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Abstract
An ideal learned representation should display
transferability and robustness. Supervised con-
trastive learning (SupCon) is a promising method
for training accurate models, but produces repre-
sentations that do not capture these properties due
to class collapse—when all points in a class map
to the same representation. Recent work suggests
that “spreading out” these representations im-
proves them, but the precise mechanism is poorly
understood. We argue that creating spread alone is
insufficient for better representations, since spread
is invariant to permutations within classes. Instead,
both the correct degree of spread and a mechanism
for breaking this invariance are necessary. We first
prove that adding a weighted class-conditional
InfoNCE loss to SupCon controls the degree
of spread. Next, we study three mechanisms to
break permutation invariance: using a constrained
encoder, adding a class-conditional autoencoder,
and using data augmentation. We show that the
latter two encourage clustering of latent subclasses
under more realistic conditions than the former.
Using these insights, we show that adding a
properly-weighted class-conditional InfoNCE loss
and a class-conditional autoencoder to SupCon
achieves 11.1 points of lift on coarse-to-fine
transfer across 5 standard datasets and 4.7 points
on worst-group robustness on 3 datasets, setting
state-of-the-art on CelebA by 11.5 points.

1. Introduction
Learning a representation with a favorable geometry is
a critical challenge for modern machine learning. Good
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geometries can engender strong downstream transfer perfor-
mance and robustness to subgroup imbalances, whereas poor
geometries may have low transferability and be brittle (Islam
et al., 2021; Sohoni et al., 2020). However, producing—or
even characterizing—a good geometry can be difficult.

We focus on the challenges in doing so with supervised con-
trastive learning (SupCon). SupCon is a promising method
for training accurate machine learning models (Khosla et al.,
2020), but suffers from class collapse—wherein each point
in the same class has the same representation, as in Figure 1
far left (Graf et al., 2021). Collapsed representations cannot
distinguish fine-grained details within classes—in particular
latent subclasses—resulting in poor transferability and ro-
bustness. Modifications to SupCon that heuristically “spread
out” its representations have shown empirical promise (Islam
et al., 2021), but a precise understanding of spread—how
separated individual points are in representation space—and
how to control it is lacking.

Furthermore, spread alone is not sufficient to explain
improved representations. We observe that modifications
to SupCon that increase spread are invariant to class-fixing
permutations. That is, the loss value does not change when
points of the same class are arbitrarily permuted in repre-
sentation space. For example, Figure 1 right visualizes two
geometries that both have spread but differ in representation
quality, as suggested by the significant gap in transfer
learning performance (35.4 points). Thus, while spread
may be important, another mechanism is needed to break
class-fixing permutation invariance for good performance.

We argue that these are the two key challenges to improving
SupCon’s representations: creating the correct degree of
spread, and breaking class-fixing permutation invariance.
This paper makes progress on these challenges.

Challenge 1: Balancing Spread. We first prove a simple
result that a class-collapsed representation cannot have good
transfer performance, which motivates spread. We then an-
alyze whether Lspread, a loss function that combines SupCon
with a class-conditional InfoNCE loss, can induce spread.

We find that previous approaches for analyzing contrastive
losses encounter a technical challenge because SupCon
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Figure 1. There are two key challenges to achieving better representations with SupCon. Left: The first challenge is balancing multiple
contrastive loss terms with competing geometries. We show that adding a weighted class-conditional InfoNCE term can balance the
geometries and induce spread in the representation geometry. Right: The second challenge is that representation geometries may be
invariant to class-fixing permutations. The two example geometries shown both have spread, but vastly different coarse-to-fine transfer
performance. We analyze three mechanisms for addressing this challenge: constraining the encoder, adding a class-conditional autoencoder,
and using data augmentation. Best viewed in color.

and InfoNCE have incompatible optimal geometries (class
collapse and uniformity on the hypersphere, respectively).
For example, Wang & Isola (2020) analyze individual loss
components in isolation, but doing so risks drawing mislead-
ing conclusions when the loss components are incompatible.
Further, finding exact solutions to optimization problems on
the hypersphere is fundamentally difficult; a classic example
is the Thomson problem (Thomson, 1897), which has evaded
an exact solution after a century of study.

We bypass these problems by constructing a distribution
that is neither collapsed nor uniform and analyzing its loss.
We introduce sf (y), a notion of class variance, to measure
spread on this distribution. We show that this distribution
has an intermediate degree of spread by deriving bounds for
the weight α on the class-conditional InfoNCE loss within
which this distribution attains lower loss than either extreme.
While this result does not fully characterize the geometry,
it suggests that setting α properly can induce an optimal
distribution with appropriate spread—which we validate
with measurements on CIFAR10.

Challenge 2: Breaking Permutation Invariance. Our
first result demonstrates that Lspread can induce spread but
does not give insight on class-fixing permutation invariance.
We formally define class-fixing permutation invariance and
prove that Lspread is subject to it absent other interventions.

This motivates the question: how should we break class-
fixing permutation invariance? We show that inducing
an inductive bias towards clustering of latent subclasses
can break permutation invariance—and more importantly,
can result in good coarse-to-fine transfer performance.
We introduce σf (z), a measure of subclass clustering
in representation space, and show that coarse-to-fine

generalization error scales with σf (z)/sf (y).

A standard approach to controlling σf (z) is assuming
Lipschitzness of the model. However, Lipschitzness is
a strong assumption for modern deep networks, which
are powerful enough to memorize random noise (Zhang
et al., 2016). In empirical measurements, we find that
modern deep networks display poor Lipschitzness, and thus
the Lipschitzness assumption is insufficient for inducing
clustered subclass representations.

We thus propose two alternatives that can bound σf (z)
under more realistic assumptions: directly encoding fine-
grained details by concatenating the representations from a
class-conditional autoencoder, and using data augmentation
in the class-conditional InfoNCE loss. The former only
requires a “reverse Lipschitz” decoder to upper bound σf (z),
and can do so by a constant factor tighter than a general
(non-conditional) autoencoder. The latter only requires the
encoder to be Lipschitz over data augmentations to induce
subclass clustering—and can also explain observations from
prior work (Islam et al., 2021). We validate these findings by
measuring Lipschitzness constants and σf (z)/sf (y) on real
data; we find that these alternate assumptions are more re-
alistic than overall Lipschitzness, and that data augmentation
and autoencoders help induce subclass clustering.

Empirical Validation Using our theoretical insights, we
propose THANOS: adding a class-conditional InfoNCE loss
and a class-conditional autoencoder to SupCon. We evaluate
THANOS on two tasks designed to evaluate how well it
preserves subclasses:

• Coarse-to-fine transfer learning trains a model to
classify superclasses but use the representations to
distinguish subclasses. THANOS outperforms SupCon by
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11.1 points on average across 5 standard datasets.

• Worst-group robustness evaluates how well a model can
identify underperforming sub-groups and maintain high
performance on them. THANOS identifies underperform-
ing sub-groups 7.7 points better than previous work (So-
honi et al., 2020) and achieves 4.7 points of lift on worst-
group robustness across 3 datasets, setting state-of-the-art
on CelebA by 11.5 points. THANOS can even outperform
GroupDRO (Sagawa et al., 2019), a state-of-the-art robust-
ness algorithm that uses ground-truth sub-group labels.

2. Background
Section 2.1 presents our data model and the coarse-to-fine
transfer task. Section 2.2 presents Lspread, a simple variant
of SupCon that adds a weighted class-conditional InfoNCE
loss. Section 2.3 discusses geometry of contrastive losses.

2.1. Data Setup

Input data x ∈ X are drawn from a distribution P with
deterministic class y= h(x), where y ∈Y = {0,...,K−1}.
We assume that the data is class-balanced such that
Pr(y= i)= 1

K for all i∈Y .

Data points also belong to latent subclasses. Following So-
honi et al. (2020), we denote a subclass as a latent discrete
variable z ∈ Z . Z can be partitioned into disjoint subsets
S0,...,SK−1 such that if z∈Sk, then its corresponding y la-
bel is equal to k. For simplicity, we assume that there are two
subclasses for each label k, e.g. |Sk|=2. The data generating
process proceeds as follows: first, the latent subclass z is sam-
pled with proportion p(z). Then, x is sampled from the distri-
bution Pz=p(·|z), and its corresponding deterministic label
is denoted y=S(z). Let hs(x) :X →Z denote x’s subclass.

We have a class-balanced labeled training dataset
D = {(xi,yi)}ni=1 where points (xi,zi,yi) are drawn i.i.d,
and the value of each zi is unknown during training time. De-
note Dy={x∈D :h(x)=y} and Dz={x∈D :hs(x)=z},
and denote their sizes by ny= |Dy| and nz= |Dz|.

Contrastive learning trains an encoder f :X →Rd on D that
maps inputs to representations in an embedding space Rd.

Coarse-to-Fine Transfer Coarse-to-fine transfer eval-
uates how well an embedding trained on coarse classes Y
distinguishes fine classes (subclasses) Z . Fix a y and smake-
uppose that Sy = {z,z′}. The task is to classify z versus z′

using the encoder f learned on D. We are given a dataset
of subclass labels, Ds={(xi,zi)}mi=1. Denote Ds,z ={x∈
Ds : hs(x) = z} and mz = |Ds,z|. We learn linear weights
Wz,Wz′ ∈Rd and construct an estimate p̂(z|f(x)) by using

softmax scores p̂(z|f(x)) = exp(f(x)⊤Whs(x))

exp(f(x)⊤Wz)+exp(f(x)⊤Wz′ )
,

where f is fixed. We use the mean classifier to construct

W , following prior work (Arora et al., 2019). That is,
Wz=

1
mz

∑
x∈Ds,z

f(x), and Wz′ is similarly defined.

We evaluate the performance of coarse-to-fine transfer with
a γ-margin loss, defined on a point (x,z) as

ℓγ,f (x,z)=1−1{p̂(z|f(x))≥γp̂(z′|f(x))} (1)
for γ > 1. That is, we want the model to output the correct
subclass label at least γ times more likely than the incorrect
one. Define the γ-margin generalization error on z as
Lγ,f (z)=Ex∼Pz

[ℓγ,f (x,z)].

2.2. A Modified Supervised Contrastive Loss

Contrastive learning trains an encoder to produce representa-
tions of the data by pushing together similar points (positive
pairs) and pulling apart different points (negative pairs). We
consider Lspread, a weighted sum of a supervised contrastive
loss Lsup (Khosla et al., 2020) and a class-conditional
InfoNCE loss LcNCE.

Let B be a batch of data from D. Define
P (i,B)={x+∈B\i :h(x+)=h(xi)} as the points with the
same label as xi and N(i,B)={x−∈B\i :h(x−) ̸=h(xi)}
as points with a different label. Let a(xi) be an augmentation
of xi, and assume that augmentations of each sample
are disjoint. Denote σf (x,x

′)=exp(f(x)⊤f(x′)/τ) with
temperature hyperparameter τ . For α∈ [0,1], L̂spread(f,x,B)
on x belonging to B is:
L̂spread(f,x,B)=(1−α)L̂sup(f,x,B)+αL̂cNCE(f,x,B),

where
L̂sup(f,xi,B)=−1/|P (i,B)|× (2)∑
x+∈P (i,B)

log
σf (xi,x

+)

σf (xi,x+)+
∑

x−∈N(i,B)σf (xi,x−)
,

L̂cNCE(f,xi,B)=−log
σf (xi,a(xi))∑

x+∈P (i,B)σf (xi,x+)
. (3)

The overall loss L̂spread(f,B) is averaged over all points in
B. Lsup is a variant of the SupCon loss (Khosla et al., 2020).
LcNCE is a class-conditional version of the InfoNCE loss,
where the positive distribution consists of augmentations
and the negative distribution consists points from the same
class, intuitively encouraging them to be spread apart.

2.3. Geometries of Contrastive Losses

We present a series of standard theoretical assumptions for
analyzing contrastive geometry, and define two important
distributions—class collapse and class uniformity.

Assumptions We make several standard theoretical assump-
tions (Graf et al., 2021; Wang & Isola, 2020; Robinson et al.,
2020): 1) restrict the encoder f ’s output space to be Sd−1,
the unit hypersphere (i.e. normalized outputs); 2) assume
that K≤d+1, such that a K−regular simplex inscribed in
Sd−1 exists; 3) assume that the encoder is infinitely powerful,
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meaning that any distribution on Sd−1 is realizable by f(x).
We define the pushforward measure of the class-conditional
distribution of p(·|h(x) = y) via f as µy for y ∈ Y , where
µy∈M(Sd−1) is over all Borel probability measures on the
hypersphere. Define µ= {µy}y∈Y as the overall pushfor-
ward measure corresponding to P◦f−1∈M(Sd−1).

Class Collapse Distribution Define v= {vy}y∈Y ∈Sd−1

as the set of vectors forming the regular simplex inscribed in
the hypersphere, satisfying: a)

∑
yvy =0⃗; b) ∥vy∥2=1∀y;

and c) ∃ cK ∈R s.t. v⊤y vy′ = cK for y ̸= y′. Let δvy be the
probability measure onSd−1 with all mass onvy , and letδv=
{δvy

}y∈Y be the class-collapsed measure such that µy=δvy
and f(x)=vy almost surely whenever h(x)=y. Graf et al.
(2021) show that µ=δv minimizes the SupCon loss.

Class Uniform Distribution Denote σd−1 as the normalized
surface area measure on Sd−1. µ = σd−1 is the class-
uniform measure when µy = σd−1 for all y ∈ Y . Wang &
Isola (2020) show that σd−1 minimizes the InfoNCE loss.

3. Controlling Spread
In Section 3.1, we demonstrate the importance of spread—
having distinguishable representations of points in a class—
by showing that SupCon results in poor coarse-to-fine trans-
fer. In Section 3.2, we begin to explore whether Lspread can
result in more spread out geometries. We define the asymp-
totic form of Lspread and apply the approach from Wang &
Isola (2020) to analyze individual loss terms. We find that the
optimal geometries of the individual terms are incompatible.
In Section 3.3, we analyze the asymptotic Lspread as a whole
using a nuanced approach that compares the loss over differ-
ent geometries. We conclude that the optimal geometry is nei-
ther class-collapsed nor class-uniform for a range of α. This
result suggests that spread can be carefully controlled, and
we capture this property by introducing a notion of intra-class
variance, sf (y). All proofs for the paper are in Appendix C.

3.1. The Importance of Spread

SupCon exhibits class collapse on the training data and does
not spread out representations in a class. We use standard
generalization bounds and show that this geometry results
in poor coarse-to-fine generalization error: asymptotically,
the error obtains its maximum possible value.

Define fSC ∈ F to be the encoder trained with SupCon
satisfying class collapse, fSC(x) = vy for all x∈D where
h(x)=y. Let f(x)[j] be the jth entry of f(x). For function
class F , let Fj={f(·)[j] :f ∈F} be the elementwise class.
Let Rn(Fj) denote Fj’s Rademacher complexity on n

samples, and define Rn(F)=
∑d

j=1Rn(Fj).

Theorem 1. For γ where logγ≥8max{Rnz (F),Rnz′ (F)},

SupCon’s coarse-to-fine error is at least
Lγ,fSC

(z)≥1−δ(nz,F ,γ)−δ(nz′ ,F ,γ)−ξ(mz∧mz′ ,γ),

where δ(nz,F ,γ) = dexp
(
− nz

32d2 (logγ − 8Rnz
(F))2

)
bounds generalization error of fSC and ξ(mz ∧mz′ ,γ) =

4dexp
(
− (mz∧mz′ )log

2γ
32d

)
bounds the noise from Ds.

As n ∧ m increases, error approaches 1—its maximum
value—and the model will almost surely predict the correct
subclass γ times less often than the incorrect one. This result
motivates studying whether Lspread can encourage spread.

3.2. Asymptotic Lspread

We present the asymptotic version of Lspread. For a given
anchor x∼P , define a positive pair x+∼p(·|h(x+)=h(x))
from the same class and a negative pair using
x− ∼ p(·|h(x−) ̸= h(x)) from a different class. Let
a(x) be an augmentation of x drawn from a distribution
pa(·|x), where each pa(·|x) has disjoint support.
Definition 1. Define Lspread(f,α) as

Lspread(f,α)=(1−α)Lalign(f)+αLaug(f) (4)
+(1−α)Ldiff(f)+αLsame(f),

where
Lalign(f)=Ex,x+

[
∥f(x)−f(x+)∥2/2τ

]
Laug(f)=Ex,a(x)

[
∥f(x)−f(a(x))∥2/2τ

]
Ldiff(f)=Ex

[
logEx−

[
exp(−∥f(x)−f(x−)∥2/2τ)

]]
Lsame(f)=Ex

[
logEx+

[
exp(−∥f(x)−f(x+)∥2/2τ)

]]
The derivation of Lspread(f,α) is in Appendix C.1. Next, we
analyze individual terms, similar to Wang & Isola (2020)’s
approach. For simplicity, we present the binary settingK=2.
We abuse notation and use f andµ, the pushforward measure
of x on the hypersphere, interchangeably in Lspread(f,α) as
well as in the loss components in Definition 1.
Proposition 1 (Individual losses). Lalign(f) and Laug(f)
are minimized when f(x) = f(x+) and f(x) = f(a(x))
almost surely, respectively. Ldiff(µ) is minimized when
µ=δv . Lsame(µ) is minimized when µ=σd−1.

When α = 0, the “active” loss terms are Lalign and Ldiff,
whose optima are jointly realizable and yield µ=δv overall.
When α=1, the terms Laug and Lsame are also compatible,
yielding µ = σd−1 and augmentations with the same
embedding as their original point.

Neither of these distributions has good coarse-to-fine transfer
performance on its own: δv loses information within classes,
and σd−1 allows points of different classes to be close to-
gether (Figure 1 left). To avoid both δv and σd−1, α∈(0,1)
must achieve a balance between the two loss terms. But the
behavior of the weighted loss overall is unclear from the result
in Proposition 1. It is also unclear whether there even exists
an intermediate distribution that minimizes Lspread(µ,α).
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Figure 2. Measure of cluster tightness vs. α. Clusters are collapsed
for low values of α, display spread for a small region, and then
dissolve into uniformity for high values of α. Inserts: heatmaps
of cosine similarity between points, sorted by class and subclass.
Circles: apparent subclass clusters within spread.

3.3. Our Spread Result

We seek to analyze the geometry of the overall loss. Ex-
plicitly characterizing the optimal geometry is challenging,
so we design a family of measures on the hypersphere
and examine when such measures obtain lower loss than
collapsed or uniform measures. We perform analysis for
K = 2 and consider K = 3 in Appendix D. Synthetic
experiments are in Appendix H.

The measure we study, µθ, assigns mass evenly on two
points that are close to vy, a vertex of the regular simplex,
but separated by some angle θ for each µy (see Figure 4 in
Appendix H). Formally, define a block-diagonal rotation
matrixRθ∈Rd×d consisting of submatrices

[
cosθ −sinθ
sinθ cosθ

]
and

Id−2 on the diagonal. For θ ∈ (0,π/2], define the measure
µθ = {µ0,θ,µ1,θ}, where µ0,θ = 1

2δRθv0
+ 1

2δR−θv0 , and
similarly µ1,θ=

1
2δRθv1+

1
2δR−θv1 . We present a technical

result on the range of α for which µθ attains lower loss than
class-collapsed or class-uniform measures.

Theorem 2. Let cτ,d=
2+ 1

τ −
√

1
τ (−2+ 1

τ )−2logW1/2τ (Sd−1)

3 ,
where W1/2τ (Sd−1) is a constant depending on τ and d (see
Appendix C.1 for exact value). Then, when α∈ (2/3,cτ,d),

θ⋆ = arcsin
√

τ
2 log

3α−1
3−3α minimizes Lspread(µθ, α) and

satisfies Lspread(µθ⋆ ,α)≤minµ∈{δv,σd−1}Lspread(µ,α).

Our result does not define the exact optimal geometry since
it constrains the measures we optimize to be over µθ. For
α /∈(2/3,cτ,d), it also does not specify the optimal geometry—
we only know that the optimal geometry is not of form µθ.

However, our result yields a high-level insight: there
exists a range of α for which the optimal geometry that
minimizes Lspread(µ, α) spreads out points on the hyper-
sphere. Concretely, define the spread of class y under f as
sf (y)=Eh(x)=y

[
∥f(x)−Eh(x)=y[f(x)]∥

]
.

Corollary 1. If α∈ (2/3,cτ,d) and f(x) has measure µθ⋆ ,

the spread for y under f is sf (y)=
√

τ
2 log

3α−1
3−3α ∼ω(1).

In other words, Lspread can yield an extent of spread sf (y)
that is controlled by α. Experiments on CIFAR10 support
our result (Figure 2); the geometry is collapsed for low values
of α, followed by a region of spread, followed by uniformity.

Finally, we remark on two deliberate aspects of our analysis.
First, to avoid issues of non-convexity, we directly compare
the overall loss of our measures with those of the two
extrema δv and σd−1. Second, general distributions beyond
the regular simplex and normalized surface measure are hard
to compute contrastive losses over, and such computations
are not largely studied to the extent of our knowledge. This
inherently restricts analysis to simple distributions like µθ.

4. Breaking Permutation Invariance
Our analysis in the previous section shows that Lspread can
obtain an optimal geometry that is neither collapsed nor
uniform. However, this result does not completely explain
improved transfer performance because Lspread under the
previous setup is class-fixing permutation invariant, a prop-
erty we define in Section 4.1. Inducing an inductive bias can
break such an invariance. We argue that an inductive bias that
encourages clustering of latent subclasses can be particularly
useful. In Section 4.2, we show that generalization error on
coarse-to-fine transfer learning depends on both sf (y) and
a notion of subclass clustering σf (z). We thus discuss three
approaches for controlling σf (z): one standard, and two
alternatives with more realistic assumptions (Section 4.3).

4.1. Class-Fixing Permutation Invariance

First, we define class-fixing permutation invariance.

Definition 2 (Class-Fixing Permutation Invariance). Let F
be a class of encoders. Let L(f,B) be a loss function over
an encoder f ∈ F and a set of n points B = {x1, ... ,xn}.
Define Sh,B as the set of class-fixing permutations such that
π∈Sh,B : [n]→ [n] satisfies h(xπ(i))=h(xi) for all i∈ [n].
Then, L is invariant on class-fixing permutations under F
if, for any batch B, permutation π ∈ Sh,B , and encoder
f ∈ F , there exists another encoder fπ ∈ F such that
fπ(xi)=f(xπ(i)) for all i∈ [n] and L(f,B)=L(fπ,B).

We find that Lspread is invariant on class-fixing permutations
under the infinite encoder assumption from Section 2.3.

Proposition 2. Let F be the set of infinite encoders. Then
Lspread is invariant on class-fixing permutations under F .

Under class-fixing permutation invariance, data points can
be arbitrarily mapped to representations within their classes,
suggesting that the mapping that minimizes Lspread is not
unique. However, not all these mappings achieve the same
performance on downstream tasks. Therefore, while our
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result from Section 3 provides insight into Lspread’s geometry
under an infinitely powerful encoder, it cannot completely
explain representation quality.

4.2. Inductive Bias for Improved Coarse-to-fine Transfer

Inducing an inductive bias can break permutation invariance
(see Lemma 4 in Appendix D for a simple proof of how
smoothness of f is a sufficient condition for breaking
invariance). We argue that inducing subclass clustering
can be particularly helpful for transfer performance.
We measure subclass clustering in embedding space
via the expected distance to the center of the subclass,
σf (z)=Ex∼Pz

[∥f(x)−Ex∼Pz
[f(x)]∥]. We show that this

quantity σf (z), along with degree of spread sf (y), is critical
for the generalization error of coarse-to-fine transfer.

To present our result on coarse-to-fine generalization error,
we define some additional terms. Let y denote the class
label corresponding to z,z′. Define the quantity δf (z,z

′)=
1

p(z|y)p(z′|y)
(
sf (y)− p(z|y)2σf (z)− p(z′|y)2σf (z

′)
)

as a
notion of separation between z and z′. δf (z, z

′) is large
when there is spread (large sf (y)) and sufficient subclass
clustering (low σf (z), σf (z

′)). Define the variance of a
subclass as Varf [z]=Ex∼Pz

[
∥f(x)−Ex∼Pz

[f(x)]∥2
]
. We

assume that for all x ∼ Pz , there exists a c > 0 such that
∥f(x)−Ex∼Pz′ [f(x)]∥≥c·Ex∼Pz,x′∼Pz′ [∥f(x)−f(x′)∥]
(i.e., no point from z is equal to the center of z′).

Theorem 3. Denote rf (z,z
′) = c2δf (z,z

′)2− |Varf [z]−
Varf [z′]|. With probability 1−δ, the coarse-to-fine error is
at most

Lγ,f (z)≤
σf (z)√

rf (z,z′)−2logγ
+O

((dlog(d/δ)
mz∧mz′

)1/4)
.

under the boundary condition that rf (z, z′) − 2 log γ ≥
16
√

2dlog(8d/δ)
mz∧mz′

+ 2dlog(8d/δ)
mz

.

The generalization error depends on the sampling error, γ,
and three quantities intrinsic to the distribution of f(x):

• sf (y): the bound scales inversely in sf (y); points in a
class must be spread out in order for subclasses to be
distinguishable. Corollary 1 and empirical measurements
(Figure 2) suggest that spread is non-zero when using
Lspread with α set properly. Note that under SupCon, sf (y)
is asymptotically equal to 0 and this bound is vacuous
(refer to Theorem 1 for SupCon’s generalization error).

• σf (z): the bound scales in σf (z), confirming that spread
alone is insufficient. Subclasses also need to be clustered
tightly to achieve good transfer performance.

• |Varf [z]−Varf [z′] |: distinguishing z versus z′ may be
difficult when only one subclass is clustered. When both
σf (z) and σf (z

′) are small, this quantity is negligible.

Altogether, the generalization error scales in σf (z)
sf (y)

. There-

fore, in addition to having sufficient spread sf (y), it is
critical that σf (z) is bounded. We thus explore techniques
for inducing an inductive bias that can control this quantity.

4.3. Techniques for Inducing Subclass Clustering

We analyze three mechanisms on f for inducing an inductive
bias that can cluster subclasses: a constrained encoder, a
class-conditional autoencoder, and data augmentations.
These three mechanisms use Lipschitzness assumptions of
varying strength to bound σf (z). We assume that subclasses
are “clustered” in input space; i.e. there exists some σz

such that Ex,x′∼Pz
[∥x−x′∥]≤σz , and we study how these

mechanisms on f allow us to control σf (z) in terms of
σz . For each mechanism, we show that σf (z) ∼Kσz for
some particular Lipschitzness constant K. The lower the
Lipschitzness constant, the better each mechanism can
induce subclass clustering.

We summarize the assumptions of each mechanism in
Section 4.3.4 and report empirical estimates of Lipschitz con-
stants in Table 1. Section 4.3.4 also reports estimates of σf (z)

sf (y)
,

the ratio that governs the generalization error in Theorem 3,
showing how these mechanisms impact this quantity.

4.3.1. LIPSCHITZ ENCODER

One common method for incorporating inductive bias is
to suppose that the class of encoders F is Lipschitz smooth.
We show that assuming F to be the class of KL−Lipschitz
encoders can explain subclass clustering of representations.

Lemma 1. Let FKL
be the class of KL−Lipschitz encoders.

Then for any fKL
∈FKL

, σfKL
(z)≤KLσz.

Lipschitzness with a sufficiently low constant KL is realistic
for simple function classes, such as MLPs with bounded
norms. However, modern deep networks are not Lipschitz, as
they are powerful enough to memorize random noise (Zhang
et al., 2016). In Table 1 we confirm that the Lipschitz
constant estimated empirically from our model’s encoder on
real data is relatively high. Therefore, since encoders with
deep architectures are not Lipschitz, we consider other more
realistic setups that can encourage subclass clustering.

4.3.2. CLASS-CONDITIONAL AUTOENCODER

To encourage embeddings to preserve properties of the input
space without assuming Lipschitzness over the encoder,
we propose concatenating embeddings from separate
“class-conditional” autoencoders, each consisting of an
encoder fAE∈FAE and a decoder g∈G, to the embeddings
learned from Lspread. An autoencoder for class y aims
to minimize the class reconstruction loss L̂AE(Dy) =
1
ny

∑
x∈Dy

∥g(fAE(x))− x∥2. These K per-class autoen-
coders thus intuitively learn distinctions within classes.



Perfectly Balanced: Improving Transfer and Robustness of Supervised Contrastive Learning

Table 1. Three mechanisms for inductive bias and empirical measurements of their associated Lipschitzness constants. Higher K is a
worse Lipschitzness constant, which suggests the assumptions are less realistic

Mechanism Assumptions Lipschitzness Constant

Encoder (Constrained) Lipschitz f KL=0.058
Autoencoder Decoder g reverse Lipschitz Kg=0.041
Augmentations Lipschitz f on augmentations Kaug=0.040

Define a notion of Rademacher complexity Rp
n(F1,F2) =

Eσ

[
supf1,f2∈F1,F2

1
n

∑n
i=1σi∥f1(xi)−f2(xi)∥p

]
for

Rademacher random variables σ={σ1,...,σn}.

Lemma 2. For any g ∈ G, suppose there exists a
Kg > 0 such that g is “reverse Lipschitz”, satisfying
∥fAE(x) − fAE(x

′)∥ ≤ Kg∥g(fAE(x)) − g(fAE(x
′))∥,

and there exists finite b such that the reconstruction loss
satisfies maxx∥g(fAE(x))−x∥2≤b.

Then with probability at least 1−δ,

σfAE
(z)≤ 2Kg

p(z|y)

(
L̂AE(Dy)+2R2

ny
(G◦FAE ,idX )

+b
√
log(1/δ)/2ny

)1/2

+Kgσz, (5)

where idX is the identity function on X , and p(z|y)= p(z)
p(y)

is the probability that x drawn from p(·|y) has label z.

There are no explicit assumptions on fAE ; instead, a
condition on the decoder is used for clustering subclasses.
In Appendix C.2, we show that for an autoencoder trained
on D instead of Dy, p(z) replaces p(z|y), and n replaces
ny. That is, while a general autoencoder is learned on more
data, individual subclasses comprise a smaller proportion
of the data and thus could be harder to learn meaningful
representations of. This suggests that σfAE

(z) is roughly
a constant factor larger with a general autoencoder when
ny and n are both large, and thus a class-conditional
autoencoder can better cluster subclasses.

4.3.3. DATA AUGMENTATION

Another way of inducing inductive bias for subclass
clustering is data augmentations, which we use in Lspread and
which play a prominent role in contrastive learning overall.
Define A : X →X as the function class of augmentations
and Faug as the class of encoders.

Lemma 3. For a ∈ A and any x, x′ ∈ X , suppose
that faug ∈ Faug satisfies ∥faug(a(x))− faug(a(x

′))∥ ≤
Kaug∥a(x)−a(x′)∥ for someKaug and that f(a(x))=f(x)
for x∈D. Denote σaug

z =Ex,x′∼Pz [∥a(x)−a(x′)∥]. Then
with probability at least 1−δ,

σfaug
(z)≤ 2

p(z)

(
2R1

n(Faug,Faug◦A)+
√
2log(1/δ)/n

)
+Kaugσ

aug
z .

Our result assumes Lipschitzness only on the augmentations,
which is consistent with literature such as Dao et al. (2019),
and that the model can align augmented and original training
data pairs. σf (z) scales with how close augmentations
of points within a subclass are, σaug

z . This quantity can
actually be less than σz under assumptions in prior work on
characterizing augmentations (Huang et al., 2021), which
results in tighter embedding clusters. Our result can also
explain why prior works (Islam et al., 2021) observe that
modified losses (that include augmentations) result in better
transfer. The empirical findings in Figure 1 (right), where
the subclass embedding visualization are Lspread with and
without augmentations, support this result.

4.3.4. OVERALL TAKEAWAYS

Our results from Lemmas 1, 2, and 3 show that σf (z),
which is critical for transfer performance as demonstrated
in Theorem 3, can be controlled. Table 1 summarizes our
results on how a standard encoder, an autoencoder, and
data augmentations can encourage subclass clustering
under various assumptions. We report empirical measures
of KL, Kg and Kaug on real datasets, and find that the
autoencoder and data augmentation assumptions are more
realistic (lower values of K).

Figure 2 demonstrates these effects on real data; apparent
clusters begin forming under Lspread (which is trained with
data augmentation). We also measure the ratio σf (z)

sf (y)
and

find that it can range as high as 1.94 for SupCon. For Lspread
with augmentations and the autoencoder, the maximum
values are 1.05 and 1.03, respectively—suggesting that these
modifications control subclass clustering better, and should
result in better coarse-to-fine transfer.

5. Experiments
In this section, we evaluate how well adding a class-
conditional InfoNCE loss and a class-conditional autoen-
coder improves the representations produced by supervised
contrastive learning. We call our overall method THANOS.
This section is primarily designed to evaluate two claims:

• We use coarse-to-fine transfer learning to evaluate how
well the representations maintain subclass information.
THANOS achieves 11.1 lift on average across five datasets.
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Table 2. Summary of the datasets we use for evaluation.
Dataset Kcoarse Kfine Notes

CIFAR10 2 10 Coarse labels are animal vs. vehicle
CIFAR100 20 100 Standard coarse labels
CIFAR100-U 20 100 CIFAR100, imbalanced fine classes
MNIST 2 10 Coarse labels are <5 and ≥5
TinyImageNet 67 200 Coarse labels from ImageNet hierarchy
Waterbirds 2 3 Bird images (Sagawa et al., 2019)
ISIC 2 3 Skin lesions (Codella et al., 2019)
CelebA 2 3 Celebrity faces (Liu et al., 2015)

• We evaluate how well THANOS can improve worst-group
robustness in the unlabeled setting. THANOS detects
low-performing sub-groups 6.2 points better than SupCon
across three datasets. THANOS sets state-of-the-art worst-
group robustness without sub-group labels by 11.5 points
on CelebA—and even outperforms an algorithm that has
access to ground-truth sub-group labels in some cases.

We also present ablations. Additional experiments on overall
model quality, additional baselines, and additional datasets
are in Appendix G. Although we focus on coarse-to-fine
transfer and robustness here, we note that our method also
produces lift on overall model quality.

THANOS Method We summarize the THANOS method.1

THANOS consists of adding a class-conditional InfoNCE loss
and a class-conditional autoencoder to the supervised con-
trastive loss with standard data augmentations used in Chen
et al. (2020a). We implement the former by training an en-
coder with Lspread. To implement the latter, we train a single
autoencoder with a joint MSE reconstruction loss and a cross
entropy loss. We then concatenate the autoencoder represen-
tation to the representation of the encoder trained withLspread.
Details on architectures and hyperparameters in Appendix F.

Datasets Table 2 lists the datasets we use in our evaluation.
We use coarse versions of CIFAR10, CIFAR100, MNIST, and
TinyImageNet to study coarse-to-fine transfer. We use Water-
birds, ISIC and CelebA for robustness (Sagawa et al., 2019;
Codella et al., 2019; Liu et al., 2015; Sohoni et al., 2020).

Coarse-to-Fine Transfer We use coarse-to-fine transfer
learning to isolate how well representations separate
subclasses in an ideal setting. In coarse-to-fine transfer, we
train models on coarse labels, freeze the weights, and then
train a linear probe over the final layer on fine labels. Note
that this setting is more challenging than the self-supervised
setting, since it requires maintaining high performance on
the coarse classes while also being transferrable to the fine
classes. We focus on transfer numbers in this section, but
Table 6 in the Appendix presents results on coarse accuracy.

1Our code is available at https://github.com/
HazyResearch/thanos-code/.

For the autoencoder experiments, we train an autoencoder
separately and concatenate its embedding layer with the
contrastive embedding for the linear probe. We jointly
optimize all contrastive losses and the class-conditional
autoencoder with a cross-entropy loss head. We train all
models with dropout as well as label smoothing on the
cross-entropy loss heads.

We report four variants of THANOS: the class-conditional
autoencoder on its own, SupCon modified with a class-
conditional InfoNCE loss, SupCon modified with a
class-conditional autoencoder, and SupCon with both mod-
ifications. We report 3 baselines from previous work on the
transferability of SupCon (Islam et al., 2021): SupCon, Sup-
Con plus an InfoNCE loss, and the InfoNCE loss on its own.

THANOS significantly outperforms SupCon on coarse-to-
fine transfer learning—by an average of 11.1 points across
all tasks. 7.3 points can be attributed to the class-conditional
InfoNCE loss on average, but mileage varies between tasks
(25.3 points of lift for CIFAR10, vs. 2.6 for CIFAR100). The
difference is the number of coarse classes: CIFAR10 only
has two coarse classes, whereas CIFAR100 has 20. Fewer
coarse classes makes it easier to achieve class collapse,
so spread is more necessary. Finally, we also note that
combining the autoencoder with the other components
outperforms using the autoencoder on its own, by 2.7 points
on average. This suggests that each component is helpful.

Worst-Group Robustness We use robustness to measure
how well THANOS can recover hidden subgroups in an
unsupervised setting. For these models, we train contrastive
losses on their own. We follow the methodology from Sohoni
et al. (2020). We first train a model with class labels. We
then cluster the embeddings to produce pseudolabels for sub-
classes, which we use as input to the GroupDRO algorithm
to optimize worst-group robustness (Sagawa et al., 2019).

Our primary evaluation metric is robustness, but we also
evaluate a subgroup recovery metric since prior work has
suggested that it is important for robustness. Subgroup recov-
ery also acts as a proxy for unsupervised group recovery. We
compare subgroup recovery against SupCon and Sohoni et al.
(2020). We compare worst-group robustness against Sohoni
et al. (2020) and JTT (Liu et al., 2021), as well as using sub-
group labels from SupCon. We also report the performance
of GroupDRO with ground-truth subclass labels.

Table 4 shows the results. THANOS outperforms both Sup-
Con and Sohoni et al. (2020) on subgroup recovery. THANOS
further achieves state-of-the-art worst-group robustness, out-
performing JTT by 4.7 points and Sohoni et al. (2020) by 11.7
points on average—and setting state-of-the-art on CelebA
by 11.5 points. Surprisingly, THANOS can even outperform
GroupDRO with ground-truth subgroup labels in two cases.

https://github.com/HazyResearch/thanos-code/
https://github.com/HazyResearch/thanos-code/
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Table 3. Coarse-to-fine transfer learning performance. Best in bold.
Method CIFAR10 CIFAR100 CIFAR100-U MNIST TinyImageNet

B
as

el
in

es InfoNCE (Chen et al., 2020a) 77.6 ± 0.1 60.5 ± 0.1 56.4 ± 0.3 98.4 ± 0.1 44.9 ± 0.1
SupCon (Khosla et al., 2020) 51.8 ± 1.2 56.1 ± 0.1 49.8 ± 0.3 95.4 ± 0.1 43.9 ± 0.1
SupCon + InfoNCE (Islam et al., 2021) 77.6 ± 0.1 55.7 ± 0.1 48.0 ± 0.2 98.6 ± 0.1 46.1 ± 0.1

O
ur

s

cAuto 71.4 ± 0.1 62.9 ± 0.1 58.7 ± 0.5 98.7 ± 0.1 47.1 ± 0.1
SupCon + cNCE (Lspread) 77.1 ± 0.1 58.7 ± 0.2 53.5 ± 0.4 98.5 ± 0.1 45.8 ± 0.1
SupCon + cAuto 71.7 ± 0.1 63.8 ± 0.6 59.8 ± 0.3 98.7 ± 0.1 49.3 ± 0.1
SupCon + cNCE + cAuto (THANOS) 79.1 ± 0.2 65.0 ± 0.2 59.7 ± 0.3 99.0 ± 0.1 49.6 ± 0.1

Table 4. Unsupervised subclass recovery (top, F1), and worst-group
performance (AUROC for ISIC, Acc for others). Best in bold.

Group
Method Labels Waterbirds ISIC CelebA

Sub-Group Recovery

Sohoni et al. (2020) ✗ 56.3 74.0 24.2
SupCon ✗ 47.1 92.5 19.4
THANOS ✗ 59.0 93.8 24.8

Worst-Group Robustness

Sohoni et al. (2020) ✗ 88.4 92.0 55.0
JTT (Liu et al., 2021) ✗ 83.8 91.8 77.9
SupCon ✗ 86.8 93.3 66.1
THANOS ✗ 88.6 92.6 89.4

GroupDRO ✓ 90.7 92.3 88.9

Subgroup recovery and worst-group robustness are correlated
but not causal: (Sohoni et al., 2020) observed inconsistencies
between them, and so do we (i.e., our method outperforms
GroupDRO, an approach with “perfect” subgroup labels).
This phenomenon deserves further exploration.

Ablations We summarize two ablations (Appendix G.5).
First, we validate Lemma 2 and find that using a generic
autoencoder underperforms a class-conditional autoencoder
by 30.0 points on average—and furthermore does not
improve the performance of SupCon as well (2.0 points of
lift compared to 11.0 points). Second, we validate Lemma 3
and confirm that data augmentation is crucial; removing data
augmentation degrades performance by 35.4 points.

6. Related Work and Discussion
We present an abbreviated related work. A full treatment
can be found in Appendix A. Our theoretical work relates to
theory on the geometry of contrastive learning (Wang & Isola,
2020; Graf et al., 2021; Robinson et al., 2020; Zimmermann
et al., 2021), collapsed representations (Galanti et al., 2021;
Jing et al., 2021), autoencoders (Epstein & Meir, 2019; Le
et al., 2018), data augmentation (HaoChen et al., 2021; Guo
et al., 2018; Abavisani et al., 2020), and robustness (Sohoni
et al., 2020). Our use of Lspread and an autoencoder draws
from a wave of empirical work on contrastive learning (Chen
et al., 2020a; Khosla et al., 2020), and its properties (Islam

et al., 2021; Bukchin et al., 2021).

In aggregate, we study how to improve the quality of represen-
tations trained with supervised contrastive learning. We iden-
tify controlling spread and inducing subclass clustering as
two key challenges and show how two modifications to super-
vised contrastive learning improve transfer and robustness.

Authors’ Note The first two authors contributed equally.
Co-first authors can prioritize their names when adding this
paper’s reference to their resumes.
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We present a full treatment of related work in Appendix A. We present a glossary in Appendix B. We present proofs in
Appendix C, additional theoretical results in Appendix D, and auxiliary lemmas in Appendix E. We present additional
experimental details in Appendix F, additional results in Appendix G, and synthetics in Appendix H.

A. Related Work
We presented an extended treatment of related work.

From work in contrastive learning, we take inspiration from Arora et al. (2019), who use a latent classes view to study
self-supervised contrastive learning. Similarly, Zimmermann et al. (2021) considers how minimizing the InfoNCE loss
recovers a latent data generating model. Recent work has also analyzed contrastive learning from the information-theoretic
perspective (Oord et al., 2018; Tian et al., 2020; Tsai et al., 2020), but does not fully explain practical behavior (Tschannen
et al., 2020). On the geometric side, we are inspired by the theoretical tools from Wang & Isola (2020) and Graf et al. (2021),
who study representations on the hypersphere along with Robinson et al. (2020). There has been work studying other notions
of collapsed repesentations. Jing et al. (2021) examines dimension collapse in contrastive learning, which occurs when the
learned representations span a subspace of the representation space. Our definition of class collapse can also be viewed as
Neural Collapse (Papyan et al., 2020), which started as an empirical observation about when models are trained beyond 0
training error using cross-entropy or MSE loss (Lu & Steinerberger, 2020; Han et al., 2021). Recent works on neural collapse
have studied the transferrability of collapsed representations (Galanti et al., 2021), and Hui et al. (2022); Kothapalli et al.
(2022) have identified its limitations in this setting. We offer another perspective on the relationship between collapse and
embedding quality, and offer techniques to mitigate the effects of collapse in transfer learning.

Our work builds on the recent wave of empirical interest in contrastive learning (Chen et al., 2020a; He et al., 2019; Chen
et al., 2020b; Goyal et al., 2021; Caron et al., 2020) and supervised contrastive learning (Khosla et al., 2020). There has also
been empirical work analyzing the transfer performance of contrastive representations and the role of intra-class variability
in transfer learning. Islam et al. (2021) find that combining supervised and self-supervised contrastive loss improves transfer
learning performance, and they hypothesize that this is due to both inter-class separation and intra-class variability. Bukchin
et al. (2021) find that combining cross entropy and a class-conditional self-supervised contrastive loss improves coarse-to-fine
transfer, also motivated by preserving intra-class variability.

Our use of Lspread and a class-conditional autoencoder arises from similar motivations to losses proposed in these works,
and we futher theoretically study their implications for spread. Our theoretical analysis of autoencoders draws from previous
work (Epstein & Meir, 2019; Le et al., 2018). Our study of data augmentation similarly builds on recent theoretical analysis
of the role of data augmentation in contrastive learning (HaoChen et al., 2021; Huang et al., 2021) and clustering (Guo et al.,
2018; Abavisani et al., 2020).

Our treatment of subclasses is strongly inspired by Sohoni et al. (2020) and Oakden-Rayner et al. (2020), who document
empirical consequences of hidden strata. We are inspired by empirical work that has demonstrated that detecting subclasses
can be important for performance (Hoffmann et al., 2001; d’Eon et al., 2021) and robustness (Duchi et al., 2020; Sagawa
et al., 2019; Goel et al., 2020; Liu et al., 2021).

B. Glossary
The glossary is given in Table 5 below.
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Symbol Used for

x Input data x∈X with distribution P .
y Class label y∈Y={0,...K−1}, where h(x) is x’s class label.
z Latent subclass z∈Z .
Sy The set of all subclasses corresponding to class label y.
p(z) The proportion of subclass z over Z .
Pz The distribution of input data belonging to subclass z, i.e. Pz=p(·|z).
S(z) The label corresponding to subclass z.
hs(x) The subclass that x belongs to.
D Training dataset of n points {(xi,yi)}ni=1.
Dy Training data with label y, Dy={x∈D :h(x)=y} of size ny .
Dz Training data with latent subclass z, Dz={x∈D :hs(x)=z} of size nz .
f The encoder f :X →Rd that maps input data to an embedding space with dimension d.
Ds A dataset of m points with subclass labels Ds={(xi,zi)}mi=1 used for coarse-to-fine transfer.
Ds,z The subset of Ds with subclass z, Ds,z={x∈Ds :hs(x)=z} of size mz .
Wz Linear weight Wz for model used in coarse-to-fine transfer.
p̂(z|f(x)) Softmax score output by linear model for coarse-to-fine transfer.
Lγ,f (z) The γ-margin generalization error on subclass z in coarse-to-fine transfer.
B Batch of input data.
P (i,B) Points in B with the same label as xi, {x+∈B\i :h(x+)=h(xi)}.
N(i,B) Points in B with a label different from that of xi, {x−∈B\i :h(x−) ̸=h(xi)}.
a(xi) An augmentation of xi, where a :X →X .
σf (x,x

′) Notation for exp
(

f(x)⊤f(x′)
τ

)
.

τ Temperature hyperparameter in contrastive loss.
L̂spread(f,B) The contrastive loss we study (on batch B with encoder f ), a weighted sum of a SupCon and

class-conditional InfoNCE loss.
α Weight parameter for Lspread.
Lsup SupCon loss that is used in Lspread that pushes points of a class together (see (2)).
LcNCE Class-conditional InfoNCE loss that is used in Lspread to pull apart points within a class (see (3)).
Sd−1 The unit hypersphere in Rd.
µy The pushforward measure of the class-conditional distribution p(·|h(x)=y via f , where µy∈M(Sd−1),

the set of all Borel probability measures on the hypersphere.
µ µ={µy}y∈Y is the overall pushforward measure P◦f−1∈M(Sd−1).
v v={vy}y∈Y ∈Sd−1 is the regular simplex inscribed in the hypersphere.
δvy The probability measure on Sd−1 with all mass on vy .
δv The class-collapsed measure δv={δvy}y∈Y where f(x)=vy almost surely whenever h(x)=y.
σd−1 The normalized surface area measure on Sd−1.
σd−1 The class-uniform measure where µy=σd−1 for all y∈Y .
fSC The encoder trained with SupCon, satisfying fSC(x)=vy for all x∈D where h(x)=y.
x+ Point for x’s positive pair, drawn from distribution p(·|h(x+)=h(x)).
x− Point for x’s negative pair, drawn from distribution p(·|h(x−) ̸=h(x)).
Lspread(f,α) Asymptotic version of Lspread that we analyze (see Definition 1, also referred to as Lspread(µ,α).
Rθ Rotation matrix Rθ∈Rd×d that rotates by angle θ in two dimensions.
µθ A measure µθ={µ0,θ,µ1,θ} on the hypersphere that we compare against δv and σd−1.

In particular, µ0,θ=
1
2
δR⊤

θ
v0
+ 1

2
δR⊤

−θ
v0

and similarly for µ1,θ .
cτ,d Constant that upper bounds the range of α for which some µθ attains lower Lspread(µ,α) than δv or σd−1.
sf (y) Notion of spread in embedding space, defined as sf (y)=Eh(x)=y

[
∥f(x)−Eh(x)=y[f(x)]∥

]
.

σf (z) Notion of subclass clustering in embedding space, defined as σf (z)=Ex∼Pz [∥f(x)−Ex∼Pz [f(x)]∥].
Varf [z] Notion of subclass variance, defined as Varf [z]=Ex∼Pz

[
∥f(x)−Ex∼Pz [f(x)]∥2

]
.

σz How clustered a subclass is in input space, defined as σz=Ex,x′∼Pz [∥x−x′∥].
KL The Lipschitzness constant of a Lipschitz encoder from function class FKL .
fAE ,g Autoencoder with encoder fAE∈FAE and decoder g∈G.
L̂AE The autoencoder’s reconstruction loss (mean squared error).
Rp

n(F1,F2) Notion of Rademacher complexity defined as Rp
n(F1,F2)=Eσ

[
supf1,f2∈F1,F2

1
n

∑n
i=1σi∥f1(xi)−f2(xi)∥p

]
.

Kg “Reverse Lipschitzness” constant of the decoder, e.g. ∥fAE(x)−fAE(x
′)∥≤Kg∥g(fAE(x))−g(fAE(x))∥.

A Function class of augmentations A :X →X .
Faug Function class of encoders that are trained on augmentations.
Ka The Lipschitzness constant on augmentations for faug∈Faug , e.g.

∥faug(a(x))−faug(a(x
′))∥≤Ka∥a(x)−a(x′)∥ for any x′,x∈X and a∈A.

σaug
z How clustered augmentations of a subclass are in input space.

Table 5. Glossary of variables and symbols used in this paper.
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C. Proofs
C.1. Proofs for Section 3

Theorem 1. For γ where logγ≥8max{Rnz (F),Rnz′ (F)}, SupCon’s coarse-to-fine error is at least

Lγ,fSC
(z)≥1−δ(nz,F ,γ)−δ(nz′ ,F ,γ)−ξ(mz∧mz′ ,γ),

where δ(nz,F , γ) = d exp
(
− nz

32d2 (log γ − 8Rnz
(F))2

)
bounds generalization error of fSC and ξ(mz ∧ mz′ , γ) =

4dexp
(
− (mz∧mz′ )log

2γ
32d

)
bounds the noise from Ds.

Proof. Lγ,f (z)=Prx∼Pz (p̂(z|f(x))≤γp̂(z′|f(x))), and by definition of the linear softmax classifier, we have that

Lγ,f (z)= Pr
x,∼Pz

( exp(f(x)⊤Wz)

exp(f(x)⊤Wz)+exp(f(x)⊤Wz′)
≤γ

exp(f(x)⊤Wz′)

exp(f(x)⊤Wz)+exp(f(x)⊤Wz′)

)
= Pr

x∼Pz

(f(x)⊤(Wz−Wz′)≤ logγ). (6)

To lower bound this quantity, we focus on upper bounding f(x)⊤(Wz −Wz′). We can bound fSC(x)
⊤(Wz −Wz′) ≤

∥Wz−Wz′∥≤∥Ex∼Pz [fSC(x)]−Ex′∼Pz′ [fSC(x
′)]∥+ξz+ξz′ , where ξz=

∥∥ 1
mz

∑
x∈Ds,z

fSC(x)−Ex∼Pz [fSC(x)]
∥∥ can

be bounded via standard concentration inequalities and ξz′ is similarly constructed.

Because SupCon yields collapsed training embeddings within any class, we know that fSC(x)=fSC(x
′) for x,x′∈D where

hs(x)=z and hs(x
′)=z′. Therefore, it holds that

∥Ex∼Pz [fSC(x)]−Ex′∼Pz′ [fSC(x
′)]∥

=
∥∥∥Ex∼Pz

[fSC(x)]−
1

nz

∑
x∈Dz

fSC(x)+
1

nz′

∑
x′∈Dz′

fSC(x
′)−Ex′∼Pz′ [fSC(x

′)]
∥∥∥

≤
∥∥∥Ex∼Pz

[fSC(x)]−
1

nz

∑
x∈Dz

fSC(x)
∥∥∥+∥∥∥ 1

nz′

∑
x′∈Dz′

fSC(x
′)−Ex′∼Pz′ [fSC(x

′)]
∥∥∥

≤ sup
f∈F

∥∥∥Ex∼Pz
[f(x)]− 1

nz

∑
x∈Dz

f(x)
∥∥∥+sup

f∈F

∥∥∥ 1

nz′

∑
x′∈Dz′

f(x′)−Ex′∼Pz′ [f(x
′)]
∥∥∥.

Define ϵ(z,D,F)=supf∈F∥Ex∼Pz
[f(x)]− 1

nz

∑
x∈Dz

f(x)∥ and similarly ϵ(z′,D,F). Therefore, our loss in (6) satisfies

Lγ,fSC
(z)≥Pr(ϵ(z,D,F)+ϵ(z′,D,F)+ξz+ξz′ ≤ logγ)

≥Pr
(
ϵ(z,D,F)≤ logγ

4

)
Pr

(
ϵ(z′,D,F)≤ logγ

4

)
Pr

(
ξz≤

logγ

4

)
Pr

(
ξz′ ≤ logγ

4

)
, (7)

where independence comes from the fact that data is i.i.d. sampled for each subclass and each D and Ds, and that we are taking
the supremum over F . Next, we bound ϵ(z,D,F). Since ∥f(x)∥≤1, we have that by Lemma 6 that with probability 1−δ,

ϵ(z,D,F)≤2Rnz (F)+d

√
2log(d/δ)

nz
.

Setting ϵ :=2Rnz
(F)+d

√
2log(d/δ)

nz
, we can write δ=dexp

(
− nz

2d2 (ϵ−2Rnz
(F))2

)
. Therefore, for logγ≥8Rnz

(F), we
have that

Pr
(
ϵ(z,D,F)≤ logγ

4

)
≥1−dexp

(
− nz

32d2
(logγ−8Rnz

(F))2
)
. (8)

Next, we bound ξz . We can write∥∥∥∥ 1

mz

∑
x∈Ds,z

fSC(x)−Ex∼Pz [fSC(x)]

∥∥∥∥=( d∑
j=1

( 1

mz

∑
x∈Ds,z

fSC(x)[j]−Ex∼Pz [fSC(x)[j]]
)2

)1/2

,

where fSC(x)[j] is the jth element of fSC(x). Using Hoeffding’s inequality, we have that Pr( 1
mz

∑
x∈Ds,z

fSC(x)[j]−



Perfectly Balanced: Improving Transfer and Robustness of Supervised Contrastive Learning

Ex∼Pz
[fSC(x)[j]])

2≥ϵ)≤2exp(−mzϵ
2 ), and therefore

Pr

( d∑
j=1

( 1

mz

∑
x∈Ds,z

fSC(x)[j]−Ex∼Pz
[fSC(x)[j]]

)2

≤dϵ

)
≥Pr

( d⋂
j=1

( 1

mz

∑
x∈Ds,z

fSC(x)[j]−Ex∼Pz
[fSC(x)[j]]

)2

≤ϵ

)

≥
(
1−2exp

(
−mzϵ

2

))d

≥1−2dexp
(
−mzϵ

2

)
.

That is, Pr(ξz≤
√
dϵ)≥1−2dexp

(
−mzϵ

2

)
.

Setting logγ
4 =

√
dϵ gives us Pr(ξz≤ logγ

4 )≥1−2dexp(−mz·log2γ/16d
2 )=1−2dexp(−mz·log2γ

32d ).

We put this expression and (8) back into (7) and use the fact that (1−δ1)(1−δ2)≥1−δ1−δ2 for any δ1,δ2>0. Therefore,
we have for SupCon,

Lγ,fSC
(z)≥1−dexp

(
− nz

32d2
(logγ−8Rnz

(F))2
)
−dexp

(
− nz′

32d2
(logγ−8Rnz′ (F))2

)
−2dexp

(
−mzlog

2γ

32d

)
−2dexp

(
−mz′ log2γ

32d

)
≥1−dexp

(
− nz

32d2
(logγ−8Rnz

(F))2
)
−dexp

(
− nz′

32d2
(logγ−8Rnz′ (F))2

)
−4dexp

(
− (mz∧mz′)log2γ

32d

)
=1−δ(nz,F ,γ)−δ(nz′ ,F ,γ)−ξ(mz∧mz′ ,γ).

Derivation of Lspread(f,α) We explain how we arrive at the asymptotic form of Lspread. Let Lspread(f,n
+,n−) be the

population-level version of L̂spread(f,B), where n+,n− are the number of negatives in the denominators of LcNCE and Lsup,
respectively.

Lspread(f,n
+,n−)=(1−α)Lsup(f,n

−)+αLcNCE(f,n
+) (9)

Lsup(f,n
−)=−E

[
log

σf (x,x
+)

σf (x,x+)+
∑n−

i=1σf (x,x
−
i )

]
(10)

LcNCE(f,n
+)=−E

[
log

σf (x,a(x))

σf (x,a(x))+
∑n+

i=1σf (x,x
+
i )

]
(11)

We now demonstrate how minimizing limn+,n−→∞Lspread(f,n
+,n−) is equivalently to minimizing Lspread(f,α). In Lsup,

we divide the numerator and denominator by n−, and in LcNCE we divide the numerator and denominator by n+:

Lsup(f,n
−)=E

[
−log

exp(σf (x,x
+))

1
n− exp(σf (x,x+))+ 1

n−

∑n−

i=1exp(σf (x,x
−
i ))

]
+logn−

LcNCE(f,n
+)=E

[
−log

exp(σf (x,a(x)))
1
n+ exp(σf (x,a(x)))+

1
n+

∑n+

i=1exp(σf (x,x
+
i ))

]
+logn+

We can thus write Lspread(f,n
+,n−) as

Lspread(f,n
+,n−)−αlogn−−(1−α)logn+=−αE

[
σf (x,x

+)
]
−(1−α)E[σf (x,a(x))]

+αE

log( 1

n− exp(σf (x,x
+))+

1

n−

n−∑
i=1

exp(σf (x,x
−
i ))

)
+(1−α)E

log( 1

n+
exp(σf (x,a(x)))+

1

n+

n+∑
i=1

exp(σf (x,x
+
i ))

).
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Taking the limit n+,n−→∞ yields
lim

n+,n−→∞
Lspread(f,n

+,n−)−αlogn−−(1−α)logn+

=−αE
[
σf (x,x

+)
]
−(1−α)E[σf (x,a(x))]

+αEx

[
logEx−

[
exp(σf (x,x

−))
]]
+(1−α)Ex

[
logEx+

[
exp(σf (x,x

+))
]]
.

Lastly, we use the fact that σf (x,x
′)=exp(f(x)⊤f(x′)/τ)=exp(−∥f(x)−f(x′)∥2/2τ), since f(x),f(x′)∈Sd−1 to get

that
lim

n+,n−→∞
Lspread(f,n

+,n−)−αlogn−−(1−α)logn+

=(1−α)Lalign(f)+αLaug(f)+(1−α)Ldiff(f)+αLsame(f)

=Lspread(f,α).

Proposition 1 (Individual losses). Lalign(f) and Laug(f) are minimized when f(x) = f(x+) and f(x) = f(a(x)) almost
surely, respectively. Ldiff(µ) is minimized when µ=δv . Lsame(µ) is minimized when µ=σd−1.

Proof. We analyze each term’s optimal measure on the hypersphere.

Lalign(f),Laug(f) For both Lalign(f) and Laug(f), the minimum value of the expression is 0, which is obtained when
f(x)=f(x+) and f(x)=f(a(x)) almost surely, respectively.

Ldiff(f) We show in Lemma 5 that the measure that minimizes Ldiff(f) also minimizes
logEx,x−

[
−exp(∥f(x)−f(x−)∥2/2τ)

]
(note this is not identical to the approach in Wang & Isola (2020)). We can thus

equivalently consider minimizing Ex,x−
[
exp(−∥f(x)−f(x−)∥2/2τ)

]
. Note that maxf(x),f(x′)∈Sd−1∥f(x)−f(x′)∥=2,

and so infEx,x−
[
exp(−∥f(x)−f(x−)∥2/2τ)

]
=exp(−2/τ). For µ=δv ,

Ex,x−
[
exp(−∥f(x)−f(x−)∥2/2τ)

]
=

1

2
Eh(x)=0,h(x′)=1

[
exp(−∥v0−v1∥2/2τ)

]
(12)

+
1

2
Eh(x)=1,h(x′)=0

[
exp(−∥v1−v0∥2/2τ)

]
=exp(−∥v0−v1∥2/2τ)=exp(−2/τ).

The first equality follows from class balance, and the third equality follows from the definition of the regular simplex.
Therefore, µ=δv minimizes Ldiff(f).

Lsame(f) For Lsame(f), we can directly use the proof of Theorem 1 in Wang & Isola (2020) to show that the optimal
measure that minimizesLsame also minimizes logEx,x+

[
exp(−∥f(x)−f(x+)∥2/2τ)

]
. We equivalently consider minimizing

Ex,x+

[
exp(−∥(f(x)−f(x+)∥2/2τ)

]
. We can write this as

Ex,x+

[
exp(−∥(f(x)−f(x+)∥2/2τ)

]
=

1

2
Eh(x)=h(x′)=0

[
exp(−∥(f(x)−f(x+)∥2/2τ)

]
(13)

+
1

2
Eh(x)=h(x′)=1

[
exp(−∥(f(x)−f(x+)∥2/2τ)

]
.

Using the infinite encoder assumption, we can equivalently consider the following minimization problem over the hypersphere,
where u,u′∈Sd−1:

minimizeµ0,µ1

1

2

∫ ∫
exp(−∥u−u′∥2/2τ)dµ0(u)dµ0(u

′)+
1

2

∫ ∫
exp(−∥u−u′∥2/2τ)dµ1(u)dµ1(u

′) (14)

Each of these integrals can be minimized individually, and the problem becomes equivalent to having both µ0 and µ1 minimize
the Gaussian 1

2τ -energy. Using Proposition 4.4.1 and Theorem 6.2.1 of (Borodachov et al., 2019), the optimal solution is
µ0=µ1=σd−1, the normalized surface area measure. Therefore, µ=σd−1.

Theorem 2. Let cτ,d=
2+ 1

τ −
√

1
τ (−2+ 1

τ )−2logW1/2τ (Sd−1)

3 , where W1/2τ (Sd−1) is the Wiener constant of the Gaussian
1
2τ -energy on Sd−1, which is defined as

W1/2τ (Sd−1)=
2d−2Γ(d/2)√
πΓ((d−1)/2)

∫ 1

0

exp
(
− 2u

τ

)
(u(1−u))(d−3)/2du,



Perfectly Balanced: Improving Transfer and Robustness of Supervised Contrastive Learning

where the Gamma function is Γ(z) =
∫∞
0

xz−1e−xdx for z > 0. Then, when α ∈ (2/3,cτ,d), θ⋆ = arcsin
√

τ
2 log

3α−1
3−3α

minimizes Lspread(µθ,α) and satisfies Lspread(µθ⋆ ,α)≤minµ∈{δv,σd−1}Lspread(µ,α).

Proof. Because the augmentations only play a role in Laug(f) and are disjoint, the condition that f(x) = f(a(x)) a.s. is
compatible with any of the other three losses in Proposition 1. Therefore, we focus on analyzing the combined weighted
loss (1−α)Lalign(f)+(1−α)Ldiff(f)+αLsame(f). We restate the loss:

L(µ,α)=(1−α)Ex

[
logEx−

[
exp

(
− 1

2τ
∥f(x)−f(x−)∥2

)]]
+αEx

[
logEx+

[
exp

(
− 1

2τ
∥f(x)−f(x+)∥2

)]]
+(1−α)Ex,x+

[
1

2τ
∥f(x)−f(x+)∥2

]
.

We restate the definition of the measure µθ = {µ0,θ,µ1,θ} for θ∈ (0,π/2] that involves “splitting” δv by angle θ. Without
loss of generality, suppose that v0= e1 and v1=−e1, where e1 ∈Rd is a standard basis vector [1,0,...,0] where all but the
first two elements are always 0. For v0, we consider the vectors v0,θ=[cosθ,sinθ,...,0] and v0,−θ=[cosθ,−sinθ,...,0]. For
v1, we consider the vectors v1,θ =[−cosθ,−sinθ,...,0] and v1,−θ =[−cosθ,sinθ,...,0]. Let µ0,θ =

1
2δv0,θ +

1
2δv0,−θ

and let
µ1,θ=

1
2δv1,θ+

1
2δv1,−θ

. That is, each class-conditional measure is a mixture on two points separated by θ.

The first step is to show that for some range of α, minθL(µθ,α)<L(δv,α). We have that

L(δv,α)=(1−α)

(
1

2
logexp

(
− 4

2τ

)
+
1

2
logexp

(
− 4

2τ

))
+αlogexp(0)+(1−α)·0=−2(1−α)

τ
. (15)

and

L(µθ,α)=(1−α)log

(
1

2
exp

(
− 4

2τ

)
+
1

2
exp

(
− 4cos2θ

2τ

))
+αlog

(
1

2
+
1

2
exp

(
− 4sin2θ

2τ

))
(16)

+
1−α

2τ
· 1
2
(4sin2θ)

=−log2− 2(1−α)

τ
+(1−α)log

(
1+exp

(
2sin2θ

τ

))
+αlog

(
1+exp

(
− 2sin2θ

τ

))
+
(1−α)sin2θ

τ
.

We now compute the derivative ∂L(µθ,α)
∂θ to find local minima:

∂L(µθ,α)

∂θ
=(1−α)

exp(2sin2θ/τ)·4sinθcosθ/τ
1+exp(2sin2θ/τ)

+α
exp(−2sin2θ/τ)·−4sinθcosθ/τ

1+exp(−2sin2θ/τ)
+
(1−α)4sinθcosθ

τ

=
4sinθcosθ

τ

(
(1−α)

exp(2sin2θ/τ)

1+exp(2sin2θ/τ)
−α

exp(−2sin2θ/τ)

1+exp(−2sin2θ/τ)
+
1−α

2

)
.

Note that sinθ and cosθ are positive for θ∈(0,π/2]. Next, for notational simplicity let x= 2sin2θ
τ . Then, we can equivalently

evaluate

(1−α)
ex

1+ex
−α

e−x

1+e−x
+
1−α

2
=(1−α)

ex

1+ex
−α

1

1+ex
+
1−α

2

=
ex−α(1+ex)

1+ex
+
1−α

2

=
ex

1+ex
+
1

2
− 3α

2
.

Setting this equal to 0, we get that α= 3ex+1
3ex+3 and x=log 3α−1

3−3α . Since x∈(0,2/τ ], we have that if α∈
(

2
3 ,

3exp(2/τ)+1
3exp(2/τ)+3

)
, there

exists a local optima over θ∈(0,π/2].

Moreover, we observe that when α≤2/3, we have that ex

1+ex +
1
2−

3α
2 ≥ ex

1+ex −
1
2 ≥0, which means that L(µθ,α) increases

in θ for α≤2/3. Therefore, when α≤2/3, class collapse is always better no matter the angle, and L(δv,α)≤minθL(µθ,α).

Next, we consider when α≥ 3exp(2/τ)+1
3exp(2/τ)+3 . In this case, ex

1+ex +
1
2−

3α
2 <0, so L(µθ,α) is decreasing in θ. This means that

any nonzero θ in this setting is going to result in a smaller loss than the class-collapsed loss.
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Lastly, we consider the intermediate case of α∈
(

2
3 ,

3exp(2/τ)+1
3exp(2/τ)+3

)
. Plugging back in x=log 3α−1

3−3α back into L(µθ,α) in (16),
we have

L(µθ,α)=−log2− 2(1−α)

τ
+(1−α)log

(
1+

3α−1

3−3α

)
+αlog

(
1+

3−3α

3α−1

)
+
1−α

2
·log3α−1

3−3α
(17)

=−log2− 2(1−α)

τ
+(1−α)log

2

3−3α
+αlog

2

3α−1
+
1−α

2
log(3α−1)− 1−α

2
log(3−3α)

=−2(1−α)

τ
− 3−3α

2
log(3−3α)− 3α−1

2
log(3α−1).

Note that (3−3α)log(3−3α)+(3α−1)log(3α−1) equals 0 at α=2/3 and is increasing in α. Therefore, we have that
− 2(1−α)

τ − 3−3α
2 log(3−3α)− 3α−1

2 log(3α−1)≤− 2(1−α)
τ =L(δv,α). Therefore, for α∈

(
2
3 ,

3exp(2/τ)+1
3exp(2/τ)+3

)
, the optimal

θ⋆ satisfies L(µθ,α)≤L(δv,α). In particular, solving 2sin2θ⋆

τ =log 3α−1
3−3α gives us θ⋆=arcsin

√
τ
2 log

3α−1
3−3α .

Therefore, our analysis in these three ranges of α suggest that the optimal embedding geometry is not collapsed when α≥ 2
3 .

Next, we want to understand when the optimal embedding geometry is not σd−1. A sufficient condition for this is to show
that there exists an α≥ 2

3 where minθL(µθ,α)≤L(σd−1,α). We first compute an upper bound on minθL(µθ,α) for α> 2
3 .

Recall that our loss from (17) can be written as

L(µθ,α)=−2(1−α)

τ
−log2− 3−3α

2
log

(3−3α

2

)
− 3α−1

2
log

(3α−1

2

)
. (18)

For ease of notation, let x= 3−3α
2 ∈(0,1). We show that f(x)=xlogx+(1−x)log(1−x) can be lower bounded quadratically.

Performing a Taylor expansion at x=0.5, we have that xlogx+(1−x)log(1−x)≈−log2+2(x−1/2)2. We claim that
xlogx+(1−x)log(1−x)≥−log2+2(x−1/2)2. Note that the two sides are equal when x=1/2, so proving this inequality
is equivalent to showing that f ′(x)≥ 4(x−1/2) for x≥ 1/2 and f ′(x)< 4(x−1/2) for x< 1/2. f ′(x)= log x

1−x is equal
to 4(x−1/2) at x=1/2, so we want to show that f ′′(x)≥ 4 for all x. f ′′(x)= 1

x(1−x) satisfies this inequality. Therefore,
(18) becomes

L(µθ,α)≤−2(1−α)

τ
−2

(
1− 3α

2

)2

.

Next, we compute L(σd−1,α). With σd−1, f(x),f(x+), and f(x−) are all uniformly distributed on the hypersphere.
Therefore,

L(σd−1,α)=Ex

[
logEx+

[
exp(−∥f(x)−f(x+)∥2/2τ)

]]
− 1−α

2τ

∫ ∫
−∥u−u′∥2dσd−1(u)dσd−1(u

′). (19)

From Wang & Isola (2020), we know that when f(x) and f(x+) are drawn from a distribution with measure σd−1, it holds
that Ex

[
logEx+

[
exp(−∥f(x)−f(x+)∥2/2τ)

]]
=logEx,x+

[
exp(−∥f(x)−f(x+)∥2/2τ)

]
.

Define the Gaussian 1
2τ -energy of σd−1 on Sd−1 as I1/2τ [σd−1] =

∫
Sd−1

∫
Sd−1 exp

(
− 1

2τ ∥u−u′∥2
)
dσd−1(u)dσd−1(u

′).
Then, (19) becomes

L(σd−1,α)=(1−α)logI1/2τ [σd−1]+αlogI1/2τ [σd−1]−
1−α

2τ

∫ ∫
−∥u−u′∥2dσd−1(u)dσd−1(u

′). (20)

From Theorem 4.6.5 of Borodachov et al. (2019), any measure µ that has mass centered at the origin, i.e.
∫
udµ(u) = 0,

minimizes the energy I−2[µ] =
∫ ∫

−∥u−u′∥2dµ(u)dµ(u′). Therefore,
∫ ∫

−∥u−u′∥2dσd−1(u)dσd−1(u
′) is equivalent

to the energy I−2[
1
2δv0+

1
2δv1 ]=− 1

2 (2
2)=−2, since a measure on two points with probability 1/2 each has mass centered

at the origin. Plugging this back into L(σd−1,α) in (20), we have

L(σd−1,α)=logI1/2τ [σd−1]+
1−α

τ
. (21)

From Proposition 4.4.1 and Theorem 6.2.1 of Borodachov et al. (2019), σd−1 is the unique equilibrium measure for the
Gaussian 1

2τ kernel on Sd−1, and as a result I1/2τ [σd−1] is equal to the Wiener constant W1/2τ (Sd−1). By Proposition
A.11.2 of (Borodachov et al., 2019), this has the value

W1/2τ (Sd−1)=
2d−2Γ(d/2)√
πΓ((d−1)/2)

∫ 1

0

exp
(
− 2u

τ

)
(u(1−u))(d−3)/2du, (22)

where the Gamma function is Γ(z)=
∫∞
0

xz−1e−xdx for z>0.



Perfectly Balanced: Improving Transfer and Robustness of Supervised Contrastive Learning

Therefore, to prove that there exists a µθ that has lower loss than σd−1, we must find α>2/3 that satisfies

2
(
1− 3α

2

)2

+
3(1−α)

τ
+logW1/2τ (Sd−1)≥0.

This expression is quadratic in α, and we solve it to get that c(τ,d)≤ 2+ 1
τ −

√
1
τ (−2+ 1

τ )−2logW1/2τ (Sd−1)

3 .

C.2. Proofs for Section 4

Proposition 2. Let F be the set of infinite encoders. Then Lspread is invariant on class-fixing permutations under F .

Proof. We know that any fπ ∈F can satisfy fπ(xi) = f(xπ(i)), since the infinite encoder assumption means that fπ can
be arbitrarily fit to any data. Therefore, we only need to show that Lspread does not change when fπ, which permutes within
classes, is used instead of f .

For a given batch B and f , Lspread is constructed as defined in Section 2.2. The numerator of Lsup can be written as
1

|B|
1

|P (i,B)|
∑|B|

i=1

∑
x+∈P (i,B)logσf (xi,x

+). This is a summation over the representations of all positive pairs in the batch.
Therefore, a permutation π within each class that changes the assignments to the representations will not change the value
of this quantity, and 1

|B|
1

|P (i,B)|
∑|B|

i=1

∑
x+∈P (i,B)logσfπ (xi,x

+)= 1
|B|

1
|P (i,B)|

∑|B|
i=1

∑
x+∈P (i,B)logσf (xi,x

+).

Next, the denominator of Lsup can be written as 1
|P (i,B)

∑|B|
i=1

∑
x+∈P (i,B)log

(
σf (xi,x

+)+
∑

x−∈N(i,B)σf (xi,x
−)

)
. Every

single positive pair and negative pair is included in this expression, so this quantity is class-fixing permutation invariant.

The numerator of LcNCE is 1
|B|

∑|B|
i=1logσf (xi,a(xi)). Since an augmentation of xi is a function of xi and is disjoint from

augmentations of other points, this quantity is class-fixing permutation invariant.

Lastly, the denominator of LcNCE is 1
|B|

∑|B|
i=1log

(∑
x+∈p(i,B)σf (xi,x

+)
)

. From the same logic as the numerator of Lsup,
any permutation within the class will still allow each xi to be compared with all other points in xi’s class, hence being
class-fixing permutation invariant.

Therefore, under the infinite encoder assumption where all fπ are valid, Lspread is permutation invariant.

Theorem 3. Denote rf (z,z′)=c2δf (z,z
′)2−|Varf [z]−Varf [z′]|. With probability 1−δ, the coarse-to-fine error is at most

Lγ,f (z)≤
σf (z)√

rf (z,z′)−2logγ
+O

((dlog(d/δ)
mz∧mz′

)1/4)
.

under the boundary condition that rf (z,z′)−2logγ≥16
√

2dlog(8d/δ)
mz∧mz′

+ 2dlog(8d/δ)
mz

.

Proof. From (6), our loss function can be written as Lγ,f (z) = Prx∼Pz
(f(x)⊤(Wz − Wz′) ≤ log γ). Note

that ∥f(x) − Wz∥2 = ∥f(x)∥2 + ∥Wz∥2 − 2f(x)⊤Wz = 1 + ∥Wz∥2 − 2f(x)⊤Wz , which means that
f(x)⊤Wz=

1
2

(
1+∥Wz∥2−∥f(x)−Wz∥2

)
. We can thus write our loss as

Lγ,f (z)= Pr
x∼Pz

(f(x)⊤(Wz−Wz′)≤ logγ)

= Pr
x∼Pz

(∥f(x)−Wz∥≥(∥f(x)−Wz′∥2−2logγ+∥Wz∥2−∥Wz′∥2)1/2). (23)

We bound terms in this probability individually. First, we can write

∥f(x)−Wz∥≤∥f(x)−Ex∼Pz [f(x)]∥+ξz, (24)

where ξz again is constructed as ξz=∥Wz−Ex∼Pz [f(x)]∥=
∥∥ 1
mz

∑
x∈Ds,z

fSC(x)−Ex∼Pz [fSC(x)]
∥∥.
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Next, by the reverse triangle inequality we can write

∥f(x)−Wz′∥2≥
∣∣∥f(x)−Ex∼Pz′ [f(x)]∥−∥Ex∼Pz′ [f(x)]−Wz′∥

∣∣2
≥∥f(x)−Ex∼Pz′ [f(x)]∥

2−2∥f(x)−Ex∼Pz′ [f(x)]∥ξz′

≥∥f(x)−Ex∼Pz′ [f(x)]∥
2−4ξz′

≥c2 ·Ex∼Pz,x′∼Pz′ [∥f(x)−f(x′)∥]2−4ξz′ . (25)

Note the following decomposition by Jensen’s inequality:
sf (y)=Eh(x)=y

[
∥f(x)−Eh(x)=y[f(x)]∥

]
≤p(z|y)2Ex∼Pz

[∥f(x)−Ex∼Pz
[f(x)]∥]

+p(z′|y)2Ex∼Pz′

[
∥f(x)−Ex∼Pz′ [f(x)]∥

]
+p(z|y)p(z′|y)Ex∼Pz

[
∥f(x)−Ex′∼Pz′ [f(x

′)]∥
]

+p(z|y)p(z′|y)Ex∼Pz′ [∥f(x)−Ex′∼Pz [f(x
′)]∥]

≤p(z|y)2σf (z)+p(z′|y)2σf (z
′)+2p(z|y)p(z′|y)Ex∼Pz,x′∼Pz′ [∥f(x)−f(x′)∥],

and thus, Ex∼Pz,x′∼Pz′ [∥f(x)−f(x′)∥]≥ δf (z,z
′) = 1

p(z|y)p(z′|y) ·
(
sf (y)−p(z|y)2σf (z)−p(z′|y)2σf (z

′)
)

. Then, (25)
becomes

∥f(x)−Wz′∥2≥c2 ·δf (z,z′)2−4ξz′ . (26)

Finally, we bound ∥Wz∥2 −∥Wz′∥2. Recall that ∥Wz∥2 =
∥∥∥ 1
mz

∑
x∈Ds,z

f(x)
∥∥∥2. We can write the empirical variance

1
mz

∑
x∈Ds,z

∥f(x)− 1
mz

∑
x∈Ds,z

f(x)∥2 as 1+∥Wz∥2− 1
mz

∑
x∈Ds,z

f(x)⊤ 2
mz

∑
x∈Ds,z

f(x)=1−∥Wz∥2, and therefore,∣∣∥Wz∥2−∥Wz′∥2
∣∣≤ ∣∣∣∣ 1

mz

∑
x∈Ds,z

∥f(x)− 1

mz

∑
x∈Ds,z

f(x)∥2− 1

mz′

∑
x∈Ds,z′

∥f(x)− 1

mz′

∑
x∈Ds,z′

f(x)∥2
∣∣∣∣

≤
∣∣∣∣ 1

mz′

∑
x∈Ds,z′

∥∥∥∥f(x)− 1

mz′

∑
x∈Ds,z′

f(x)

∥∥∥∥2−Ex∼Pz′

[
∥f(x)−Ex∼Pz′ [f(x)]∥

2
]∣∣∣∣ (27)

+

∣∣∣∣ 1

mz

∑
x∈Ds,z

∥∥∥∥f(x)− 1

mz

∑
x∈Ds,z

f(x)

∥∥∥∥2−Ex∼Pz

[
∥f(x)−Ex∼Pz

[f(x)]∥2
]∣∣∣∣

+
∣∣Varf [z]−Varf [z′]

∣∣.
where Varf [z] =Ex∼Pz

[
∥f(x)−Ex∼Pz

[f(x)]∥2
]
, and Varf [z′] is similarly defined. We decompose the first term in (27)

and bound it by ∣∣∣∣ 1

mz′

∑
x∈Ds,z′

∥∥∥∥f(x)− 1

mz′

∑
x∈Ds,z′

f(x)

∥∥∥∥2− 1

mz′

∑
x∈Ds,z′

∥∥f(x)−Ex∼Pz′ [f(x)]
∥∥2∣∣∣∣

+

∣∣∣∣ 1

mz′

∑
x∈Ds,z′

∥∥f(x)−Ex∼Pz′ [f(x)]
∥∥2−Ex∼Pz′

[
∥f(x)−Ex∼Pz′ [f(x)]∥

2
]∣∣∣∣

=
1

mz′

∑
x∈Ds,z′

∣∣∣∣∥∥∥∥f(x)− 1

mz′

∑
x∈Ds,z′

f(x)

∥∥∥∥2−∥∥f(x)−Ex∼Pz′ [f(x)]
∥∥2∣∣∣∣+ζz′

≤ 1

mz′

∑
x∈Ds,z′

4

∣∣∣∣∥∥∥∥f(x)− 1

mz′

∑
x∈Ds,z′

f(x)

∥∥∥∥−∥∥f(x)−Ex∼Pz′ [f(x)]
∥∥∣∣∣∣+ζz′

≤ 1

mz′

∑
x∈Ds,z′

4

∥∥∥∥ 1

mz′

∑
x∈Ds,z′

f(x)−Ex∼Pz′ [f(x)]

∥∥∥∥+ζz′

≤4ξz′+ζz′ .

where ζz′ =
∣∣∣ 1
mz′

∑
x∈Ds,z′

∥∥∥f(x)−Ex∼Pz′ [f(x)]
∥∥∥2 −Ex∼Pz′

[
∥f(x)−Ex∼Pz′ [f(x)]∥

2
]∣∣∣ can be bounded by standard

concentration inequalities. Therefore,
∣∣∥Wz∥2−∥Wz′∥2

∣∣ is bounded by∣∣∥Wz∥2−∥Wz′∥2
∣∣≤|Varf [z]−Varf [z′]|+4ξz+4ξz′+ζz+ζz′ . (28)
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Then, combining (24), (26), and (28), the loss in (23) becomes

Lγ,f (z)≤ Pr
x∼Pz

(∥f(x)−Ex∼Pz
[f(x)]∥≥

(
rf (z,z

′)−8ξz′−4ξz−ζz−ζz′−2logγ
)1/2−ξz). (29)

Next, we note that ξz ≤
√

2dlog(2d/δ)
mz

with probability at least 1− δ. Applying Hoeffding’s inequality on ζz gives us

ζz≤
√

8log(2/δ)
mz

with probability at least 1−δ. Applying a union bound, we have that with probability 1−δ, (29) satisfies

Lγ,f (z)≤

Pr
x∼Pz

(
∥f(x)−Ex∼Pz

[f(x)]∥≥
(
rf (z,z

′)−10

√
2dlog(8d/δ)

mz′
−6

√
2dlog(8d/δ)

mz
−2logγ

)1/2

−

√
2dlog(8d/δ)

mz

)
.

Finally, we can apply Markov’s inequality under the condition that rf (z,z′)− 2 logγ ≥ 2dlog(8d/δ)
mz

+ 6
√

2dlog(8d/δ)
mz

+

10
√

2dlog(8d/δ)
mz′

, or equivalently rf (z,z
′)−2logγ≥ 2dlog(8d/δ)

mz
+16

√
2dlog(8d/δ)
mz∧mz′

. With probability at least 1−δ, our loss
is bounded by

Lγ,f (z)≤
Ex∼Pz

[f(x)−Ex∼Pz
[f(x)]]√

rf (z,z′)−2logγ−16
√

2dlog(8d/δ)
mz∧mz′

−
√

2dlog(8d/δ)
mz

≤ σf (z)√
rf (z,z′)−2logγ

+O
((

dlog(d/δ)

mz∧mz′

)1/4)
.

Lemma 1. Let FKL
be the class of KL−Lipschitz encoders. Then for any fKL

∈FKL
, σfKL

(z)≤KLσz.

Proof. Using Jensen’s inequality and then Lipschitzness of f ,

σf (z)=Ex∼Pz
[∥f(x)−Ex∼Pz

[f(x)]∥]=Ex∼Pz

[∥∥∥∫ (f(x)−f(x′))p(x′|z)dx′
∥∥∥]

≤Ex∼Pz

[∫
∥f(x)−f(x′)∥p(x′|z)dx′

]
≤KL ·Ex∼Pz

[∫
∥x−x′∥p(x′|z)dx′

]
=KL ·Ex,x′∼Pz

[∥x−x′∥]=KLδz.

Lemma 2. For any g∈G, suppose there exists a Kg>0 such that g is “reverse Lipschitz”, satisfying ∥fAE(x)−fAE(x
′)∥≤

Kg∥g(fAE(x))−g(fAE(x))∥, and there exists finite b such that the reconstruction loss satisfies maxx∥g(fAE(x))−x∥2≤b.

Then with probability at least 1−δ,

σfAE
(z)≤ 2Kg

p(z|y)

(
L̂AE(Dy)+2R2

ny
(G◦FAE ,idX )+b

√
log(1/δ)

2ny

)1/2

+Kgσz,

where idX is the identity function on X , and p(z|y)= p(z)
p(y) is the probability that x drawn from p(·|y) has label z.

Proof. We can decompose σfAE
(z) into the following using the assumption on the decoder g:

σfAE
(z)=Ex∼Pz [∥fAE(x)−Ex′∼Pz [fAE(x

′)]∥]≤Ex∼Pz

[∫
∥fAE(x)−fAE(x

′)∥p(x′|z)dx′
]

≤Ex∼Pz

[∫
Kg ·∥g(fAE(x))−g(fAE(x

′))∥p(x′|z)dx′
]

≤Ex∼Pz

[∫
Kg

(
∥g(fAE(x))−x∥+∥x−x′∥+∥x′−g(fAE(x

′))∥
)
p(x′|z)dx′

]
=2KgEx∼Pz

[∥g(fAE(x))−x∥]+KgEx,x′∼Pz
[∥x−x′∥]. (30)
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Note that Ex∼Py
[∥g(fAE(x))−x∥] =

∑
k∈Sy

Ex∼Pk
[∥g(fAE(x))−x∥]p(k|y)≥Ex∼Pz

[∥g(fAE(x))−x∥]p(z|y), so (30)
becomes

σfAE
(z)≤ 2Kg

p(z|y)
Ex∼Py

[∥g(fAE(x))−x∥]+KgEx,x′∼Pz
[∥x−x′∥]

≤ 2Kg

p(z|y)

√
Ex∼Py

[∥g(fAE(x))−x∥2]+KgEx,x′∼Pz
[∥x−x′∥]

=
2Kg

p(z|y)

√
L̂AE(ny)+Ex∼Py

[∥g(fAE(x))−x∥2]−L̂AE(ny)+Kgσz. (31)

where L̂AE(Dy) = 1
ny

∑
x∈Dy

∥g(fAE(x)) − x∥2 is the reconstruction error on the training data Dy. We bound the

generalization error Ex∼Py

[
∥g(fAE(x))−x∥2

]
− L̂AE(Dy) using Theorem 3.3 of Mohri et al. (2018) to get that with

probability at least 1−δ,

σfAE
(z)≤ 2Kg

p(z|y)

(
L̂AE(Dy)+2R2

ny
(G◦FAE ,idX )+b

√
log(1/δ)

2ny

)1/2

+Kgσz.

Finally, we compare against using a general autoencoder trained on the entire dataset of n points. This yields a bound

σfAE
(z)≤ 2Kg

p(z)

(
L̂AE(D)+2R2

n(G◦FAE ,idX )+b

√
log(1/δ)

2n

)1/2

+Kgσz,

where the only change in the result is that p(z|y) is replaced with p(z), the overall proportion of the subclass, and ny is
replaced with n. This highlights a tradeoff: p(z|y)>p(z), but ny <n. A class-conditional autoencoder may suffer from
poorer generalization due to lower sample size, but its relative worst case performance on z in expectation is better. On the
other hand, a general autoencoder is learned on more data, but its relative worst case performance on z in expectation is worse
since the subclass is more rare w.r.t. the training data.

Lemma 3. For a ∈ A and any x, x′ ∈ X , suppose that faug ∈ Faug satisfies ∥faug(a(x)) − faug(a(x
′))∥ ≤

Kaug∥a(x)−a(x′)∥ for some Kaug and that f(a(x))=f(x) for x∈D. Denote σaug
z =Ex,x′∼Pz

[∥a(x)−a(x′)∥]. Then with
probability at least 1−δ,

σfaug (z)≤
2

p(z)

(
2R1

n(Faug,Faug◦A)+

√
2log(1/δ)

n

)
+Kaugσ

aug
z .

Proof. We can decompose σfaug
(z) into

Ex∼Pz [∥faug(x)−Ex′∼Pz [faug(x
′)]∥]≤Ex∼Pz

[∫
∥faug(x)−faug(x

′)∥p(x′|z)dx′
]

≤Ex∼Pz

[∫ (
∥faug(x)−faug(a(x))∥+∥faug(a(x))−faug(a(x

′))∥+∥faug(a(x′))−faug(x
′)∥

)
p(x′|z)dx′

]
≤2Ex∼Pz [∥faug(x)−faug(a(x))∥]+Kaugσ

aug
z . (32)

We can bound Ex∼Pz [∥faug(x)−faug(a(x))∥] ≤ 1
p(z)E [∥faug(x)−fauga(x)∥]. We assume that the encoder is able to

satisfy faug(x)=faug(a(x)) for all training data x∈D, so (32) becomes

σfaug
(z)≤ 2

p(z)

(
Ex[∥faug(x)−faug(a(x))∥]−

1

n

n∑
i=1

∥f(xi)−f(a(xi))∥
)
+Kaugσ

aug
z . (33)

Then, using Theorem 3.3 from Mohri et al. (2018), with probability at least 1−δ

E[∥faug(x)−faug(a(x))∥]−
1

n

n∑
i=1

∥faug(xi)−faug(a(xi))∥≤2R1
n(Faug,Faug◦A)+

√
2log(1/δ)

n
.

Therefore, (33) becomes

σf (z)≤
2

p(z)

(
2R1

n(Faug,Faug◦A)+

√
2log(1/δ)

n

)
+Kaugσ

aug
z .
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D. Additional Theoretical Results
D.1. Optimal Lspread geometry for K=3

We provide a proof sketch that when there are K=3 classes and d≥3, there exists a distribution µθ that obtains lower loss
than the uniform or collapsed distributions. Synthetic experiments for this setting are in Appendix H (see Figure 7).

For simplicity, let’s consider when d=3. Without loss of generality, denote the 3-simplex as v0=[1,0,0], v1=[−1/2,0,
√
3/2],

v2=[−1/2,0,−
√
3/2]. We will perform a rotation in the “free” dimension (2), in particular rotating v0 by θ in the direction

orthogonal to the subspace that the simplex is in.

In particular, we construct the rotation matrix Rθ=

cosθ −sinθ 0
sinθ cosθ 0
0 0 1

. Then,

Rθv0=

cosθsinθ
0

 Rθv1=

−cosθ/2
−sinθ/2√

3/2

 Rθv2=

−cosθ/2
−sinθ/2

−
√
3/2

,
and we make a distribution where µ0,θ =

1
2δv0 +

1
2δRθv0

, µ1,θ =
1
2δv1 +

1
2δRθv1 , µ2,θ =

1
2δv2 +

1
2δRθv2 . That is, similar to

the binary setting, we take a mixture of a simplex and that simplex rotated by θ in a dimension orthogonal to its subspace.

Now, we want to compute what the loss is. Recall that our asymptotic loss function is

Lspread(µ,α)=(1−α)Ex

[
logEx−

[
exp

(
− 1

2τ
∥f(x)−f(x−)∥2

)]]
(34)

+αEx

[
logEx+

[
exp

(
− 1

2τ
∥f(x)−f(x+)∥2

)]]
+(1−α)Ex,x+

[
1

2τ
∥f(x)−f(x+)∥2

]
.

For the class collapsed embeddings, note that for K=3 the simplex side length is
√
3. Therefore,

Lspread(δv,α)=(1−α)logexp
(
− 1

2τ
·3
)
=

−3·(1−α)

2τ
.

Next, we compute the loss for our intermediate distribution. We note the following:

∥v0−Rθv1∥2=∥Rθv0−v1∥2=∥v0−Rθv2∥2=∥Rθv0−v2∥2=
(
1+

cosθ

2

)2

+
sin2θ

4
+
3

4
=2+cosθ

∥v1−Rθv2∥=∥Rθv1−v2∥=
(
− 1

2
+
cosθ

2

)2

+
sin2θ

4
+3=

7−cosθ

2

∥v0−Rθv0∥=(1−cosθ)2+sin2θ=2−2cosθ

∥v1−Rθv1∥=∥v2−Rθv2∥=
(
− 1

2
+
cosθ

2

)2

+
sin2θ

4
=

1−cosθ

2

and recall that ∥vi−vj∥2=∥Rθvi−Rθvj∥2=3. Plugging these back in, we have

Ex

[
logEx−

[
exp(−∥f(x)−f(x−)∥2/2τ)

]]
=

1

3
log

(
1

2
exp

(
− 3

2τ

)
+
1

2
exp

(
− 2+cosθ

2τ

))
+
2

3
log

(
1

2
exp

(
− 3

2τ

)
+
1

4
exp

(
− 7−cosθ

4τ

)
+
1

4
exp

(
− 2+cosθ

2τ

))
Ex

[
logEx+

[
exp(−∥f(x)−f(x+)∥2/2τ)

]]
=

1

3
log

(
1

2
+
1

2
exp

(
− 1−cosθ

τ

))
+
2

3
log

(
1

2
+
1

2
exp

(
− 1−cosθ

4τ

))
Ex,x+

[
1

2τ
∥f(x)−f(x+)∥2

]
=

1

3
· 1−cosθ

4τ
+
1

6
· 1−cosθ

τ
=

1−cosθ

4τ

We use the above expressions to simplify (34) and numerically check that there exists θ for α ≳ 0.6 such that
L(µθ,α) ≤ L(δv,α). We then numerically check there exists (θ,α) that also satisfies L(µθ,α) ≤ L(σd−1,α), where
L(σd−1,α) is defined in (21).
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D.2. Permutation Invariance

This result is a simple example of a sufficient condition under whichLspread does not exhibit class-fixing permutation invariance.

Lemma 4. Let ϕ : R+ → R
+ be a monotonically increasing function. Suppose that for x,x′ ∈ X , all f ∈ F satisfy

∥f(x)−f(x′)∥≤ϕ(∥x−x′∥). Then, Lspread is not invariant on class-fixing permutations under F .

Proof. First, note that Lspread in (2) has terms in the numerator of Lsup of the form ∥f(x)−f(x+)∥, where h(x) = h(x+).
We show how to break permutation invariance using this quantity.

Fix two vectors in the embedding space Sd−1, ua and ub. For x1,x2 in a given class, suppose that f(x1)=ua and f(x2)=ub.
We select a third point x3 that is very close to x1, satisfying ϕ(∥x3−x1|)<∥ua−ub∥ (this property must hold for some x3

since ϕ is monotonic).

We construct a permutation π where π(1)= 3,π(2)= 1,π(3)= 1. We know that ∥ua−ub∥≤ϕ(∥x1−x2∥). Suppose that
the mapping fπ satisfies ∥fπ(x3)−fπ(x1)∥= ∥ua−ub∥. However, this implies that ∥ua−ub∥≤ϕ(∥x3−x1∥), which is
a contradiction. Therefore, no fπ ∈F exists that is able to map the permutation to the same value as f does. As this holds
for a single term in Lspread, it applies to Lspread overall, demonstrating that such an assumption on F (which we find is true
for a Lipschitz encoder, the autoencoder, and data augmentations) is able to break permutation invariance.

E. Auxiliary Lemmas
Lemma 5. Under the infinite encoder assumption, the following statement holds for Ldiff(f):

min
µ∈{Sd−1}K

Ex

[
logEx−

[
exp(−∥f(x)−f(x−)∥2/2τ)

]]
≡ min

µ∈{Sd−1}K
logEx,x−

[
exp(−∥f(x)−f(x−)∥2/2τ)

]
.

Proof. Conditioning on the label of x and using the definition of x− for K=2, we can write Ldiff(f) as
Ldiff(f)=Ey

[
Ex|h(x)=y

[
logEx−|h(x−) ̸=y

[
exp(σf (x,x

−))
]]]

=
1

2

∫
p(x|y=0)

(
log

∫
p(x−|y=1)exp(σf (x,x

−))dx−
)
dx

+
1

2

∫
p(x|y=1)

(
log

∫
p(x−|y=0)exp(σf (x,x

−))dx−
)
dx.

Since the encoder is assumed to be infinitely powerful, we optimize over the class-conditional measures µ0 and µ1 in
M(Sd−1), the set of Borel probability measures on Sd−1. The optimization problem is now

minimizeµ0,µ1

∫ (
log

∫
exp(σ(x,x−))dµ1(x)

)
dµ0(x)+

∫ (
log

∫
exp(σ(x,x−))dµ0(x)

)
dµ1(x).

Next, define

Uµ(u)=

∫
exp(u⊤v/τ)dµ(v).

The expression we want to minimize is thus

minimizeµi,µ−i

∫
logUµ1

(u)dµ0(u)+

∫
logUµ0

(u)dµ1(u). (35)

Following the approach of Wang & Isola (2020), we analyze the measures µ⋆
0,µ

⋆
1 that minimize this expression in two steps.

First, we show that the minimum of (35) exists, i.e. the infimum is attained for some two measures. Second, we show thatUµ⋆
0

is
constant µ⋆

1-almost surely, and vice versa. This will allow us to interchange the outer expectation over x and the log in Ldiff(f).

1. Minimizers of (35) exist.
Let m be a sequence such that

lim
m→∞

∫
logUµm

1
(u)dµm

0 (u)+

∫
logUµm

0
(u)dµm

1 (u)

= inf
µ0,µ1

∫
logUµ1(u)dµ0(u)+

∫
logUµ0(u)dµ1(u).
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Using Helly’s Selection Theorem twice, there exists a subsequence n such that {(µn
0 ,µ

n
1 )}n converges to a weak cluster

poinnt (µ⋆
0,µ

⋆
1). Because {logUµn

0
}n is uniformly bounded and continuously convergent to logUµ⋆

0
and same for µn

1 and
µ⋆
1, it holds that ∫

logUµ⋆
1
(u)dµ⋆

0(u)+

∫
logUµ⋆

0
(u)dµ⋆

1(u)

= lim
n→∞

∫
logUµn

1
(u)dµn

0 (u)+

∫
logUµn

0
(u)dµn

1 (u)).

and therefore µ⋆
0,µ

⋆
1 achieve the infimum of (35).

2. Uµ⋆
1

is constant µ⋆
0-almost surely and Uµ⋆

0
is constant µ⋆

1-almost surely, for any minimizer (µ⋆
0,µ

⋆
1) of (35).

Formally, define (µ⋆
0,µ

⋆
1) to be a solution of (35), i.e.

µ⋆
0,µ

⋆
1∈argminµ0,µ1

∫
logUµ1(u)dµ0(u)+

∫
logUµ0(u)dµ1(u).

Define the Borel sets where µ⋆
i has positive measure to be Ti = {T ∈M(Sd−1) : µ⋆

i (T )> 0}. Define the conditional
distribution of µ⋆

i on T for some T ∈Ti as µ⋆
i,T , where µ⋆

i,T (A)=
µ⋆
i (A∩T )
µ⋆
i (T ) .

Now we consider a mixture (1−α)µ⋆
0+αµ⋆

0,T . The first variation of µ⋆
0 states that

0=
∂

∂α

[∫
logUµ⋆

1
(u)d((1−α)µ⋆

0+αµ⋆
0,T )(u)+

∫
logU(1−α)µ⋆

0+αµ⋆
0,T

dµ⋆
1(u)

∣∣∣∣
α=0

]
=

∫
logUµ⋆

1
(u)d(µ⋆

0,T −µ⋆
0)(u)+

∫ Uµ⋆
0,T

(u)−Uµ⋆
0
(u)

Uµ⋆
0
(u)

dµ⋆
1(u),

Where we’ve used the fact that ∂
∂αU(1−α)µ⋆

0+αµ⋆
0,T

(u)
∣∣
α=0

= ∂
∂α

∫
exp(u⊤v/τ)d((1 − α)µ⋆

0 + αµ⋆
0,T )(v)

∣∣
α=0

=

Uµ⋆
0,T

(u)−Uµ⋆
0
(u). Therefore, due to symmetry the optimality conditions using the first variation are∫

logUµ⋆
1
(u)d(µ⋆

0,T −µ⋆
0)(u)+

∫ Uµ⋆
0,T

(u)

Uµ⋆
0
(u)

dµ⋆
1(u)=1 (36)∫

logUµ⋆
1
(u)d(µ⋆

1,T −µ⋆
1)(u)+

∫ Uµ⋆
1,T

(u)

Uµ⋆
1
(u)

dµ⋆
0(u)=1 (37)

Now, let {Tn
0 }∞n=1 be a sequence of sets in T0 such that

lim
n→∞

∫
Uµ⋆

1
(u)dµ⋆

0,Tn
0
(u)= sup

T0∈T0

∫
Uµ⋆

1
(u)dµ⋆

0,T0
(u)=U⋆

1,0.

and similarly let {Tn
1 }∞n=1 be a sequence of sets in T1 such that

lim
n→∞

∫
Uµ⋆

0
(u)dµ⋆

1,Tn
1
(u)= sup

T1∈T1

∫
Uµ⋆

0
(u)dµ⋆

1,T1
(u)=U⋆

0,1.

It holds that µ⋆
0({u :Uµ⋆

1
(u)≥U⋆

1,0}) = 0, µ⋆
0,Tn

0
({u :Uµ⋆

1
(u)≥U⋆

1,0}) = 0 and similarly µ⋆
1({u :Uµ⋆

0
(u)≥U⋆

0,1}) = 0,
µ⋆
1,Tn

1
({u :Uµ⋆

0
(u)≥U⋆

0,1})=0.

This implies that asymptotically Uµ⋆
0

is constant µ⋆
1,Tn

1
-almost surely:∫ ∣∣∣∣Uµ⋆

0
(u)−

∫
Uµ⋆

0
(u′)dµ1,Tn

1
(u′)

∣∣∣∣dµ⋆
1,Tn

1
(u)

=2

∫
max

(
0,Uµ⋆

0
(u)−

∫
Uµ⋆

0
(u′)dµ⋆

1,Tn
1
(u′)

)
dµ⋆

1,Tn
1
(u)

≤2

(
U⋆
0,1−

∫
Uµ⋆

0
(u)dµ⋆

1,Tn
1
(u)

)
→0.

And the same holds that Uµ⋆
1

is constant µ⋆
0,Tn

0
-almost surely. As a result, limn→∞

∫
logUµ⋆

0
(u)dµ⋆

1,Tn
1
(u)=logU⋆

0,1 and
limn→∞

∫
logUµ⋆

1
(u)dµ⋆

0,Tn
0
(u)=logU⋆

1,0.
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We now revisit (36) with a mixture over µ⋆
0 and µ0,Tn

0
:

1=

∫
logUµ⋆

1
(u)d(µ⋆

0,Tn
0
−µ⋆

0)(u)+

∫ Uµ⋆
0,Tn

0

(u)

Uµ⋆
0
(u)

dµ⋆
1(u)

≥
∫
logUµ⋆

1
(u)d(µ⋆

0,Tn
0
−µ⋆

0)(u)+
1

U⋆
0,1

∫
Uµ⋆

1
(u)dµ⋆

0,Tn
0
(u).

Taking the limit of both sides as n→∞, we get

1≥ logU⋆
1,0−

∫
logUµ⋆

1
(u)dµ⋆

0(u)+
1

U⋆
0,1

U⋆
1,0.

and rearranging and doing the same to (37) yields(
1−

U⋆
1,0

U⋆
0,1

)
≥ logU⋆

1,0−
∫
logUµ⋆

1
(u)dµ⋆

0(u)(
1−

U⋆
0,1

U⋆
1,0

)
≥ logU⋆

0,1−
∫
logUµ⋆

0
(u)dµ⋆

1(u)

Note that Jensen’s inequality and the definition of U⋆
1,0 tell us that

∫
logUµ⋆

1
(u)dµ⋆

0(u)≤ log
∫
Uµ⋆

1
(u)dµ⋆

0(u)≤ logU⋆
1,0,

which means that
(
1− U⋆

1,0

U⋆
0,1

)
≥0. However, applying the same logic also tells us that

(
1− U⋆

0,1

U⋆
1,0

)
≥0. The only case in

which this is possible is when U⋆
1,0=U⋆

0,1, in which case equality is obtained. Therefore, this means that for optimal µ⋆
0,µ

⋆
1,

it holds that ∫
logUµ⋆

1
(u)dµ⋆

0(u)=log

∫
Uµ⋆

1
(u)dµ⋆

0(u) (38)∫
logUµ⋆

0
(u)dµ⋆

1(u)=log

∫
Uµ⋆

0
(u)dµ⋆

1(u) (39)

Using (38) and (39), minimizing (35) is equivalent to minimizing

log

∫
Uµ1

(u)dµ0(u),

where we use the fact that µ0 and µ1 are interchangable in the above expression. This expression can be written as
logEx,x−

[
exp(−∥f(x)−f(x−)∥2/2τ)

]
, which completes our proof.

Lemma 6. Suppose F is a family of functions mapping from X to Rd. Define f(x)[j] as the jth element of f(x) and suppose
that for all j, |f(x)[i]|≤ b. Define the element-wise class Fj ={f(·)[j] :f ∈F}. Then, with probability at least 1−δ over
n i.i.d. samples {xi}ni=1, ∥∥∥∥E[f(x)]− 1

n

n∑
i=1

f(xi)

∥∥∥∥≤2Rn(F)+bd

√
log(d/δ)

2n
∀f ∈F ,

where Rn(F)=
∑d

j=1Rn(Fj).

Proof. Using the triangle inequality,∥∥∥∥E[f(x)]− 1

n

n∑
i=1

f(xi)

∥∥∥∥=( d∑
j=1

(
E[f(x)[j]]− 1

n

n∑
i=1

f(xi)[j]
)2

)1/2

≤
d∑

j=1

∣∣∣∣E[f(x)[j]]− 1

n

n∑
i=1

f(xi)[j]

∣∣∣∣.
Using Theorem 3.3 of Mohri et al. (2018), we know that with probability at least 1−δ,

E[f(x)[j]]≤ 1

n

n∑
i=1

f(xi)[j]+2Rn(Fj)+b

√
2log(1/δ)

n
.

Applying a union bound, we have that with probability at least 1−δ,∥∥∥∥E[f(x)]− 1

n

n∑
i=1

f(xi)

∥∥∥∥≤ d∑
j=1

(
2Rn(Fj)+b

√
log(d/δ)

2n

)
=2Rn(F)+bd

√
2log(d/δ)

n
.
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F. Additional Experimental Details
We describe details about the datasets, model architectures, and hyperparameters.

F.1. Datasets

We first describe all the datasets in more detail:

• CIFAR10, CIFAR100, and MNIST are all the standard computer vision datasets.

• CIFAR10-Coarse consists of two superclasses: animals (dog, cat, deer, horse, frog, bird) and vehicles (car, truck, plane,
boat).

• CIFAR100-Coarse consists of twenty superclasses. We artificially imbalance subclasses to create CIFAR100-Coarse-U.
For each superclass, we select one subclass to keep all 500 points, select one subclass to subsample to 250 points, select
one subclass to subsample to 100 points, and select the remaining two to subsample to 50 points. We use the original
CIFAR100 class index to select which subclasses to subsample: the subclass with the lowest original class index keeps
all 500 points, the next subclass keeps 250 points, etc.

• TinyImageNet-Coarse (Le & Yang, 2015) consists of 67 superclasses constructed from the ImageNet class
hierarchy (Bostock, 2018). The 67 superclasses are as follows: arachnid, armadillo, bear, bird, bug, butterfly, cat, coral,
crocodile, crustacean, dinosaur, dog, echinoderms, ferret, fish, flower, frog, fruit, fungus, hog, lizard, marine mammals,
marsupial, mollusk, mongoose, monotreme, person, plant, primate, rabbit, rodent, salamander, shark, sloth, snake,
trilobite, turtle, ungulate, vegetable, wild cat, wild dog, accessory, aircraft, ball, boat, building, clothing, container,
cooking, decor, electronics, fence, food, furniture, hat, instrument, lab equipment, other, outdoor scene, paper, sports
equipment, technology, tool, toy, train, vehicle and weapon.

• MNIST-Coarse consists of two superclasses: <5 and ≥5.

• Waterbirds (Sagawa et al., 2019) is a robustness dataset designed to evaluate the effects of spurious correlations on
model performance. The waterbirds dataset is constructed by cropping out birds from photos in the Caltech-UCSD
Birds dataset (Welinder et al., 2010a), and pasting them on backgrounds from the Places dataset (Zhou et al., 2014).
It consists of two categories: water birds and land birds. The water birds are heavily correlated with water backgrounds
and the land birds with land backgrounds, but 5% of the water birds are on land backgrounds, and 5% of the land birds
are on water backgrounds. These form the (imbalanced) hidden strata.

• ISIC is a public skin cancer dataset for classifying skin lesions (Codella et al., 2019) as malignant or benign. 48% of
the benign images contain a colored patch, which form the hidden strata.

• CelebA is an image dataset commonly used as a robustness benchmark (Liu et al., 2015; Sagawa et al., 2019). The task
is blonde/not blonde classification. Only 6% of blonde faces are male, which creates a rare stratum in the blonde class.

F.2. Model Architectures

We use a ViT model (Dosovitskiy et al., 2020) (4 x 4 patch size, 7 multi-head attention layers with 8 attention heads and
hidden MLP size of 256, final embedding size of 128) as the encoder for the transfer learning experiments and a ResNet50
for the robustness experiments. For the ViT models, we jointly optimize the contrastive loss with a cross-entropy loss head.
For the ResNets, we train the contrastive loss on its own and use linear probing on the final layer.

For the autoencoder, we use the same encoder backbone as the main model, and use a ResNet18 in reverse order for the decoder.
The convolutions are replaced with resize convolutions. We use the implementation in PyTorch Lightning Bolts2 (Falcon
& Cho, 2020).

2https://github.com/PyTorchLightning/lightning-bolts/blob/master/pl_bolts/models/
autoencoders/components.py

https://github.com/PyTorchLightning/lightning-bolts/blob/master/pl_bolts/models/autoencoders/components.py
https://github.com/PyTorchLightning/lightning-bolts/blob/master/pl_bolts/models/autoencoders/components.py
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End Model Perf.

Dataset InfoNCE Lsup Lspread

CIFAR10 89.7 90.9 91.5
CIFAR10-Coarse 97.7 96.5 98.1
CIFAR100 68.0 67.5 69.1
CIFAR100-Coarse 76.9 77.2 78.3
CIFAR100-Coarse-U 72.1 71.6 72.4
MNIST 99.1 99.3 99.2
MNIST-Coarse 99.1 99.4 99.4
Waterbirds 77.8 73.9 77.9
ISIC 87.8 88.7 90.0

Table 6. End model performance training with Lspread on various datasets compared against contrastive baselines. All metrics are accuracy
except for ISIC (AUROC). Lspread produces the best performance in 7 out of 9 cases, and matches the best performance in 1 case.

Table 7. Coarse-to-fine transfer learning performance (expanded table). Best in bold.
Method CIFAR10 CIFAR100 CIFAR100-U MNIST TinyImageNet

B
as

el
in

es

Cross Entropy 71.1 ± 0.2 54.2 ± 0.2 56.4 ± 0.4 98.7 ± 0.1 44.4 ± 0.1
InfoNCE (Chen et al., 2020a) 77.6 ± 0.1 60.5 ± 0.1 56.4 ± 0.3 98.4 ± 0.1 44.9 ± 0.1
SupCon (Khosla et al., 2020) 51.8 ± 1.2 56.1 ± 0.1 49.8 ± 0.3 95.4 ± 0.1 43.9 ± 0.1
SupCon + InfoNCE (Islam et al., 2021) 77.6 ± 0.1 55.7 ± 0.1 48.0 ± 0.2 98.6 ± 0.1 46.1 ± 0.1

O
ur

s

cAuto 71.4 ± 0.1 62.9 ± 0.1 58.7 ± 0.5 98.7 ± 0.1 47.1 ± 0.1
SupCon + cNCE (Lspread) 77.1 ± 0.1 58.7 ± 0.2 53.5 ± 0.4 98.5 ± 0.1 45.8 ± 0.1
SupCon + cAuto 71.7 ± 0.1 63.8 ± 0.6 59.8 ± 0.3 98.7 ± 0.1 49.3 ± 0.1
SupCon + cNCE + cAuto (THANOS) 79.1 ± 0.2 65.0 ± 0.2 59.7 ± 0.3 99.0 ± 0.1 49.6 ± 0.1

F.3. Hyperparameters

For the coarse dataset training, all models were trained for 600 epochs with an initial learning rate of 0.0003, a cosine
annealing learning rate scheduler with Tmax set to 100 and the AdamW optimizer. A dropout rate of 0.05 was used. We
did not use weight decay. For each coarse dataset, we trained 5 separate models which jointly optimize a cross-entropy loss
head with either a contrastive loss (InfoNCE, SupCon, SupCon + InfoNCE, SupCon + Class-conditional InfoNCE) or a
reconstruction loss (mean squared error).

In the coarse-to-fine transfer experiments, we trained 5 separate models for each of the configurations reported in Table 3
using 5 random seeds (42, 32, 64, 128 and 72). All models were trained for 100 epochs with an initial learning rate of 0.001,
a cosine annealing learning rate scheduler with Tmax set to 100 and the AdamW optimizer. All transfer experiments were
run using Tesla V100 machines.

All experiments were run using a batch size of 128 for both training and evaluation.

G. Additional Experimental Results
We present additional experimental results on end model accuracy, transfer with cross entropy, more datasets, more baselines,
and full ablations.

G.1. End Model Accuracy

See Table 6 for raw accuracy. We confirm that using Lspread instead of Lsup does not degrade end model performance.

G.2. Additional Transfer Results

We reproduce Table 3 and additional report the performance of training with cross entropy loss (Table 7).
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Table 8. Coarse-to-fine transfer learning performance on two additional datasets. Best in bold.
Method Caltech-UCSD Birds Stanford Dogs

Cross Entropy 8.2 14.9
SupCon (Khosla et al., 2020) 7.8 15.0
cAuto 8.8 17.7
SupCon + cNCE (Lspread) 7.5 16.5
SupCon + cAuto 9.1 19.8
SupCon + cNCE + cAuto (THANOS) 8.8 20.8

Table 9. Coarse-to-fine transfer learning performance on CIFAR10 with two additional baselines. Best in bold.
Method CIFAR10

Clip Positives 35.3
Weighted Pos in Denom. 56.3
THANOS 79.1

Table 10. Ablations on the autoencoder and data augmentation on CIFAR10 coarse-to-fine transfer.

General vs. Class-Conditional Autoencoder

gAuto 41.4 ± 0.2
cAuto 71.4 ± 0.1

SupCon 51.8 ± 1.2
SupCon + gAuto 55.4 ± 0.4
SupCon + cAuto 71.7 ± 0.1

SupCon + cNCE 77.1 ± 0.1
SupCon + cNCE + gAuto 77.4 ± 0.1
SupCon + cNCE + cAuto (THANOS) 79.1 ± 0.2

cNCE With and Without Augmentation

SupCon + cNCE - augmentation 41.7 ± 0.2
SupCon + cNCE 77.1 ± 0.1

G.3. Additional Datasets

Table 8 report the performance of C2F transfer on two additional datasets, Caltech-UCSD Birds (Welinder et al., 2010b)
and Stanford Dogs (Khosla et al., 2011).

G.4. Additional Baselines

Table 9 reports C2F transfer performance with two additional baselines—a) clipping the values of the positives in the
numerator Lsup, and b) upweighting the negatives in the denominator of Lsup. Both these methods underperform THANOS.

G.5. Ablations and Sensitivity Studies

In this section, we validate our specific theoretical claims on the class-conditional autoencoder, data augmentation, and the
Lipschitzness of the decoder.

We use two ablations to validate our claims that the class-conditional autoencoder outperforms a generic autoencoder, and that
data augmentation in the class-conditional InfoNCE loss is critical for inducing subclass clustering. Table 10 reports the results:

• Lemma 2 claims that a class-conditional autoencoder should outperform a generic autoencoder in coarse-to-fine transfer.
Indeed, we find that using a generic autoencoder underperforms a class-conditional autoencoder by 30.0 points on CIFAR10
coarse-to-fine transfer. Furthermore, the generic autoencoder does not improve performance of SupCon or its variants
as well; we observe average lift of 2.0 points, compared to 11.0 points for the class-conditional autoencoder.
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Figure 3. Measures of Lipschitzness for three ways to break permutation invariance. Encoder Lipschitzness reports pixel distance on
the X axis and embedding distance on the Y axis. The Decoder reports pixel distance of the reconstruction. For augmentations, we run
ten augmentations and pick the pair with the smallest ratio of pixel distance to embedding distance. The decoder is more Lipschitz than
the encoder, and the encoder is more Lipschitz under augmentations than under traditional Lipschitzness.

• Lemma 3 claims that data augmentation in the class-conditional InfoNCE loss is key to break the permutation invariance.
Removing data augmentation degrades performance by 35.4 points (and produces the permutation shown in Figure 1).

Finally, Figure 3 measures the Lipschitzness of an encoder trained with Lspread and the reverse Lipschitzness of the decoder
from a class-conditional autoencoder. The encoder displays a high Lipschitzness constant (not very Lipschitz). However,
it displays a low Lipschitzness constant over augmentations. The decoder displays a lower reverse Lipschitzness constant.
This suggests that the assumptions in Lemmas 2 and 3 are reasonable.

To measure Lipschitzness of an encoder, we measure distance in embedding space of an encoder trained with Lspread
vs. distance in pixel space of two images (blue line). To measure reverse Lipschitzness of a decoder, we make the same
measurement, but over pixel distance of decoded images from an autoencoder (orange line). To measure Lipschitzness under
data augmentations, we measure the minimum ratio between embedding distance and pixel distance for 10 randomly-generated
augmentations of two images (red line). The Lipschitzness constants KL, Kg , and Kaug in Table 1 are the slopes of the lines
tangent to each of the curves in Figure 3 from the origin.

H. Synthetic Experiments
We conduct synthetic experiments to understand the optimal geometry that minimizes the asymptotic loss Lspread(µ,α) as
defined in Section 3.2.

Setup We minimize an empirical estimate of the asymptotic loss over a set of unit vectors {ui}
Kny

i=1 . Denote u as a unit
vector, and denote h(u) as its class label. The loss we minimize is

(1−α)
1

Kny

Kny∑
i=1

log

(
1

(K−1)ny

∑
j:h(ui )̸=h(uj)

exp(−∥ui−uj∥2/2τ)
)

(40)

+α· 1

Kny

Kny∑
i=1

log

(
1

ny

∑
j:h(ui)=h(uj)

exp(−∥ui−uj∥2/2τ)
)
+(1−α)

1

Kn2
y

∑
h(u)=h(u′)

∥u−u′∥2/2τ. (41)

We use scipy.minimize and the Sequential Least Squares Programming (SLSQP) option. We report the set of vectors that
obtain the lowest loss over 5 runs with random initializations (seeds 0−4) as the optimal geometry.

We compute an empirical estimate of sf (y) as 1
ny

∑
u:h(u)=y

∥∥∥u− 1
ny

∑
u′:h(u′)=yu

′
∥∥∥, and average over all classes.

Matching µ and the optimal geometry Figure 4 displays our constructed distribution µθ as well as simulations on S1

for K=2. In particular, the right figure consists of the optimal geometry for ny=20, τ=0.5. We see that for α=0.6 (which
is below our threshold in Theorem 2), that the optimal geometry is collapsed. For α=0.7, the optimal geometry appears



Perfectly Balanced: Improving Transfer and Robustness of Supervised Contrastive Learning

α = 0.6 α = 0.7 α = 0.8
Simulations
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Figure 4. Left: Distribution family µθ . Right: Simulations of optimal geometry for binary setting on S1.

to closely match the parametrization of µθ. For α=0.8, which is above the theoretical threshold, the optimal geometry is
uniform per class.
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Figure 5. The value of c(τ,d), which determines the range of α for which µθ obtains lower loss than δv and σd−1.

Computing c(τ,d) Next, we compute the value of c(τ,d), the constant in Theorem 2, over values of τ and d to verify that
α∈ (2/3,c(τ,d) is a valid range for which the optimal geometry is neither collapsed nor uniform. This quantity depends
on the Wiener constant of the Gaussian 1

2τ -energy on Sd−1, which does not have a closed form expression (see (22)). Figure 5
shows that c(τ,d)>2/3 for d up to 128 (which is the dimension of our embedding space) and for τ=0.1,0.25,0.5,1,2.

0.5 0.6 0.7 0.8 0.9 1.0
alpha

0.0

0.2

0.4

0.6

0.8

1.0

s_
f(y

)

Spread of optimal geometry vs alpha (vary d, K=2, tau=0.5)
d = 2
d = 5
d = 10

0.5 0.6 0.7 0.8 0.9 1.0
alpha

0.0

0.2

0.4

0.6

0.8

1.0

s_
f(y

)

Spread of optimal geometry vs alpha (vary tau, K=2, d=2)
tau = 0.1
tau = 0.25
tau = 0.5
tau = 1
tau = 2

Figure 6. The spread sf (y) of the optimal geometry for a given α in the binary setting, ny =8. Left: how optimal spread changes based
on dimension d of the embedding space. Right: how optimal spread changes based on the temperature hyperparameter τ .

Varying τ and d forK=2 We plotα versus spread sf (y) for the optimal geometry in the binary setting, and in particular we
vary τ and d in Figure 6. We compute the optimal geometries overα=0.5,0.6,0.67,0.69,0.71,0.73,0.75, 0.8,0.9. Figure 6 left
shows how the spread changes as α increases for dimensions d=2,5,10 and ny=8 samples with τ=0.25, and the right shows
how the spread changes as α increases for τ=0.1,0.25,0.5,1,2 with d=2. Note that for all dimensions and all τ , the optimal
geometry has nonzero spread starting atα=0.67, matching our theoretical findings. The point at which the uniform distribution
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becomes optimal is less clear but follows the trends we note from Figure 5 for c(τ,d). This figure matches our findings that
an α that induces appropriate spread exists over a certain range, outside of which behavior is strictly collapsed or uniform.

α=0.6 α=0.64 α=0.8

Optimal Geometry for K = 3, τ=0.5

Figure 7. Visualizations of the optimal geometry for ny=8,K=3 in S2 across various α.

Multiclass Analysis for K=3 Similar to Figure 4, we show for K=3 and S2 that the optimal geometry is collapsed for
low α, sufficiently spread for a particular range, and uniform for high α. Figure 7 displays the optimal geometry for ny=8,
τ=0.5 across α=0.6,0.64,0.8, suggesting that the multiclass case exhibits similar behavior as α varies.

0.5 0.6 0.7 0.8 0.9 1.0
alpha

0.0

0.2

0.4

0.6

0.8

1.0

s_
f(y

)

Spread of optimal geometry vs alpha (vary d, K=3, tau=0.5)
d = 3
d = 5
d = 10

0.5 0.6 0.7 0.8 0.9 1.0
alpha

0.0

0.2

0.4

0.6

0.8

1.0

s_
f(y

)

Spread of optimal geometry vs alpha (vary tau, K=3, d=3)
tau = 0.1
tau = 0.25
tau = 0.5
tau = 1
tau = 2

Figure 8. The spread sf (y) of the optimal geometry for a given α when K = 3,ny = 8. Left: how optimal spread changes based on
dimension d of the embedding space. Right: how optimal spread changes based on the temperature hyperparameter τ .

We plot α versus spread sf (y) for the optimal geometry in the multiclass setting, and again we vary τ and d in Figure 8. We
see that the behavior of the optimal geometry’s spread sf (y) across α is roughly similar to that of K=2 in Figure 6.


