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Abstract

We investigate a natural but surprisingly unstud-
ied approach to the multi-armed bandit problem
under safety risk constraints. Each arm is asso-
ciated with an unknown law on safety risks and
rewards, and the learner’s goal is to maximise
reward whilst not playing unsafe arms, as deter-
mined by a given threshold on the mean risk.

We formulate a pseudo-regret for this setting that
enforces this safety constraint in a per-round way
by softly penalising any violation, regardless of
the gain in reward due to the same. This has
practical relevance to scenarios such as clinical
trials, where one must maintain safety for each
round rather than in an aggregated sense.

We describe doubly optimistic strategies for this
scenario, which maintain optimistic indices for
both safety risk and reward. We show that schema
based on both frequentist and Bayesian indices
satisfy tight gap-dependent logarithmic regret
bounds, and further that these play unsafe arms
only logarithmically many times in total. This the-
oretical analysis is complemented by simulation
studies demonstrating the effectiveness of the pro-
posed schema, and probing the domains in which
their use is appropriate.

1. Introduction
We consider the safety constrained multi-armed bandit prob-
lem, where each arm, k ∈ [1 : K] is modelled by a tuple,
consisting of a stochastic reward, of mean µk, and an as-
sociated stochastic safety-risk, of mean νk. Upon playing
an arm, the learner observes noisy instances of the reward
and safety-risk. The learner is provided with a tolerated risk
level, denoted α, and the goal of the safe bandit problem is
to maximise the reward gained over the course of play, while
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ensuring that unsafe arms—those for which νk > α—are
not played too often.

We propose the following regret formulation to model the
above criteria. Let µ∗ be the mean reward of the largest safe
action, i.e, the largest µk over arms such that νk ≤ α. Let
At be the arm pulled by the algorithm at time t. We study

RT :=
∑
t≤T

max(µ∗ − µAt , νAt − α). (1)

Before describing the results, let us sketch a scenario of
particular interest, which informs our formulation.

Clinical Trials. Trial drugs have both positive (eg. curing a
disease) and negative side-effects (headaches, nausea, etc)
on a patient in a clinical trial, and it is as much in the interest
of a patient to ensure that negative side effects are limited as
it is to ensure that the drug is effective (e.g. Genovese et al.,
2013). This scenario motivates the problem of choosing
drug and dosage (arms) that have the maximum positive
response while ensuring that the side-effects remain below
some threshold α. Since each patient responds differently,
the observed response and the manifestation of side-effects
for a specific patient can be modelled as random-variables,
with the corresponding means representing population av-
erages. Importantly, for such a scenario, safety must be
accounted for in a per-round sense - it does no good to al-
ternate between assigning ineffective placebos and effective
but harmful doses. Instead we need to ensure that individu-
als are not exposed to undue risk while accruing benefits.

How does our formulation account for this scenario?

• Risk Per Round. Regret ensures that unsafe arms are
rarely played in a per-round (per-patient) sense rather than
ensuring safety in an overall sense–for any k ̸= k∗, at
least one of µ∗ − µk or νk − α must be positive, and so
benefits in efficacy due to unsafe dosages are discounted.

• Small safety violations are penalized less (smoothness).
Small violations of negative side-effects is a permissible
risk (elevated nausea level than desired), worth taking on
for a few patients, in the hope of finding a drug/dosage
that is effective for the population. Our penalty on safety
violations is smooth.

• Control of Cumulative risk and Violations Since choosing
an infeasible arm in any round contributes a constant
amount to the regret, a smallRT further ensures that the
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cumulative safety risk and the cumulative safety violations
(i.e. times such that νAt > α) are also small.

We next describe our main technical contributions.

Four Optimistic Strategies. We explore doubly optimistic
index-based strategies for choosing arms. These maintain
optimistic indices for both the reward and safety risk of
each arm, and proceed by first developing a set of plausibly
safe actions using the safety indices, and then choose the
arm with the highest reward index to play, thus encouraging
sufficient exploration. In standard bandits there are two
broad classes of such index-based strategies - those based on
frequentist confidence bounds, and those based on Bayesian
posteriors. This suggests four natural variants in the safe
bandit case, through two choices for each of the reward
and safety indices. We explicitly study three of these - first
when both indices are frequentist, second when the safety
index is left frequentist but the reward index is replaced
by Thompson sampling, and finally when both indices are
based on Bayesian methods. While left explicitly unstudied,
the case of frequentist reward and Bayesian safety indices
follows naturally from our analysis.

Logarithmic Regret Bounds. In all cases, we show that
these strategies admit strong gap-dependent logarithmic
regret rates. Further each of these also ensure that the
number of times any unsafe arm is played at all (i.e.,∑

1{νAt > α}) is similarly logarithmically bounded. Fi-
nally we show a lower bound which demonstrates that our
regret bounds are tight in the limit of large time horizons.
The proofs adapt existing results of bandit theory to ar-
gue that for well designed safety indices, the optimal arm
k∗ always remains valid, but any unsafe arms are quickly
eliminated. Further, so long as k∗ remains valid, standard
approaches show that inefficient arms cannot be played too
often. An interesting consequence is that the play of strictly
dominated arms - those that are both unsafe and inefficient -
is limited by the larger of the two gaps.

Empirical Results. We complement the above theoretical
study with simulations. First, we practically illustrate that
prior policy-based approaches to the safe and constrained
bandits do not yield favourable play in our scenario. Next,
we implement our proposals, and both illustrate that the
methods indeed meet the theoretical guarantees, and further
contextualise their relative merits in a practical sense. The
broad observation regarding the latter is that Thompson
sampling based methods tend to offer better performance in
terms of means.

1.1. Related Work

Bandit problems are exceedingly well studied, and a
plethora of methods with subtle differences have been estab-
lished. We refer the reader to the recent book of Lattimore

& Szepesvári (2020) for a thorough introduction.

We first describe prior approaches to constrained bandit
problems from a formulational point of view. The most
important aspect of this is that prior formulations tend to
constrain play in an aggregate sense. This raises issues
when we need to ensure safety in a per-round sense, as is
illustrated by a running example. We then contextualise our
methodological proposals with respect to the prior work, and
finally discuss pure exploration in the safe-bandit setting.

Globally Constrained Formulations The theory of ban-
dits with global constraints was initiated by Badanidiyuru
et al. (2013), and extended by Agrawal & Devanur (2014).
Specialised to our context, these works constrain the to-
tal number of adverse effects whilst matching the perfor-
mance of the optimal dynamic policy that is aware of all
means. More concretely, suppose that the safety risk ob-
served is a random variable St. Badanidiyuru et al. (2013)
enforce the hard constraint that (

∑
St − αT ) ≤ 0, while

Agrawal & Devanur (2014) relax this into a second regret
ST = max (0,

∑
St − αT ) , and ensure that this is small.

Such aggregate safety formulation is lacking from our per-
spective, as is illustrated by the following simple example
of two arms with means

(µ1, ν1) = (1/2, 0), (µ2, ν2) = (1, 1). (2)
Due to the global constraint, the optimal dynamic policy
is to pull arm 2 for αT rounds, and then switch to pulling
arm 1. A low regret algorithm must then also pull arm 2
Ω(T ) times. However, such play undesirably exposes a
linear number of rounds to the very unsafe action 2. Our
formulation instead would penalise every play of arm 2 by a
cost of (1− α), and thus effective schema would only play
arm 2 sublinearly many times. It should be noted that since
the constraint is applied in a per-round way, the optimal
dynamic policy in our case is supported on a single arm.

In passing, we also mention the conservative bandit prob-
lem (Wu et al., 2016), which only considers rewards, and
enforces a running aggregate constraint that for any round t,∑

s≤t µ
As ≥ (1− α)tµk0 . While an interesting variation,

we note that such a running constraint on safety-risk would
have similar issues as the above in our situation.

Per-round Constraints The recent work of Pacchiano et al.
(2021) studies the safe bandit problem with two crucial
differences from us. Firstly, the action space is lifted from
single arms to policies (i.e. distributions) over arms, denoted
πt, and secondly, the hard per-round constraint ⟨πt, ν⟩ ≤ α
is enforced. Of course, actual arms are selected by sampling
from πt. The regret studied is

∑
⟨π∗ − πt, µ⟩, where π∗ is

the optimal static safe policy, i.e., the maximiser of ⟨π, µ⟩
subject to ⟨π, ν⟩ ≤ α. Exploration is enabled by giving
the scheme an arm ks known a priori to be safe, and by
spending the slack α− νks as room for exploration in πt.
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While ostensibly constrained at each round, this formula-
tion suffers from similar issues as the previously discussed
globally constrained formulations since the optimal static
policy is safe only in the aggregate sense. Indeed, in the
previous example (2), the optimal π∗ is (1−α, α), so a low
regret algorithm must place large mass on the unsafe arm 2
in most rounds, therefore exposing about Ω(T ) rounds to it.

A similar approach, but crucially without the policy ac-
tion space, was taken by Amani et al. (2019); Moradipari
et al. (2021) in the linear bandit setting. These papers also
study hard round-wise safety constraints, and again utilise
a known safe action, as well as the continuity of the ac-
tion space to enable sufficient exploration. We note that
the particulars of the signalling model adopted by Amani
et al. (2019) paper preclude extending their results to the
multi-armed setting, and while the model of Moradipari
et al. (2021) does admit such extension, the scheme pro-
posed fundamentally relies on having a continuous action
space with a linear safety-risk, and cannot be extended to
multi-armed settings without lifting to policy space.

Methodological Approaches The bulk of the previous pa-
pers are based on frequentist confidence bounds, with two
variants. Similar to our Alg. 1, Agrawal & Devanur (2014)
use doubly optimistic methods that maintain optimistic up-
per bounds on the rewards and lower bounds on the risk,
and play the policy that maximises reward upper bounds
while being safe with respect to the risk lower bounds. In
contrast, Pacchiano et al. (2021); Amani et al. (2019); Wu
et al. (2016) all use optimistic-pessimistic methods, which
instead maintain upper bounds on both the rewards and
safety risk and play the actions with maximum reward upper
bound whilst being safe with respect to the stringent risk
upper bounds. Moradipari et al. (2021) take a similar pes-
simistic approach, but replace the reward upper bounds with
a Thompson sampling procedure that is similar in spirit to
our Alg. 2, although this uses optimistic safety indices. We
also further study a fully Bayesian approach in Alg. 3.

Pure Exploration with Safety Katz-Samuels & Scott
(2018; 2019) design procedures for finding the best feasible
arm based on a combination of optimistic and pessimistic
confidence bounds that is typical of pure exploration ap-
proaches. An interesting variant of this problem was studied
in a recent preprint of Wang et al. (2021), who associate a
continuous ‘dosage’ parameter with each arm, now inter-
preted as a single drug, with the understanding that both
reward and risk grow monotonically with dosage. These
should be compared to the dose-finding bandit problem Aziz
et al. (2021), which seeks to identify a dose level out of K
options that minimises |νk − α|, with the intuition being
that higher doses are more effective, and so should be max-
imised, but without exceeding the safety threshold by much.
The dose-finding approach relies strongly on this assumed

monotonicity. This models the scenario of a single drug,
but is inappropriate for the setting of multiple drugs that are
trialled together, which is better represented as a constrained
optimisation problem (as studied by the former papers). Our
formulation takes precisely this view, but from the perspec-
tive of controlling regret rather than identification. Note that
our smooth penalty for safety violation, max(0, νk − α),
bears similarities to the absolute value loss |νk − α|, where
again a small violation of safety is not penalised strongly.

2. Definitions and Setup
An instance of the safe bandit problem is defined by a risk
level α ∈ [0, 1], a natural K ≥ 2, corresponding to a number
of arms, and a corresponding vector of probability distri-
butions, (Pk)k∈[1:K], each entry of which is supported on
[0, 1]2. We will represent the corresponding random vector
as two components (R,S), which are termed the reward
and safety-risk of a draw from Pk. We further associate two
vectors µ, ν ∈ [0, 1]K , corresponding to the mean reward
and safety-risk of each arm, i.e

(µk, νk) := E(R,S)∼Pk [(R,S)].

We explicitly note that R and S need not be independent -
our results are resilient to any dependence structure.

The scenario proceeds in rounds, denoted t ∈ N. At each
t, the learner (i.e. an algorithm for the bandit problem)
must choose an action At ∈ [1 : K], corresponding to
‘pulling an arm.’ Upon doing so, the learner receives samples
(Rt, St) ∼ PAt independently of the history. The learner’s
information set at time t is Ht−1 = {(As, Rs, Ss) : s < t},
and the action At must be adapted to the filtration induced
by these sets. The learner is unaware of any properties of the
laws Pk beyond the fact that they are supported on [0, 1]2.

The competitor, representing the best safe arm given the
safety constraint and the mean vectors, is defined as

k∗ = argmax
k∈[1:K]

µk s.t. νk ≤ α,

and its mean reward and safety risk are denoted as µ∗, ν∗.
We will use this convention throughout - for any symbol
sk, we set s∗ = sk

∗
. We can ensure that the problem is

feasible by including a no-reward, no-risk arm of means
(0, 0) - this might correspond to a placebo in a clinical trial.
Without loss of generality, we will assume that k∗ is unique.
We define the inefficiency gap ∆k and the safety gap Γk of
playing an arm k as

∆k := 0 ∨ (µ∗ − µk), Γk := 0 ∨ (νk − α),

where a ∨ b := max(a, b), and we will also use a ∧ b :=
min(a, b). Note that ∆k ∨ Γk > 0 for k ̸= k∗.

The performance of a learner for the safe bandit problem is
measured by the (pseudo-) regret of (1), which may also be
written asRT :=

∑
1≤t≤T ∆At ∨ ΓAt .
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Further, with each arm k, we associate state variables Nk
t

denoting the number of times it has been played up to time
t, and Rk

t , S
k
t denoting the total rewards and safety risk

incurred on such rounds. More formally,

Nk
t :=

∑
s<t

1{At = k},

Rk
t :=

∑
s<t

1{At = k}Rt, & Sk
t :=

∑
s<t

1{At = k}St.

Similarly, N∗
t , R

∗
t , S

∗
t denote the corresponding variables

for k∗. Notice thatRt =
∑

k ̸=k∗(∆k ∨ Γk)Nk
t+1. We also

use the notation µ̂k
t := Rk

t /N
k
t , ν̂

k
t := Sk

t /N
k
t .

Since controlling it is of natural interest, we define the
number of times an unsafe arm is played as

UT :=
∑
t

1{νAt > α}.

Finally, for a, b ∈ [0, 1], we use the notation

d(a∥b) := a log
a

b
+ (1− a) log

1− a

1− b
to denote the KL divergence between Bernoulli laws with
means a and b. We will also need the notation

d<(a∥b) := d(a∥b)1{a < b},
d>(a∥b) := d(a∥b)1{a > b}.

Remark While the formulation focuses on a single safety-
constraint, this may be extended. For example, we may
posit a safety-risk vector S ∈ [0, 1]d, and demand that the
corresponding (vector) means νk should lie in some known
safe set S. Natural extensions of the methods below would
control, e.g.,

∑
max(µ∗−µAt ,dist(νAt ,S)). We focus on

a single constraint for clarity and ease of exposition.

3. Doubly Optimistic Confidence Bounds
The use of optimistic confidence bounds is well established
in standard bandits (e.g. Ch. 7-10 Lattimore & Szepesvári,
2020). The idea is that pulling according to the maxi-
mum optimistic bound on the means encourages exploration,
while efficiency follows because the confidence bounds ex-
ploit information to shrink towards the means, eventually
giving evidence for the inefficiency of suboptimal arms.

The idea behind doubly optimistic bounds is identical - we
maintain lower bounds on safety-risk Lk

t and upper bounds
on rewards Uk

t such that Lk
t ≤ νk and Uk

t ≥ µk with
high probability. We then construct a set of ‘permissible
arms’ Πt := {k : Lk

t ≤ α} - these are all the arms that
are plausibly feasible given the information we have up to
time t. At is selected to maximise Uk

t amongst k ∈ Πt.
The optimism of Πt allows us to explore for high rewards,
but the concentration of Lk

t as Nk
t grows serves to identify

unsafe arms, which then cease to be pulled. The broad
scheme is described in Algorithm 1.

Algorithm 1 Doubly Optimistic Confidence Bounds
1: Input: K, functions U,L.
2: Initialise: H0 ← ∅
3: for t = 1, 2, . . . do
4: if t ≤ K then
5: At ← t
6: else
7: ∀k, Lk

t ← L(t,Ht−1, k).
8: Πt ← {k : Lk

t ≤ α}.
9: ∀k ∈ Πt, U

k
t ← U(t,Ht−1, k).

10: At ← argmaxk∈Πt
Uk
t .

11: end if
12: Pull At, receive (Rt, St) ∼ PAt .
13: Update Ht ←Ht−1 ∪ {(At, Rt, St)}.
14: end for

This scheme can be analysed using a variation of the stan-
dard bandit analysis. To control the play of unsafe arms, we
argue that νk − Lk

t is bounded as
√
log(T )/Nk

t . Thus, if
νk > α, the arm k should fall out of Πt after it has been
played at most O(log(T )/(Γk)2) times. Next we argue that
the bounds are ‘consistent’ (or optimistic) with high prob-
abiliy, that is, most of the time L∗

t ≤ ν∗ ( ⇐⇒ k∗ ∈ Πt)
and U∗

t ≥ µ∗. Given this, in order to play arm k, Uk
t must

exceed µ∗, but Uk
t − µk shrinks as O(

√
log T/Nk

t ) bound-
ing Nk

T+1 as O(log(T )/(∆k)2). In the process, strictly
dominated k - for which νk > α and µk < µ∗, are doubly
penalised, and their play is limited by the larger gap.

We will explicitly analyse the scheme by instantiating the
method with bounds based on KL-UCB (Garivier & Cappé,
2011), which offer optimal mean-dependent regret control
for standard bandits. Note that the study of confidence
bounds for bandit methods is mature, and our results can
be improved with other choices of such bounds, e.g. , using
variance sensitive bounds such as EMPIRICAL-KL-UCB
(Cappé et al., 2013) or UCBV (Audibert et al., 2009).

The KL-UCB type bounds take the following form
γt := log t+ 3 log log t,

U(t,Ht−1, k) := max{q > µ̂k
t : d(µ̂k

t ∥q) ≤ γt/N
k
t },

L(t,Ht−1, k) := min{q < ν̂kt : d(ν̂kt ∥q) ≤ γt/N
k
t },

where γt trades-off the width and consistency of U,L. These
bounds are natural for Bernoulli random variables, and since
these are the ‘least-concentrated’ law on [0, 1], the fluctu-
ation bounds extend to general random variables. Using
these, we show the following result in §B.1.

Theorem 1. Algorithm 1 instantiated with KL-UCB type
bounds attains the following for any T and any ε > 0.

E[RT ] ≤
∑
k ̸=k∗

(1 + ε)(∆k ∨ Γk) log T

d<(µk∥µ∗) ∨ d>(νk∥α)
+ ξk,
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where ξk = O(log log T + ε−2). Further, the number of
times an unsafe arm is played is bounded as

E[UT ] ≤
∑

k:Γk>0

(
(1 + ε) log T

d<(µk∥µ∗) ∨ d>(νk∥α)

)
+ ξk.

The O in the above hides instance-dependent constants, the
most pertinent of which is a dependence on (∆k ∨ Γk)−3

with the ε−2 term. To ameliorate this, we also give a gap-
independent analysis of the scheme in §B.2.

Theorem 2. Algorithm 1 instantiated with KL-UCB attains

E[RT ] ≤
√

28KT log T + 6K log log T + 32.

The above statement extends to KL-UCB for standard ban-
dits upon sending α → 1, which, surprisingly, appears to
have been unobserved, at least explicitly.

4. Bayesian Methods
Thompson Sampling (TS) is the first proposed method for
bandit problems (Thompson, 1933), and encourages ex-
ploration by using randomisation. The idea is to choose
a benign prior, and play arms according to their posterior
probability being optimal. The posteriors remain flat for
insufficiently explored arms, giving a non-trivial chance of
pulling them. An advantage of TS lies in the fact that it
exploits a posterior that may be much better adapted to the
underlying law Pk than confidence bounds that rely on a few
simple statistics. Indeed, it has been empirically observed
that TS offers improved regret versus comparable UCB
methods in multi-armed bandits (Chapelle & Li, 2011).

This section explores the use of Bayesian methods for safe
bandits. We start by replacing the KL-UCB based selection
of arms to play in Algorithm 1, but retaining the construction
of Πt. We then study a Bayesian method of selecting Πt.

In the subsequent, we restrict analysis to the case of
Bernoulli bandits, i.e., where the laws Pk are such that
marginally R ∼ Bern(µAt) and S ∼ Bern(νAt). We note
that since the resulting bounds depend on only the means of
the rewards and safety-risk, these bounds extend to generic
laws supported on [0, 1]2 - indeed, as observed by (Agrawal
& Goyal, 2012), one can exploit an algorithm for Bernoulli
bandits for generic laws by passing to the algorithm two
samples R̃t ∼ Bern(Rt), S̃t ∼ Bern(St). The correspond-
ing R̃, S̃ are then Bernoulli with the same means, and any
guarantee that only depends on the means for the Bernoulli
case extends to the underlying bandit problem. Of course,
such a procedure may blow up variances, and thus be profli-
gate in the case of highly concentrated instances.

Note: the methods described below admit essentially the
same guarantees as the bounds of Theorems 1 and 2. For the
sake of brevity, we suppress the explicit bounds on E[UT ]
and the gap-independent bounds in the following.

Algorithm 2 Thompson Sampling With Optimistic Safety
Indices (TOPSI) for Bernoulli Bandits

1: Input: K, function L.
2: Initialise: H0 ← ∅.
3: for t = 1, 2, . . . do
4: if t ≤ N then
5: At ← t
6: else
7: ∀k, Lk

t ← L(t,Ht−1, k).
8: Πt ← {k : Lk

t ≤ α}.
9: ∀k ∈ Πt, sample ρkt ∼ Beta(Rk

t +1, Nk
t −Rk

t +1)
10: At ← argmaxk∈Πt

ρkt .
11: end if
12: Pull At, receive (Rt, St) ∼ PAt .
13: Update Ht ←Ht−1 ∪ {(At, Rt, St)}.
14: end for

4.1. Thompson Sampling with Optimistic Safety Indices

For Bernoulli bandits, it is natural to use the Beta family
for priors, due to favourable conjugacy. The standard form
of TS instantiates each arm with the uninformative prior
Beta(1, 1) = Unif[0, 1]. The corresponding posterior at
time t is Beta(Rk

t + 1, Nk
t −Rk

t + 1).

Algorithm 2 describes the proposed strategy - we retain the
optimistic lower bound from Algorithm 1, but replace the
arm selection given Πt to a TS strategy: random scores ρkt
are drawn from the posterior for each arm in Πt, the arm
with the largest ρkt is pulled.

The analysis of such a method is simple, given an analysis
of TS for standard bandits. Indeed, we can control the play
of infeasible arms as we did for Algorithm 1. Further, as
long as we can ensure k∗ ∈ Πt with high probability, we
can invoke the decomposition

E[Nk
T+1] ≤

∑
t

P(k∗ ̸∈ Πt) + P(At = k|k∗ ∈ Πt).

The first term is handled using the consistency of the lower
bound L∗

t . The second term is essentially the term analysed
for standard bandits, and we can use any analysis of TS to
control it. We concretely use the approach of Agrawal &
Goyal (2013) in §C to show the following result.

Theorem 3. For Bernoulli Bandits, Algorithm 2 instantiated
with a KL-UCB type confidence bound attains the following
regret bound for any T and any ε > 0

E[RT ] ≤
∑
k ̸=k∗

(1 + ε)(∆k ∨ Γk) log T

d<(µk∥µ∗) ∨ d>(νk∥α)
+ ξk,

where ξk = O(log log T + ε−2 log(1/ε)).
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4.2. Thompson Sampling with BAYESUCB

While Algorithm 2 admits a tight analysis, it still uses the
potentially loose frequentist bound to decide Πt, and it is
possible that using the posteriors on the safety-risks to do
this may improve the behaviour.

It is tempting to appeal to the basic structure of Thompson
sampling, and associate a posterior with the safety risk of
P k
t,ν = Beta(Sk

t + 1, Nk
t − Sk

t + 1), sample safety scores
σk
t ∼ P k

t,ν , and let Πt = {k : σk
t ≤ α}. However, this

attempt is misguided, essentially because we need to com-
pare the scores to a fixed level α, rather than amongst each
other. Indeed, if it is the case that ν∗ = α, then there is a
constant chance that σ∗

t > α, even if the empirical mean ν̂∗t
is faithful. This would mean a constant chance of playing
a suboptimal arm, and so linear regret. A similar issue has
been observed with trying to analyse TS using the analysis
developed for UCB-type schema (Kaufmann et al., 2012b),
but the issue is now at the level of the scheme rather than
an analysis. Indeed, we show via simulations that when
ν∗ = α, such a scheme suffers linear expected regret (§F.4).

So, this idea needs a fix. One natural attempt is to introduce
a slack, say some βk

t , such that Πt = {σk
t ≤ α+ βk

t }. This
βk
t should likely decay as Nk

t rises, but be large enough
to ensure that k∗ ∈ Πt - this is similar to the analytical
approach taken by Kaufmann et al. (2012b). However, in
designing such a βk

t , we are functionally designing a confi-
dence bound, somewhat defeating the purpose.

We take a different tack, and instead use a Bayesian confi-
dence bound, essentially exploiting the BAYESUCB method
of Kaufmann et al. (2012a). The idea is to choose a δkt th
quantile of the posterior P k

t,ν as a score, where δkt is a sched-
ule that decays with t. This is able to exploit the potentially
improved adaptivity of the posterior, but due to δkt being
small, would continue to produce an optimistic score, and
so have a high chance of k∗ ∈ Πt at any time. Additionally,
due to the concentration of the Beta-law for large Nk

t , the
score of unsafe arms would converge towards νk, and thus
preclude their play beyond a point. Altogether, the method
seems tailor-made for our situation of filtering arms at a
given level. The scheme is described in Algorithm 3, where
Q(P, δ) denotes the δth quantile of the law P . We introduce
a slight bias in the same for technical convenience.

The main design parameter is δkt which trades off the consis-
tency and tightness. In our argument, we use a conservative
choice of δkt = (

√
8Nk

t t log
3 t)−1, which leads to a sim-

plified proof, but introduces the inefficiency of 2/3 in the
bounds below. We find that in simulations, the uniform
choice δkt = 1/(t + 1) is better (§F.3), and perhaps an
improved analysis can establish better bounds for such a
schedule. The following summarises our analysis in §D.

Theorem 4. For Bernoulli bandits, Algorithm 3, instan-

Algorithm 3 Thompson Sampling with BAYESUCB (TSBU)
for Bernoulli Bandits

1: Input: K, schedule δkt .
2: Initialise: H0 ← ∅.
3: for t = 1, 2, . . . do
4: ∀k
5: if Sk

t = 0 then
6: Lk

t ← 0
7: else
8: Lk

t ← Q(Beta(Sk
t , N

k
t − Sk

t + 1), δkt ).
9: end if

10: Πt ← {k : Lk
t ≤ α}.

11: ∀k ∈ Πt, sample ρkt ∼ Beta(Rk
t +1, Nk

t −Rk
t +1)

12: At ← argmaxk∈Πt
ρkt .

13: Pull At, receive (Rt, St) ∼ PAt .
14: Update Ht ←Ht−1 ∪ {(At, Rt, St)}.
15: end for

tiated with δkt = (
√

8Nk
t t log

3 t)−1 attains the following
regret bound for any ε > 0 and any T :

E[RT ] ≤
∑
k ̸=k∗

(1 + ε)(∆k ∨ Γk) log T

d<(µk∥µ∗) ∨ 2/3 · d>(νk∥α)
+ ξk,

where ξk = O(log log T + ε−2 log(1/ε))

5. Lower Bound
We conclude our theoretical study with a lower bound for
algorithms that admit sub-polynomial regrets against all
bounded distributions. This is based on the technique of
Garivier et al. (2019), who use the chain rule of KL diver-
gence and the data processing inequality to show the follow-
ing relation, which extends to our case without change:

Lemma 5. For any safe bandit algorithm, and any two safe
bandit instances {Pk}, {P̃k}, and any T , k0 ∈ [1 : K],∑

k

E[Nk
T+1]D(Pk∥P̃k) ≥ d(E[Nk0

T+1/T ]∥Ẽ[N
k0

T+1/T ]).

This lemma enables a standard approach - pick P̃ so that
Ẽk[(R,S)] = (µk ∨ µ∗ + ε, νk ∧ α), and leave the other
Pks unchanged. For bandit algorithms with sub-polynomial
regret, the right hand side grows as log(T ), and the left
reduces to E[Nk

T+1]D(Pk∥P̃k). While the optimal choice
of P̃ depends subtly on the details of P, we study a simple
concrete case to illustrate that our prior analyses are tight.

Proposition 6. Any algorithm that ensures that, uniformly
over all instances of safe Bernoulli bandit problems with
independent rewards and safety-risks, the mean number of
plays of any suboptimal arm is bounded as O(T x) for every
x ∈ (0, 1) must satisfy

lim
T↗∞

E[Nk
T+1]

log T
≥ 1

d<(µk∥µ∗) + d>(νk∥α)
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Since mean regret can be expressed in terms of E[Nk
T+1],

this also lower bounds regret. Note the sum in the denomi-
nator, rather than a max as in our upper bounds. This means
that for strictly dominated arms (i.e. k : ∆kΓk > 0), our
bounds may be loose by up to a factor of two. This arises
since our scheme does not exploit potential dependence
between (R,S), and represents an opportunity for future
work.

6. Simulations
We provide practical contextualisation for the schema de-
scribed in the theoretical section using simulation studies
over small safe bandit environments. Of course, to con-
cretely study the schema we describe, we need to instantiate
them with appropriate confidence bounds. We will do so
using the KL-UCB and BAYESUCB based indices which
we analysed previously. Finally, we use TS instantiated
with the Beta priors as described in the text. Of course,
a variety of other methods can be implemented in these
schema, but we believe that these methods serve well to
illustrate both the theory and a first order practical design.
All implementation details are left to §F.

We will begin by empirically illustrating that the prior pol-
icy based methods are indeed ineffective in our scenario,
and play unsafe arms far too often. We then illustrate the
performance of the methods on a realistic problem instance.
Finally, we will investigate the dependence of regret of the
three methods on the gaps to the optimal arm.

6.1. Empirical Demonstration of the Ineffectiveness of
Prior Formulations

As discussed previously, the globally constrained (Badani-
diyuru et al., 2013; Agrawal & Devanur, 2014) and policy
level (Pacchiano et al., 2021) formulations are unsatisfac-
tory in the context of safety-constraints, as illustrated by
example (2). Nevertheless, a priori it may be possible that
the schema designed for these objectives may be effective in
our scenario, especially if there exist optimal policies sup-
ported on a single arm. We implement the doubly optimistic
policy method (BWCR) of Agrawal & Devanur (2014), and
the optimistic-pessimistic method (PESS) of Pacchiano et al.
(2021) to demonstrate that this is untrue.

We explore two illustrative cases, both of which are for
Bernoulli bandits with independent means and safety-risks.
The data reported is across 100 trials of horizon 50000.
Since these policy methods are based on confidence bounds,
we also compare them to Alg. 1. In all cases we instantiate
these schema with KL-UCB-based confidence bounds.

1. Multiple optimal policies. We consider four arms with
µ = (0, 0.4, 0.5, 0.6), ν = (0, 0.4, 0.5, 0.6), α = 0.5.

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

BwCR

Pess

Alg. 1

0 1 2 3 4 5
0

2

4

6

8

10

BwCR

Pess

Alg. 1

Figure 1. Empirical means of Ut versus t averaged over 100 trials
over t ∈ [1 : 50000]. Top is case 1, bottom case 2.

The (0, 0) arm is included as a known safe arm, which is
required for PESS to enable sufficient exploration. Notice
that in this case there are two optimal static policies - one
that is entirely supported on arm 3, while another that is
uniformly supported on arms 2 and 4. However, which one
of these two policies these schema converge to is essentially
random, and we thus see linear growth of E[Ut] in Fig. 1.

2. Single arm optimal policy. We jack up the rewards of
arm 3 to 0.6, but leave the other means unchanged. Now
the optimal policy is singly supported on arm 3 and has a
significant gap of 0.1. Despite the fact that such a case is
the most promising for policy-based methods in terms of
efficacy in our formulation, Fig. 1 again shows that they
do rather poorly - for instance, while our implementation
play the unsafe arms about 550 times, these methods play it
at least 8000 times. This occurs because the policy-based
methods are designed for the much richer policy space—
a simplex—and so must explore a lot more than methods
designed for single arm play. We note that in this case, while
BWCR plays unsafe arms more often, it suffers less regret
than PESS, since the unsafe arm incurs a smaller loss.

6.2. Characterisation of the Proposed Schema

We implement the three methods to establish a practical
contextualisation of their performance, and to verify the
theoretical claims. For the sake of realism, we use the data
of Genovese et al. (2013), who report efficacy and infection
rates from a phase 2 randomised trial for various dosages
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Figure 2. Empirical means over 500 trials of Rt (top) and Ut (bot-
tom) for the drug trial data with α = 0.21.

of a drug to treat rheumatoid arthritis. The dosages studied
were (0, 25, 75, 150, 300) mg, and the observations were

µ = (0.360, 0.340, 0.469, 0.465, 0.537),

ν = (0.160, 0.259, 0.184, 0.209, 0.293).

This data is challenging for any safety level - no matter the
choice, we have to deal with either a potential safety gap
of order 10−2, or an efficacy gap of 10−3, both of which
contribute a large regret. We study the safety level 0.21,
under which arm 3 is optimal, while arms 2, 5 are unsafe.
We chose this to allow large enough safety gaps that the
behaviour of UT is easy to establish with runs of length
about 50K - if we took α smaller, say 0.2, then we would
expect to need runs of length 100K simply to reach a point
at which arm 4 is played fewer than about a third of the time.
This consideration also illustrates why the regret RT is a
much more reasonable notion of study than UT , which can
grow very large due to tiny, practically undetectable safety
gaps. Plots for a run with α = 0.19 are included in §F.2.

Observations of Performance From Fig.2, we first note
that both Rt and Ut are well controlled and well within
the theoretical bounds for the methods we have analysed.1

The general trend observed is that Alg. 2 based methods
that use a TS-based index outperform confidence bound
indices of Alg. 1, which is consistent with Chapelle & Li
(2011). Finally, we observe that Alg. 3, as represented by

1The main term of the regret bound is 137 log t, and the unsafe-
arm bound is 81 log t, both > 750 for t > 104.
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Figure 3. Behaviour of Regret at T = 20000 with respect to the
maximum gap. Medians over 100 runs are reported.

TS+BAYESUCB outperforms all other methods. These
observations held regardless of the means we have run
the methods on. One caveat, however, is that the under-
lying Bernoulli laws used are well aligned to the priors for
Bayesian methods, which may improve their performance.

Inverse Dependence on Gaps Next, we investigate the
dependence of regret on the gaps ∆k ∨ Γk. First, we will
demonstrate that the regret varies with (∆k ∨ Γk) inversely.
To this end, we study the the cases

µi = (0.5, 0.5− i/25, 0.5 + i/25),

νi = (0.5, 0.5− i/25, 0.5 + i/25),

for α = 0.5 over i in [1 : 10] over 100 trials across a horizon
of T = 2 × 104. Fig. 3 reports the regret RT versus i/25
over this data, and exhibits a clear inverse dependence on i.

Lack of Dependence on Smaller Gaps Finally, we illus-
trate that the regret is driven by the larger of ∆k and Γk,
but not by (∆k ∧ Γk). For this we study the data

µi = (0.5, 0.5− i/25, 0.5 + i/250),

νi = (0.5, 0.5 + i/250, 0.5 + i/25),

again with α = 0.5 for 100 trials over a horizon of T =
2× 104. Observe that ∆k ∨ Γk is the same as the previous
case, but ∆k ∧ Γk is reduced by a factor of 10 for each
suboptimal arm. The principal observation from the second
part of Fig. 3 is that the plot remains similar to the previous
case of ‘large’ minimum gaps, bearing out this independence
from the smaller of the two gaps.
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A. Notation and Broad Proof Strategy
We begin with some notation, and then describe the general proof strategy.

We will abuse notation and let Ht−1 also stand for the sigma algebra induced by the history, with H0 denoting the trivial
sigma algebra. Naturally, {Ht} forms a filtration - observe that in the TS cases, the laws of ρkt are measurable with respect
to Ht−1. The Bayesian methods also utilise extraneous randomness, as represented by the various ρkt s. An important
observation regarding all the methods we design is that the permissible set Πt is a predictable process, i.e., is determined
given Ht−1. Indeed, all the methods use an index based on the history to decide Πt, and so it is a deterministic function of
the variables {(As, Rs, Ss) : s < t}. Of course, this is not as such required, but it represents a convenience that we will
employ in our proofs. For the sake of brevity, we will denote the conditional laws P(·|Ht−1) as Pt−1.

Proof strategy The basic decomposition of regret is in terms of Nk
T+1 - indeed, due to the additive definition,

E[RT ] =
∑
k ̸=k∗

E[Nk
T+1](∆

k ∨ Γk).

Therefore, the main arguments all control E[Nk
T+1] for all suboptimal arms k. Of course, subsidiary claims about E[UT ]

also follow from these.

The arguments separately control E[Nk
T+1] for infeasible and inefficient arms. For arms which are both inefficient and

infeasible, the tighter of the control offered by these two arguments can be taken, and this yields the form of the expressions
in the main text.

Infeasible arms All of our schemes use a safety index Lk
t to populate the permissible set Πt. We exploit the properties of

this index to control the play of infeasible arms. Indeed, we can decompose

E[Nk
T+1] =

T∑
t=1

P(At = k) ≤
T∑

t=1

P(Lk
t ≤ α).

The design of the two indices - that via KL-UCB and via BAYESUCB both ensure that the chance of playing an infeasible
arm more than O(log(T )/d(νk∥α)) times is exponentially small. For KL-UCB, this is a simple consequence of Chernoff’s
bound. For BAYESUCB, the argument reduces to that for KL-UCB using a connection between the tails of Beta distributions
and Binomials.

Inefficient arms Following the standard method for confidence bound based index policies, controlling the play of inefficient
arms requires some known good index to compare the reward indices to. Naturally, we want to use the index of k∗, but
doing so requires that k∗ itself is permitted, since otherwise the algorithm never takes its reward index into consideration
when choosing an arm. This represents the main deviation from standard proofs.

Let us take the case of KL-UCB. The idea is to decompose

E[Nk
T+1] =

∑
t

P(At = k)

=
∑
t

P(At = k, k∗ ̸∈ Πt) + P(At = k, k∗ ∈ Πt)

≤
∑
t

P(k∗ ̸∈ Πt) +
∑
t

P(At = k, k∗ ∈ Πt)

The first course of action then is to ensure that the first term is small, which exploits the consistency of L∗
t .

This enables us to proceed pretty much as usual. For KL-UCB, we decompose the second term as∑
t

P(At = k, k∗ ∈ Πt) ≤
∑
t

P(U∗
t < µ∗, k∗ ∈ Πt) + P(Uk

t ≥ µ∗, U∗
t ≥ µ∗, k∗ ∈ Πt, At = k)

≤
∑
t

P(U∗
t < µ∗) + P(Uk

t ≥ µ∗, At = k).

Of course, the final expression is the usual quantity controlled in regret proofs, and this argument can be repeated without
change. For the sake of being self-contained, we will sketch these proofs in the subsequent as well. For KL-UCB, this is
essentially the argument of Garivier & Cappé (2011), while for the BAYESUCB bound, this is the argument of Kaufmann
et al. (2012a) (which itself is very similar to Garivier & Cappé (2011)). For the efficiency of TS, we will use the argument
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of (Agrawal & Goyal, 2013).

Remark on showing consistency of L∗
t We observe that, by design, our choices of Lk

t are such that consistency proofs
for U∗

t translate directly into those for L∗
t - this is due to the symmetry of the relevant functionals under the maps

(S, νk, α) 7→ (1 − S, 1 − νk, 1 − α), upon doing which 1 − Lk
t is a Uk

t -type upper bound for 1 − νk. Similarly, the
argument for controlling

∑
P(Lk

t ≤ α) for infeasible arms is basically the same as that for controlling
∑

P(Uk
t ≥ µ∗) for

the standard bandit version of the appropriate method.

That said, we note a deviation from the proof of this consistency for the case of BAYESUCB. Since controlling standard
regret in a Bayesian setting requires one to compare two random indices, Kaufmann et al. (2012a) use direct comparison of
their index U∗

t,BAYESUCB to µ∗ only enough to argue that N∗
t is at least logarithmically large. With this in hand, they can

argue that U∗
t,BAYESUCB is at least µ∗ −O(

√
1/ log(T )) with high probability and argue that this is unlikely to be exceeded

by suboptimal arms. However, to ensure that our (random) safety index L∗
t is consistent, we must compare it to a fixed

value α, and so this second argument utilising a weakened consistency does not carry over. We handle this by loosening the
quantiles δkt enough so that the first argument itself is sufficient to provide consistency. This represents a gap, which may
possibly be resolved by a stronger analysis.

Remark on dependence Note that the sketch above does not use the potential dependence between the signals (R,S). It
is possible that this can be exploited, and this exploitation may gain in importance as we increase the number of safety
constraints. We leave this as a direction for further work.

B. Proof for Doubly Optimistic Confidence Bounds
The following lemma essentially follows from the main result of the KL-UCB analysis due to Garivier & Cappé (2011),
and forms the key statement to demonstrate our results. We note that this is stated slightly more generically than in their
paper, essentially to let us use the same result to show both gap dependent and gap independent bounds. We came across
this trick in the work of Agrawal & Goyal (2013).

Lemma 7 (Adaptation of Garivier & Cappé (2011)). Let k be a suboptimal arm. Then Algorithm 1, instantiated with the
KL-UCB type confidence bounds attains the following guarantees for all k.

• If ∆k > 0, then for any x ∈ (µk, µ∗),

E[Nk
T+1] ≤

log T + 3 log log T

d(x∥µ∗)
+ 6 log log T +

2

1 ∧ d(x∥µk)
+ 24. (3)

• If Γk > 0, then for any y ∈ (α, νk),

E[Nk
T+1] ≤

log T + 3 log log T

d(y∥α)
+

2

1 ∧ d(y∥νk)
. (4)

We will first show the proofs of the two results using the above lemma, and leave proving it until the end.

B.1. Proof of Theorem 1

Proof. Fix an arm k. If ∆k > 0, then choose x ∈ (µk, µ∗) such that d(x∥µ∗) = d(µk∥µ∗)
1+ε - this exists since d(x∥µ∗) is

continuous and monotonically decreases from d(µk∥µ∗) to 0 as x varies in (µk, µ∗). We need to argue that the third term in
the bound of (3) is bounded as O(ε−2). This follows since for small ε, x = µk +O(ε).

Indeed, let us abbreviate d = d(µk∥µ∗), and observe that the the derivative d′ := ∂zd(z∥µ∗)|z=µk is non-zero, and so
x−µk = ε d

|d′| +O(ε2). But then notice that since d(z∥µk) is minimised at z = µk, d(x∥µk) = 1/2(d′′ε2(d/d′)2)+O(ε3),

where d′′ := ∂2
zzd(z∥µk)

∣∣
z=µk . We conclude that

2

d(x∥µk) ∧ 1
= O

(
d′2

d′′d2ε2

)
,

which of course is a scaling of ε−2 by a problem dependent constant.

Next, if Γk > 0, we proceed similarly to the above, and choose y ∈ (α, νk) such that d(y∥α) = d(νk∥α)/(1 + ε). By an
entirely identical calculation as above, the final term of (4) is bounded as O

(
f ′2

f ′′
1

d2(νk∥α)ε2

)
, where f ′ = ∂zd(z∥α)|z=νk ,
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and f ′′ = ∂2
zzd

2(z∥νk)
∣∣
z=νk .

Using both of these bounds, we conclude that

E[Nk
T+1] ≤

1

1{µk < µ∗}

{
(1 + ε) log T

d(µk∥µ∗)
+

(1 + ε)3 log log T

d(µk∥µ∗)
+ 6 log log T + 24 +O

(
(d′2/d̃′′)

d2(µk∥µ∗)ε2

)}
,

E[Nk
T+1] ≤

1

1{νk > α}

{
(1 + ε) log T

d(νk∥α)
+

(1 + ε)3 log log T

d(νk∥α)
+O

(
(f ′2/f̃ ′′)

d2(νk∥α)ε2

)}
,

where we set 1/1{p} =∞ when the proposition p is untrue. Of course, recalling that 1{µk < µ∗}d(µk∥µ∗) = d<(µ
k∥µ∗)

and similarly d>(ν
k∥ν∗), we may choose the tighter of the above bounds to get the result

E[Nk
T+1] ≤

(1 + ε) log T

d<(µk∥µ∗) ∨ d>(νk∥ν∗)
+O

(
log log T

d<(µk∥µ∗) ∨ d>(νk∥ν∗)
+

1

(d<(µk∥µ∗) ∨ d>(νk∥ν∗))2ε2

)
.

The claimed bounds now follow trivially - to control E[RT ], simply multiply by the per-round regret of playing arm k,
∆k ∨ Γk, and sum. To control E[UT ], simply add up the above over the unsafe arms.

Note that as the gaps ∆k and Γk decay, the last term scales as 1/(∆k ∧ Γk)4, which only yields a T 3/4 gap-independent
bound.

B.2. Proof of Theorem 2

As is standard, the gap-independent regret bounds follow on observing that arms for which the gap is too small cannot
actually incur large regret over T rounds. To this end, let M > 0 be a parameter to be chosen, and express regret as

E[RT ] ≤
∑

k:∆k>Γk∨M

E[Nk
T+1]∆

k +
∑

k:Γk>∆k∨M

E[Nk
T+1]Γ

k +M
∑

k:(∆k∨Γk)≤M

E[Nk
T+1]. (5)

The last term is of course bounded by MT, and so we will end up taking M of order
√

K log T/T to control regret. It
remains to show that E[Nk

T+1] is not too large for arms with large gaps. To this end, we first develop bounds dependent
explicitly on the gaps using (3) and (4).

Lemma 8. For any arm k with ∆k > 0,

E[Nk
T+1] ≤

2 log T + 6 log log T + 4

(∆k)2
+ 6 log log T + 24.

Similarly, for any arm k with Γk > 0,

E[Nk
T+1] ≤

2 log T + 6 log log T + 4

(Γk)2
.

Proof. First, take a k with ∆k > 0, and in the bound (3), set x = (µk + µ∗)/2 =: µ̄k. By Pinsker’s inequality, d(µ̄k∥µ∗) ≥
2(µ∗ − µ̄k)2 = (∆k)2/2, and d(µ̄k∥µk) ≥ 2(µ̄k − µk)2 = (∆k)2/2. Plugging these into the bound yields the claim upon
observing that (∆k)2/2 ≤ 1.

For arms with Γk > 0, we can develop a similar control resulting from (4) by setting y = (α+ νk)/2.

We are now in a position to show the claim.

Proof of Theorem 2. The first term in (5) can be bounded as∑
∆k>Γk∨M

2 log T + 6 log log T + 2

∆k
+ (6 log log T + 24)∆k ≤ K∆

(
2 log T + 6 log log T + 4

M
+ 6 log log T + 24

)
,

where K∆ = |{k : ∆k > Γk}|.
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Similarly, the second term in (5) can be bounded as∑
Γk>∆k∨M

2 log T + 6 log log T + 4

Γk
≤ KΓ

2 log T + 6 log log T + 4

M
,

where KΓ = |{k : Γk > ∆k}|.

Finally, observing that KΓ +K∆ ≤ K, we conclude that

E[RT ] ≤
K

M
(2 log T + 6 log log T + 4) + (6 log log T + 24)

∑
(∆k ∨ Γk) + TM.

The claim follows on choosing M =
√
K(2 log T + 6 log log T + 4)/T , and observing that 2 log T ≥ 4 for T ≥ 8, and

2 log log T ≤ log T for all T .

B.3. Proof of Lemma 7

Proof. We make the argument separately for infeasible and inefficient arms. The former is easier, so let us begin with it.

Infeasible arms

We follow the decomposition from §A. Recall that Lk
t = min{q ≤ ν̂kt : d(ν̂kt ∥q) ≤ γt/N

k
t }. Since d(ν̂kt ∥x) is a continuous

decreasing function on [0, ν̂kt ], if Lk
t ≤ α then it must either hold that ν̂kt ≤ α, or d(ν̂kt ∥α) ≤ d(ν̂kt ∥Lk

t ) = γt/N
k
t . Either

way, we have that d>(ν̂kt ∥α) ≤ γt/N
k
t .

Now, let ν̂k(s) denote the value of ν̂kt after the sth time we play the arm k. We observe that∑
t

1{At = k} ≤
T∑

t=1

1{At = k, d>(ν̂
k
t ∥α) ≤ γt/N

k
t }

=

T∑
t=1

t∑
s=1

1{At = k, sd>(ν̂
k
t ∥α) ≤ γt, N

k
t = s}

≤
T∑

t=1

t∑
s=1

1{At = k,Nk
t = s} · 1{sd>(ν̂k(s)∥α) ≤ γT }

=

T∑
s=1

1{sd>(ν̂k(s)∥α) ≤ γT } ·
T∑

t=s

1{At = k,Nk
t = s}

≤
T∑

s=1

1{sd>(ν̂k(s)∥α) ≤ γT },

where we have used that γt increases with T , and for any value s, there is at most one time step on which Nk
t is exactly s

and we play the action k.

Now, we observe that for any y ∈ (α, νk), the event {d>(ν̂k(s)∥α) ≤ d(y∥α)} = {ν̂k(s) ≤ y}. Indeed, d>(u∥α) is
exactly equal to 0 for u ≤ α, and monotonically increasing for u > α. But, recalling Chernoff’s bound (which applies since
the random variables are bounded in [0, 1]), P (ν̂k(s) ≤ y) ≤ exp(−sd(y∥νk)). This sets up the following calculation.

Let y ∈ (α, νk), and define S(y) := ⌊γT /d(y∥α)⌋, so that for all s > S(y), γT /s < d(y∥α). Then

E[Nk
T+1] =

T∑
t=1

P(At = k)

≤
T∑

s=1

P(sd>(ν̂k(s)∥α) ≤ γT )

≤ S(y) +

T∑
s=S(y)+1

P(d>(ν̂k(s)∥α) ≤ d(y∥α))
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≤ S(y) +

T∑
s=S(y)+1

e−sd(y∥νk)

≤ S(y) +
e−(S(y)+1)d(y∥νk)

1− e−d(y∥νk)

≤ S(y) +
2

1 ∧ d(y∥νk)
, (6)

where the last term uses that (S(y) + 1)d(y∥νk) ≥ 0, and 1
1−e−u ≤ 2/(1 ∧ u). But S(y) ≤ γT

d(y∥α) =
log T+3 log log T

d(y∥α) .

Inefficient arms Again, we follow the decomposition from §A, namely

E[Nk
T+1] ≤

∑
t

P(k∗ ̸∈ Πt) + P(U∗
t < µ∗) + P(Uk

t ≥ µ∗).

Observe that P(k∗ ̸∈ Πt) = P(L∗
t > α).

As noted in §A, the final term is controlled in exactly the same way as the inefficiency control. Indeed, Uk
t = max{q ≥ µ̂k

t :
d(µ̂k

t ∥q) ≤ γt/N
k
t }. Since d(µ̂k

t ∥x) increases in the range [µ̂k
t , 1], if Uk

t ≥ µ∗, then either µ̂k
t ≥ µ∗, or d(µ̂k

t ∥µ∗) ≤ γt/N
k
t .

Developing the subsequent bound in exactly the same way, we find that∑
t

1{At = k, Uk
t ≥ µ∗} ≤

T∑
s=1

1{sd<(µ̂k(s)∥µ∗) ≤ γT },

and again, for any x ∈ (µk, µ∗), P (d<(µ̂
k(s)∥µ∗) ≤ d(x∥µ∗)) = P (µ̂k(s) ≤ x) ≤ exp(−sd(x∥µk)). The resulting sum

then gives the bound

∑
P(Uk

t ≥ µ∗, At = k) ≤ S(x) +
2

1 ∧ d(x∥µk)
,

where S(x) ≤ γT

d(x∥µ∗) .

It remains to control
∑

P(L∗
t > α)+P(U∗

t < µ∗). To control the second term, we first exploit the monotonicity of d(µ̂∗
t ∥q)

on [µ̂∗
t , 1] to note that

{U∗
t < µ∗} = {max{q > µ̂∗

t : d(µ̂∗
t ∥q) ≤ γt/N

∗
t } < µ∗} = {µ̂∗

t < µ∗, d(µ̂∗
t ∥µ∗) > γt/N

∗
t }.

The final event is the subject of (Theorem 10, Garivier & Cappé, 2011), who show that for any z > 0, and any k

P(Nk
t d(µ̂

k
t ∥µk) > z) ≤ e(z log(t) + 1)e−z (7)

The statement extends, of course, to the empirical mean of any subsampling of any i.i.d. process in [0, 1]. The gist of the
argument is to partition the space according to the size of Nk

t . If Nk
t is non-trivially large at some fixed time t, then it is

exponentially unlikely for Nk
t d(µ̂

k
t ∥µk) to exceed z, essentially because the cumulant generating function is bounded by

that of a Bernoulli, and d is the Fenchel dual of this function for the Bernoulli. It is then just a question of stitching together
these bounds over a well-chosen grid of values that Nk

t may take (concretely, a geometrically increasing grid is used, and
we end up with a log t due to this grid), and accounting for the poor behaviour for small Nk

t (whence the premultiplying
e). The argument presented in the supplement to the follow up work by Cappé et al. (2013) is somewhat cleaner than the
original, and might be preferred.

Applying (7) to µ̂∗
t and z = γt, we find that

P(U∗
t < µ∗) ≤ e(γt log(t) + 1)e−γt ,

and so
T∑

t=3

P(U∗
t < µ∗) ≤

T∑
t=3

e(log2 t+ 3 log t · log log t+ 1)

t log3(t)

≤ e(log log T + 4). (8)

Control on
∑

P(L∗
t > α) follows identically. Exploiting monotonicity twice,
{L∗

t > α} = {ν̂∗t > α, d(ν̂∗t ∥α) > γt/N
∗
t } ⊂ {ν̂∗t > ν∗, d(ν̂∗t ∥ν∗) > γt/N

∗
t },
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and thus, applying (7) to ν̂∗t with z = γt,
T∑

t=3

P(k∗ ̸∈ Πt) =

T∑
t=3

P(L∗
t > α) ≤ e log log T + 4e. (9)

Putting these together, we have

E[Nk
T+1] ≤

log T + 3 log log T

d(x∥µ∗)
+ 6 log log T + 24 +

2

1 ∧ d(x∥µk)
,

where we have used 2e < 6, 8e+ 2 < 24.

C. Proofs for Thompson Sampling with Optimistic Safety Indices
The first observation is that since the safety index Lk

t remains unchanged, we may directly use the proofs of Lemma 7 to
observe that the bounds (4) and (9) continue to hold, that is,

E[Nk
T+1] ≤ inf

y

1

1{α < y < νk}

(
log T + 3 log log T

d(y∥α)
+

2

1 ∧ d(y∥νk)

)
,

T∑
t=3

P(k∗ ̸∈ Πt) ≤ e log log T + 4e.

The focus of the study then is to ensure that the TS analysis extends to control the play of inefficient arms. This pretty much
exploits the analysis of TS due to Agrawal & Goyal (2013), although alternate analyses such as that of Kaufmann et al.
(2012b) can equivalently be used.

The main bound is summarised in the following

Lemma 9 (Adaptation of Agrawal & Goyal (2013)). There exists a universal constant C such that if ∆k > 0, then for any
u, v such that µk < u < v < µ∗,
T∑

t=1

P(At = k, k∗ ∈ Πt) ≤
log T

d(u∥v)
+

3

1 ∧ d(u∥µk)
+

C

(µ∗ − v)2

(
1 + log

1

µ∗ − v
+ log

(
1

1− e−d(v∥µ∗)
∧ T (µ∗ − v)

))
(10)

Let us first demonstrate the result from the main text using the above Lemma.

Proof of Theorem 3. We first argue the theorem.

For infeasible arms, instantiate (4) with a y such that d(y∥α) = d(νk∥α)/(1 + ε). Since as previously argued, the resulting
d(y∥νk) is Θ(ε2).

For inefficient arms, consider the decomposition

E[Nk
T+1] =

T∑
t=1

P(At = k) ≤
T∑

t=1

P(k∗ ̸∈ Πt) +

T∑
t=1

P(k∗ ∈ Πt, At = k).

The first term is bounded as 3 log log T. For the second term, we instantiate the bound (10) with a u and a v chosen so that

1. d(u∥µ∗) = d(µk∥µ∗)/
√
1 + ε

2. d(u∥v) = d(u∥µ∗)/
√
1 + ε = d(µk∥µ∗)/(1 + ε),

both of which exist by continuity.

Showing the bound then requires control on u− µk and µ∗ − v (using the upper bound d(a∥b) ≥ 2(a− b)2). To this end,
as in the proof of Theorem 1, observe that u = µk +Θ(

√
1 + ε− 1) = µk +Θ(ε). Similarly, v = µ∗ −Θ(ε). Therefore,

d(u∥µk), d(v∥µ∗) = Θ(ε−2). Finally, since this ε−2 term does not grow with T , (d(v∥µ∗))−1 ∧ T = O(ε−2).

We may now conclude the argument exactly as in the proof of Theorem 1
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Similarly to the case for Algorithm 1, this scheme also admits a gap-independent bound.
Proposition 10. Algorithm 2, instantiated with KL-UCB type lower confidence bounds, attains the gap independent regret
bound

E[RT ] ≤ O(
√
KT log T +K log log T ).

Proof. For infeasible arms, instantiate (4) with y = (α+ νk)/2 to conclude that

E[Nk
T+1] ≤ O

(
log T

(Γk)2

)
For inefficient arms, instantiate (10) with u = µk +∆k/3, and v = µk +2∆k/3. Then µ∗− v = v−u = u−µk = ∆k/3,
and by observing that d(v∥µ∗)−1 ∧ T∆k/3 ≤ T∆k/3, we have the upper bound

E[Nk
T+1] ≤ O(log log T ) +O

(
log T

(∆k)2
+

1 + log(1/∆k) + log(T∆k)

(∆k)2

)
= O

(
log log T +

log T

(∆k)2

)
.

Taking the tighter of these bounds, and partitioning according to the size of ∆k ∨ Γk, we have the bound

E[RT ] ≤ inf
M>0

TM+O

(
K log T

M

)
+O(K log log T ),

giving the claim upon optimisation.

It remains to show the key Lemma. Again, we note that the key ideas are due to Agrawal & Goyal (2013).

Proof of Lemma 9. Fix a k. The values u and v essentially represent indices that we can compare the random scores ρ∗t and
ρkt to. To this end, we define the ‘good’ events

Gµ,kt := {µ̂k
t ≤ u},

Gρ,kt := {ρkt ≤ v}.

Notice that Gµ,kt lies in Ht−1.

Now, we start with the decomposition
P(At = k, k∗ ∈ Πt) = P(At = k, k∗ ∈ Πt,Gµ,kt ,Gρ,kt ) + P(At = k, k∗ ∈ Πt,Gµ,kt , (Gρ,kt )c)

+ P(At = k, k∗ ∈ Πt, (Gµ,kt )c)

≤ P(At = k, k∗ ∈ Πt,Gµ,kt ,Gρ,kt ) + P(At = k,Gµ,kt , (Gρ,kt )c) + P(At = k, (Gµ,kt )c). (11)

Now, the last of these terms in (11) is easily controlled - indeed, P(At = k, (Gµ,kt )c) = P(At = k, µ̂k
t > u) is exponentially

small if Nk
t is large. In fact, mirroring the approach of the proof of Lemma 7, we find that∑

t≤T

1{At = k, µ̂k
t > u} =

∑
t≤T

∑
s≤t

1{At = k,Nk
t = s, µ̂k

t > u}

=
∑
s

1{µ̂k(s) > u}
∑
t≥s

1{At = k,Nk
t = s}

≤
∑
s≤T

1{µ̂k(s) > u},

where we set µ̂k(s) to be the value of µ̂k
t at the first t such that Nk

t = s. But then, by Chernoff’s bound, P (µ̂k(s) > u) ≤
exp(−sd(u∥µk)), giving the bound ∑

P(At = k, (Gµ,kt )c) ≤ 2

1 ∧ d(u∥µk)
. (12)

The second term of (11) too is similar to control, upon observing that the posterior Beta law is very well concentrated
around µ̂k

t with variance scale 1/Nk
t . More concretely, Agrawal & Goyal (2013) exploit the following observation: if

F (x; Beta(a, b)) is the CDF of a Beta(a, b) random variable, and G(k; Bin(n, p)) is the CDF of a Binomial random
variable, then for natural n ≥ k,

1− F (x; Beta(k + 1, n− k + 1)) = G(k; Bin(n+ 1, x)).
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This relation most easily follows from the fact that the Beta(k + 1, n− k + 1) is the law of the k + 1th order statistic of
n+ 1 samples from the uniform distribution, and the chance of this exceeding x is simply the chance that the k smaller ones
are at most x, and the rest are at least x, which of course is expressed by the Binomial distribution. But then we conclude
that for any N0, the chance that ρkt is large can be controlled as a Binomial tail, giving us that for any v,

P(ρkt > v|Nk
t , µ̂

k
t ) ≤ exp(−Nk

t d>(v∥µ̂k
t )),

which follows via Chernoff’s bound. From the same, we may conclude that for any N0 and u < v,
P(ρkt > v|Nk

t > N0, µ̂
k
t ≤ u) ≤ e−N0d(v∥u),

Choosing N0 = log(T )/d(v∥u), we then get the bound
T∑

t=1

P(At = k, ρkt > v, µ̂k
t ≤ u) ≤

T∑
t=1

P(At = k,Nk
T+1 ≤ N0) +

T∑
t=1

P(Nk
T+1 > N0, ρ

k
t > v, µ̂k

t ≤ u)

≤ N0 + Te−N0d(v∥u)

≤ log T

d(v∥u)
+ 1 ≤ log T

d(v∥u)
+

1

1 ∧ d(u∥µk)
. (13)

This leaves the first term of (11), which is the hardest to control, and ultimately relies upon hard analysis of Binomial tails.
The idea is roughly to use v as a lower index for ρ∗t . Indeed, let

Pt := P(ρ∗t > v|Ht−1) = Pt−1(ρ
∗
t > v).

Then observe that

Pt−1(At = k,Gµ,kt ,Gρ,kt , k∗ ∈ Πt) = 1{Gµ,kt , k∗ ∈ Πt}Pt−1(At = k, ρkt ≤ v)

≤ 1{Gµ,kt , k∗ ∈ Πt}Pt−1(∀k ∈ Πt, ρ
k
t ≤ v)

= 1{Gµ,kt , k∗ ∈ Πt}(1−Pt)Pt−1(∀k ̸= k∗ ∈ Πt, ρ
k
t ≤ v)

=
1−Pt

Pt
1{Gµ,kt , k∗ ∈ Πt}Pt−1(ρ

∗
t > v,∀k ̸= k∗ ∈ Πt, ρ

k
t ≤ v)

≤ 1−Pt

Pt
Pt−1(At = k∗),

where we have used the fact that Gµ,kt ∈ Ht−1 and Πt is predictable. The idea is to now exploit the fact that Pt is
exponentially close to 1 as N∗

t increases, and by expressing this chance in terms of the size of N∗
t and analysing the same,

Agrawal & Goyal (2013) show in their Lemma 2 that
T∑

t=1

E[(1−Pt)Pt−1(At = k∗)/Pt] ≤
24

∆2
v

+ C ′
T−1∑

s≥8/∆v

e−∆2
vs/2 +

1

e∆
2
vs/4 − 1

+
e−sd(v∥µ∗)

(s+ 1)∆2
v

,

where ∆v := (µ∗ − v) and C ′ is a constant. Notice that each of the terms in the sum are monotonically decreasing.
Therefore, we may derive upper bounds by comparison to an integral, which yields for the first and second terms that

T−1∑
s=⌈8/∆v⌉

e−∆2
vs/2 ≤

∫ ∞

0

e−∆2
vs/2ds =

2

∆2
v

,

and
T−1∑

s=⌈8/∆v⌉

1

e∆
2
vs/4 − 1

≤
∫ T

7/∆v

1

e∆
2
vs/4 − 1

ds

=
4

∆2
v

∫ ∆2
vT/4

7/4∆v

1

eu − 1
du

≤ 4

∆2
v

log
1

1− e−7/4∆v

≤ 4

∆2
v

log
2

1 ∧ 7/4∆v
≤ 4

∆2
v

(
log

1

∆v
+O(1)

)
,
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where we have used the previously established fact that 1
1−e−x ≤ 2

x∧1 .

For the final term, we may bound this in two ways - firstly simply observing that e−sd ≤ 1, we get the bound
∑T−1

8/∆v

1
s+1 ≤

log(T∆/8). In addition, we derive a T -independent bound as follows, wherein we abbreviate dv = d(v∥µ∗).

T−1∑
s=⌈8/∆v⌉

e−sdv

(s+ 1)∆2
v

= edv

T−1∑
s=⌈8/∆v⌉

e−(s+1)dv

s+ 1

= edv

T−1∑
s=⌈8/∆v⌉

∫ ∞

u=dv

e−(s+1)udu

≤ edv

∫ ∞

u=dv

∞∑
s=1

e−(s+1)udu

= edv

∫ ∞

u=dv

e−2u

1− e−u
du

≤ log
1

1− e−dv
≤ log

2

dv
+O(1).

Taking the smaller of these two bounds, the final term is controlled by 4∆−2
v [log(T∆v ∧ d−1

v ) +O(1)], and we have
T∑

t=1

P(At = k,Gµ,kt ,Gρ,kt , k∗ ∈ Πt) ≤
C

∆2
v

(
1 + log

1

∆v
+ log

(
∆vT ∧ −d(v∥µ∗)−1

))
. (14)

The claimed bound is then realised by adding up (12, 13, 14).

D. Proofs for Thompson Sampling with BAYESUCB
Since the procedure for selecting arms given Πt is left unchanged from the previous case, we only need to demonstrate
that Πt is good, that is, that the lower bound index Lk

t performs well. Indeed, this is essentially exploiting the fact that the
argument of the previous section only uses the fact that Πt is a predictable process, and then specifics of the Thompson
scores ρkt s, and so the second term of the decomposition∑

t

P(At = k) ≤
∑
t

P(k∗ ̸∈ Πt) +
∑
t

P(k∗ ∈ Πt, At = k)

can be pursued identically to control the play of inefficient arms on rounds such that k∗ ∈ Πt, again giving (10).

We show the following bound, following the methods of Kaufmann et al. (2012a) as described in §A.

Lemma 11. In the setting of Theorem 4, the following hold.

• If Γk > 0, then for any x ∈ (α, νk),

E[Nk
T+1] ≤

3/2 log T + 3 log log T + 3/2 log 2

d(x∥α)
+

2

1 ∧ d(x∥νk)
(15)

• The mean number of times the optimal arm is treated as impermissible is bounded as
T∑

t=3

P(k∗ ̸∈ Πt) ≤ e log log T + 4e.

The claimed bound is quickly forthcoming upon combining the appropriate pieces of the proofs of Theorems 1 and 3.

Proof of Theorem 4. For inefficient arms, combining the second part of Lemma 11 and (10), we conclude that if ∆k > 0,
then

E[Nk
T+1] ≤

log T

d(u∥v)
+

3

1 ∧ d(u∥µk)
+

C

(µ∗ − v)2
(1 + (d(v∥µ∗)−1 ∧ log T )) + e log log T + 4e.
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Similarly, for infeasible arms, by using (15), we have the control

E[Nk
T+] ≤

log T + 3 log log T + log 2
2/3d(y∥α)

+
2

1 ∧ d(y∥νk)
.

Now choosing u, v, y as in the proof of Theorem 3 and proceeding along the same lines gives the claim.

The same approach also shows the following gap-independent result. The proof is identical, and so omitted.

Proposition 12. Algorithm 3 instantiated with BAYESUCB with δkt = 1/
√
8Nk

t t log
3 t also satisfies the bound

E[RT ] = O(
√
KT log T +K log log T ).

We conclude by showing the main Lemma.

Proof of Lemma 11. The argument relies on the following estimate, which essentially serves as a reduction to the analysis
of KL-UCB. This result is a variation of Lemma 1 of Kaufmann et al. (2012a).

Lemma 13. Define the quantities

φk
t
:= 1{Sk

t > 0}min

{
q ≤ Sk

t

Nk
t

: Nk
t d

(
Sk
t

Nk
t

∥∥∥∥q) ≤ log((2t log2 t)3/2)

}
φk
t := 1{Sk

t > 0}min

{
q ≤ Sk

t

Nk
t

: Nk
t d

(
Sk
t

Nk
t

∥∥∥∥q) ≤ log(t log3(t))

}
.

Then for all t,
φk
t
≤ Lk

t ≤ φk
t .

Proof. Firstly, since Lk
t = 0 whenever Sk

t = 0, this case is trivial. So assume Sk
t ≥ 1.

The idea behind the bounds is to exploit the relationship between the CDFs of Beta and Binomial random variables to reduce
the quantile estimation to that of a Binomial, and then use Chernoff’s bound for the Binomial to control where the quantile
can be. Indeed, let Z ∼ Beta(Sk

t , N
k
t − Sk

t + 1). Then we know that
P(Z ≤ q) = P(Bin(Nk

t , q) ≥ Sk
t ).

Further, by Chernoff’s upper bound, and by estimating the sth term in the Binomial series using Stirling’s approximation,
we may show the following result (where the lower bound holds generally, and the upper bound holds for any s ≥ nq).

1√
8n

exp(−nd((s/n)∥q)) ≤ P(Bin(n, q) ≥ s) ≤ exp(−nd((s/n)∥q)).

Now, recall that Lk
t is the δkt th quantile of the law of Z, so that P (Z ≤ Lk

t ) = δkt .

Lower bound Suppose q ≤ Sk
t /N

k
t is such that

exp(−Nk
t d(S

k
t /N

k
t )∥q)) ≤ δkt .

Then it follows that q ≤ Lk
t . Therefore,

Lk
t ≥ max

{
q ≤ Sk

t

Nk
t

: Nk
t d

(
Sk
t

Nk
t

∥q
)
≥ log(1/δkt )

}
= min

{
q ≤ Sk

t

Nk
t

: Nk
t d

(
Sk
t

Nk
t

∥q
)
≤ log(1/δkt )

}
,

where the final equality is due to the continuity of d(a∥·).

Now observe that
log(1/δkt ) ≤ (2(t+ 1))3/2 log3 t.

Therefore, replacing log(1/δkt ) by the larger log(2(t+ 1)3/2 log3 t in the lower bound can only decrease it.

Upper bound Suppose that q ≤ Sk
t /N

k
t is such that the lower bound on the Binomial tail exceeds δkt . Then Lk

t must be
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smaller than this q, and so

Lk
t ≤ min

{
q ≤ Sk

t

Nk
t

: Nk
t d

(
Sk
t

Nk
t

∥q
)
≤ log

(
1√

8Nk
t δ

k
t

)}
.

But, by definition,
1√

8Nk
t δ

k
t

= t log3 t.

Observe that the bounds φ and φ exactly take the form of the KL-UCB bounds, but with a different value for γT . Thus, the
same proofs may be repeated.

Indeed, to show (15), we observe that for an arm with a safety gap, {Lk
t ≤ α} ⊂ {φk

t
≤ α, } and we may then

follow the proof of Lemma 7 to control this identically to there - the only change is that log(γT ) in S(y) is replaced by
log((2t log2 t)3/2).

Further, the upper bound is exactly the bound of KL-UCB, and therefore without alteration we may immediately conclude
that ∑

t≥3

P(L∗
t > α) ≤

∑
t≥3

P(φ∗
t > α) ≤ e log log t+ 4e.

We note that the last property in the proof of Lemma 13 is exactly the reason for selecting δt of the form that we did, which
is essentially the 1/γt from KL-UCB, but scaled down to ensure that the BAYESUCB bound is at least as optimistic as
that of KL-UCB. In principle, then, this gives an avenue for a tighter analysis by choosing a more refined notion of δt by
exploiting stronger bounds for the Binomial tails.

For instance, it is known (Prop A.4, A.2 Jeřábek, 2004) that there exists a constant C such that for s ≥ nq +
√
nq(1− q),

1

C

qn− qs

s− qn

√
n

s(n− s)
e−nd(s/n∥q) ≤ P(Bin(n, q) ≥ s) ≤ C

qn− qs

s− qn

√
n

s(n− s)
e−nd(s/n∥q),

while for s ≤ nq +
√
nq(1− q), it is bounded below by another constant C ′. This suggests using δt ∼

min
(
C ′, 1

t log3 t
·
√

Nk
t

Sk
t (N

k
t −Sk

t )

)
, although it is unclear how to handle the (qn− qs)/(s− qn) term properly. Assuming

this is indeed handled, though, this should result in an improvement to φ of replacing the t3/2 by something O(t), while the
lower bound should remain unchanged. Of course, this does not quite explain the success of δt = 1/t in the experiments,
and it is possible that this approach simply serves to make BAYESUCB look more like KL-UCB, which defeats the purpose
somewhat.

E. Lower Bound
We begin by showing the key Lemma.

Proof of Lemma 5. Fix a (possibly randomised) algorithm. Let {Pk} and {P̃k} be two safe bandit instances, and recall that
Ht := {(As, Rs, Ss) : s ≤ t} denotes the history of play. We will use P to represent laws in the first instance and P̃ for
laws in the second. Similarly, E and Ẽ denote expectations under the two laws.

Let Z be any function measurable with respect to σ(HT ) that is bounded in [0, 1]. Then observe that from HT , we can
generate a random bit by first computing Z(HT ), and then sampling B ∼ Bern(Z). Clearly, the mean of B is the same as
that of Z. But then, by the data processing inequality,

D(PHT
∥P̃HT

) ≥ D(PB∥P̃B) = d(E[Z]∥Ẽ[Z]).

Next, due to the chain rule of KL divergence, for any t ≥ 1,
D(PHt

∥P̃Ht
) = D(PHt−1

∥P̃Ht−1
)

+ E[D(PAt|Ht−1
∥P̃At|Ht−1

|Ht−1)]

+ E[D(P(Rt,St)|At,Ht−1
∥P̃(Rt,St)|At,Ht−1

|At,Ht−1)].
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Now, the second term in the RHS is 0 since the learner must be causal, and thus the law of At is determined by Ht−1.

Further, the feedback (Rt, St) is independent of the history given At, and is distributed according to PAt and P̃At under the
two instances. We thus have the recurrence

D(PHt
∥P̃Ht

)−D(PHt−1
∥P̃Ht−1

) =
∑
k

P(At = k)D(Pk∥P̃k).

Summing this up, and observing that H0 is trivial, and then recalling
∑

t P(At = k) = E[Nk
T+1], it follows that

D(PHT
∥P̃HT

) =
∑
k

E[Nk
T+1]D(Pk∥P̃k).

The conclusion now follows on taking Z = Nk0

T+1/T , which trivially lies in [0, 1].

Proof of Proposition 6. As mentioned in the main text, choose P̃j = Pj for j ̸= k, and instead let P̃k be any law on {0, 1}2
of means (µk ∨ µ∗ + ε, νk ∧ α). Notice that in the P̃-instance, arm k is optimal.

Since the algorithm ensures that suboptimal arms are not played more than CxT
x times, E[Nk

T+1/T ] ≤ CxT
−(1−x), and

Ẽ[Nk
T+1/T ] ≥ 1− CxT

−(1−x) for any x ∈ (0, 1). Therefore,

d(E[Nk
T+1/T ]∥Ẽ[Nk

T+1/T ]) ≥

(
1−

E[Nk
T+1]

T

)
log

1

1− Ẽ[Nk
T+1/T ]

− log 2

≥ (1− o(1))(1− x) log
T

Cx
− log 2 = (1− o(1))(1− x) log T.

Next, since we are working with independent means and safety rewards, taking P̃k to also have the independent rewards, we
get D(Pk∥P̃k) = d<(µ

k∥µ∗ + ε) + d>(ν
k∥α).

We conclude that for any x, ε ∈ (0, 1),

E[Nk
T+1]

log T
≥ (1− x)(1− o(1))

d<(µk∥µ∗ + ε) + d>(νk∥α)
,

whence the claim follows on taking limT↗∞, and then taking limits as x → 0, ε → 0, and exploiting the continuity of
d<(a∥b).

F. Simulation Details and Supplementary Plots
Implementation Details All methods are implemented on MATLAB. Throughout we use independent Bernoulli bits for
both R and S. The particular details of the methods used are described below.

Policy approaches It is a straightforward observation that for a single constraint and objective, the solution to linear program
maxπ∈∆⟨π, a⟩ s.t. ⟨π, b⟩ ≤ c is supported on at most two coordinates. Further, the optimal policy on two given coordinates
itself is simple to compute - clearly at least one needs to be safe according to the relevant safety index at the particular time,
else this is not a permitted policy. If both are safe as per the index, then the policy can concentrate on the one with larger
reward index. If one is safe and the other not, then the policy concentrates on the safe one if it has a larger reward index.
Otherwise, we assign the slack between the safety level and the safety index of the safe coordinate as the mass of the policy
on the coordinate with the unsafe index. This enables a simple - and fast - method to select the round-wise policies for both
BWCR and PESS - we simply evaluate the value of the optimal policy on each pair of arms, and choose the one with the
largest reward.

Details of Confidence Bound Computation

In effect we use two types of confidence bounds - KL-UCB-based, and BAYESUCB-based.

• KL-UCB-based bounds are all evaluated with γt = 1/t (i.e., without the extra 1/ log3 t factor in the main text). This
is aligned with the practical recommendations of Garivier & Cappé (2011).

The upper indices Uk
t on µk are computed simply by computing a lower bound for 1− µk, and then subtracting this

from one. The soundness of this procedure is a trivial exercise.
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Finally, the KL inversion is performed via a binary search. Specifically, we carry this out for max(4, log2(t)) rounds,
thus ensuring that any error in the estimate is of order 1/t, which ensures that extra regret due to numerical precision is
at most log T.

• BAYESUCB -based bounds are all evaluated with δkt = 1/(t+ 1). Again, this is in line with the recommendations of
Kaufmann et al. (2012a). We note that this is a larger quantile than studied in the main text, and a regret bound with
this δkt is currently unavailable. Nevertheless, the empirical performance is sound, as seen in §6.

The quantile estimation is performed by using the library betainv function provided by the Statistics Toolbox of
MATLAB. This uses Newton’s method to solve the equation defining a quantile of a Beta distribution.

• For TS, we sample from the appropriate Beta posteriors by using the library betarnd function provided by MATLAB.

F.1. Supplement to §6.1

We provide plots that detail the regrets achieved by each algorithm in the two cases studied. The main observations remain
unchanged - the regrets of policy based methods grow linearly in the first case, and while they appear sublinear in the second,
they are at a much larger scale than our implementation. We note that in both cases the more unsafe BWCR performs better
on the regret criterion. This should be evident on the data of case two, for which playing the unsafe arm only contributes
0.6− 0.5 = 0.1 to the regret, while the suboptimal arm has a gap of 0.6− 0.4 = 0.2. However, the data of case 1 suggests
that this is also true more broadly, and may be an effect of the optimism principle. That said, this is a moot point in this case
since the growth rate is very much linear.
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Figure 4. Regrets for the situations of §6.1 - left is the first case with two optimal policies, right is the second case with a single optimal
policy supported on a single arm

F.2. Supplement to §6.2

We first provide Box plots in Figure 5 of the spread of regret and safety for the situation studied in the main text with
α = 0.21. Note that the Regret of the TS based methods shows somewhat larger fluctuations, although the maximum of
the data is similar. For the net safety violation, the fluctuations are similarly sized, and the Bayesian methods retain an
advantage.

Next, we provide plots for the same scenario, but with α = 0.19. Note that this induces the difference that the arm 4 is now
unsafe by a significant amount, which increases its gap ∆4 ∨ Γ4 to about 0.02 from 0.004. However, since 0.004 is about
the same size as

√
K/T = 0.01, this arm was not contributing much to the regret in the previous case. Further, the safety

violation of the least unsafe arm is now only about 0.02 instead of the previous 0.05. Correspondingly, we expect to see an
increase in the play of unsafe arms, as well as a slight increase in regret due to the scale up from 0.04 to 0.019 in the play of
this arm. Both of these observations are clearly borne out in Figure 6, which presents data over 100 trials.

We note that these observations are again consistent with the theoretical bounds. The main term of the regret bound is
roughly 40 log t, while that of the safety violation bound is roughly 1500 log t, and log(104) ≈ 4 · 2.3 ≈ 10.
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Figure 5. Box plots of Regret and Total Safety Violation at time T = 50K over 500 runs for the Trial Drugs data with α = 0.21
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Figure 6. Top: Mean regret (left) and safety (right) violation as a function of t, averaged over 100 trials, for the Trial Drug data with
α = 0.19 Bottom: Box plot of the same at T = 50K.
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F.3. Comparing theoretically analysed BAYESUCB quantiles with the practically implemented ones

As observed in the main text, the simulation of §6 all present Algorithm 3 run with the quantile schedule δkt = 1/t - in
actuality, we use the slightly more reasonable schedule of min(α/2, t−1), simply to ensure that for small t, all arms are
declared as feasible. While this choice is consistent with the recommendation of Kaufmann et al. (2012a), it differs from the
schedule analysed theoretically in §4.2, which instead suggsets δkt = (

√
8Nk

t t log
3 t)−1). We present the behaviour of such

a schedule below, although we modify it slightly to min(α/2, (
√

8Nk
t t)

−1) - here we drop the log term as recommended
by Garivier & Cappé (2011), and introduce the minimum to again ensure that for small t all arms are declared to be feasible.
The resulting behaviour is compared with the previously studied 1/t schedule in Figure 7. This is implemented on the
simple data

µ = ν = (0.4, 0.5, 0.6), α = 0.5.

We observe that the theoretical schedule displays the favourable logarithmic growth, and so is consistent with Theorem 4.
Further, while it certainly suffers degradation relative to the 1/t schedule, this is limited. The reason for this degradation is
largely because the theoretical lower indices Lk

t are more optimistic, and thus allow the unsafe arm to be played for a larger
number of times, as borne out in the plot of total safety violations.
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Figure 7. Regret (left) and total safety violations (right) of the theoretical and the 1/t schedule for Algorithm 3. Averages over 500 trials
are presented.

In addition, we present boxplots of the regret and net safety at T = 50000 for the two schedules below. An interesting
observation is that the practical schedule 1/t exhibits greater variability, with some (rare) but massive outliers that are not
present for the theortical schedule. Investigating this more closely requires determining high-probability bounds on these
methods, which is a subject for future work.

Figure 8. Boxplots across 500 trials of the net regret (left) and safety violations (right) for the two schedules of Algorithm 3 at T = 50000.
We note that one outlier for regret for the 1/t schedule at height ≈ 2100 has been omitted for the sake of clarity.
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F.4. The behaviour of a Naïve Thompson Sampling Based Safety Index

As discussed in §4.2, a naïve way of constructing a safety index by just sampling θkt ∼ Beta(Sk
t + 1, Nk

t − Sk
t + 1) should

be ineffective when the safety score ν∗ is close to α. We first investigate this effect.

Concretely, the scheme is the same as Alg.3, except that instead of the BAYESUCB index, we construct a safety index by
sampling as above, and then populate Πt = {k : θkt ≤ α}. We run this scheme with the data

µ = (0.3, 0.5, 0.7),

ν = (0.3, 0.5, 0.7),

and vary α as 0.5 + i/50 for i ∈ [0 : 9]. This corresponds to an increasing safety slack, while for i ∈ [0 : 5], the safety gap
of the unsafe arm 3 remains large, but decaying. Note that this ostensibly should increase the large t regret for a scheme
with optimal dependence.

Figure 9 plots the resulting mean regrets over a horizon of length 10K for four of the 10 cases (chosen evenly to not clutter
the plot too much). The data is averaged over 200 trials. Observe that for i = 0, wherein the gap (α− ν∗) is 0, the regret
grows linearly, while the dependence becomes sublinear as i increases, and further improves, even though it should grow
like 1/i.
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Figure 9. Regret of the scheme with a Naïve TS based safety index for various choices of α. The legend marks α− ν∗. The right figure
zooms in to the bottom of the left figure.

Further, we observe that the dependence on α − ν∗ scales roughly as inverse-quadratic. This is illustrated in Figure 10,
which plots both the mean regret against α− ν∗, as well as the mean of 1/

√
(Rt) against α− ν∗. The key observation is

the nearly linear dependence in the second plot for small α− ν∗. This observation makes sense - the variance scale of a
Beta(S + 1, N − S + 1) distribution is as 1/N, and so if the means ν̂∗ is close to the truth, then the chance of θkt falling
above α at time t is roughly 1/t(α− ν∗)2, and so k∗ ̸∈ Πt for about log(T )/(α− ν∗)2 rounds. Of course, for large enough
α− ν∗, this term is dominated by the regret terms due to suboptimal arms, and the dependence is masked. This effect is
further confounded in our simulation with the fact that the safety gap Γ3 reduces as α is increased, which raises the regret.
Nevertheless, the trend is evident, at least in the low α− ν∗ regime where the gap Γ3 does not change as much, and remains
much larger than α− ν∗.

Despite the ineffectiveness when α − ν∗ is small, a TS based safety index is an attractive proposition, primarily due to
wider concerns - the advantage of TS for standard bandits is obtaining strong regret performance at a low computational
cost, and this is specially important in cases such as combinatorial or continuously armed bandits. An alternative sampling
based strategy would enable such an approach for safe bandits in such rich scenarios, and is of both practical and theoretical
interest. Promisingly, when the gap is large, the effect on regret is indeed mild, showing that this is the only obstacle in the
path of such a strategy.

One natural approach to address this obstacle is to allow a slack in the safety criterion for TS - we may sample θkt according
to the safety posterior, and then instantiate Πt = {k : θkt ≤ α + εkt }, where εkt serves as a slack. This raises a design
question of how to choose this slack. We empirically investigate the choice of slack CDevkt

√
log t, where Devkt is the

standard deviation of the safety posterior of arm k at time t. This choice is natural, since this variance determines the scale
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Figure 10. The mean of regret and mean of 1/
√
Rt over 200 trials as α is varied, plotted against the gap of the optimal arm from the

boundary, α− ν∗.

of fluctuations of the score itself. Figure 11 shows the behaviour obtained as we set C = 2i for i ∈ [−3 : 3] for the same
data as before, but now with fixed α = 0.5.

This plot, while very preliminary, shows an interesting effect in that values of C ≥ 1/2 again result in large, linear regret.
Recall that C = 0, which corresponds to no slack, also gives linear regret. It is unclear how robust this effect is, but if true,
this observation suggests that tuning this C properly is a subtle problem, and the behaviour is quite sensitive to it, which
raises an interesting challenge for further work.

Figure 11. Regret performance as the slack factor C is varied. Right zooms into the bottom half of the left plot. Means over 200 trials are
reported.


