they have not been evaluated on large-
scale networks or complex datasets like ImageNet. Some
studies turn to biological mechanisms and propose heuristic
methods. However, these techniques are more or less con-
fined to biological facts and hence lack rationality from the
perspective of sparse optimization.

In this paper, we develop a reparameterization framework
from the size of the spine to the real connection weights
based on the state transition of the dendritic spine in the neu-
ral system, enabling us to prune connections of SNNs. Our
modeling facilitates the sparsification of deep SNNs while
maintaining low performance loss, reaching the state-of-the-
art balance between accuracy and sparsity on large-scale
datasets. Furthermore, we show the importance of schedul-
ing threshold between the state “mature spine” and the state
“filopodium” by extensive experiments on the performance
of sparse SNNs.

The main contributions of this paper can be summarized as
follows:

* Inspired by the filopodial model of spinogenesis, we
manage to model two kinds of state transitions of den-
dritic spines: 1) Mature dendritic spines and filopodia
2) Excitatory and inhibitory synapses; by using a non-
linear reparameterization function. It gets rid of Dale’s
law and keeps exchanging the signs of weights for effi-
ciency optimization, while still maintaining the ability
to sparsify weights of SNNs.

* We provide proof of convergence and theoretical anal-
ysis of the sparsity springhead in our algorithm from
the perspective of sparse optimization.

* We conduct extensive experiments on pruning of SEW
ResNet18 on ImageNet classification tasks and it
achieves state-of-the-art low performance loss. To the
best of our knowledge, it is the first time highly sparse
SNNs (88.8% sparsity) achieve so little performance
loss (~ 3%) on ImageNet dataset.

* We make an in-depth discussion of excellence and dis-
advantages between different settings (threshold sched-
ulers) of our approach by tracking multiple properties
during learning. We also show a preliminary explana-
tion of the performance variation.

2. Related Work

Previous researches on lightweight SNNs are principally
conducted from five aspects: 1) Pruning 2) Quantization 3)
Reduction of firing rates 4) Sparse training 5) Knowledge
distillation.

Quantization methods for SNNs have been developed for a
long time since the same techniques were applied to ANNs
(Stromatias et al., 2015; Neftci et al., 2016). Recent ad-
vances in quantization for SNNs (Qiao et al., 2021; Wang
et al., 2021; Kheradpisheh et al., 2021) are mainly focused
on binary weights and different tasks. Introducing firing
rate as an explicit regularization term to the loss is the most
general way to suppress firing rates (Neil et al., 2016; Zenke
& Vogels, 2021; Deng et al., 2021). Sparse approxima-
tion to gradients reduces training costs of SNNs (Zenke &
Neftci, 2021; Perez-Nieves & Goodman, 2021). Distilling
knowledge from large ANN (Takuya et al., 2021) or SNN
(Kushawaha et al., 2021) to smaller SNN is also a substitute
for direct compression.

By comparison, the pruning for SNNs draws more attention
since it has corresponding physiological processes, which
leads a way to efficient SNN structure. To the best of
our knowledge, the earliest series of researches concern-
ing pruning of networks with firing neurons (Chechik et al.,
1998; 1999) borrows biological mechanisms like synaptic
turnover.

Recent researches on SNN pruning are primarily from two
starting points: 1) Learning from successful experience of
ANN pruning 2) Exploring biological counterparts. The for-
mer technical route is much more popular, which initially en-
ables some tentative work inserting magnitude-based prun-
ing to different training methods of SNNS, e.g., event-driven
contrastive divergence (eCD) (Neftci et al., 2016), STDP
(Rathi et al., 2019; Nguyen et al., 2021), ANN2SNN (Mern
et al., 2017; Liu et al., 2020). The success of training deep
SNNs using the surrogate gradient method (Neftci et al.,
2019), or STBP (Wu et al., 2018), arouses a swarm of prun-
ing strategies (Martinelli et al., 2020; Deng et al., 2021; Yin
et al., 2021) via integrating newly developed ANN pruning
algorithms. Meanwhile, in view of the similarity between
SNNs and neural systems, there are some attempts to bio-
inspired pruning algorithms. Modeling the regrowth process
(Kundu et al., 2021) is proved to be a competent strategy.
This idea can be further combined with the modeling of den-
dritic spines in SNNs to enhance pruning, which introduces
spine motility (Kappel et al., 2015; Bellec et al., 2018b) or
gradient (Chen et al., 2021) as a criterion of regrowth. Both
criteria achieve a reasonable trade-off between sparsity and
accuracy on deep SNNs and also provide solid theoretical
proof for their algorithms.

State Transition of Dendritic Spines Improves Learning of Sparse SNNs

.5 Inhibitory Excitatory —

£

Q.00

é D T oSS oooooooooooooossosooooooooooos >

gk

© | E
<E @@ ®® 2 E:
O o =

2

23

.=

25 AN

A

Figure 1. Scheme for weight reparameterization and transitions between filopodia and mature dendritic spines, and transitions between
different types of synapses. Yellow areas represent the axon terminal. Blue and green areas distinguish two types of dendritic spines, i.e.
inhibitory and excitatory. GABA and glutamate exemplify the main kinds of inhibitory and excitatory neurotransmitters in the mammalian

cortex respectively.

3. Preliminaries
3.1. Spiking Neuron Model

The Leaky Integrate-and-Fire (LIF) model (Gerstner &
Kistler, 2002) is among the most popular neuron models
for its low computing costs. For a layer of spiking neu-
rons, we denote [;(t) as the input from the ¢-th presynaptic
neuron and w; as the corresponding synaptic weights. The
subthreshold membrane potential u(t) of the postsynaptic
neuron can be expressed in the form of an ordinary differen-
tial equation (ODE).
du(t)

Tm, at (u(t) — Urest) + Zl wil;(t), (D

where 7, is a positive membrane time constant, and Uy 1S
the resting potential. When w(t) reaches the firing threshold
ug, at time ¢/, a spike is generated and at the same time,
the membrane potential u(t) is reset to the resting potential

Urest -

lim u(tf + At) = Upegt, if u(tf) > U 2)
At—0t

In computer simulation, we generally need to consider a
discrete version of Eq. (1) and Eq. (2). By Euler method,
Eq. (1) and Eq. (2) can be discretized as follows:

ult™] = ult — 1]

bl = 1]) + 3 i)
s[t] = H(ult™] — um),
ult] = stures + (1 — s[t])ult™], 3)

where u[t™], u[t] are the membrane potential before and
after firing at timestep ¢ respectively, and H (-) is the Heavi-
side step function. If u[t~] > wugy, it will produce a binary

spike s[t] and the u[t] will reset to ues Or otherwise left
unchanged.

3.2. Dendritic Spine

Dendritic spines (or simply spines) are small membranous
protrusions that arise from dendrites, which connect den-
drites to axon terminals (Yuste, 2010), allowing presynaptic
spikes to be delivered to postsynaptic neurons. Fig. 1 il-
lustrates the status of contact between spines, which has
two types (excitatory and inhibitory) and various sizes, and
axons. It is widely recognized that synaptic weights in the
mammalian brain are significantly correlated to the size fac-
tor, e.g., head size (Matsuzaki et al., 2001; 2004; Béique
et al., 2006), neck length (Noguchi et al., 2005) and neck
width (Tgnnesen et al., 2014) of spines, which affects the
long-term dynamics like long-term potentiation (LTP) and
long-term depression (LTD) (Engert & Bonhoeffer, 1999).
Larger spines have more receptors and thus inject more cur-
rent into the dendrite, arousing stronger inhibitory postsy-
naptic potential (IPSP) or excitatory postsynaptic potential
(EPSP). The type of synapse is determined by neurotrans-
mitters released from axon terminals of presynaptic neurons
and receptors on spines. As shown in Fig. 1, glutamate and
gamma-aminobutyric acid (GABA) are, respectively, the
major excitatory and the major inhibitory neurotransmitters
in the mature mammalian brain (Fonnum, 1984; Bhat et al.,
2010). Spikes from excitatory synapses increase the firing
rates of neurons while spikes from inhibitory synapses do
the opposite, which corresponds to the positive and negative
weights in SNNs, respectively. Weight changes in SNNs are
similar and usually considered analogical to enlargement or
shrinkage of spines (Kappel et al., 2015).

State Transition of Dendritic Spines Improves Learning of Sparse SNNs

4. Methodology

4.1. Reparameterization of Weights

The synaptic weights in SNNs are generally treated as their
counterparts in ANNs. Despite the previous success in
deep learning of SNNs, there are few attempts to model
pruning in SNNs as a gradient-based optimization problem
since it is hard to restrict the synaptic weights exactly to
zero, where it generally has a nonzero gradient. We point
out that the status “pruned” should not be modeled as a
single point but an interval on the real axis. Furthermore, it
is wise to allow the exchange of positive (excitatory) and
negative (inhibitory) weights, since they may be initialized
improperly if the types are fixed.

In fact, researches in neuroscience have revealed that there
exists an intermediate state, namely “dendritic filopodia”,
for renascent spines in hippocampal neurons (Fiala et al.,
1998). Filopodia are deemed the structural precursors of
dendritic spines (Zuo et al., 2005), and they rarely form
connections to presynaptic axons. We model such behav-
ior as reparameterization mapping from the size of the
spine/filopodium || to the real connection weights w, the
sign of weights represents the type of synapses (excita-
tory/inhibitory), which is formulated as

w = sign(6) - (6] — d)+,d > 0,)

where ()4 := max(x,0). When the size of the connection
is below threshold d, it is considered a filopodium, and the
equivalent weight is zero. As shown in Fig. 1, filopodia lack
synaptic contact to axons, since they are not large enough to
form links. It becomes an existent connection when the size
increases to above d. During each update of the weights,
the threshold d will increase gradually and turn mature
spines to filopodia progressively. Specifically, there are two
kinds of state transitions: (1) Transition between filopodia
and mature spines (pruning and regrowth), (2) Transition
between excitatory and inhibitory synapses (flip sign). A
scheme for the weight reparameterization and corresponding
state of the spine is shown in Fig. 1. It should be noted that
our approach will not change the default initialization of
weights. In practice, the weight w is first initialized and
then we calculate corresponding spine size 6.

Notice that similar modeling has also been proposed in
a series of works of rewiring in ANNs/SNNs. The ex-
isting work adheres to Dale’s law that the sign of weight
(type of neurotransmitter) should not change during learn-
ing, i.e., d — 400 and fixed (Bellec et al., 2018a; Chen
et al., 2021) or using exponential reparameterization (Kap-
pel et al., 2015), which is true for biological synapses. How-
ever, these settings are inflexible and introduce unnecessary
restrictions to the representation capacity of SNNs. The
form of reparameterization function in Eq. (4) is consistent
with the model in a previous work (Kusupati et al., 2020)

with trainable d concerning ANN pruning. Instead, we fo-
cus on finding the best evolution strategy of d, rather than
giving an optimal choice of fixed d. Besides, our algorithm
is biology-inspired from a completely different perspective.

4.2. Direct Training using Surrogate Gradient

With the proposed reparameterization framework (Eq. (4)),
the gradient descent algorithm can be directly applied to
optimize the spine size € and synaptic weights w of the
SNN. Specifically, we manage to derive the gradients of loss
function £ with respect to SNN weights V,, L by applying
backpropagation through time (BPTT) along the path in
the computational graph defined by iterative computing in
Eq. (3). Additionally, the gradient with respect to spine size
VL is given through reparameterization mapping by

ow

Note that unlike in ANNSs, gradient based training meth-
ods in SNNs must deal with nondifferentiable Heaviside
function H(-) in Eq. (3). The actual derivative of Heaviside
function is undefined at zero and O elsewhere. The pioneers
of SNN learning (Zenke & Ganguli, 2018; Wu et al., 2018;
Neftci et al., 2019) introduce some differentiable functions
as alternatives of H (-), namely surrogate function, making
calculation of gradients tractable. We choose a recently
proposed function (Fang et al., 2021a)

H*(z) = % arctan(gﬂx) + % (6)

as surrogate function during training, where £ is the slope
parameter.

4.3. Case Study: How sparsity is induced?

To clarify how this algorithm enforces sparsity in SNN
learning, we discuss three different cases of update rules.
If not otherwise specified, the superscript ¢ here, e.g. dt,
denotes the corresponding symbol after the ¢-th training step.
For convenience, we define the notation of element-wise
soft threshold operator as

Sa(w) = sign(x)-(Jz|-A)4 = {g . :2: - A
(7

To begin with, we derive the actual gradient with Eq. (4)
and Eq. (5).

VoL(6"") = Vi L(w'™!) - diag(Ljpe-1/54), (8)
where 1/g:-1|- 4 is an indicator vector, of which the corre-

sponding element is 0 when !~ € [~d, d] and 1 otherwise.
The general update rule for spine sizes in SNN is given as

0" =6""' —VeL(0")

) 0o 9)
= 0" — Vo L(w' ™) - diag(Ljge-1|5.q),

State Transition of Dendritic Spines Improves Learning of Sparse SNNs

Case 1

Case 2

Case 3

-2 -1 0 1 2 -2 -1
0

Figure 2. Tllustration of different cases discussed in Section 4.3. The red points represents the starting points (§°~*, w'™'). They move to

blue points (8%, w’) according to gradient update. The increment from d’~! to d* shrinks the weights and moves the blue points to
green points (6, w"). The solid and dashed black lines represent mapping Sy—1(-) and Syt (-) respectively.

where 7) is the learning rate. The corresponding gradient
update rule for weights is

w' =8,1(6"), (10)

where w' is the intermediate weights before shrinkage
(update of the threshold d). The above update is followed
by the increment of d, which is

w' = 84(6") = Saar(w'”) = Saw(Su-1(6Y), (1)

where Adt == dt — dt~1 > 0.

We classify different cases according to whether an element
w'~! of w!~! changes its sign, i.e. sign(w! w'~!) =1or
—1 after gradient update described in Eq. (10), and whether
the weight w’~? is zero or not. For a nonzero weight w, the
corresponding spine size 6 satisfy |0] > d. Hence, Eq. (10)
can be rewritten to:

w' =81 (07 =V, L(w'). (12)

Notice that a trivial case is w! = 0. In this case, the incre-
ment of d has no influence on w. Other cases of nonzero
weight are shown in the first two cases below.

Case 1: Same sign, nonzero weight. When the sign of
nonzero weight w does not change after applying gradient
update, that is, sign(6?) = sign(6*~1) and |6'"1|, |0%| > d.
As shown in Fig. 2, this usually happens when the step
size of gradient update is relatively small. By definition in
Eq. (7) and Eq. (12), we have

w' =0 — VYV, L(w') — sign(0)d" !
= (01 —sign(@Hd') — nV,L(w'h) (13)
=w' =V, Lw'T).

The last equality holds the nonzero wight assumption and
Eq. (4). By combining Eq. (11) and Eq. (13), the overall
update rule of weight has the form

w' = Sagqr (W' =V, L(w'h)) . (14)

This update rule is equivalent to the Iterative Shrinkage and
Thresholding Algorithm (ISTA) (Daubechies et al., 2004),
which iteratively acquires the closed-form solution of the
problem

w! = argmin
w

1 _ _
@nw—mfhmmwwﬁwﬁ+Amwl}
(15)

It evaluates the proximal gradient under ¢;-based regular-
ization Ad!||w||; and induces sparsity. A well-known con-
clusion (Nesterov, 2007) is that assuming loss function L is
L-smooth and convex, the ISTA has sublinear convergence
rate for constant step size n € (0,1/L].

Further, if d increases linearly, Ad® is a constant and thereby
the regularization term is invariant during learning.

Case 2: Altered sign, nonzero weight. If the step is suf-
ficiently large to change the sign of a weight after gradient
update, i.e., sign(?) = —sign(#'~!) and |9'71|, |0¢| > d,
which implies a alteration of synapse type shown in Fig. 2.
By definition in Eq. (7) and Eq. (12), we have
w' =07~V L(w' ™) — sign(0")d !
=0 —nV,L(w™h) — (sign(p™1)
+ 2sign(6"))d' !
= (0" —sign(0'Hd"h) — nV, L(w' ™)
— 2sign(A")d' !
= Sogr1 (Wt =V, L(w' ™).

(16)

State Transition of Dendritic Spines Improves Learning of Sparse SNNs

By Eq. (11), we have
wt = SAdt (Sgdt,fl(’wtil - nvwﬁ(wtil))) 5 (17)

which implies a shrinkage on the length of step followed by
a shrinkage on weight.

Case 3: Zeroed weight. For a zeroed weight, the cor-
responding 0 € [—d,d]. The derivative 88—7“5 is always
zero, which is caused by plateau landscape of mapping
w = S4(0). Hence, w will be fixed to zero after 6 occasion-
ally lies in the interval. For this reason, a regrowth mecha-
nism is necessary for reviving pruned weights. Modifying
gradient as Grad R (Chen et al., 2021) did is a promising
method. Specifically, we manually set % = 1 for zeroed w.
Notice that the authors of Grad R proved that under some
smooth conditions, the loss will be non-increasing if the
learning rate is constant and carefully chosen. Similarly, we
adopt the idea and derive a similar explanation for our case
of soft threshold mapping as follows

Theorem 4.1 (Convergence). For a spiking neural network,
where each synaptic weight w is dominated by correspond-
ing spine size 0 through a soft threshold mapping

w = sign(0) - (16| — d)4,d > 0, (18)
if we apply a smooth approximation

1 < 1+ e2(0=d)

w = f(0) ::alog)>,a>> 1, (19

1+ e—a(0+d
and define the pseudo partial derivative during computing
gradients as %—Z’I] = 1, the loss function L is L-smooth and

lower bounded, the sequence {L(0")}en must converge if
learning rate n < T(itesd):
The detailed proof is provided in the Appendix B. Distinct
from the aforementioned two cases, the step size of zeroed
weights is dictated by filopodia size 6 and gradient w.r.t.
zeroed weight % ’w:O as opposed to weights themselves.
The update rule takes the form

w! = Sagt (Sdz71 (0t71 - nvwﬁ)) (20)

Analysis In all the cases of the update rule, the weights
are always pushed to zero by a soft shrinkage Sagq:(+)
brought by increasing threshold throughout the training
progress, which acts as a proximal gradient descent un-
der ¢;-regularized loss as mentioned in Case 1, encourag-
ing the transition from mature spines to filopodia. Despite
this, the modified gradient introduced in Case 3 ensures
that state transition between different kinds of synapses is
unobstructed, theoretically guaranteeing convergence. The
nested soft threshold operator in Case 2 suggests it is increas-
ingly difficult to directly flip signs of weight immediately in
the late stages of training since d is growing larger. Such a
phenomenon indicates that most updates of nonzero weight
in the late stages will follow Case 1.

e
60 \\\
S
& 50 \
2
g
<40
5
I —e— Proposed (Sine scheduler)
30 Grad R

—o— Deng et al., 2021
i i i i
60 70 80 90

Sparsity (%)

40 50

Figure 3. Performance comparison of different pruning algorithms
on the ImageNet dataset. The accuracy of unpruned model is
shown as a black dashed line.

Top-1 Accuracy (%)
ot
ot
(=)

| —*— Sine Scheduler
Linear Scheduler

45.0 . . L
40 50 60 70 80 90

Sparsity (%)

Figure 4. Performance comparison of two schedulers on the Im-
ageNet dataset. The accuracy of unpruned model is shown as a
black dashed line.

4.4. Scheduling of Threshold Growth

Deciding on an appropriate schedule of threshold d at each
training steps is non-trivial. Assuming the total steps of
parameter updating is Tparam, and the target threshold after
training is D > 0, which are decided before training, we
propose two schedulers:

* Linear scheduler: d = =+

param

* Sine scheduler: d' = 1 (sm (T:;.m - g) + 1) D

These schedulers show different behaviors and will be fur-
ther discussed in the experimental results section.
5. Experiments

In this section, we validate the effectiveness of our prun-
ing algorithm for classification tasks on the ImageNet

State Transition of Dendritic Spines Improves Learning of Sparse SNNs

Final Threshold D

— 0.1 — 15 === 0.1 0.6 —— Sine
— 0.6 3.0 === 0.2 e Dense === Linear
0.8 — 5.0 --- 04
64
62 -
N

— o
X 60 2y
>
§ 58 5
< 56 1
— s
&y /
= = - -
S NMMM

52

100 150 200 250 300
Epoch

Figure 5. Top-1 accuracy during training (320 epochs in total).
Lines are smoothed by window size 10, and the error bars (areas
with lighter colors) indicate the standard deviations within the
windows. The lines in the early stage are clipped for highlighting
the latter stage.

dataset (Russakovsky et al., 2015). We first compare our
algorithm with Grad R to demonstrate the significance of
transition between positive and negative weights (different
types of synapses). Further, we investigate the performance
of the two proposed schedulers of threshold d and make
an empirical explanation of their different performance. Fi-
nally, we compare our method with other state-of-the-art
approaches. Considering the training cost of deep SNNss,
we select SEW ResNet18 (Fang et al., 2021a) as a testbed
and follow ALL the training setting of SEW ResNet. Notice
that the computation concerning spikes is from the layer
behind neuron layers, which are usually convolutional or
fully-connected layers. Adding that pruning the final fully-
connected layer will hurt the performance, our pruning algo-
rithm only applies to all convolutional layers. The detailed
extra settings for pruning are shown in Appendix A.

5.1. Effects of Transition between Excitatory and
Inhibitory Synapses

We implement Grad R (Chen et al., 2021) as a baseline,
which also can be viewed as a pruning and regrowth algo-
rithm. In fact, Grad R is a degenerate case of our algorithm,
where d is extremely large and fixed during training so that
the transition of different types of synapses is forbidden.
The comparison of performance with SEW ResNet18 struc-
ture on ImageNet dataset is illustrated in Fig. 3. One can
find that the performance of our method (blue curve) is
much better than Grad R (yellow curve). The performance
of Grad R drops drastically even under low sparsity (~50%)

Final Threshold D

— 0.1 — 15 === 0.1 0.6
— 0.6 3.0 -== 0.2 —— Sine
0.8 — 5.0 === 04 === Linear
100 T T 1
]

Sparsity (%)
\
\ A
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
AY
\
AY

200 250 300

Epoch

Figure 6. Overall sparsity of parameters in Conv. layers during
training (320 epochs in total).

in default of the transition of different types of synapses.
It indicates that Grad R fails to achieve impressive perfor-
mance loss as it did on smaller datasets, which is no match
for our proposed algorithm. All these results demonstrate
the effects of transition between excitatory and inhibitory
synapses.

5.2. Comparison of Threshold Scheduler

As it can be seen, our algorithm has only one tunable hyper-
parameter D, which actually transfers the complexity of the
parameter space to the function space, namely the choice of
schedulers. Here, we compare the performance and other
properties of the two proposed schedulers, namely linear
scheduler and sine scheduler. As shown in Fig. 4 and Tab. 2,
the performance of the linear scheduler drops drastically
when the sparsity is above 80%. In contrast, the perfor-
mance of the sine scheduler is close to the performance
of the fully connected network when the connectivity is
above 10%. Besides, it reaches a top-1 accuracy of 58.06%
(~5.2% accuracy loss) when constrained to 6.74% connec-
tivity. These results imply that the sine scheduler is superior
than the linear scheduler.

To dive deep into the root cause of such performance varia-
tion, we further analyze the top-1 accuracy and total sparsity
of SNN during training with these two schedulers. Fig. 5
illustrates the top-1 accuracy during training. An interest-
ing finding is that some training processes (D = 0.4, 0.6)
using the linear scheduler severe performance degradation
in the last 50 epochs (270~-320). On the contrary, all pro-
cesses applying the sine scheduler maintain the rising trend

State Transition of Dendritic Spines Improves Learning of Sparse SNNs

Table 1. Comparison of performance in recent studies on SNN pruning.

. .. Top-1 Acc. Sparsity Acc. Loss
Pruning Method Training Method Arch. Dataset (%) (%) (%)
4.6 -0.1
Martinelli et al., 2020 Surrogate Gradient 2FC QUT-NOISE-TIMIT -12.4 85 -0.1
=252 -0.6
. 97.65 -1.47
Chen et al., 2021 Surrogate Gradient 6 Conv, 2 FC CIFAR-10 92.84 9927 350
Deng et al., 2021 Surrogate Gradient 7 Conv, 2 FC CIFAR-10 89.53 75 -2.15
Kundu et al.. 2021 ANN2SNN & ResNet12 CIFAR-100 63.52 90 -0.5
unc et al, Surrogate Gradient VGG16 Tiny-ImageNet 57.00 60 -4.3
Caltech-101
Nguyen et al., 2021 STDP 3 Conv (2 Classes) 95.7 92.83 0
. . 97.77 -0.35
This work Surrogate Gradient 6 Conv, 2 FC CIFAR-10 92.84 0925 2.63
Chen et al., 20212 Surrogate Gradient ~SEW ResNet18 ImageNet 63.22 2(3)2451 :3812
82.58 -3.74
Deng et al., 20217 Surrogate Gradient ~SEW ResNet18 ImageNet 63.22 88.84 -1.37
93.24 -12.65
82.58 -1.92
. . 88.84 -3.29
This work Surrogate Gradient SEW ResNet18 ImageNet 63.22 93.24 5.16
95.30 -6.94

! The accuracy here represents -HTER for low, medium and high noise levels, where HTER=0.5MR+0.5FAR denotes the Half Total

Error Rate. MR and FAR are miss and false alarm rates
2 Our implementation.

throughout training. Some trials with the sine schedulers
(D = 1.5,3.0) even show an apparent accelerated, increas-
ing accuracy at the final stages. Fig. 6 indicates that these
two schedulers show different behavior in the growth of
sparsity. The sine scheduler tends to produce a more steady
growth of sparsity in the late stages of training, while the
linear one usually has a sharp growth.

It should be noted that the scheduler of the learning rate
applied in the SEW ResNet is the cosine annealing sched-
uler (Loshchilov & Hutter, 2017). For the n-th epoch, the

learning rate n™ decays as
7
Tepoch ’

1
"= max | 1
n 57 (+ cos (

where Tpocn denotes the total number of training epochs.
In the last few epochs, the learning rate is quite small,
suggesting that the update step should be infinitesimal,
which matches the Case 1 in Section 4.3. Recall that
Eq. (15) shows the equivalent optimization problem under
¢1-regularized loss. In the context of the linear scheduler,
the regularizing term Ad' ||w||; = Tp:mmDHle is invariant
and far outweigh the update step at last, resulting in a pure
shrinkage of weights in the absence of learning signal. For
the sine scheduler, since Tpam > 1, we have the following

1)

approximation

1/. tm T AR
t frp— RN j— —_ —
Ad' = 3 (sm (Tpamm 2) sin (oo 2)) D
t— 1
:sin<(2)7T> Sin< T)D
Tparam Tparam

t ™
~ sin T D
(Tparam) Tparam

which converges to zero when ¢ — Tpuam. In particular,
d converges faster than 7 for Tpaam > Tepoch, €nsuring
the magnitude of the learning signal is always over the
regularized term and thereby facilitating learning until the
last moment.

(22)

5.3. Comparison with the State-of-the-Art

We compare the proposed method to some other state-of-
the-art pruning algorithms of SNNs and report the results
in Tab. 1. To make a fair comparison, we also conduct
experiments on shallow networks and small-scale datasets
like CIFAR-10. The results are shown in Fig. 7.

For the trials on CIFAR-10, we follow the setting in Grad
R that pruning is applied to all layers except batch normal-

State Transition of Dendritic Spines Improves Learning of Sparse SNNs

Table 2. Comparison of different threshold schedulers on the ImageNet dataset.

Scheduler Top-1 Acc. (Dense) (%) Sparsity (%) Top-1 Acc. (Pruned) (%) Acc. Loss (%)
33.45 62.84 -0.38
78.64 61.51 -1.71
. 82.58 61.30 -1.92
e 88.84 59.93 -3.29
93.24 58.06 -5.16
63.22 95.30 56.28 -6.94
34.10 62.99 -0.23
Li 56.49 62.28 -0.94
mnear 82.11 58.02 -5.20
93.15 45.76 -17.46
93.0 s R i S S scheduler, which is correlated to the scheduler of learning
92.5 4 - rates. The optimal threshold scheduler for our pruning al-
< 920 gorithm remains to be discussed and discovered in future
2 o015 \ work.
: T T S S
< ~— Acknowledgements
s 90.5 \ \
& 0.0 L —*— Proposed (Sine Scheduler) \ This work is supported by grants from the National Natural
.l Grad R \ 77777 Science Foundation of China under contract No. 62027804,
Ol DeepR 1 \ No. 61825101, No. 62088102 and No. 62176003. The
88 90 92 94 96 98 computing resources of Pengcheng Cloudbrain are used in
Sparsity (%) this research.

Figure 7. Performance comparison of different pruning algorithms
on the CIFAR-10 dataset. The accuracy of unpruned model is
shown as a black dashed line.

ization layers. The detailed setting of hyperparameters in
trials on CIFAR-10 are shown in Appendix A. Most of these
works fail to achieve the low performance loss as ours even
on datasets much simpler than ImageNet, which demon-
strates the advanced nature of our approach. Besides, we
can find that Grad R, which has an impressive performance
on CIFAR-10, cannot generalize to larger datasets and net-
works.

6. Conclusion and Discussion

In this paper, we design a novel pruning algorithm based on
modeling the transition of dendritic spines containing dif-
ferent types of neurotransmitters and the transition between
development stages of dendritic spines. We theoretically
explain the convergence and the source of the sparsity in
our approach. Extensive experimental results show that our
approach outperforms previous SNN pruning algorithms by
a substantial degree, which encourages the subsequent work
to validate its performance on more realistic tasks. The
results also reveal the significance of choice in threshold

References

Béique, J.-C., Lin, D.-T., Kang, M.-G., Aizawa, H.,
Takamiya, K., and Huganir, R. L. Synapse-specific regula-
tion of ampa receptor function by psd-95. Proceedings of
the National Academy of Sciences, 103(51):19535-19540,
2006.

Bellec, G., Kappel, D., Maass, W., and Legenstein, R. Deep
rewiring: Training very sparse deep networks. In Interna-
tional Conference on Learning Representations, 2018a.

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and
Maass, W. Long short-term memory and learning-to-
learn in networks of spiking neurons. In Bengio, S.,
Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi,
N., and Garnett, R. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 31. Curran Associates,
Inc., 2018b.

Bhat, R., Axtell, R., Mitra, A., Miranda, M., Lock, C.,
Tsien, R. W., and Steinman, L. Inhibitory role for gaba in
autoimmune inflammation. Proceedings of the National
Academy of Sciences, 107(6):2580-2585, 2010.

Chechik, G., Meilijson, 1., and Ruppin, E. Synaptic prun-
ing in development: A computational account. Neural
Computation, 10(7):1759-1777, 1998.

State Transition of Dendritic Spines Improves Learning of Sparse SNNs

Chechik, G., Meilijson, 1., and Ruppin, E. Neuronal Regu-
lation: A Mechanism for Synaptic Pruning During Brain
Maturation. Neural Computation, 11(8):2061-2080, 11
1999.

Chen, Y., Yu, Z., Fang, W., Huang, T., and Tian, Y. Prun-
ing of deep spiking neural networks through gradient
rewiring. In Zhou, Z.-H. (ed.), Proceedings of the Thir-
tieth International Joint Conference on Artificial Intel-
ligence, IJCAI-21, pp. 1713-1721. International Joint
Conferences on Artificial Intelligence Organization, 8
2021. Main Track.

Daubechies, 1., Defrise, M., and De Mol, C. An iterative
thresholding algorithm for linear inverse problems with a
sparsity constraint. Communications on Pure and Applied
Mathematics, 57(11):1413-1457, 2004.

Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y.,
Choday, S. H., Dimou, G., Joshi, P., Imam, N., Jain,
S., Liao, Y., Lin, C., Lines, A., Liu, R., Mathaikutty,
D., McCoy, S., Paul, A., Tse, J., Venkataramanan, G.,
Weng, Y., Wild, A., Yang, Y., and Wang, H. Loihi: A
neuromorphic manycore processor with on-chip learning.
IEEE Micro, 38(1):82-99, 2018.

Deng, L., Wu, Y., Hu, Y., Liang, L., Li, G., Hu, X., Ding, Y.,
Li, P,, and Xie, Y. Comprehensive snn compression using
admm optimization and activity regularization. IEEE
Transactions on Neural Networks and Learning Systems,
pp. 1-15, 2021.

Engert, F. and Bonhoeffer, T. Dendritic spine changes as-
sociated with hippocampal long-term synaptic plasticity.
Nature, 399(6731):66-70, 1999.

Fang, W., Chen, Y., Ding, J., Chen, D., Yu, Z.,
Zhou, H., Tian, Y., and other contributors. Spiking-
jelly. https://github.com/fangweil23456/
spikingjelly, 2020. Accessed: 2022-01-18.

Fang, W., Yu, Z., Chen, Y., Huang, T., Masquelier, T., and
Tian, Y. Deep residual learning in spiking neural net-
works. In Ranzato, M., Beygelzimer, A., Dauphin, Y.,
Liang, P., and Vaughan, J. W. (eds.), Advances in Neural
Information Processing Systems, volume 34, pp. 21056—
21069. Curran Associates, Inc., 2021a.

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and
Tian, Y. Incorporating learnable membrane time constant
to enhance learning of spiking neural networks. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 2661-2671, October 2021b.

Fiala, J. C., Feinberg, M., Popov, V., and Harris, K. M.
Synaptogenesis via dendritic filopodia in developing hip-
pocampal area cal. Journal of Neuroscience, 18(21):
8900-8911, 1998.

Fonnum, F. Glutamate: a neurotransmitter in mammalian
brain. Journal of neurochemistry, 42(1):1-11, 1984.

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A.
The spinnaker project. Proceedings of the IEEE, 102(5):
652-665, 2014.

Gerstner, W. and Kistler, W. M. Spiking Neuron Models:
Single Neurons, Populations, Plasticity. Cambridge Uni-
versity Press, 2002.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network.
In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M.,
and Garnett, R. (eds.), Advances in Neural Information

Processing Systems, volume 28. Curran Associates, Inc.,
2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

Hu, Y., Tang, H., and Pan, G. Spiking deep residual net-
works. IEEE Transactions on Neural Networks and
Learning Systems, pp. 1-6, 2021.

Kappel, D., Habenschuss, S., Legenstein, R., and Maass,
W. Network plasticity as bayesian inference. PLOS
Computational Biology, 11(11):1-31, 11 2015.

Kheradpisheh, S. R., Mirsadeghi, M., and Masquelier, T.
Bs4nn: Binarized spiking neural networks with temporal
coding and learning. Neural Processing Letters, pp. 1-19,
2021.

Kim, S., Park, S., Na, B., and Yoon, S. Spiking-yolo: Spik-
ing neural network for energy-efficient object detection.
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 34(07):11270-11277, Apr. 2020.

Kirkland, P., Di Caterina, G., Soraghan, J., and Matich,
G. Spikeseg: Spiking segmentation via stdp saliency
mapping. In 2020 International Joint Conference on
Neural Networks (IJCNN), pp. 1-8, 2020.

Kundu, S., Datta, G., Pedram, M., and Beerel, P. A. Spike-
thrift: Towards energy-efficient deep spiking neural net-
works by limiting spiking activity via attention-guided
compression. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV),
pp- 3953-3962, January 2021.

Kushawaha, R. K., Kumar, S., Banerjee, B., and Velmu-
rugan, R. Distilling spikes: Knowledge distillation in
spiking neural networks. In 2020 25th International Con-
ference on Pattern Recognition (ICPR), pp. 4536-4543,
2021.

https://github.com/fangwei123456/spikingjelly
https://github.com/fangwei123456/spikingjelly

State Transition of Dendritic Spines Improves Learning of Sparse SNNs

Kusupati, A., Ramanujan, V., Somani, R., Wortsman, M.,
Jain, P, Kakade, S., and Farhadi, A. Soft threshold weight
reparameterization for learnable sparsity. In III, H. D. and
Singh, A. (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Pro-
ceedings of Machine Learning Research, pp. 5544-5555.
PMLR, 13-18 Jul 2020.

Liu, Y., Qian, K., Hu, S., An, K., Xu, S., Zhan, X., Wang,
J. 1., Guo, R., Wu, Y., Chen, T.-P.,, Yu, Q., and Liu, Y.
Application of deep compression technique in spiking
neural network chip. IEEE Transactions on Biomedical
Circuits and Systems, 14(2):274-282, 2020.

Loshchilov, I. and Hutter, F. SGDR: stochastic gradient
descent with warm restarts. In International Conference
on Learning Representations, 2017.

Luo, Y, Yi, Q., Wang, T., Lin, L., Xu, Y., Zhou, J., Yuan, C.,
Guo, J., Feng, P., and Feng, Q. A spiking neural network
architecture for object tracking. In Zhao, Y., Barnes, N.,
Chen, B., Westermann, R., Kong, X., and Lin, C. (eds.),
Image and Graphics, pp. 118-132, Cham, 2019. Springer
International Publishing.

Luo, Y., Xu, M., Yuan, C., Cao, X., Zhang, L., Xu, Y.,
Wang, T., and Feng, Q. Siamsnn: Siamese spiking neural
networks for energy-efficient object tracking. In Farkas,
1., Masulli, P., Otte, S., and Wermter, S. (eds.), Artifi-
cial Neural Networks and Machine Learning — ICANN
2021, pp. 182-194, Cham, 2021. Springer International
Publishing.

Ma, D., Shen, J., Gu, Z., Zhang, M., Zhu, X., Xu, X., Xu, Q.,
Shen, Y., and Pan, G. Darwin: A neuromorphic hardware
co-processor based on spiking neural networks. Journal
of Systems Architecture, 77:43 — 51, 2017.

Maass, W. Networks of spiking neurons: The third genera-
tion of neural network models. Neural Networks, 10(9):
1659-1671, 1997.

Martinelli, F., Dellaferrera, G., Mainar, P., and Cernak, M.
Spiking neural networks trained with backpropagation for
low power neuromorphic implementation of voice activity
detection. In ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 8544-8548, 2020.

Matsuzaki, M., Ellis-Davies, G. C. R., Nemoto, T.,
Miyashita, Y., lino, M., and Kasai, H. Dendritic spine
geometry is critical for ampa receptor expression in hip-

pocampal cal pyramidal neurons. Nature Neuroscience,
4(11):1086-1092, 2001.

Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. R., and Ka-
sai, H. Structural basis of long-term potentiation in single
dendritic spines. Nature, 429(6993):761-766, 2004.

Mern, J., Gupta, J. K., and Kochenderfer, M. J. Layer-wise

synapse optimization for implementing neural networks
on general neuromorphic architectures. In 2017 IEEE
Symposium Series on Computational Intelligence (SSCI),
pp. 1-8, 2017.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy,

A. S., Sawada, J., Akopyan, F., Jackson, B. L., Imam, N.,
Guo, C., Nakamura, Y., Brezzo, B., Vo, 1., Esser, S. K.,
Appuswamy, R., Taba, B., Amir, A., Flickner, M. D.,
Risk, W. P., Manohar, R., and Modha, D. S. A million
spiking-neuron integrated circuit with a scalable com-
munication network and interface. Science, 345(6197):
668-673, 2014.

Mink, J. W., Blumenschine, R. J., and Adams, D. B. Ratio of

central nervous system to body metabolism in vertebrates:
its constancy and functional basis. American Journal
of Physiology-Regulatory, Integrative and Comparative
Physiology, 241(3):R203-R212, 1981.

Neftci, E. O., Pedroni, B. U., Joshi, S., Al-Shedivat, M.,

and Cauwenberghs, G. Stochastic synapses enable ef-
ficient brain-inspired learning machines. Frontiers in
Neuroscience, 10:241, 2016.

Neftci, E. O., Mostafa, H., and Zenke, F. Surrogate gradient

learning in spiking neural networks: Bringing the power
of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51-63, 2019.

Neil, D., Pfeiffer, M., and Liu, S.-C. Learning to be efficient:

Algorithms for training low-latency, low-compute deep
spiking neural networks. In Proceedings of the 31st An-
nual ACM Symposium on Applied Computing, SAC 16,
pp- 293-298, New York, NY, USA, 2016. Association for
Computing Machinery.

Nesterov, Y. Gradient methods for minimizing composite

objective function (technical report 2007/76). CORE,
Université catholique de Louvain, 2007.

Nguyen, T. N. N., Veeravalli, B., and Fong, X. Connection

pruning for deep spiking neural networks with on-chip
learning. In International Conference on Neuromorphic
Systems 2021, ICONS 2021, New York, NY, USA, 2021.
Association for Computing Machinery.

Noguchi, J., Matsuzaki, M., Ellis-Davies, G. C., and Ka-

sai, H. Spine-neck geometry determines nmda receptor-
dependent ca2+ signaling in dendrites. Neuron, 46(4):
609-622, 2005.

Payeur, A., Guerguiev, J., Zenke, F., Richards, B. A., and

Naud, R. Burst-dependent synaptic plasticity can coor-
dinate learning in hierarchical circuits. Nature Neuro-
science, 24(7):1010-1019, 2021.

State Transition of Dendritic Spines Improves Learning of Sparse SNNs

Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S.,
Wang, G., Zou, Z., Wu, Z., He, W., Chen, F., Deng, N.,
Wu, S., Wang, Y., Wu, Y, Yang, Z.,, Ma, C,, Li, G,,
Han, W., Li, H., Wu, H., Zhao, R., Xie, Y., and Shi, L.
Towards artificial general intelligence with hybrid tianjic
chip architecture. Nature, 572(7767):106-111, 2019.

Perez-Nieves, N. and Goodman, D. Sparse spiking gradient
descent. In Ranzato, M., Beygelzimer, A., Dauphin, Y.,
Liang, P., and Vaughan, J. W. (eds.), Advances in Neural
Information Processing Systems, volume 34, pp. 11795-
11808. Curran Associates, Inc., 2021.

Qiao, G., Ning, N., Zuo, Y., Hu, S., Yu, Q., and Liu, Y.
Direct training of hardware-friendly weight binarized
spiking neural network with surrogate gradient learning
towards spatio-temporal event-based dynamic data recog-
nition. Neurocomputing, 457:203-213, 2021.

Rathi, N., Panda, P., and Roy, K. Stdp-based pruning of
connections and weight quantization in spiking neural
networks for energy-efficient recognition. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits
and Systems, 38(4):668-677, 2019.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. Imagenet large scale
visual recognition challenge. International Journal of
Computer Vision, 115(3):211-252, 2015.

Stockl, C. and Maass, W. Optimized spiking neurons can
classify images with high accuracy through temporal cod-
ing with two spikes. Nature Machine Intelligence, 3(3):
230-238, 2021.

Stromatias, E., Neil, D., Pfeiffer, M., Galluppi, F., Furber,
S. B., and Liu, S.-C. Robustness of spiking deep belief
networks to noise and reduced bit precision of neuro-

inspired hardware platforms. Frontiers in Neuroscience,
9:222, 2015.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,
A. Going deeper with convolutions. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015.

Takuya, S., Zhang, R., and Nakashima, Y. Training low-
latency spiking neural network through knowledge dis-
tillation. In 2021 IEEE Symposium in Low-Power and
High-Speed Chips (COOL CHIPS), pp. 1-3, 2021.

Tgnnesen, J., Katona, G., R6zsa, B., and Nagerl, U. V.
Spine neck plasticity regulates compartmentalization of
synapses. Nature neuroscience, 17(5):678—-685, 2014.

Wang, Y., Xu, Y., Yan, R, and Tang, H. Deep spiking
neural networks with binary weights for object recogni-
tion. IEEE Transactions on Cognitive and Developmental
Systems, 13(3):514-523, 2021.

Wu, J., Xu, C., Han, X., Zhou, D., Zhang, M., Li, H., and
Tan, K. C. Progressive tandem learning for pattern recog-
nition with deep spiking neural networks. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, pp.
1-1, 2021.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. Spatio-
temporal backpropagation for training high-performance
spiking neural networks. Frontiers in Neuroscience, 12:
331,2018.

Yin, H., Lee, J. B., Kong, X., Hartvigsen, T., and Xie, S.
Energy-efficient models for high-dimensional spike train
classification using sparse spiking neural networks. In
Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pp. 2017-2025,
2021.

Yuste, R. Dendritic spines. MIT press, 2010.

Zenke, F. and Ganguli, S. SuperSpike: Supervised Learning
in Multilayer Spiking Neural Networks. Neural Compu-
tation, 30(6):1514-1541, 06 2018.

Zenke, F. and Neftci, E. O. Brain-inspired learning on
neuromorphic substrates. Proceedings of the IEEE, 109
(5):935-950, 2021.

Zenke, F. and Vogels, T. P. The Remarkable Robustness of
Surrogate Gradient Learning for Instilling Complex Func-
tion in Spiking Neural Networks. Neural Computation,
33(4):899-925, 03 2021.

Zheng, H., Wu, Y., Deng, L., Hu, Y., and Li, G. Going
deeper with directly-trained larger spiking neural net-
works. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(12):11062-11070, May 2021.

Zhou, S., Li, X., Chen, Y., Chandrasekaran, S. T., and
Sanyal, A. Temporal-coded deep spiking neural network
with easy training and robust performance. Proceedings
of the AAAI Conference on Artificial Intelligence, 35(12):
11143-11151, May 2021.

Zuo, Y., Lin, A., Chang, P., and Gan, W.-B. Development
of long-term dendritic spine stability in diverse regions
of cerebral cortex. Neuron, 46(2):181-189, 2005.

State Transition of Dendritic Spines Improves Learning of Sparse SNNs

A. Detailed Setting of Pruning Experiments
A.1. Setting of Our Propose Method

There is only one hyperparameter in our algorithm, namely D, which represents the final width of the “plateau” landscape
as illustrated in Fig. 1. The D in our trials and corresponding performances are shown in Tab. 3 and Tab. 4.

Table 3. Experimental settings of proposed algorithm on ImageNet.
Scheduler D Sparsity (%) Top-1 Acc. (Pruned) (%) Acc. Loss (%)

0.1 33.45 62.84 -0.38

0.6 78.64 61.51 -1.71

Sine 0.8 82.58 61.30 -1.92
1.5 88.84 59.93 -3.29

3.0 93.24 58.06 -5.16

5.0 95.30 56.28 -6.94

0.1 34.10 62.99 -0.23

Linear 0.2 56.49 62.28 -0.94
0.4 82.11 58.02 -5.20

0.6 93.15 45.76 -17.46

Table 4. Experimental settings of proposed algorithm on CIFAR-10.
Scheduler D Sparsity (%) Top-1 Acc. (Pruned) (%) Acc. Loss (%)

1.0 95.36 92.49 -0.35
2.0 91.71 92.49 -0.35
Sine 3.0 98.6 91.64 -1.20
4.0 99.01 91.06 -1.78
5.0 99.25 90.21 -2.63

All the convolutional layer in SEW ResNet18 are pruned.

A.2. Setting of Grad R

For the reproduction of the Grad R algorithm (Chen et al., 2021), there are several parameters including scale and location
parameter «, 1, which are related to the target sparsity p as

pa = log(2 — 2p) (23)

Our experimental settings are shown in Tab. 5.

Table 5. Experimental settings of our implementation of Grad R on ImageNet.

m a P Sparsity (%) Top-1 Acc. (Pruned) (%) Acc. Loss (%)
-100 0 0.5 50.94 60.052 -3.168
-100 107 0.5005 53.65 24.616 -38.604

A.3. Setting of (Deng et al., 2021)

For the reproduction of (Deng et al., 2021), most retraining hyperparameters are inherited from training of dense model,
which has a 63.22% top-1 accuracy. The extra hyperparameters are shown in Tab. 6.

The sparsity of each pruned layer are set identical to the corresponding sparse model using sine scheduler.

State Transition of Dendritic Spines Improves Learning of Sparse SNNs

Table 6. Experimental settings of our implementation of (Deng et al., 2021) on ImageNet.

Parameters Descriptions Value
Ny Retraining Epochs for ADMM-Compression 40
Ny Retraining Epochs for Hard-Compression(HC) 20
p Penalty Coefficient for ADMM le-4
Ir Initial Learning Rate during ADMM and HC Retraining 0.05
- Optimizer during ADMM and HC Retraining SGD
- {5 Penalty Se-5
- Learning Rate Scheduler Cosine Annealing

A.4. Software and Hardware Platform

The implementation is based on the SpikingJelly framework (Fang et al., 2020). Each trial on ImageNet is carried out on 8
NVIDIA V100 GPUs. Each trial on CIFAR-10 is carried out on a single NVIDIA V100 GPU.

B. Proof of Theorem 4.1

Theorem B.1 (Convergence). For a spiking neural network, where each synaptic weight w is dominated by corresponding
spine size 0 through a soft threshold mapping

w = sign(6) - (0] — d)+,d > 0, 24)
if we apply a smooth approximation

1 1+ 0=
o

W) , > 1, (25)

and define the pseudo partial derivative during computing gradients as %%p = 1, the loss function L is L-smooth and lower

bounded, the sequence {L(0%)}1cn must converge if learning rate n < W.

Proof. Denote the pseudo gradient calculated using %—’é’p = 1as V,£(0), the update follows the rule 8" = 6* —nV,L(0).
Since £ is L-smooth , we have

L
L(O7) = £(0") < (VL(6"),0"" — ") + S |6""" — 67"

In? (26)
= —n(VL(6"), V,L(6") + =5 [V,£(6")]
Notice that
2
aL
weoF _ T(@) o
(VL(),V,L(8)) owg (oc\?
2k | 90y (TJ
and the actual derivative has the form
Jw 1+ 200 4 9ex(6—d)
- =1(0)= - . (28)
00 (1 4 exl? d))(l 4 ea(9+d))
It is clear that f’(6) is continuously differentiable on R and
200 3 :
£1(0) = 4ae®®” sinh(ad) sinh(af) (29)

[(1 4 ex(@=D))(1 + ea(6+))]

State Transition of Dendritic Spines Improves Learning of Sparse SNNs

has a unique zero point § = 0. It is actually a global minimum f’(0) = ﬁ and thereby we have

woeor _ Se(58)
(VL(9),V,L(0)) — S, [f’(()) (%)2] (30)

_1—|—e°‘d
2

ad . .
Denote A = 1+Te, the last term in Eq. (26) can be further estimate as

L0 = £0) < 11— Z)(VL@), V,£(0) Gh

Since (VL(6"),V,L£(0")) > A||V,L(6")]|* > 0, to form a non-increasing sequence {L£(6")}+cn, a proper learning rate
4

should satisfy n < 2/AL = Titesdy:

Under the above conditions, the lower bounded, non-increasing loss sequence must converge, which completes the proof.

Further, the best choice isp = 1/AL = W O

