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Abstract
We consider the problem of training a d dimen-
sional model with distributed differential privacy
(DP) where secure aggregation (SecAgg) is used
to ensure that the server only sees the noisy sum of
n model updates in every training round. Taking
into account the constraints imposed by SecAgg,
we characterize the fundamental communication
cost required to obtain the best accuracy achiev-
able under ε central DP (i.e. under a fully trusted
server and no communication constraints). Our
results show that Õ

(
min(n2ε2, d)

)
bits per client

are both sufficient and necessary, and this funda-
mental limit can be achieved by a linear scheme
based on sparse random projections. This pro-
vides a significant improvement relative to state-
of-the-art SecAgg distributed DP schemes which
use Õ(d log(d/ε2)) bits per client.

Empirically, we evaluate our proposed scheme
on real-world federated learning tasks. We find
that our theoretical analysis is well matched in
practice. In particular, we show that we can re-
duce the communication cost to under 1.78 bits
per parameter in realistic privacy settings with-
out decreasing test-time performance. Our work
hence theoretically and empirically specifies the
fundamental price of using SecAgg.

1. Introduction
Federated learning (FL) is a widely used machine learning
framework where multiple clients collaborate in learning a
model under the coordination of a central server (McMahan
et al., 2017a; Kairouz et al., 2021b). One of the primary
attractions of FL is that it provides data confidentiality and
can provide a level of privacy to participating clients through
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data minimization: the raw client data never leaves the de-
vice, and only updates to models (e.g., gradient updates)
are sent back to the central server. This provides practical
privacy improvements over centralized settings because up-
dates typically contain less information about the clients,
because they are more focused on the learning task, and also
only need to be held ephemerally by the server

However, this vanilla federated learning does not provide
any formal or provable privacy guarantees. To do so, FL is
often combined with differential privacy (DP) (Dwork et al.,
2006b). This can be done in one of two ways1: 1) perturbing
the aggregated (local) model updates at the server before
updating the global model, or 2) perturbing each client’s
model update locally and using a cryptographic multi-party
computation protocol to ensure that the server only sees
the noisy aggregate. The former is referred to as central
DP, and it relies on the clients’ trust in the server because
any sensitive information contained in the model updates
is revealed to and temporally stored on the server. The
latter is referred to as distributed DP (Dwork et al., 2006a;
Kairouz et al., 2021a; Agarwal et al., 2021; 2018), and
it offers privacy guarantees with respect to an honest-but-
curious server. Thus, a key technology for formalizing
and strengthening FL’s privacy guarantees is a secure vector
sum protocol called secure aggregation (SecAgg) (Bonawitz
et al., 2016b; Bell et al., 2020), which lets the server see the
aggregate client updates but not the individual ones.

Despite enhancing the clients’ privacy, aggregating model
updates via SecAgg drastically increases the computation
and communication overheads (Bonawitz et al., 2016b;
2019). This is even worse in federated settings where com-
munication occurs over bandwidth-limited wireless links,
and the extra communication costs may become a bottleneck
that hampers efficient training of large-scale machine learn-
ing models. In fact, high computation can cause failures
of SecAgg and prevent FL training of large models or with
many clients (see Section 7 for a discussion on the how the
communication cost limits the cohort size of FL in practice).

For example, Kairouz et al. (2021a) reports that when train-

1Local DP is yet another alternative, but it incurs higher utility
loss and is therefore not typically used in practice.
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ing a language model with SecAgg and DP, even with a
carefully designed quantization scheme, each client still
needs to transmit about 16 bits per model parameter each
round. Moreover, the bitwidth needs to be scaled up when
the privacy requirements are more stringent. This behavior
disobeys the conclusion of Chen et al. (2020) (derived under
local DP), which shows that the optimal communication
cost should decay with the privacy budget, i.e., data is more
compressible in the high privacy regime.

Furthermore, because the server aggregates the model up-
dates via SecAgg, we can only compress the model updates
locally using linear schemes. This constraint rules out many
popular compression schemes such as entropy encoders or
gradient sparsification (Aji & Heafield, 2017; Lin et al.,
2017; Wangni et al., 2017; Havasi et al., 2018; Oktay et al.,
2019) etc., as these methods are non-linear.

Therefore, it is unclear whether or not the communication
cost of SecAgg reported in Kairouz et al. (2021a); Agar-
wal et al. (2021; 2018) is fundamental. If not, what is the
smallest communication needed to achieve distributed DP
via secure aggregation with the same performance as in the
centralized DP setting?

In this paper, we answer the above question, showing that
the communication costs of existing mechanisms are strictly
sub-optimal in the distributed mean estimation (DME) task
(Suresh et al., 2017) (see Section 4 for details). We also
propose a SecAgg comaptible linear compression scheme
based on sparse random projections (Algorithm 2), and then
combine it with the distributed discrete Gaussian (DDG)
mechanism proposed by Kairouz et al. (2021a). Theoreti-
cally, we prove that our scheme requires Õ

(
min(n2ε2, d)

)
bits per client, where n is the per-round number of clients.
This cost is significantly smaller than the communication
cost of previous schemes which was Õδ(d log(d/ε

2)) bits
per client2. To give perspective, (1) n is usually on the or-
der of 103 per round due to the computational overhead of
SecAgg, and (2) ε is the privacy budget for a single round,
i.e., ε ≈ εfinal/

√
R if there are R training rounds. Thus, for

practical FL settings where large models are trained with
SecAgg over many rounds, n2ε2 is typically (much) smaller
than d.

We complement our achievability results with a match-
ing lower bound, showing that to obtain an unbiased es-
timator of the mean vector, each client needs to commu-
nicate Ω̃(min(n2ε2, d)) bits with the server. Our upper
and lower bounds together specify the fundamental privacy-
communication-accuracy trade-offs under SecAgg and DP.

In addition, we show that with additional sparsity assump-
tions, we can further improve both the accuracy and com-

2For simplicity, we use the Õδ (·) notation to hide the depen-
dency on δ and logn

munication efficiency while achieving the same privacy re-
quirement, leading to a logarithmic dependency on d.

Empirically, we verify our scheme on a variety of real-world
FL tasks. Compared to existing distributed DP schemes, we
observe 10x or more compression with no significant de-
crease in test-time performance. Moreover, the compression
rates can be made even higher with tighter privacy con-
straints (i.e., with smaller ε), complying with our theoretical
Õ(min(n2ε2, d) communication bound.

Organization The rest of this paper is organized as
follows. We summarize related work in Section 2 and
introduce necessary preliminaries in Section 3. We then
provide a formal problem formulation in Section 4. Next,
we present and analyze the performance of our main
scheme (in terms of privacy, utility, and communication
efficiency) and prove its optimality in Section 5.1. After
that, we show, in Section 6, that with additional sparsity
assumptions, one can simultaneously reduce the com-
munication cost and increase the accuracy. Finally, we
present our experimental results in Section 7 and conclude
the paper in Section 8. The code is available at https:
//github.com/google-research/federated/
tree/master/private_linear_compression.

2. Related Work
SecAgg and distributed DP SecAgg is cryptographic se-
cure multi-party computation (MPC) that allows the server
to collect the sum of n vectors from clients without knowing
anyone of them. In our single-server FL setting, SecAgg is
achieved via additive masking over a finite group (Bonawitz
et al., 2016a; Bell et al., 2020). Similar ideas have been
used in other secure aggregation protocols (Fereidooni et al.,
2021; Kadhe et al., 2020). However, the vanilla FL with
SecAgg does not provide provable privacy guarantees since
the sum of updates may still leak sensitive information
(Melis et al., 2019; Song & Shmatikov, 2019; Carlini et al.,
2019; Shokri et al., 2017). To address this issue, differential
privacy (DP) (Dwork et al., 2006a), and in particular, DP-
SGD or DP-FedAvg can be employed (Song et al., 2013;
Bassily et al., 2014; Geyer et al., 2017; McMahan et al.,
2017b). In this work, we aim to provide privacy guarantees
in the form of Rényi DP (Mironov, 2017) because it allows
for accounting end-to-end privacy loss tightly.

We also distinguish our setup from the local DP setting (Ka-
siviswanathan et al., 2011; Evfimievski et al., 2004; Warner,
1965), where the data is perturbed on the client-side before it
is collected by the server. Local DP, which allows for a pos-
sibly malicious server, is stronger than distributed DP, which
assumes an honest-but-curious server. Thus, local DP suf-
fers from worse privacy-utility tarde-offs (Kasiviswanathan
et al., 2011; Duchi et al., 2013; Kairouz et al., 2016).

https://github.com/google-research/federated/tree/master/private_linear_compression
https://github.com/google-research/federated/tree/master/private_linear_compression
https://github.com/google-research/federated/tree/master/private_linear_compression
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Model compression, sketching, and random projection
There has been a significant amount of recent work on re-
ducing the communication cost in FL, see (Kairouz et al.,
2019). Among them, popular compression approaches in-
clude gradient quantization (Alistarh et al., 2017; Bern-
stein et al., 2018), sparsification (Aji & Heafield, 2017;
Lin et al., 2017; Wangni et al., 2017), and entropy encoders
(Havasi et al., 2018; Oktay et al., 2019). However, since
these schemes are mostly non-linear, they cannot be com-
bined with SecAgg where all the encoded messages will
be summed together. Therefore, in this work, we resort
to compression schemes with linear encoders. The only
exception are sketching based methods (Rothchild et al.,
2020; Haddadpour et al., 2020). Our work differs from
them in three aspects. First, we consider FL with privacy
and SecAgg, whereas (Rothchild et al., 2020) only aims at
reducing communication. Second, although we use the same
count-sketch encoder, our decoding method is more aligned
with the sparse random projection (Kane & Nelson, 2014).
In the language of sketching, we decode the sketched model
updates by “count-mean” instead of count-median, which
improves space efficiency, thus requiring less memory to
train a real-world large-scale machine learning model. We
note that both count-sketch and random projection provides
the same worst-case ℓ2 error bounds.

FL with SecAgg and distributed DP The closest works
to ours are cpSGD (Agarwal et al., 2018), DDG (Kairouz
et al., 2021a), and Skellam (Agarwal et al., 2021), which
serve as the main inspiration of this paper. However, all of
these methods rely on per parameter quantization and thus
lead to Ω̃ (d) communication cost. In this work, however,
we show that when d ≫ n2ε2, we can further reduce di-
mensionality and achieve the optimal communication cost
Õ(n2ε2) in this regime. Our scheme also demonstrates
10x or more compression rates (depending on the privacy
budget) relative to the best existing distributed DP schemes.

3. Preliminaries
3.1. Differential Privacy

We begin by providing a formal definition for (ε, δ)-
differential privacy (DP) (Dwork et al., 2006b).

Definition 3.1 (Differential Privacy). For ε, δ ≥ 0, a ran-
domized mechanism M satisfies (ε, δ)-DP if for all neigh-
boring datasets D,D′ and all S in the range of M , we have
that

Pr (M(D) ∈ S) ≤ eε Pr (M(D′) ∈ S) + δ,

where D and D′ are neighboring pairs if they can be ob-
tained from each other by adding or removing all the records
that belong to a particular user.

The above DP notion is referred to as user level DP and
is stronger than the commonly-used item level DP, where,
if a user contributes multiple records, only the addition or
removal of one record is protected.

We also make use of Renyi differential privacy (RDP) which
allows for tight privacy accounting.

Definition 3.2 (Renyi Differential Privacy). A randomized
mechanism M satisfies (α, ε)-RDP if for any two neighbor-
ing datasets D,D′, we have that Dα

(
PM(D), PM(D′)

)
≤ ε

where Dα (P,Q) is the Renyi divergence between P and Q
and is given by

Dα (P,Q) ≜
1

α
log

(
EQ

[(
P (X)

Q(X)

)α])
.

Notice that one can convert (α, ε(α))-RDP to (εDP(δ), δ)-
DP. See Leema G.1 in Section G.1.

3.2. The Distributed Discrete Gaussian Mechanism

The previous work of Kairouz et al. (2021a) proposed a
scheme based on the discrete Gaussian mechanism (denoted
as DDG) which achieves the best mean square error (MSE)
O
(

c2d
n2ε2

)
with a 1

2ε
2-concentrated differential privacy guar-

antee. The encoding scheme mainly consists of the follow-
ing four steps: (a) scaling, (b) flattening via random rotation,
(c) conditional randomized rounding, and (d) perturbation,
which we summarize in Algorithm 1 below.

Algorithm 1 The DDG mechanism
1: Inputs: Private vector xi ∈ Rd; clipping threshold c;

modulus M ∈ N; noise scale σ > 0;
2: Clip and scale xi so that ∥x′

i∥2 < c
3: Flatten vector by a random rotation: x′′

i = Urotatex
′
i

4: Stochastically round and discretize x′′
i into x′′′

i ∈ Zd

5: Zi = x′′′
i +NZ(0, σ

2) mod M , where NZ is the dis-
crete Gaussian noise

6: Return: Zi ∈ Zd
M

Upon aggregating µ̂z =
∑

i∈[n] Zi, the server can rotate
µ̂z reversely and re-scale it back to decode the mean µ̂ =
1
n

∑
i xi. We refer the reader to Algorithm 5 for a detailed

version of DDG. By picking the parameters properly (see
Theorem F.1), Algorithm 5 has the following properties:

• Satisfies (α, ε2

2 α)-RDP, which implies (εDP, δ)-DP with
εDP = Oδ

(
ε2
)

• Uses O
(
d log

(
n+

√
n3ε2

d +
√
d
ε

))
bits of per client

• Has an MSE of E
[
∥µ̂− µ∥22

]
= O

(
c2d
n2ε2

)
.
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3.3. Sparse random projection and count-sketch

We now provide background on sparse random projec-
tion (Kane & Nelson, 2014) and count-sketching, which
allows us to reduce the dimension of local gradients from
Rd to Rm with m≪ d. These schemes are linear, making
them compatible with SecAgg.

Let S1, ..., St ∈ {−1, 0, 1}d×w be t identical and indepen-
dent count-sketch matrices, that is,

(Si)j,k = σi(j) · 1{hi(j)=k}, (1)

for some independent hash functions hi : [d] → [w] and
σi : [d] → {−1,+1}. Let m = t × w, then the sparse
random projection matrix S ∈ Rd×m is then defined as
stacking S1, ..., St vertically, that is,

S⊺ =
1√
t

[
S⊺
1 , S

⊺
2 , ..., S

⊺
t

]
. (2)

Under this construction, S is sparse in the sense that each
column contains exactly t 1s. Moreover, S possesses several
nice properties (see Section G.2 for some of them that will
be used in our proofs).

4. Problem Formulation
We start by formally presenting the distributed mean estima-
tion (DME) (Suresh et al., 2017) problem under differential
privacy. Note that DME is closely related to the federated
averaging (FedAvg) algorithm (McMahan et al., 2017a),
where in each round, the server updates the global model
using a noisy estimate of the mean of local model updates.
Such a noisy estimate is typically obtained via a DME mech-
anism, and thus one can easily build a DP-FedAvg scheme
from a DP-DME scheme.

Consider n clients each with a data vector xi ∈ Rd that
satisfies ∥xi∥2 ≤ c (e.g., a clipped local model update).
After communicating with n clients, a server releases a
noisy estimates µ̂ of the mean µ ≜ 1

n

∑
i xi, such that 1) µ̂

satisfies a differential privacy constraint (see Definition 3.1
and Definition 3.2), and 2) E

[
∥µ̂− µ∥22

]
is minimized. The

goal is to design a communication protocol (which includes
local encoders and a central decoder) and an estimator µ̂.

In this paper, we consider two different DP settings. The
first is the centralized DP setting: the server has access to all
xi’s, i.e., µ̂ = µ̂ (x1, ..., xn). The second is the distributed
DP via SecAgg setting: under this setting, each client is
subject to a b-bit communication constraint, so they must
first encode xi into a b-bit message, i.e., Zi = Aenc(xi) ∈ Z
with |Z| ≤ 2b (See Figure 1 for an illustration). However,
instead of directly collecting Z1, ..., Zn, the server can only
observe the sum of them, so the estimator must be a function
of
∑n

i=1 Zi (i.e., µ̂ = µ̂ (
∑n

i=1 Zi)). Moreover, we require

that the sum
∑

i Zi satisfies DP (which is stronger than
requiring µ̂ to be DP), meaning that individual information
will not be disclosed to the server as well. Notice that since
SecAgg operates on a finite additive group, we require Z
to have an additive structure. Without loss of generality,
we will set Z to be (ZM )

m for some m,M ∈ N, where
ZM denotes the group of integers modulo M (equipped
with modulo M addition) and m is the dimension of the
space we are projecting onto. In other words, we allocate
logM bits for every coordinate of the projected vector. Note
that in this case, the total per-client communication cost is
b = m logM .

Figure 1. Private mean estimation via SecAgg.

For a fixed privacy constraint, the fundamental problem
we seek to solve is: what is the smallest communication
cost under the distributed DP setting needed to achieve the
accuracy of the centralized DP setting? Further, we seek
to discover schemes that (a) achieve the optimal privacy-
accuracy-communication trade-offs and (b) are memory ef-
ficient and computationally fast in encoding and decoding.

5. Communication cost of DME with SecAgg
In this section, we characterize the optimal communication
cost under the distributed DP via SecAgg setting, defined as
the smallest number of bits (as a function of n, d, ε) needed
to achieve the same accuracy (up to a constant factor) of
the centralized setting under the same (ε, δ)-DP constraint.
The optimal communication can be achieved by leveraging
a sparse random projection, and the proposed scheme is
summarized in Algorithm 2. Our main theoretical results
are summarized in the following theorem.

Theorem 5.1. Let m = Θ(n2ε2) and t = Θ(log d+ log n)
in Algorithm 2. Assume ∥xi∥ ≤ c for all i ∈ [n]. Then as
long as n2ε2 ≤ d, the following holds:

• Algorithm 2 satisfies
(
α, ε2

2 α
)

-RDP,

• the MSE is bounded by E
[
∥µ̂− µ∥22

]
= O

(
c2d
n2ε2

)
,

• the per-client communication is

O

(
m log

(
n+

√
n3ε2

m
+

√
m

ε

))
= O

(
n2ε2 logn

)
.
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Road map of Section 5.1. Our theoretical analysis of the
communication cost of distributed DP via SecAgg proceeds
as follows. First, we highlight the best MSE achievable
under central DP (where the server is trusted), without any
communication constraints. Next, we derive the commu-
nication costs of existing distributed DP mechanisms that
maintain this optimal MSE and argue that they are strictly
sub-optimal. As a warm up, we derive the smallest com-
munication required to match the best MSE without the
additional constraints and challenges of distributed DP via
SecAgg. We finally show that the same approach can be
used with SecAgg to provide optimal communication ef-
ficiency. This is done by calculating the achievable MSE
under the presented approach and proving a matching lower
bound.

Optimal MSE under central DP We start by specifying
the optimal accuracy under a fully trusted server and no
communication constraints. Under a DME setting where
∥xi∥2 ≤ c for all i ∈ [n], the ℓ2 sensitivity of the mean
query µ(x1, ..., xn) ≜ 1

n

∑n
i=1 xi is bounded by

Sℓ2 (µ) ≜ max
xn,x′

1

∥µ(x1, ..., xn)− µ(x′
1, ..., xn)∥

2
2 ≤

2c2

n
.

Therefore, to achieve (ε, δ) central DP, the server can add
coordinate-wise independent Gaussian noise to µ. This
gives an ℓ2 error that scales as Oδ

(
c2d
n2ε2

)
, which is known

to be tight in the high privacy regime (Kamath & Ullman,
2020). Moreover, the resulting estimator is unbiased3.

Communication costs of DDG Next, we examine the
communication costs of previous distributed DP schemes
such as the DDG mechanism. As mentioned in Section 3.2
and Theorem F.1, in order to achieve the Oδ

(
c2d
n2ε2

)
er-

ror, the communication cost of DDG must to be at least
Θ
(
d log

(
d/ε2

))
bits. Note that the communication cost

scales up with 1/ε because in the high-privacy regimes, the
noise variance needs to be increased accordingly to provide
stronger DP. Thus SecAgg’s group size needs to be enlarged
to capture the larger signal range and avoid catastrophic
modular clipping errors. A similar phenomenon occurs for
other additive noise-based mechanisms, e.g, the Skellam
and binomial (Agarwal et al., 2018; 2021) mechanisms.

However, we show that the Θ
(
d log

(
d/ε2

))
cost is strictly

sub-optimal. In particular, the linear dependency on d can
be further improved when n2ε2 ≪ d. To demonstrate this,
we start by the following example to show that under a (ε, δ)
central DP constraint, one can reduce the dimensionality to
m = O(n2ε2) without harming the MSE.

3Notice that in this work, we are mostly interest in unbiased
estimators (see Remark 5.5 for a discussion).

Dimensionality reduction under central DP Consider
the following simple project-and-perturb mechanism:

1. The server generates a random projection matrix S ∈
Rm×d according to the sparse random projection defined
in Section 3.3 and broadcasts it to n clients.

2. Each client sends yi ≜ clipℓ2,1.1c (Sxi).

3. The server computes µ̂ ≜ S⊺
(
1
n

∑
i yi +N

(
0, σ2Im

))
,

where σ2 = Θ
(

c2

n2ε2

)
.

We claim that the above project-and-perturb approach satis-
fies (ε, δ) DP and achieves the optimal MSE order. In other
words, we can reduce the dimensionality for free.

To see why this is true, observe that we can decompose
the overall ℓ2 error ∥µ̂− µ∥22 into three parts: (1) the clip-
ping error (i.e., ∥yi − Sxi∥22), (2) the compression error
(i.e. ∥µ− S⊺S (

∑
i xi/n)∥22), and (3) the privatization er-

ror
∥∥S⊺N(0, σ2Im)

∥∥2
2
. Then, we argue that all of them

have orders less than or equal to O
(

c2d
n2ε2

)
, as long as we

select m = Θ(n2ε2) and t = Θ
(
log d+ log(n2ε2)

)
.

First, the clipping error is small since the random projection
S satisfies the Johnson-Lindenstrauss (JL) property (see
Lemma G.3 in the appendix), which implies that ∥Sxi∥2 ≈
∥xi∥2 ≤ c and that the clipping happens with exponentially
small probability. Second, Lemma G.2 (in the appendix)
suggests that compression error scales as O

(
c2d
m

)
. Thus by

picking m = Θ
(
n2ε2

)
, we ensure the compression error to

be at most O
(

c2d
n2ε2

)
. Finally, since the Gaussian noise N

added at Step 3 is independent of S, the privatization error
can also be bounded by O

(
c2d
n2ε2

)
.

We summarize this in the following lemma, where the for-
mal proof is deferred to Section L.2 in the appendix.

Lemma 5.2. Assume ∥xi∥2 ≤ c for all i ∈ [n]. Then
the output of the above mechanism µ̂ satisfies (ε, δ)-DP.
Moreover, if S (defined in (2)) is generated with m =
Θ(n2ε2) and t = Θ

(
log d+ log(n2ε2)

)
, it holds that

E
[
∥µ̂− µ∥22

]
= O

(
c2d
n2ε2

)
.

Dimensionality reduction with SecAgg The above exam-
ple shows that with a random projection, we can reduce the
dimensionality from d to O(n2ε2) without increasing the
MSE too much. Thus, under the distributed DP via SecAgg
setting, we combine random projection with the DDG mech-
anism to arrive at our main scheme in Algorithm 2.

To control the ℓ2 error of Algorithm 2, we adopt the same
strategy as in Lemma 5.2 (i.e., decompose the end-to-end
error into three parts), with the privatization error being
replaced by the error due to DDG. However, this will cause
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Algorithm 2 Private DME with random projection

Input: Cleints’ data x1, ..., xn ∈ Bd(c), compression
parameter m ∈ N
The server generates a sketching matrix S ∈ Rm×d

The server broadcasts S to all clients
for i ∈ [n] do

Client i computes yi ≜ Sxi and Zi ≜ DDGenc (yi) ∈
Zm
M with ℓ2 clipping parameter 1.1c (and other param-

eters being the same as in Algorithm 1 with d being
replaced by m)

end for
The server aggregates Z1, ..., Zn with SecAgg and de-
codes µ̂y = 1

nDDGdec

(∑
i∈[n] Zi

)
The server computes µ̂ = S⊺µ̂y .
Return: µ̂

an additional challenge, as the error due to DDG is no longer
independent of S (as opposed to the Gaussian noise in the
previous case). To overcome this difficulty, we leverage the
fact that for any projection matrix S, the (expected) ℓ2 error
is bounded by O

(
c2m
n2ε2

)
and develop an upper bound on the

final MSE accordingly (see Section I for a formal proof).

5.1. Lower bounds for private DME with SecAgg

We complement our achievability result in Theorem 5.1 with
a matching communication lower bound. Our lower bound
indicates that Algorithm 2 is indeed optimal (in terms of
communication efficiency), hence characterizing the funda-
mental privacy-communication-accuracy trade-offs.

The lower bound leverages the fact that under SecAgg, the
individual communication budget each client has is equal to
the total number of bits the server can observe, which are
all equal to the cardinality of the finite group Z that SecAgg
acts on. Therefore, even if each client sends a b-bit message
(so the total information transmitted is n · b bits), the server
still can only observe b bits information.

With this in mind, to give a per-client communication
lower bound under SecAgg, it suffices to lower bound
the total number of bits needed for reconstructing a d-
dim vector (i.e. the mean vector µ) within a given error
(i.e. Oδ

(
c2d/(n2ε2)

)
). Towards this end, we first derive a

general lower bound that characterizes the communication-
accuracy trade-offs for compressing a single d-dim vector
in a centralized setting.

Theorem 5.3 (compression lower bounds). Let v ∈ Rd and
∥v∥2 ≤ c. Then for any (possibly randomized) compression
operator C : Bd(c) → [2b] that compresses v into b bits
and any (possibly randomized) estimator v̂ : [2b]→ Bd(c),

it holds that

min
(C,v̂)

max
v∈Bd(c)

E
[
∥v̂ (C(v))− v∥22

]
≥ c22−2b/d. (3)

Moreover, for any unbiased compression scheme (i.e., (C, v̂)
satisfying E [v̂ (C(v))] = v for all v ∈ Bd(c)) with b < d,
it holds that

min
(C,v̂)

max
v∈Bd(c)

E
[
∥v̂ (C(v))− v∥22

]
≥ C0c

2d/b, (4)

where C0 > 0 is a universal constant.

Theorem 5.3, together with the fact that the per-client bit
budget is also the total amount of information the server can
observe, we arrive at the following lower bound.

Corollary 5.4. Consider the private DME task with SecAgg
as described in Figure 1. For any encoding function
Aenc(·) with output space Z , if the ℓ2 estimation error

E
[
∥µ̂− µ∥22

]
≤ ξ for all possible x1, ..., xn ∈ Bd(c), then

it must hold that log |Z| = Ω
(
d log

(
c2/ξ

))
. In addition, if

µ̂ is unbiased and ξ ≤ c2, then log |Z| = Ω
(
dc2/ξ

)
.

Finally, by plugging ξ = O
(

c2d
n2ε2

)
(which is the optimal

ℓ2 error for the mean estimation task under centralized DP
model), we conclude that

• Ω
(
max

(
d log

(
n2ε2/d

)
, 1
))

bits of communication are
necessary for general (possibly biased) schemes

• Ω
(
min

(
n2ε2, d

))
bits of communication are necessary

for unbiased schemes.

We remark that the above lower bounds are both tight but
in different regimes. Specifically, the first lower bound,
which measures the accuracy in MSE, is tight for small
d but is meaningless in high-dimensional or high-privacy
regimes where d≫ n2ε2. This also implies that Ω̃(d) bits
are necessary for d ≪ n2ε2 and that there is no room for
improvement on DDG in this regime. On the other hand,
the second bound is useful when d = Ω

(
n2ε2

)
(with an ad-

ditional unbiasedness assumption). This is a more practical
regime for FL with SecAgg, and our scheme outperforms
DDG in this scenario.
Remark 5.5. Notice that in this work, we are mostly inter-
ested in unbiased estimators due to the following two rea-
sons: 1) it largely facilities the convergence analysis of the
SGD based methods, as these types of stochastic first-order
methods usually assume access to an unbiased gradient
estimator in each round. 2) In the high-dimensional or high-
privacy regimes where d≫ n2ε2, the MSE is not the right
performance measure since an estimator can have a large
bias while still achieving a relative small MSE. For instance,
in the regime where n2ε2 ≤ d, the Gaussian mechanism
has MSE Θ

(
c2d
n2ε2

)
; on the other hand, the trivial estimator
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µ̂ = 0 achieves a smaller MSE, equal to c2 ≤ O
(

c2d
n2ε2

)
,

but such estimator gives no meaningful information. In or-
der to rule out these impractical schemes, we hence impose
the unbiasedness constraint.

6. Sparse DME with SecAgg and DP
Theorem 5.1 in Section 5.1 specifies the optimal trade-offs
of private DME for all possible datasets xn. In other words,
it provides a worst-case (over all possible xi) bound on the
utility and shows that Algorithm 2 is worst-case optimal.
However, we show in this section that with additional as-
sumptions on the data, it is possible to improve the trade-offs
beyond what is given in Theorem 5.1.

One such assumption is sparsity of the data, which is justi-
fied by several empirical results that gradients tend to be (or
are close to being) sparse. We hence study the sparse DME
problem, which is formulated as in Section 4 but with an
additional s-sparsity assumption on µ, i.e., ∥µ∥0 ≤ s. We
present a sparse DME algorithm adapted from Algorithm 2,
showing that by leveraging the sparse structure of data, one
can surpass the lower bound in Theorem 5.1. Moreover, the
dependency of communication cost and MSE on the model
size d becomes logarithmic.

DME via compressed sensing We adopt the same strat-
egy as in Section 5.1, (i.e., use a linear compression scheme
to reduce dimensionality). However, instead of applying
the linear decoder S⊺µ̂y, we perform a more complicated
compressed sensing decoding procedure and solve a (reg-
ularized) linear inverse problem. Specifically, we modify
Algorithm 2 in the following way:

1. For local compression, we replace the sparse random
projection matrix S ∈ Rm×d with an s-RIP4 matrix (in
particular, we use a Gaussian ensemble, i.e., Si,j

i.i.d.∼
N(0, 1)) and set m = O (s log d).

2. To decode µ̂, the server solves the following ℓ1 regu-
larized linear inverse problem (i.e., LASSO (Tibshirani,
1996)) µ̂ ∈ argminx∈Rd

{
1
m ∥µ̂y − Sx∥2 + λn ∥x∥1

}
,

where the λn is set to be of the order O
(

c log d
nε

)
.

With the above modifications (where the detailed steps is
given in Algorithm 6 in the appendix), we can obtain the
following privacy and utility guarantees.

Theorem 6.1 (Sparse private DME). Algorithm 6 satisfies
(α, 1

2ε
2α)-RDP. If ∥µ∥0 ≤ s, it holds that (1) the per-client

communication cost is O
(
s log d log

(
n2 + s log d/ε2

))
,

and (2) the MSE is bounded by O
(

c2s log2 d
n2ε2

)
.

Observe that under sparsity, both the accuracy and the com-

4See Definition K.1 for a weaker definition.

munication cost depend on d logarithmically. This implies
that by leveraging the sparsity, we can replace d with an
“effective” dimension of s log d. However, Algorithm 6 is
more complicated than Algorithm 2 as it requires tuning
hyper-parameters such as s and λn.

Remark 6.2. The communication cost in Theorem 6.1 no
longer depends only on nε, thus exhibiting a different be-
havior from the non-sparse case (i.e., that of Theorem 5.1).
We remark that this is because we only present the result for
the s log d≪ n2ε2 (which is more reasonable in practice).
However, one can extend the similar analysis in Section 5.1
and obtain the results for s log d≫ n2ε2 regime.

7. Empirical Analysis
We run experiments on the full Federated EMNIST, Stack
Overflow dataset, and Shakespare three common bench-
marks for FL taskss (Caldas et al., 2018). F-EMNIST has
62 classes and N = 3400 clients with a total of 671, 585
training samples. Inputs are single-channel (28, 28) images.
The Stack Overflow (SO) dataset is a large-scale text dataset
based on responses to questions asked on the site Stack Over-
flow. The are over 108 data samples unevenly distributed
across N = 342, 477 clients. We focus on the next word
prediction (NWP) task: given a sequence of words, predict
the next words in the sequence. Shakespeare is similar to
SONWP but is focused on character prediction and instead
built from the collective works of Shakespeare, partitioned
so that each client is a speaking character with at least two
lines. There are n = 715 characters (clients) with 16, 068
training samples and 2, 356 test samples. On all datasets,
we select n ∈ [100, 1000] and R = 1500. We focus our
exposition on SONWP and F-EMNIST as two canonical
federated datasets but find similar results for Shakespeare
in Appendix B (Figures 5 and 6).

On F-EMNIST, we experiment with a ≈ 106 parame-
ter (4 layer) Convolutional Neural Network (CNN) used
by Kairouz et al. (2021a). On SONWP, we experiment with
a ≈ 4 · 106 parameter (4 layer) long-short term memory
(LSTM) model—the same as prior work (Andrew et al.,
2019; Kairouz et al., 2021a). In both cases, clients train
for 1 local epoch using SGD. Only the server uses momen-
tum. For distributed DP, we use the geometric adaptive
clipping of (Andrew et al., 2019). We use the same proce-
dure as Kairouz et al. (2021a). We flatten using the Discrete
Fourier Transform. We use their hyperparameter values for
conditional randomized rounding and modular clipping. We
communicate 16 bits per parameter for F-EMNIST and 18
for SONWP unless otherwise indicated. We repeat all exper-
iments with 3 different seeds. We provide full detail on the
models, datasets, and training setups in Appendix C, as well
as the chosen values of the noise multiplier and the sparse
random projection parameters in Appendix D. We provide
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details of our algorithms for sparse random projections (via
sketching) in Appendix E.

Distributed Mean Estimation To verify our theoretical
analysis, we run mean estimation experiments with the same
setup as (Kairouz et al., 2021a). Each of n clients hold a
Gaussian vector v normalized so that ∥v∥2 ≤ 1 and with
dimensionality d, i.e., |v| = d. We use b = 18 bit width
for distributed DP. Recall from Theorem 5.3 that as either
the noise multiplier z or the vector size d increases, the
compression rate r should increase. We observe exactly this
behaviour in Figure 4 of Appendix B.
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(a) At z ≥ 0.5, we attain r ≥ 10x on SONWP and without DP,
≈ 4x. ∆ = 4%.
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(b) At z ≥ 0.5 we attain r ≥ 50x on F-EMNSIT. Without DP
(z = 0), we cannot significantly compress. ∆ = 1%.

Figure 2. Higher privacy requirements lead to higher attained
compression rates with a slack of ∆. A higher (fixed) compres-
sion rate can also attain tighter privacy at no cost in performance.
See Appendix D for discussion on (ε, δ)-DP conversions. See Fig-
ures 5 and 6 in Appendix B for results on the Shakespeare dataset.

Analyzing the privacy-utility-communication tradeoff
We now study the best compression rates that we can at-
tain without significantly impacting the current performance.
For this, we train models that achieve state-of-the-art perfor-
mance on the FL tasks we consider, and allow a slack of ∆%
relative to these models when trained without compression
(r = 1x). We choose ∆ = 4% for SONWP and ∆ = 1%
for F-EMNIST which may vary by task. We first consider
z = 0, i.e., no DP, and see that about r = 4x compression
can be attained. However, recall that our theoretical results
suggest that as z increases and thus ε decreases, fewer bits
of communication are needed. Our experiments echo this
finding: at z = 0.3, we observe r = 5x is now attainable
and at z ≥ 0.5, r = 10x is attainable. The highest z we
display can correspond both to a tighter privacy regime
(ε ≈ 10 or less) but, importantly also to models that are
still highly performant indicating that a practitioner could
reasonably select both these z and r to train models compa-
rable to the state-of-the-art. Our experiments on F-EMNIST
in Figure 2b show similar findings where fixing r ≥ 50x can
attain z ≥ 0.5 for ‘free’. Finally, these results also corrob-
orate that our bound of Õ

(
min(n2ε2, d)

)
is significantly

less (≈ 10x) than that of Kairouz et al. (2021a) in practice.

Finding that we can significantly compress our models, an-
other question that can be asked is ‘could a smaller model
have been used instead?’ To investigate this, we train a
smaller model (denoted ‘small’) which has only ≈ 2 · 105
parameters, which is comparable in size to the original CNN
model updates compressed by r ≈ 5x. We observe that this
model has significantly lower performance (> 5pp) across
all privacy budgets when we compare them for a fixed latent
dimension of length×width. When we compress our orig-
inal model beyond r = 5x (smaller than the ‘small’ model),
we find that it still significantly outperforms it. These re-
sults indicate that training larger models do in fact attain
higher performance even for the same latent update size:
further, our results indicate we can enable training these
larger models under the same fixed total communication.

Quantization or dimensionality reduction? Though we
achieve significant compression rates from our linear dimen-
sionality reduction technique, we now explore how these
results compare with compression via quantization. Theo-
retically our bound can achieve a minimum compression
independent of the ambient gradient size d. Because of this,
we also expect our methods to outperform those based on
quantization because their communication scales with d.

Our results in Figure 3 and Table 1 of Appendix B corrobo-
rate this hypothesis. We compare our compression against
conditional randomized rounding to an integer grid of field
size 2b. We vary the quantization (bits) per parameter b
while allowing the same ∆ as above. Combined with di-
mensionality reduction, this gives a total communication
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per ambient parameter as b/r. When we use the vanilla dis-
tributed DP scheme of Kairouz et al. (2021a), we find that
we can only compress to 10 bits per parameter on SONWP;
if we instead favour our linear dimensionality reduction
technique, we achieve a much lower 1.2 bits per parameter
(with r = 10x and b = 12). For F-EMNIST, we find we
can compress down to 0.24 bits per parameter at z = 0.5 by
optimizing both b and r; this is much lower than using only
quantization (10 bits per parameter) and a marginal increase
over only dimensionality reduction (0.27). We observe 0.7
bits per parameter at z = 0.3 and 1.2 at z = 0.1. See
Figure 8 for results with z = 0.1, 0.3 and Figure 9 for the
comprehensive results at many r and b, both in Appendix B.

Because of this, we now explore if raising the b (decreasing
quantization), past the max b = 18 bits per parameter that
we have considered thus far, will decrease the total commu-
nication. Inspecting b = 18→ 22 in Figure 3 we do observe
a marginal increase in test performance with increasing b in
some cases, indicating there may be potential to increase r.
However, we do not find that we can significantly increase
r in these cases (see Figure 9 of Appendix B).
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Figure 3. Optimizing both r and b can further decrease com-
munication, to 0.24 bits per parameter at z = 0.5. See Figure 8
of Appendix B for z = 0.1, 0.3. Note that sometimes at higher
bitwidths we observe lower performance within statistical error
(standard deviation ≈ 1)—here, we threshold to the highest accu-
racy of lower bitwidths to ease visualization. See Appendix D for
discussion on (ε, δ)-DP conversions. Full results without thresh-
olding and all r are in Figure 9 of Appendix B.

Impact of cohort size We conduct experiments under
(approximately, because varying n impacts ε) fixed ε to in-
vestigate how the cohort size n impacts compression. From
Theorem 5.3, we expect to see that as n increases, so does
does communication. Our empirical results closely match,
shown in Figure 10 of Appendix B. Further, we find that
under sufficiently high z, we can improve the model perfor-

mance despite SecAgg communication limits—this bounds
the number of clients and model size. In Table 2 of Ap-
pendix B, we increase n while keeping the total message
size fixed (increase r by d/(n2

n1

logn2

logn1
), where n2 > n1). At

z = 0.5, we observe that though this message size remains
fixed the final model performance increases by nearly 5
percentage points on SONWP. In other words, in large n
scenarios where SecAgg can fail (due to large communica-
tion), our protocol may enable a practitioner to still increase
n to obtain better performance. We discuss this further in
Appendix B.1.

We attempted in Appendix B.2 to improve compression rates
by compressing layers separately (per-layer) or thresholding
the noisy aggregate random projections. We found neither
achieved significant improvements. The former aligns with
results from McMahan et al. (2017b) in central DP.

Discussion and Main Takeaways Our empirical analysis
largely corroborates our asymptotic theoretical findings that
with sufficiently high z (tighter privacy), less communica-
tion is needed (at little to no cost in model performance); in
other words, the compression comes nearly “free”. We find
that in tighter privacy regimes, significant compression of
> 10x (as low as 1.2 bits per ambient parameter) can be at-
tained on SONWP with less than 4% relative error; reducing
slack to 2% still allows for > 5x compression. In addition,
we find that dimensionality reduction via sparse random pro-
jections outperforms quantization, where the latter can only
attain compression to 10 bits on SONWP. Finally, we ob-
serve that our protocol may be able to enable higher cohort
sizes n—despite fundamental limits on SecAgg message
sizes—due to reducing the message size. We find that this
can improve the overall model performance.

8. Conclusion
In this paper, we study the optimal privacy-communication-
accuracy trade-offs under distributed DP via SecAgg. We
show that existing schemes are order optimal when d ≪
n2ε2 and strictly sub-optimal otherwise. To address this
issue, we provide an optimal scheme that leverages sparse
random projections. We also show how our scheme can
be minimally modified when the client updates are sparse
to further improve the trade-offs. Our extensive experi-
ments on FL benchmark datasets demonstrate significant
communication gains (∼10x) relative to existing schemes.
Many important questions remain open, including obtain-
ing a fundamental characterization of the privacy-accuracy-
communication trade-offs under other models of distributed
DP (e.g. via a trusted third-party or in a secure enclave as
in (Bittau et al., 2017; Ghazi et al., 2020b; 2021; 2020c;a;
Ishai et al., 2006; Balle et al., 2019; 2020; Balcer & Cheu,
2020; Balcer et al., 2021; Girgis et al., 2021b;a; Erlingsson
et al., 2019)).
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S., McMahan, H. B., et al. Towards federated learning at
scale: System design. arXiv preprint arXiv:1902.01046,
2019.

Bonawitz, K. A., Ivanov, V., Kreuter, B., Marcedone, A.,
McMahan, H. B., Patel, S., Ramage, D., Segal, A.,
and Seth, K. Practical secure aggregation for feder-
ated learning on user-held data. In NIPS Workshop on
Private Multi-Party Machine Learning, 2016b. URL
https://arxiv.org/abs/1611.04482.

Bun, M. and Steinke, T. Concentrated differential privacy:
Simplifications, extensions, and lower bounds. In The-
ory of Cryptography Conference, pp. 635–658. Springer,
2016.

Caldas, S., Duddu, S. M. K., Wu, P., Li, T., Konečnỳ, J.,
McMahan, H. B., Smith, V., and Talwalkar, A. Leaf:
A benchmark for federated settings. arXiv preprint
arXiv:1812.01097, 2018.

Canonne, C. L., Kamath, G., and Steinke, T. The dis-
crete gaussian for differential privacy. arXiv preprint
arXiv:2004.00010, 2020.

https://openreview.net/forum?id=U_Jog0t3fAu
https://openreview.net/forum?id=U_Jog0t3fAu
https://doi.org/10.1145/3372297.3417242
https://doi.org/10.1145/3372297.3417242
https://arxiv.org/abs/1611.04482


Price of Secure Aggregation in Differentially Private Federated Learning

Carlini, N., Liu, C., Erlingsson, Ú., Kos, J., and Song, D.
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the communication-privacy-accuracy trilemma. arXiv
preprint arXiv:2007.11707, 2020.

Duchi, J. C., Jordan, M. I., and Wainwright, M. J. Local
privacy and statistical minimax rates. In 2013 IEEE 54th
Annual Symposium on Foundations of Computer Science,
pp. 429–438. IEEE, 2013.

Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., and
Naor, M. Our data, ourselves: Privacy via distributed
noise generation. In Annual International Conference
on the Theory and Applications of Cryptographic Tech-
niques, pp. 486–503. Springer, 2006a.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. Cali-
brating noise to sensitivity in private data analysis. In The-
ory of cryptography conference, pp. 265–284. Springer,
2006b.
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A. Societal Considerations
Our work explores private learning from distributed data. In general, this enables tasks like (federated) machine learning
without compromising the privacy of users who contribute data to these protocols. However, privacy guarantees are complex
and the relationship between optimized privacy metrics like ε-DP with the practical privacy leakage are not well understood.
Because of this, works that leverage private learning protocols but do not guarantee a tight (ε, δ)-DP bound may provide a
false sense of privacy for user data.

B. Additional Figures
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Figure 4. Empirically observed MSE well aligns with asymptotic theoretical analysis. As the vector dimesionality grows d, higher
compression can be attained. Tighter privacy (high z) also allows more compression. We vary the vector dimensionality between
d = {300, 3000} for the subfigures and use the same setup as (Kairouz et al., 2021a).

Noise
Multiplier, z

Chosen Compression
Rate r

Lowest Bit Width
b per Parameter

Total Communication
Per Parameter

Final Test
Performance, %

0.3 1 10 10 21.90± 0.09
5 12 2.4 21.68± 0.02

0.5
1 10 10 21.21± 0.18
5 12 2.4 21.11± 0.08

10 12 1.2 20.74± 0.05

Table 1. Optimal compression can be found by tuning both the bit width b and compression rate r. Results for SONWP with 1000
clients. We find that increasing r instead of b achieves the highest total compression in all cases. Bold rows show the optimal compression
parameters for the given z. We note that we cannot set lower than b = 10 for this setting because SecAgg requires at least O(log (n) bits.
The results in the final column take the form mean±standard deviation.
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(a) Zoom-in of noise multipliers z ∈ [0.0, 0.30]. Here, even 10x
compression can be attained with a smaller z = 0.30.
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(b) Zoom-in of noise multipliers z ∈ [0.50, 0.70]. Here, up to 30X
compression can be attained at higher noise multipliers z ≥ 0.50.

Figure 5. At higher privacy requirements, higher compression rates can be attained under similar model performance. We use a
relative slack ∆ = 1% with models trained on the Shakespeare dataset.
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Figure 6. At higher privacy requirements, higher compression rates can be attained under similar model performance. We find up
to 40x compression at z = 0.70 can be attained. We use a relative slack ∆ = 1% with models trained on the Shakespeare dataset.
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(b) Impact of the number of parameters on the privacy-utility-
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Figure 7. Large models with compression outperform small models.
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(b) Lowest communication of 0.7 bits per parameter at z =
0.3 with b = 14, r = 20x.

Figure 8. Optimizing both r and b can further decrease communication. Note that sometimes at higher bitwidths we observe lower
performance within statistical error (standard deviation ≈ 1)—here, we threshold to the highest accuracy of lower bitwidths. Full results
without thresholding and all r are in Figure 9 of Appendix B.
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Figure 9. Optimizing both r and b can further decrease communication. Full results for Figure 3 and 8.
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B.1. Impact of cohort size

Finally, we explore how varying the number of clients per round (or, cohort size) n impacts the privacy-utility-communication
tradeoff. This value plays several key roles in this tradeoff. First, increasing n increases the sampling probability of the
cohort, which increases the total privacy expenditure. However, it also tends to improve model performance—this may
mean that a higher noise multiplier z can be chosen so as to instead decrease the total privacy cost (this is typically the case
when N is large enough, e.g., SO). In terms of communication, Theorem 5.1 suggests that increasing n will also increase the
per-client comunication. Because of the aforementioned complex tradeoffs, we (approximately) fix the privacy budget ε and
only perturb n minimally around a nominal value of 100. In Figure 10, we see that dependence of communication on n is
observed empirically as well.

In addition to this impact on r, setting n can also have a significant impact on the run time of SecAgg, of O(n log(n)d). For
large values of n, this can entirely prevent the protocol from completing. Because a practitioner desires the most performant
model, a common goal is the increase n so as to obtain a tight ε (due to a now higher z) with the least cost in performance.
But, because large n can crash SecAgg, this places a constraint on the maximum n that can be chosen. Since our methods
compress the updates (d above), it is possible to still increase n so long as we increase r accordingly (by n2

n1

logn2

logn1
where

n2 > n1), which maintains fixed runtime. If the resulting model at higher n achieves higher performance, then we observe a
net benefit from this tradeoff. For a practical privacy parameter or z = 0.6, our results in Table 2 suggest that this may be
possible. Specifically, increasing n from 100→ 1000 and settings r = 50x > 15x accordingly, we observe that the final
model with n = 1000 clients achieves a nearly 5pp gain. We observe that z < 0.3 cannot meet these requirements.
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Figure 10. Increasing n leads to an increase in communication shown by the decreasing compression rates. Higher noise multipliers
can still attain higher compression. Results for SONWP.

Noise
Multiplier, z

Number of
Clients, n

Compression
Rate, r

Final Test
Performance, %

0.1 100 1 83.05± 0.44
1000 10 82.95± 0.40

0.3 100 1 80.61± 0.46
1000 40 80.78± 0.29

0.5 100 1 75.34± 0.49
1000 50 80.13± 0.22

Table 2. With z sufficiently large, increasing n = 100 → 1000 can attain higher model performance even for increased r. In
particular, to maintain the same SecAgg runtime, we require r ≥ 15 for this setting to increase n = 100 → 1000. We observe that
z ≥ 0.3 meets this requirement while achieving final models that outperform the n = 100, r = 1x client baseline. Results for SONWP.
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B.2. Attempting to improve compression via per-layer sketching and thresholding

We attempted two additional methods to improve our compression rates. First, we noticed that the LSTM models we trained
had consistently different ℓ2 norms across layers in training. Because these norms are different, we hypothesizes that
sketching and perturbing them separately may improve the model utility. We attempt this protocol in Figures 11 and 12,
where Figure 11 uses z = 0.05 and Figure12 uses z = 0. We find that, in general, there are no significant performance
gains. We further attempt to threshold low values in the sketch. Because this leads to a biased estimate of the gradient, we
keep track of the zero-d values in an error term. We tried several threshold values and we found that this as well led to no
significant performance gains.
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Figure 11. Separate sketching does not significantly improve the final model performance. Heatmap values correspond to the final
model test performance followed by (newline) the total compression and are colored by the test performance. Results using the LSTM
model on SONWP with z = 0.05. We train models either by sketching the entire concatenated gradient vector or by sketching the
‘embedding’ layer separate from the ‘rest’ of the model.
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Figure 12. Separate sketching does not significantly improve the final model performance. Heatmap values correspond to the final
model test performance followed by (newline) the total compression and are colored by the test performance. Results using the LSTM
model on SONWP with z = 0.00. We train models either by sketching the entire concatenated gradient vector or by sketching the
‘embedding’ layer separate from the ‘rest’ of the model.
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C. Datasets and Training Setup
We run experiments on the full Federated EMNIST and Stack Overflow datasets (Caldas et al., 2018), two common
benchmarks for FL tasks. F-EMNIST has 62 classes and N = 3400 clients, with each user holding both a train and test set
of examples. In total, there are 671, 585 training examples and 77, 483 test examples. Inputs are single-channel (28, 28)
images. We sample n ∈ [100, 1000] clients per round for a total R = 1500 rounds. The Stack Overflow (SO) dataset is a
large-scale text dataset based on responses to questions asked on the site Stack Overflow. The are over 108 data samples
unevenly distributed across N = 342477 clients. We focus on the next word prediction (NWP) task: given a sequence
of words, predict the next words in the sequence. We sample use n ∈ [100, 1000] and R = 1500. On F-EMNIST, we
experiment with a ≈ 1 million parameter (4 layer) Convolutional Neural Network (CNN) used by (Kairouz et al., 2021a).
On SONWP, we experiment with a ≈ 4 million parameter (4 layer) long-short term memory (LSTM) model, which is the
same as prior work (Andrew et al., 2019; Kairouz et al., 2021a).

On F-EMNIST, we use a server learning rate of 1. normalized by n (the number of clients) and momentum of 0.9 (Polyak,
1964); the client uses a learning rate of 0.01 without momentum. On Stack Overflow, we use a server learning rate of 1.78
normalized by n and momentum of 0.9; the client uses a learning rate of 0.3.

For distributed DP, we use the geometric adaptive clipping of (Andrew et al., 2019) with an initial ℓ2 clipping norm of 0.1
and a target quantile of 0.5. We use the same procedure as (Kairouz et al., 2021a) and flatten using the Discrete Fourier
Transform, pick β = exp (−0.5) as the conditional randomized rounding bias, and use a modular clipping target probability
of 6.33e−5 or ≈ 4 standard deviations at the server (assuming normally distributed updates). We communicate 16 bits per
parameter for F-EMNIST and 18 bits for SONWP unless otherwise indicated.

On F-EMNIST, our ‘large’ model corresponds to the CNN whereas our ‘small’ model corresponds to an ≈ 200, 000
parameter model with 3 dense layers (see Figure 14).

C.1. Model Architectures

Model: "Large Model: 1M parameter CNN"
_________________________________________________________________
Layer type Output Shape Param #

=================================================================
Conv2D None, 26, 26, 32 320

MaxPooling2D None, 13, 13, 32 0

Conv2D None, 11, 11, 64 18496

Dropout None, 11, 11, 64 0

Flatten None, 7744 0

Dense None, 128 991360

Dropout None, 128 0

Dense None, 62 7998

=================================================================
Total params: 1,018,174
Trainable params: 1,018,174
Non-trainable params: 0
_________________________________________________________________

Figure 13. ‘Large’ model architecture.
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"Small Model: 200k parameter Dense DNN"
_________________________________________________________________
Layer Output Shape Param #

=================================================================
Reshape None, 784 0

Dense None, 200 157000

Dense None, 200 40200

Dense None, 62 12462

=================================================================
Total params: 209,662
Trainable params: 209,662
Non-trainable params: 0
_________________________________________________________________

Figure 14. ‘Small’ model architecture.

Model: "Stack Overflow Next Word Prediction Model"
_________________________________________________________________
Layer type Output Shape Param #

=================================================================
InputLayer None, None 0

Embedding None, None, 96 960384

LSTM None, None, 670 2055560

Dense None, None, 96 64416

Dense None, None, 10004 970388

=================================================================
Total params: 4,050,748
Trainable params: 4,050,748
Non-trainable params: 0
_________________________________________________________________

Figure 15. Stack Overflow Next Word Prediction model architecture.

Model: "Shakespeare Character Prediction Model"
_________________________________________________________________
Layer type Output Shape Param #

=================================================================
Embedding None, 80, 8 720

LSTM None, 80, 256 271360

LSTM None, 80, 256 525312

Dense None, 80, 90 23130

=================================================================
Total params: 820,522
Trainable params: 820,522
Non-trainable params: 0
_________________________________________________________________

Figure 16. Shakespeare character prediction model architecture.
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D. DP and Sketching Empirical Details
Noise multiplier to ε-DP We specify the privacy budgets in terms of the noise multiplier z, which together with the clients
per round n, total clients N , number of rounds R, and the clipping threshold completely specify the trained model ε-DP.
Because the final ε-DP values depend on the sampling method: e.g., Poisson vs. fixed batch sampling, which depends on the
production implementation of the FL system, we report the noise multipliers instead. Using Canonne et al. (2020); Mironov
(2017), our highest noise multipliers roughly correspond to ε = {5, 10} using δ = 1/N and privacy amplification via fixed
batch sampling.

Sketching We display results in terms of the noise multiplier which fully specifies the ε-DP given our other parameters
(n, N , and R). We discuss this choice in Appendix D. We use a count-mean sketch which compresses gradients to a
sketch matrix of size (t, w)=(length,width). We test length ∈ {10, 15, 20, 25} and find that 15 leads to optimal final test
performance. We use this value for all our experiments and calculate the width = d/(r ∗ length) where gradient ∈ Rd

and r is the compression rate. We normalize each sketch row by the length to lower the clipping norm, finding some
improvements in our results. Thus, decoding requires only summing the gradient estimate from each row. We provide the
full algorithms in below in Appendix E.

E. Sketching In Practice

Algorithm 3 Gradient Count-Mean Sketch Encoding. We find that normalizing (Line 6) in the encoding step improves
performance by reducing the norm of the sketch.
Require: Gradient vector g, sketch width sw, sketch length sl, shared seed seed

1: sketch← zeros((sl, sw))
2: for hash index in [0, · · · , S.length], in parallel do
3: hash seed← hash index+ seed
4: indices←random uniform(0, S.width, hash seed)
5: signs← random choice([−1, 1], hash seed)
6: weights← signs× grad

sl
7: sketch[hash index]←bincount(indices, weights, sl)
8: end for
9: Return: sketch

Algorithm 4 Gradient Count-Mean Sketch Decoding
Require: Sketch S, gradient vector size d, shared seed seed

1: gradient estimate← zeros(d)
2: for hash index in [0, · · · , S.length], in parallel do
3: hash seed← hash index+ seed
4: indices←random uniform(0, S.width, hash seed)
5: signs← random choice([−1, 1], hash seed)
6: gradient estimate+ = signs ∗ S[hash index, indices]
7: end for
8: Return: gradient estimate
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F. Additional details of the distributed discrete Gaussian mechanism (DDG)

Algorithm 5 Distributed discrete Gaussian mechanism DDGenc (with detailed parameters) (Kairouz et al., 2021a)
1: Inputs: Private vector xi ∈ Rd, Dimension d; clipping threshold c; granularity γ > 0; modulus M ∈ N; noise scale

σ > 0; bias β ∈ [0, 1)
2: Clip and scale vector: x′

i =
1
γ min(1, c

∥xi∥2
) · xi ∈ Rd

3: Flatten vector: x′′
i = HdDx′

i where Hd is the d-dim Hadamard matrix and D is a diagonal matrix with each diagonal
entry unif{+1,−1}

4: Conditional rounding:

5: while ∥x̃i∥2 > min
{
c/γ +

√
d,

√
c2/γ2 + 1

4d+
√

2 log(1/β)
(
c/γ + 1

2

√
d
)}

do

6: x̃i ∈ Zd be a randomized rounding of x′′
i ∈ Rd (i.e. E [x̃i] = x′′

i and ∥x̃i − x′′
i ∥∞ ≤ 1)

7: end while
8: Perturbation: zi = x̃i +NZ(0, σ

2/γ2) mod M , where NZ is the discrete Gaussian noise
9: Return: zi ∈ Zd

M

Theorem F.1 (private mean estimation with SecAgg (Kairouz et al., 2021a)). Define

∆2
2 ≜ min

{
c2 +

γ2d

4
+
√

2 log (1/β)γ
(
c+

γ

2

√
d
)
,
(
c+ γ

√
d
)2}

,

τ ≜ 10

n−1∑
k=1

exp

(
−2π2σ

2

γ2

k

k + 1

)
,

ε ≜ min

{√
∆2

2

nσ2
+

1

2
τd,

∆2√
nσ

+ τ
√
d

}
,

M ≥ O

(
n+

√
ε2n3

d
+

√
d

ε
log

(
n+

√
ε2n3

d
+

√
d

ε

))
,

β ≤ Θ

(
1

n

)
,

σ = Θ̃

(
c

ε
√
n
+

γ
√
d

ε
√
n

)
,

γ = Θ̃

(
min

(
cn

M
√
d
,

c

εM

))
.

Then Algorithm 5 satisfies

• 1
2ε

2-concentrated differential privacy (which implies (α, ε2

α )-RDP)

• O (d log (M)) = O

(
d log

(
n+

√
n3ε2

d +
√
d
ε

))
bits per-client communication cost;

• MSE E
[
∥µ̂− µ∥22

]
= O

(
c2d
n2ε2

)
.

G. Additional details of Section 3
G.1. From Renyi DP to approximate DP

The following conversion lemma from (Asoodeh et al., 2020; Canonne et al., 2020; Bun & Steinke, 2016) relates RDP to
(εDP(δ), δ)-DP.
Lemma G.1. If M satisfies (α, ε)-RDP, then, for any δ > 0, M satisfies (εDP(δ), δ), where

εDP(δ) = ε+
log (1/αδ)

α− 1
+ log(1− 1/α).
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G.2. Properties of sparse random projections

In this section, we introduce some properties of sparse random projection that will be used in our proofs. Let S be generated
according to Section 3.3. The following two lemmas controls the distortion of the embedded vector S · g for a g ∈ Rd.
Lemma G.2. Let S be defined as in (2). For any g1, g2 ∈ Rd, E [g⊺1S

⊺Sg2] = ⟨g1, g2⟩ and

ES

[
⟨Sg1, Sg2⟩2

]
≤ ⟨g1, g2⟩2 +

2

m
∥g1∥22 · ∥g2∥

2
2 .

Furthermore, for any g ∈ Rd,

ES

[
∥S⊺Sg − g∥22

]
≤ 2d

m
∥g∥22 . (5)

The proof follows by directly computing ES

[
⟨Sg1, Sg2⟩2

]
(which can be written as a quadratic function of S and g1, g2).

See, for instance, Lemma D.15 in (Anonymous, 2022).
Lemma G.3 (Sparse Johnson-Lindenstrauss lemma (Kane & Nelson, 2014)). Let S be defined in (2) and let g ∈ Rd. Then
as long as m ≥ Θ

(
1
α2 log

(
1
β

))
and t ≥ Θ

(
1
α log

(
1
β

))
,

Pr
{
∥S · g∥22 ≥ (1 + α) ∥g∥22

}
≤ β. (6)

Finally, Lemma G.4 states that the “unsketch” operator preserves the ℓ2 norm.

Lemma G.4. Let S,m, t be defined in (2) and v ∈ Rm (which can possibly depends on S) with E
[
∥v∥22 |S

]
≤ B2 almost

surely. Then it holds that E
[
∥S⊺v∥22

]
≤ 8dB2

m .

The proof can be found in Section L.1.

H. Details of sparse DME scheme in Section 6

Algorithm 6 sparse DME via Compressed Sensing
1: Inputs: clients’ data x1, ..., xn, sparse parameter s
2: The server generates an compression matrix S ∈ Rm×d with m = Θ(s log d) and Si,j

i.i.d.∼ N(0, 1) and computes its
largest singular value σmax(S)

3: The server broadcasts S, σmax(S) to all clients
4: for i ∈ [n] do
5: Client i computes yi ≜ Sxi and zi ≜ DDGenc (yi) ∈ Zm

M with clipping rate c′ = cσmax(S) and dimension d′ = m
6: end for
7: The server aggregates Z1, ..., Zn with SecAgg and decodes µ̂y = 1

nDDGdec

(∑
i∈[n] Zi

)
8: The server solves the following Lasso:

µ̂ ∈ arg min
x∈Rd

{
1

m
∥µ̂y − Sx∥2 + λn ∥x∥1

}
, (7)

where the regularization is picked to satisfy

λn = O

(
c log d

nε

)
.

9: Return: µ̂

I. Proof of Theorem 5.1
Similar as in the proof in Lemma 5.2, let E be the event that yi is clipped in the DDG pre-processing stage for some i ∈ [n]:

E ≜
⋃
i∈[n]

{
∥Sxi∥22 ≥ 1.1 · ∥xi∥22

}
.



Price of Secure Aggregation in Differentially Private Federated Learning

By picking m = Ω
(
log
(

n
β

))
and applying Lemma G.3 together with the union bound, we have PrS {E} ≤ β.

Next, we decompose the error as

E
[
∥µ̂− µ∥22

]
= E

∥∥∥∥∥S⊺

(
1

n

∑
i

µ̂y −
1

n

∑
i

yi

)
+

(
S⊺ 1

n

∑
i

µ̂y − µ

)∥∥∥∥∥
2

2


≤ 2E

∥∥∥∥∥S⊺

(
µ̂y −

1

n

∑
i

yi

)∥∥∥∥∥
2

2


︸ ︷︷ ︸

privatization error

+2E

∥∥∥∥∥
(
S⊺ 1

n

∑
i

yi − µ

)∥∥∥∥∥
2

2


︸ ︷︷ ︸

compression error

,

where we use µ̂y to denote the output of the DDG mechanism. Let us bound the privatization error and the compression
error separately.

Bounding the privatization error For the first term, observe that µ̂y is a function (clip (y1) , ..., clip (yn)), and conditioned
on Ec, we have

µ̂y (clip (y1) , ..., clip (yn)) = µ̂y (y1, ..., yn) .

For simplicity, let us denote them as µ̂y,cl and µ̂y respectively. Next, we separate the error due to clipping by decompose the
privatization error into

E

∥∥∥∥∥S⊺

(
µ̂y,cl −

1

n

∑
i

yi

)∥∥∥∥∥
2

2

 ≤ Pr {Ec} · E

∥∥∥∥∥S⊺

(
µ̂y −

1

n

∑
i

yi

)∥∥∥∥∥
2

2

∣∣∣∣∣∣Ec
+ c2(d+ 1)Pr {E}

≤ E


∥∥∥∥∥∥∥∥∥S

⊺

(
µ̂y −

1

n

∑
i

yi

)
︸ ︷︷ ︸

error due to DDG

∥∥∥∥∥∥∥∥∥
2

2

+ c2(d+ 1)β. (8)

From the MSE bound of DDG (Kairouz et al., 2021a), we know that with probability 1,

E

∥∥∥∥∥S⊺

(
µ̂y −

1

n

∑
i

yi

)∥∥∥∥∥
2

2

∣∣∣∣∣∣S
 = O

(
c2m2

n2ε2

)
.

Therefore the first term in (8) can be controlled by Lemma G.4, and we can bound the privatization error by

E

∥∥∥∥∥S⊺

(
µ̂y,cl −

1

n

∑
i

yi

)∥∥∥∥∥
2

2

 = O

(
c2d

n2ε2

)
+ c2(d+ 1)β.

Bounding the compression error Next, by Lemma G.2, the compression error can be bounded by

E

∥∥∥∥∥
(
S⊺ 1

n

∑
i

yi − µ

)∥∥∥∥∥
2

2

 ≤ 2c2d

m
.

Putting things together, we obtain

E
[
∥µ̂− µ∥22

]
≤ C1

c2d

n2ε2
+

2c2d

m
+ c2(d+ 1)β.

Therefore if we pick β = 1
n2ε2 (so m has to be log

(
n3ε2

)
), and m = n2ε2, we have

E
[
∥µ̂− µ∥22

]
≤ C0

c2d

n2ε2
. (9)
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J. Proof of Theorem 5.3

To prove (3), we first claim that if there exists a b-bit compression scheme (C, v̂) such that for all v ∈ Bd(c), E
[
∥v̂ − v∥22

]
≤

γ2, then there exists a γ-covering C(γ) of Bd(c), such that |C(γ)| ≤ 2b. To see this, observe that
{
E [v̂ (C(m))] ,m ∈ [2b]

}
forms a γ-covering of Bd(c). This is because for any v ∈ Bd(c), it holds that

∥E [v̂]− v∥22
(a)
≤ E

[
∥v̂ − v∥22

]
≤ γ2,

where (a) holds by Jensen’s inequality.

On the other hand, for any γ-covering of Bd(c), we must have |C(c)| ≥ vol(Bd(c))
vol(Bd(γ))

=
(

c
γ

)d
. Thus we conclude that if

2b ≤
(

c
γ

)d
, then E

[
∥µ̂− µ∥22

]
≥ γ2, or equivalently

E
[
∥µ̂− µ∥22

]
≥
(

1

2b

)2/d

c2.

To prove (4), we first impose a product Bernoulli distribution on Bd(c), upper bound the quantized Fisher information
(Barnes et al., 2019), and then apply the Cramer-Rao lower bound.

To begin with, let X ∼
∏

i∈[d] Ber (θi) for some θi ∈ [0, 1]. Then c√
d
X ⊂ Bd(c) almost surely. Next, we claim that for

any b-bit unbiased compression scheme (C, v̂) such thatE
[
∥v̂ − v∥22

]
≤ γ2 for all v ∈ Bd(c), θ̂ (X) ≜

√
d
c v̂
(
C
(

c√
d
X
))

is an unbiased estimator of θ = (θ1, ..., θd) ∈ [0, 1]d with estimation error bounded by

max
θ∈[0,1]d

E
[∥∥∥θ̂ (X)− θ

∥∥∥2
2

]
≤ dγ

c
.

To see this, observe that

E

∥∥∥∥∥
√
d

c
v̂

(
C
(

c√
d
X

))
− θ

∥∥∥∥∥
2

2

 ≤ 2E

∥∥∥∥∥
√
d

c
v̂

(
C
(

c√
d
X

))
−X

∥∥∥∥∥
2

2

+ 2E
[
∥X − θ∥22

]
(a)
≤ 2

dγ2

c2
+ 2E

[
∥X − θ∥22

]
(b)
≤ 2

dγ2

c2
+ 2

∑
i∈[d]

θi(1− θi)

(c)
≤ 2d

(
γ2

c2
+ 1

)
, (10)

where (a) holds since by assumption E
[
∥v̂ − v∥22

]
≤ γ, (b) holds since Xi ∼ Ber (θi), and (c) holds since θi ∈ [0, 1].

Next, we apply (Barnes et al., 2019, Corollary 4), which states that for any b bits (possibly randomized) transform
M : {0, 1}d → Y with |Y| ≤ 2b, the Fisher information IY (θ) with Y ∼ M(·|X) and X ∼

∏
i∈[d] Ber(θi) is upper

bounded by
min

M(·|X)
max

θ∈[0,1]d
Tr (IY (θ)) ≤ C1 min(d, b).

Therefore, since C is a b-bit compression operator (and thus θ̂ can be encoded into b bits too), we must have

max
θ∈[0,1]d

Tr
(
Iθ̂(θ)

)
≤ C1 min(d, b).

Applying Cramer-Rao lower bound yields

max
θ∈[0,1]d

E
[∥∥∥θ̂ − θ

∥∥∥2
2

]
≥
∑
i∈[d]

[Iθ(θ)]i,i ≥
d2

Tr
(
Iθ̂ (θ)

) ≥ C2
d2

min(b, d)
. (11)
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Finally, by (10) and (11), we must have

2d

(
γ2

c2
+ 1

)
≥ C2

d2

min (b, d)
⇐⇒ γ2 ≥

(
C2

d

min (b, d)
− 2

)
≥ C3

dc2

min(b, d)
,

for some constants C2, C3 > 0 and b ≤ d
2C2

, completing the proof.

K. Proof of Theorem 6.1
The 1

2ε
2-concentrated DP is guaranteed by the DDG mechanism. Therefore we only need to analyze the ℓ2 error

E
[
∥µ̂− µ∥22

]
. To analyze the ℓ2 error, we can equivalently formulate it as a sparse linear problem:

µ̂y = Sµ+∆,

where ∆ = µ̂y − 1
n

∑
i Sxi is the error introduced by the DDG mechanism. We illustrate each steps of the end-to-end

transform of Algorithm 6 in Figure 17.

Figure 17. Sparse private aggregation.

Before we continue to analyze the error, we first introduce some necessary definitions.
Definition K.1 (Sufficient conditions for RE (a “soft” RE)). We say S satisfies a “soft” RE with parameter (κ, ρ), if

1

m
∥S∆∥22 ≥

1

8
κ ∥∆∥22 − 50ρ2

log(d)

m
∥∆∥21 , for all ∆ ∈ Rd. (12)

Remark K.2. Let Si,j
i.i.d.∼ N (0, 1). Then S satisfies (12) with κ = ρ = 1 with probability at least 1− e−m/32

1−e−m/32 .

Theorem K.3 (Lasso oracle inequality ( Theorem 7.19 Wainwright (2019))). As long as S satisfies (12) with (κ, ρ) and
λn ≥ ∥S⊺ (µ̂y − µy)∥∞ /m then following MSE bound holds:

∥µ̂− µ∥22 ≤
144|S|
c21κ

2
λ2
n +

16

c1κ
λn ∥µSc∥1 +

32c2ρ
2

c1κ

log d

m
∥µSc∥21 ,

for all S ⊆ [d] with |S| ≤ c1
64c2

m
log d . For the Gaussian ensembles, we have κ = ρ = 1.

Therefore according to Theorem K.3, to upper bound the estimation error, it suffices to control ∥S⊺(µ̂y−µy)∥∞
m (and hence

the regularizer λn). In the next lemma, we give an upper bound on it.
Lemma K.4. Let d′ = c0s log d, c′ = cσmax(S) and let granularity γ > 0, modulus M ∈ N, noise scale σ > 0, and bias
β ∈ [0, 1) be defined as in Theorem 1 and Theorem 2 in (Kairouz et al., 2021a). Then as long as

M ≥ 2

γ

√(
n (γ2 + 4σ2) +

4n2c′2

m

)(
logm+ log

(
1

(1− β)n

)
+ log

(
8

δ

))
,

the following bound holds with probability at least 1− δ:∥∥∥∥S⊺ (µ̂y − µy)

m

∥∥∥∥
∞
≤

√√√√ 1

n

(
log

(
d

(1− β)n
+ log

(
2

δ

))(
γ2 + 4σ2

8

)(
maxi=1,...,d ∥Si∥22

m

))
(13)
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Corollary K.5. Let each row of S be generated according toN (0, Id) and let γ, σ, β be the parameters used in the discrete
Gaussian mechanism. If |x|0 ≤ s and

λn =

√√√√ 1

n

(
log

(
d

(1− β)n
+ log

(
2

δ

))(
γ2 + 4σ2

8

)(
maxi=1,...,d ∥Si∥22

m

))
, (14)

then with probability at least 1− δ,

∥µ̂− µ∥22 = O

(
s

n

(
log

(
d

(1− β)n
+ log

(
2

δ

))(
γ2 + 4σ2

8

)(
maxi=1,...,d ∥Si∥22

m

)))
.

In addition, the communication cost is

O

(
s log d log

(
1

γ

√(
n (γ2 + 4σ2) +

4n2c′2

m

)(
logm+ log

(
1

(1− β)n

)
+ log

(
8

δ

))))

K.1. Parameter selection

Now we pick parameters so that Algorithm 1 satisfies 1
2ε

2-concentrated DP and attains the MSE as in the centralized model.
To begin with, we first determine σ so that Algorithm 1 satisfies differential privacy.

Privacy analysis To analyze the privacy guarantees, we treat the inner discrete Gaussian mechanism as a black box with
the following parameters: effective dimension d′ = m, ℓ2 bound (or the clipping threshold) c′ = cσmax(S), granularity
γ > 0, noise scale σ > 0, and bias β ∈ [0, 1). Define

∆2
2 ≜ min

{
c′2 +

γ2d′

4
+
√
2 log (1/β)γ

(
c′ +

γ

2

√
d′
)
,
(
c′ + γ

√
d′
)2}

τ ≜ 10

n−1∑
k=1

exp

(
−2π2σ

2

γ2

k

k + 1

)

ε ≜ min

{√
∆2

2

nσ2
+

1

2
τd′,

∆2√
nσ

+ τ
√
d′

}
.

Then Theorem 1 in (Kairouz et al., 2021a) ensures that Algorithm 1 is 1
2ε

2-concentrated DP. With this theorem in hands, we
first determine σ. Observe that

ε2 ≤ ∆2
2

nσ2
+

1

2
τd′ ≤ 2c′2

nσ2
+

2d′

n(σ/γ)2
+ 5nd′ exp−π2(σ/γ)2 .

Thus it suffices to set σ = max
{

2c′

ε
√
n
, γ

√
8d′

ε
√
n
, γ
π2 log

(
20nd′

ε2

)}
= Θ̃

(
c′

ε
√
n
+
√

d′

n
γ
ε

)
.

Accuracy analysis We set β = min
(√

γ
n ,

1
n

)
, and together with the upper bound (13) and

σ2 ⪯ c′2 + γ2d′

nε2
+ γ2 log2

(
nd′

ε2

)
,

we have

λn = Θ


√√√√ 1

n
(log d+ log(1/δ))

(
c′2 + γ2d′

nε2
+ γ2 log2

(
nd′

ε2

)
+ γ2

)(
maxi=1,...,d ∥Si∥22

m

) .

Thus it suffices to pick

γ2 = O

(
min

(
c′2

d′
,

c′2

nε2 log2
(
nd′

ε2

))) .

We summarize the above parameter selection in the following theorem.
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Theorem K.6. By selecting

β = min

(√
γ

n
,
1

n

)
σ = max

{
2c′

ε
√
n
,
γ
√
8d′

ε
√
n

,
γ

π2
log

(
20nd′

ε2

)}

γ2 = O

(
min

(
c′2

d′
,

c′2

nε2 log2
(
nd′

ε2

)))

λn = Θ


√√√√ 1

n
(log d+ log(1/δ))

(
c′2

nε2

)(
maxi=1,...,d ∥Si∥22

m

) = O

(
c log d

nε

)

M = O

(√(
d′

ε2
+ n2

)
(log d′ + log (1/δ))

)

Algorithm 5 is 1
2ε

2-concentrated DP, and with probability at least 1− δ,

∥µ̂− µ∥22 = O

(
s(log d+ log(1/δ))c′2

n2ε2

(
maxi∈[d] ∥Si∥22

d′

))

= O

(
s(log d+ log(1/δ))c2ρ2max(S)

n2ε2

(
maxi∈[d] ∥Si∥22

s log(d)

))
.

This establishes Theorem 6.1.

L. Proof of Lemmas
L.1. Proof of Lemma G.4

First, we break v ∈ Rm into t blocks

v =


v(1)

v(2)

...
v(t)

 ,

where vj ∈ Rw (recall that m = w · t). Then

E
[
∥S⊺v∥22

]
=

1

t
E

∥∥∥∥∥
t∑

i=1

S⊺
i v

(i)

∥∥∥∥∥
2

2


=

1

t
E

∥∥∥∥∥
t∑

i=1

(
S⊺
i v

(i) − E
[
S⊺
i v

(i)
])

+

t∑
i=1

E
[
S⊺
i v

(i)
]∥∥∥∥∥

2

2


≤ 2

t

 t∑
i=1

E
[∥∥∥S⊺

i v
(i) − E

[
S⊺
i v

(i)
]∥∥∥2

2

]
+

∥∥∥∥∥
t∑

i=1

E
[
S⊺
i v

(i)
]∥∥∥∥∥

2

2


≤ 2

t

t∑
i=1

E
[∥∥∥S⊺

i v
(i)
∥∥∥2
2

]
︸ ︷︷ ︸

(a)

+
2

t

∥∥∥∥∥
t∑

i=1

E
[
S⊺
i v

(i)
]∥∥∥∥∥

2

2︸ ︷︷ ︸
(b)

.
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Now we bound each term separately. To bound (a), observe that for all i ∈ [t],

E
[∥∥∥S⊺

i v
(i)
∥∥∥2
2

]
≤ E

[
N(Si)E

[∥∥∥v(i)∥∥∥2
2

∣∣∣∣Si

]]
≤ E [N(Si)]B

2,

since by assumption E
[∥∥v(i)∥∥2

2

∣∣∣Si

]
≤ B2 almost surely, where N(Si) is the maximum amount of 1s in w rows of Si.

Notice that this amount is the same as the maximum load of throwing d balls into w bins. Applying a Chernoff bound, this
quantity can be upper bounded by E[N(Si)] ≤ (e+1)d

w , so (a) is bounded by

2

t

t∑
i=1

E
[∥∥∥S⊺

i v
(i)
∥∥∥2
2

]
≤ 2(e+ 1)d

wt

t∑
i=1

∥∥∥v(i)∥∥∥2
2
≤ 8d

m
∥v∥22 .

To bound (b), observe that

E
[
S⊺
i v

(i)
]
=

1

w


∑w

j=1 v
(i)
j∑w

j=1 v
(i)
j

...∑w
j=1 v

(i)
j

 =

 1

w

w∑
j=1

v
(i)
j

 · 1d,

where 1d ≜ [1, ..., 1]⊺ ∈ Rd. Therefore, summing over i ∈ [t], we have

t∑
i=1

E
[
S⊺
i v

(i)
]
=

t∑
i=1

 1

w

w∑
j=1

v
(i)
j

 · 1d =
1

w

(
m∑
i=1

vi

)
· 1d.

Thus we can bound (b) by

2

t

∥∥∥∥∥
t∑

i=1

E
[
S⊺
i v

(i)
]∥∥∥∥∥

2

2

≤ 2d

tw

(
(
∑m

i=1 vi)
2

w

)
≤ 2d

m
∥v∥22 ,

where the last inequality follows from the Cauchy-Schwartz inequality.

Putting (a) and (b) together, the proof is complete.

L.2. Proof of Lemma 5.2

For simplicity, let µ ≜ 1
n

∑
i xi, and N ∼ N

(
0, σ2Im

)
. Define

Eα ≜
⋃
i∈[n]

{
∥Sxi∥22 ≥ (1 + α) · ∥xi∥22

}
.

We will pick m = Ω
(

1
α2 log

(
n
β

))
, so by Lemma G.3 and the union bound PrS {Ecα} ≤ β. Then the MSE can be computed

as

E

∥∥∥∥∥S⊺

(
1

n

∑
i

clip (Sxi) +N

)
− µ

∥∥∥∥∥
2

2


(a)
= E

∥∥∥∥∥S⊺

(
1

n

∑
i

clip (Sxi)

)
− µ

∥∥∥∥∥
2

2

+ E
[
∥S⊺N∥22

]
(b)
≤ E

∥∥∥∥∥S⊺

(
1

n

∑
i

clip (Sxi)

)
− µ

∥∥∥∥∥
2

2

∣∣∣∣∣∣Ecα
 · Pr {Ecα}+ (d+ 1) · Pr {Eα}+ E

[
∥S⊺N∥22

]
(c)
≤ E

∥∥∥∥∥ 1n∑
i

S⊺Sxi − µ

∥∥∥∥∥
2

2

+ (d+ 1)β + E
[
∥S⊺N∥22

]
,
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where (a) holds since E [S⊺N |S] = 0 almost surely, (b) holds since ∥S⊺ν∥22 ≤ d for all count-sketch matrix S and all
∥ν∥2 ≤ 1 (so

∥∥S⊺
(
1
n

∑
i clip (Sxi)

)
− µ

∥∥2
2
≤ d+ 1), and (c) holds since conditioned on Ecα, clip (Sxi) = Sxi for all i.

Next, we control each term separately. The first term can be controlled using Lemma G.2, which gives

E

∥∥∥∥∥ 1n∑
i

S⊺Sxi − µ

∥∥∥∥∥
2

2

 ≤ 2d

m
.

The third term can be computed as follows:

E
[
∥S⊺ ·N∥22

]
= E [E [S⊺ ·N |S]] ≤ σ2d =

8d(1 + α) log (1.25)

n2ε2
.

Thus we arrive at

E
[
∥µ̂− µ∥22

]
≤ 2d

m
+ (d+ 1)β +

8d(1 + α) log(1.25)

n2ε2
.

Therefore, if we pick β = κ
n2ε2 (so m = Ω

(
1
α2 log

(
n3ε2

κ

))
), and m = n2ε2

κ , we have

E
[
∥µ̂− µ∥22

]
≤

8d log(1.25) + d
(
8α · log(1.25) +

(
3 + 1

d

)
κ
)

n2ε2
. (15)

Notice that we can make α and κ small, say α = κ = 0.1, and the MSE will be closed to the uncompressed one.

L.3. Proof of Lemma K.4

We first set some notation. Let µy = Sµ = 1
n

∑
i yi, z = Uµy (where U is the random rotation matrix),

z̃ = 1
n

∑
i

(
RG

γ (zi) +NZ(0, σ
2/γ2)

)
, ẑ = 1

nM[−r,r](nz̃) and finally µ̂y = U⊺ẑ, where RG
γ (·) is the randomized rounding,

NZ is the discrete Gaussian noise, and M[−r,r](·) is the module clipping (details can be found in (Kairouz et al., 2021a)).

Now, we can write the left-hand side of (13) as∥∥∥∥∥S⊺
(
µ̂y − 1

n

∑
i yi
)

m

∥∥∥∥∥
∞

=

∥∥∥∥S⊺U⊺ (ẑ − z̃ + z̃ − z)

m

∥∥∥∥
∞
≤
∥∥∥∥S⊺U⊺ (ẑ − z̃)

m

∥∥∥∥
∞︸ ︷︷ ︸

(1): module error

+

∥∥∥∥S⊺U⊺ (z̃ − z)

m

∥∥∥∥
∞︸ ︷︷ ︸

(2): rounding error

.

Define S′ ≜ S⊺U⊺
√
m

and let S′
i be the i-th row of S′ for all i = 1, ..., d. Now we bound (1) and (2) separately.

Bounding the module error Observe that since ∥y∥22 ≤ c′2, by Lemma 30 in (Kairouz et al., 2021a) we have

∀t ∈ R∀j ∈ [m]E [exp (tzj)] = E
[
exp

(
t (Unµy)j

)]
≤ exp

(
t2n2c′2

2m

)
.

Applying the union bound and the Chernoff’s bound yields

Pr

{
max

j=1,...,m
|zj | >

√
2
n2c′2

m

(
logm+ log

(
8

δ

))}
≤ δ

4
, (16)

where the randomness is over the random rotational matrix U .

On the other hand, from Proposition 26, we have

E [exp (t (nz̃j − nzj))] ≤
exp

(
nt2(γ2+4σ2)

8

)
(1− β)

n .
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Applying the Markov’s inequality and the union bound, we obtain

Pr

{
max
j∈[m]

|nz̃j − nzj | ≥ t

}
≤ m

(1− β)n
exp

(
− 2t2

nγ2 + 4δ2

)
.

Thus picking t =

√
n(γ2+4σ2)

2

(
log
(

1
(1−β)n

)
+ log

(
4
δ

))
yields

Pr

{
max
j∈[m]

|nz̃j − nzj | ≥

√
n (γ2 + 4σ2)

2

(
log

(
1

(1− β)n

)
+ log

(
4

δ

))}
≤ δ

4
. (17)

Putting (16) and (17) together, we arrive at

Pr

{
max
j∈[m]

|z̃j | ≥

√(
n (γ2 + 4σ2) +

4n2c′2

m

)(
logm+ log

(
1

(1− β)n

)
+ log

(
8

δ

))}
≤ δ

2
, (18)

where we use the fact that
√
a+
√
b ≤

√
2(a+ b) and the union bound.

Finally, observe that as long as ∥z̃∥∞ ≤ r, ẑ ≜ M[−r,r](z̃) = z̃. Thus by picking

r ≜

√(
n (γ2 + 4σ2) +

4n2c′2

m

)(
logm+ log

(
1

(1− β)n

)
+ log

(
8

δ

))
,

we have

Pr

{∥∥∥∥S⊺U⊺ (ẑ − z̃)

m

∥∥∥∥
∞

> 0

}
≤ δ

2
.

Bounding the module error First notice that

Pr

{∥∥∥∥S⊺U⊺ (nẑ − nz̃)

m

∥∥∥∥
∞
≥ t

}
= Pr

{
max
i∈[d]
⟨S′

i, (nz̃ − nz)⟩ ≥ t

}
+ Pr

{
max
i∈[d]
−⟨S′

i, (nz̃ − nz)⟩ ≥ t

}
Thus we have

Pr

{
max
i∈[d]
⟨S′

i, (nz̃ − nz)⟩ ≥ t

}
≤
∑
i∈[d]

Pr {exp (⟨λS′
i, nz − nz̃⟩) ≥ exp (λt)}

(a)
≤
∑
i∈[d]

exp
(

n(γ2+4σ2)
8 ∥S′

i∥
2
2 λ

2 − λt
)

(1− β)n

(b)
≤ d

(1− β)n
exp

(
− 2mt2

n (γ2 + 4σ2)maxi∈[d] ∥Si∥22

)
,

where (a) holds by Proposition 26 in (Kairouz et al., 2021a), and (b) holds by picking λ properly.

On the other hand,

Pr

{
max
i∈[d]
−⟨S′

i, (nz̃ − nz)⟩ ≥ t

}
≤
∑
i∈[d]

Pr {exp (⟨−λS′
i, nz − nz̃⟩) ≥ exp (λt)}

(a)
≤ d

(1− β)n
exp

(
− 2mt2

n (γ2 + 4σ2)maxi∈[d] ∥Si∥22

)
,

where (a) holds due to the same reason.
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Thus picking

t =

√√√√n

(
log

(
d

(1− β)n
+ log

(
4

δ

))(
γ2 + 4σ2

8

)(
maxi=1,...,d ∥Si∥22

m

))
yields

Pr

{∥∥∥∥S⊺U⊺ (nẑ − nz̃)

m

∥∥∥∥
∞
≥ t

}
= Pr

{∥∥∥∥S⊺U⊺ (ẑ − z̃)

m

∥∥∥∥
∞
≥ t/n

}
≤ δ

2
.


