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Abstract
Self-training for unsupervised domain adaptive
object detection is a challenging task, of which
the performance depends heavily on the qual-
ity of pseudo boxes. Despite the promising re-
sults, prior works have largely overlooked the
uncertainty of pseudo boxes during self-training.
In this paper, we present a simple yet effective
framework, termed as Probabilistic Teacher (PT),
which aims to capture the uncertainty of unlabeled
target data from a gradually evolving teacher and
guides the learning of a student in a mutually
beneficial manner. Specifically, we propose to
leverage the uncertainty-guided consistency train-
ing to promote classification adaptation and lo-
calization adaptation, rather than filtering pseudo
boxes via an elaborate confidence threshold. In
addition, we conduct anchor adaptation in paral-
lel with localization adaptation, since anchor can
be regarded as a learnable parameter. Together
with this framework, we also present a novel
Entropy Focal Loss (EFL) to further facilitate the
uncertainty-guided self-training. Equipped with
EFL, PT outperforms all previous baselines by a
large margin and achieve new state-of-the-arts.

1. Introduction
Convolutional neural networks have shown remarkable per-
formance for object detection when trained on large-scale
and high-quality annotated data. However, when deployed
to unseen data, the detector dramatically degrades due to
domain shifts such as weather changes, light conditions
variations, or image corruptions (Michaelis et al., 2019).
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Figure 1. Performance comparison of adapting different models
from normal to foggy weather. Our framework achieves the state-
of-the-art result by simply adopting a self-training mechanism.

To remedy this issue, unsupervised domain adaptive object
detection (UDA-OD) methods have been proposed (Chen
et al., 2018; Saito et al., 2019; He & Zhang, 2019; Bous-
malis et al., 2017; Hsu et al., 2020; Kim et al., 2019; Deng
et al., 2021; R. et al., 2021; Li et al., 2020a), whose goal is to
transfer pre-trained models from a labeled source domain to
an unlabeled target domain with different data distribution.
Recently, UDA-OD methods have witnessed a strong de-
mands in real-world scenarios such as automatic driving and
edge AI, where domain shifts are common and collecting
high-quality annotated target data is expensive.

As shown in Fig.1, various methods have been proposed for
this task, and they can be categorized as domain alignment,
domain translation and self-training methods. Domain align-
ment aims to learn domain-invariant representation using
domain classifiers and gradient reversal layers (Chen et al.,
2018; Saito et al., 2019; He & Zhang, 2019). Domain trans-
lation, on the other hand, attempts to translate the labeled
source data into target-like styles to drive adaptation train-
ing (Bousmalis et al., 2017; Hsu et al., 2020; Kim et al.,
2019). Very recently, self-training is proposed to leverage
teacher-student mutual learning to progressively improve
the performance of unlabeled target data (Deng et al., 2021;
R. et al., 2021). Specifically, self-training removes the ne-
cessity of extra training paradigms like adversarial training
and style transfer, and has recently demonstrated promising
results. Our proposed method, as will be detailed in the later
sections, falls into the self-training category.

https://github.com/hikvision-research/ProbabilisticTeacher
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The critical component in self-training lies in the pseudo
labeling. A popular solution is to filter pseudo boxes via an
elaborate category confidence threshold (Deng et al., 2021;
R. et al., 2021). However, there are two inherent challenges
in this paradigm. Dependence challenge: the performance in
this paradigm depends heavily on the selection of the thresh-
old, while in many if not all cases, no annotated target data
is available to tune the confidence threshold. Performance
challenge: since only category confidence is considered
while localization confidence is not, this simple solution
cannot guarantee the quality of pseudo boxes (see Fig.3).

To address these issues, from the perspective of uncertainty,
we present in this paper a threshold-free framework, termed
as Probabilistic Teacher (PT), to apply cross-domain self-
training via uncertainty-guided consistency training between
the teacher and student models for both classification and
localization adaptation. In our proposed framework, the
existing Faster-RCNN (Ren et al., 2015) is restructured
into a probabilistic one, since the existing Faster-RCNN is
incapable to predict localization uncertainty. In this way,
both category and localization labels can be represented as
probability distributions, providing a ground for the teacher
model to annotate target pseudo boxes with uncertainty.

Furthermore, another issue in prior work comes to the an-
chor. As a scene-sensitive parameter, anchor shapes have to
be manually tweaked to improve accuracy when applying
anchor-based detector to a specific object detection dataset.
In the existing works, source and target domains usually
share the same anchors. However, source and target do-
mains generally have different distributions of bounding
box (bbox) sizes due to domain shifts. In this paper, we
propose to carry out anchor adaptation in parallel with local-
ization adaptation. Thus, our approach unifies classification,
localization and anchor adaptations into one framework.

To further facilitate uncertainty-guided self-training, we
design an Entropy Focal Loss (EFL) to drive uncertainty-
guided consistency training in both classification and lo-
calization branches, encouraging the model to pay more
attention to the lower-entropy pseudo boxes.

Compared with the existing self-training methods, our ap-
proach does not require filtering the target pseudo boxes us-
ing a carefully fine-tuned confidence threshold. This makes
our model particularly suitable for the UDA-OD setting,
where no annotated target data is available for the filtering
threshold tuning. Of particular importance, our PT approach
can be seamlessly and effortlessly extended to source-free
UDA-OD setting (privacy-critical scenario), where only
unlabeled target data is involved into self-training for the
purpose of privacy protection, achieving remarkable im-
provements compared with previous approaches.

What is worth highlighting that we draw several interesting

yet novel findings via extensive ablation studies: 1) Strong
data augmentation is an implicit intra-domain alignment
method to bridge the intra-domain gap between the true
labels and false labels in target domain. 2) Data augmen-
tation plays a much more important role in self-training
approaches than domain alignment counterparts. 3) Merely
adopting localization adaptation alone can still improve the
adaptation performance against “source only” remarkably.

We summarize the takeaways as well as contributions as:

• We propose a threshold-free framework to explore cross-
domain object detection via an uncertainty-driven self-
training paradigm. It firstly unifies classification, local-
ization as well as anchor adaptations into one framework.

• We design an EFL loss for PT framework to further
facilitate uncertainty-guided cross-domain self-training.

• We draw several interesting yet novel experimental find-
ings, which can inspire the future works in UDA-OD.

• Our framework achieves the new state-of-the-art results
on multiple source-based / free UDA-OD benchmarks,
and surpasses previous approaches by a large margin.

2. Related Works
Unsupervised Domain Adaptive Object Detection Sev-
eral approaches have been proposed for UDA-OD, which
can be categorized into domain alignment, domain transla-
tion and self-training methods. These methods have been
introduced briefly in the section above. We discuss the last
one more detailedly since our work is built on self-training.
As mentioned above, the most critical component in self-
training is to exploit pseudo boxes. To obtain more accurate
pseudo boxes, Unbiased Mean Teacher (Deng et al., 2021)
translates the target domain into a source-like one to gen-
erate pseudo boxes. In contrast, SimROD (R. et al., 2021)
introduces a teacher model with a larger capacity to gen-
erate pseudo boxes. However, these existing works try to
generate more accurate pseudo boxes using different tech-
niques while the pseudo boxes are inevitable to be noisy.
To address this problem, we propose an uncertainty-guided
framework to deal with noisy pseudo boxes dynamically
during cross-domain self-training.

Self Training for Object Detection Self-training meth-
ods have been explored in many previous works for semi-
supervised object detection (Li et al., 2020b; Sohn et al.,
2020; Liu et al., 2021; Xu et al., 2021; Chen et al., 2022;
Yu et al., 2022; Yang et al., 2020b;a; Ren et al., 2022), in
which pseudo boxes of unlabeled data are filtered to train the
detectors using a carefully fine-tuned category confidence
threshold. STAC (Sohn et al., 2020) is proposed to pre-train
a detector using a small amount of labeled data and then
generate pseudo boxes on unlabeled data to fine-tune the
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Figure 2. Illustration of the proposed Probabilistic Teacher. Unlabeled target data with weak augmentation are fed into the teacher
model to generate pseudo boxes, which contain classification and localization probability distributions. Both labeled source data and
pseudo-labeled target data with sequent sharpening operation are used to train the student model via uncertainty-guided consistency
training with strong data augmentation. Also, anchor adaptation is conducted in parallel with localization adaptation. To promote PT
framework, Entropy Focal Loss (EFL) is proposed to further facilitate the cross-domain self-training.

Figure 3. Box variance σ2 is better than foreground score to mea-
sure the localization accuracy of bboxes (IoU with ground-truth
bboxes). Results on the Foggy Cityscapes are presented.

pre-trained detector. However, the pseudo boxes are gener-
ated only once and fixed throughout the rest of the training
progress. Unbiased Teacher (Liu et al., 2021) attempts to up-
date the pseudo boxes via a mean teacher mechanism, while
the box regression is only performed on the labeled data.
Soft Teacher (Xu et al., 2021) is proposed to use a box jitter
method to measure the localization accuracy to filter the
pseudo boxes. LabelMatch (Chen et al., 2022) exploits the
Label Distribution Consistency assumption between labeled
and unlabeled data to update the confidence threshold for
pseudo labeling. It is reasonable to search for an appropriate
confidence threshold using an annotated validation set for
semi-supervised detection. However, no annotated target
data is available for the filtering threshold tuning during
UDA-OD, which inspires us to exploit the uncertainty of
pseudo boxes rather than filtering the pseudo boxes via an
elaborate confidence threshold.

3. Preliminary
Faster-RCNN, a benchmark detector for UDA-OD task, de-
couples object detection into a cross-entropy-based classifi-
cation branch and aL1-based bbox regression branch. In the
classification branch, the predicted probability distribution
over label space is natural to capture the classification uncer-
tainty, while the Dirac delta modeling for bbox regression
makes it incapable to obtain the localization uncertainty.

To remedy this, in this section, we augment the existing
Faster-RCNN detector into a probabilistic one, dubbed as
Probabilistic Faster-RCNN, where both category and local-
ization labels are represented as probability distributions.

Concretely, each coordinate (tx, ty, tw, and th) of a bbox
can be modeled as a single Gaussian model (Choi et al.,
2019). Let coordinate t be an univariate Gaussian distributed
random variable parameterized by mean µ and variance σ2:
t ∼ N

(
µ, σ2

)
. Note that σ2 is constrained as a value

between zero and one with a sigmoid function. In this way,
bbox regression loss can be implemented by a cross-entropy
function between the ground-truth distribution tGT (Dirac
delta one) and the predicted one t (Gaussian one):

Lbbox =
1

Nbbox

∑
i

Ifg(ti)H(tGT
i , ti)

⋆
= − 1

Nbbox

∑
i

Ifg(ti) log(N (tGT
i ;µi, σ

2
i ))

(1)

where H(·, ·) denotes the standard cross-entropy function.
tGT
i is the ground-truth bbox coordinate associated with

the ith predicted bbox ti. Nbbox is the number of anchors
or proposals. Ifg(·) is a sign function to indicate whether
the predicted bbox is matched to an anchor or proposal. µi

and σi
2 are the predicted coordinate mean and variance.

N (tGT
i ;µi, σ

2
i ) denotes the probability of tGT

i in the Gaus-
sian distribution. As shown in Fig.3, σi

2 is better than
foreground score to measure the localization accuracy. The
detailed proof of step ⋆ can be found in the appendix C.1.

With the probabilistic modeling for bbox regression, Prob-
abilistic Faster-RCNN is able to capture the uncertainty of
both classification and localization for each prediction. The
overall training objective can be reformulated as:

LS = LRPN
cls + LROI

cls + LRPN
bbox + LROI

bbox (2)
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where all the four terms are cross-entropy losses, and equally
weighted following the original Faster-RCNN. With the
favor of Probabilistic Faster-RCNN, the proposed method,
Probabilistic Teacher, is presented in the next section.

4. Probabilistic Teacher
4.1. Overview

We depict the overview of Probabilistic Teacher in Fig.2.
Probabilistic Teacher contains two training steps, Pretrain-
ing and Mutual learning. 1) Pretraining. We train the
detector using the labeled source data to initialize the de-
tector, and then duplicate the trained weights to both the
teacher and student models. 2) Mutual learning (Section
4.2). The main idea of Probabilistic Teacher is to capture the
uncertainty of unlabeled target data from a gradually evolv-
ing probabilistic teacher and guides the learning of a student
in a mutually beneficial manner. To achieve this, based on
Probabilistic Faster-RCNN, Probabilistic Teacher delivers
the weakly-augmented images from target domain to the
teacher model to obtain pseudo boxes, and notably, category
and location of each pseudo box are in the form of general
distribution over label space and four Gaussian distributions,
respectively. These pseudo boxes are then used to train the
student via Uncertainty-Guided Consistency Training for
both classification and localization branches. The student
transfers its learned knowledge to the teacher via exponen-
tial moving average (EMA). In this way, both models can
evolve jointly and continuously to improve performance.

4.2. Mutual Learning

4.2.1. UNCERTAINTY-GUIDED CONSISTENCY TRAINING

The student model is optimized on the labeled source data
and the unlabeled target data with pseudo boxes generated
from the teacher model. The training objective is written as:

Ltotal = LS + λTLT (3)

where LS is a supervised loss on labeled source data which
is identical to Eqn.2. LT is a self-supervised loss on un-
labeled target data, which imposes the uncertainty-guided
consistency between the teacher and student models. λT is
the loss weight for target domain, and is set to 1 by default.

To optimize the second term, target data with weak augmen-
tation is fed into the teacher model to generate pseudo boxes,
which contains classification probability distributions pPL

and bbox coordinate probability distributions tPL. Both
distributions are sharpened to guide the student training.
Specifically, LT consists of four training losses, including
two classification losses and two bbox regression losses in
RPN and ROIhead:

LT = LRPN
T−cls + LROI

T−cls + LRPN
T−box + LROI

T−box (4)

The first two terms can be formulated as:

LRPN
T−cls =

1

NRPN
cls

∑
i

H(M(Scls(pPL
i , τcls)), p

RPN
i )

LROI
T−cls =

1

NROI
cls

∑
i

H(Scls(pPL
i , τcls), p

ROI
i )

(5)

where pPL
i is the ith classification probability distribution

predicted by the teacher. pRPN
i and pROI

i are the ith classi-
fication probability distribution in RPN and ROIhead pre-
dicted by the student. Scls(·, τcls) is a sharpening function
where τcls is a temperature factor, which will be introduced
later. M(·) is a merging operation to sum up all foreground
category probabilities to achieve the foreground/background
probability distribution to guide RPN training. NRPN

cls and
NROI

cls are the batch size in RPN and ROIhead respectively.

The last two terms can be unified into a general form:

LT−box =
1

Nbbox

∑
i

Ifg(ti)H(Sbbox(tPL
i , τbbox), ti) (6)

where tPL
i is the ith bbox coordinate probability distribution

predicted by the teacher (Note that both terms are predicted
in ROIhead). ti is the bbox coordinate probability distri-
bution predicted by the student in RPN or ROIhead and
associated with tPL

i . Sbbox(·, τbbox) is a sharpening func-
tion for bbox regression and τbbox is a temperature factor.

4.2.2. SHARPENING FUNCTIONS

Sharpening functions encourage the predictions to be sharp
and low-entropy.

• For classification branch, Scls(·, τcls) is defined as a Soft-
Max function with temperature τcls.

Scls(·, τcls) = SoftMax(·, τcls) (7)

• For bbox regression branch, the entropy of Gaussian dis-
tribution is a function of its variance σ2 (see the appendix
C.2 for the proof). Hence, Sbbox(·, τbbox) is designed as:

σ2 ← σ2 ∗ τbbox (8)

When τ = 1 (including τcls and τbbox), sharpening function
is equivalent to the original SoftMax or Gaussian function.
When τ → 0 or τ → +∞, it tends to be a Dirac delta
distribution or a uniform distribution, which corresponds
the most low-entropy or high-entropy case. It is set as τ < 1
in this work. With this specialized sharpening function for
bbox regression, LT−bbox in Eqn.6 is detailed as:

LT−bbox =
1

Nbbox

∑
i

Ifg(ti)[log(σi)

+
(σPL

i )2 ∗ τbbox + (µPL
i − µi)

2

σ2
i

] + C

(9)
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Figure 4. Intra-domain gap in the “Cityscapes to Foggy Cityscapes” adaptation task. True positives (TPs, in green color) and false
negatives (FNs, in gold color) predicted by the “source only” model on the target domain. “h” and “w” represent the height and width of
the predicted bounding boxes, respectively.

where (µPL
i , σPL

i ) and (µi, σi) are the ith mean and vari-
ance of bbox coordinates predicted by the teacher and stu-
dent models, respectively. C is a constant. See the appendix
C.3 for the detailed proof of this step.

4.2.3. TEACHER UPDATING

To obtain more accurate pseudo boxes, EMA is applied to
gradually update the teacher model with positive feedbacks
from the student model. Given the weight of the student
θS , the teacher θT is obtained by : θT = αθT + (1− α)θS ,
where α is the EMA rate. The slowly updated teacher model
is regarded as an ensemble of student models in different
training timestamps.

4.2.4. ANCHOR ADAPTATION

In the existing works, source and target domains usually
share the same anchors. However, source and target do-
mains generally have different distributions of bbox sizes
due to domain shifts. It is intuitive to adapt the anchors
automatically during self-training. Specifically, anchors
have been proven to be learnable parameters (Zhong et al.,
2020). We propose to adapt the anchor shapes slowly dur-
ing teacher-student mutual learning in an EMA mechanism
to match the distribution of bboxes in target domain. The
overall optimization objective is:

min
θS
{LS + min

{(wk,hk)}Ak=1

λTLT } (10)

where {(wk, hk)}Ak=1 is the anchor shapes, and A is the
number of anchors.

4.3. Entropy Focal Loss

Although PT has exploited the noisy pseudo boxes in a step-
by-step manner that the predictions are encouraged to be
low-entropy gradually, the existing noisy pseudo boxes may
inevitably harm the performance. Since the proposed frame-
work can obtain the uncertainty of each bbox (category plus
four coordinates), it is reasonable to apply these uncertainty
information to improve performance. Based on this intu-

itive thought, we use the entropy of category and location
to describe the uncertainty of each bbox, and introduce an
entropy focal loss to further facilitate uncertainty-guided
consistency training for both classification and localization
branches. Entropy focal loss for classification and regres-
sion branches can be unified into a general form:

HEFL(·, ·) = (1− E/Enorm)λH(·, ·) (11)

where λ is a hyperparameter, E is the prediction entropy
from the teacher, and Enorm is the norm term. Enorm is set
as the maximal value of the entropy. Theoretically, Enorm
equals log(n+ 1) for classification and equals 1

2 log(2π) +
1
2 for localization (see the Appendix C.2 and C.4 for the
detailed proof), where n is the number of foreground classes.

With the obtained uncertainty for the category and each coor-
dinate of pseudo boxes, Entropy Focal Loss encourages the
model to pay more attention to less noisy category predic-
tions in classification branch and more accurate coordinate
individuals in regression branch.

5. Strong Augmentation for UDA-OD
5.1. Intra-Domain Gap

We visualize the true positives (TPs) and false negatives
(FNs) predicted by the “source only” model on the target
domain in Fig.4. We obeserve that the smaller, severelier
blurred and occluded objects tend to have a poorer adapta-
tion performance and vice verse. We dub this phenomenon
as intra-domain gap. As observed in qualitative results in
Fig.5, intra-domain gap are commonly-exist in UDA-OD
community. However, unlike inter-domain gap has been
addressed in many previous works, intra-domain gap, one
of the bottlenecks restricting the performance of UDA-OD,
in contrast, has been neglected.

5.2. Intra-Domain Alignment via Strong Augmentation

Our findings about the issue of intra-domain gap in UDA-
OD leads us to introduce strong data augmentation into our
framework. Concretely, since large-scale, distinct objects
usually attain high confidence score during pseudo label-
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Table 1. Results of adaptation from normal to foggy weather (C2F). “†” represents that the results are reproduced by us using the released
codes, with the same strong augmentation and Probabilistic Faster-RCNN. “Source only” and “Oracle” refer to the models trained by
only using labeled source data and labeled target data, respectively. “FR” represents Faster-RCNN. “0.01”, “0.02” and “ALL” in the
column of “split” represent the foggy level 0.01, 0.02 and all three foggy levels, respectively. “UN” means that the foggy level used in the
corresponding paper is unknown based on the paper and released code (if available).

Methods Split Reference Arch. truck car rider person train motor bicycle bus mAP

Source only 0.02 -

FR+VGG16

9.0 28.5 26.6 22.4 4.3 15.2 25.3 16.0 18.4
Source only (strong aug.) 0.02 - 10.1 37.7 33.0 26.4 6.2 17.4 30.2 24.4 23.2
Source only ALL - 12.1 40.4 33.4 27.9 10.1 20.7 30.9 23.2 24.8
Source only (strong aug.) ALL - 18.6 48.1 41.3 33.9 7.3 26.6 37.8 34.5 31.0
MTOR (Cai et al., 2019) 0.02 CVPR’19 21.9 44.0 41.4 30.6 40.2 31.7 33.2 43.4 35.1
SW (Saito et al., 2019) 0.02 CVPR’19 24.5 43.5 42.3 29.9 32.6 30.0 35.3 32.6 34.3
DM (Kim et al., 2019) UN CVPR’19 27.2 40.5 40.5 30.8 34.5 28.4 32.3 38.4 34.6
PDA (Hsu et al., 2020) ALL WACV’20 24.3 54.4 45.5 36.0 25.8 29.1 35.9 44.1 36.9
GPA (Xu et al., 2020b) 0.01 CVPR’20 FR+Resnet50 24.7 54.1 46.7 32.9 41.1 32.4 38.7 45.7 39.5
ATF (He & Zhang, 2020) UN ECCV’20

FR+VGG16

23.7 50.0 47.0 34.6 38.7 33.4 38.8 43.3 38.7
HTCN (Chen et al., 2020a) 0.02 CVPR’20 31.6 47.9 47.5 33.2 40.9 32.3 37.1 47.4 39.8
ICR-CCR (Xu et al., 2020a) ALL CVPR’20 27.2 49.2 43.8 32.9 36.4 30.3 34.6 36.4 37.4
CF (Zheng et al., 2020) UN CVPR’20 30.8 52.1 46.9 34.0 29.9 34.7 37.4 43.2 38.6
iFAN (Zhuang et al., 2020) UN AAAI’20 27.9 48.5 40.0 32.6 31.7 22.8 33.0 45.5 35.3
SFOD (Li et al., 2020a) ALL AAAI’21 25.5 44.5 40.7 33.2 22.2 28.4 34.1 39.0 33.5
MeGA (VS et al., 2021) UN CVPR’21 25.4 52.4 49.0 37.7 46.9 34.5 39.0 49.2 41.8
UMT (Deng et al., 2021) 0.02 CVPR’21 34.1 48.6 46.7 33.0 46.8 30.4 37.3 56.5 41.7
SW †(Saito et al., 2019) ALL CVPR’19 28.7 51.0 46.3 34.2 24.0 33.8 37.1 44.9 37.5
ICR-CCR †(Xu et al., 2020a) ALL CVPR’20 29.7 50.4 47.2 33.6 35.1 34.6 37.9 50.0 39.8
PT 0.02 Ours 30.7 59.7 48.8 40.2 30.6 35.4 44.5 51.8 42.7
PT ALL Ours 33.4 63.4 52.4 43.2 37.8 41.3 48.7 56.6 47.1
Oracle 0.02 - 33.1 59.1 47.3 39.5 42.9 38.1 40.8 47.3 43.5
Oracle ALL - 32.6 61.6 49.1 41.2 49.0 37.9 42.4 56.6 46.3

ing, we transform these to mimic those small scale, blurred
and occluded ones via strong data augmentation (random
resizing, guassian blur, color jitter and etc.). In this way,
these transformed objects with low-entropy pseudo labels
will guide the model to pay more attention to small scale,
blurred and occluded ones. From this perspective, strong
data augmentation is actually an implicit intra-domain align-
ment method to bridge the intra-domain gap.

6. Experiments
6.1. Experimental Settings

Datasets. To validate our approach, we conduct extensive
experiments on multiple benchmarks with four different
types of domain shifts, including 1) C2F: adaptation from
normal to foggy weather, 2) C2B: adaptation from small to
large-scale dataset, 3) K2C: adaptation across cameras, 4)
S2C: adaptation from synthetic to real images. Five public
datasets are used in our experiments.

• Cityscapes (C) (Cordts et al., 2016) contains 2,975 train-
ing images and 500 validation images with pixel-level
annotations. The annotations are transformed into bound-
ing boxes for the following experiments.

• Foggy Cityscapes (F) (Sakaridis et al., 2018) is a syn-
thetic dataset rendered from Cityscapes with three levels
of foggy weather (0.005, 0.01, 0.02), which correspond

to the visibility ranges of 600, 300 and 150 meters.

• BDD100k (B) (Yu et al., 2018) is a large-scale dataset
consisting of 100k images. The subset of images labeled
as daytime, including 36,728 training and 5,258 valida-
tion images, are used for the following experiments.

• Sim10k (S) (Johnson-Roberson et al., 2016) consists of
10k images rendered by a gaming engine. In Sim10k,
bounding boxes of 58,701 cars are provided in the 10,000
training images. All images are used in the experiments.

• KITTI (K) (Geiger et al., 2012) is collected by an au-
tonomous driving platform, including 14999 images and
80256 bounding boxes. Only the train set is used here.

Network Architecture. We take Faster-RCNN as the
base detector following (Chen et al., 2018), where VGG16
(Simonyan & Zisserman, 2014) pre-trained on ImageNet
(Krizhevsky et al., 2012) is used as its backbone. We rescale
all images by setting the shorter side of each image to 600
while keeping the aspect ratios unchanged. Our implemen-
tation is built upon Detectron2 (Wu et al., 2019).

Strong Augmentation. We use the same data augmentation
strategy in (Chen et al., 2020b) except RandomResizedCrop.
Instead, random resizing is applied to the images. Weak
augmentation refers to random horizontal-flipping. See
Appendix B for more implementation details.

Optimization. We use a batch size of 16 for both source
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Table 2. Results of adaptation from small to large-scale dataset
(C2B). Please refer to Table 1 for notations illustration.

Methods Reference Arch. mAP

Source only -

FR+VGG16

20.6
Source only (strong aug.) - 26.9
ICR-CCR (Xu et al., 2020a) CVPR’20 26.9
SFOD (Li et al., 2020a) AAAI’21 29.0
SW †(Saito et al., 2019) CVPR’19 27.6
ICR-CCR †(Xu et al., 2020a) CVPR’20 29.5
PT Ours 34.9
Oracle - 51.7

Table 3. Results of adaptation across cameras (K2C). Please refer
to Table 1 for notations illustration.

Methods Reference Arch. AP of car

Source only -
FR+VGG16

40.3
Source only (strong aug.) - 46.4
ATF (He & Zhang, 2020) ECCV’20 42.1
GPA (Xu et al., 2020b) CVPR’20 FR+Resnet50 47.9
SFOD (Li et al., 2020a) AAAI’21 FR+VGG16 44.6
MeGA (VS et al., 2021) CVPR’21 43.0
SimROD (R. et al., 2021) ICCV’21 YOLOv5 47.5

SW †(Saito et al., 2019) CVPR’19

FR+VGG16

47.1
ICR-CCR †(Xu et al., 2020a) CVPR’20 47.6
PT Ours 60.2
Oracle - 66.4

and target data on a single GPU and train for 30k iterations
with a fixed learning rate of 0.016, including 4k iterations
for Pretraining and 26k iterations for Multual Learning. The
detector is trained by an SGD optimizer with the momentum
of 0.9 and the weight decay of 10−4. The EMA rate α is set
to 0.9996. Without careful tuning, the loss weights in this
paper are all set to 1. Moreover, λ in EFL, together with
temperature τcls and τbbox, are all set to 0.5 simply.

Evaluation Protocol and Comparison Baselines. Follow-
ing the existing works, we evaluate our method with the
standard mean average precision (mAP) at the IOU thresh-
old of 0.5. In our experiments, we observe that both strong
augmentation and Probabilistic Faster-RCNN contribute to
the baseline performance. For a fair comparison, first, we
reproduce two existing works SW (Saito et al., 2019) and
ICR-CCR (Xu et al., 2020a), using released codes with
strong augmentation and Probabilistic Faster-RCNN. Sec-
ond, we conduct extensive ablation studies in Section 6.6.

6.2. C2F: Adaptation from Normal to Foggy Weather

In real-world scenarios, such as automatic driving, object
detectors may be applied under different weather condi-
tions. To study adaptation from normal to foggy weather,
we use labeled Cityscapes and unlabeled Foggy Cityscapes
(train set) for cross-domain self-training, and then report the
evaluation results on the validation set of Foggy Cityscapes.

Notably, after investigating the existing works and the re-
leased code (if available), we find that the dataset spilts of
Foggy Cityscapes they used differ from each other. We

Table 4. Results of adaptation from synthetic to real images (S2C).
Please refer to Table 1 for notations illustration.

Methods Reference Arch. AP of car

Source only -

FR+VGG16

35.5
Source only (strong aug.) - 44.5
SW (Saito et al., 2019) CVPR’19 40.7
ATF (He & Zhang, 2020) ECCV’20 42.8
HTCN (Chen et al., 2020a) CVPR’20 42.5
iFAN (Zhuang et al., 2020) AAAI’20 46.9
CF (Zheng et al., 2020) CVPR’20 43.8
GPA (Xu et al., 2020b) CVPR’20 FR+Resnet50 47.6
SFOD (Li et al., 2020a) AAAI’21

FR+VGG16
42.9

MeGA (VS et al., 2021) CVPR’21 44.8
UMT (Deng et al., 2021) CVPR’21 43.1
SimROD (R. et al., 2021) ICCV’21 YOLOv5 52.1

SW †(Saito et al., 2019) CVPR’19

FR+VGG16

45.4
ICR-CCR †(Xu et al., 2020a) CVPR’20 46.1
PT Ours 55.1
Oracle - 66.4

Table 5. The effectiveness of anchor adaptation (AA) and EFL.
Methods C2F C2B K2C S2C

PT 47.1 34.9 60.2 55.1
PT w/o AA 46.5 (-0.6) 34.4 (-0.5) 59.0 (-1.2) 54.3 (-0.8)
PT w/o AA & EFL 45.4 (-1.7) 32.9 (-2.0) 58.6 (-1.6) 54.1 (-1.0)

validate our approach on two most commonly used splits,
level 0.02 and all three levels for a fair comparison. We use
all three levels in the following ablation studies. Table 1
shows that our method achieves a new SOTA result in both
splits. Notably, strong augmentation improves “source only”
of level 0.02 and all three levels by +4.8 and +6.2 mAP,
respectively. Compared with other approaches, our method
achieves 42.7 mAP for level 0.02 and 47.1 mAP for all three
levels, outperforming the best baseline MeGA (VS et al.,
2021) by a large margin (+0.9/+5.3).

6.3. C2B: Adaptation from Small to Large-Scale Dataset

Currently, collecting and labeling large amounts of image
data with different scene layout can be extremely costly,
e.g., automatic driving from one city to another. To study
the effectiveness of our method for adaptation to a large-
scale dataset with different scene layout, we use Cityscapes
as a smaller source domain dataset, BDD100k containing
distinct attributes as a large unlabeled target domain dataset.
Following ICR-CCR (Xu et al., 2020a) and SFOD (Li et al.,
2020a), we report the results on seven common categories
on both datasets. Table 2 shows the results of this experi-
ment, where our method outperforms all the baselines. Our
method achieves 34.9 mAP, a large margin (+5.4) compared
to ICR-CCR (Xu et al., 2020a).

6.4. K2C: Adaptation across Cameras

Different camera setups (e.g., angle, resolution, quality, and
type) widely exist in the real world, which causes domain
shift. In this experiment, we study the adaptation between
two real datasets. The KITTI and Cityscapes datasets are
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Table 6. Results of extension to source-free setting.

Methods Source data Reference mAP

C2F C2B K2C S2C

SFOD % AAAI’21 33.5 29.0 44.6 42.9

PT % Ours 38.7 28.1 59.6 54.1
PT ! Ours 47.1 34.9 60.2 55.1
Oracle - - 46.3 51.7 66.4 66.4

used as source and target domains, respectively. The results
are provided in Table 3. Our proposed method improves
upon the best method GPA (Xu et al., 2020b) by +12.7 mAP.
Notably, our method also outperforms the very recent work
SimROD, which takes YOLOv5 (Jocher et al., 2021) as the
base detector and relies on a large-scale teacher model.

6.5. S2C: Adaptation from Synthetic to Real Images

Synthetic images offer an alternative to alleviate the data
collection and annotation problems. However, there is a
distribution gap between synthetic data and real data. To
adapt the synthetic scenes to the real one, we utilize the
entire Sim10k dataset as source data and the training set of
Cityscapes as target data. Since only the car category is
annotated in both domains, we report the AP of car in the
test set of Cityscapes. As provided in Table 4, our method
outperforms existing approaches by a large margin, which
improves over the current best method by +3.0 mAP.

6.6. Ablation Studies

Table 7. Performance under differ-
ent data augmentations. ”F”, ”C”,
”G”, ”B”, ”S” and ”R” denote Ran-
dom Horizontal Flipping, Colorjit-
ter, Grayscale, Gaussian Blur, So-
larization and Resize, respectively.

F C G B S R mAP

! 34.4
! ! 37.6
! ! ! 38.5
! ! ! ! 40.1
! ! ! ! ! 42.5
! ! ! ! ! ! 47.1

Augmentation. Table
7 shows that augmenta-
tion is crucial for learn-
ing domain adaptive ob-
ject detection. Specif-
ically, the stronger the
augmentation is, the bet-
ter the performance is.
As claimed in Section 5,
we argue that one seri-
ous issue neglected by
previous works in UDA-
OD is the intra-domain gap. Strong augmentation can be
viewed as an implicit intra-domain alignment method to
bridge the intra-domain gap between true labels and false
labels in target domain, and that is why we introduce strong
augmentation into our method. Considering this, as shown
in Table 1-4, we have re-implemented two state-of-the-art
domain alignment approaches with strong augmentation for
fair comparisons, from which we find that strong data aug-
mentation obtains much more performance enhancement in
self-training paradigm than domain alignment counterparts.

Anchor adaptation and EFL. Table 5 shows the effec-
tiveness of anchor adaptation (AA) and EFL, and it can be

Table 8. The effect of Probabilistic Faster-RCNN. “Source only”
results are presented.

Models C2F C2B K2C S2C

Vanilla Faster-RCNN 30.2 26.3 45.9 44.1
Probabilistic Faster-RCNN 31.0 26.9 46.4 44.5

Table 9. “Thres.” and “τ” are short for threshold and (τcls, τbbox).
Thres. 0.5 0.6 0.7 0.8 0.9 mean↑ std↓
mAP 35.9 33.9 49.0 56.1 56.5 46.2 9.6

τ (0.25, 0.5) (0.75, 0.5) (0.5, 0.5) (0.5, 0.25) (0.5, 0.75) mean↑ std↓
mAP 59.3 58.9 60.2 57.6 59.9 59.2 0.9

observed that both contribute to the improvement on all four
different types of domain shifts. The effectiveness of AA
indicates the necessity of addressing the objects size (scale)
shifts in UDA-OD task, while the effectiveness of EFL sup-
ports the claim that the obtained entropy uncertainty of
pseudo boxes can be used to further boost the performance.

Extension to source-free setting. Only with the self-
supervised loss on target domain, PT can be seamlessly
and effortlessly extended to source-free UDA-OD (privacy-
critical scenario) (Li et al., 2020a; Chen et al., 2021a;b;
Huang et al., 2022), where only unlabeled target data is
involved for the purpose of privacy protection. Table 6
shows that PT achieves substantial improvements, showing
its robustness and scalability. Of particular interest, the per-
formances of PT w/o and w/ source data in both K2C and
S2C are almost comparable, while in C2F and C2B, there
are still a large gap, which we remain for a future research.

The effect of uncertainty. We perform the self-training
of Faster-RCNN with different confidence thresholds under
the same mean-teacher framework. As shown in Fig.6, we
observe the same phenomenon as (Li et al., 2020a) that the
performance varies widely across different thresholds. The
proposed PT, in contrast, a threshold-free approach, achieves
remarkable SOTA results compared to Faster-RCNN with
different confidence thresholds.

The effect of probabilistic modeling. PT is derived from
Probabilistic Faster-RCNN to unify classification and lo-
calization adaptations into one framework. The “source
only” results of both vanilla and Probabilistic one are pre-
sented in Table 8, showing that the improvement brought
by probabilistic modeling is trivial and limited. For a fair
comparison, we have re-implemented two state-of-the-art
approaches with Probabilistic Faster-RCNN in Table 1-4.

The entropy of pseudo labels. Fig.7 visualizes the mean
entropy of the pseudo boxes on Foggy Cityscapes dataset
as the training goes on in Mutual Learning stage. We can
observe that both the category and box entropy show a
similar trend that they increase in a small step initially and
then keep decreasing stably. It indicates that the categories
of the pseudo boxes on the target domain are getting more
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(a) Source only (b) SW (c) PT

Figure 5. Qualitative results on the target domain of C2F (top row) and K2C (bottom row). Green, red and gold boxes denote true
positives, false positives and false negatives, respectively.

Figure 6. Performance curve of K2C, using PT and vanilla Faster-
RCNN with different confidence thresholds.

confident, and the locations of the pseudo boxes are getting
more accurate during cross-domain self-training.

Analysis of hyper-parameters. Fig.8 provides the ablation
studies of several hyper-parameters, including λ in EFL,
temperature parameters τcls and τbbox. Experiments with
only classification (w/o LRPN

T−bbox + LROI
T−bbox, the left sub-

figure of Fig.8) or localization (w/o LRPN
T−cls + LROI

T−cls, the
right sub-figure of Fig.8) adaptation under different hyper-
parameters combinations are conducted. The results show
that even adapting classification or localization alone can
still significantly boost performance against the “source
only”. For λ in EFL, the adaptation performance goes up as
λ increases in classification branches while it is opposite in
localization branches. For τcls and τbbox, a too large or too
small temperature will hurt the performance. In our paper,
we set them without careful tuning (all are set to 0.5).

Furthermore, to provide a more systematic analysis about
the robustness of PT w.r.t the temperature, we re-conduct
the ablation study of (τcls, τbbox) in K2C adaptation setting,
as well as a comparison with threshold-based setting. As
shown in Table 9, PT is actually more superior (see “mean”)
and robust (see “std”) than the threshold-based method.

Qualitative visualization. As shown in Fig.5, we present
qualitative results of C2F and K2C to demonstrate the im-
provement brought by PT. The visualizations show that PT
can significantly ease the intra-domain gap, i.e. reducing
the false-positives and increasing the true-positives. Con-
sequently, the performance is improved by a large margin.
See Appendix A for more experimental results.

Figure 7. The mean entropy of the pseudo boxes. Box entropy
denotes the averaged location entropy across four coordinates.

Figure 8. Ablation studies of C2F on hyper parameter λ in EFL
and τ in sharpening functions.

7. Conclusions
In this paper, we propose a simple yet effective framework,
Probabilistic Teacher, to study the utilization of uncertainty
during cross-domain self-training. Equipped with the novel
Entropy Focal Loss, this framework can achieve new state-
of-the-art results on multiple source-based / free UDA-OD
benchmarks. We look forward that our method may bring
inspirations to other weakly-supervised object detection
tasks, such as noisy-label-supervised object detection.
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A. More Experimental Results

(a) Source only (b) SW (c) PT

Figure 9. More results on the target domain of C2F. Green, red and gold boxes denote true positives, false positives and false negatives,
respectively.

A.1. More Qualitative Visualization

In Fig.9 and Fig.10, we present more qualitative detection results of two adaptation tasks to demonstrate the improvement
brought by our PT framework.

B. More Implementation Details
B.1. Anchor adaptation

In our implementation, the initial anchor shapes simply follow the original Faster-RCNN, i.e., 3 sizes (128, 256, 512), 3
aspects ratios (0.5, 1, 2) at each output sliding window position. In this way, only additional 9× 2 learnable parameters are
required during anchor adaptation.

B.2. Data Augmentation Details

In this paper, we use the same set of strong augmentation in SimCLR (Chen et al., 2020b) except the RandomResizedCrop.
We perform random horizontal-flipping, followed by color jitter and grayscale conversion. And then Gaussian blur and
solarization are applied randomly to the images. Moreover, simple random resizing is applied to the images, which are then
padded to the original size. Specifically, random resizing in our implementation is to zoom out the images randomly within
(0.5, 1) while keeping the aspect ratios unchanged. The code for augmentation above using torchvision is as follows:

1 from torchvision import transforms
2 augmentation = []
3 augmentation.append(transforms.RandomApply([HorizontalFlipping()], p=0.5))
4 augmentation.append(transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4,

0.1)], p=0.8))
5 augmentation.append(transforms.RandomGrayscale(p=0.2))
6 augmentation.append(transforms.RandomApply([GaussianBlur([0.1, 2.0])], p=0.5))
7 augmentation.append(transforms.RandomApply([Solarize(threshold=0.5)], p=0.2))
8 augmentation.append(transforms.RandomApply([RandomResizing(0.5, 1.0)], p=1.0))
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(a) Source only (b) SW (c) PT

Figure 10. More results on the target domain of K2C. Green, red and gold boxes denote true positives, false positives and false negatives,
respectively.

B.3. Pseudo-Code of PT

Algorithm 1 summarizes the pseudo-code of PT. PT consists of two training stages, including Pretraining and Mutual
Learning. In the Pretraining stage, we train the detector using the labeled source data to initialize the detector, and then
duplicate the trained weights to both the teacher and student models. In the Mutual Learning stage, the generated pseudo
boxes on the unlabeled target data and the labeled source data are used to train the student via uncertainty-guided consistency
training for both classification and localization branches. The student then transfers its learned knowledge to the teacher via
EMA. In this way, both models can evolve jointly and continuously to improve performance.

C. Mathematical Proofs
In this section, we provide the rigorous proofs mentioned in the main body of the paper.

C.1. The cross-entropy between a Dirac delta distribution and a univariate Gaussian distribution

Given p(x) = δ(x− a) and q(x) = N(x;µ, σ2), the cross-entropy between p(x) and q(x), H(p, q), can be written as:

H(p, q) = −
∫

p(x) log q(x)dx

= −
∫

δ(x− a) log(N(x;µ, σ2))dx

Expanding the log term,

H(p, q) = −
∫

δ(x− a) log(N(x;µ, σ2))dx

=
1

2

∫
δ(x− a)

(
log(2π) + 2 log σ +

(
x− µ

σ

)2
)
dx
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Algorithm 1 Probabilistic Teacher
Input: Source domain DS , Target domain DT

1: while Pretraining do
2: Train source only model θI based on Eq. (3)
3: end while
4: θS ← θI # Duplicate to student model
5: θT ← θI # Duplicate to teacher model
6: while Mutual Learning do
7: Calculate LS based on Eq. (3)
8: pPL, tPL ← θT (DT ) # Pseudo labeling, weak augmentation
9: pPL ← Scls(pPL, τcls) # Sharpen classification probability distributions

10: tPL ← Sbbox(tPL, τbbox) # Sharpen localization probability distributions
11: p, t← θS(DT ) # Feed forward, strong augmentation
12: Calculate EFL LROI

T−cls based on Eq. (6) and Eq. (11) # Classification adaptation
13: pPL ←M(pPL) # Merging operation to sum up all foreground probabilities
14: Calculate EFL LRPN

T−cls based on Eq. (6) and Eq. (11) # Classification adaptation
15: Calculate EFL LROI

T−bbox based on Eq. (7) and Eq. (11) # Regression adaptation
16: Calculate EFL LRPN

T−bbox based on Eq. (7) and Eq. (11) # Regression adaptation
17: LT = LRPN

T−cls + LROI
T−cls + LRPN

T−box + LROI
T−box

18: Ltotal = LS + λTLT

19: Train the anchor shapes via minimizing LT # Anchor adaptation
20: Train student model θS via minimizing Ltotal

21: Update teacher model via EMA
22: end while

Because,
δ(x− a) = 0, (x ̸= a)∫

δ(x− a)dx = 1

The cross-entropy between p(x) and q(x), H(p, q), can be simplified as:

H(p, q) =
1

2

(
log(2π) + 2 log σ +

(
a− µ

σ

)2
)

C.2. The entropy of a univariate Gaussian distribution

Let x be a univariate Gaussian distributed random variable:

x ∼ N
(
x;µ, σ2

)
The differential entropy of x, H(x), can be written as:

H(x) = −
∫

p(x) log p(x)dx

=
1

2
log
(
2πσ2

)
+

1

2σ2
E
[
(x− µ)2

]
The expectation of (x− µ)2, E[(x−µ)2], is equal to the variance:

E[(x− µ)2] = σ2

Substituting this back in the earlier expression gives us the result,

H(x)=
1

2
log
(
2πσ2

)
+

1

2

The entropy of a univariate Gaussian distribution is only the function of its variance. The maximal value in our paper is
1
2 log (2π) +

1
2 since σ is processed as a value between zero and one with a sigmoid function.
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C.3. The cross-entropy between two univariate Gaussian distributions

Given p(x) = N
(
x;µ1, σ

2
1

)
and q(x) = N

(
x;µ2, σ

2
2

)
, the cross-entropy between p(x) and q(x), H(p, q), can be written

as,

H(p, q) = −
∫

p(x) log q(x)dx

= −
∫

N
(
x;µ1, σ

2
1

)
log(N

(
x;µ2, σ

2
2

)
)dx

Expanding the log term,

H(p, q) = −
∫

N
(
x;µ1, σ

2
1

)
log(N

(
x;µ2, σ

2
2

)
)dx

=
1

2

∫
N
(
x;µ1, σ

2
1

)(
log(2π) + 2 log σ2 +

(
x− µ2

σ2

)2
)
dx

Because the integral over a PDF is always 1, ∫
N
(
x;µ, σ2

)
dx = 1

Moving the constant outside,

H(p, q) =
1

2
(log(2π) + 2 log σ2) +

1

2

∫
N
(
(x;µ2, σ

2
2

)(x− µ2

σ2

)2

dx

Now let’s only consider the second term. Because,(
x− µ2

σ2

)2

=

(
x− µ1

σ1

)2
σ2
1

σ2
2

+ x
2 (µ1 − µ2)

σ2
2

+
µ2
2 − µ2

1

σ2
2

The second term can be expanded as,

1

2

∫
N
(
x;µ2, σ

2
2

)(x− µ2

σ2

)2

dx =
1

2

∫
N
(
x;µ2, σ

2
2

)((x− µ1

σ1

)2
σ2
1

σ2
2

+ x
2 (µ1 − µ2)

σ2
2

+
µ2
2 − µ2

1

σ2
2

)
dx

=
1

2σ2
2

∫
N
(
x;µ2, σ

2
2

)
(x− µ1)

2
dx+

(µ1 − µ2)

σ2
2

∫
N
(
x;µ2, σ

2
2

)
xdx

+
1

2

µ2
2 − µ2

1

σ2
2

∫
N
(
x;µ2, σ

2
2

)
dx

Because, 1) the integral over a PDF is always 1; 2) the expectation of x, E(x), is equal to the mean; 3) the expectation of
(x− µ)2, E[(x−µ)2], is equal to the variance, and these are,∫

N
(
x;µ, σ2

)
dx = 1∫

xN(x;µ, σ2)dx = µ∫
(x− µ)2N(x;µ, σ2)dx = σ2

Therefore,
1

2

∫
N
(
x;µ2, σ

2
2

)(x− µ2

σ2

)2

dx =
1

2

(
σ2
1

σ2
2

+
2µ1 (µ1 − µ2)

σ2
2

+
µ2
2 − µ2

1

σ2
2

)
Substituting this back in the earlier expression gives us the result,

H(p, q) =
1

2

(
log(2π) + 2 log σ2 +

σ2
1

σ2
2

+
2µ1 (µ1 − µ2)

σ2
2

+
µ2
2 − µ2

1

σ2
2

)
= log σ2 +

σ2
1 + (µ1 − µ2)

2

2σ2
2

+ C

where C is a constant.
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C.4. Maximal value of a discrete variable’s entropy

Let x be a discrete variable,
x ∼ p(x)

Its entropy, H(x), can be written as,
H(x) = −

∑
p(x) log p(x)

= E[log
1

p(x)
]

This means that the entropy of x is equal to the expectation of log 1
p(x) . Using the Jensen inequality,

E[log
1

p(x)
] ≤ logE[

1

p(x)
] = log n

where n is the number of all possible events. Maximal value is attained when all possible events are equiprobable.


