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Abstract
We study human-in-the-loop reinforcement learn-
ing (RL) with trajectory preferences, where in-
stead of receiving a numeric reward at each step,
the RL agent only receives preferences over tra-
jectory pairs from a human overseer. The goal
of the RL agent is to learn the optimal policy
which is most preferred by the human overseer.
Despite the empirical successes, the theoretical
understanding of preference-based RL (PbRL) is
only limited to the tabular case. In this paper,
we propose the first optimistic model-based al-
gorithm for PbRL with general function approx-
imation, which estimates the model using value-
targeted regression and calculates the exploratory
policies by solving an optimistic planning prob-
lem. We prove that our algorithm achieves the
regret bound of Õ(poly(dH)

√
K), where d is

the complexity measure of the transition and pref-
erence model depending on the Eluder dimension
and log-covering numbers, H is the planning hori-
zon, K is the number of episodes, and Õ(·) omits
logarithmic terms. Our lower bound indicates that
our algorithm is near-optimal when specialized
to the linear setting. Furthermore, we extend the
PbRL problem by formulating a novel problem
called RL with n-wise comparisons, and provide
the first sample-efficient algorithm for this new
setting. To the best of our knowledge, this is the
first theoretical result for PbRL with (general)
function approximation.
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1. Introduction
Reinforcement learning (RL) is concerned with sequential
decision-making problems in which the agent interacts with
the environment to maximize its cumulative rewards. This
framework has achieved tremendous successes in various
fields such as Atari games (Mnih et al., 2013), Go (Silver
et al., 2017), and StarCraft (Vinyals et al., 2019). While
these empirical successes are encouraging, one limitation
of the standard RL paradigm is that the learning algorithms
and the policies crucially depend on the prior knowledge
encoded in the definition of the reward function. In many
real-world applications such as autonomous driving, health-
care, and robotics, reward functions might not be readily
available or difficult to design, which leads to well-known
challenges such as reward shaping (Ng et al., 1999) and
reward hacking (Amodei et al., 2016; Berkenkamp et al.,
2021).

If we have enough demonstrations of the desired task, one
possible solution to address the above problems is to extract
a reward function using inverse reinforcement learning (Ng
et al., 2000; Abbeel & Ng, 2004). This reward function
can be further used to train an agent with reinforcement
learning algorithms. More directly, we can use imitation
learning (Ho & Ermon, 2016; Hussein et al., 2017; Osa
et al., 2018) to clone the demonstrated behavior. However,
these approaches are not applicable to situations where the
demonstration data from experts are expensive to obtain, or
behaviors are difficult for humans to demonstrate.

Another popular alternative to handle the lack of reward
functions is called Preference-based Reinforcement Learn-
ing (PbRL) (Busa-Fekete et al., 2014; Wirth et al., 2017). In
PbRL, instead of observing the reward information on the
encountered state-action pairs, the agent only receives 1 bit
preference feedback over a trajectory pair from an expert or
a human overseer. Such preference feedback is often more
natural and straightforward to specify in many RL applica-
tions, especially those involving human evaluations. This
learning paradigm has been widely applied to multiple areas,
including robot training (Jain et al., 2013; 2015; Christiano
et al., 2017), game playing (Wirth & Fürnkranz, 2012; 2014)
and clinical trials (Zhao et al., 2011).
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Despite its promising application in various areas, the theo-
retical understanding of PbRL is limited to only the tabular
RL setting. Novoseller et al. (2020) proposes the Double
Posterior Sampling method using Bayesian linear regres-
sion with an asymptotic regret sublinear in T (the number
of time steps). Xu et al. (2020b) presents the first finite-time
analysis for PbRL problems with near-optimal sample com-
plexity bounds. Pacchiano et al. (2021) studies the regret
minimization problem for PbRL with linearly-parameterized
preference function. However, all the previous algorithms
are restricted to the tabular setting, and their complexity
bounds scale polynomial dependence on the cardinality of
the state-action space. Therefore, their algorithms can fail
in the more practical scenario where the state space is ex-
tremely large.

Recently, there have been tremendous results studying stan-
dard RL problem with general function approximation (e.g.
Du et al. (2019); Yang & Wang (2019); Ayoub et al. (2020);
Wang et al. (2020b); Jin et al. (2020); Zanette et al. (2020);
Wang et al. (2020a); Zhou et al. (2021b); Chen et al. (2021b);
Zhou et al. (2021a)). However, their algorithms cannot be
directly applied to PbRL setting due to the following two
reasons. Firstly, most of their algorithms estimate the value
function by utilizing the Bellman update with general func-
tion approximation. However, we cannot estimate the value
of certain policies since the reward values are hidden and
unidentifiable up to shifts in rewards. Secondly, since the
preference feedback in PbRL depends on the utility of the
whole trajectories and can be even non-Markovian, the op-
timal policy for PbRL problems can be possibly history-
dependent. This violates the fundamental requirement of
the Markovian policy class in the standard RL setting.

In this work, we tackle the regret minimization problem
for preference-based reinforcement learning with general
function approximation. Specifically, we study the PbRL
problem where both the unknown transition model and the
unknown preference function are known to belong to given
function spaces. The function spaces are general sets of
functions, which may be either finitely parameterized or
nonparametric. This setting is more general than the previ-
ous theoretical results for PbRL (Novoseller et al., 2020; Xu
et al., 2020b; Pacchiano et al., 2021). Our contributions are
summarized as follows:

• We propose a statistically efficient algorithm called
Preference-based Optimistic Planning (PbOP) for
PbRL with general function approximation. We prove
that the regret of our algorithm is Õ

(
poly(dH)

√
K
)

,
where d is the complexity measure of the transition
and preference model depending on the Eluder dimen-
sion (Russo & Van Roy, 2013) and log-covering num-
bers, H is the planning horizon, and K is the number
of episodes. Additionally, we find that our algorithm

can be almost directly applied to a setting called RL
with once-per-episode feedback (Efroni et al., 2020;
Chatterji et al., 2021), which is another reinforcement
learning problem dealing with the lack of reward func-
tions.

• We present a reduction from the setting of RL with
once-per-episode feedback to PbRL. When specialized
to the linear case, we prove a nearly-matching lower
bound for PbRL based on this reduction. The lower
bound indicates that our algorithm is near-optimal in
the case of linear function approximation.

• We formulate a novel setting called RL with n-wise
comparisons to cover situations where multiple trajec-
tories are sampled and compared with each other in
each episode. This setting is more general than the
standard PbRL setting and covers many real situations
including robotics and clinical trails. Based on our
PbOP algorithm, we also propose an algorithm with
near-optimal regret.

2. Related Work
Preference-based RL We refer readers to Wirth et al. (2017)
for an overview of Preference-based RL. Overall, there are
three different types of preference feedback in the PbRL
literature. Firstly, the preferences can be defined on the
action space where the labeler tells which action is better
for a given state. Secondly, state preference determines
the preferred state between state pairs, which indicates that
there is an action in the preferred state that is better than
all actions available in the other state. Lastly, trajectory
preference compares between trajectory pairs and speci-
fies that a trajectory should be preferred over the other
ones. Trajectory preference is the most general form of
preference-based feedback, which is also the main focus of
this work. As discussed in the introduction, previous theoret-
ical results studying PbRL with trajectory feedback mainly
focus on the tabular RL setting with finite state and action
space (Novoseller et al., 2020; Xu et al., 2020b; Pacchiano
et al., 2021). Besides PbRL, preference-based learning has
also been well-explored in bandit setting under the notion
of “dueling bandits” (Yue et al., 2012; Falahatgar et al.,
2017a;b; Busa-Fekete et al., 2018; Xu et al., 2020a; Busa-
Fekete et al., 2018), which can be regarded as a special case
of PbRL with single state and horizon H = 1.

RL with Function Approximation Recently, there are a
large number of theoretical results about provably efficient
exploration in the standard RL problem with function ap-
proximation, The most basic and frequently explored setting
is RL with linear function approximation. See e.g., Du et al.
(2019); Yang & Wang (2019); Jin et al. (2020); Cai et al.
(2020); Zanette et al. (2020); Wang et al. (2020a); Zhou
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et al. (2021a;b) and references therein. Beyond linear set-
ting, there are also results studying RL with general function
approximation (Jiang et al., 2017; Wang et al., 2020b; Kong
et al., 2021; Foster et al., 2020; Jin et al., 2021; Du et al.,
2021). Our work is mostly relevant to previous works study-
ing provably efficient model-based RL with general function
approximation. For example, Osband & Van Roy (2014)
makes explicit model-based assumption that the transition
operator and the reward function lie in a given function class,
and analyse the regret of Thompson sampling when applied
to RL with general function approximation. Ayoub et al.
(2020) proposes an algorithm for episodic model-based RL
based on value-targeted regression. Recently, Chen et al.
(2021a) extends the model-based algorithm for episodic RL
to the infinite-horizon setting.

RL with Once-per-episode Feedback RL with once-
per-episode feedback is another reinforcement learning
paradigm to deal with the lack of a reward function in vari-
ous real-world scenarios, in which the agent only receives
non-Markovian feedback based on the whole trajectory at
the end of an episode. Efroni et al. (2020) firstly studies the
setting with the assumption of inherent Markovian rewards.
They propose a hybrid optimistic-Thompson Sampling ap-
proach with a

√
K regret. Chatterji et al. (2021) removes the

Markovian rewards assumption and provide optimistic al-
gorithms based on the well-known UCBVI algorithm (Azar
et al., 2017). Though aimed to tackle the similar problem,
the setting of RL with once-per-episode feedback is rela-
tively independently studied compared with the PbRL, and
this is the first work that points out the connections between
two different settings.

3. Preliminaries
Throughout this paper, we use the following notations. For
any positive integer n, we use [n] to denote {1, 2, · · · , n}.
We denote by ∆(A) the set of probability distributions on a
set A.

3.1. PbRL with Trajectory Preferences

We study the episodic finite horizon Markov decision pro-
cess (MDP), which is defined by a tuple (S,A, H,P), where
S and A are state and action spaces, respectively, H is
the horizon of the MDP, and P : S × A → ∆(S) is the
transition kernel. In the episodic setting, the agent inter-
acts with the environment for K episodes. Each episode
consists of H steps. For ease of presentation, we assume
the initial state of each episode is a fixed state s1 ∈ S.
We remark that this setting can be generalized to the set-
ting that the initial state is sampled from a fixed distribu-
tion. At the beginning of the k-th episode, the agent de-
termines two policies (πk,1, πk,2). After executing these
two policies, the agent obtains two trajectories {τk,i =

(sk,1,i, ak,1,i, sk,2,i, ak,2,i, · · · , sk,H,i, ak,H,i)}i=1,2. In
PbRL, unlike the standard RL where the agent can receive
reward signals, the agent can only obtain the preference ok
between two trajectories (τk,1, τk,2). Here ok is a Bernoulli
random variable with Pr(ok = 1) = Pr(τk,1 > τk,2). For
ease of presentation, we denote T(τ1, τ2) = Pr(τ1 > τ2)
for any two trajectories τ1 and τ2.

We define Π to be the set containing all history-dependent
policies, and we use Traj to denote the set of H-step
trajectories. For any transition P and policy π, we also
use τ ∼ (P, π) to denote that the trajectory τ is sam-
pled using policy π from the MDP with transition P.
With a slight abuse of notation, we define T(π1, π2) =
Eτ1∼(P,π1),τ2∼(P,π2)T(τ1, τ2). Throughout this paper, we
make the following assumption.
Assumption 3.1. There exists a policy π∗, such that
T(π∗, π0) ≥ 1

2 ,∀π0 ∈ Π.

This is an extension of the optimal-arm assumption in du-
eling bandits (Busa-Fekete et al., 2018). It is also more
general than Assumption 1 in (Xu et al., 2020b).

We study the regret minimization problem, where the regret
is defined as: Reg(K) =

∑K
k=1

∑2
i=1

(
T(π∗, πk,i)− 1

2

)
.

By Assumption 3.1, we have the regret is non-negative,
and our goal is to design algorithms with sub-linear regret
guarantees.

3.2. General Function Approximation

In this subsection, we introduce notions that can characterize
the complexity of the function class.

Covering Number When the function class has infinite
elements, we usually use the covering number to capture
the complexity.
Definition 3.2 (Covering Number). The ϵ-covering number
of a set F under metric d, denoted as N (F , ϵ, d), is the
minimum integer m such that there exists a subset F ′ ⊂ F
with |F| = m, and for any f ∈ F , there exists some
f ′ ∈ F ′ satisfying d(f, f ′) ≤ ϵ.

Eluder Dimension We use the concept of Eluder dimension
introduced by Russo & Van Roy (2013) to characterize the
complexity of different function classes in RL.
Definition 3.3 (α-independent). Let F be a function
class defined in X , and {x1, x2, · · · , xn} ∈ X . We
say x ∈ X is α-independent of {x1, x2, · · · , xn} with
respect to F if there exists f1, f2 ∈ F such that√∑n

i=1(f1(xi)− f2(xi))2 ≤ α, but f1(x)− f2(x) ≥ α.
Definition 3.4 (Eluder Dimension). Suppose F is a function
class defined in X , the α-Eluder dimension is the longest
sequence {x1, x2, · · · , xn} ∈ X such that there exists α′ ≥
α where xi is α′-independent of {x1, · · · , xi−1} for all
i ∈ [n].
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Preference Function We assume the function T(τ1, τ2)
belongs to the function space FT, which is defined as

FT = {f(τ1, τ2) ∈ [0, 1], f(τ1, τ2) + f(τ2, τ1) = 1} .
(1)

We assume the α-Eluder dimension of the function class
FT is bounded by dT. Here α is a parameter which will be
specified later.

Following the analysis by Russo & Van Roy (2013), we
can show that the function apace FT has bounded Eluder
dimension in linear and generalized linear cases.
Remark 3.5 (Linear Preference Models). Consider the case
of d-dimensional linear preference models f(τ1, τ2) =
ψ(τ1, τ2)

⊤θ where ψ : Traj×Traj → Rd is a known
feature map satisfying ∥ψ(τ1, τ2)∥2 ≤ L and θ ∈ Rd is an
unknown parameter with ∥θ∥2 ≤ S. Then the α-Eluder
dimension of FT is at most O(d log(LS/α)).
Remark 3.6 (Generalized Linear Preference Models).
For the case of d-dimensional generalized linear mod-
els f(τ1, τ2) = g(⟨ϕ(τ1, τ2), θ⟩) where g is an increas-
ing Lipschitz continuous function, ψ : Traj×Traj →
Rd is a known feature map satisfying ∥ψ(τ1, τ2)∥2 ≤
L and θ ∈ Rd is an unknown parameter with
∥θ∥2 ≤ S. Set h̄ = supθ̃,τ1,τ2 g

′(⟨ϕ(τ1, τ2), θ̃⟩), h =

inf θ̃,τ1,τ2 g
′(⟨ϕ(τ1, τ2), θ̃⟩) and r = h̄/h. Then the α-

Eluder dimension of FT is at most O(dr2 log(rLSh̄/α)).
Therefore, our results subsume the setting of logistic prefer-
ence functions (Pacchiano et al., 2021) as a spacial case.

Model Complexity Similar to Ayoub et al. (2020), we
use Eluder dimension to characterize the complexity of the
model class. We denote V = {f : S → [0, 1]}. We assume
the real transition P belongs to a transition set P , and we
define the function space F as the collections of functions
f : S ×A× V → R:

FP =
{
f | ∃P ∈ P, s.t.∀(s, a, v) ∈ S ×A× V,

f(s, a, v) =

∫
P (ds′ | s, a) v (s′)

}
.

(2)

We define dP = dimE(FP, α) to be the α-Eluder dimension
of FP.
Remark 3.7 (Linear Mixture Models). Such a model sub-
sumes linear mixture models as a special case (Ayoub et al.,
2020). Specifically, we say an MDP is a linear mixture
MDP if

P = {ψ(s, a, s′)⊤θ : θ ∈ Θ},

where ψ : S ×A×S → Rd is a known feature map satisfy-
ing ∥

∑
s′ ψ(s, a, s

′)V (s′)∥2 ≤ 1,∀s ∈ S, a ∈ A, V ∈ V ,
and θ ∈ Θ satisfies ∥θ∥2 ≤ B for a constant B. For linear
mixture models, the α-Eluder dimension of FP is of order
O(d log(B/α)).

3.3. RL with Once-per-episode Feedback

In this subsection, we introduce another related RL setting
called RL with once-per-episode feedback.

In the k-th episode, the agent executes a policy πk and
obtains a trajectory τk induced by πk. At the end of the
episode, the agent receives a feedback yk ∈ {0, 1}, where
yk = g∗(τk) for some unknown function g∗. We assume
g∗ belongs to the function space FG, which is defined as
FG = {g : Traj → [0, 1]}. We assume the α-Eluder di-
mension of the function class FG is bounded by dG. Here
α is a parameter which will be specified later. With slight
abuse of notations, we denote g∗(π) = Eτ∼(P,π)[g

∗(τ)].
For any policy π, we can define the preference value func-
tion as V π

1 (s1) = Eτ∼(P,π)[g
∗(τ)]. Our goal is to minimize

the regret Reg(K) =
∑K

k=1 V
∗
1 (s1) − V πk

1 (s1), where
V ∗
1 (s1) = maxπ V

π
1 (s1) is the value of the optimal policy.

Remark 3.8. Similar to Remarks 3.5 and 3.6, our setting
incorporates (generalized) linear case. Hence, our following
results can be naturally applied to the scenario considered
by Chatterji et al. (2021).

4. Main Results for Preference-based RL
In this section, we present the main results for preference-
based RL. We first propose a novel algorithm called
Preference-based Optimistic Planning (PbOP) and estab-
lish the regret upper bound for it. To show the sharpness
of our result, we also prove an information-theoretic lower
bound in the linear case.

4.1. Algorithm

The algorithm is formally defined in Algorithm 1. Overall,
we employ the standard least-squares regression to learn
the transition dynamics and the preference function. In
each episode, we first update the model estimation based
on the history samples till episode k − 1. We define the
confidence sets and calculate the confidence bonuses for the
transition and preference estimations, respectively. Based
on the confidence sets and the bonus terms, we maintain
a policy set in which all policies are near-optimal with mi-
nor sub-optimality gap with high probability. Finally, we
execute the most exploratory policy pair in the policy set
and observe the preference between the trajectories sampled
using these two policies.

Confidence Sets and Bonuses We first explain our con-
struction of the confidence sets and bonus terms in Algo-
rithm 1. For the preference function, the estimation T̂k is
defined as the minimizer of the following least-squares loss:

T̂k = argmin
T′∈FT

k−1∑
t=1

(T′(τt,1, τt,2)− ot)
2
. (3)
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Algorithm 1 PbOP: Preference-based Optimistic Planning
1: Set βT = βP = 8 log(2KN (FT, 1/K, ∥ · ∥∞) /δ)
2: for episode k = 1, · · · ,K do
3: Calculate the estimation T̂k and P̂k using least-

squares regression (Eqn. (3) and (5))
4: Construct the high-confidence set BT,k for the prefer-

ence T (Eqn. (4))
5: Construct the high-confidence set BP,k for transition

P (Eqn. (7))
6: Define the preference bonus bT,k(τ1, τ2) =

maxf1,f2∈BT,k |f1(τ1, τ2)− f2(τ1, τ2)|
7: Define the transition bonus bP,k(s, a, V ) =

maxP1,P2∈BP,k(P1 − P2)V (s, a)
8: Set bP,k(s, a) = maxV ∈V bP,k(s, a, V )
9: Construct the policy set Sk as Eqn. (9)

10: Compute policies (πk,1, πk,2) as Eqn. (10)
11: Execute the policy πk,1 and πk,2 for one episode,

respectively, and then observe the trajectory τk,1 and
τk,2

12: Receive the preference ok between τk,1 and τk,2
13: end for

We can guarantee that the real preference function T is
contained in the following high-probability set for T:

BT,k =

{
T′ |

k−1∑
t=1

(
T̂k − T′

)2

(τt,1, τt,2) ≤ βT

}
. (4)

We define the exploration bonus bT,k (τ1, τ2) to be the
“width” of the confidence set BT,k, i.e., bT,k(τ1, τ2) =
maxf1,f2∈BT,k |f1(τ1, τ2)− f2(τ1, τ2)|. This bonus mea-
sures the uncertainty of a certain trajectory pair (τ1, τ2)
w.r.t. the confidence set BT,k, which will be used to calcu-
late the near-optimal policy set and the most exploratory
policy pairs later.

When it comes to the confidence set and the bonus
term for the transition estimation, the situation becomes
slightly complicated. Recall that in the definition of
the transition function fP ∈ FP, the input variables
includes both the state-action pair (s, a) and the next-
step target function V . Given history samples {τt,i =
(st,1,i, at,1,i, st,2,i, at,2,i, · · · , st,H,i, at,H,i)}i=1,2,t∈[k−1],
we can possibly estimate the transition model by minimiz-
ing the least-squares loss with respect to certain value target
{Vt,h,i}i=1,2,h∈[H],t∈[k−1]:

P̂k = argminP′∈P

2∑
i=1

k−1∑
t=1

H∑
h=1

(
⟨P′(· | st,h,i, at,h,i), Vk,h,i⟩

− Vk,h,i(sk,h+1,i)
)2
. (5)

Now the remaining problem is how to define the target func-
tion Vt,h,i. In the problem of standard RL with general

function approximation, Ayoub et al. (2020) uses the opti-
mistic value estimation as the target function in each episode.
However, in the PbRL setting, since the reward information
is hidden, we cannot calculate the value estimation for each
given state-action pairs. To tackle this problem, we define
the bonus bP,k(s, a, V ) for any s ∈ S, a ∈ A and the target
function V ∈ V , and use V = argmaxV ∈V bP,k(s, a, V ) as
the regression target for the state-action pair (s, a). Similar
ideas have also been applied to the problem of reward-free
exploration for linear mixture MDPs (Zhang et al., 2021;
Chen et al., 2021b).

To be more specific, we define Lk(P1,P2) as

Lk (P1,P2) =

2∑
i=1

k−1∑
t=1

H∑
h=1

(
⟨P1 (· | st,h,i, at,h,i)

− P2 (· | st,h,i, at,h,i) , Vt,h,i⟩
)2
. (6)

We construct the high confidence set for transition P:

BP,k =
{
P′ | Lk(P′, P̂k) ≤ βP

}
, (7)

The exploration bonus bP,k(s, a, V ) for the transition esti-
mation measures the uncertainty of the confidence set BP,k:

bP,k(s, a, V ) = max
P1,P2∈BP,k

(P1 − P2)V (s, a). (8)

Suppose Vmax,k,s,a = argmaxV ∈V bP,k(s, a, V ), then we
use Vmax,t,st,h,i,at,h,i

as the online target for the history
sample (st,h,i, at,h,i, st,h+1,i). With a slight abuse of nota-
tion, we use bP,k(s, a) = maxV ∈V bP,k(s, a, V ) to denote
the maximum uncertainty for a given state-action pair (s, a).

Near-optimal Policy Set With the estimated model, al-
gorithms for standard RL calculate the optimistic value
function using Bellman backup to balance the exploration
and exploitation. However, in PbRL, we cannot update the
value function through Bellman update since the environ-
ment can be non-Markovian. Even worse, since we only
get feedback about the preference between trajectory pairs,
we cannot directly evaluate a single policy. Inspired from
a recent work for PbRL in the tabular setting (Pacchiano
et al., 2021), we construct a near-optimal policy set using
the preference information.

Define bP,k(τ) =
∑

(s,a)∈τ bP,k(s, a). With the constructed
confidence set and the bonus terms, then we construct the
following set Sk:

Sk =
{
π |Eτ∼(P̂k,π),τ0∼(P̂k,π0)

(
T̂k(τ, τ0) + bT,k(τ, τ0)

+ bP,k(τ) + bP,k(τ0)
)
≥ 1

2
,∀π0 ∈ Π

}
. (9)

Intuitively speaking, Sk consists of policies that there is
no other policy significantly outperforms it. By executing
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policies in Sk in episode k, We can guarantee that the re-
gret suffered in episode k to be less than the summation of
the bonuses of the trajectories (τk,1, τk,2), thus solve the
exploitation problem in PbRL. With our concentration anal-
ysis, we can guarantee that the optimal policy π∗ ∈ Sk for
any k ∈ [K] with high probability.

Exploratory Policies Now we explain how to deal with the
exploration problem in PbRL with general function approx-
imation. Since we have already defined the uncertainty bT,k
and bP,k for trajectory pairs, we can choose two policies
in Sk that maximize the uncertainty, and thus encourage
exploration:

(πk,1, πk,2) = argmax
π1,π2∈Sk

Eτ1∼(P̂k,π1),τ2∼(P̂k,π2)(
bT,k(τ1, τ2) + bP,k(τ1) + bP,k(τ2)

)
.

(10)

4.2. Regret Upper Bound

Theorem 4.1. With probability at least 1− δ, the regret of
Algorithm 1 is upper bounded by

Reg(K) ≤ Õ(
√
dPHK log(N (FP, 1/K, ∥ · ∥∞) /δ)

+
√
dTK log(N (FT, 1/K, ∥ · ∥∞) /δ)),

where dP and dT is the 1/K-Eluder dimension of FP and
FT, respectively.

The regret bound in Theorem 4.1 has polynomial depen-
dence on the Eluder dimension of the function class FP
and FT, and has no dependence on the cardinality of the
state-action space. We defer the proof of Theorem 4.1 to
Appendix A. When specialized to linear setting, the regret
of Algorithm 1 can be bounded by the following corollary.

Corollary 4.2 (Linear Mixture Model and Linear Preference
Function). For the setting of linear mixture models and
linear preference functions defined in Remark 3.5 and 3.7,
the regret of Algorithm 1 is upper bounded by

Reg(K) ≤ O(d̃P
√
HK log(BK) log(BK/δ)

+ d̃T
√
K log(LSK) log(LSK/δ)),

where d̃P and d̃T are the feature dimension of linear mixture
models and linear preference functions, respectively.

RL with once-per-episode feedback (cf. Section 3.3) is
another paradigm introduced to tackle the problem of the
lack of reward functions. Though the setting is different, we
find that our Algorithm 1 can be almost directly applied to
this setting with near-optimal regret. Since this is not the
main focus of this work, we refer the interested readers to
Appendix B for detailed algorithm and proof.

Theorem 4.3. With probability at least 1− δ, the regret of
Algorithm 4 for RL with once-per-episode feedback is upper

bounded by

Reg(K) ≤ Õ(
√
dPHK log(N (FP, 1/K, ∥ · ∥∞) /δ)

+
√
dGK log(N (FG, 1/K, ∥ · ∥∞) /δ)),

where dP and dG is the 1/K-Eluder dimension of FP and
FG, respectively.

To the best of our knowledge, this is the first provably effi-
cient algorithm for the problem of RL with once-per-episode
feedback with general function approximation, which cov-
ers the result for RL with once-per-episode feedback in the
tabular case (Chatterji et al., 2021).

4.3. Information-Theoretic Lower Bound

In this subsection, we establish the lower bound for PbRL
in the linear setting, which is derived using the reduction
from the problem of RL with once-per-episode feedback.

Firstly, we show the reduction from the problem of RL
with once-per-episode feedback setting to the PbRL setting.
Specifically, suppose we have an algorithm ALG for PbRL
problems, we design a reduction protocol to solve the RL
with once-per-episode feedback problem using Algorithm
ALG.

Algorithm 2 Reduction Protocol
1: for episode k = 1, · · · ,K/2 do
2: Invoke Algorithm ALG and obtain the policy πk,1

and πk,2.
3: Execute the policy πk,1, and then observe the trajec-

tory τk,1 and the corresponding feedback yk,1.
4: Execute the policy πk,2, and then observe the trajec-

tory τk,2 and the corresponding feedback yk,2.
5: Define the preference ok = 1(yk,1 > yk,2) if yk,1 ̸=

yk,2, and ok =

{
1 w.p. 1/2

0 w.p. 1/2
otherwise.

6: Send the information (τk,1, τk,2) and ok to Algorithm
ALG.

7: end for

The reduction protocol is described in Algorithm 2. In
each episode, the agent invokes Algorithm ALG to ob-
tain the policy πk,1 and πk,2 based on the history data.
The agent then executes these two policies, observes the
trajectory τk,1, τk,2, and receives the corresponding feed-
back yk,1, yk,2. We define the preference ok = 1(yk,1 >

yk,2) if yk,1 ̸= yk,2, and ok =

{
1 w.p. 1/2

0 w.p. 1/2
other-

wise. Note that in our design, we have Pr{ok = 1} =
Pr(yk,1=1)−Pr(yk,2=1)+1

2 . Finally, we send the information
(τk,1, τk,2) and ok obtained in this episode to Algorithm
ALG. We have the following proposition based on the re-
duction protocol.
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Proposition 4.4. Suppose there exists a PbRL algorithm
ALG with regret poly(K,H, dP, dT,NP,NT, 1/δ). For RL
with once-per-episode feedback, there exists an algorithm
with regret poly(K,H, dP, dF ,NP,NF , 1/δ), where dF
and NF is the Eluder dimension and covering number of
the function space

F = {f(τ1, τ2) : Traj×Traj → [0, 1],

s.t. f(τ1, τ2) =
g(τ1)− g(τ2) + 1

2
, g(τ) ∈ FG}.

We state the lower bound for RL with once-per-episode feed-
back in Theorem 4.5, and defer the proof to Appendix C.
Theorem 4.5 (Lower Bound for RL with Once-per-episode
Feedback). For any algorithm for RL with once-per-episode
feedback problem, there exists a d̃P-dimensional linear mix-
ture MDP with a d̃G-dimensional linear preference function
such that the regret incurred by this algorithms is at least
Ω(d̃P

√
K + d̃G

√
K).

The following lower bound for PbRL is implied by Propo-
sition 4.4 and Theorem 4.5. This lower bound matches the
upper bound in Corollary 4.2 w.r.t. the feature dimensions
d̃P, d̃T and the number of episode K except for logarithmic
factors, which indicates that our algorithm is near-optimal
when specialized to the linear setting.
Corollary 4.6 (Lower Bound for PbRL). For any algorithm
for PbRL, there exists a d̃P-dimensional linear mixture MDP
with a d̃T-dimensional linear preference function such that
the regret incurred by this algorithm is at least Ω(d̃P

√
K +

d̃T
√
K).

5. RL with n-wise Comparisons
In the previous section, we propose a sample-efficient al-
gorithm with near-optimal regret for the problem of PbRL
with trajectory feedback. However, this setting cannot cover
some other RL situations with preference feedback. For
example, in robotics, sampling new trajectories can be ex-
pensive and time-consuming compared with labeling prefer-
ences among trajectories. The human overseer may sample
multiple trajectories in a distributed manner and compare all
these trajectories with each other. In clinical trails, different
medical treatments can be evaluated simultaneously, and
the feedback is a pairwise comparison or a ranking among
them. In this section, we propose a new setting called RL
with n-wise comparisons, which is an extension of PbRL
with trajectory feedback. We describe the setup and learn-
ing objective, followed by the algorithm and theoretical
guarantees.

5.1. Setup and Learning Objective

Compared with the problem of PbRL, the main difference
is that the agent needs to execute n policies in each episode.

Specifically, in the k-th episode, the agent executes n poli-
cies {πk,i}i∈[n] , and obtains n trajectories {τk,i}i∈[n]. The
agent receives the feedback of n(n− 1)/2 pairwise compar-
isons {ok,i,j}1≤i<j≤n, where ok,i,j is a Bernoulli random
variable such that Pr(ok,i,j = 1) = Pr(τk,i > τk,j). Re-
call that we use the notations T(τ1, τ2) = Pr(τ1 > τ2)
and T(π1, π2) = Eτ1∼(P,π1),τ2∼(P,π2)T(τ1, τ2). For such a
problem, our goal is to minimize the regret, which is defined
as Reg(K) =

∑K
k=1

∑n
i=1

(
T(π∗, πk,i)− 1

2

)
, where π∗ is

defined in Assumption 3.1. When n = 2, this regret reduces
to the regret in the standard PbRL setting.

5.2. Algorithm

The algorithm, which is formally described in Algorithm 3,
shares the similar framework with Algorithm 1. The main
difference is on the construction of confidence sets and
bonus terms. Similar to the PbRL setting, we use least-
squares regression to estimate the preference function T:

T̂k = argmin
T′∈FT

k−1∑
t=1

n∑
i=1

n∑
j=i+1

(T′(τt,i, τt,j)− ot,i,j)
2
.

(11)

Notably, we have n(n−1)/2 samples instead of one sample
in each episode.We construct the confidence set centered at
T̂k by

BT,k =

T̃ |
k−1∑
t=1

n∑
i=1

n∑
j=i+1

(
T̂k − T̃

)2

(τt,i, τt,j) ≤ βT

 .

(12)

Given the confidence set BT,k, we also use the function
bT,k(τ1, τ2) = maxf1,f2∈BT,k |f1(τ1, τ2)− f2(τ1, τ2)| to
measure its uncertainty.

For estimating the transition dynamics, we utilize historical
trajectories {τt,i}(t,i)∈[k−1]×[n] to perform the least-squares
regression:

P̂k = argminP′∈P

n∑
i=1

k−1∑
t=1

H∑
h=1

(
⟨P′(· | st,h,i, at,h,i), Vk,h,i⟩

− Vk,h,i(sk,h+1,i)
)2
, (13)

where Vk,h,i is the target function defined as follows. Specif-
ically, we construct the high confidence set for transition P,
which is defined as

BP,k =
{
P′ | Lk(P′, P̂k) ≤ βP

}
, (14)
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Algorithm 3 PbOP+: Pairwise Preference-based Optimistic
Planning

1: Set βT = 8 log(2KN
(
FT, 1/(Kn

2), ∥ · ∥∞
)
/δ) and

βP = 8 log(2KN (FP, 1/(Kn), ∥ · ∥∞) /δ)
2: for episode k = 1, · · · ,K do
3: Calculate the estimation T̂k and P̂k using least-

squares regression (Eqn. (11) and (13))
4: Construct the high-confidence set BT,k for the prefer-

ence T (Eqn. (12))
5: Construct the high-confidence set BP,k for transition

P (Eqn. (14))
6: Define the bonus term bT,k(τ1, τ2) =

maxf1,f2∈BT,k |f1(τ1, τ2)− f2(τ1, τ2)|
7: Define the bonus term bP,k(s, a) =

maxP1,P2∈BP,k maxV ∈V(P1 − P2)V (s, a)
8: Set bP,k(τ) =

∑
(s,a)∈τ bP,k(s, a)

9: Compute the policy set Sk as Eqn. (16)
10: Compute policy (πk,1, πk,2, · · · , πk,n) as Eqn. (17)
11: Execute the policies (πk,1, πk,2, · · · , πk,n) for one

episode, respectively, and then observe the trajecto-
ries (τk,1, τk,2, · · · , πk,n)

12: Receive the preference ok,i,j between τk,i and τk,j
for all (i, j) ∈ {(i, j)|1 ≤ i < j ≤ n}

13: end for

where Lk(·, ·) is defined by

Lk (P1,P2) =

n∑
i=1

k−1∑
t=1

H∑
h=1

(
⟨P1 (· | st,h,i, at,h,i)

− P2 (· | st,h,i, at,h,i) , Vt,h,i⟩
)2
. (15)

Given any V ∈ V , we choose the associated bonus
bP,k(s, a, V ) as bP,k(s, a, V ) = maxP1,P2

(P1−P2)V (s, a).
Such a bonus function measures the uncertainty of the con-
fidence set BP,k. We also choose the target value function
Vt,h,i as the function that can maximize the uncertainty. For-
mally, let Vmax,k,s,a = argmaxV ∈V bP,k(s, a, V ), then we
use Vmax,t,st,h,i,at,h,i

as the online target for the historical
sample (st,h,i, at,h,i, st,h+1,i). Also we denote bP,k(s, a) =
maxV ∈V bP,k(s, a, V ) and bP,k(τ) =

∑
(s,a)∈τ bP,k(s, a).

Given the estimated transition P̂k, bonus for transition bP,k
and bonus for preference function bT,k, we can construct
the near-optimal set Sk like Eqn. (9):

Sk =
{
π |Eτ∼(P̂k,π),τ0∼(P̂k,π0)

(
T̂k(τ, τ0) + bT,k(τ, τ0)

+ bP,k(τ) + bP,k(τ0)
)
≥ 1

2
,∀π0 ∈ Π

}
. (16)

Finally, we choose the exploratory polices
(πk,1, πk,2, · · · , πk,n) that can maximize the pairwise
uncertainty. We luckily find that the summation of bonuses

exactly characterize the uncertainty of the policy tuple:

(πk,1, πk,2, · · · , πk,n) = argmax
π1,π2,··· ,πn∈Sk

n∑
i=1

n∑
j=i+1

(17)

Eτi∼(P̂k,πi),τj∼(P̂k,πj)
(bT,k(τi, τj) + bP,k(τi) + bP,k(τj)) .

5.3. Theoretical Guarantees

In the following theorem, we establish the regret upper
bound for Algorithm 3. The proof of this theorem is deferred
to Appendix D.

Theorem 5.1. With probability at least 1− δ, the regret of
Algorithm 3 is upper bounded by

Reg(K) ≤ Õ(
√
dPHnK log(N (FP, 1/(Kn), ∥ · ∥∞) /δ)

+
√
dTK log(N (FT, 1/(Kn2), ∥ · ∥∞) /δ)),

where dP and dT is the 1/K-Eluder dimension of FP and
FT, respectively.

By replacing K with K/n in Theorem 5.1, we obtain a
bound of Õ(

√
dPHK log(N (FP, 1/(Kn), ∥ · ∥∞) /δ) +√

dTK/n log(N (FT, 1/(Kn2), ∥ · ∥∞) /δ)). This im-
proves the regret bound in Theorem 4.1 by a factor of

√
n

on the second term, which is the benefit of additional infor-
mation from n-wise comparisons.

6. Conclusion
This paper studies the regret minimization problem of PbRL
with trajectory feedback and general function approxima-
tion. Based on the value-targeted regression and optimistic
planning methods, we propose a novel RL algorithm called
PbOP with regret Õ(poly(dH)

√
K). Our lower bound in-

dicates that our regret upper bound is tight w.r.t. the feature
dimension and the number of episodes when specialized to
the linear setting. Furthermore, we formulate a novel setting
called RL with n-wise comparisons and provide the first
sample efficient algorithm in this setting.

A few problems still remain open. Firstly, there is still a
gap of

√
H between Corollaries 4.2 and 4.6. We conjecture

that our upper bound is not tight, which can possibly be
improved with more refined concentration analysis based
on Bernstein bounds. Secondly, our algorithm is compu-
tationally inefficient due to non-Markovian feedback. It is
tempting to design both statistically and computationally
efficient algorithms in a relaxed PbRL setting. Finally, our
setting of RL with n-wise comparisons does not cover the
case where the feedback among n trajectories is a n-wise
ranking (Negahban et al., 2018), which is also an interesting
problem to be explored in future research.
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A. Proof of Theorem 4.1
Lemma A.1. Fix δ ∈ (0, 1), with probability at least 1− δ, for all k ∈ [K],

k−1∑
t=1

(
T̂k − T

)2

(τt,1, τt,2) ≤ βT. (18)

Proof. This lemma can be proved by the direct application of Lemma E.1.

By Lemma A.1, we know that the true preference T(τ1, τ2) ∈ BT,k with high probability.

Lemma A.2. Fix δ ∈ (0, 1), with probability at least 1− δ, for all k ∈ [K],

Lk

(
P, P̂k

)
=

2∑
i=1

k−1∑
t=1

H∑
h=1

(〈
P (· | st,h,i, at,h,i)− P̂k (· | st,h,i, at,h,i) , Vt,h,i

〉)2

≤ βP. (19)

Proof. This lemma can be proved by the direct application of Lemma E.1.

By Lemma A.2, we know that the true transition kernel P(s′|s, a) ∈ BP,k with high probability.

We denote the high-probability event in Lemmas A.1 and A.2 as E .

Lemma A.3. Under event E , for any two policies π1, π2 and scalar function f : Traj×Traj → [0, 1],

Eτ1∼(P,π1),τ2∼(P,π2)[f(τ1, τ2)]− Eτ1∼(P̂k,π1),τ2∼(P̂k,π2)
[f(τ1, τ2)] ≤ Eτ1∼(P̂k,π1),τ2∼(P̂k,π2)

[bP,k(τ1) + bP,k(τ2)] (20)

Proof. We use τ ∼ (P̂k, π)h to denote that the first h steps in the trajectory τ is sampled using policy π from the MDP with
transition P̂k, and the state-action pairs from step h+ 1 up until the last step is sampled using policy π from the MDP with
the true transition P. Therefore,

Eτ1∼(P,π1),τ2∼(P,π2)[f(τ1, τ2)]− Eτ1∼(P̂k,π1),τ2∼(P̂k,π2)
[f(τ1, τ2)] (21)

=Eτ1∼(P̂k,π1)0,τ2∼(P̂k,π2)0
[f(τ1, τ2)]− Eτ1∼(P̂k,π1)H ,τ2∼(P̂k,π2)H

[f(τ1, τ2)] (22)

=

H∑
h=1

Eτ1∼(P̂k,π1)h−1,τ2∼(P̂k,π2)h−1
[f(τ1, τ2)]− Eτ1∼(P̂k,π1)h,τ2∼(P̂k,π2)h

[f(τ1, τ2)] (23)

For a given h, suppose dh(P, π) denotes the state-action distribution in step h when the agent interacts with the MDP with
transition P using policy π, we have

Eτ1∼(P̂k,π1)h−1,τ2∼(P̂k,π2)h−1
[f(τ1, τ2)]− Eτ1∼(P̂k,π1)h,τ2∼(P̂k,π2)h

[f(τ1, τ2)] (24)

≤E(sh,1,ah,1)∼dh(P̂k,π1),(sh,2,ah,2)∼dh(P̂k,π2)

[
max
V

((
P− P̂k

)
V (sh,1, ah,1)

)
+max

V

((
P− P̂k

)
V (sh,2, ah,2)

)]
(25)

≤E(sh,1,ah,1)∼dh(P̂k,π1),(sh,2,ah,2)∼dh(P̂k,π2)
[bP,k(sh,1, ah,1) + bP,k(sh,2, ah,2)] , (26)

where the last inequality is due to P ∈ BP,k under event E by Lemma A.2. Summing over all h ∈ [H], we can prove that

Eτ1∼(P,π1),τ2∼(P,π2)[f(τ1, τ2)]− Eτ1∼(P̂k,π1),τ2∼(P̂k,π2)
[f(τ1, τ2)] ≤ Eτ1∼(P̂k,π1),τ2∼(P̂k,π2)

[bP,k(τ1) + bP,k(τ2)]. (27)

Lemma A.4. Under event E , we have π∗ ∈ Sk.

Proof. By Assumption 3.1, we know that

Eτ0∼(P,π0),τ∗∼(P,π∗)T (τ∗, τ0) ≥
1

2
,∀π0. (28)
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We decompose the LHS of the above inequality into the following three terms:

Eτ0∼(P,π0),τ∗∼(P,π∗)T (τ∗, τ0) =Eτ0∼(P,π0),τ∗∼(P,π∗)T (τ∗, τ0)− Eτ0∼(P̂k,π0),τ∗∼(P̂k,π∗)T (τ∗, τ0) (29)

+ Eτ0∼(P̂k,π0),τ∗∼(P̂k,π∗)T (τ∗, τ0)− Eτ0∼(P̂k,π0),τ∗∼(P̂k,π∗)T̂k (τ
∗, τ0) (30)

+ Eτ0∼(P̂k,π0),τ∗∼(P̂k,π∗)T̂k (τ
∗, τ0) . (31)

By Lemma A.3, we can upper bound the first term in the following way:

Eτ0∼(P,π0),τ∗∼(P,π∗)T (τ∗, τ0)− Eτ0∼(P̂k,π0),τ∗∼(P̂k,π∗)T (τ∗, τ0) ≤Eτ1∼(P̂k,π1),τ2∼(P̂k,π2)
[bP,k(τ1) + bP,k(τ2)]. (32)

By Lemma A.1, we know that T(τ1, τ2) ∈ BT,k under event E . Therefore,

Eτ0∼(P̂k,π0),τ∗∼(P̂k,π∗)T (τ∗, τ0)− Eτ0∼(P̂k,π0),τ∗∼(P̂k,π∗)T̂k (τ
∗, τ0) (33)

≤Eτ0∼(P̂k,π0),τ∗∼(P̂k,π∗) max
f1,f2∈BT,k

|f1 (τ1, τ2)− f2 (τ
∗, τ0)| (34)

=Eτ0∼(P̂k,π0),τ∗∼(P̂k,π∗)bT,k(τ
∗, τ0). (35)

Together with Inq. (28), we have

Eτ0∼(P̂k,π0),τ∗∼(P̂k,π∗)

(
T̂k (τ

∗, τ0) + bT,k(τ
∗, τ0) + bP,k(τ

∗) + bP,k(τ0)
)
≥ 1

2
,∀π0, (36)

which indicates that π∗ ∈ Sk.

Lemma A.5. Under event E , it holds that

K∑
k=1

bT,k(τk,1, τk,2) ≤ O(
√
dK log(KN (FT, 1/K, ∥ · ∥∞) /δ)). (37)

Proof. This lemma follows from the direct application of Lemma E.2. Note that under event E , we have
max1≤k≤K diam(BT,k|(τ1,τ2)1:k) ≤ 2

√
βT by Lemma A.1, and f(τ1, τ2) ∈ [0, 1],∀f ∈ FT. Therefore,

K∑
k=1

bT,k(τk,1, τk,2) =

K∑
k=1

diam
(
BT,k|(τk,1,τk,2)

)
≤ O(

√
dK log(KN (FT, 1/K, ∥ · ∥∞) /δ)). (38)

Lemma A.6. Under event E ,

K∑
k=1

(bP,k(τk,1) + bP,k(τk,2)) ≤ O(
√
dPHK log(KN (FT, 1/K, ∥ · ∥∞) /δ)). (39)

Proof. This lemma follows from the direct application of Lemma E.2. Note that under event E , we have∑2
i=1

∑k
t=1

∑H
h=1

(〈
P (· | st,h,i, at,h,i)− P̂k (· | st,h,i, at,h,i) , Vk,h,i

〉)2

≤ βP by Lemma A.2, and f(s, a, V ) ∈
[0, 1],∀f ∈ FP. Therefore,

K∑
k=1

bP,k(τk,1) + bP,k(τk,2) =

2∑
i=1

K∑
k=1

H∑
h=1

bP,k(sk,h,i, ak,h,i) ≤ O(
√
dPHK log(KN (FT, 1/K, ∥ · ∥∞) /δ)). (40)
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Proof of Theorem 4.1. By the definition of regret, we have

Reg(K) =

K∑
k=1

(T(π∗, πk,1) + T(π∗, πk,2)− 1) (41)

=

K∑
k=1

(
Eτ∗∼(P̂k,π∗),τ1∼(P̂k,πk,1)

T̂k(τ
∗, τ1) + Eτ∗∼(P̂k,π∗),τ2∼(P̂k,πk,2)

T̂k(τ
∗, τ2)− 1

)
(42)

+

K∑
k=1

(
Eτ∗∼(P,π∗),τ1∼(P,πk,1)T(τ

∗, τ1)− Eτ∗∼(P̂k,π∗),τ1∼(P̂k,πk,1)
T(τ∗, τ1)

)
(43)

+

K∑
k=1

(
Eτ∗∼(P,π∗),τ2∼(P,πk,2)T(τ

∗, τ2)− Eτ∗∼(P̂k,π∗),τ2∼(P̂k,πk,2)
T(τ∗, τ2)

)
(44)

+

K∑
k=1

Eτ∗∼(P̂k,π∗),τ1∼(P̂k,πk,1)

(
T(τ∗, τ1)− T̂k(τ

∗, τ1)
)

(45)

+

K∑
k=1

Eτ∗∼(P̂k,π∗),τ2∼(P̂k,πk,2)

(
T(τ∗, τ2)− T̂k(τ

∗, τ2)
)
. (46)

Since πk,1 ∈ Sk, we have

Eτ∗∼(P̂k,π∗),τ1∼(P̂k,πk,1)
T̂k(τ

∗, τ1)−
1

2
≤Eτ1∼(P̂k,πk,1),τ∗∼(P̂k,π∗) (bT,k(τ1, τ

∗) + bP,k(τ1) + bP,k(τ
∗)) , (47)

where the inequality is due to the definition of Sk.

By Lemma A.3, we know that

Eτ∗∼(P,π∗),τ1∼(P,πk,1)T(τ
∗, τ1)− Eτ∗∼(P̂k,π∗),τ1∼(P̂k,πk,1)

T(τ∗, τ1) ≤ Eτ∗∼(P̂k,π∗),τ1∼(P̂k,πk,1)
[bP,k(τ

∗) + bP,k(τ1)].

(48)

From the definition of bT,k(τ1, τ2), we also know that

Eτ∗∼(P̂k,π∗),τ1∼(P̂k,πk,1)

(
T(τ∗, τ1)− T̂k(τ

∗, τ1)
)
≤ Eτ∗∼(P̂k,π∗),τ2∼(P̂k,πk,2)

bT,k(τ
∗, τ1) (49)

Similarly, for the policy πk,2, we also have

Eτ∗∼(P̂k,π∗),τ2∼(P̂k,πk,2)
T̂k(τ

∗, τ1)−
1

2
≤ Eτ2∼(P̂k,πk,2),τ∗∼(P̂k,π∗) (bT,k(τ2, τ

∗) + bP,k(τ2) + bP,k(τ
∗)) (50)

Eτ∗∼(P,π∗),τ2∼(P,πk,2)T(τ
∗, τ2)− Eτ∗∼(P̂k,π∗),τ2∼(P̂k,πk,2)

T(τ∗, τ2) ≤ Eτ∗∼(P̂k,π∗),τ2∼(P̂k,πk,2)
[bP,k(τ

∗) + bP,k(τ2)]

(51)

Eτ∗∼(P̂k,π∗),τ2∼(P̂k,πk,2)

(
T(τ∗, τ2)− T̂k(τ

∗, τ2)
)
≤ Eτ∗∼(P̂k,π∗),τ2∼(P̂k,πk,2)

bT,k(τ
∗, τ2). (52)
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Plugging the above inequalities back to Inq. (41), we have

Reg(K) ≤
K∑

k=1

Eτ1∼(P̂k,πk,1),τ∗∼(P̂k,π∗) (bT,k(τ1, τ
∗) + bP,k(τ1) + bP,k(τ

∗)) (53)

+

K∑
k=1

Eτ1∼(P̂k,πk,1),τ∗∼(P̂k,π∗) (bT,k(τ
∗, τ1) + bP,k(τ1) + bP,k(τ

∗)) (54)

+

K∑
k=1

Eτ2∼(P̂k,πk,2),τ∗∼(P̂k,π∗) (bT,k(τ2, τ
∗) + bP,k(τ2) + bP,k(τ

∗)) (55)

+

K∑
k=1

Eτ2∼(P̂k,πk,2),τ∗∼(P̂k,π∗) (bT,k(τ
∗, τ2) + bP,k(τ2) + bP,k(τ

∗)) (56)

≤
K∑

k=1

2Eτ1∼(P̂k,πk,1),τ2∼(P̂k,πk,2)
(bT,k(τ1, τ2) + bP,k(τ1) + bP,k(τ2)) , (57)

where the second inequality follows the fact that πk,1 and πk,2 are the maximizer of

Eτ1∼(P̂k,π1),τ2∼(P̂k,π2)
(bT,k(τ1, τ2) + bP,k(τ1) + bP,k(τ2)) .

By definition, we have 0 ≤ bT,k(τ1, τ2) ≤ 1 and 0 ≤ bP,k(τ) ≤ 1. By Azuma’s inequality, the following inequality holds
with probability at least 1− δ/2,

K∑
k=1

2Eτ1∼(P̂k,πk,1),τ2∼(P̂k,πk,2)
(bT,k(τ1, τ2) + bP,k(τ1) + bP,k(τ2)) (58)

≤
K∑

k=1

2 (bT,k(τk,1, τk,2) + bP,k(τk,1) + bP,k(τk,2)) + 4
√
K log(4/δ). (59)

By Lemma A.5 and Lemma A.6, we can finally upper bound the total regret:

Reg(K) ≤ O
(√

dPHK log(N (FP, 1/K, ∥ · ∥∞) /δ) +
√
dTK log(N (FT, 1/K, ∥ · ∥∞) /δ)

)
. (60)

B. RL with Once-per-episode Feedback
B.1. Algorithm

We estimate g∗ by solving the following least-squares regression problem:

ĝk = argmin
g∈FG

k−1∑
t=1

[g(τt)− yt]
2. (61)

Then we construct the high-probability set for g∗:

BG,k =

{
g |

k−1∑
t=1

(ĝk(τt)− yt)
2 ≤ βG

}
. (62)

The transition estimation P̂k is the minimizer of the least-square loss:

P̂k = argminP′∈P

k−1∑
t=1

H∑
h=1

(⟨P′ (· | st,h, at,h) , Vk,h⟩ − Vk,h(sk,h+1))
2
, (63)
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where the value target Vk,h defined in Line 8 of Algorithm 4 is the value function that maximizes the uncertainty in
state-action pair (sk,h, ak,h).

We define Lk(P1,P2) as

Lk (P1,P2) =

k−1∑
t=1

H∑
h=1

(⟨P1 (· | st,h, at,h)− P2 (· | st,h, at,h) , Vt,h⟩)2 . (64)

We construct the high confidence set for transition P, which is defined as

BP,k =
{
P̃ | Lk(P̃, P̂k) ≤ βP

}
. (65)

Similar with Algorithm 1, we calculate the policy set Sk, which contains near-optimal policies with minor sub-optimality
gap. Finally, we execute the most exploratory policy in Sk.

Algorithm 4 RL with Trajectory Feedback
1: Set βG = βP = 8 log(2KN (FT, 1/K, ∥ · ∥∞) /δ)
2: for episode k = 1, · · · ,K do
3: Calculate the estimation gk using least-squares regression (Eqn. (61))
4: Construct the high-confidence set BG,k for the feedback function g∗ (Eqn. (62))
5: Calculate the estimation P̂k using least-square regression (Eqn. 63).
6: Construct the high-confidence set BP,k for transition P (Eqn. 65)
7: Define the bonus term bP,k(s, a) = maxP1,P2∈BP,k maxV ∈V(P1 − P2)V (s, a), and bP,k(τ) =

∑
(s,a)∈τ bP,k(s, a).

8: Define Vmax,k,s,a = argmaxV ∈V maxP1,P2∈BP,k(P1 − P2)V (s, a)
9: Define the bonus term bG,k(τ) = maxg1,g2∈BG,k

|g1(τ)− g2(τ)|
10: Set Sk =

{
π | Eτ∼(P̂k,π),τ0∼(P̂k,π0)

(ĝk(τ)− ĝk(τ0) + bG,k(τ) + bG,k(τ0) + bP,k(τ) + bP,k(τ0)) ≥ 0,∀π0 ∈ Π
}

11: Compute policy πk = argmaxπ∈Sk
Eτ∼(P̂k,π)

(bG,k(τ) + bP,k(τ))
12: Execute the policy πk for one episode, then observe the trajectory τk and the feedback yk
13: end for

B.2. Theoretical Results

Theorem B.1 (Restatement of Theorem 4.3). With probability at least 1− δ, the regret of Algorithm 4 is upper bounded by

Reg(K) ≤ Õ(
√
dPHK log(N (FP, 1/K, ∥ · ∥∞) /δ) +

√
dGK log(N (FG, 1/K, ∥ · ∥∞) /δ)).

Proof. The proof shares almost the same idea with the analysis for PbRL. Therefore, we only explain the differences.
Similar to Lemmas A.1 and A.2, we can show the following events happen with probability at least 1− δ,

k−1∑
t=1

(ĝk − g∗)
2
(τt) ≤ βT,

k−1∑
t=1

H∑
h=1

(〈
P (· | st,h, at,h)− P̂k (· | st,h, at,h) , Vt,h

〉)2

≤ βP. (66)

Denote the above event as E . Under event E , we also know that π∗ ∈ Sk. Therefore, we upper bound the regret in the



Preference-based Reinforcement Learning

following way:

Reg(K) =

K∑
k=1

V ∗(s1)− V πk(s1) (67)

=

K∑
k=1

Eτ∗∼(P̂k,π∗),τ∼(P̂k,πk)
(ĝk(τ

∗)− ĝk(τ)) (68)

+

K∑
k=1

Eτ∗∼(P,π∗),τ∼(P,πk) (g
∗(τ∗)− g∗(τ))− Eτ∗∼(P̂k,π∗),τ∼(P̂k,πk)

(g∗(τ∗)− g∗(τ)) (69)

+

K∑
k=1

Eτ∗∼(P̂k,π∗),τ∼(P̂k,πk)
((g∗(τ∗)− g∗(τ))− (ĝk(τ

∗)− ĝk(τ))) . (70)

Since πk ∈ Sk, we have

Eτ∼(P̂k,πk),τ∗∼(P̂k,π∗) (ĝk(τ)− ĝk(τ
∗)) ≤ Eτ∼(P̂k,π),τ∗∼(P̂k,π∗) (bG,k(τ) + bG,k(τ

∗) + bP,k(τ) + bP,k(τ
∗)) (71)

Similarly, by Lemma A.3, we know that

K∑
k=1

Eτ∗∼(P,π∗),τ∼(P,πk) (g
∗(τ∗)− g∗(τ))− Eτ∗∼(P̂k,π∗),τ∼(P̂k,πk)

(g∗(τ∗)− g∗(τ)) (72)

≤Eτ∗∼(P̂k,π∗),τ∼(P̂k,πk)
[bP,k(τ

∗) + bP,k(τ)]. (73)

From the definition of bG,k(τ), we also know that

Eτ∼(P̂k,πk)
(g∗(τ)− ĝ(τ)) ≤ Eτ∼(P̂k,πk)

bG,k(τ), (74)

Eτ∗∼(P̂k,π∗) (g
∗(τ∗)− ĝ(τ∗)) ≤ Eτ∼(P̂k,πk)

bG,k(τ
∗). (75)

Plugging the above inequalities back to Inq. (67), we have

Reg(K) ≤
K∑

k=1

Eτ∼(P̂k,πk),τ∗∼(P̂k,π∗) (bG,k(τ) + bG,k (τ
∗) + bP,k(τ) + bP,k(τ

∗)) (76)

+

K∑
k=1

Eτ∼(P̂k,πk),τ∗∼(P̂k,π∗) (bG,k(τ) + bG,k (τ
∗) + bP,k(τ) + bP,k(τ

∗)) (77)

≤
K∑

k=1

4Eτ∼(P̂k,πk)
(bG,k(τ) + bP,k(τ)) , (78)

where the second inequality follows the fact that πk is the maximizer of Eτ∼(P̂k,π)
(bG,k(τ) + bP,k(τ)) . By definition, we

have 0 ≤ bG,k(τ) ≤ 1 and 0 ≤ bP,k(τ) ≤ 1. By Azuma’s inequality, the following inequality holds with probability at least
1− δ/2,

K∑
k=1

4Eτ∼(P̂k,πk)
(bG,k(τ) + bP,k(τ)) (79)

≤
K∑

k=1

4 (bG,k(τk) + bP,k(τk)) + 8
√
K log(4/δ). (80)

We upper bound the summation of bonus with the help of Lemma E.2. Finally, we have

Reg(K) ≤ O
(√

dPHK log(N (FP, 1/K, ∥ · ∥∞) /δ) +
√
dGK log(N (FT, 1/K, ∥ · ∥∞) /δ)

)
. (81)
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C. Proof of Theorem 4.5
Proof. For any τ = (s1, a1, · · · , sH , aH), let g∗(τ) =

∑H
h=1 r(sh, ah). Then the RL with once-per-episode feedback

problem reduces to the traditional RL (RL with reward signals). Thus, the lower bound Ω(d̃P
√
K)1 established in Zhou et al.

(2021a) immediately implies the same regret lower bound for the RL with once-per-episode feedback problem. Meanwhile,
by regarding the trajectory as an “arm”, the lower bound Ω(d̃T

√
K) for linear bandits implies the lower bound Ω(d̃T

√
K)

for our setting. Putting these two lower bound together, we obtain Reg(K) ≥ Ω(max{d̃P
√
K, d̃T

√
K}), which equivalents

to Reg(K) ≥ Ω(d̃P
√
K + d̃T

√
K). Therefore, we finish the proof.

D. Proof of Theorem 5.1
We also need the following concentration lemmas to guarantee that the true preference T(·, ·) ∈ BT,k with high probability
and the true transition kernel P(s′|s, a) ∈ BP,k with high probability, respectively.

Lemma D.1. Fix δ ∈ (0, 1), with probability at least 1− δ, for all k ∈ [K],

k−1∑
t=1

n∑
i=1

n∑
j=i+1

(
T̂k − T

)2

(τt,i, τt,j) ≤ βT. (82)

Proof. This lemma can be proved by the direct application of Lemma E.1.

Lemma D.2. Fix δ ∈ (0, 1), with probability at least 1− δ, for all k ∈ [K],

Lk

(
P, P̂k

)
=

n∑
i=1

k−1∑
t=1

H∑
h=1

(〈
P (· | st,h,i, at,h,i)− P̂k (· | st,h,i, at,h,i) , Vt,h,i

〉)2

≤ βP. (83)

Proof. This lemma can be proved by the direct application of Lemma E.1.

With slight abuse of notation, we denote the high-probability event in Lemmas D.1 and D.2 as E .

Lemma D.3. Under event E , for any two policies π1, π2 and scalar function f : Traj×Traj → [0, 1], we have

Eτ1∼(P,π1),τ2∼(P,π2)[f(τ1, τ2)]− Eτ1∼(P̂k,π1),τ2∼(P̂k,π2)
[f(τ1, τ2)] ≤ Eτ1∼(P̂k,π1),τ2∼(P̂k,π2)

[bP,k(τ1) + bP,k(τ2)]. (84)

Proof. The proof is the same as that of Lemma A.3 and we omit it here to avoid repetition.

Lemma D.4. Under event E , we have π∗ ∈ Sk.

Proof. The proof is the same as that of Lemma A.4 and we omit it here to avoid repetition.

With these lemmas, we are ready to provide the proof of Theorem 5.1.

1Their lower bound is Ω(d̃P
√
H3K) because they consider the setting that the total reward is bounded by H and the transition kernel

is time-inhomogeneous.
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Proof of Theorem 5.1. By the definition of regret, we have

Reg(K) =

K∑
k=1

n∑
i=1

(
T(π∗, πk,i)−

1

2

)
(85)

=

K∑
k=1

n∑
i=1

(
Eτ∗∼(P̂k,π∗),τi∼(P̂k,πk,i)

T̂(τ∗, τi)−
1

2

)
(86)

+

K∑
k=1

n∑
i=1

(
Eτ∗∼(P,π∗),τi∼(P,πk,i)T(τ

∗, τi)− Eτ∗∼(P̂k,π∗),τi∼(P̂k,πk,i)
T(τ∗, τi)

)
(87)

+

K∑
k=1

n∑
i=1

Eτ∗∼(P̂k,π∗),τi∼(P̂k,πk,i)

(
T(τ∗, τi)− T̂(τ∗, τi)

)
. (88)

Note that πk,i ∈ Sk for all i ∈ [n], we have

Eτ∗∼(P̂k,π∗),τi∼(P̂k,πk,i)
T̂(τ∗, τi)−

1

2
≤Eτi∼(P̂k,πk,1),τ∗∼(P̂k,π∗) (bT,k(τi, τ

∗) + bP,k(τi) + bP,k(τ
∗)) , (89)

By Lemma D.3, we have that

Eτ∗∼(P,π∗),τi∼(P,πk,i)T(τ
∗, τi)− Eτ∗∼(P̂k,π∗),τi∼(P̂k,πk,i)

T(τ∗, τi) ≤ Eτ∗∼(P̂k,π∗),τi∼(P̂k,πk,i)
[bP,k(τ

∗) + bP,k(τi)].

(90)

By the definition of bT,k, we also know that

Eτ∗∼(P̂k,π∗),τi∼(P̂k,πk,i)

(
T(τ∗, τi)− T̂(τ∗, τi)

)
≤ bT,k(τ

∗, τi). (91)

Plugging the above inequalities back to Inq. (85), we have

Reg(K) ≤
K∑

k=1

n∑
i=1

Eτi∼(P̂k,πk,i),τ∗∼(P̂k,π∗) (bT,k(τi, τ
∗) + bP,k(τi) + bP,k(τ

∗)) (92)

+

K∑
k=1

n∑
i=1

Eτi∼(P̂k,πk,i),τ∗∼(P̂k,π∗) (bT,k(τ
∗, τi) + bP,k(τi) + bP,k(τ

∗)) (93)

=2

K∑
k=1

n∑
i=1

Eτi∼(P̂k,πk,i),τ∗∼(P̂k,π∗) (bT,k(τ
∗, τi) + bP,k(τi) + bP,k(τ

∗)) , (94)

For any (k, i) ∈ [K]× [n], we have

n∑
i=1

Eτi∼(P̂k,πk,i),τ∗∼(P̂k,π∗) (bT,k(τ
∗, τi) + bP,k(τi) + bP,k(τ

∗)) (95)

=
1

n− 1
·

n∑
i=1

∑
j ̸=i

Eτj∼(P̂k,πk,j),τ∗∼(P̂k,π∗) (bT,k(τ
∗, τj) + bP,k(τj) + bP,k(τ

∗)) . (96)

Note that

(πk,1, πk,2, · · · , πk,n) = argmax
π1,π2,··· ,πn∈Sk

n∑
i=1

n∑
j=i+1

Eτi∼(P̂k,πi),τj∼(P̂k,πj)
(bT,k(τi, τj) + bP,k(τi) + bP,k(τj)) (97)

= argmax
π1,π2,··· ,πn∈Sk

1

2

n∑
i=1

∑
j ̸=i

Eτi∼(P̂k,πi),τj∼(P̂k,πj)
(bT,k(τi, τj) + bP,k(τi) + bP,k(τj)) (98)

= argmax
π1,π2,··· ,πn∈Sk

n∑
i=1

∑
j ̸=i

Eτi∼(P̂k,πi),τj∼(P̂k,πj)
(bT,k(τi, τj) + bP,k(τi) + bP,k(τj)) , (99)
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together with the fact that π∗ ∈ Sk (Lemma D.4), we have for any i ∈ [n],∑
j ̸=i

Eτj∼(P̂k,πk,j),τ∗∼(P̂k,π∗) (bT,k(τ
∗, τj) + bP,k(τj) + bP,k(τ

∗)) (100)

+
∑
j,l ̸=i

Eτj∼(P̂k,πk,j),τl∼(P̂k,πk,l)
(bT,k(τj , τl) + bP,k(τj) + bP,k(τl)) (101)

≤
n∑

i=1

∑
j ̸=i

Eτi∼(P̂k,πk,i),τj∼(P̂k,πj)
(bT,k(τi, τj) + bP,k(τi) + bP,k(τj)) , (102)

which equivalents to ∑
j ̸=i

Eτj∼(P̂k,πk,j),τ∗∼(P̂k,π∗) (bT,k(τ
∗, τj) + bP,k(τj) + bP,k(τ

∗)) (103)

≤
∑
j ̸=i

Eτj∼(P̂k,πk,j),τi∼(P̂k,πi)
(bT,k(τi, τj) + bP,k(τi) + bP,k(τi)) . (104)

Taking summation over i ∈ [n] gives that
n∑

i=1

∑
j ̸=i

Eτi∼(P̂k,πk,j),τ∗∼(P̂k,π∗) (bT,k(τ
∗, τj) + bP,k(τj) + bP,k(τ

∗)) (105)

≤
n∑

i=1

∑
j ̸=i

Eτi∼(P̂k,πk,j),τj∼(P̂k,πj)
(bT,k(τi, τj) + bP,k(τj) + bP,k(τi)) . (106)

By definition, we have 0 ≤ bT,k(τ1, τ2) ≤ H and 0 ≤ bP,k(τ) ≤ 1. By Azuma’s inequality, the following inequality holds
with probability at least 1− δ/2,

K∑
k=1

n∑
i=1

∑
j ̸=i

Eτi∼(P̂k,πk,j),τj∼(P̂k,πj)
(bT,k(τi, τj) + bP,k(τj) + bP,k(τi)) (107)

≤
K∑

k=1

n∑
i=1

∑
j ̸=i

(bT,k(τk,i, τk,j) + bP,k(τk,j) + bP,k(τk,i)) + 2Hn
√
K log(4/δ) (108)

=2

K∑
k=1

n∑
i=1

n∑
j=i+1

(bT,k(τk,i, τk,j) + bP,k(τk,j) + bP,k(τk,i)) + 2Hn
√
K log(4/δ) (109)

Lemma D.5. Under event E , it holds that

K∑
k=1

n∑
i=1

n∑
j=i+1

bT,k(τk,i, τk,j) ≤ O(
√
dKn2 log(KN (FT, 1/(Kn2), ∥ · ∥∞) /δ)). (110)

Proof. This lemma follows from the direct application of Lemma E.2. Note that under event E , we have
max1≤k≤K diam(BT,k|(τ1,τ2)1:k) ≤ 2

√
βT by Lemma D.1, and f(τ1, τ2) ∈ [0, 1],∀f ∈ FT. Therefore,

K∑
k=1

n∑
i=1

n∑
j=i+1

bT,k(τk,i, τk,j) =

K∑
k=1

n∑
i=1

∑
j ̸=i

diam
(
BT,k|(τk,1,τk,2)

)
≤ O(

√
dKn2 log(KN (FT, 1/(Kn2), ∥ · ∥∞) /δ)).

(111)

Lemma D.6. Under event E , it holds that

K∑
k=1

n∑
i=1

bP,k(τk,i) ≤ O(
√
dPHKn log(KN (FP, 1/(Kn), ∥ · ∥∞) /δ)). (112)
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Proof. This lemma follows from the direct application of Lemma E.2. Note that under event E , we have∑n
i=1

∑k
t=1

∑H
h=1

(〈
P (· | st,h,i, at,h,i)− P̂k (· | st,h,i, at,h,i) , Vk,h,i

〉)2

≤ βP by Lemma D.2, and f(s, a, V ) ∈
[0, 1],∀f ∈ FP. Therefore,

K∑
k=1

n∑
i=1

bP,k(τk,i) =

n∑
i=1

K∑
k=1

H∑
h=1

bP,k(sk,h,i, ak,h,i) ≤ O(
√
dPHKn log(KN (FP, 1/(Kn), ∥ · ∥∞) /δ)). (113)

By Lemmas D.5 and D.6, we can finally upper bound the total regret:

Reg(K) ≤ O
(√

dPHnK · log(N (FP, 1/(Kn), ∥ · ∥∞) /δ) +
√
dTK · log(N (FT, 1/(Kn2), ∥ · ∥∞) /δ)

)
. (114)

E. Auxiliary Lemmas
Let (Xp, Yp)p=1,2,... be a sequence of random elements, Xp ∈ X for some measurable set X and Yp ∈ R. Let F be
a subset of the set of real-valued measurable functions with domain X . Let F = (Fp)p=0,1,··· be a filtration such that
for all p ≥ 1, (X1, Y1, · · · , Xp−1, Yp−1, Xp) is Fp−1 measurable and such that there exists some function f⋆ ∈ F such
that E [Yp | Fp−1] = f∗ (Xp) holds for all p ≥ 1. The (nonlinear) least square predictor given (X1, Y1, · · · , Xt, Yt) is
f̂t = argminf∈F

∑t
p=1 (f (Xp)− Yp)

2. We say that Z is conditionally ρ-subgaussion given the σ-algebra F is for all
λ ∈ R, logE[exp(λZ) | F] ≤ 1

2λ
2ρ2. For α > 0, let Nα be the ∥ · ∥∞-covering number of F at scale α. For β > 0, define

Ft(β) =

{
f ∈ F :

t∑
p=1

(
f (Xp)− f̂t (Xp)

)2

≤ β

}
. (115)

Lemma E.1. (Theorem 5 of (Ayoub et al., 2020)). Let F be the filtration defined above and assume that the functions in F
are bounded by the positive constant C > 0. Assume that for each s ≥ 1, (Yp − f∗ (Xp)) is conditionally σ-subgaussian
given Fp−1. Then, for any α > 0, with probability 1− δ, for all t ≥ 1, f∗ ∈ Ft (βt(δ, α)), where

βt(δ, α) = 8σ2 log (2Nα/δ) + 4tα
(
C +

√
σ2 log(4t(t+ 1)/δ)

)
. (116)

Lemma E.2. (Lemma 5 of (Russo & Van Roy, 2014)). Let F ∈ B∞(X , C) be a set of functions bounded by
C > 0, (Ft)t≥1 and (xt)t≥1 be sequences such that Ft ⊂ F and xt ∈ X hold for t ≥ 1. Let F|x1:t

=
{(f (x1) , . . . , f (xt)) : f ∈ F} (⊂ Rt) and for S ⊂ Rt, let diam(S) = supu,v∈S ∥u− v∥2 be the diameter of S. Then, for
any T ≥ 1 and α > 0 it holds that

T∑
t=1

diam
(
Ft|xt

)
≤ α+ C(d ∧ T ) + 2δT

√
dT , (117)

where δT = max1≤t≤T diam
(
Ft|x1:t

)
and d = dimE(F , α).


