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Abstract
We introduce two new no-regret algorithms for
the stochastic shortest path (SSP) problem with
a linear MDP that significantly improve over the
only existing results of (Vial et al., 2021). Our
first algorithm is computationally efficient and
achieves a regret bound Õ(

√
d3B2

?T?K), where
d is the dimension of the feature space, B? and T?
are upper bounds of the expected costs and hitting
time of the optimal policy respectively, and K is
the number of episodes. The same algorithm with
a slight modification also achieves logarithmic
regret of order O

(
d3B4

?

c2mingapmin
ln5 dB?K

cmin

)
, where

gapmin is the minimum sub-optimality gap and
cmin is the minimum cost over all state-action
pairs. Our result is obtained by developing a sim-
pler and improved analysis for the finite-horizon
approximation of (Cohen et al., 2021) with a
smaller approximation error, which might be of
independent interest. On the other hand, us-
ing variance-aware confidence sets in a global
optimization problem, our second algorithm is
computationally inefficient but achieves the first
“horizon-free” regret bound Õ(d3.5B?

√
K) with

no polynomial dependency on T? or 1/cmin,
almost matching the Ω(dB?

√
K) lower bound

from (Min et al., 2021).

1. Introduction
We study the stochastic shortest path (SSP) model, where
a learner attempts to reach a goal state while minimizing
her costs in a stochastic environment. SSP is a suitable
model for many real-world applications, such as games, car
navigation, robotic manipulation, etc. Online reinforcement
learning in SSP has received great attention recently. In
this setting, learning proceeds in K episodes over a Markov
Decision Process (MDP). In each episode, starting from a
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fixed initial state, the learner sequentially takes an action,
incurs a cost, and transits to the next state until reaching
the goal state. The performance of the learner is measured
by her regret, the difference between her total costs and
that of the optimal policy. SSP is a strict generalization of
the heavily-studied finite-horizon reinforcement learning
problem, where the learner is guaranteed to reach the goal
state after a fixed number of steps.

Modern reinforcement learning applications often need to
handle a massive state space, in which function approxima-
tion is necessary. There is huge progress in the study of
linear function approximation, for both the finite-horizon
setting (Ayoub et al., 2020; Jin et al., 2020b; Yang &
Wang, 2020; Zanette et al., 2020a;b; Zhou et al., 2021a)
and the infinite-horizon setting (Wei et al., 2021b; Zhou
et al., 2021a;b). Recently, Vial et al. (2021) took the
first step in considering linear function approximation for
SSP. They study SSP defined over a linear MDP, and pro-
posed a computationally inefficient algorithm with regret
Õ(
√
d3B3

?K/cmin), as well as another efficient algorithm
with regret Õ(K5/6) (omitting other dependency). Here,
d is the dimension of the feature space, B? is an upper
bound on the expected costs of the optimal policy, and cmin

is the minimum cost across all state-action pairs. Later,
Min et al. (2021) study a related but different SSP prob-
lem defined over a linear mixture MDP and achieve a
Õ(dB1.5

?

√
K/cmin) regret bound. Despite leveraging the

advances from both the finite-horizon and infinite-horizon
settings, results above are still far from optimal in terms of
regret guarantee or computational efficiency, demonstrating
the unique challenge of SSP problems.

In this work, we further extend our understanding of SSP
with linear function approximation (more specifically, with
linear MDPs). Our contributions are as follows:

• In Section 3, we first propose a new analysis for the
finite-horizon approximation of SSP introduced in (Co-
hen et al., 2021), which is much simpler and achieves
a smaller approximation error. Our analysis is also
model agnostic, meaning that it does not make use
of the modeling assumption and can be applied to
both the tabular setting and function approximation
settings. Combining this new analysis with a simple
finite-horizon algorithm similar to that of (Jin et al.,
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2020b), we achieve a regret bound of Õ(
√
d3B2

?T?K),
with T? ≤ B?/cmin being an upper bound of the hit-
ting time of the optimal policy, which strictly improves
over that of (Vial et al., 2021). Notably, unlike their
algorithm, ours is computationally efficient without
any extra assumption.

• In Section 3.3, we further show that the same algo-
rithm above with a slight modification achieves a loga-
rithmic instance-dependent expected regret bound of
order O

(
d3B4

?

c2mingapmin
ln5 dB?K

cmin

)
where gapmin is some

sub-optimality gap. As far as we know, this is the
first logarithmic regret bound for SSP (with or without
function approximation). We also establish a lower
bound of order Ω(

dB2
?

gapmin
), which further advances our

understanding for this problem even though it does not
exactly match our upper bound.

• To remove the undesirable T? dependency in our
instance-independent bound, in Section 4, we fur-
ther develop a computationally inefficient algorithm
that makes use of certain variance-aware confidence
sets in a global optimization problem and achieves
Õ(d3.5B?

√
K) regret. Importantly, this bound is

horizon-free in the sense that it has no polynomial de-
pendency on T? or 1

cmin
even in the lower order terms.

Moreover, this almost matches the best known lower
bound Ω(dB?

√
K) from (Min et al., 2021).

Techniques Our results are built upon several technical
innovations. First, as mentioned, we develop an improved
analysis for the finite-horizon approximation of (Cohen
et al., 2021), which might be of independent interest. The
key idea is to directly bound the total approximation error
with respect to the regret bound of the finite-horizon algo-
rithm, instead of analyzing the estimation precision for each
state-action pair as done in (Cohen et al., 2021).

Second, to obtain the logarithmic bound in Section 3, we
note that it is not enough to simply combine the aforemen-
tioned finite-horizon approximation and the existing log-
arithmic regret results for the finite-horizon setting such
as (He et al., 2021), since the sub-optimality gap obtained in
this way is in terms of the finite-horizon counterpart instead
of the original SSP and could be substantially smaller. We
resolve this issue via a longer horizon in the approximation
and a careful two-stage analysis.

Finally, our horizon-free result in Section 4 is obtained by
a novel combination of several ideas, including the global
optimization algorithm of (Zanette et al., 2020b; Wei et al.,
2021b), the variance-aware confidence sets of (Zhang et al.,
2021) (for a related but different setting with linear mix-
ture MDPs), an improved analysis of the variance-aware
confidence sets (Kim et al., 2021), and finally a new clip-

ping trick and new update conditions that we propose. Our
analysis does not require the recursion-based technique of
(Zhang et al., 2020a) (for the tabular case), nor estimating
higher order moments of value functions as in (Zhang et al.,
2021) (for linear mixture MDPs), which might also be of
independent interest.

Related work Regret minimization of SSP under stochas-
tic costs has been well studied in the tabular setting (that
is, no function approximation) (Tarbouriech et al., 2020;
Cohen et al., 2020; 2021; Tarbouriech et al., 2021; Chen
et al., 2021a; Jafarnia-Jahromi et al., 2021). There are also
several works (Rosenberg & Mansour, 2020; Chen et al.,
2021b; Chen & Luo, 2021) considering the more challeng-
ing setting with adversarial costs (which is beyond the scope
of this work).

Beyond linear function approximation, in the finite-horizon
setting researchers also start considering theoretical guaran-
tees for general function approximation (Wang et al., 2020;
Ishfaq et al., 2021; Kong et al., 2021). The study for SSP,
which again is a strict generalization of the finite-horizon
problems and might be a better model for many applications,
falls behind in this regard, motivating us to explore in this
direction with the goal of providing a more complete picture
at least for linear function approximation.

The use of variance information is crucial in obtaining op-
timal regret bounds in MDPs. This dates back to the work
of (Lattimore & Hutter, 2012) for the discounted setting,
which has been significantly extended to the finite-horizon
setting (Azar et al., 2017; Jin et al., 2018; Zanette & Brun-
skill, 2019; Zhang et al., 2020a;b). Constructing variance-
aware confidence sets for linear bandits and linear mixture
MDPs has also gained recent attention (Zhou et al., 2021a;
Zhang et al., 2021; Kim et al., 2021). We are among the
first to do so for linear MDPs (a concurrent work (Wei et al.,
2021a) also does so but for a completely different purpose
of improving robustness against corruption).

Logarithmic gap-dependent bounds have been shown in
different settings; see for example (Jaksch et al., 2010; Sim-
chowitz & Jamieson, 2019; Jin et al., 2021; He et al., 2021),
but to our knowledge, we are the first to show similar bounds
for SSP.

2. Preliminary
An SSP instance is defined by an MDP M =
(S,A, sinit, g, c, P ). Here, S is the state space, A is the
(finite) action space (with A = |A|), sinit ∈ S is the initial
state, g /∈ S is the goal state, c : S × A → [cmin, 1] is the
cost function with some global lower bound cmin ≥ 0, and
P = {Ps,a}(s,a)∈S×A with Ps,a ∈ ∆S+ is the transition
function, where S+ is a shorthand for S ∪ {g} and ∆S+ is
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the simplex over S+.

The learning protocol is as follows: the learner interacts with
the environment for K ≥ 2 episodes. In each episode, the
learner starts in initial state sinit, sequentially takes an action,
incurs a cost, and transits to the next state. An episode ends
when the learner reaches the goal state g. We denote by
(st, at, s

′
t) the t-th state-action-state triplet observed among

all episodes, so that s′t ∼ Pst,at for each t, and s′t = st+1

unless s′t = g (in which case st+1 = sinit). Also denote by
T the total number of steps in K episodes.

Learning objective The learner’s goal is to learn a policy
that reaches the goal state with minimum costs. Formally,
a (stationary and deterministic) policy π : S → A is a
mapping that assigns an action π(s) to each state s ∈ S . We
say π is proper if following π (that is, taking action π(s)
whenever in state s) reaches the goal state with probability
1. Given a proper policy π, we define its value function and
action-value function as follows:

V π(s) = E

[
I∑
i=1

c(si, π(si))

∣∣∣∣∣P, s1 = s

]
,

Qπ(s, a) = c(s, a) + Es′∼Ps,a [V π(s′)],

where the expectation in V π is with respect to the random-
ness of next states si+1 ∼ Psi,π(si) and the number of
steps I before reaching the goal g. Let Π be the set of
proper policies. We make the basic assumption that Π is
non-empty. Under this assumption, there exists an optimal
proper policy π?, such that V π

?

(s) = minaQ
π?(s, a), and

V π
?

(s) = minπ∈Π V
π(s) for all s (Bertsekas & Yu, 2013).

We use V ? and Q? as shorthands for V π
?

and Qπ
?

. The
formal goal of the learner is then to minimize her regret
against π?, that is, the difference between her total costs and
that of the optimal proper policy, defined as

RK =

T∑
t=1

c(st, at)−K · V ?(sinit).

We also define RK =∞ if T =∞.

Linear SSP In the so-called tabular setting, the state space
is assumed to be small, and algorithms with computational
complexity and regret bound depending on S = |S| are
acceptable. To handle a potentially massive state space,
however, we consider the same linear function approxima-
tion setting of (Vial et al., 2021), where the MDP enjoys
a linear structure in both the transition and cost functions
(known as linear or low-rank MDP).

Assumption 1 (Linear SSP). For some d ≥ 2, there exist
known feature maps {φ(s, a)}(s,a)∈S×A ⊆ Rd, unknown
parameters θ? ∈ Rd and {µ(s′)}s′∈S+ ⊆ Rd, such that for

any (s, a) ∈ S ×A and s′ ∈ S+, we have:

c(s, a) = φ(s, a)>θ?, Ps,a(s′) = φ(s, a)>µ(s′).

Moreover, we assume ‖φ(s, a)‖2 ≤ 1 for all (s, a) ∈ S×A,
‖θ?‖2 ≤

√
d, and

∥∥∫ h(s′)dµ(s′)
∥∥

2
≤
√
d ‖h‖∞ for any

h ∈ RS+ .

We refer the reader to (Vial et al., 2021) and references
therein for justification on this widely-used structural as-
sumption (especially on the last few norm constraints).
Under Assumption 1, by definition we have Q?(s, a) =
φ(s, a)>w?, where w? = θ? +

∫
V ?(s′)dµ(s′) ∈ Rd, that

is, Q? is also linear in the features.

Key parameters and notations Two extra parameters
that play a key role in our analysis are: B? = maxs V

?(s),
the maximum cost of the optimal policy starting from any
state, and T? = maxs T

π?(s), the maximum hitting time
of the optimal policy starting from any state, where Tπ(s)
is the expected number of steps before reaching the goal if
one follows policy π starting from state s. By definition, we
have T? ≤ B?/cmin.

For simplicity, we assume that B?, T?, and cmin are known
to the learner for most discussions, and defer to the appendix
what we can achieve when some of these parameters are
unknown. We also assume B? > 1 and cmin > 0 by default
(and will discuss the case cmin = 0 for specific algorithms
if modifications are needed).

For n ∈ N+, we define [n] = {1, . . . , n}. For any l ≤ r,
we define [x][l,r] = min{max{x, l}, r} as the projection of
x onto the interval [l, r]. The notation Õ (·) hides all loga-
rithmic terms including lnK and ln 1

δ for some confidence
level δ ∈ (0, 1).

3. An Efficient Algorithm for Linear SSP
In this section, we introduce a computationally efficient
algorithm for linear SSP. In Section 3.1, we first develop
an improved analysis for the finite-horizon approximation
of (Cohen et al., 2021). Then in Section 3.2, we combine
this approximation with a simple finite-horizon algorithm,
which together achieves Õ(

√
d3B2

?T?K) regret. Finally, in
Section 3.3, we further obtain a logarithmic regret bound
via a slightly modified algorithm and a careful two-stage
analysis.

3.1. Finite-Horizon Approximation of SSP

Finite-horizon approximation has been frequently used in
solving SSP problems (Chen et al., 2021b; Chen & Luo,
2021; Cohen et al., 2021; Chen et al., 2021a). In particular,
Cohen et al. (2021) proposed a black-box reduction from
SSP to a finite-horizon MDP, which achieves minimax opti-
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mal regret bound in the tabular case when combining with
a certain finite-horizon algorithm. We will make use of the
same algorithmic reduction in our proposed algorithm, but
with an improved analysis.

Specifically, for an SSP instanceM = (S,A, sinit, g, c, P ),
define its finite-horizon MDP counterpart as M̃ =
(S+,A, c̃, cf , P̃ ,H), where c̃(s, a) = c(s, a)I{s 6= g} is
the extended cost function, cf (s) = 2B?I{s 6= g} is
the terminal cost function (more details to follow), P̃ =
{Ps,a}(s,a)∈S×A ∪ {Pg,a}a∈A with Pg,a(s′) = I{s′ = g}
is the extended transition function, and H is a horizon
parameter. Assume the access to a corresponding finite-
horizon algorithm A which learns through a certain number
of “intervals” following the protocol below. At the begin-
ning of an interval m, the learner A is first reset to an arbi-
trary state sm1 . Then, in each step h = 1, . . . ,H within this
interval, A decides an action amh , transits to smh+1 ∼ P̃smh ,amh ,
and suffers cost c̃(smh , a

m
h ). At the end of the interval, the

learner suffers an additional terminal cost cf (smH+1), and
then moves on to the next interval.

With such a black-box access to A, the reduction of (Cohen
et al., 2021) is depicted in Algorithm 1. The algorithm parti-
tions the time steps into intervals of lengthH ≥ 4T? ln(4K)
(such that π? reaches g within H steps with high probabil-
ity). In each step, the algorithm follows A in a natural way
and feeds the observations to A (Line 7 and Line 9). If the
goal state is not reached within an interval, A naturally en-
ters the next interval with the initial state being the current
state (Line 10). Otherwise, if the goal state is reached within
some interval, we keep feeding g and zero cost to A until it
finishes the current interval (Line 8 and Line 9), and after
that, the next interval corresponds to the beginning of the
next episode of the original SSP problem (Line 1).

Analysis Cohen et al. (2021) showed that in this reduction,
the regret RK of the SSP problem is very close to the regret
of A in the finite-horizon MDP M̃. Specifically, define
R̃M ′ =

∑M ′

m=1(
∑H
h=1 c

m
h + cf (smH+1) − V ?1 (sm1 )) as the

regret of A over the first M ′ intervals of M̃ (note the inclu-
sion of the terminal costs), where V ?1 is the optimal value
function of the first layer of M̃ (see Appendix B.1 for the
formal definition). Denote by M the final (random) number
of intervals created during the K episodes. Then Cohen
et al. (2021) showed the following (a proof is included in
Appendix B.2 for completeness).

Lemma 1. Algorithm 1 ensures RK ≤ R̃M +B?.

This lemma suggests that it remains to bound the number of
intervals M . The analysis of Cohen et al. (2021) does so by
marking state-action pairs as “known” or “unknown” based
on how many times they have been visited, and showing
that in each interval, the learner either reaches an “unknown”

Algorithm 1 Finite-Horizon Approximation of SSP
from (Cohen et al., 2021)

Input: Algorithm A for finite-horizon MDP M̃ with hori-
zon H ≥ 4T? ln(4K).
Initialize: interval counter m← 1.
for k = 1, . . . ,K do

1 Set sm1 ← sinit.
2 while sm1 6= g do
3 Feed initial state sm1 to A.
4 for h = 1, . . . ,H do
5 Receive action amh from A.
6 if smh 6= g then
7 Play action amh , observe cost cmh =

c(smh , a
m
h ) and next state smh+1.

8 else Set cmh = 0 and smh+1 = g.
9 Feed cmh and smh+1 to A.

10 Set sm+1
1 = smH+1 and m← m+ 1.

state-action pair or with high probability reaches the goal
state. This analysis requires A to be “admissible” (defined
through a set of conditions) and also heavily makes use
of the tabular setting to keep track of the status of each
state-action pair, making it hard to be directly generalized
to function approximation settings. Furthermore, it also
introduces T? dependency in the upper bound of M , since
the total cost for an interval where an “unknown” state-
action pair is visited is trivially bounded by H = Ω(T?).

Instead, we propose the following simple and improved
analysis. The idea is to separate intervals into “good” ones
within which the learner reaches the goal state, and “bad”
ones within which the learner does not. Then, our key
observation is that the regret in each bad interval is at least
B? — this is because the learner’s cost is at least 2B? in
such intervals by the choice of the terminal cost cf , and the
optimal policy’s expected cost is at most B?. Therefore,
if A is a no-regret algorithm, the number of bad intervals
has to be small. More formally, based on this idea we can
bound M directly in terms of the regret guarantee of A
without requiring any extra properties from A, as shown in
the following lemma.

Theorem 1. Suppose that A enjoys the following regret
guarantee with certain probability: R̃m = Õ (γ0 + γ1

√
m)

for some problem-dependent coefficients γ0 and γ1 (that are
independent of m) and any number of intervals m ≤ M .
Then, with the same probability, the number of intervals
created by Algorithm 1 satisfies M = Õ

(
K +

γ2
1

B2
?

+ γ0
B?

)
.

Proof. For any finite M† ≤ M , we will show M† =

Õ
(
K +

γ2
1

B2
?

+ γ0
B?

)
, which then implies that M has to

be finite and is upper bounded by the same quantity. To
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do so, we define the set of good intervals Cg = {m ∈
[M†] : smH+1 = g} where the learner reaches the goal state,
and also the total costs of the learner in interval m of M̃:
Cm =

∑H
h=1 c

m
h + cf (smH+1). By definition and the guar-

antee of A, we have

R̃M† =
∑
m∈Cg

(Cm − V ?1 (sm1 )) +
∑
m/∈Cg

(Cm − V ?1 (sm1 ))

≤ Õ
(
γ0 + γ1

√
M†

)
. (1)

Next, we derive lower bounds on
∑
m∈Cg (Cm − V ?1 (sm1 ))

and
∑
m/∈Cg (Cm − V ?1 (sm1 )) respectively. First note that

by Lemma 17 and H ≥ 4T? ln(4K), we have that π?

reaches the goal within H steps with probability at least
1 − 1/2K. Therefore, executing π? in an episode of M̃
leads to at most B? + 2B?

2K ≤ 3
2B? costs in expectation,

which implies V ?1 (s) ≤ 3
2B? for any s. By |Cg| ≤ K, we

thus have ∑
m∈Cg

(Cm − V ?1 (sm1 )) ≥ −3

2
B?K.

On the other hand, for m /∈ Cg , we have Cm ≥ 2B? due to
the terminal cost cf (smH+1) = 2B?, and thus

∑
m/∈Cg

(Cm − V ?1 (sm1 )) ≥ B?
2

(M†−|Cg|) ≥
B?
2

(M†−K).

Combining the two lower bounds above with Eq. (1),
we arrive at B?

2 M† ≤ Õ
(
γ0 + γ1

√
M†
)

+ 2B?K. By

Lemma 28, this implies M† = Õ
(
K +

γ2
1

B2
?

+ γ0
B?

)
, finish-

ing the proof.

Now plugging in the bound on M in Theorem 1 into
Lemma 1, we immediately obtain the following corollary on
a general regret bound for the finite-horizon approximation.

Corollary 2. Under the same condition of Theorem 1, Algo-
rithm 1 ensures RK = Õ

(
γ1

√
K +

γ2
1

B?
+ γ0 +B?

)
(with

the same probability stated in Theorem 1).

Proof. Combining Lemma 1 and Theorem 1, we have
RK ≤ R̃M + B? ≤ Õ(γ1

√
M + γ0 + B?) ≤

Õ
(
γ1

√
K +

γ2
1

B?
+ γ1

√
γ0
B?

+ γ0 +B?

)
. Further realiz-

ing γ1

√
γ0
B?
≤ 1

2

(
γ2
1

B?
+ γ0

)
by AM-GM inequality proves

the statement.

Note that the final regret bound completely depends on
the regret guarantee of the finite horizon algorithm A. In
particular, in the tabular case, if we apply a variant of
EB-SSP (Tarbouriech et al., 2021) that achieves R̃m =

Õ(B?
√
SAm+B?S

2A) (note the lack of polynomial de-
pendency on H),1 then Corollary 2 ensures that RK =
Õ(B?

√
SAK +B?S

2A), improving the results of (Cohen
et al., 2021) and matching the best existing bounds of (Tar-
bouriech et al., 2021; Chen et al., 2021a); see Appendix B.5
for more details. This is not achievable by the analysis of
(Cohen et al., 2021) due to the T? dependency in the lower
order term mentioned earlier.

More importantly, our analysis is model agnostic: it only
makes use of the regret guarantee of the finite-horizon algo-
rithm, and does not leverage any modeling assumption on
the SSP instance. This enables us to directly apply our result
to settings with function approximation. In Appendix B.6,
we provide an example for SSP with a linear mixture MDP,
which gives a regret bound Õ(B?

√
dT?K +B?d

√
K) via

combining Corollary 2 and the near optimal finite-horizon
algorithm of (Zhou et al., 2021a).

3.2. Applying an Efficient Finite-Horizon Algorithm
for Linear MDPs

Similarly, if there were a horizon-free algorithm for finite-
horizon linear MDPs, we could directly combine it with Al-
gorithm 1 and obtain a T?-independent regret bound. How-
ever, to our knowledge, this is still open due to some unique
challenge for linear MDPs.

Nevertheless, even combining Algorithm 1 with a horizon-
dependent linear MDP algorithm already leads to significant
improvement over the state-of-the-art for linear SSP. Specif-
ically, the finite-horizon algorithm A we apply is a variant
of LSVI-UCB (Jin et al., 2020b), which performs Least-
Squares Value Iteration with an optimistic modification.
The pseudocode is shown in Algorithm 2. Utilizing the fact
that action-value functions are linear in the features for a
linear MDP, in each interval m, we estimate the parameters
{wmh }Hh=1 of these linear functions by solving a set of least
square linear regression problems using all observed data
(Line 1), and we encourage exploration by subtracting a
bonus term βm ‖φ(s, a)‖Λ−1

m
in the definition of Q̂mh (s, a)

(Line 2). Then, we simply act greedily with respect to the
truncated action-value estimates {Qmh }h (Line 3). Clearly,
this is an efficient algorithm with polynomial (in d, H , m
and A) time complexity for each interval m.

We refer the reader to (Jin et al., 2020b) for more explanation
of the algorithm, and point out three key modifications we
make compared to their version. First, Jin et al. (2020b)
maintain a separate covariance matrix Λmh for each layer
h using data only from layer h, while we only maintain a
single covariance matrix Λm using data across all layers
(Line 3). This is possible (and resulting in a better regret

1This variant is equivalent to applying EB-SSP on a homoge-
neous finite-horizon MDP.
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Algorithm 2 Finite-Horzion Linear-MDP Algorithm

Parameters: λ = 1, βm = 50dB
√

ln(16BmHd/δ)
where δ is the failure probability and B ≥ 1.
Initialize: Λ1 = λI .
for m = 1, . . . ,M do

Define V mH+1(s) = cf (s).
for h = H, . . . , 1 do

1 Compute

wmh = Λ−1
m

m−1∑
m′=1

H∑
h′=1

φm
′

h′ (cm
′

h′ + V mh+1(sm
′

h′+1)),

where φmh = φ(smh , a
m
h ).

2 Define φ(g, a) = 0 and

Q̂mh (s, a) = φ(s, a)>wmh − βm ‖φ(s, a)‖Λ−1
m

Qmh (s, a) = [Q̂mh (s, a)][0,B]

V mh (s) = min
a
Qmh (s, a)

for h = 1, . . . ,H do
3 Play amh = argminaQ

m
h (smh , a), suffer cmh , and

transit to smh+1.

Compute Λm+1 = Λm +
∑H
h=1 φ

m
h φ

m
h
>.

bound) since the transition function is the same in each layer
of M̃ . Another modification is to define V mH+1(s) as cf (s)
simply for the purpose of incorporating the terminal cost.
Finally, we project the action-value estimates onto [0, B] for
some parameter B similar to (Vial et al., 2021) (Line 2). In
the main text we simply set B = 3B?, and the upper bound
truncation at B has no effect in this case. However, this
projection will become important when learning without the
knowledge of B? (see Appendix B.4).

We show the following regret guarantee of Algorithm 2 fol-
lowing the analysis of (Vial et al., 2021) (see Appendix B.3).

Lemma 2. With probability at least 1 − 4δ, Algorithm 2
with B = 3B? ensures R̃m = Õ(

√
d3B2

?Hm + d2B?H)
for any m ≤M .

Applying Corollary 2 we then immediately obtain the fol-
lowing new result for linear SSP.

Theorem 3. Applying Algorithm 1 with H = 4T? ln(4K)
and A being Algorithm 2 with B = 3B? to the linear SSP
problem ensures RK = Õ(

√
d3B2

?T?K + d3B?T?) with
probability at least 1− 4δ.

There is some gap between our result above and the existing
lower bound Ω(dB?

√
K) for this problem (Min et al., 2021).

In particular, the dependency on T? inherited from the H
dependency in Lemma 2 is most likely unnecessary. Never-

theless, this already strictly improves over the best existing
bound Õ(

√
d3B3

?K/cmin) from (Vial et al., 2021) since
T? ≤ B?/cmin. Moreover, our algorithm is computationally
efficient, while the algorithms of Vial et al. (2021) are either
inefficient or achieve a much worse regret bound such as
Õ(K5/6) (unless some strong assumptions are made). This
improvement comes from the fact that our algorithm uses
non-stationary policies (due to the finite-horizon approxima-
tion), which avoids the challenging problem of solving the
fixed point of some empirical Bellman equation. This also
demonstrates the power of finite-horizon approximation in
solving SSP problems. On the other hand, obtaining the
same regret guarantee by learning stationary policies only
is an interesting future direction.

Learning without knowingB? or T? Note that the result
of Theorem 3 requires the knowledge ofB? and T?. Without
knowing these parameters, we can still efficiently obtain a
regret bound of order Õ(

√
d3B3

?K/cmin + d3B2
?/cmin),

matching the bound of (Vial et al., 2021) achieved by their
inefficient algorithm. See Appendix B.4 for details.

3.3. Logarithmic Regret

Many optimistic algorithms attain a more favorable regret
bound of the form C lnK, where C is an instance depen-
dent constant usually inversely proportional to some gap
measure; see e.g. (Jaksch et al., 2010) for the infinite-
horizon setting and (Simchowitz & Jamieson, 2019) for the
finite-horizon setting. In this section, we show that a slight
modification of our algorithm also leads to an expected
regret bound that is polylogarithmic in K and inversely
proportional to gapmin = mins,a:gap(s,a)>0 gap(s, a) with
gap(s, a) = Q?(s, a)− V ?(s).2

The high-level idea is as follows. The first observation is that
similarly to a recent work by He et al. (2021), we can show
that our Algorithm 2 obtains a gap-dependent logarithmic
regret bound Õ( lnm

gap′min
) for the finite-horizon problem. The

caveat is that gap′min here is naturally defined using the
optimal value and action-value functions V ?h and Q?h for the
finite-horizon MDP (which is different for each layer h);
more specifically, gap′min = mins,a,h:gaph(s,a)>0 gaph(s, a)
where gaph(s, a) = Q?h(s, a) − V ?h (s). The difference
between gapmin and gap′min can in fact be significant; see
Appendix B.7 for an example where gap′min is arbitrarily
smaller than gapmin.

To get around this issue, we set H to be a larger value
of order Õ( B?

cmin
) and perform the following two-stage

analysis. For the first H/2 layers, we are able to show

2Note that for our definition of regret, a polylogarithmic bound
is only possible in expectation, because even if the learner always
executes π?, the deviation of her total costs from KV ?(sinit) is
already of order

√
K.
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Q?h(s, a) ≈ Q?(s, a) and thus gaph(s, a) ≈ gap(s, a), lead-
ing to a Õ( lnm

gapmin
) bound on the regret suffered for these

layers. Then, for the last H/2 layers, we further consider
two cases: if the learner’s policy for the first H/2 layers
are nearly optimal, then the probability of not reaching the
goal within the first H/2 layers is very low by the choice
of H , and thus the costs suffered in the last H/2 layers are
negligible; otherwise, we simply bound the costs using the
number of times the learner takes a non-near-optimal action
in the first H/2 layers, which is again shown to be of order
Õ( lnm

gapmin
).

One final detail is to carefully control the regret under some
failure event that happens with a small probability (recall
that we are aiming for an expected regret bound; see Foot-
note 2). This is necessary since in SSP the learner’s cost
under such events could be unbounded in the worst case.
To resolve this issue, we make a slight modification to Al-
gorithm 1 and occasionally restart A whenever the number
of total intervals reaches some multiple of a threshold; see
Algorithm 7 in the appendix. This finally leads to our main
result summarized in the following theorem (whose proof is
deferred to Appendix B.8).

Theorem 4. There exist b′ and δ such that applying Al-
gorithm 7 with horizon H = b′B?

cmin
ln(dB?Kcmin

) and A being
Algorithm 2 (with B = 3B? and failure probability δ) en-
sures E[RK ] = O

(
d3B4

?

c2mingapmin
ln5 dB?K

cmin

)
.

As far as we know, this is the first polylogarithmic bound
for any SSP problem. Our result also indicates that the
instance-dependent quantities of SSP can be well preserved
after using some finite-horizon approximation.

Lower bounds To better understand instance-dependent
regret bounds for this problem, we further show the follow-
ing lower bound.

Theorem 5. For any algorithm A, there exists a linear SSP
instance with d ≥ 2 and B? ≥ 1 such that EA[RK ] =
Ω(dB2

?/gapmin).

This lower bound exhibits a relatively large gap from our
upper bound. One important question is whether the 1

cmin

dependency in the upper bound is really necessary, which
we leave as a future direction.

4. An Inefficient Horizon-Free Algorithm
Recall that the dominating term of the regret bound shown in
Theorem 3 depends on T?, which is most likely unnecessary.
Due to the lack of a horizon-free algorithm for finite-horizon
linear MDPs (which, as discussed, would have addressed
this issue), in this section we propose a different approach
leading to a computationally inefficient algorithm with a
regret bound that is horizon-free (that is, no polynomial

Algorithm 3 Variance-Aware Global OPtimization with Op-
timism (VA-GOPO)
Initialize: t = t′ = 1, k = 1, s1 = sinit, B1 = 1.
Define: s′0 = g and Vt = Vwt,Bt .
while k ≤ K do

1 if s′t−1 = g or Eq. (4) holds or Vt′(st) = 2Bt then
while True do

2 Compute wt = argminw∈Ωt(w,Bt) Vw,Bt(st)
(see Eq. (2) and Eq. (3) for definitions).

3 if Vt(st) > Bt then Bt ← 2Bt; else break.

4 Record the most recent update time t′ ← t.

else (wt, Bt) = (wt−1, Bt−1).

Take action at = argmina φ(st, a)>wt, suffer cost
ct = c(st, at), and transits to s′t.
if s′t = g then st+1 = sinit, k ← k + 1; else st+1 = s′t.
Increment time step t← t+ 1.

dependency on T?) but has a worse dependency on d.

As stated in previous work for the tabular setting (Cohen
et al., 2020; 2021; Tarbouriech et al., 2021; Chen et al.,
2021a), achieving a horizon-free regret bound requires con-
structing variance-aware confidence sets on the transition
functions. While this is straightforward in the tabular case,
it is much more challenging with linear function approxi-
mation. Zhou et al. (2021a); Zhang et al. (2021) construct
variance-aware confidence sets for linear mixture MDPs, but
we are not aware of similar results for linear MDPs since
they impose extra challenges. Our algorithm VA-GOPO,
shown in Algorithm 3, is the first one to successfully make
use of these ideas.

VA-GOPO follows a similar framework of the ELEANOR
algorithm of (Zanette et al., 2020b) (for the finite-horizon
setting) and the FOPO algorithm of (Wei et al., 2021b) (for
the infinite-horizon setting) — they all maintain an esti-
mate wt of the true weight vector w? (recall Q?(s, a) =
φ(s, a)>w?), found by optimistically minimizing the value
of the current state st (roughly mina φ(st, a)>wt) over a
confidence set of wt, and then simply act according to
argmina φ(st, a)>wt. The main differences are the con-
struction of the confidence set and the conditions under
which wt is updated, which we explain in detail below.

Confidence Set For a parameter B > 0 and a weight
vector w ∈ Rd, inspired by (Zhang et al., 2021) we define a
variance-aware confidence set for time step t as

Ωt(w,B) =
⋂
j∈JB

Ωjt (w,B), (2)
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where JB = {dlog2 εe, . . . , dlog2(6
√
dB)e} with ε =

cmin

150d3K , and Ωjt (w,B) = B(3
√
dB)∩{

w′ : ∀ν ∈ Gε/t(6
√
dB),

∣∣∣∣∣∑
i<t

clipj(φ
>
i ν)εiVw,B (w′)

∣∣∣∣∣
≤
√∑

i<t

clip2
j (φ
>
i ν)ηiVw,B (w′)ιB,t +B2jιB,t

 , (3)

with B(r) = {x ∈ Rd : ‖x‖2 ≤ r} being the d-dimensional
L2-ball of radius r, Gξ(r) = {ξn, n ∈ Z}d ∩ B(r) being
the ξ-net of B(r), clipj(x) = [x][−2j ,2j ] (recall [x][l,r] =
min{max{x, l}, r}), φi being a shorthand of φ(si, ai),
Vw,B(s) = mina[φ(s, a)>w][0,2B] (and Vw,B(g) = 0),
εiV (w′) = φ>i w

′ − ci − V (s′i), ηiV (w′) = εiV (w′)2, and
finally ιB,t = 211d ln 48dBt

εδ for some failure probability
δ. The key difference between our confidence set and that
of (Zhang et al., 2021) is in the definition of εiV (w′) and
ηiV (w′) due to the different structures between linear MDPs
and linear mixture MDPs. In particular, we note that the
value function V (more formally Vw,B) in our definitions is
itself defined with respect to another weight vector w.

With this confidence set, when VA-GOPO decides to update
wt, it searches over all w such that w ∈ Ωt(w,Bt) and
finds the one that minimizes the value at the current state
Vw,Bt(st) (Line 2). Here, Bt is a running estimate of B?.
VA-GOPO maintains the inequality Vt(st) ≤ Bt during
the update by doubling the value of Bt and repeating Line 2
whenever this is violated (Line 3). Note that the constraint
w ∈ Ωt(w,Bt) is in a sense self-referential — we consider
w within a confidence set defined in terms of w itself, which
is an important distinction compared to (Zhang et al., 2021)
and is critical for linear MDPs.

To provide some intuition on our confidence set, denote
Vwt,Bt by Vt and Ωt(wt, Bt) by Ωt. Note that if we ig-
nore the dependency between Vt and {φi}i<t (an issue
that will eventually be addressed by some covering argu-
ments), then {εiVt(w

′)}i<t forms a martingale sequence
when w′ = w̃t , θ? +

∫
Vt(s

′)dµ(s′), and thus the in-
equality in Eq. (3) holds with high probability by some
Bernstein-style concentration inequality (Lemma 36). For-
mally, this allows us to show the following.

Lemma 3. With probability at least 1−δ, w̃t ∈ Ωt, ∀t ≥ 1.

Since wt is also in Ωt, the difference between φ(s, a)>wt
and c(s, a) + Es′∼Ps,a [Vt(s

′)] = φ(s, a)>w̃t is controlled
by the size of the confidence set Ωt, which is overall shrink-
ing and thus making sure that wt is getting closer and closer
to w?. In addition, we also show that Vt is optimistic at
state st whenever an update is performed and that Bt never
overestimates B? significantly.

Lemma 4. With probability at least 1−δ, we have Vt(st) ≤

V ?(st) if an update (Line 2) is performed at time step t, and
Bt ≤ 2B? for all t.

Update Conditions VA-GOPO updates wt whenever
one of the three conditions in Line 1 is triggered. The
first condition s′t−1 = g simply indicates that the current
step is the start of a new episode. The second condition is

∃j ∈ JBt , ν ∈ Gε/t(6
√
dBt) : Φjt (ν) > 8d2Φjt′(ν), (4)

where t′ is the most recent update time step (Line 4) and
Φjt (ν) =

∑
i<t fj(φ

>
i ν)+2j ‖ν‖22 with fj(x) = clipj(x)x.

This lazy update condition makes sure that the algorithm
does not update wt too often (see Lemma 27) while still
enjoying a small enough estimation error. The last condi-
tion Vt′(st) = 2Bt (we call it overestimate condition) tests
whether the current state has an overestimated value (note
that 2Bt is the maximum value of Vt′ due to the truncation
in its definition). This condition helps remove a d1/4 factor
in the regret bound without using some complicated ideas as
in previous works; see Appendix C.4 for more explanation.

Regret Guarantee We prove the following regret guar-
antee for VA-GOPO, and provide a proof sketch in Ap-
pendix 4.1 followed by full proofs in the rest of Appendix C.

Theorem 6. With probability at least 1− 6δ, Algorithm 3
ensures RK = Õ(d3.5B?

√
K + d7B2

?).

Ignoring the lower order term, our bound is (potentially)
suboptimal only in the d-dependency compared to the lower
bound Ω(dB?

√
K) (Min et al., 2021). We note again that

this is the first horizon-free regret bound for linear SSP: it
does not have any polynomial dependency on T? or 1

cmin

even in lower order terms. Furthermore, VA-GOPO also
does not require the knowledge of B? or T?. For simplicity,
we have assumed cmin > 0. However, even when cmin = 0,
we can obtain essentially the same bound by running the
same algorithm on a modified cost function (Appendix A).

4.1. Proof Sketch of Theorem 6

We focus on deriving the dominating term and ignore the
lower order terms. For notational convenience, define ιt =
ιBt,t, Jt = JBt , Pt = Pst,at , and Ct =

∑t
i=1 c(si, ai).

We divide the whole learning process into epochs indexed
by l, and a new epoch begins whenever wt is recomputed.
Denote by tl + 1 the first time step in epoch l, and for a
quantity, function or set ft indexed by time step t, we define
fl = ftl+1. Denote by lt the epoch time step t belongs
to, and we often ignore the subscript t when there is no
confusion. Clearly, Vt = Vl, and similarly for wl, w̃l, ιl,Ωl
(ignoring the dependency on t for l).

By some straightforward calculation, we decompose the
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regret as follows:

RK ≤
T∑
t=1

[Vl(s
′
t)− PtVl]︸ ︷︷ ︸

DEVIATION

+

T∑
t=1

∣∣φ>t (w̃l − wl)
∣∣

︸ ︷︷ ︸
ESTIMATION-ERR

+

L∑
l=1

(
Vl(stl+1)− Vl(s′tl+1

)
)
−K · V ?(sinit)︸ ︷︷ ︸

SWITCHING-COST

.

We bound each of these terms as follows.

Bounding DEVIATION This term is a sum of martingale

difference sequence and is of order Õ(
√∑T

t=1 V(Pt, Vl)).

We then show that
∑T
t=1 V(Pt, Vl) . B?CT + B? ·

ESTIMATION-ERR (see Lemma 21).

Bounding ESTIMATION-ERR Here the variance-aware
confidence set Ωt comes into play. We define νt =
argmaxν=w̃l−w,w∈Ωl

|φ>t ν|. By wl ∈ Ωl, we have∣∣φ>t (w̃l − wl)
∣∣ ≤ ∣∣φ>t νt∣∣. Thus, it suffices to bound∑T

t=1

∣∣φ>t νt∣∣. As in (Kim et al., 2021), the main idea is
to bound the matrix norm of νt w.r.t some special matrix
by a variance-aware term, and then apply the elliptical po-
tential lemma on {φt}t. We define a special covariance
matrix Wj,t(ν) = 2jI +

∑
i<t min

{
1, 2j/|φ>i ν|

}
φiφ
>
i ,

such that Φjt (ν) = ‖ν‖2Wj,l(ν). For any epoch l, j ∈ Jl
and ν = w̃l − ẘ with ẘ ∈ Ωl, we have the following key
inequality (see Lemma 24):

‖ν‖2Wj,l(ν) . 2j
√∑
i≤tl

V(Pi, Vl)ιl. (5)

One important step is thus to bound
∑
i≤tl V(Pi, Vl). Note

that this term has a similar form of
∑T
t=1 V(Pt, Vl), and by

a similar analysis (see Lemma 23):∑
t≤tl

V(Pt, Vl) . B?Ctl +B?
∑
t≤tl

∣∣φ>t ν′t∣∣ . (6)

where ν′t = argmaxν=w̃l−w,w∈Ωl

∣∣φ>t ν∣∣ (note that here l
is fixed and independent of t). Define j′t ∈ Jl such that∣∣φ>t ν′t∣∣ ∈ (2j

′
t−1, 2j

′
t ]. By Eq. (5):∣∣φ>t ν′t∣∣ . ‖φt‖W−1

j′t,l
(ν′t)
‖ν′t‖Wj′t,l

(ν′t)

. ‖φt‖W−1

j′t,l
(ν′t)

√√√√∣∣φ>t ν′t∣∣√∑
i≤tl

V(Pi, Vl)ιl. (7)

Solving for
∣∣φ>t ν′t∣∣ and by

∑
t≤tl ‖φt‖

2
W−1

j′t,l
(ν′t)

= Õ (d)

(similar to elliptical potential lemma), we get

∑
t≤tl

∣∣φ>t ν′t∣∣ = Õ

d√∑
i≤tl

V(Pi, Vl)ιl

 .

Plugging this back to Eq. (6) and solving a quadratic in-
equality, we get:

∑
i≤tl V(Pi, Vl) . B?Ctl (Lemma 23).

Now by an analysis similar to Eq. (7) (Lemma 22):

T∑
t=1

∣∣φ>t νt∣∣ . d2
T∑
t=1

‖φt‖2W−1
jt,l

(νt)

√∑
i≤tl

V(Pi, Vl)ιl

. d3.5
√
B?CT ,

where jt ∈ Jt such that
∣∣φ>t νt∣∣ ∈ (2jt−1, 2jt ]. The extra

d2 factor is from the inequality Φjt (ν) ≤ 8d2Φjl (ν).

Bounding SWITCHING-COST By considering each
condition of starting a new epoch, we show that
SWITCHING-COST = Õ(dB? − L′), where L′ is the num-
ber of epochs started by triggering the overestimate condi-
tion; see Appendix C.3. We provide more tuition on includ-
ing the overestimate condition in Appendix C.4. In short,
it removes a factor of d1/4 in the dominating term without
incorporating unpractical decision sets as in previous works.

Putting Everything Together Combining the bounds
above, we get RK = CT − KV ?(sinit) . d3.5

√
B?CT .

Solving a quadratic inequality w.r.t
√
CT , we have CT .

B?K. Plugging this back, we obtain RK . d3.5B?
√
K.

5. Conclusion
In this work, we make significant progress towards better
understanding of linear function approximation in the chal-
lenging SSP model. Two algorithms are proposed: the first
one is efficient and achieves a regret bound strictly better
than (Vial et al., 2021), while the second one is inefficient
but achieves a horizon-free regret bound. In developing
these results, we also propose several new techniques that
might be of independent interest, especially the new analysis
for the finite-horizon approximation of (Cohen et al., 2021).

A natural future direction is to close the gap between ex-
isting upper bounds and lower bounds in this problem, es-
pecially with an efficient algorithm. Another interesting
direction is to study SSP with adversarially changing costs
under linear function approximation.
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A. Preliminary
Extra Notations in Appendix For a function X : S+ → R and a distribution P ∈ ∆S+ , we define PX = ES∼P [X(S)]
and V(P,X) = VARS∼P [X(S)].

Cost Perturbation for cmin = 0 We follow the receipt in (Vial et al., 2021, Appendix A.3) to deal with zero costs: the
main idea is to run the SSP algorithm with perturbed cost cε(s, a) = c(s, a) + ε for some ε > 0, which is equivalent to
solving a different SSP instanceMε = (S,A, sinit, g, cε, P ). Let θ?ε = θ? + ε

∑
s′ µ(s′). Then, cε(s, a) = φ(s, a)>θ?ε .

Therefore,Mε is also a linear SSP with cmin = ε (up to some a small constant, since cε(s, a) can be as large as 1 + ε).
Denote by V ?ε the optimal value function inMε, and define R′K =

∑
t cε(st, at) −KV ?ε (sinit) as the regret inMε. We

have V ?ε (s) ≤ V π?(s) + εT? ≤ B? + εT?, and

RK =

T∑
t=1

c(st, at)−KV ?(sinit) ≤
T∑
t=1

cε(st, at)−KV ?ε (sinit) +K(V ?ε (sinit)− V ?(sinit)) ≤ R′K + εT?K.

Therefore, by running an SSP algorithm on perturbed cost cε, we recover its regret guarantee with cmin ← ε,B? ← B?+εT?,
and an addition bias εT?K in regret.

B. Omitted Details for Section 3
Notations For M̃, denote by V πh (s) the the expected cost of executing policy π starting from state s in layer h, and
by πm the policy executed in interval m (for example, πm(s, h) = argminaQ

m
h (s, a) in Algorithm 2). For notational

convenience, define Pmh = P̃smh ,amh , and w?h = θ? +
∫
V ?h+1(s′)dµ(s′) for h ∈ [H] such that Q?h(s, a) = φ(s, a)>w?h.

Define indicator Is(s′) = I{s = s′}, and auxiliary feature φ(g, a) = 0 ∈ Rd for all a ∈ A, such that c̃(s, a) = φ(s, a)>θ?

and P̃s,aV = φ(s, a)>
∫
V (s′)dµ(s′) for any s ∈ S+, a ∈ A and V : S+ → R with V (g) = 0. Finally, for Algorithm 2,

define stopping time M = infm{m ≤ M, ∃h ∈ [H] : Q̂mh (smh , a
m
h ) > Qmh (smh , a

m
h )}, which is the number of intervals

until finishing K episodes or upper bound truncation on Q estimate is triggered.

B.1. Formal Definition of Q?h and V ?h

It is not hard to see that we can define Q?h and V ?h recursively without resorting to the definition of M̃:

Q?h(s, a) = c̃(s, a) + P̃s,aV
?
h+1, V ?h (s) = min

a
Q?h(s, a),

with Q?H+1(s, a) = cf (s) for all (s, a).

B.2. Proof of Lemma 1

Proof. Denote by Ik the set of intervals in episode k, and by mk the first interval in episode k. We bound the regret in
episode k as follows: by Lemma 17 and H ≥ 4T? ln(4K), we have the probability that following π? takes more than H
steps to reach g in M̃ is at most 1

2K . Therefore,

V π
?

1 (s) ≤ V π
?

(s) + 2B?P (sH+1 6= g|π?, P, s1 = s) ≤ V π
?

(s) +
B?
K
.

Thus, ∑
m∈Ik

H∑
h=1

cmh − V π
?

(smk1 ) ≤
∑
m∈Ik

H∑
h=1

cmh − V π
?

1 (smk1 ) +
B?
K

=
∑
m∈Ik

(
H∑
h=1

cmh − V π
?

1 (sm1 )

)
+
∑
m∈Ik

V π
?

1 (sm1 )− V π
?

1 (smk1 ) +
B?
K

≤
∑
m∈Ik

(
H∑
h=1

cmh + cf (smH+1)− V ?1 (sm1 )

)
+
B?
K
.

(V ?1 (s) ≤ V π?1 (s) and
∑
m∈Ik V

π?

1 (sm1 )− V π?1 (smk1 ) ≤ 2B?(|Ik| − 1) =
∑
m∈Ik cf (smH+1))



Improved No-Regret Algorithms for Stochastic Shortest Path with Linear MDP

Summing terms above over k ∈ [K] and by the definition of RK , R̃M we obtain the desired result.

B.3. Proof of Lemma 2

We first bound the error of one-step value iteration w.r.t Q̂mh and V mh+1, which is essential to our analysis.

Lemma 5. For anyB ≥ max{1,maxs cf (s)}, with probability at least 1−δ, we have 0 ≤ c̃(s, a)+P̃s,aV
m
h+1−Q̂mh (s, a) ≤

2βm ‖φ(s, a)‖Λ−1
m

and V mh (s) ≤ V ?h (s) for any m ∈ N+, h ∈ [H].

Proof. Define w̃mh = θ? +
∫
V mh+1(s′)dµ(s′), so that φ(s, a)>w̃mh = c̃(s, a) + P̃s,aV

m
h+1. Then,

w̃mh − wmh = Λ−1
m

(
Λmw̃

m
h −

m−1∑
m′=1

H∑
h′=1

φm
′

h′ (cm
′

h′ + V mh+1(sm
′

h′+1))

)

= λΛ−1
m w̃mh + Λ−1

m

m−1∑
m′=1

H∑
h′=1

φm
′

h′ (Pm
′

h′ V
m
h+1 − V mh+1(sm

′

h′+1))︸ ︷︷ ︸
εmh

.

By V mh+1(s) ≤ B and Lemma 31, we have with probability at least 1− δ, for any m, h ∈ [H]:

‖εmh ‖Λm ≤ 2B

√
d

2
ln

(
mH + λ

λ

)
+ ln

Nε
δ

+

√
8mHε√
λ

, (8)

where Nε is the ε-cover of the function class of V mh+1 with ε = 1
mH . Note that V mh+1(s) is either cf (s) or

V mh+1(s) =

[
min
a
φ(s, a)>w − βm

√
φ(s, a)>Γφ(s, a)

]
[0,B]

,

for some PSD matrix Γ such that 1
λ+mH ≤ λmin(Γ) ≤ λmax(Γ) ≤ 1

λ by the definition of Λ−1
m , and for some w ∈ Rd

such that ‖w‖2 ≤ λmax(Γ)×mH × sups,a ‖φ(s, a)‖2 × (B + 1) ≤ mH
λ (B + 1) by the definition of wmh . We denote by

V the function class of V mh+1. Now we apply Lemma 32 to V with α = (w,Γ), n = d2 + d, D = mH
√
d(B + 1)/λ ≥

max{mHλ (B + 1),
√
d/λ2} (note that |Γi,j | ≤ ‖Γ‖F =

√∑d
i=1 λ

2
i (Γ) ≤

√
d/λ2), and L = βm

√
λ+mH , which is

given by
∣∣[x][0,B] − [y][0,B]

∣∣ ≤ |x − y| (Vial et al., 2021, Claim 2) and the following calculation: for any ∆w = εei for
some ε 6= 0,

1

|ε|
∣∣(w + ∆w)>φ(s, a)− w>φ(s, a)

∣∣ =
∣∣e>i φ(s, a)

∣∣ ≤ ‖φ(s, a)‖ ≤ 1,

and for any ∆Γ = εeie
>
j ,

1

|ε|

∣∣∣∣βm√φ(s, a)>(Γ + ∆Γ)φ(s, a)− βm
√
φ(s, a)>Γφ(s, a)

∣∣∣∣
≤ βm

∣∣φ(s, a)>eie
>
j φ(s, a)

∣∣√
φ(s, a)>Γφ(s, a)

(
√
u+ v −

√
u ≤ |v|√

u
)

≤ βm

∣∣φ(s, a)>( 1
2eie

>
i + 1

2eje
>
j )φ(s, a)

∣∣√
φ(s, a)>Γφ(s, a)

(|ab| ≤ 1
2 (a2 + b2))

≤ βm
φ(s, a)>φ(s, a)√
φ(s, a)>Γφ(s, a)

≤ βm√
λmin(Γ)

≤ βm
√
λ+mH.

Lemma 32 then implies lnNε ≤ (d2 + d) ln 32d2.5Bm2H2βm
λε . Plugging this back, we get

‖εmh ‖Λm ≤
βm
2
. (9)
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Moreover, ‖w̃mh ‖Λ−1
m
≤ ‖w̃mh ‖2 /

√
λ ≤

√
d/λ(1 +B). Thus,

‖wmh − w̃mh ‖Λm ≤ λ ‖w̃
m
h ‖Λ−1

m
+ ‖εmh ‖Λm ≤ βm.

Therefore, c̃(s, a) + P̃s,aV
m
h+1 − Q̂mh (s, a) = φ(s, a)>(w̃mh − wmh ) + βm ‖φ(s, a)‖Λ−1

m
∈ [0, 2βm ‖φ(s, a)‖Λ−1

m
] by

φ(s, a)>(w̃mh −wmh ) ∈ [−‖φ(s, a)‖Λ−1
m
‖wmh − w̃mh ‖Λm , ‖φ(s, a)‖Λ−1

m
‖wmh − w̃mh ‖Λm ], and the first statement is proved.

For any m ∈ N+, we prove the second statement by induction on h = H + 1, . . . , 1. The base case h = H + 1 is clearly
true by V mh+1(s) = V ?h+1(s) = cf (s). For h ≤ H , we have by the induction step:

Q̂mh (s, a) ≤ c̃(s, a) + P̃s,aV
m
h+1 ≤ c̃(s, a) + P̃s,aV

?
h+1 ≤ Q?h(s, a).

Thus, V mh (s) ≤ mina max{0, Q̂mh (s, a)} ≤ minaQ
?
h(s, a) = V ?h (s).

Next, we prove a general regret bound, from which Lemma 2 is a direct corollary.

Lemma 6. Assume cf (s) ≤ H . Then with probability at least 1− 2δ, Algorithm 2 ensures for any M ′ ≤M

R̃M ′ = Õ
(√

d3B2HM ′ + d2BH
)
.

Proof. Define cmH+1 = cf (smH+1). Note that for m < M , we have V mh (smh ) = max{0, Q̂mh (smh , a
m
h )}, and with probability

at least 1− δ,

H+1∑
h=1

cmh − V ?1 (sm1 ) ≤
H+1∑
h=1

cmh − V m1 (sm1 ) ≤
H+1∑
h=1

cmh − Q̂m1 (sm1 , a
m
1 ) ≤

H+1∑
h=2

cmh − Pm1 V m2 + 2βm ‖φ(sm1 , a
m
1 )‖Λ−1

m

(Lemma 5)

=

H+1∑
h=2

cmh − V m2 (sm2 ) + (Ism2 − P
m
2 )V m2 + 2βm ‖φ(sm1 , a

m
1 )‖Λ−1

m

≤ · · · ≤
H∑
h=1

(
(Ismh+1

− Pmh+1)V mh+1 + 2βm ‖φ(smh , a
m
h )‖Λ−1

m

)
. (cmH+1 = V mH+1(smH+1))

Therefore, by Lemma 18 and Lemma 38, with probability at least 1− δ:

R̃M ′ ≤ R̃M ′−1 +H ≤
M ′−1∑
m=1

H∑
h=1

(
(Ismh+1

− Pmh+1)V mh+1 + 2βm ‖φ(smh , a
m
h )‖Λ−1

m

)
+H

= Õ
(√

d3B2HM ′ + d2BH
)
.

We are now ready to prove Lemma 2.

Proof of Lemma 2. Note that when B = 3B?, V mh (s) ≤ V ?h (s) ≤ 3B? = B by Lemma 5. Thus, M = M , and the
statement directly follows from Lemma 6 with M ′ = M .

B.4. Learning without Knowing B? or T?

In this section, we develop a parameter-free algorithm that achieves Õ(
√
d3B3

?K/cmin+d3B2
?/cmin) regret without knowing

B? or T?, which matches the best bound and knowledge of parameters of (Vial et al., 2021) while being computationally
efficient under the most general assumption. Here we apply the finite-horizon approximation with zero terminal costs, and
develop a new analysis on this approximation.
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Algorithm 4 Adaptive Finite-Horizon Approximation of SSP
Input: upper bound estimate B and function U(B) from Lemma 8.
Initialize: A an instance of finite-horizon algorithm with horizon d 10B

cmin
ln(8BK)e.

Initialize: m = 1, m′ = 0, k = 1, s = sinit.
while k ≤ K do

Execute A for H steps starting from state s and receive smH+1.
if smH+1 = g then k ← k + 1, s← sinit; else m′ ← m′ + 1, s← smH+1.

1 if m′ > U(B) or A detects B < B? then
B ← 2B.
Initialize A as an instance of finite-horizon algorithm with horizon d 10B

cmin
ln(8BK)e.

m′ ← 0.
m← m+ 1.

Finite-Horizon Approximation of SSP with Zero Terminal Costs To avoid knowledge of B? or T?, we apply finite-
horizon approximation with zero terminal costs and horizon of order Õ( B

cmin
) for some estimate B of B?, that is, running

Algorithm 1 with cf (s) = 0 and H = Õ( B
cmin

). We show that in this case there is an alternative way to bound the regret

RK by R̃M , and there is a tighter bound on the total number of intervals M when B ≥ B?.
Lemma 7. Algorithm 1 with cf (s) = 0 ensures RK ≤ R̃M +B?

∑M
m=1 I{smH+1 6= g}.

Proof. Denote by Ik the set of intervals in episode k. We have:

RK =

K∑
k=1

( ∑
m∈Ik

H∑
h=1

cmh − V ?(sinit)

)
=

K∑
k=1

( ∑
m∈Ik

(
H∑
h=1

cmh − V ?1 (sm1 )

)
+
∑
m∈Ik

V ?1 (sm1 )− V ?(sinit)

)

≤ R̃M +B?

M∑
m=1

I{smH+1 6= g}. (V ?1 (s) ≤ V ?(s) ≤ B? by cf (s) = 0)

Lemma 8. Suppose when B ≥ B?, A with horizon H = d 10B
cmin

ln(8BK)e ensures max{R̃M ′ ,
∑M ′

m=1(V π
m

1 (sm1 ) −
V ?1 (sm1 ))} = Õ(γ0(B) + γ1(B)

√
M ′) for any M ′ ≤ M with probability at least 1− δ, where γ0, γ1 are functions of B

and are independent of M ′. Then Algorithm 1 with cf (s) = 0 ensures with probability at least 1− 4δ,

M∑
m=1

I{smH+1 6= g} = Õ
(
γ0(B)/B + γ1(B)2/B2 + γ1(B)

√
K/B

)
, U(B).

Proof. For any finite M ′ ≤ M , we will show
∑M ′

m=1 I{smH+1 6= g} = Õ(γ0(B)/B + γ1(B)2/B2 + γ1(B)
√
K/B),

which then implies that
∑M
m=1 I{smH+1 6= g} has to be finite and is upper bounded by the same quantity. Define Ṽ π1 (s) =

E[
∑H/2
h=1 c(sh, ah)|π, P, s1 = s] as the expected cost for the firstH/2 layers and Ṽ ?1 as the optimal value function for the first

H/2 layers. By (Chen et al., 2021a, Lemma 1) andB ≥ B?, we have V ?(s)−Ṽ ?1 (s) ∈ [0, 1
4K ] and V ?(s)−V ?1 (s) ∈ [0, 1

4K ].
Moreover, when smH+1 6= g, we have

∑
h>H/2 c

m
h ≥ 2B. Denote by Pm(·) the conditional probability of certain event

conditioning on the history before interval m. Then with probability at least 1− δ,

2B

M ′∑
m=1

Pm(smH+1 6= g) +

M ′∑
m=1

(Ṽ π
m

1 (sm1 )− Ṽ ?1 (sm1 )) ≤ M ′

2K
+

M ′∑
m=1

(V π
m

1 (sm1 )− V ?1 (sm1 ))

(2B
∑M ′

m=1 Pm(smH+1 6= g) + Ṽ π
m

1 (sm1 ) ≤ V πm1 (sm1 ) and V ?1 (s) ≤ V ?(s) ≤ Ṽ ?1 (s) + 1
4K )

≤ 1

2K

M ′∑
m=1

I{smH+1 6= g}+ Õ
(
γ0(B) + γ1(B)

√
M ′
)

(M ′ ≤ K +
∑M ′

m=1 I{smH+1 6= g} and guarantee of A)

≤ 1

K

M ′∑
m=1

Pm(smH+1 6= g) + Õ
(
γ0(B) + γ1(B)

√
M ′
)
. (Lemma 39)
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Then by Ṽ π
m

1 (sm1 ) ≥ Ṽ ?1 (sm1 ) and reorganizing terms, we get
∑M ′

m=1 Pm(smH+1 6= g) = Õ(γ0(B)/B + γ1(B)
√
M ′/B).

Again by Lemma 39, we have with probability at least 1− δ:

M ′∑
m=1

I{smH+1 6= g} = Õ

 M ′∑
m=1

Pm(smH+1 6= g)

 = Õ
(
γ0(B)/B + γ1(B)

√
M ′/B

)
.

By M ′ ≤ K +
∑M ′

m=1 I{smH+1 6= g} and solving a quadratic inequality w.r.t
√∑M ′

m=1 I{smH+1 6= g}, we get∑M ′

m=1 I{smH+1 6= g} = Õ(γ0(B)/B + γ1(B)2/B2 + γ1(B)
√
K/B). Thus, we also get the same bound for∑M

m=1 I{smH+1 6= g}.

Remark 1. Note that the result of Lemma 8 is similar to (Tarbouriech et al., 2020, Lemma 7), which also shows that
the number of “bad” intervals is of order Õ(

√
K). However, their result is derived by explicitly analyzing the transition

confidence sets, while we only make use of the regret guarantee of the finite-horizon algorithm. Thus, our approach is again
model-agnostic and directly applicable to linear function approximation while their result is not.

Note that Lemma 7 and Lemma 8 together implies a Õ(
√
K) regret bound when B ≥ B?. Moreover, since the total number

of “bad” intervals is of order Õ(
√
K), we can properly bound the cost of running finite-horizon algorithm with wrong

estimates on B?. We now present an adaptive version of finite-horizon approximation of SSP (Algorithm 4) which does
not require the knowledge of B? or T?. The main idea is to perform finite-horizon approximation with zero costs, and
maintain an estimate B of B?. The learner runs a finite-horizon algorithm with horizon of order Õ( B

cmin
). Whenever A

detects B ≤ B?, or the number of “bad” intervals is more than expected (Line 1), it doubles the estimate B and start a new
instance of finite-horizon algorithm with the updated estimate. The guarantee of Algorithm 4 is summarized in the following
theorem.

Theorem 7. Suppose A takes an estimate B as input, and when B < B?, it has some probability of detecting the
anomaly (the event B < B?) and halts. Define stopping time M

′
= min{M, infm{anomaly detected in episode m}},

and suppose for any B ≥ 1, A with horizon H = d 10B
cmin

ln(8BK)e ensures max{R̃M ′ ,
∑M ′

m=1 V
πm

1 (sm1 ) − V ?1 (sm1 )} =

Õ(γ0(B) + γ1(B)
√
M ′) for any M ′ ≤ M

′
, where γ0(B)/B, γ1(B)/B are non-decreasing w.r.t B. Then, Algorithm 4

ensures RK = Õ(γ0(B?) + γ1(B?)
√
K + γ1(B?)

2/B?) with probability at least 1− 4δ.

Proof. We divide the learning process into epochs indexed by φ based on the update of B, so that B1 = B (the input value)
and Bφ+1 = 2Bφ. Let φ? = minφ{Bφ ≥ B?}. Define the regret in epoch φ as R̄φ = Cφ −

∑
k∈Kφ V

?(sφ,k1 ), where Cφ is

the total costs suffered in epoch φ, Kφ is the set of episodes overlapped with epoch φ, and sφ,k1 is the initial state in episode
k and epoch φ (note that an episode can overlap with multiple epochs). Clearly,

∑
φ |Kφ| ≤ K + φ? ≤ K +O(log2B?).

Note that A satisfies the assumptions in Lemma 8, since no anomaly will be detected when B ≥ B?. Thus in epoch φ?, no
new epoch will be started by Lemma 8. Moreover, by Lemma 7 and Bφ? ≤ 2B?, the regret is bounded by:

R̄φ? = Õ
(
γ0(B?) + γ1(B?)

√
K + U(B?) +B?U(B?)

)
= Õ

(
γ0(B?) + γ1(B?)

√
K + γ1(B?)

2/B?

)
.

For φ < φ?, by the conditions of starting a new epoch, the number of intervals that does not reach the goal is upper bounded
by U(Bφ) and the total number of intervals in epoch φ is upper bounded by K + U(Bφ). Thus by Lemma 7 and the
guarantee of A,

R̄φ = Õ
(
γ0(Bφ) + γ1(Bφ)

√
K + U(Bφ) +B?U(Bφ)

)
= Õ

(
γ0(B?) + γ1(B?)

√
K + γ1(B?)

2/B?

)
,

where the last equality is by the fact that γ0(B), γ1(B) and U(B) are non-decreasing w.r.t B. Thus,

RK =
∑
φ

Cφ −
K∑
k=1

V ?(sinit) =
∑
φ

R̄φ +
∑
φ

∑
k∈Kφ

V ?(sφ,k1 )−
K∑
k=1

V ?(sinit)

= Õ
(
γ0(B?) + γ1(B?)

√
K + γ1(B?)

2/B?

)
.
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Algorithm 5 MVP+
Input: an estimate B such that B ≥ B?.
Initialize: n(s, a), n(s, a, s′), Qh(s, a), Vh(s), VH+1(s) = 0 for (s, a) ∈ S+ ×A, s′ ∈ S+, h ∈ [H].
for k = 1, . . . ,K do

for h = 1, . . . ,H do
Take action at = argminaQh(st, a), incur cost c̃(st, at) and transit to s′t ∼ P̃st,at .
n(st, at)← n(st, at) + 1, n(st, at, s

′
t)← n(st, at, s

′
t) + 1.

if n(s, a) = 2j for some j ∈ N then
for h = H, . . . , 1 do

for (s, a) ∈ S ×A do
ιs,a ← 20 ln 2SAn(s,a)

δ , P̄s,a(s′)← n(s,a,s′)
max{1,n(s,a)} for all s′ ∈ S+.

bh(s, a)← max

{
7
√

V(P̄s,a,Vh+1)ιs,a
max{1,n(s,a)} ,

49Bιs,a
max{1,n(s,a)}

}
.

Qh(s, a)← max{0, c̃(s, a) + P̄s,aVh+1 − bh(s, a)}.
Vh(s) = argminaQh(s, a).

Theorem 8. Applying Algorithm 4 with Algorithm 2 as A to the linear SSP problem ensures RK = Õ(
√
d3B3

?K/cmin +
d3B2

?/cmin) with probability at least 1− 4δ.

Proof. Note that M
′

= M for Algorithm 2, and Lemma 6 ensures that Algorithm 2 satisfies assumptions of Theorem 7
with γ0(B) = d2BH and γ1(B) =

√
d3B2H , where H = d 10B

cmin
ln(8BK)e (bounding

∑M ′

m=1(V π
m

1 (sm1 ) − V ?1 (sm1 )) is
straightforward following similar arguments in Lemma 6). Then by Theorem 7, we have: RK = Õ(

√
d3B3

?K/cmin +
d3B2

?/cmin).

Remark 2. Comparing the bound achieved by Theorem 8 with that of Theorem 3, we see that B?
cmin

is in place of T?, making
it a worse bound since T? ≤ B?

cmin
. Previous works in SSP (Cohen et al., 2021; Tarbouriech et al., 2021; Chen et al., 2021a)

suggest that algorithms that obtain a bound with dependency on B?
cmin

is easier to be made parameter-free compared to those
with dependency on T?. Our findings in this section are consistent with that in previous works.

B.5. Horizon-Free Regret in the Tabular Setting with Finite-Horizon Approximation

Here we present a finite-horizon algorithm (Algorithm 5) that achieves R̃m = Õ(B?
√
SAm + B?S

2A) and thus gives
RK = Õ(B?

√
SAK + B?S

2A) when combining with Corollary 2. For simplicity we assume that the cost function is
known. We can think of Algorithm 5 as a variant of EB-SSP, which is applied on a finite-horizon MDP with state space
S × [H] and the transition is shared across layers. Note that due to the loop-free structure of the MDP, the value iteration
converges in one sweep. Thus, skewing the empirical transition as in (Tarbouriech et al., 2021) is unnecessary. Then
by the analysis of EB-SSP and the fact that transition data is shared across layers, we obtain the same regret guarantee
R̃m = Õ(B?

√
SAm + B?S

2A) (it is not hard to see that the algorithm achieves anytime regret since its updates on
parameters are independent of K).

B.6. Application to Linear Mixture MDP

In this section, we provide a direct application of our finite-horizon approximation to the linear mixture MDP setting. We
first introduce the problem setting of linear mixture SSP following (Min et al., 2021).

Assumption 2 (Linear Mixture SSP). The number of states and actions are finite: |S × A| <∞. For some d ≥ 2, there
exist a known cost function c : S × A → [0, 1], a known feature map φ : S × A × S+ → Rd, and an unknown vector
θ? ∈ Rd with ‖θ?‖2 ≤

√
d, such that:

• for any (s, a), s′ ∈ S ×A× S+, we have Ps,a(s′) = 〈φ(s′|s, a), θ?〉;

• for any bounded function F : S → [0, 1], we have ‖φF (s, a)‖2 ≤
√
d, where φF (s, a) =

∑
s′ φ(s′|s, a)F (s′) ∈ Rd.
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Algorithm 6 UCRL-VTR-SSP

Initialize: λ = 1, Σ̂1, Σ̃1 = λI , b̂1, b̃1, θ̂1, θ̃1 = 0.
Define: β̂m = 8

√
d ln(1 + dmH/λ) ln(4m2H2/δ) + 4

√
d ln(4m2H2/δ) +

√
λd.

Define: β̃m = 72B2
?

√
d ln(1 + 81dmHB4

?/λ) ln(4m2H2/δ) + 36B2
? ln(4m2H2/δ) +

√
λd.

Define: β̌m = 8d
√

ln(1 + dmH/λ) ln(4m2H2/δ) + 4
√
d ln(4m2H2/δ) +

√
λd.

for m = 1, . . . ,M do
for h = H, . . . , 1 do

Qmh (·, ·) = c̃(·, ·) +
〈
θ̂m, φVmh+1

(·, ·)
〉
− β̂m

∥∥∥φVmh+1
(·, ·)

∥∥∥
Σ̂−1
m

, where V mH+1(s) = 2B?I{s 6= g}.
V mh (·) = mina[Qmh (·, a)][0,3B?].

for h = 1, . . . ,H do
Take action amh = argminaQ

m
h (smh , a), suffer cost cmh , and transit to next state smh+1.

νmh =
[〈
φ(Vmh+1)2(smh , a

m
h ), θ̃m

〉]
[0,9B2

?]
−
[〈
φVmh+1

(smh , a
m
h ), θ̂m

〉]2
[0,3B?]

.

Emh = min

{
9B2

? , β̃m

∥∥∥φ(Vmh+1)2(smh , a
m
h )
∥∥∥

Σ̃−1
m

}
+ min

{
9B2

? , 6B?β̌m

∥∥∥φVmh+1
(smh , a

m
h )
∥∥∥

Σ̂−1
m

}
.

σ̄mh =
√

max{9B2
?/d, ν

m
h + Emh }.

Σ̂m+1 = Σ̂m +
∑H
h=1(σ̄mh )−2φVmh+1

(smh , a
m
h )φVmh+1

(smh , a
m
h )>.

Σ̃m+1 = Σ̃m +
∑H
h=1 φ(Vmh+1)2(smh , a

m
h )φ(Vmh+1)2(smh , a

m
h )>.

b̂m+1 = b̂m +
∑H
h=1(σ̄mh )−2V mh+1(smh+1)φVmh+1

(smh , a
m
h ).

b̃m+1 = b̃m +
∑H
h=1 V

m
h+1(smh+1)2φ(Vmh+1)2(smh , a

m
h ).

θ̂m+1 = (Σ̂m+1)−1b̂m+1, θ̃m+1 ← Σ̃−1
m+1b̃m+1.

We also assume B? is known and cmin > 0. Define c̃(s, a) = c(s, a)I{s 6= g}, P̃ = {Ps,a}(s,a)∈S×A ∪ {Pg,a}a∈A
with Pg,a(s′) = I{s′ = g} as before, and φ(s′|g, a) = I{s′ = g}

∑
s′′ φ(s′′|sinit, a). Note that by the definitions above,

P̃s,aF = 〈φF (s, a), θ?〉. Also define total costs CM ′ =
∑M ′

m=1

∑H
h=1 c

m
h for any M ′ ∈ N+ With our approximation

scheme, it suffices to provide a finite-horizon algorithm. We start by stating the regret guarantee of the proposed finite-
horizon algorithm (Algorithm 6).

Theorem 9. Algorithm 6 ensures R̃M ′ = Õ(B?
√
dM ′H + B?d

√
M ′ + B?d

2H + B?d
2.5) for any M ′ ∈ N+ with

probability at least 1− 5δ.

Combining Algorithm 6 with our finite-horizon approximation, we get the following regret guarantee on linear mixture SSP.

Theorem 10. Applying Algorithm 1 with H = d4T? ln(4K)e and Algorithm 6 as A to the linear mixture SSP problem
ensures RK = Õ(B?

√
dT?K +B?d

√
K +B?d

2T? +B?d
2.5) with probability at least 1− 5δ.

Proof. This directly follows from Theorem 9 and Corollary 2 with γ0 = B?d
2H and γ1 = B?

√
dH +B?d.

Note that our bound strictly improves over that of (Min et al., 2021), and it is minimax optimal when d ≥ T?. Now we
introduce the proposed finite-horizon algorithm, which is a variant of (Zhou et al., 2021a, Algorithm 2). The high level
idea is to construct Bernstein-style confidence sets on transition function and then compute value function estimate through
empirical value iteration with bonus. We summarize the ideas in Algorithm 6. Before proving Theorem 9, we need the
following key lemma regarding the confidence sets on transition function.

Lemma 9. With probability at least 1− 3δ, we have for all m ∈ N+,
∥∥∥θ? − θ̂m∥∥∥

Σ̂m
≤ β̂m and

∣∣νmh − V(Pmh , V
m
h+1)

∣∣ ≤
Emh .

Proof. For the first statement, we first prove that
∥∥∥θ? − θ̂m∥∥∥

Σ̂m
≤ β̌m and

∥∥∥θ? − θ̃m∥∥∥
Σ̃m
≤ β̃m for m ∈ N+. We adopt

the indexing by t in Section 2: for a given time step t = (m− 1)H + h that corresponds to (m,h), that is, the h-th step
in the m-th interval, define σ̄t = σ̄mh , Vt = V mh+1, νt = νmh , and Et = Emh . We apply Lemma 33 with Ft = σ(s1:t, a1:t),
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xt = σ̄−1
t φVt(st, at), yt = σ̄−1

t Vt(s
′
t), µ? = θ?, ηt = σ̄−1

t (Vt(s
′
t)− 〈φVt(st, at), θ?〉). Then, we have Zt = Σ̂t, µt = θ̂t,

where Σ̂t = λI +
∑t
i=1 σ̄

−2
i φVi(si, ai)φVi(si, ai)

>, θ̂t = Σ̂−1
t b̂t, and b̂t =

∑t
i=1 σ̄

−2
i φVi(si, ai)Vi(s

′
i). Moreover,

|ηt| ≤ R =
√
d, E[η2

t |Gt] ≤ σ2 = d, ‖xt‖2 ≤ L = d, ‖µ?‖2 = ‖θ?‖2 ≤
√
d.

Therefore, with probability at least 1− δ, for any t = (m− 1)H for some m ∈ N+, which corresponds to (m− 1, H):∥∥∥θ̂m − θ?∥∥∥
Σ̂m
≤ 8d

√
ln(1 + d2t/(dλ)) ln(4t2/δ) + 4

√
d ln(4t2/δ) +

√
λd ≤ β̌m.

Next, we apply Lemma 33 with Ft = σ(s1:t, a1:t), xt = φV 2
t

(st, at), yt = V 2
t (s′t), µ? = θ?, ηt = V 2

t (s′t) −〈
φV 2

t
(st, at), θ

?
〉

. Then, we have Zt = Σ̃t, µt = θ̃t, where Σ̃t = λI +
∑t
i=1 φV 2

i
(si, ai)φV 2

i
(si, ai)

>, θ̃t = Σ̃−1
t b̃t,

and b̃t =
∑t
i=1 φV 2

i
(si, ai)V

2
i (s′i). Moreover,

|ηt| ≤ R = 9B2
? , E[η2

t |Gt] ≤ σ2 = 81B4
? , ‖xt‖2 ≤ L = 9B2

?

√
d, ‖µ?‖2 = ‖θ?‖2 ≤

√
d.

Therefore, with probability at least 1− δ, for any t = (m− 1)H for some m ∈ N+, which corresponds to (m− 1, H):∥∥∥θ̃m − θ?∥∥∥
Σ̃m
≤ 72B2

?

√
d ln(1 + 81tB4

?d/(dλ)) ln(4t2/δ) + 36B2
? ln(4t2/δ) +

√
λd ≤ β̃m.

Conditioned on the event C =

{∥∥∥θ? − θ̂m∥∥∥
Σ̂m
≤ β̌m,

∥∥∥θ? − θ̃m∥∥∥
Σ̃m
≤ β̃m,∀m ∈ N+

}
, we have for t corresopnding to

(m,h):

|νt − V(Pt, Vt)|

≤
∣∣∣∣[〈φV 2

t
(st, at), θ̃m

〉]
[0,9B2

?]
−
〈
φV 2

t
(st, at), θ

?
〉∣∣∣∣+

∣∣∣∣[〈φVt(st, at), θ̂m〉]2
[0,3B?]

− 〈φVt(st, at), θ?〉
2

∣∣∣∣
≤ min

{
9B2

? ,
∣∣∣〈φV 2

t
(st, at), θ̃m − θ?

〉∣∣∣}+ min
{

9B2
? , 6B?

∣∣∣〈φVt(st, at), θ̂m − θ?〉∣∣∣}
≤ min

{
9B2

? ,
∥∥∥φV 2

t
(st, at)

∥∥∥
Σ̃−1
m

∥∥∥θ̃m − θ?∥∥∥
Σ̃m

}
+ min

{
9B2

? , 6B? ‖φVt(st, at)‖Σ̂−1
m

∥∥∥θ̂m − θ?∥∥∥
Σ̂m

}
≤ min

{
9B2

? , β̃m

∥∥∥φV 2
t

(st, at)
∥∥∥

Σ̃−1
m

}
+ min

{
9B2

? , 6B?β̌m ‖φVt(st, at)‖Σ̂−1
m

}
= Et.

Thus the second statement is proved. Now we show that
∥∥∥θ? − θ̂m∥∥∥

Σ̂m
≤ β̂m. We conditioned on event C, and apply

Lemma 33 with Ft = σ(s1:t, a1:t), xt = σ̄−1
t φVt(st, at), yt = σ̄−1

t Vt(s
′
t), µ? = θ?, ηt = σ̄−1

t (Vt(s
′
t)− 〈φVt(st, at), θ?〉).

Then, we have Zt = Σ̂t, µt = θ̂t. Moreover, |ηt| ≤ R =
√
d, ‖xt‖2 ≤ L = d, and for t corresponding to (m,h),

E[η2
t |Gt] = σ̄−2

t V(Pt, Vt) ≤ σ̄−2
t (νt + Et) ≤ 1.

Therefore, with probability at least 1− δ, for any t = (m− 1)H for some m ∈ N+, which corresponds to (m− 1, H):∥∥∥θ̂m − θ?∥∥∥
Σ̂m
≤ 8
√
d ln(1 + dt/λ) ln(4t2/δ) + 4

√
d ln(4t2/δ) +

√
λd ≤ β̂m.

This completes the proof.

We are now ready to prove Theorem 9.

Proof of Theorem 9. We condition on the event of Lemma 9, Lemma 10 and Lemma 11, which happens with probability at
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least 1− 4δ. We decompose the regret as follows: with probability at least 1− δ,

R̃M ′ =

M ′∑
m=1

(
H∑
h=1

cmh + cf (smH+1)− V ?1 (sm1 )

)
≤

M ′∑
m=1

(
H∑
h=1

cmh + cf (smH+1)− V m1 (sm1 )

)
(Lemma 10)

=

M ′∑
m=1

H∑
h=1

(
cmh + V mh+1(smh+1)− V mh (smh )

)
(cf = V mH+1)

≤
M ′∑
m=1

H∑
h=1

(
V mh+1(smh+1)− Pmh V mh+1 +

〈
θ? − θ̂m, φVmh+1

(smh , a
m
h )
〉

+ β̂m

∥∥∥φVmh+1
(smh , a

m
h )
∥∥∥

Σ̂−1
m

)
(V mh (smh ) ≥ Qmh (smh , a

m
h ) = cmh +

〈
θ̂m, φVmh+1

(smh , a
m
h )
〉
− β̂m

∥∥∥φVmh+1
(smh , a

m
h )
∥∥∥

Σ̂−1
m

)

≤ Õ


√√√√ M ′∑
m=1

H∑
h=1

V(Pmh , V
m
h+1) +B? +

M ′∑
m=1

H∑
h=1

β̂m

∥∥∥φVmh+1
(smh , a

m
h )
∥∥∥

Σ̂−1
m

 .

(Lemma 38, Cauchy-Schwarz inequality, and Lemma 9)

The first term is of order Õ(
√
B2
?M
′ +B?CM ′) by Lemma 11. For the third term, define I ={

(m,h) ∈ [M ′]× [H] :
∥∥∥φVmh+1

(smh , a
m
h )/σ̄mh

∥∥∥
Σ̂−1
m

≥ 1

}
and Î = {m ∈ [M ′] : det(Σ̂m+1) > 2 det(Σ̂m)}. Then,

M ′∑
m=1

H∑
h=1

β̂m

∥∥∥φVmh+1
(smh , a

m
h )
∥∥∥

Σ̂−1
m

=

M ′∑
m=1

H∑
h=1

β̂mσ̄
m
h

∥∥∥φVmh+1
(smh , a

m
h )/σ̄mh

∥∥∥
Σ̂−1
m

≤ Õ

 ∑
(m,h)∈I

B?d

+

M ′∑
m=1

H∑
h=1

β̂mσ̄
m
h min

{
1,
∥∥∥φVmh+1

(smh , a
m
h )/σ̄mh

∥∥∥
Σ̂−1
m

}
(β̂m = Õ(

√
d) and V mh+1 = O(B?))

(i)
= Õ

B?d2H +
∑
m∈Î

B?dH +

M ′∑
m=1

H∑
h=1

β̂mσ̄
m
h min

{
1,
∥∥∥φVmh+1

(smh , a
m
h )/σ̄mh

∥∥∥
Σ̂−1
m+1

}
= Õ

B?d2H + β̂M ′

√√√√ M ′∑
m=1

H∑
h=1

(σ̄mh )2

√√√√ M ′∑
m=1

H∑
h=1

min

{
1,
∥∥∥φVmh+1

(smh , a
m
h )/σ̄mh

∥∥∥2

Σ̂−1
m+1

}
(|Î| = Õ(d) and Cauchy-Schwarz inequality)

= Õ

B?d2H + d

√√√√ M ′∑
m=1

H∑
h=1

(σ̄mh )2

 , (β̂M ′ = Õ(
√
d) and Lemma 29)

where in (i) we apply β̂mσ̄mh = Õ(B?d), Lemma 30, and:

|I| =
M ′∑
m=1

H∑
h=1

I
{∥∥∥φVmh+1

(smh , a
m
h )/σ̄mh

∥∥∥2

Σ̂−1
m

≥ 1

}
≤

M ′∑
m=1

H∑
h=1

min

{
1,
∥∥∥φVmh+1

(smh , a
m
h )/σ̄mh

∥∥∥2

Σ̂−1
m

}

≤ |Î|H +
√

2

M ′∑
m=1

H∑
h=1

min

{
1,
∥∥∥φVmh+1

(smh , a
m
h )/σ̄mh

∥∥∥2

Σ̂−1
m+1

}
(Lemma 30)

= Õ (dH) . (|Î| = Õ(d) and Lemma 29)
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It remains to bound
∑M ′

m=1

∑H
h=1(σ̄mh )2. Note that

M ′∑
m=1

H∑
h=1

(σ̄mh )2 ≤ 9B2
?M
′H

d
+

M ′∑
m=1

H∑
h=1

(νmh + Emh )

≤ 9B2
?M
′H

d
+

M ′∑
m=1

H∑
h=1

(V(Pmh , V
m
h+1) + 2Emh ) (Lemma 9)

≤ 9B2
?M
′H

d
+ Õ

B2
?M
′ +B?CM ′ +B2

?d
√
M ′H +B?d

3/2

√√√√ M ′∑
m=1

H∑
h=1

(σ̄mh )2 +B2
?d

2H

 .

(Lemma 11 and Lemma 12)

By Lemma 28 and
√
M ′H ≤M ′/d+dH , we get

∑M ′

m=1

∑H
h=1(σ̄mh )2 = Õ(

B2
?M
′H

d +B2
?M
′+B?CM ′+B

2
?d

3+B2
?d

2H).
Putting everything together, we get:

R̃M ′ = Õ

(√
B2
?M
′ +B?CM ′ +B?d

2H + d

√
B2
?M
′H

d
+B2

?M
′ +B?CM ′ +B2

?d
3 +B2

?d
2H

)
= Õ

(
B?
√
dM ′H +B?d

√
M ′ + d

√
B?CM ′ +B?d

2H +B?d
2.5
)
.

Now by R̃M ′ = CM ′ −M ′V ?1 (sm1 ) and Lemma 28, we get: CM ′ = Õ(B?M
′). Plugging this back, we get R̃M ′ =

Õ(B?
√
dM ′H +B?d

√
M ′ +B?d

2H +B?d
2.5).

Lemma 10. Conditioned on the event of Lemma 9, Qmh (s, a) ≤ c̃(s, a) + P̃s,aV
m
h+1 and V mh (s) ≤ V ?h (s) ≤ 3B?.

Proof. Note that by Lemma 9:〈
θ̂m, φVmh+1

(s, a)
〉
− β̂m

∥∥∥φVmh+1
(s, a)

∥∥∥
Σ̂−1
m

= P̃s,aV
m
h+1 +

〈
θ̂m − θ?, φVmh+1

(s, a)
〉
− β̂m

∥∥∥φVmh+1
(s, a)

∥∥∥
Σ̂−1
m

≤ P̃s,aV mh+1 +
∥∥∥θ̂m − θ?∥∥∥

Σ̂m

∥∥∥φVmh+1
(s, a)

∥∥∥
Σ̂−1
m

− β̂m
∥∥∥φVmh+1

(s, a)
∥∥∥

Σ̂−1
m

≤ P̃s,aV mh+1.

The first statement then follows from the definition of Qmh . For any m ∈ N+, we prove the second statement by induction
on h = H + 1, . . . , 1. The base case h = H + 1 is clearly true by the definition of V mH+1. For h ≤ H , note that
Qmh (s, a) ≤ c̃(s, a) + P̃s,aV

m
h+1 ≤ c(s, a) + P̃s,aV

? ≤ Q?(s, a) by the induction step and the first statement. Thus,
V mh (s) ≤ max{0,minaQ

m
h (s, a)} ≤ V ?(s).

Lemma 11. Conditioned on the event of Lemma 10, with probability at least 1 − δ,
∑M ′

m=1

∑H
h=1 V(Pmh , V

m
h+1) =

Õ
(
B2
?M
′ +B?CM ′

)
for any M ′ ∈ N+.

Proof. Conditioned on the event of Lemma 10, we have with probability at least 1− δ:

M ′∑
m=1

H∑
h=1

V(Pmh , V
m
h+1) =

M ′∑
m=1

H∑
h=1

Pmh (V mh+1)2 − (Pmh V
m
h+1)2

=

M ′∑
m=1

H∑
h=1

(
Pmh (V mh+1)2 − V mh+1(smh+1)2

)
+

M ′∑
m=1

H∑
h=1

(
V mh+1(smh+1)2 − V mh (smh )2

)
+

M ′∑
m=1

H∑
h=1

(
V mh (smh )2 − (Pmh V

m
h+1)2

)
(i)
= Õ


√√√√ M ′∑
m=1

H∑
h=1

V(Pmh , (V
m
h+1)2) +B2

?M
′ +B?CM ′

 (ii)
= Õ

B?
√√√√ M ′∑
m=1

H∑
h=1

V(Pmh , V
m
h+1) +B2

?M
′ +B?CM ′

 .
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Here, (ii) is by Lemma 34, and (i) is by Lemma 38, V mH+1(s) ≤ 2B? and:

M ′∑
m=1

H∑
h=1

V mh (smh )2 − (Pmh V
m
h+1)2 =

M ′∑
m=1

H∑
h=1

(V mh (smh , a
m
h ) + Pmh V

m
h+1)(V mh (smh )− Pmh V mh+1)

=

M ′∑
m=1

H∑
h=1

(V mh (smh , a
m
h ) + Pmh V

m
h+1)(max{0, Qmh (smh , a

m
h )} − Pmh V mh+1) ≤ 6B?CM ′ .

(0 ≤ V mh (s) ≤ 3B? and Qmh (smh , a
m
h ) ≤ cmh + Pmh V

m
h+1 by Lemma 10)

By Lemma 28, we get
∑M ′

m=1

∑H
h=1 V(Pmh , V

m
h+1) = Õ

(
B2
?M
′ +B?CM ′

)
.

Lemma 12.
∑M ′

m=1

∑H
h=1E

m
h = Õ

(
B2
?d
√
M ′H +B?d

3/2

√∑M ′

m=1

∑H
h=1(σ̄mh )2 +B2

?d
2H

)
for any M ′ ∈ N+.

Proof. Note that:

M ′∑
m=1

H∑
h=1

Emh =

M ′∑
m=1

H∑
h=1

min

{
9B2

? , β̃m

∥∥∥φ(Vmh+1)2(smh , a
m
h )
∥∥∥

Σ̃−1
m

}
+ min

{
9B2

? , 6B?β̌m

∥∥∥φVmh+1
(smh , a

m
h )
∥∥∥

Σ̂−1
m

}

≤
M ′∑
m=1

H∑
h=1

β̃m min

{
1,
∥∥∥φ(Vmh+1)2(smh , a

m
h )
∥∥∥

Σ̃−1
m

}
+ 6B?

M ′∑
m=1

H∑
h=1

β̌mσ̄
m
h min

{
1,
∥∥∥φVmh+1

(smh , a
m
h )/σ̄mh

∥∥∥
Σ̂−1
m

}
.

(β̃m ≥ 9B2
? and β̌mσ̄mh ≥ 3B?)

For the first sum, define Ĩ = {m ∈ [M ′] : det(Σ̃m+1) > 2 det(Σ̃m)}. Then by Lemma 30,

M ′∑
m=1

H∑
h=1

β̃m min

{
1,
∥∥∥φ(Vmh+1)2(smh , a

m
h )
∥∥∥

Σ̃−1
m

}

≤ Õ

∑
m∈Ĩ

B2
?

√
dH

+
√

2
∑
m/∈Ĩ

H∑
h=1

β̃m min

{
1,
∥∥∥φ(Vmh+1)2(smh , a

m
h )
∥∥∥

Σ̃−1
m+1

}
(β̃m = Õ(B2

?

√
d))

= Õ

B2
?d

3/2H + β̃M ′

√√√√M ′H

M ′∑
m=1

H∑
h=1

min

{
1,
∥∥∥φ(Vmh+1)2(smh , a

m
h )
∥∥∥2

Σ̃−1
m+1

} .

(|Ĩ| = Õ(d) and Cauchy-Schwarz inequality)

= Õ
(
B2
?d

3/2H +B2
?d
√
M ′H

)
. (Lemma 29)

For the second sum, similarly define Î = {m ∈ [M ′] : det(Σ̂m+1) > 2 det(Σ̂m)}. Then,

6B?

M ′∑
m=1

H∑
h=1

β̌mσ̄
m
h min

{
1,
∥∥∥φVmh+1

(smh , a
m
h )/σ̄mh

∥∥∥
Σ̂−1
m

}

≤ Õ

∑
m∈Î

B2
?dH

+ 6
√

2B?β̌M
∑
m/∈Î

H∑
h=1

σ̄mh min

{
1,
∥∥∥φVmh+1

(smh , a
m
h )/σ̄mh

∥∥∥
Σ̂−1
m+1

}
(β̌mσ̄mh = Õ(B?d))

= Õ

B2
?d

2H +B?d

√√√√ M ′∑
m=1

H∑
h=1

(σ̄mh )2

√√√√ M ′∑
m=1

H∑
h=1

min

{
1,
∥∥∥φVmh+1

(smh , a
m
h )/σ̄mh

∥∥∥2

Σ̂−1
m+1

} .

(|Î| = Õ(d) and Cauchy-Schwarz inequality)

= Õ

B2
?d

2H +B?d
3/2

√√√√ M ′∑
m=1

H∑
h=1

(σ̄mh )2

 . (Lemma 29)
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B.7. An instance of SSP with gap′min � gapmin

Consider an SSP with four states {s0, s1, s2, s3} and two actions {a1, a2}. At s0, we have c(s0, a) = 0 and P (s1|s0, a) = p,
P (s0|s0, a) = 1− p for a ∈ {a1, a2} and some p > 0. At s1, we have c(s1, a1) = 0, c(s1, a2) = ε, and P (s2|s1, a1) = 1,
P (s3|s1, a2) = 1. At s2, we have c(s2, a1) = c(s2, a2) = 1 and P (g|s2, a) = q, P (s1|s2, a) = 1− q for any a and some
q ∈ (0, 1). At s3, we have c(s3, a) = 0 and P (g|s3, a) = 1 for a ∈ {a1, a2}. The role of s0 here is to create the possibility
that the learner will visit state s1 at any time step. Then under our finite-horizon approximation, we have

gap′min ≤ min
(s,a):gapH(s,a)>0

gapH(s, a) = c(s1, a2)− c(s1, a1) = ε.

On the other hand, when 1
q > ε, gapmin = Q?(s1, a1)− V ?(s1) = 1

q − ε, and 1
q can be arbitrarily large.

B.8. Omitted Details in Section 3.3

We first prove a lemma bounding Q?h(s, a)−Qmh (s, a) and another lemma on regret decomposition w.r.t the gap functions
gaph(s, a) in M̃.

Lemma 13. SupposeB = 3B?. With probability at least 1−δ, for allm ∈ N+, h ∈ [H], and (s, a) ∈ S+×A, Algorithm 2
ensures:

0 ≤ Q?h(s, a)− Q̂mh (s, a) ≤ P̃s,a(V ?h+1 − V mh+1) + 2βm ‖φ(s, a)‖Λ−1
m
.

Proof. Note that:

w?h − wmh = Λ−1
m

(
λI +

m−1∑
m′=1

H∑
h′=1

φm
′

h′ φ
m′

h′
>
)
w?h − Λ−1

m

m−1∑
m′=1

H∑
h′=1

φm
′

h′ (cm
′

h′ + V mh+1(sm
′

h′+1))

= λΛ−1
m w?h + Λ−1

m

m−1∑
m′=1

H∑
h′=1

φm
′

h′ [cm
′

h′ + Pm
′

h′ V
?
h+1]− Λ−1

m

m−1∑
m′=1

H∑
h′=1

φm
′

h′ (cm
′

h′ + V mh+1(sm
′

h′+1))

= λΛ−1
m w?h + Λ−1

m

m−1∑
m′=1

H∑
h′=1

φm
′

h′ P
m′

h′ [V ?h+1 − V mh+1] + εmh

(Define εmh = Λ−1
m

∑m−1
m′=1

∑H
h′=1 φ

m′

h′ [Pm
′

h′ V
m
h+1 − V mh+1(sm

′

h′+1)])

= λΛ−1
m w?h + Λ−1

m

m−1∑
m′=1

H∑
h′=1

φm
′

h′ φ
m′

h′
>
∫

(V ?h+1(s′)− V mh+1(s′))dµ(s′) + εmh

= λΛ−1
m w?h +

∫
(V ?h+1(s′)− V mh+1(s′))dµ(s′)− λΛ−1

m

∫
(V ?h+1(s′)− V mh+1(s′))dµ(s′) + εmh .

Therefore,

Q?h(s, a)− Q̂mh (s, a) = φ(s, a)>(w?h − wmh ) + βm ‖φ(s, a)‖Λ−1
m

≤ λφ(s, a)>Λ−1
m w?h︸ ︷︷ ︸

ξ1

+Ps,a(V ?h+1 − V mh+1)−λφ(s, a)>Λ−1
m

∫
(V ?h+1(s′)− V mh+1(s′))dµ(s′)︸ ︷︷ ︸

ξ2

+ φ(s, a)>εmh︸ ︷︷ ︸
ξ3

+βm ‖φ(s, a)‖Λ−1
m
.

For ξ1, note that ‖w?h‖2 =
∥∥θ? +

∫
V ?h+1(s′)dµ(s′)

∥∥
2
≤ (1 + 3B?)

√
d by V ?h+1(s) ≤ V ?(s) + 2B? ≤ 3B? for any s ∈ S ,

h ∈ [H]. Therefore, by the Cauchy-Schwarz inequality,

|ξ1| ≤ ‖φ(s, a)‖Λ−1
m
‖λw?h‖Λ−1

m
≤ ‖φ(s, a)‖Λ−1

m

√
λ ‖w?h‖2 ≤

βm
4
‖φ(s, a)‖Λ−1

m
,
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where the second inequality is by λmax(Λ−1
m ) ≤ 1

λ . Similarly, for ξ2,

|ξ2| ≤ ‖φ(s, a)‖Λ−1
m

∥∥∥∥λ ∫ (V ?h+1(s′)− V mh+1(s′))dµ(s′)

∥∥∥∥
Λ−1
m

(Cauchy-Schwarz inequality)

≤
√
λ ‖φ(s, a)‖Λ−1

m

∥∥∥∥∫ (V ?h+1(s′)− V mh+1(s′))dµ(s′)

∥∥∥∥
2

(λmax(Λ−1
m ) ≤ 1

λ )

≤ 3B?
√
λd ‖φ(s, a)‖Λ−1

m
≤ βm

4
‖φ(s, a)‖Λ−1

m
. (V ?h+1(s)− V mh+1(s) ∈ [0, 3B?] for any s ∈ S)

For ξ3, by Eq. (9), ‖εmh ‖Λm ≤
βm
2 with probability at least 1− δ. Thus, |ξ3| ≤ ‖φ(s, a)‖Λ−1

m
‖εmh ‖Λm ≤

βm
2 ‖φ(s, a)‖Λ−1

m
.

To conclude, we have for all m,h, (s, a):

0 ≤ Q?h(s, a)− Q̂mh (s, a) ≤ P̃s,a(V ?h+1 − V mh+1) + 2βm ‖φ(s, a)‖Λ−1
m
.

This completes the proof.

Lemma 14. With probability at least 1 − δ,
∑M ′

m=1 V
πm

1 (sm1 ) − V ?1 (sm1 ) ≤ 2
∑M ′

m=1

∑H
h=1 gaph(smh , a

m
h ) +

O(B?H ln(M ′/δ)) for any given M ′ ∈ N+.

Proof. By the extended value difference lemma (Shani et al., 2020, Lemma 1):

V π
m

1 (sm1 )− V ?1 (sm1 ) = E

[
H∑
h=1

∑
a

(πm(a|smh )− π̃?(a|smh ))Q?h(smh , a)

∣∣∣∣∣πm
]

= E

[
H∑
h=1

Q?h(smh , a
m
h )− V ?h (smh )

∣∣∣∣∣πm
]

= E

[
H∑
h=1

gaph(smh , a
m
h )

∣∣∣∣∣πm
]
,

where π̃? is the optimal policy of M̃. Therefore, by Lemma 39 and gaph(s, a) = O(B?), with probability at least 1− δ,

M ′∑
m=1

V π
m

1 (sm1 )− V ?1 (sm1 ) ≤ 2

M ′∑
m=1

H∑
h=1

gaph(smh , a
m
h ) +O

(
B?H ln

M ′

δ

)
.

This completes the proof.

The next lemma provides an upper bound on the sum of gap functions satisfying some constraints. We denote by Fmh the
interaction history up to (smh , a

m
h ) in M̃.

Lemma 15. Suppose B = 3B?, {zmh }M
′

m=1 are indicator functions such that zmh ∈ Fmh for some M ′ ∈ N+, h ∈ [H], and
define Mz =

∑M ′

m=1 z
m
h . Then with probability at least 1− δ, Algorithm 2 ensures

M ′∑
m=1

zmh

H∑
h′=h

gapmh′ = O
(√

d3B2
?HMz ln

dB?M
′H

δ
+ d2B?H ln1.5 dB?M

′H

δ

)
.

Proof. Denote by mi the i-th interval among [M ′] such that zmih = 1. Then,

Mz∑
i=1

H∑
h′=h

Q?h′(s
mi
h′ , a

mi
h′ )− V ?h′(s

mi
h′ ) +

Mz∑
i=1

H∑
h′=h

V ?h′(s
mi
h′ )− V mih′ (smih′ )

=

Mz∑
i=1

H∑
h′=h

Q?h′(s
mi
h′ , a

mi
h′ )−Qmih′ (smih′ , a

mi
h′ ) (Qmih′ (smih′ , a

mi
h′ ) = V mih′ (smih′ ) by Lemma 5 and B = 3B?)

≤
Mz∑
i=1

H∑
h′=h

Pmih′ (V ?h′+1 − V
mi
h′+1) + 2

Mz∑
i=1

H∑
h′=h

βmi ‖φ
mi
h′ ‖Λ−1

mi
(Lemma 13)

=

Mz∑
i=1

H∑
h′=h

(V ?h′+1(smih′+1)− V mih′+1(smih′+1)) +

Mz∑
i=1

H∑
h=h′

(
εmih′ + 2βmi ‖φ

mi
h′ ‖Λ−1

mi

)
,
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where εmih = Pmih (V ?h+1 − V
mi
h+1) − (V ?h+1(smih+1) − V mih+1(smih+1)). Reorganizing terms, and by V ?H+1 = V mH+1 = cf ,

V mh+1(s) ≤ V ?h+1(s) (Lemma 5), we get:

Mz∑
i=1

H∑
h′=h

gapmih′ =

Mz∑
i=1

H∑
h′=h

Q?h′(s
mi
h′ , a

mi
h′ )− V ?h′(s

mi
h′ ) ≤

Mz∑
i=1

H∑
h=h′

(
εmih + 2βmi ‖φ

mi
h ‖Λ−1

mi

)

=

M ′∑
m=1

H∑
h′=h

zmh ε
m
h′ + 2

Mz∑
i=1

H∑
h=h′

βmi ‖φ
mi
h ‖Λ−1

mi
.

For the first term, by zmh ε
m
h′ ∈ Fmh′+1 for h′ ≥ h and Lemma 38, with probability at least 1− δ,

M ′∑
m=1

H∑
h′=h

zmh ε
m
h′ ≤ 3

√√√√ M ′∑
m=1

H∑
h′=h

E[(zmh ε
m
h′)

2|Fmh′ ] +O
(
B? ln

B?M
′H

δ

)

= O

(
B?

√
HMz ln

B?M ′H

δ
+B? ln

B?M
′H

δ

)
. (zmh ∈ Fmh′ and |εmh′ | = O(B?))

For the second term, by Lemma 18,

Mz∑
i=1

H∑
h=h′

βmi ‖φ
mi
h ‖Λ−1

mi
= O

(√
d3B2

?HMz ln
dB?M

′H

δ
+ d2B?H ln1.5 dB?M

′H

δ

)
.

Plugging these back completes the proof.

We are now ready to prove a bound on
∑
m V

πm

1 (sm1 )− V ?1 (sm1 ), which is the key to proving Theorem 4.

Lemma 16. For any M ′ ≥ 3, Algorithm 2 with B = 3B? and H ≥ d 35B?
cmin

ln(8B?M
′H)e for some horizon H ensures

with probability at least 1− 3δ − 1/4B?M ′H,
∑M ′

m=1 V
πm

1 (sm1 )− V ?1 (sm1 ) = O
(

d3B4
?

c2mingapmin
ln5(dB?M

′H/δ)
)

.

Proof. First note that V π
?

h (s) ≤ 3B? for any s ∈ S, h ∈ [H]. Thus, the expected hitting time of π? in M̃ is at most 3B?
cmin

starting from any state and layer. Without loss of generality, we assume that H is an even integer. Note that M̃ can be
treated as an SSP instance where the learner teleports to the goal state at the (H + 1)-th step. Thus by Lemma 17 and
H ≥ 35B?

cmin
ln(8B?M

′H), when h ≤ H
2 + 1, P (sH+1 6= g|sh = s, π?) ≤ 1

4B?M ′H
for any state s, and for any h ≤ H

2 :

Q?h(s, a)−Q?(s, a) ≤ Qπ
?

h (s, a)−Q?(s, a) = Ps,a(V π
?

h+1 − V ?) ≤ 2B? max
s
P (sH+1 6= g|π?, sh+1 = s) ≤ 1

2M ′H
.

It also implies |gaph(s, a)− gap(s, a)| for h ≤ H
2 , since:

|gaph(s, a)− gap(s, a)| ≤ |Q?h(s, a)−Q?(s, a)|+ |V ?h (s)− V ?(s)| ≤ 1

2M ′H
+ max

a
|Q?h(s, a)−Q?(s, a)| ≤ 1

M ′H
.

Define gapmh = gaph(smh , a
m
h ) and a threshold η = 3

M ′H . By Lemma 14, it suffices to bound
∑M ′

m=1

∑H
h=1 gapmh . Note that

M ′∑
m=1

H∑
h=1

gapmh ≤
M ′∑
m=1

H∑
h=1

gapmh I {gapmh > η}+O

 M ′∑
m=1

H∑
h=1

B?
M ′H


≤

M ′∑
m=1

∑
h≤H/2

gapmh I {gapmh > η}+

M ′∑
m=1

∑
h>H/2

gapmh +O (B?) .

For the first term, define N = dlog2( 3B?+1
η )e = O(ln(B?M

′H)), and

n? = min

{
n ∈ [N ] : ∃(s′, a′), h′ ≤ H

2
such that gaph′(s

′, a′) ∈ (η2n−1, η2n]

}
.
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Then by the definition of n? and |gap(s, a)− gaph(s, a)| ≤ 1
M ′H for h ≤ H

2 , there exist (s′, a′), h′ ≤ H
2 such that

gapmin ≤ gap(s′, a′) ≤ gaph′(s
′, a′) +

1

M ′H
≤ η2n

?

+
1

M ′H
≤ 4

3
· η2n

?

. (10)

Moreover, for each n ∈ N and h ≤ H
2 , define zmh = I{gapmh > η2n}. Then by Lemma 15, with probability at least

1− δ
2(n+1)2 ,

η2nMz ≤
M ′∑
m=1

zmh gapmh = O
(√

d3B2
?HMz ln

dB?M
′H(n+ 1)

δ
+ d2B?H ln1.5 dB?M

′H(n+ 1)

δ

)
,

where Mz =
∑M ′

m=1 z
m
h . Solving a quadratic inequality w.r.t

√
Mz gives:

M ′∑
m=1

I{gapmh > η2n} = O
(
d3B2

?H

η24n
ln2 dB?M

′H(n+ 1)

δ
+
d2B?H

η2n
ln1.5 dB?M

′H(n+ 1)

δ

)
. (11)

By a union bound, Eq. (11) holds for all n ∈ N simultaneously with probability at least 1− δ. Therefore, the first term is
bounded as follows:

M ′∑
m=1

∑
h≤H/2

gapmh I {gapmh > η}

=

M ′∑
m=1

∑
h≤H/2

N∑
n=n?

gapmh I{gapmh ∈ (η2n−1, η2n]} ≤
M ′∑
m=1

∑
h≤H/2

N∑
n=n?

η2nI{gapmh > η2n−1}

= O

 ∑
h≤H/2

N∑
n=n?

(
d3B2

?H

η2n
ln2 dB?M

′H(n+ 1)

δ
+ d2B?H ln1.5 dB?M

′H(n+ 1)

δ

) (Eq. (11))

= O
(
d3B2

?H
2

η2n?
ln3 dB?M

′H

δ
+ d2B?H

2 ln2.5 dB?M
′H

δ

)
(N = O(ln(B?M

′H)))

= O
(
d3B2

?H
2

gapmin

ln3 dB?M
′H

δ
+ d2B?H

2 ln2.5 dB?M
′H

δ

)
. (Eq. (10))

For the second term, note that:

M ′∑
m=1

∑
h>H/2

gapmh ≤
M ′∑
m=1

∑
h>H/2

gapmh I
{
∃h ≤ H

2
: gapmh > η

}
︸ ︷︷ ︸

ξ1

+

M ′∑
m=1

∑
h>H/2

gapmh I
{
∀h ≤ H

2
: gapmh ≤ η

}
︸ ︷︷ ︸

ξ2

.

For ξ1, define zmH
2 +1

= I
{
∃h ≤ H

2 : gapmh > η
}

and Mz =
∑M ′

m=1 z
m
H
2 +1

. Then by Lemma 15, with probability at least
1− δ,

ξ1 =

M ′∑
m=1

zmH
2 +1

∑
h>H/2

gapmh = O
(√

d3B2
?HMz ln

dB?M
′H

δ
+ d2B?H ln1.5 dB?M

′H

δ

)
.

It suffices to bound Mz . Note that by the definition of n?, we have mins,a,h≤H/2,gaph(s,a)>η gaph(s, a) ∈ (η2n
?−1, η2n

?

].
Thus, by Eq. (11),

Mz =

M ′∑
m=1

I
{
∃h ≤ H

2
: gapmh > η

}
≤

M ′∑
m=1

∑
h≤H/2

I {gapmh > η} ≤
M ′∑
m=1

∑
h≤H/2

I
{

gapmh > η2n
?−1
}

= O
(
d3B2

?H
2

η24n?−1
ln2 dB?M

′Hn?

δ
+
d2B?H

2

η2n?−1
ln1.5 dB?M

′Hn?

δ

)
.
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Plugging this back and by Eq. (10), we get:

ξ1 = O
(
d3B2

?H
1.5

gapmin

ln2 dB?M
′H

δ
+ d2B?H ln1.5 dB?M

′H

δ

)
.

For ξ2, denote by π̃m the near-optimal policy “closest” to πm, such that:

π̃m(s, h) =


πm(s, h), h ≤ H/2 and gaph(s, πm(s, h)) ≤ η,
π?(s, h), h ≤ H/2 and gaph(s, πm(s, h)) > η,

π?(s, h), h > H/2.

Note that gaph(s, π̃m(s, h)) ≤ η for all s, h. By the extended value difference lemma (Shani et al., 2020, Lemma 1),
V π̃

m

h (s)−V ?h (s) = E[
∑H
h′=h gaph′(sh′ , ah′)|sh = s, π̃m] ≤ 3

M ′ ≤ B? for all s, h by M ′ ≥ 3. Therefore, V π̃
m

h (s) ≤ 4B?
for all s, h. Denote by Fm the interaction history before interval m. Then, πm, π̃m ∈ Fm, and

P

 ∑
h>H/2

gapmh I {∀h ≤ H/2 : gapmh ≤ η} = 0

∣∣∣∣∣∣πm,Fm


≥ P
(
∃h ≤ H/2, gapmh > η or ∀h ≤ H/2, gapmh ≤ η, sH/2+1 = g

∣∣πm,Fm)
= P

(
∃h ≤ H/2, π̃m(smh , h) 6= πm(smh , h) or ∀h ≤ H/2, π̃m(smh , h) = πm(smh , h), sH/2+1 = g

∣∣πm,Fm)
= P

(
∃h ≤ H/2, π̃m(smh , h) 6= πm(smh , h) or ∀h ≤ H/2, π̃m(smh , h) = πm(smh , h), sH/2+1 = g

∣∣ π̃m,Fm)
≥ P

(
sH/2+1 = g

∣∣ π̃m,Fm) ≥ 1− 1

4B?M ′H
,

where in the last inequality we apply Lemma 17, the fact that V π̃
m

h (s) ≤ 4B? for all s, h, and H ≥ 35B?
cmin

ln(8B?M
′H).

Now by Lemma 14 and H = d 35B?
cmin

ln(8B?M
′H)e, we have:

M ′∑
m=1

V π
m

1 (sm1 )− V ?1 (sm1 ) ≤ 2

M ′∑
m=1

H∑
h=1

gaph(smh , a
m
h ) +O(B?H ln(M ′/δ))

= O
(
d3B2

?H
2

gapmin

ln3 dB?M
′H

δ
+ d2B?H

2 ln2.5(dB?M
′H/δ)

)
= O

(
d3B4

?

c2mingapmin

ln5(dB?M
′H/δ)

)
.

We are now ready to prove Theorem 4.

Proof of Theorem 4. First note that for a given H ≥ 4T? ln(4K), by Lemma 2 and Theorem 1, we have: M =
Õ
(
K + d3H

)
with probability at least 1 − 4δ for some δ > 0 when running Algorithm 1 with Algorithm 2 and

horizon H . That is, there exist b > 0 and constant p ≥ 1 such that M ≤ b(K + d3H) lnp(dB?HK/δ). Now let
M ′ = b(K + d3H) lnp(dB?HK/δ). To obtain the regret bound in Lemma 16, it suffices to have H ≥ 35B?

cmin
ln(8B?M

′H).

Plugging in the definition of M ′ and by x > lnx for x > 0, it suffices to have H = b′B?
cmin

ln(dB?Kδcmin
) for some con-

stant b′ > 0. To conclude, we have M ≤ M ′ with probability at least 1 − 4δ when running Algorithm 1 with
Algorithm 2 and horizon H = b′B?

cmin
ln(dB?Kδcmin

). Moreover, with probability at least 1 − 3δ − 1/4B?M
′H , we have∑min{M,M ′}

m=1 V π
m

1 (sm1 )−V ?1 (sm1 ) = O(
d3B4

?

c2mingapmin
ln5(dB?M

′H/δ)). To obtain an expected regret bound, we further need
to bound the cost under the low probability “bad” event. We make the following modification to Algorithm 1: whenever the
counter m = n ·M ′ for some n ∈ N+, we restart Algorithm 2. Ideas above are summarized in Algorithm 7. Now consider
running Algorithm 7 with Algorithm 2, horizon H = b′B?

cmin
ln(dB?Kδcmin

), failure probability δ = 1
4M ′H , and restart threshold
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Algorithm 7 Finite-Horizon Approximation of SSP from (Cohen et al., 2021)

Input: Algorithm A for finite-horizon MDP M̃ with horizon H ≥ 4T? ln(4K) and restart threshold M ′.
Initialize: interval counter m← 1.
for k = 1, . . . ,K do

1 Set sm1 ← sinit.
2 while sm1 6= g do
3 Feed initial state sm1 to A.
4 for h = 1, . . . ,H do
5 Receive action amh from A.
6 if smh 6= g then
7 Play action amh , observe cost cmh = c(smh , a

m
h ) and next state smh+1.

8 else Set cmh = 0 and smh+1 = g.
9 Feed cmh and smh+1 to A.

10 Set sm+1
1 = smH+1 and m← m+ 1.

if m = n ·M ′ for some n ∈ N+ then Reinitialize A.

M ′. By the choice of M ′, we have P (M > M ′) ≤ 4δ. By a recursive argument, we have P (M > n ·M ′) ≤ (4δ)n for
n ∈ N+. We have by Lemma 1 and Lemma 16:

E[RK ] ≤ E[R̃M ] +B? ≤ E[R̃min{M,M ′}] + E[max{0,M −M ′}(H + 2B?)] +B?

= O
(

d3B4
?

c2mingapmin

ln5(dB?M
′H)

)
= O

(
d3B4

?

c2mingapmin

ln5 dB?K

cmin

)
,

where we apply

E[max{0,M −M ′}(H + 2B?)] ≤
∞∑
n=1

P (M ∈ (nM ′, (n+ 1)M ′]) · nM ′(H + 2B?)

≤
∞∑
n=1

n · P (M > nM ′)M ′(H + 2B?) ≤
∞∑
n=1

n(4δ)nM ′(H + 2B?) ≤
16δM ′(H + 2B?)

1− 4δ
= O (1) .

This completes the proof.

B.9. Extra Lemmas for Section 3

Lemma 17. (Rosenberg & Mansour, 2020, Lemma 6) Let π be a policy with expected hitting time at most τ starting from
any state. Then for any δ ∈ (0, 1), with probability at least 1− δ, π takes no more than 4τ ln 2

δ steps to reach the goal state.

Lemma 18. For an arbitrary set of intervals I ⊆ [M ′] for some M ′ ∈ N+, we have:

∑
m∈I

H∑
h=1

βm ‖φmh ‖Λ−1
m

= O
(√

d3B2H|I| ln dBM
′H

δ
+ d2BH ln1.5 dBM

′H

δ

)
.
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Proof. We bound the sum by considering two cases:

∑
m∈I

H∑
h=1

βm ‖φmh ‖Λ−1
m
≤ βM ′

∑
m∈I:det(Λm+1)≤2 det(Λm)

H∑
h=1

‖φmh ‖Λ−1
m

+ βM ′
∑

m∈I:det(Λm+1)>2 det(Λm)

H∑
h=1

‖φmh ‖Λ−1
m

≤
√

2βM ′
∑
m∈I

H∑
h=1

‖φmh ‖Λ−1
m+1

+O (βM ′d ln(M ′H/λ)H)

(2Λm < Λm+1 by Lemma 30, and det(ΛM ′)/ det(Λ0) ≤ ((λ+M ′H)/λ)d)

= O

βM ′
√√√√H|I|

∑
m∈I

H∑
h=1

‖φmh ‖
2
Λ−1
m+1

+ βM ′dH ln(M ′H)

 (Cauchy-Schwarz inequality)

= O
(√

d3B2H|I| ln dBM
′H

δ
+ d2BH ln1.5 dBM

′H

δ

)
.

((Jin et al., 2020b, Lemma D.2), λ = 1, and definition of βM ′ )

B.10. Proof of Theorem 5

Proof. Define δ = 1
3 , ∆ =

√
δ/K

8
√

2
and assume K ≥ d2

2δ . Consider a family of SSP parameterized by ρ ∈ {−∆,∆}d

with action set A = {−1, 1}d. For the SSP instance parameterized by ρ, it consists of two states {s0, s1}. The transition
probabilities are as follows:

P (s1|s0, a) = 1− δ − 〈ρ, a〉 , P (g|s0, a) = δ + 〈ρ, a〉 ,
P (s1|s1, a) = 1− 1/B?, P (g|s1, a) = 1/B?,

and the cost function is c(s, a) = I{s = s1}. The SSP instance above can be represented as a linear SSP of dimension d+ 2

as follows: define α =
√

1
1+∆d , β =

√
∆

1+∆d ,

φ(s, a) =

{
[α, βa>, 0]>, s = s0

[0, 0, 1]>, s = s1

µ(s′) =

{
[(1− δ)/α,−ρ>/β, 1− 1/B?]

>, s′ = s1

[δ/α, ρ>/β, 1/B?]
>, s′ = g

and θ? = [0, 0, 1]. Note that it satisfies c(s, a) = φ(s, a)>θ?, P (s′|s, a) = φ(s, a)>µ(s′), ‖φ(s, a)‖2 ≤ 1, and ‖θ?‖2 ≤
1 ≤
√
d+ 2. Moreover, for any function h : S+ → R, we have:

∑
s′

h(s′)µ(s′) =

h(s1)(1− δ)
√

1 + ∆d+ h(g)δ
√

1 + ∆d

(h(g)− h(s1))ρ
√

(1 + ∆d)/∆
h(s1)(1− 1/B?) + h(g)/B?

 .
Note that when K ≥ d2

2δ , ∆d ≤ δ
8 = 1

24 , and

(h(s1)(1− δ)
√

1 + ∆d+ h(g)δ
√

1 + ∆d)2 ≤ ‖h‖2∞ (1 + ∆d) ≤ 25

24
‖h‖2∞ ,∥∥∥(h(g)− h(s1))ρ

√
(1 + ∆d)/∆

∥∥∥2

2
≤ 4 ‖h‖2∞∆d(1 + ∆d) ≤ 25

24
‖h‖2∞ ,

(h(s1)(1− 1/B?) + h(g)/B?)
2 ≤ ‖h‖2∞ .

Thus, we have ‖
∑
s′ h(s′)µ(s′)‖

2
≤ ‖h‖∞

√
d+ 2 by d ≥ 2, and the SSP instance satisfies Assumption 1. The regret

is bounded as follows: let ak denote the first action taken by the learner in episode k. Then for any ρ ∈ {−∆,∆}d, the
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expected cost of taking action a as the first action is Cρ(a) = B?(1− δ − 〈ρ, a〉).

Eρ[RK ] =

K∑
k=1

Eρ
[
Cρ(ak)−min

a
Cρ(a)

]
= B?

K∑
k=1

Eρ
[
max
a
〈ρ, a〉 − 〈ρ, ak〉

]

= 2B?∆

K∑
k=1

Eρ

 d∑
j=1

I{sgn(ρj) 6= sgn(ak,j)}

 = 2B?∆

d∑
j=1

Eρ[Nj(ρ)],

where we define Nj(ρ) =
∑K
k=1 I{sgn(ρj) 6= sgn(ak,j)}, and Eρ is the expectation w.r.t the SSP instance parameterized

by ρ. Let ρj denote the vector that differs from ρ at its j-th coordinate only. Then, we have Nj(ρj) +Nj(ρ) = K, and for a
fixed j,

2
∑
ρ

Eρ [RK ] =
∑
ρ

(
Eρ [RK ] + Eρj [RK ]

)
= 2B?∆

∑
ρ

d∑
j=1

(
K + Eρ[Nj(ρ)]− Eρj [Nj(ρ)]

)
≥ 2B?∆

∑
ρ

d∑
j=1

(
K −K

√
2KL(Pρ, Pρj )

)
,

where Pρ is the joint probability of K trajectories induced by the interactions between the learner and the SSP parameterized
by ρ, and in the last inequality we apply Pinsker’s inequality to obtain:∣∣Eρ[Nj(ρ)]− Eρj [Nj(ρ)]

∣∣ ≤ K ∥∥Pρ − Pρj∥∥1
≤ K

√
2KL(Pρ, Pρj ).

By the divergence decomposition lemma (see e.g. (Lattimore & Szepesvári, 2020, Lemma 15.1)), we further have

KL(Pρ, Pρj ) =

K∑
k=1

Eρ
[
KL
(
Bernoulli(δ + 〈ak, ρ〉),Bernoulli(δ +

〈
ak, ρ

j
〉
)
)]

=

K∑
k=1

Eρ

[
2
〈
ak, ρ− ρj

〉2
δ + 〈ak, ρ〉

]
≤ 16K∆2

δ
, (d∆ ≤ δ/2)

where in the second last inequality we apply KL(Bernoulli(a),Bernoulli(b)) ≤ 2(a − b)2/a when a ≤ 1/2, a + b ≤ 1,
which is true when δ ≤ 1/3, d∆ ≤ δ/2. Substituting these back, we get:

2
∑
ρ

Eρ[RK ] ≥ 2B?∆
∑
ρ

d∑
j=1

(
K −K

√
32K∆2/δ

)
= Ω

(∑
ρ

B?d
√
δK

)
. (12)

Now note that gap(s1, a) = 0 for all a. Define a? = argmaxa 〈ρ, a〉. Then for any a 6= a?,

Q?(s0, a)− V ?(s0) = (1− δ − 〈ρ, a〉)B? − (1− δ − 〈ρ, a?〉)B? = B? 〈ρ, a? − a〉 ≥ 2B?∆.

Thus, gapmin = 2B?∆. By
√
K =

√
δ

8
√

2∆
and Eq. (12), we get:

∑
ρ

Eρ[RK ] = Ω

(∑
ρ

B?d
√
δK

)
= Ω

(∑
ρ

dB?δ

∆

)
= Ω

(∑
ρ

dB2
?

gapmin

)
.

Selecting ρ? which maximizes Eρ[RK ], we get: Eρ? [RK ] = Ω
(

dB2
?

gapmin

)
.

C. Omitted Details for Section 4
Notations Define Qt(s, a) = φ(s, a)>wt such that at = argminaQt(st, a), and operator UB : Rd → Rd such that
UBw = θ? +

∫
Vw,B(s′)dµ(s′). Define ιt = ιBt,t,Jt = JBt , Pt = Pst,at , Ct =

∑t
i=1 c(si, ai), and J = J2B? . By

Lemma 4, Jt ⊆ J for any t ∈ [T ].



Improved No-Regret Algorithms for Stochastic Shortest Path with Linear MDP

For notational convenience, we divide the whole learning process into epochs indexed by l, and a new epoch begins
whenever wt is recomputed. Denote by tl + 1 the first time step in epoch l, and for a quantity, function or set ft
indexed by time step t, we define fl = ftl+1. Denote by lt the epoch time step t belongs to, and we often ignore the
subscript t when there is no confusion. Clearly, Vt = Vl, and similarly for wl, w̃l, ιl,Ωl (ignoring the dependency on
t for l). With this notation setup, we define L′ as the number of epochs that starts by the overestimate condition, that
is, L′ = |{l > 1 : Vl−1(s′tl) = 2Bl−1}|. Also define νt = argmaxν=w̃l−w,w∈Ωl

|φ>t ν| and a special covariance matrix
Wj,t(ν) = 2jI +

∑
i<t min

{
1, 2j/|φ>i ν|

}
φiφ
>
i . Note that Φjt (ν) = ‖ν‖2Wj,l(ν).

Assumption For simplicity, we assume that {φ(s, a)}(s,a)∈S×A spans Rd. It implies that if φ(s, a)>v = φ(s, a)>w for
all (s, a) ∈ S ×A, then v = w.

Truncating the Interaction for Technical Issue An important question in SSP is whether the algorithm halts in finite
number of steps. To overcome some technical issues, we first assume that the algorithm halts after T ′ steps for an arbitrary
T ′ ∈ N+, even if the goal state is not reached. Specifically, we redefine the notation T to be the minimum between the
number of steps taken by the learner in K episodes and T ′, that is, T = T ′ if the learner does not finish K episodes in T ′

steps. We also redefine RK under the new definition of T , and the true regret now becomes limT ′→∞RK . The implication
under truncation is that s′T may not be g, and T ≤ T ′. In Appendix C.3, we prove a regret bound on RK independent of T ′.
Thus, the proven regret bound is also an upper bound of the true regret, as it is a valid upper bound of limT ′→∞RK .

Below we provide detailed proofs of lemmas and the main theorem.

C.1. Proof of Lemma 3

We will prove a more general statement, from which Lemma 3 is a directly corollary.

Lemma 19. With probability at least 1− δ, for any t ∈ N+, B ∈ {2i}i∈N, and w ∈ B(3
√
dB), we have UBw ∈ Ωt(w,B).

Proof. For each t ∈ N+, B ∈ {2i}i∈N, w ∈ Gε/t(3
√
dB), j ∈ JB , ν ∈ Gε/t(6

√
dB), by Lemma 36, we have with

probability at least 1− 6δ′ log2 t with δ′ = δ/(24t2 log2
2(2B) log2(t)|JB |(12

√
dBt/ε)2d):

∣∣∣∣∣∑
i<t

clipj(φ
>
i ν)εiVw,B (UBw)

∣∣∣∣∣ =

∣∣∣∣∣∑
i<t

clipj(φ
>
i ν)(PiVw,B − Vw,B(s′i))

∣∣∣∣∣
≤ 8

√∑
i<t

clip2
j (φ
>
i ν)ηiVw,B (UBw) ln

1

δ′
+ 32B2j ln

1

δ′
≤
√∑

i<t

clip2
j (φ
>
i ν)ηiVw,B (UBw)

ιB,t
3

+
B

2
2jιB,t. (13)

Taking a union bound, Eq. (13) holds for any t, B ∈ {2i}i∈N, w ∈ Gε/t(3
√
dB), j ∈ JB , ν ∈ Gε/t(6

√
dB) with probability

at least 1− δ.

Now for any t ∈ N+, B ∈ {2i}i∈N, w ∈ B(3
√
dB), there exist w′ ∈ Gε/t(3

√
dB) such that ‖w − w′‖∞ ≤

ε
t . Also define

V = Vw,B , V ′ = Vw′,B , w̃ = UBw, and w̃′ = UBw
′. Note that

‖V − V ′‖∞ ≤ max
s,a

∣∣φ(s, a)>(w − w′)
∣∣ ≤ √d ‖w − w′‖∞ ≤ √dεt , (14)

‖w̃ − w̃′‖2 =

∥∥∥∥∫ (V (s′)− V ′(s′))dµ(s′)

∥∥∥∥
2

≤
√
d ‖V − V ′‖∞ ≤

dε

t
. (15)
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Thus, we have for any j ∈ JB , ν ∈ Gε/t(6
√
dB):∣∣∣∣∣∑

i<t

clipj(φ
>
i ν)εiV (w̃)

∣∣∣∣∣ =

∣∣∣∣∣∑
i<t

clipj(φ
>
i ν)(φ>i w̃ − ci − V (s′i))

∣∣∣∣∣
≤

∣∣∣∣∣∑
i<t

clipj(φ
>
i ν)(φ>i w̃

′ − ci − V ′(s′i))

∣∣∣∣∣+

∣∣∣∣∣∑
i<t

clipj(φ
>
i ν)φ>i (w̃ − w̃′)

∣∣∣∣∣+

∣∣∣∣∣∑
i<t

clipj(φ
>
i ν)(V (s′i)− V ′(s′i))

∣∣∣∣∣
≤
√∑

i<t

clip2
j (φ
>
i ν)(φ>i w̃

′ − ci − V ′(s′i))2
ιB,t
3

+
B

2
2jιB,t + 2j+1dε (Eq. (13), Eq. (14), and Eq. (15))

≤
√∑

i<t

clip2
j (φ
>
i ν)ηiV (w̃)ιB,t +

√∑
i<t

clip2
j (φ
>
i ν)(φ>i (w̃′ − w̃))2ιB,t +

√∑
i<t

clip2
j (φ
>
i ν)(V ′(s′i)− V (s′i))

2ιB,t

+
B

2
2jιB,t + 2j+1dε ((a+ b+ c)2 ≤ 3(a2 + b2 + c2) and

√
a+ b ≤

√
a+
√
b)

≤
√∑

i<t

clip2
j (φ
>
i ν)ηiV (w̃)ιB,t +

B

2
2jιB,t + 4 · 2jdειB,t ≤

√∑
i<t

clip2
j (φ
>
i ν)ηiV (w̃)ιB,t +B2jιB,t.

(Eq. (14), Eq. (15), and 8dε ≤ 1)

Moreover, w̃ ∈ B(3
√
dB) by ‖Vw,B‖∞ ≤ 2B. Thus, UBw ∈ Ωt(w,B) for any t ∈ N+, B ∈ {2i}i∈N, and w ∈ B(3

√
dB),

and the statement is proved.

Proof of Lemma 3. This directly follows from Lemma 19 by wt ∈ B(3
√
dBt), Vt = Vwt,Bt , and w̃t = θ? +∫

Vt(s
′)dµ(s′) = UBtwt.

C.2. Proof of Lemma 4

Lemma (restatement of Lemma 4). With probability at least 1− δ, Vl(stl+1) ≤ V ?(stl+1) for any epoch l and Bt ≤ 2B?.

Proof. For the first statement, note that any epoch l, by Lemma 20, there exists w∞l ∈ B(3
√
dBl) such that w∞l = UBlw

∞
l

and Vw∞l ,Bl(s) ≤ V ?(s). Thererfore, w∞l ∈ Ωl(w
∞
l , Bl), and Vl(stl+1) = Vwl,Bl(stl+1) ≤ Vw∞l ,Bl(stl+1) ≤ V ?(stl+1)

by the definition of wl. The second statement is a direct corollary of the first statement and how Bt is updated.

Lemma 20. For any B > 0, there exists w ∈ B(3
√
dB) such that w = UBw, and Vw,B(s) ≤ V ?(s).

Proof. Define w1 = 0 ∈ Rd, and wn+1 = UBw
n. We prove by induction that φ(s, a)>(wn+1 − wn) ≥ 0

and φ(s, a)>wn ≤ Q?(s, a). The base case n = 1 is clearly true. Now for n > 1, assume that we have
φ(s, a)>(wn − wn−1) ≥ 0 and φ(s, a)>wn−1 ≤ Q?(s, a). Then, φ(s, a)>(wn+1 − wn) = Ps,a(Vwn,B − Vwn−1,B) ≥ 0
and φ(s, a)>wn = c(s, a) + Ps,aVwn−1,B ≤ c(s, a) + Ps,aV

? ≤ Q?(s, a). Therefore, the sequence {φ(s, a)>wn}∞n=1 is
non-decreasing and bounded, and thus converges. Since {φ(s, a)}(s,a)∈S×A spans Rd, the limit w∞ = limn→∞ wn

exists and w∞ = UBw
∞. Moreover, w∞ ∈ B(3

√
dB) by ‖Vw∞,B‖∞ ≤ 2B and Vw∞,B(s) ≤ V ?(s) since

φ(s, a)>w∞ = limn→∞ φ(s, a)>wn ≤ Q?(s, a). This completes the proof.

C.3. Proof of Theorem 6

Proof. We decompose the regret as follows:

RK =

T∑
t=1

ct −K · V ?(sinit) =

L∑
l=1

(
tl+1∑

t=tl+1

ct − Vl(stl+1)

)
+

L∑
l=1

Vl(stl+1)−K · V ?(sinit).
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For the first term, for a fixed epoch l, define χτ =
∑tl+1

t=τ ct − Vl(sτ ) for τ ∈ {tl + 1, . . . , tl+1} and χtl+1+1 = −Vl(s′tl+1
).

Note that within epoch l, we have Vl(sτ ) = [Ql(sτ , aτ )][0,∞) ≥ Ql(sτ , aτ ) = φ>τ wl. Thus, for τ ∈ {tl + 1, . . . , tl+1},

χτ =

tl+1∑
t=τ

ct − Vl(sτ ) ≤
tl+1∑
t=τ+1

ct + cτ − φ>τ wl

=

tl+1∑
t=τ+1

ct − Vl(s′τ ) + (Vl(s
′
τ )− PτVl) + φ>τ (w̃l − wl) (cτ + PτVl = φ>τ w̃l)

= χτ+1 + (Vl(s
′
τ )− PτVl) + φ>τ (w̃l − wl)

≤ · · · ≤ −Vl(s′tl+1
) +

tl+1∑
t=τ

(Vl(s
′
t)− PtVl) +

tl+1∑
t=τ

φ>t (w̃l − wl).

Therefore, we have:

RK =

L∑
l=1

χtl+1 +

L∑
l=1

Vl(stl+1)−K · V ?(sinit)

≤
L∑
l=1

tl+1∑
t=tl+1

[
(Vl(s

′
t)− PtVl) + φ>t (w̃l − wl)

]
+

L∑
l=1

(
Vl(stl+1)− Vl(s′tl+1

)
)
−K · V ?(sinit).

We first bound the switching costs, that is, the last two terms above. We consider three cases based on how an epoch
starts: define L1 = {l : s′tl = g}, L2 = {l > 1 : ∃j ∈ Jl, ν ∈ Gε/(tl+1)(6

√
dBl−1),Φjtl+1(ν) > 8d2Φjtl−1+1(ν)}, and

L3 = {l > 1 : Vl−1(s′tl) = 2Bl−1}. Then,

L∑
l=1

(
Vl(stl+1)− Vl(s′tl+1

)
)
−K · V ?(sinit)

=
∑
l∈L1

Vl(stl+1)−K · V ?(sinit)︸ ︷︷ ︸
ξ1

+
∑
l∈L2

Vl(stl+1)︸ ︷︷ ︸
ξ2

+
∑
l∈L3

Vl(stl+1)−
L∑
l=1

Vl(s
′
tl+1

)︸ ︷︷ ︸
ξ3

.

Note that ξ1 ≤ 0 since for l ∈ L1, Vl(stl+1) = Vl(sinit) ≤ V ?(sinit) by Lemma 4. For ξ2, note that |L2| = Õ(d) by
Lemma 27. Thus, ξ2 = Õ(dB?) by ‖Vl‖∞ ≤ 4B? (Lemma 4). For ξ3, note that for each l ∈ L3, Vl(stl+1)− Vl−1(s′tl) ≤
Bl − 2Bl−1 ≤ 2B?I{Bl 6= Bl−1} − 1 by Vl(stl+1) ≤ Bl ≤ 2B? and Bl ≥ 1. Thus, ξ3 ≤ Õ(B?)− L′, by |L3| = L′ and∑L
l=1 I{Bl 6= Bl−1} = O(log2B?). Therefore, with probability at least 1− 5δ,

RK ≤
L∑
l=1

tl+1∑
t=tl+1

[
(Vl(s

′
t)− PtVl) + φ>t (w̃l − wl)

]
+ Õ (dB? − L′)

= Õ


√√√√ T∑

t=1

V(Pt, Vl) +

T∑
t=1

∣∣φ>t νt∣∣+ dB? − L′
 (Lemma 38, wl ∈ Ωl, and definition of νt)

= Õ


√√√√B2

?L
′ +B?CT +B?

T∑
t=1

∣∣φ>t νt∣∣+

T∑
t=1

∣∣φ>t νt∣∣+ dB? − L′
 (Lemma 21)

= Õ

(√
B?CT +

T∑
t=1

∣∣φ>t νt∣∣+ dB? +B2
?

)
(
√
x+ y ≤

√
x+
√
y and

√
ab ≤ a+b

2 )

≤ Õ
(
d3.5

√
B?CT + d3.5

√
B?εT + d5B2

?

)
+ 65d2.5εT (Lemma 22)

≤ Õ
(
d3.5

√
B?CT + d5B2

?

)
+
CT
2K

. (definition of ε and cminT ≤ CT )
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By RK = CT −K · V ?(sinit) and Lemma 28 with x = CT (we also bound T by CT /cmin in logarithmic terms), we get
CT = Õ(B?K + d7B? + d5B2

?). Plugging this back, we obtain

RK = Õ
(
d3.5B?

√
K + d7B2

?

)
.

This completes the proof.

C.4. Intuition for Overestimate Condition

Now we provide more reasonings on including the overestimate condition. Similar to (Zanette et al., 2020b; Wei et al.,
2021b), we incorporate global optimism at the starting state of each epoch via solving an optimization problem. This is
different from many previous work (Jin et al., 2020b; Vial et al., 2021) that adds bonus terms to ensure local optimism over
all states. The advantage of global optimism is that it avoids using a larger function class of Qt, Vt for the bonus terms,
which reduces the order of d in the regret bound. However, this improvement also requires ‖Vt‖∞ is of order B?. In (Zanette
et al., 2020b), they directly enforcing this constraint, which is not practical under large state space as we may need to iterate
over all state-action pairs to check this constraint.

Here we take a new approach: we first enforce a bound on ‖Vt‖∞ by direct truncation. However, the upper bound truncation
on Vt may break the analysis. To resolve this, we start a new epoch whenever Vt is overestimated by a large amount. By the
objective of the optimization problem, Vt(st) will not be overestimated in the new epoch. Hence, the upper bound truncation
will not be triggered. Moreover, the overestimate of Vt cancels out the switching cost in this case as in previous discussion.

The disadvantage of the overestimation condition is that we may update policy at every time step in the worst case. If we
remove this condition, ‖Vt‖∞ = Õ(

√
dB?) by the norm constraint on wt, which brings back an extra

√
d factor. However,

we only recompute policy for O(K + d lnT ) times in this case.

C.5. Extra Lemmas for Section 4

Lemma 21. With probability at least 1− δ,
∑T
t=1 V(Pt, Vl) = Õ

(
dB2

? +B2
?L
′ +B?CT +B?

∑T
t=1

∣∣φ>t νt∣∣).

Proof. Note that when Vl(st) = 0, Vl(st)− PtVl ≤ 0. Otherwise, Ql(st, a) > 0 for any a and Vl(st) ≤ Ql(st, at). Thus,
Vl(st)

2 − (PtVl)
2 = (Vl(st) + PtVl)(Vl(st)− PtVl) ≤ (Vl(st) + PtVl) |Ql(st, at)− PtVl|. Then with probability at least

1− δ,

T∑
t=1

V(Pt, Vl) =

T∑
t=1

(
PtV

2
l − V 2

l (s′t)
)

+

T∑
t=1

(
V 2
l (s′t)− V 2

l (st)
)

+

T∑
t=1

(
V 2
l (st)− (PtVl)

2
)

(i)
= Õ


√√√√ T∑

t=1

V(Pt, V 2
l ) + dB2

? +B2
?L
′ +

T∑
t=1

(Vl(st) + PtVl)
∣∣ct + φ>t (wl − w̃l)

∣∣
(ii)
= Õ

B?
√√√√ T∑

t=1

V(Pt, Vl) + dB2
? +B2

?L
′ +B?CT +B?

T∑
t=1

∣∣φ>t νt∣∣
 ,

where in (i) we apply Lemma 38, Vl(st)2−(PtVl)
2 ≤ (Vl(st)+PtVl) |Ql(st, at)− PtVl|, Ql(st, at) = φ>t wl, ct+PtVl =

φ>t w̃l, and we bound the term
∑T
t=1 V

2
l (s′t)− V 2

l (st) =
∑L
l=1 V

2
l (s′tl+1

)− V 2
l (stl+1) as follows: we consider four cases

based on how epoch l ends:

1. s′tl+1
= g, then V 2

l (s′tl+1
)− V 2

l (stl+1) ≤ 0.

2. Vl(s′tl+1
) = 2Bl; this happens L′ times and the sum of these terms is of order Õ(B2

?L
′).

3. Triggered by Eq. (4). By Lemma 27, this happens at most Õ(d) times and the sum of these terms is of order Õ(dB2
?).

4. l = L is the last epoch. This happens only once and the term is bounded by O(B2
?).
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In (ii), we apply Lemma 34, wl ∈ Ωl, definition of νt, and ‖Vl‖∞ = O(B?) by Lemma 4. Solving a quadratic inequality

w.r.t
√∑T

t=1 V(Pt, Vl), we have:

T∑
t=1

V(Pt, Vl) = Õ

(
dB2

? +B2
?L
′ +B?CT +B?

T∑
t=1

∣∣φ>t νt∣∣
)
.

This completes the proof.

Lemma 22. With probability at least 1− 4δ,
∑T
t=1

∣∣φ>t νt∣∣ ≤ Õ (d3.5
√
B?CT + d3.5

√
B?εT + d5B2

?

)
+ 65d2.5εT .

Proof. Define ut = argmaxt≤t′≤T |φ>t νt′ |, Vj,t = 2jI +
∑
i∈T ∩[t−1]:|φ>i νui |≤2j φiφ

>
i , and jt such that

∣∣φ>t νut∣∣ ∈
(2jt−1, 2jt ]. Also define T = {t ∈ [T ] : ∃j ∈ Jt, |φ>t νut | ∈ (2j−1, 2j ]}. Note that when t /∈ T , |φ>t νt| ≤ ε. Then, for any
t ∈ T :∣∣φ>t νut∣∣ ≤ ‖φt‖W−1

jt,ut
(νut )

‖νut‖Wjt,ut (νut )

(i)
≤ 2
√

2d ‖φt‖W−1
jt,ut

(νut )
‖νut‖Wjt,lut

(νut )
+ Õ

(√
2jt
(
d3B?ε

ut

))
+
√

2jt+5d2.5ε

(ii)
≤ 2
√

2d ‖φt‖V −1
jt,t

√√√√√2jt

√ ∑
i≤tlut

V(Pi, Vlut )ιlut +
√
dB?ιlut + dB2

?

+ Õ

(√
2jt
(
d3B?ε

ut

))
+
√

2jt+5d2.5ε,

= Õ

(
d ‖φt‖V −1

jt,t

√
2jt
(√

d4B3
? + dB?CT + dB?εT +

√
dB?ιT + dB2

?

)
+

√
2jt
(
d3B?ε

ut

))
+
√

2jt+5d2.5ε

(Lemma 23)

where in (i) we define ν̄ut ∈ Gε/ut(6
√
dBlut ) such that ‖νut − ν̄ut‖∞ ≤

ε
ut

and apply

‖νut‖
2
Wjt,ut (νut )

= Φjtut(νut) = 2jt ‖νut‖
2
2 +

∑
i<ut

fjt(φ
>
i νut)

≤ 2jt ‖ν̄ut‖
2
2 +

∑
i<ut

fjt(φ
>
i ν̄ut) + 2jt

(
‖νut‖

2
2 − ‖ν̄ut‖

2
2

)
+ 2jt+1

∑
i<ut

∣∣φ>i (νut − ν̄ut)
∣∣ (fjt is (2 · 2jt)-Lipschitz)

≤ 8d2

2jt ‖ν̄ut‖
2
2 +

∑
i≤tlut

fjt(φ
>
i ν̄ut)

+
12 · 2jtdBlut ε

ut
+ 2jt+1

√
dε (νut , ν̄ut ∈ B(6

√
dBlut ))

≤ 8d2

2jt ‖νut‖
2
2 +

∑
i≤tlut

fjt(φ
>
i νut)

+ Õ
(

2jt
(
d3B?ε

ut

))
+ 2jt+5d2.5ε, (νut , ν̄ut ∈ B(6

√
dBlut ))

and in (ii) we apply Lemma 24 and:

Wjt,ut(νut) <Wjt,t(νut) = 2jtI +
∑
i<t

min{1, 2jt/|φ>i νut |}φ>i φ>i
(i)
< 2jtI +

∑
i∈T ∩[t−1]:|φ>i νui |≤2jt

φiφ
>
i = Vjt,t.

Here, (i) is by
∣∣φ>i νut∣∣ ≤ ∣∣φ>i νui∣∣ by the definition of ut. Reorganizing terms by

∣∣φ>t νut∣∣ ∈ (2jt−1, 2jt ], we have for
t ∈ T :

∣∣φ>t νt∣∣ ≤ ∣∣φ>t νut∣∣ = Õ
(
d2 ‖φt‖2V −1

jt,t

(√
dB?CT + dB?εT + d2B2

?

)
+
d3B?ε

ut

)
+ 64d2.5ε.
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Finally, note that:

∑
t∈T

∣∣φ>t νt∣∣ = Õ

(∑
t∈T

d2 ‖φt‖2V −1
jt,t

(√
dB?CT + dB?εT + d2B2

?

)
+

T∑
t=1

d3B?ε

t

)
+ 64d2.5εT

= Õ

(
√
dB?

∑
t∈T

I
{
‖φt‖2V −1

jt,t
≥ 1
}

+ d2
∑
t∈T

min
{

1, ‖φt‖2V −1
jt,t

}(√
dB?CT + dB?εT + d2B2

?

)
+ d3B?ε

)
+ 64d2.5εT.

The first term is bounded by

√
dB?

∑
t∈T

I
{
‖φt‖2V −1

jt,t
≥ 1
}
≤
√
dB?

∑
t∈T

min
{

1, ‖φt‖2V −1
jt,t

}
=
√
dB?

∑
j∈J

∑
t∈T

I{jt = j}min
{

1, ‖φt‖2V −1
j,t

}
= Õ

(
d1.5B?

)
, (Lemma 29)

For the second term:

d2
∑
t∈T

min
{

1, ‖φt‖2V −1
jt,t

}(√
dB?CT + dB?εT + d2B2

?

)

= Õ

d2
∑
j∈J

∑
t∈T

I{jt = j}min
{

1, ‖φt‖2V −1
j,t

}(√
dB?CT + dB?εT + d2B2

?

)
(i)
= Õ

∑
j∈J

d3
(√

dB?CT + dB?εT + d2B2
?

) = Õ
(
d3
(√

dB?CT + dB?εT + d2B2
?

))
.

where in (i) we apply Lemma 29. Putting everything together, we get:

T∑
t=1

∣∣φ>t νt∣∣ ≤∑
t∈T

∣∣φ>t νt∣∣+ εT ≤ Õ
(
d3.5

√
B?CT + d3.5

√
B?εT + d5B2

?

)
+ 65d2.5εT.

This completes the proof.

Lemma 23. With probability at least 1− 3δ,
∑
i≤tl V(Pi, Vl) = Õ

(
d3B3

? +B?Ctl +B?εtl
)
.

Proof. Note that when Vl(si) = 0, Vl(si) − PiVl ≤ 0. Otherwise, Ql(si, a) > 0 for any a and Vl(si) ≤ Ql(si, ai).
Therefore, V 2

l (si)−(PiVl)
2 = (Vl(si)+PiVl)(Vl(si)−PiVl) ≤ (Vl(si)+PiVl) |Ql(si, ai)− PiVl|. Then with probability

at least 1− δ,∑
i≤tl

V(Pi, Vl) =
∑
i≤tl

Pi(Vl)
2 − (PiVl)

2

=
∑
i≤tl

(
Pi(Vl)

2 − V 2
l (s′i)

)
+
∑
i≤tl

(
V 2
l (s′i)− V 2

l (si)
)

+
∑
i≤tl

(
V 2
l (si)− (PiVl)

2
)

(i)
= Õ

√d∑
i≤tl

V(Pi, V 2
l ) + dB2

? +B2
? +

∑
i≤tl

(Vl(si) + PiVl)
∣∣ci + φ>i (wl − w̃l)

∣∣
(ii)
= Õ

√dB?√∑
i≤tl

V(Pi, Vl) + dB2
? +B?Ctl +B?

∑
i≤tl

∣∣φ>i (wl − w̃l)
∣∣ .

In (i) we apply Lemma 25,
∑
i≤tl(V

2
l (s′i) − V 2

l (si)) ≤
∑
i≤tl(V

2
l (si+1) − V 2

l (si)) = Õ(B2
?), V 2

l (si) − (PiVl)
2 ≤

(Vl(si) + PiVl) |Ql(si, ai)− PiVl|, Ql(si, ai) = φ>i wl, and ci + PiVl = φ>i w̃l. In (ii) we apply Lemma 34. For t ≤ tl,
define ν′t = argmaxν=w̃l−w,w∈Ωl

∣∣φ>t ν∣∣. Then by wl ∈ Ωl and the definition of ν′t, we have
∣∣φ>t (wl − w̃l)

∣∣ ≤ ∣∣φ>t ν′t∣∣.
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Now it suffices to bound
∑
t≤tl

∣∣φ>t ν′t∣∣. Define T = {t ≤ tl : ∃j ∈ Jt,
∣∣φ>t ν′t∣∣ ∈ (2j−1, 2j ]} and for t ∈ T , define jt ∈ Jt

such that
∣∣φ>t ν′t∣∣ ∈ (2jt−1, 2jt ]. Note that when t /∈ T , |φ>t ν′t| ≤ ε. Also define Vj,t = 2jI +

∑
i∈T ∩[t−1]:|φ>i ν′i|≤2j φiφ

>
i .

Then, for any t ∈ T , with probability at least 1− 2δ:

∣∣φ>t ν′t∣∣ ≤ ‖φt‖W−1
jt,l

(ν′t)
‖ν′t‖Wjt,l(ν

′
t)
≤ ‖φt‖V −1

jt,l

√√√√√2jt

√∑
i≤tl

V(Pi, Vl)ιl +
√
dB?ιl + dB2

?

,
where in the last inequality we apply Lemma 24 and:

Wjt,l(ν
′
t) = 2jtI +

∑
i≤tl

min{1, 2jt/|φ>i ν′t|}φiφ>i
(i)
< 2jtI +

∑
i∈T :|φ>i ν′i|≤2jt

φiφ
>
i = Vjt,l.

Here, (i) is by
∣∣φ>i ν′t∣∣ ≤ ∣∣φ>i ν′i∣∣ by the definition of ν′t. Reorganizing terms by

∣∣φ>t ν′t∣∣ ∈ (2jt−1, 2jt ], we have:

∑
t∈T

∣∣φ>t ν′t∣∣ = Õ

∑
t∈T
‖φt‖2V −1

jt,l

√∑
i≤tl

V(Pi, Vl)ιl +
√
dB?ιl + dB2

?


= Õ

∑
j∈J

∑
t∈T

I{jt = j} ‖φt‖2V −1
j,l

√∑
i≤tl

V(Pi, Vl)ιl +
√
dB?ιl + dB2

?


(i)
= Õ

∑
j∈J

d

√∑
i≤tl

V(Pi, Vl)ιl +
√
dB?ιl + dB2

?

 = Õ

d
√∑

i≤tl

V(Pi, Vl)ιl +
√
dB?ιl + dB2

?

 ,

where in (i) we apply

∑
t∈T

I{jt = j} ‖φt‖2V −1
j,l

= tr

(
V −1
j,l

∑
t∈T

I{jt = j}φtφ>t

)
≤ tr

(
V −1
j,l Vj,l

)
= d.

Putting everything together and by
∑
t≤tl

∣∣φ>t ν′t∣∣ ≤∑t∈T
∣∣φ>t ν′t∣∣+ εtl, we have:

∑
i≤tl

V(Pi, Vl) = Õ

√dB?√∑
i≤tl

V(Pi, Vl) + dB2
? +B?Ctl +B?

d2.5B2
? + d1.5

√∑
i≤tl

V(Pi, Vl) + εtl


= Õ

d1.5B?

√∑
i≤tl

V(Pi, Vl) + d2.5B3
? +B?Ctl +B?εtl

 .

Solving a quadratic inequality w.r.t
√∑

i≤tl V(Pi, Vl), we have
∑
i≤tl V(Pi, Vl) = Õ

(
d3B3

? +B?Ctl +B?εtl
)
.

Lemma 24. With probability at least 1− 2δ, for any epoch l, j ∈ Jl, and ν = w̃l − ẘ with ẘ ∈ Ωl,

‖ν‖2Wj,l(ν) = O

2j

√∑
i≤tl

V(Pi, Vl)ιl +
√
dB?ιl + dB2

?

 .
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Proof. Define εil(w) = εiVl(w) = φ>i w − ci − Vl(s′i) and ηil(w) = ηiVl(w). Note that with probability at least 1− 2δ:

‖ν‖2Wj,l(ν)−2jI =
∑
i≤tl

clipj(φ
>
i ν)φ>i ν =

∑
i≤tl

clipj(φ
>
i ν)(εil(w̃l)− εil(ẘ))

≤
√∑
i≤tl

clip2
j (φ
>
i ν)ηil(w̃l)ιl +

√∑
i≤tl

clip2
j (φ
>
i ν)ηil(ẘ)ιl + 2Bl2

jιl (Lemma 3 and ẘ ∈ Ωl)

≤ 3

√∑
i≤tl

clip2
j (φ
>
i ν)ηil(w̃l)ιl +

√
2
∑
i≤tl

clip2
j (φ
>
i ν)(φ>i ν)2ιl + 2Bl2

jιl

(φ>i ν = εil(w̃l)− εil(ẘ) and (a+ b)2 ≤ 2a2 + 2b2)

= Õ

2j
√∑
i≤tl

V(Pi, Vl)ιl +

√
2j
√
dB?

∑
i≤tl

clipj(φ>i ν)(φ>i ν)ιl +B?2
jιl


(Lemma 25, clipj(·) ≤ 2j , Bl ≤ 2B?, and

∣∣φ>i ν∣∣ ≤ 12
√
dB?)

= Õ

2j
√∑
i≤tl

V(Pi, Vl)ιl +
√

2j
√
dB? ‖ν‖2Wj,l(ν)−2jI ιl +B?2

jιl

 .

Solving a quadratic inequality, we get ‖ν‖2Wj,l(ν) = O
(

2j
√∑

i≤tl V(Pi, Vl)ιl +
√
dB?2

jιl + 2jdB2
?

)
.

Lemma 25. With probability at least 1 − δ, for any epoch l,
∑tl
i=1(PiVl − Vl(s′i))2 = Õ(

∑tl
i=1 V(Pi, Vl) + dB2

?) and∑tl
i=1 PiV

2
l − V 2

l (s′i) = Õ
(√

d
∑tl
i=1 V(Pi, V 2

l ) + dB2
?

)
.

Proof. For any t ∈ N+, B ∈ {2i}dlog2 B?e
i=1 , and w ∈ Gε/t(3

√
dB), define Xi = (φ>i UBw − ci − Vw,B(s′i))

2 =
(PiVw,B −Vw,B(s′i))

2 and Ei as the conditional expectation conditioned on the interaction history (s1, a1, . . . , si, ai). Note
that Ei[Xi] = V(Pi, Vw,B) and |Xi| ≤ 4B2. Then by Lemma 37 with λ = 1

4B2 , with probability at least 1 − δ′ with
δ′ = δ/(8(t log2(2B))2(6

√
dBt/ε)d), we have:

t∑
i=1

(Xi − V(Pi, Vw,B)) ≤ λ
t∑
i=1

Ei[X2
i ] +

ln(1/δ′)

λ
≤

t∑
i=1

V(Pi, Vw,B) + Õ
(
dB2

?

)
.

Reorganizing terms and by a union bound, we have with probability at least 1− δ/2, for any t ∈ N+, B ∈ {2i}dlog2 B?e
i=1 ,

and w ∈ Gε/t(3
√
dB):

t∑
i=1

(PiVw,B − Vw,B(s′i))
2

=

t∑
i=1

Xi ≤ 2

t∑
i=1

V(Pi, Vw,B) + Õ
(
dB2

?

)
. (16)

Moreover, for any t ∈ N+, B ∈ {2i}dlog2 B?e
i=1 , and w ∈ Gε/t(3

√
dB), by Lemma 38, with probability at least 1− δ′:

t∑
i=1

PiV
2
w,B − V 2

w,B(s′i) = Õ


√√√√ t∑

i=1

V(Pi, V 2
w,B) ln

1

δ′
+B2

? ln
1

δ′

 = Õ


√√√√d

t∑
i=1

V(Pi, V 2
w,B) + dB2

?

 . (17)

Then again by a union bound, the equation above holds with probability at least 1− δ/2 for any t ∈ N+, B ∈ {2i}dlog2 B?e
i=1 ,

and w ∈ Gε/t(3
√
dB).

Now for any epoch l, pick w′l ∈ Gε/tl(3
√
dBl) such that ‖w′l − wl‖∞ ≤ ε/tl. Also define V ′l = Vw′l,Bl and w̃′l = UBlw

′
l.

Then similar to Eq. (14) and Eq. (15), we have

‖Vl − V ′l ‖∞ ≤
√
dε/tl, ‖w̃l − w̃′l‖2 ≤ dε/tl. (18)
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For the first statement:
tl∑
i=1

(PiVl − Vl(s′i))2 =

tl∑
i=1

(
φ>i w̃l − ci − Vl(s′i)

)2
≤ 3

tl∑
i=1

(
(φ>i w̃

′
l − ci − V ′l (s′i))

2 + (Vl(s
′
i)− V ′l (s′i))

2 + (φ>i (w̃l − w̃′l))2
)

≤ Õ

(
tl∑
i=1

V(Pi, V
′
l ) + dB2

?

)
+

6d2ε2

tl
(Eq. (16) and Eq. (18))

= Õ

(
tl∑
i=1

V(Pi, Vl) +

tl∑
i=1

V(Pi, V
′
l − Vl) + dB2

?

)
= Õ

(
tl∑
i=1

V(Pi, Vl) + dB2
?

)
.

(VAR[X + Y ] ≤ 2VAR[X] + 2VAR[Y ], V(Pi, V
′
l − Vl) ≤ ‖V ′l − Vl‖

2
∞, Eq. (18), and dε ≤ 1)

For the second statement,
tl∑
i=1

Pi(Vl)
2 − V 2

l (s′i) =

tl∑
i=1

(Pi(V
′
l )2 − V ′l (s′i)

2) +

tl∑
i=1

(Pi(Vl)
2 − Pi(V ′l )2) +

tl∑
i=1

(V ′l
2
(s′i)− V 2

l (s′i))

≤ Õ


√√√√d

tl∑
i=1

V(Pi, V ′l
2) + dB2

?

+ 4B?

tl∑
i=1

‖Vl − V ′l ‖∞

(Eq. (17) and max{‖Vl‖∞ , ‖V ′l ‖∞} ≤ 4B?)

≤ Õ


√√√√d

tl∑
i=1

V(Pi, V 2
l ) + dB2

? +

√√√√d

tl∑
i=1

V(Pi, V 2
l − V ′l

2) +
√
dB?ε


(VAR[X + Y ] ≤ 2VAR[X] + 2VAR[Y ],

√
x+ y ≤

√
x+
√
y, and Eq. (18))

= Õ


√√√√d

tl∑
i=1

V(Pi, V 2
l ) + dB2

?

 . (Eq. (18) and ε ≤ 1)

Thus, the second statement is proved.

For the next lemma, we define the following auxiliary function:

gj(x) =


x2, |x| ≤ 2j ,

2j+1x− 4j , x > 2j

−2j+1x− 4j , x < −2j

Note that gj(x) is convex and fj(x) ≤ gj(x) ≤ 2fj(x).
Lemma 26. For λ ∈ (0, 1], gj(λx) ≥ λ2gj(x).

Proof. Let ` = 2j . When |λx| ≤ `, we have: gj(λx) = λ2x2 ≥ λ2gj(x). When λx > ` (arguments are similar for
λx < −`), we have x > `, and

gj(λx)− λ2gj(x) = 2`λx− `2 − λ2(2`x− `2) = 2`λx(1− λ)− `2(1− λ2)

= (1− λ)`(2λx− (1 + λ)`) ≥ 0.

Lemma 27. Fix 2j ≥ ε > 0. Let x1, . . . , xt ∈ B(1). If there exists 0 = τ0 < τ1 < · · · < τz = t such that for each
1 ≤ ζ ≤ z, there exists νζ ∈ B(B) \ B(ε) for some B > ε such that

τζ∑
i=1

fj(x
>
i νζ) + 2j ‖νζ‖22 > 8d2

(τζ−1∑
i=1

fj(x
>
i νζ) + 2j ‖νζ‖22

)
(19)
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Then, z = Õ(d).

Proof. Note that when Eq. (19) holds:
τζ∑
i=1

gj(x
>
i νζ) + 2j ‖νζ‖22 ≥

τζ∑
i=1

fj(x
>
i νζ) + 2j ‖νζ‖22 > 8d2

(τζ−1∑
i=1

fj(x
>
i νζ) + 2j ‖νζ‖22

)

≥ 4d2

(τζ−1∑
i=1

gj(x
>
i νζ) + 2j ‖νζ‖22

)
. (20)

Thus, it suffices to bound the number times Eq. (20) holds. Define Et(ν) =
∑t
i=1 gj(x

>
i ν) + 2j ‖ν‖22. Clearly Et is convex

since gj is convex, and Et(ν) ∈ [2jε2, 2jB2 + 2t2jB] for ν ∈ B(B) \ B(ε). Define:

Λ = {i ∈ Z : dlog2(2jε2)e ≤ i ≤ dlog2(2jB2 + 2t2jB)e}.

For each ζ, there exists iζ ∈ Λ such that Eτζ−1
(νζ) ∈ (2iζ−1, 2iζ ]. Define Dt′,i = {ν ∈ B(B) : Et′(ν) ≤ 2i}. Note that

νζ ∈ Dτζ−1,iζ , and Dt′,i is a symmetric convex set since Et is a convex function and Et(ν) = Et(−ν). By Lemma 26, we
have Eτζ (νζ/d) ≥ 1

d2Eτζ (νζ) > 4Eτζ−1
(νζ) > 2iζ . Therefore, νζ/d /∈ Dτζ ,iζ , which means that in the direction of νζ ,

the intercept of Dτζ ,iζ is at most 1/d times of that of Dτζ−1,iζ . By Lemma 35, we have: Vol(Dτζ ,iζ ) ≤ 6
7 Vol(Dτζ−1,iζ ).

Note that when ‖ν‖2 ≤ 2j , we have Et(ν) ≤ (t + 2j) ‖ν‖22. Therefore, when ‖ν‖2 ≤ ε′ =
√

2j/(t+ 2j)ε, we have
Et(ν) ≤ 2jε2. Therefore, Vol(Dt,i) ≥ Vol(B(ε′)) for i ∈ Λ. Due to the fact that Dt,i is decreasing in t, we have

z = O(|Λ| log7/6(Vol(B(B))/Vol(B(ε′)))) = Õ(d).

This completes the proof.

D. Auxiliary Lemmas
Lemma 28. If x ≤ (a

√
x+ b) lnp(cx) for some a, b, c > 0 and absolute constant p ≥ 1, then x = Õ(a2 + b).

Proof. First note that x ≤ 2b lnp(cx) implies x ≤ 2b(2p)p
√
cx by lnx ≤ x for x > 0, which gives x ≤ 4(2p)2pb2c.

Plugging this back, we get x ≤ 2b lnp(4(2p)2pb2c2). Therefore, x > 2b lnp(4(2p)2pb2c2) implies x > 2b lnp(cx). Next,
note that x ≤ 2a

√
x lnp(cx) implies x ≤ 2ac1/4(4p)px3/4 by lnx ≤ x for x > 0, which gives x ≤ 16(4p)4pa4c.

Plugging this back, we get x ≤ 2a
√
x lnp(16(4p)4pa4c2), which gives x ≤ 4a2 ln2p(16(4p)4pa4c2). Therefore, x >

2a
√
x lnp(16(4p)4pa4c2) implies x > 2a

√
x lnp(cx). Thus, x > 4a2 ln2p(16(4p)4pa4c2) + 2b lnp(4(2p)2pb2c2) implies

x
2 > a

√
x lnp(cx) and x

2 > b lnp(cx), which implies x > (a
√
x+ b) lnp(cx). Taking the contrapositive, the statement is

proved.

Lemma 29. (Abbasi-Yadkori et al., 2011, Lemma 11) Let {Xi}∞i=1 be a sequence in Rd, V a d× d positive definite matrix,
and define Vn = V +

∑n
i=1XiX

>
i . Then,

∑n
i=1 min{1, ‖Xi‖2V −1

i−1
} ≤ 2 ln det(Vn)

det(V ) for any n ≥ 1.

Lemma 30. (Abbasi-Yadkori et al., 2011, Lemma 12) Let A, B be positive semi-definite matrices such that A < B. Then,
we have supx6=0

x>Ax
x>Bx

≤ det(A)
det(B) .

Lemma 31. (Wei et al., 2021b, Lemma 11) Let {xt}∞t=1 be a martingale sequence on state space X w.r.t a filtration {Ft}∞t=0,
{φt}∞t=1 be a sequence of random vectors in Rd so that φt ∈ Ft−1 and ‖φt‖ ≤ 1, Λt = λI +

∑t−1
s=1 φsφ

>
s , and V ⊆ RX

be a set of functions defined on X with Nε as its ε-covering number w.r.t the distance dist(v, v′) = supx |v(x)− v′(x)| for
some ε > 0. Then for any δ > 0, we have with probability at least 1− δ, for all t > 0 and v ∈ V so that supx |v(x)| ≤ B:∥∥∥∥∥

t−1∑
s=1

φs (v(xs)− E[v(xs)|Fs−1])

∥∥∥∥∥
2

Λ−1
t

≤ 4B2

[
d

2
ln

(
t+ λ

λ

)
+ ln

Nε
δ

]
+

8t2ε2

λ
.

Lemma 32. (Wei et al., 2021b, Lemma 12) Let V be a class of mappings from X to R parameterized by α ∈ [−D,D]n.
Suppose that for any v ∈ V (parameterized by α) and v′ ∈ V ′ (parameterized by α′), the following holds:

sup
x∈X
|v(x)− v(x′)| ≤ L ‖α− α′‖1 .
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Then, lnNε ≤ n ln
(

2DLn
ε

)
, where Nε is the ε-covering number of V with respect to the distance dist(v, v′) =

supx∈X |v(x)− v′(x)|.
Lemma 33. (Zhou et al., 2021a, Theorem 4.1) Let {Ft}∞t=1 be a filtration, {xt, ηt}t≥1 a stochastic process so that
xt, ηt ∈ Rd and xt ∈ Ft, ηt ∈ Ft+1. Moreover, define yt = 〈µ?, xt〉+ ηt and we have:

|ηt| ≤ R, E[ηt|Ft] = 0, E[η2
t |Ft] ≤ σ2, ‖xt‖2 ≤ L.

Then with probability at least 1− δ, we have for any t ≥ 1:∥∥∥∥∥
t∑
i=1

xiηi

∥∥∥∥∥
Z−1
t

≤ βt, ‖µt − µ?‖Zt ≤ βt +
√
λ ‖µ?‖2 ,

where µt = Z−1
t bt, Zt = λI +

∑t
i=1 xix

>
i , bt =

∑t
i=1 yixi, and

βt = 8σ
√
d ln(1 + tL2/(dλ)) ln(4t2/δ) + 4R ln(4t2/δ).

Lemma 34. (Chen et al., 2021a, Lemma 30) For any two random variables X,Y , we have:

VAR[XY ] ≤ 2VAR[X] ‖Y ‖2∞ + 2(E[X])2VAR[Y ].

Consequently, ‖X‖∞ ≤ C =⇒ VAR[X2] ≤ 4C2VAR[X].

Lemma 35. (Zhang et al., 2021, Lemma 16) Let D be a bounded symmetric convex subset of Rd with d ≥ 2. Suppose
u ∈ ∂D, that is, u is on the boundary of D, and D′ is another bounded symmetric convex set such that D ⊆ D′ and
d · u ∈ ∂D′. Then Vol(D′) ≥ 7

6 Vol(D), where Vol(S) is the volume of the set S.

Lemma 36. (Zhang et al., 2021, Theorem 4) Let {Xi}ni=1 be a martingale difference sequence and |Xi| ≤ b almost surely.
Then for δ < e−1, we have with probability at least 1− 6δ log2 n,∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≤ 8

√√√√ n∑
i=1

X2
i ln

1

δ
+ 16b ln

1

δ
.

Lemma 37. (Jin et al., 2020a, Lemma 9) Let {Xi}ni=1 be a martingale difference sequence adapted to the filtration {Fi}ni=0,
and Xi ≤ B almost surely for some B > 0. Then, for any λ ∈ [0, 1/B], with probability at least 1− δ:

n∑
i=1

Xi ≤ λ
n∑
i=1

E[X2
i |Fi−1] +

ln(1/δ)

λ
.

Lemma 38. Let {Xi}∞i=1 be a martingale difference sequence adapted to the filtration {Fi}∞i=0 and |Xi| ≤ B for some
B > 0. Then with probability at least 1− δ, for all n ≥ 1 simultaneously,∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≤ 3

√√√√ n∑
i=1

E[X2
i |Fi−1] ln

4B2n3

δ
+ 2B ln

4B2n3

δ
.

Proof. For each n ≥ 1, applying Lemma 37 to {Xi}ni=1 and {−Xi}ni=1 with each λ ∈ Λ = { 1
B2i }

dlog2 ne
i=0 , we have with

probability at least 1− δ
2n2 , for any λ ∈ Λ,∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≤ λ
n∑
i=1

E[X2
i |Fi−1] +

ln 4Bn3

δ

λ
, (21)

Note that there exists λ? ∈ Λ such that λ?/min
{

1/B,
√

ln(4Bn3/δ)∑n
i=1 E[X2

i |Fi−1]

}
∈ ( 1

2 , 1]. Plugging λ? into Eq. (21), we get

|
∑n
i=1Xi| ≤ 3

√∑n
i=1 E[X2

i |Fi−1] ln 4Bn3

δ + 2B ln 4Bn3

δ . By a union bound over n, the statement is proved.
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Lemma 39. (Cohen et al., 2020, Lemma D.4) and (Cohen et al., 2021, Lemma E.2) Let {Xi}∞i=1 be a sequence of random
variables w.r.t to the filtration {Fi}∞i=0 and Xi ∈ [0, B] almost surely. Then with probability at least 1− δ, for all n ≥ 1
simultaneously:

n∑
i=1

E[Xi|Fi−1] ≤ 2

n∑
i=1

Xi + 4B ln
4n

δ
,

n∑
i=1

Xi ≤ 2

n∑
i=1

E[Xi|Fi−1] + 8B ln
4n

δ
.


