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Abstract
We study the problem of learning a mixture of
multiple linear dynamical systems (LDSs) from
unlabeled short sample trajectories, each gener-
ated by one of the LDS models. Despite the
wide applicability of mixture models for time-
series data, learning algorithms that come with
end-to-end performance guarantees are largely
absent from existing literature. There are multi-
ple sources of technical challenges, including but
not limited to (1) the presence of latent variables
(i.e. the unknown labels of trajectories); (2) the
possibility that the sample trajectories might have
lengths much smaller than the dimension d of
the LDS models; and (3) the complicated tempo-
ral dependence inherent to time-series data. To
tackle these challenges, we develop a two-stage
meta-algorithm, which is guaranteed to efficiently
recover each ground-truth LDS model up to er-
ror Õ(

√
d/T ), where T is the total sample size.

We validate our theoretical studies with numer-
ical experiments, confirming the efficacy of the
proposed algorithm.

1. Introduction
Imagine that we are asked to learn multiple linear dynami-
cal systems (LDSs) from a mixture of unlabeled sample
trajectories — namely, each sample trajectory is gener-
ated by one of the LDSs of interest, but we have no idea
which system it is. To set the stage and facilitate discus-
sion, recall that in a classical LDS, one might observe a
sample trajectory {xt}0≤t≤T generated by an LDS obey-
ing xt+1 = Axt +wt, where A ∈ Rd×d determines the
system dynamics in the noiseless case, and {wt}t≥0 de-
note independent zero-mean noise vectors with covariance
cov(wt) = W � 0. The mixed LDSs setting consid-
ered herein extends classical LDSs by allowing for mixed
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measurements as described below; see Figure 1 for a visual-
ization of the scenario.

• Multiple linear systems. Suppose that there are K dif-
ferent LDSs as represented by {(A(k),W (k))}1≤k≤K ,
where A(k) ∈ Rd×d and W (k) ∈ Rd×d represent the
state transition matrix and noise covariance matrix of
the k-th LDS, respectively. Here and throughout, we
shall refer to (A(k),W (k)) as the system matrix for
the k-th LDS. We only assume that (A(k),W (k)) 6=
(A(`),W (`)) for any k 6= `, whereas A(k) = A(`) or
W (k) = W (`) is allowed.

• Mixed sample trajectories. We collect a total number
of M unlabeled trajectories from these LDSs. More
specifically, the m-th sample trajectory is drawn from
one of the LDSs in the following manner: set (A,W )
to be (A(k),W (k)) for some 1 ≤ k ≤ K, and generate
a trajectory of length Tm obeying

xt+1 = Axt +wt, where the wt’s are i.i.d.,
E[wt] = 0, cov(wt) = W � 0.

Note, however, that the label k associated with each
sample trajectory is a latent variable not revealed to us,
resulting in a mixture of unlabeled trajectories. The
current paper focuses on the case where the length of
each trajectory is somewhat short, making it infeasible
to estimate the system matrix from a single trajectory.

• Goal. The aim is to jointly learn the system matrices
{(A(k),W (k))}1≤k≤K from the mixture of sample
trajectories. In particular, we seek to accomplish this
task in a sample-efficient manner, where the total sam-
ple size is defined to be the aggregate trajectory length∑M
m=1 Tm.

Motivations. The mixed LDSs setting described above
is motivated by many real-world scenarios where a single
time-series model is insufficient to capture the complex and
heterogeneous patterns in temporal data. For instance, in
psychology (Bulteel et al., 2016), researchers collect mul-
tiple time-series trajectories (e.g. depression-related symp-
toms over a period of time) from different patients. Fitting
this data with multi-modal LDSs (instead of a single model)
not only achieves better fitting performance, but also helps
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Figure 1. A high-level visualization of the mixed LDSs formula-
tion, and the algorithmic idea of combining clustering, classifica-
tion, and model estimation. Here, we consider the special case
where the multiple short trajectories come from the segments of a
single continuous trajectory. The black dots within the continuous
trajectory represent the time steps when the latent variable (i.e. the
unknown label) changes.

identify subgroups of the persons, which further inspires
interpretations of the results and tailored treatments for pa-
tients from different subgroups. Another example concerns
an automobile sensor dataset, which consists of a single
continuous (but possibly time-varying) trajectory of mea-
surements from the sensors (Hallac et al., 2017). Through
segmentation of the trajectory, clustering of the short pieces,
and learning within each cluster, one can discover, and ob-
tain meaningful interpretations for, a small number of key
driving modes (such as “driving straight”, “slowing down”,
“turning”). See Section 4 for a longer list of applications.

Challenges. While there is no shortage of potential ap-
plications, a mixture of LDSs is far more challenging to
learn compared to the classical setting with a single LDS.
In particular, the presence of the latent variables, i.e. the un-
known labels of the sample trajectories, significantly compli-
cates matters. One straightforward idea is to learn a coarse
model for each trajectory, followed by proper clustering of
these coarse models (to be utilized for refined model esti-
mation); however, this idea becomes infeasible in the high-
dimensional setting unless all trajectories are sufficiently
long. Another popular approach is to alternate between
model estimation and clustering of trajectories, based on,
say, the expectation-maximization (EM) algorithm; unfor-
tunately, there is no theoretical support for such EM-type
algorithms, and we cannot preclude the possibilities that the
algorithms get stuck at undesired local optima. The lack
of theoretical guarantees in prior literature motivates us to
come up with algorithms that enjoy provable performance
guarantees. Finally, the present paper is also inspired by the
recent progress in meta-learning for mixed linear regression
(Kong et al., 2020b;a), where the goal is to learn multiple
linear models from a mixture of independent samples; note,
however, that the temporal dependence underlying time-

series data in our case poses substantial challenges and calls
for the development of new algorithmic ideas.

Main contributions. In this work, we take an important
step towards guaranteed learning of mixed LDSs, focusing
on algorithm design that comes with end-to-end theoretical
guarantees. In particular, we propose a two-stage meta-
algorithm to tackle the challenge of mixed LDSs:

1. Coarse estimation: perform a coarse-level clustering
of the unlabeled sample trajectories (assisted by dimen-
sion reduction), and compute initial model estimation
for each cluster;

2. Refinement: classify additional trajectories (and add
each of them to the corresponding cluster) based on
the above coarse model estimates, followed by refined
model estimation with the updated clusters.

This two-stage meta approach, as well as the specific meth-
ods for individual steps, will be elucidated in Section 2.

Encouragingly, assuming that the noise vectors {wm,t} are
independent Gaussian random vectors, the proposed two-
stage algorithm is not only computationally efficient, but
also guaranteed to succeed in the presence of a polyno-
mial sample size. Informally, our algorithm achieves exact
clustering/classification of the sample trajectories as well
as faithful model estimation, under the following condi-
tions (with a focus on the dependency on the dimension d):
(1) each short trajectory length Tm is allowed to be much
smaller than d; (2) the total trajectory length of each stage
is linear in d (up to logarithmic factors); (3) to achieve a
final model estimation error ε → 0 (in the spectral norm),
it suffices to have a total trajectory length of order d/ε2 for
each LDS model. See Section 3 (in particular, Corollary 3.7)
for the precise statements of our main results, which will
also be validated numerically.

It is worth noting that, although we focus on mixed LDSs for
concreteness, we will make clear that the proposed modular
algorithm is fairly flexible and can be adapted to learning
mixtures of other time-series models, as long as certain
technical conditions are satisfied; see Remark 2.3 at the end
of Section 2 for a detailed discussion.

Notation. Throughout this paper, vectors and matrices are
represented by boldface letters. For a vector x ∈ Rd, we de-
fine (x)i ∈ R as the i-th entry of x, and ‖x‖2 as its `2 norm;
for a matrixX ∈ Rm×n, we define (X)i ∈ Rn as the trans-
pose of the i-th row of X , and ‖X‖ (resp. ‖X‖F) as its
spectral (resp. Frobenius) norm. For a symmetric matrix
X ∈ Rd×d, we denote its maximal (resp. minimal) eigen-
value as λmax(X) (resp. λmin(X)); if in additionX is pos-
itive definite, we denote its condition number as κ(X) :=
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Algorithm 1 A two-stage algorithm for mixed LDSs
1: Input: M short trajectories {Xm}1≤m≤M (whereXm = {xm,t}0≤t≤Tm ); parameters τ,G.
2: // Stage 1: coarse estimation.
3: Run Algorithm 2 with {Xm}m∈Msubspace

to obtain subspaces {Vi,Ui}1≤i≤d .
4: Run Algorithm 3 with {Xm}m∈Mclustering

, {Vi,Ui}1≤i≤d, τ , G, to obtain clusters {Ck}1≤k≤K .
5: Run Algorithm 4 with {Ck}1≤k≤K to obtain coarse models {Â(k), Ŵ (k)}1≤k≤K .
6: // Stage 2: refinement.
7: Run Algorithm 5 with {Xm}m∈Mclassification

, {Â(k), Ŵ (k)}1≤k≤K , {Ck}1≤k≤K , to update clusters {Ck}.
8: Run Algorithm 4 with {Ck}1≤k≤K to obtain refined models {Â(k), Ŵ (k)}1≤k≤K .
9: Output: final model estimation {Â(k), Ŵ (k)}1≤k≤K and clusters {Ck}1≤k≤K .

λmax(X)/λmin(X) ≥ 1. If A = [Aij ]1≤i≤m,1≤j≤n and
B = [Bij ]1≤i≤m,1≤j≤n are matrices of the same dimen-
sion, we denote by 〈A,B〉 :=

∑m
i=1

∑n
j=1AijBij their in-

ner product. Given vectors x1, . . . ,xn ∈ Rd where n < d,
let span{xi, 1 ≤ i ≤ N} ∈ Rd×n represent the subspace
spanned by these vectors. Let Id be the d×d identity matrix.

We always use the superscript “(k)” to indicate “the k-th
model”, as in A(k) and W (k); this is to be distinguished
from the superscript “k” without the parentheses, which
simply means the power of k. For a discrete set Ω, we
denote by |Ω| its cardinality. Define 1(E) to be the indicator
function, which takes value 1 if the event E happens, and
0 otherwise. Let an . bn indicate that an ≤ C0bn for all
n = 1, 2, . . . , where C0 > 0 is some universal constant;
moreover, an & bn is equivalent to bn . an, and an � bn
indicates that an . bn and an & bn hold simultaneously.

2. Algorithms
We propose a two-stage paradigm for solving the mixed
LDSs problem, as summarized in Algorithm 1. It consists
of several subroutines as described in Algorithms 2–5; due
to space limitation, in this section we will only illustrate
the key ideas behind these subroutines, with full details
deferred to Appendix A. Note that Algorithm 1 is stated in a
modular manner, and one might replace certain subroutines
by alternative schemes in order to handle different settings
and model assumptions.

Let us first introduce some additional notation and assump-
tions that will be useful for our presentation, without much
loss of generality. To begin with, we augment the notation
for each sample trajectory with its trajectory index; that
is, for each 1 ≤ m ≤ M , the m-th trajectory — denoted
byXm := {xm,t}0≤t≤Tm — starts with some initial state
xm,0 ∈ Rd, and evolves according to the km-th LDS for
some unknown label 1 ≤ km ≤ K such that

xm,t+1 = A(km)xm,t +wm,t, where the wm,t’s are i.i.d.,

E[wm,t] = 0, cov(wm,t) = W (km) � 0 (1)

for all 0 ≤ t ≤ Tm − 1. Next, we divide the M sample tra-

jectories {Xm}1≤m≤M in hand into three disjoint subsets
Msubspace,Mclustering,Mclassification satisfying

Msubspace ∪Mclustering ∪Mclassification = {1, 2, . . . ,M},

where each subset of samples will be employed to perform
one subroutine. We assume that all trajectories within each
subset have the same length, namely,

Tm =


Tsubspace if m ∈Msubspace,

Tclustering if m ∈Mclustering,

Tclassification if m ∈Mclassification.

(2)

Finally, we assume thatK ≤ d, so that performing subspace
estimation in Algorithm 1 will be helpful (otherwise one
might simply eliminate this step). The interested readers are
referred to Appendix E for discussions of some potential
extensions of our algorithms (e.g. adapting to the case where
the trajectories within a subset have different lengths, or the
case where certain parameters are a priori unknown).

2.1. Preliminary facts

We first introduce some preliminary background on the
autocovariance structures and mixing property of linear dy-
namical systems, which form the basis of our algorithms for
subspace estimation and clustering of trajectories.

Stationary covariance matrices. Consider first a sin-
gle LDS model (A,W ), with xt+1 = Axt + wt. If
E[xt] = 0, cov(xt) = Γ and E[wt] = 0, cov(wt) = W ,
then it follows that E[xt+1] = 0, and cov(xt+1) =
A ·cov(xt) ·A>+cov(wt) = AΓA>+W . Under certain
assumption on stability, this leads to the order-0 stationary
autocovariance matrix defined as (Kailath et al., 2000)

Γ(A,W ) := E
[
xtxt

>|A,W
]

= A · Γ(A,W ) ·A> +W =

∞∑
t=0

AtW (At)>, (3)

and the order-1 stationary autocovariance matrix

Y (A,W ) := E
[
xt+1xt

>|A,W
]

= A · Γ(A,W ). (4)
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For the mixed LDSs case (1) with K models, we abbreviate

Γ(k) := Γ(A(k),W (k)), Y (k) := Y (A(k),W (k)). (5)

Mixing. Expanding the LDS recursion xt+1 = Axt+wt
with cov(wt) = W , we have

xt+s = Asxt +

s∑
i=1

Ai−1wt+s−i, s = 1, 2, . . . (6)

IfA satisfies certain assumptions regarding stability and if
s is larger than certain mixing time of the LDS, then the first
term on the right-hand side of (6) approaches zero, while
the second term is independent of the history up to time
t, with covariance close to the stationary autocovariance
Γ(A,W ). This suggests that, for two samples within the
same trajectory that are sufficiently far apart, we can treat
them as being (almost) independent of each other; this sim-
ple fact shall inspire our algorithmic design and streamline
statistical analysis later on. It is noteworthy that the pro-
posed algorithms do not require prior knowledge about the
mixing times of the LDS models.

2.2. Subspace estimation

Recall that the notation (Γ(k))i ∈ Rd (resp. (Y (k))i) rep-
resents the transpose of the i-th row of Γ(k) (resp. Y (k))
defined in (5). Consider the following subspaces:

V ?
i := span

{
(Γ(k))i, 1 ≤ k ≤ K

}
,

U?
i := span

{
(Y (k))i, 1 ≤ k ≤ K

}
, 1 ≤ i ≤ d,

each of which has rank at most K. We develop a spectral
method to estimate these subspaces, which will in turn allow
for proper dimension reduction in subsequent steps. Here,
we only introduce the idea for estimating {U?

i }, since the
idea for {V ?

i } is very similar.

We first divide {0, 1, . . . , Tsubspace} into four segments of
the same size, and denote the 2nd (resp. 4th) segment as
Ω1 (resp. Ω2). According to the mixing property of LDS,
if Tsubspace is larger than some appropriately defined mix-
ing time, then (1) each sample trajectory inMsubspace will
mix sufficiently and nearly reach stationarity (when con-
strained to t ∈ Ω1 ∪ Ω2), (2) the samples in Ω1 are nearly
independent of those in Ω2. Therefore, defining

gm,i,j :=
1

|Ωj |
∑
t∈Ωj

(xm,t+1)i xm,t (7)

for 1 ≤ i ≤ d and j ∈ {1, 2}, it is easy to
check that E[gm,i,1g

>
m,i,2] ≈ E[gm,i,1]E[gm,i,2]> ≈

(Y (km))i(Y
(km))>i . Taking the average over m ∈

Msubspace, we have constructed a matrix Ĝi such that

E[Ĝi] ≈
∑K
k=1 p

(k)(Y (k))i(Y
(k))i

>

=: Gi, where p(k)

denotes the fraction of sample trajectories generated by the
k-th model. As a consequence, if Tsubspace and |Msubspace|
are sufficiently large, then one might expect Ĝi to be a good
approximation ofGi, the latter of which is symmetric, has
rank at most K, and has U?

i as its eigenspace. All this moti-
vates us to compute the rank-K eigenspace of Ĝi + Ĝ>i .

2.3. Clustering

In this step, we propose to construct a similarity matrix
S for the sample trajectories inMclustering, based on their
pairwise comparisons; then we can apply any mainstream
clustering algorithm (e.g. spectral clustering (Chen et al.,
2021b)) to S, dividingMclustering into K disjoint clusters
{Ck}1≤k≤K such that the trajectories in each cluster are
primarily generated by the same LDS model.

The remaining question is how to perform the pairwise
comparisons; we intend to achieve this by comparing the
autocovariance matrices associated with the sample trajecto-
ries. Note that, even though (A(k),W (k)) 6= (A(`),W (`))
for k 6= `, it is indeed possible that Γ(k) = Γ(`) or
Y (k) = Y (`). Fortunately, the following fact ensures the
separation of (Γ(k),Y (k)) versus (Γ(`),Y (`)).

Fact 2.1. If (A(k),W (k)) 6= (A(`),W (`)), then we have
either Γ(k) 6= Γ(`) or Y (k) 6= Y (`) (or both).

Now, let us compare the m-th and n-th trajectories for some
m,n ∈Mclustering. In order to determine whether they have
the same label (namely km = kn), we propose to estimate
the quantity ‖Γ(km)−Γ(kn)‖2F +‖Y (km)−Y (kn)‖2F using
the data samples {xm,t} and {xn,t}, which is expected to
be small (resp. large) if km = kn (resp. km 6= kn). To
do so, let us divide {0, 1, . . . , Tclustering} evenly into four
segments, and denote by Ω1 (resp. Ω2) the 2nd (resp. 4th)
segment. Recall our earlier definition of the g vectors in (7).
Assuming sufficient mixing and utilizing near independence
between samples from Ω1 and those from Ω2, we might
resort to the following statistic:

statY :=

d∑
i=1

〈
Ui
>(gm,i,1 − gn,i,1),Ui>(gm,i,2 − gn,i,2)〉,

whose expectation is given by

E[statY ] ≈
d∑
i=1

∥∥∥Ui>((Y (km))i − (Y (kn))i
)∥∥∥2

2

≈
d∑
i=1

∥∥(Y (km))i − (Y (kn))i
∥∥2

2
=
∥∥Y (km) − Y (kn)

∥∥2

F
;

here, the second approximation holds if each subspace Ui
is sufficiently close to U?

i = span{(Y (j))i, 1 ≤ j ≤ K}.
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The purpose of utilizing {Ui} is to reduce the variance of
statY . Similarly, we can compute another statistic statΓ

with E[statΓ] ≈ ‖Γ(km)−Γ(kn)‖2F. Consequently, we shall
declare km 6= kn if statΓ + statY exceeds some appropriate
threshold.

Remark 2.2. For subspace estimation and clustering, we
split each trajectory evenly into four parts, and only utilize
the 2nd and 4th. In theory, this only affects sample complex-
ities by a constant factor. The key benefit is that no prior
knowledge of the mixing time tmix is needed. In cases where
tmix is known/estimated, one might improve data efficiency
by letting the 1st and 3rd parts have only length tmix.

2.4. Model estimation

Suppose that we have obtained a good clustering accuracy
in the previous step. Then, for each k, we use the samples
{{xm,t}0≤t≤Tm}m∈Ck to obtain an estimate Â(k) of the
state transition matrix by solving a least-squares problem
(Simchowitz et al., 2018; Sarkar & Rakhlin, 2019). Fi-
nally, we can estimate the noise vector ŵm,t := xm,t+1 −
Â(k)xm,t ≈ wm,t, and use the empirical covariance of
{ŵm,t} as our estimate of the noise covariance matrix.

2.5. Classification

In the previous steps, we have obtained initial
clusters {Ck}1≤k≤K and coarse model estimates
{Â(k), Ŵ (k)}1≤k≤K . With the assistance of addi-
tional sample trajectories in Mclassification, we can
augment the clusters in the following way: for
each new trajectory {xt}0≤t≤T , we infer its label as
k̂ = arg mink L(Â(k), Ŵ (k)), and then assign this trajec-
tory to the k̂-th cluster; here, the loss function L(A,W ) :=

T ·log det(W )+
∑T−1
t=0 (xt+1−Axt)>W−1(xt+1−Axt)

coincides with the negative log-likelihood under a Gaussian
assumption. Once this is done, we can run Algorithm 4
again with the updated clusters {Ck} to refine our model
estimates, which is exactly the last step of Algorithm 1.

Remark 2.3. While this work focuses on mixtures of LDSs,
we emphasize that the general principles of Algorithm 1
are applicable under much weaker assumptions. For Algo-
rithms 2 and 3 to work, we essentially only require that each
sample trajectory satisfies a certain mixing property, and
that the autocovariances of different models are sufficiently
separated (and hence distinguishable). As for Algorithms 4
and 5, we essentially require a well-specified parametric
form of the time-series models. This observation might
inspire future extensions (in theory or applications) of Algo-
rithm 1 to much broader settings.

3. Main results
3.1. Model assumptions

To streamline the theoretical analysis, we focus on the case
where the trajectories are driven by Gaussian noise; that is,
for each 1 ≤ m ≤ M, 0 ≤ t ≤ Tm, the noise vector wm,t
in (1) is independently generated from the Gaussian distribu-
tion N (0,W (km)). Next, we assume for simplicity that the
labels {km}1≤m≤M of the trajectories are pre-determined
and fixed, although one might equivalently regard {km} as
being random and independent of the noise vectors {wm,t}.
Moreover, while our algorithms and analysis are largely
insensitive to the initial states {xm,0}1≤m≤M , we focus
on two canonical cases for concreteness: (i) the trajectories
start at zero state, or (ii) they are segments of one continuous
long trajectory. This is formalized as follows:

Case 0: xm,0 = 0, 1 ≤ m ≤M ; (8a)
Case 1: x1,0 = 0, and

xm+1,0 = xm,Tm , 1 ≤ m ≤M − 1. (8b)

We further define the total trajectory length as Ttotal :=∑
1≤m≤M Tm =

∑
o Ttotal,o, where

Ttotal,o := To · |Mo|,
o ∈ {subspace, clustering, classification}.

Additionally, we assume that each model occupies a non-
degenerate fraction of the data; in other words, there exists
some 0 < pmin ≤ 1/K such that for all 1 ≤ k ≤ K and
o ∈ {subspace, clustering, classification},

pmin ≤ p(k)
o :=

1

|Mo|
∑

m∈Mo

1(km = k).

Finally, we make the following assumptions about the
ground-truth LDS models, where we recall that the autoco-
variance matrices {Γ(k),Y (k)} have been defined in (5).
Assumption 3.1. The LDS models {A(k),W (k)}1≤k≤K
satisfy the following conditions:

1. There exist κA ≥ 1 and 0 ≤ ρ < 1 such that for any
1 ≤ k ≤ K, ‖(A(k))t‖ ≤ κA · ρt, t = 1, 2, . . . ;

2. There exist Γmax ≥ Wmax ≥ Wmin > 0 and
κw,cross ≥ κw ≥ 1 such that for any 1 ≤ k ≤ K,
(i) λmax(Γ(k)) ≤ Γmax, (ii) Wmin ≤ λmin(W (k)) ≤
λmax(W (k)) ≤ Wmax, (iii) Wmax/Wmin =: κw,cross,
(iv) κ(W (k)) = λmax(W (k))/λmin(W (k)) ≤ κw;

3. There exist ∆Γ,Y ,∆A,W > 0 such that for any 1 ≤
k < ` ≤ K,

‖Γ(k) − Γ(`)‖2F + ‖Y (k) − Y (`)‖2F ≥ ∆2
Γ,Y ,

‖A(k) −A(`)‖2F +
‖W (k) −W (`)‖2F

W 2
max

≥ ∆2
A,W .
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The first assumption states that each state transition matrix
A(k) is exponentially stable, which is a quantified version of
stability and has appeared in various forms in the literature
of LDS (Kailath et al., 2000; Cohen et al., 2018); here,
κA can be regarded as a condition number, while ρ is a
contraction rate. The second assumption ensures that the
noise covariance matrices {W (k)} are well conditioned, and
the autocovariance matrices {Γ(k)} are bounded. The third
assumption quantifies the separation between different LDS
models. It is important that we consider the separation of
(Γ(k),Y (k)) versus (Γ(`),Y (`)) jointly, which guarantees
that ∆Γ,Y is always strictly positive (thanks to Fact 2.1),
despite the possibility of Γ(k) = Γ(`) or Y (k) = Y (`); the
reasoning for our definition of ∆A,W is similar.
Remark 3.2. Since the separation parameters ∆A,W ,∆Γ,Y

are defined with respect to the Frobenius norm, we may nat-
urally regard them as ∆A,W =

√
dδA,W ,∆Γ,Y =

√
dδΓ,Y ,

where δA,W , δΓ,Y are the canonical separation parameters
(in terms of the spectral norm). For example, in the simple
setting where K = 2, W (1) = W (2), A(1) = 0.5Id and
A(2) = (0.5 + δ)Id for some canonical separation parame-
ter δ, we have ∆A,W = ‖A(1)−A(2)‖F = ‖δId‖F =

√
dδ.

This observation will be crucial for obtaining the correct
dependence on the dimension d in our subsequent analysis.
Remark 3.3. Most of the parameters in Assumption 3.1
come directly from the ground-truth LDS models
{A(k),W (k)}, except Γmax and ∆Γ,Y . In fact, they can
be bounded by Γmax . Wmax and ∆Γ,Y & ∆A,W ; see
Fact D.4 for the formal statements. However, the pre-factors
in these bounds can be pessimistic in general cases, there-
fore we choose to preserve Γmax and ∆Γ,Y in our analysis.

3.2. Theoretical guarantees

We are now ready to present our end-to-end performance
guarantees for Algorithm 1. Our main results for Cases 0
and 1 (defined in (8)) are summarized in Theorems 3.4 and
3.5 below, with proofs deferred to Appendix B.

Theorem 3.4 (Case 0). There exist positive constants
{Ci}1≤i≤8 such that the following holds for any fixed
0 < δ < 1/2. Consider the model (1) under the assumptions
in Sections 2 and 3.1, with a focus on Case 0 (8a). Suppose
that we run Algorithm 1 with parameters τ,G that satisfy
1/8 < τ/∆2

Γ,Y < 3/8,G ≥ C1ι1, and data {Xm}1≤m≤M
(whereXm = {xm,t}0≤t≤Tm ) that satisfies

Tsubspace ≥ C2
ι1

1− ρ
,

Ttotal,subspace ≥ C3
d

1− ρ

((
Γmax

√
d

∆Γ,Y

)4
K2

pmin
2

+ 1

)
· ι41,

(9a)

Tclustering ≥ C4
G

1− ρ

(
Γ2

maxκ
2
A

√
dK

∆2
Γ,Y

+ 1

)
ι2,

Ttotal,clustering ≥ C5

dκ2
w,cross

pmin

(
d

∆2
A,W

Γmax

Wmin
+ 1

)
ι23,

(9b)

Tclassification ≥ C6

(
κ2
w +

κ6
w,cross

∆2
A,W

)
ι21, (9c)

where we define the logarithmic terms ι1 := log(dκATtotal

δ ),
ι2 := log

(
( Γmax

∆Γ,Y
+ 2)dκATtotal

δ

)
, ι3 := log( Γmax

Wmin

dκATtotal

δ ).
Then, with probability at least 1− δ, Algorithm 1 achieves
exact clustering in Line 4 and exact classification in
Line 7; moreover, there exists some permutation π :
{1, . . . ,K} → {1, . . . ,K} such that the final model es-
timation {Â(k), Ŵ (k)}1≤k≤K in Line 8 obeys

1 ≤ k ≤ K, ‖Â(k) −A(π(k))‖ ≤ C7

√
dκwι3
pminT

,

‖Ŵ (k) −W (π(k))‖
‖W (π(k))‖

≤ C8

√
dι3
pminT

, (10)

where T := Ttotal,clustering + Ttotal,classification.

Theorem 3.5 (Case 1). Consider the same setting of Theo-
rem 3.4, except that we focus on Case 1 (cf. (8b)) instead.
Then the same performance guarantees continue to hold, if
we replace the conditions on Ttotal,clustering and Tclassification

in (9) with

Ttotal,clustering ≥ C5

dκ2
w,cross

pmin

(
d

∆2
A,W

Γmax

Wmin
κ2
A + 1

)
ι23,

(11a)

Tclassification ≥ C6

(
κ2
w +

κ6
w,cross

∆2
A,W

)
ι21 +

1

1− ρ
log(2κA).

(11b)

Remark 3.6. It is worth noting that all the short trajectory
lengths {To} in the above theorems have sublinear depen-
dence on the dimension d. In particular, the

√
dK depen-

dence in Tclustering (9) is due to variance reduction achieved
by subspace projection (see Section 2.3), without which this
dependence would have been linear in d.

While Theorems 3.4 and 3.5 guarantee that Algorithm 1 suc-
cessfully learns a mixture of LDS models with a polynomial
number of samples, these results involve many parameters
and may be somewhat difficult to interpret. In the following
corollary, we make some simplifications and focus on the
most important parameters.

Corollary 3.7. Consider the same setting of Theorems
3.4 and 3.5. For simplicity, suppose that the condition
numbers κA, κw, κw,cross � 1, and the fractions of data
generated by different LDS models are balanced, namely
pmin � 1/K. Moreover, define the canonical separation
parameters δA,W := ∆A,W /

√
d and δΓ,Y := ∆Γ,Y /

√
d,
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as suggested by Remark 3.2. Finally, define the mixing time
tmix := 1/(1−ρ). Then we can rewrite the sample complex-
ities in Theorems 3.4 and 3.5 as follows (where we hide the
logarithmic terms {ιi}1≤i≤3): if

Tsubspace & tmix,

Ttotal,subspace & tmixd

((
ΓmaxK

δΓ,Y

)4

+ 1

)
,

Tclustering & tmix

((Γmax

δΓ,Y

)2
√
K

d
+ 1

)
,

Ttotal,clustering & Kd

(
1

δ2
A,W

Γmax

Wmin
+ 1

)
,

Tclassification &


1

dδ2
A,W

+ 1 for Case 0,
1

dδ2
A,W

+ tmix for Case 1,

Ttotal,clustering + Ttotal,classification &
Kd

ε2
,

then with high probability, Algorithm 1 achieves exact clus-
tering in Line 4, exact classification in Line 7, and final
model estimation errors

‖Â(k) −A(π(k))‖ ≤ ε, ‖Ŵ (k) −W (π(k))‖
‖W (π(k))‖

≤ ε.

Below are some key implications of Corollary 3.7.

• Dimension d and targeted error ε: (1) Our algorithms
allow the To’s to be much smaller than (and even de-
crease with) d. (2) Each Ttotal,o shall grow linearly
with d, and it takes an order of Kd/ε2 samples in total
to learnK models in up to ε→ 0 errors (in the spectral
norm), which is just K times the usual parametric rate
(d/ε2) of estimating a single model.

• Mixing time tmix: (1) Tsubspace and Tclustering are lin-
ear in tmix, which ensures sufficient mixing and thus
facilitates our algorithms for Stage 1. In contrast,
Tclassification depends on tmix only for Case 1, with the
sole and different purpose of ensuring that the states
{xm,t} are bounded throughout (see Example D.5 for
an explanation). (2) While Ttotal,subspace needs to grow
linearly with tmix, this is not required for Ttotal,clustering

and Ttotal,classification, because our methods for model
estimation (Algorithm 4) do not rely on mixing (Sim-
chowitz et al., 2018; Sarkar & Rakhlin, 2019).

• Canonical separation parameters δA,W , δΓ,Y :
(1) Tclustering & 1/δ2

Γ,Y guarantees exact clustering of
the trajectories, while Tclassification & 1/δ2

A,W guaran-
tees exact classification. (2) Ttotal,subspace & 1/δ4

Γ,Y

leads to sufficiently accurate subspaces, while

Figure 2. The model estimation errors of Algorithm 1 versus the
total sample size (excludingMsubspace). Each curve is an average
over 12 independent trials.

Ttotal,clustering & 1/δ2
A,W leads to accurate initial

model estimation.1

Remark 3.8. It is worth noting that Tclustering � Tclassification

in Corollary 3.7, i.e. clustering requires a larger trajectory
length than classification does. This justifies the benefit of
the proposed two-stage procedure, compared with simply
doing a large clustering of all trajectories and then one-shot
model estimation.

3.3. Numerical experiments

We now validate our theoretical findings with a series of
numerical experiments, confirming that Algorithm 1 suc-
cessfully solves the mixed LDSs problem. In these experi-
ments, we fix d = 80,K = 4; moreover, let Tsubspace = 20,
Tclustering = 20 and Tclassification = 5, all of which are much
smaller than d. We take |Msubspace| = 30 d, |Mclustering| =
10 d, and vary |Mclassification| between [0, 5000 d]. Our ex-
periments focus on Case 1 as defined in (8b), and we gener-
ate the labels of the sample trajectories uniformly at random.
The ground-truth LDS models are generated in the following
manner: A(k) = ρR(k), where ρ = 0.5 and R(k) ∈ Rd×d
is a random orthogonal matrix;W (k) has eigendecomposi-
tionU (k)Λ(k)(U (k))>, whereU (k) is a random orthogonal
matrix, and the diagonal entries of Λ(k) are independently
drawn from the uniform distribution on [1, 2].

Our experimental results are illustrated in Figure 2. Here,
the horizontal axis represents the sample size T =
Ttotal,clustering + Ttotal,classification for model estimation, and
the vertical axis represents the estimation errors, mea-
sured by maxk ‖Â(k) − A(π(k))‖ (plotted in blue) and
maxk ‖Ŵ (k) −W (π(k))‖/‖W (π(k))‖ (plotted in orange).
The results confirm our main theoretical prediction: Algo-
rithm 1 recovers the LDS models based on a mixture of
short trajectories with length To � d, and achieves an error
rate of 1/

√
T . In addition, we observe in our experiments

1It is possible to improve the 1/δ4
Γ,Y factor in Ttotal,subspace to

1/δ2
Γ,Y , if one is willing to pay for some extra factors of eigen-

gaps; see Appendix B for a detailed discussion.
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that the final outputs of Algorithm 1 are robust to a small
number of mis-clustered or mis-classified trajectories during
the intermediate steps; this is clearly an appealing property
to have, especially when the To’s and |Mo|’s in reality are
slightly smaller than what our theory requires. Additional
experimental results can be found in Appendix F.

4. Related works
Meta-learning for mixed linear regression. Our work is
closely related to the recent papers (Kong et al., 2020b;a)
that bridge mixed linear regression (Quandt & Ramsey,
1978; Yi et al., 2014; Chen et al., 2017; Li & Liang, 2018;
Chen et al., 2020; Kwon et al., 2021b; Diakonikolas & Kane,
2020; Yin et al., 2018; Pal & Mazumdar, 2020; Chen et al.,
2021c; Diamandis et al., 2021) and meta-learning (Finn
et al., 2017; Harrison et al., 2020; Snell et al., 2017; Du
et al., 2021; Pan & Yang, 2009; Tripuraneni et al., 2020;
Baxter, 2000; Maurer et al., 2016). In this setting of meta-
learning for mixed linear regression (Kong et al., 2020b;a),
one has access to multiple tasks, each containing a few inde-
pendent and identically distributed samples generated by an
unknown model; the inductive bias (i.e. the common struc-
ture underlying these tasks) for meta-learning is that there
is only a small discrete set of ground-truth linear regression
models, akin to the case of mixed linear regression. While
the high-level idea of our Algorithm 1 is largely inspired by
the work of (Kong et al., 2020b;a), our detailed implemen-
tations are substantially different, due to the lack of ideal
i.i.d. assumption (among others) in our case of time-series
data; in addition, we improve upon some of the analyses in
(Kong et al., 2020b;a).2

Mixtures of time-series models and trajectories. Mix-
ture models for time series have achieved empirical success
in the study of psychology (Bulteel et al., 2016; Takano
et al., 2020), neuroscience (Albert, 1991; Mezer et al.,
2009), biology (Wong & Li, 2000), air pollution (D’Urso
et al., 2015), economics (McCulloch & Tsay, 1994; Maharaj,
2000; Kalliovirta et al., 2016), automobile sensors (Hallac
et al., 2017), and many other domains. Some specific as-
pects of mixture models include hypothesis testing for a pair
of trajectories (Maharaj, 2000), or clustering of multiple
trajectories (Liao, 2005; Aghabozorgi et al., 2015; Pathak

2There is a concurrent preprint (Modi et al., 2021) that extends
multi-task learning (Du et al., 2021; Tripuraneni et al., 2020) to
time-series data, and the setting therein includes mixed LDSs as a
special case. However, the authors of (Modi et al., 2021) assume
oracle access to the global optimum of a non-convex optimization
problem, without providing a practical algorithm that can prov-
ably find it; moreover, with the short trajectory length fixed, the
estimation error bounds in that work will remain bounded away
from zero, even if the number of trajectories grows to infinity. In
comparison, we consider a simpler problem setting, and propose
computationally efficient algorithms with better error bounds.

et al., 2021; Huang et al., 2021). In addition to mixture mod-
els, other related yet different models include time-varying
systems (Qu et al., 2021; Minasyan et al., 2021), systems
with random parameters (Du et al., 2020), switching sys-
tems (Sun, 2006; Sarkar et al., 2019; Ansari et al., 2021),
switching state-space models (Ghahramani & Hinton, 2000;
Linderman et al., 2017), Markovian jump systems (Shi &
Li, 2015; Zhao et al., 2019), and event-triggered systems
(Sedghi et al., 2020; Schluter et al., 2020), to name just a few.
There are even more related models in reinforcement learn-
ing (RL), such as latent bandit (Maillard & Mannor, 2014;
Hong et al., 2020), multi-task learning (Wilson et al., 2007;
Brunskill & Li, 2013; Liu et al., 2016; Sodhani et al., 2021)
/ meta-learning (Finn et al., 2017) / transfer-learning (Taylor
& Stone, 2009; Tirinzoni et al., 2020) for RL, latent Markov
decision processes (Kwon et al., 2021a; Brunskill et al.,
2009; Steimle et al., 2021), and so on. What distinguishes
our work from this extensive literature is that, we design
algorithms and prove non-asymptotic sample complexities
for model estimation, in the specific setting of mixture mod-
els that features (1) a finite set of underlying time-series
models, and (2) unknown labels of the trajectories, with no
probabilistic assumptions imposed on these latent variables.

Linear dynamical systems. LDS (also called vector au-
toregressive models) is one of the most fundamental models
in system identification and optimal control (Ljung, 1998;
Khalil et al., 1996). Recently, there has been a surge of
studies about non-asymptotic theoretical analyses of various
learning procedures for the basic LDS model (Faradonbeh
et al., 2018; Simchowitz et al., 2018; Sarkar & Rakhlin,
2019), linear-quadratic regulators (Dean et al., 2020; Cohen
et al., 2018; Jedra & Proutiere, 2019; Faradonbeh et al.,
2020; Mania et al., 2019; Simchowitz & Foster, 2020; Fazel
et al., 2018; Malik et al., 2019), and LDSs with partial ob-
servations (Oymak & Ozay, 2019; Simchowitz et al., 2019;
Sarkar et al., 2021; Sun et al., 2020; Tsiamis et al., 2020;
Lale et al., 2020; Zheng et al., 2021). In particular, it was
only until recently that the authors of (Simchowitz et al.,
2018; Sarkar & Rakhlin, 2019) proved sharp error bounds
of least squares for estimating the state transition matrix
of a LDS model, using a single trajectory; our analysis of
Algorithm 4 is largely inspired by their techniques.

5. Discussion
This paper has developed a theoretical and algorithmic
framework for learning multiple LDS models from a mixture
of short, unlabeled sample trajectories. Our key contribu-
tions include a modular two-stage meta-algorithm, as well as
theoretical analysis demonstrating its computational and sta-
tistical efficiency. We would like to invite the readers to con-
tribute to this important topic by, say, further strengthening
the theoretical analysis and algorithmic design. For exam-
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ple, in certain cases Tclustering can be a bottleneck compared
with Tsubspace and Tclassification, and thus one might hope to
achieve a better dependence on Ttotal,clustering (e.g. allowing
Ttotal,clustering � d), by replacing Line 5 in Algorithm 1
with a different method (e.g. adapting Algorithm 3 of (Kong
et al., 2020b) to our setting). As another example, in some
practical scenarios, the data is a single continuous trajectory,
and the time steps when the underlying model changes are
unknown (Hallac et al., 2017; Harrison et al., 2020); in order
to accommodate such a case, one might need to incorporate
change-point detection into the learning process.

Moving beyond the current setting of mixed LDSs, we re-
mark that there are plenty of opportunities for future studies.
For instance, while our methods in Stage 1 rely on the
mixing property of the LDS models, it is worth exploring
whether it is feasible to handle the non-mixing case (Sim-
chowitz et al., 2018; Sarkar & Rakhlin, 2019). Another po-
tential direction is to consider the robustness against outliers
and adversarial noise (Chen et al., 2021a; Kong et al., 2020a).
One might even go further and extend the ideas to learning
mixtures of other time-series models (see Remark 2.3), such
as LDS with partial or nonlinear observations (Mhammedi
et al., 2020), or nonlinear dynamical systems (Mania et al.,
2020; Kakade et al., 2020; Foster et al., 2020). Ultimately, it
would be of great importance to consider the case with con-
trolled inputs, such as learning mixtures of linear-quadratic
regulators, or latent Markov decision processes (Kwon et al.,
2021a) that arises in reinforcement learning.
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Table 1. A list of notation and parameters. In the subscripts of Mo, To, Ttotal,o, the symbol o takes value in
{subspace, clustering, classification}.

Notation Explanation

d State dimension

K Number of LDS models

km The unknown label (latent variable) of the m-th trajectory

Mo Subsets of M trajectories, {1, . . . ,M} =Msubspace ∪Mclustering ∪Mclassification

pmin A lower bound for the fraction of trajectories generated by each model

To Short trajectory length forMo

Ttotal,o Total trajectory length, Ttotal,o = To · |Mo|

A(k),W (k) State transition matrix and noise covariance matrix of the k-th LDS model

Γ(k),Y (k) Order-0 and order-1 stationary autocovariance matrices of the k-th LDS model

κA, ρ ‖(A(k))t‖ ≤ κA · ρt, t = 1, 2, . . .

∆Γ,Y ,∆A,W Model separation parameters (see Assumption 3.1)

Wmin,Wmax Wmin ≤ λmin(W (k)) ≤ λmax(W
(k)) ≤Wmax, 1 ≤ k ≤ K

κw,cross, κw κw,cross = Wmax/Wmin; κ(W (k)) ≤ κw, 1 ≤ k ≤ K

Γmax ‖Γ(k)‖ ≤ Γmax, 1 ≤ k ≤ K

This appendix is organized as follows. Appendix A complements Section 2, providing full details of the proposed
Algorithms 2 – 5. Appendix B includes detailed theoretical results for the algorithms, with proofs postponed to Appendix C;
it also provides a proof for our main results in Section 3. Appendix D collects some miscellaneous results. In Appendix E
we discuss on some potential extensions of our methods. Finally, Appendix F includes additional experimental results. For
the readers’ convenience, we include Table 1 for a quick reference to the key notation and parameters used in our analysis.

Additional notation. Let vec(·) denote the vectorization of a matrix. For two matrices A,B, let A ⊗B denote their
Kronecker product. Given a sequence of real numbers {xi}1≤i≤N , we denote its median as median{xi, 1 ≤ i ≤ N}.
We shall also let poly(n) denote some polynomial in n of a constant degree. For a positive integer n, we denote [n] :=
{1, 2, . . . , n}.

A. Detailed Algorithms
A.1. Subspace estimation

Procedure. Recall that the notation (Γ(k))i ∈ Rd (resp. (Y (k))i) represents the transpose of the i-th row of Γ(k) (resp.
Y (k)) defined in (5). With this set of notation in place, let us define the following subspaces:

V ?
i := span

{
(Γ(k))i, 1 ≤ k ≤ K

}
, U?

i := span
{

(Y (k))i, 1 ≤ k ≤ K
}
, 1 ≤ i ≤ d. (12)

It is easily seen from the construction that each of these subspaces has rank at most K.

As it turns out, the collection of 2d subspaces defined in (12) provides crucial low-dimensional information about the linear
dynamical systems of interest. This motivates us to develop a data-driven method to estimate these subspaces, which will in
turn allow for proper dimension reduction in subsequent steps. Towards this end, we propose to employ a spectral method
for subspace estimation using sample trajectories inMsubspace:

(i) divide {0, 1, . . . , Tsubspace} into four segments of the same size, and denote the 2nd (resp. 4th) segment as Ω1 (resp. Ω2);
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(ii) for each m ∈Msubspace, 1 ≤ i ≤ d, j ∈ {1, 2}, compute

hm,i,j :=
1

|Ωj |
∑
t∈Ωj

(xm,t)i xm,t, gm,i,j :=
1

|Ωj |
∑
t∈Ωj

(xm,t+1)i xm,t, ; (13)

(iii) for each 1 ≤ i ≤ d, compute the following matrices

Ĥi :=
1

|Msubspace|
∑

m∈Msubspace

hm,i,1h
>
m,i,2, Ĝi :=

1

|Msubspace|
∑

m∈Msubspace

gm,i,1g
>
m,i,2, (14)

and let Vi ∈ Rd×K (resp. Ui) be the top-K eigenspace of Ĥi + Ĥ>i (resp. Ĝi + Ĝ>i ).

The output {Vi,Ui}1≤i≤d will then serve as our estimate of {V ?
i ,U

?
i }1≤i≤d. This spectral approach is summarized in

Algorithm 2.

Rationale. According to the mixing property of LDS, if Tsubspace is larger than some appropriately defined mixing time,
then each sample trajectory inMsubspace will mix sufficiently and nearly reach stationarity (when constrained to t ∈ Ω1∪Ω2).
In this case, it is easy to check that

E
[
hm,i,j ] ≈ (Γ(km))i, E

[
gm,i,j ] ≈ (Y (km))i, 1 ≤ i ≤ d, j ∈ {1, 2}.

Moreover, the samples in Ω1 are nearly independent of those in Ω2 as long as the spacing between them exceeds the mixing
time, and therefore,

E
[
Ĥi

]
≈ 1

|Msubspace|
∑

m∈Msubspace

(Γ(km))i(Γ
(km))>i =

K∑
k=1

p
(k)
subspace(Γ

(k))i(Γ
(k))i

>
=: Hi, (15a)

E
[
Ĝi

]
≈ 1

|Msubspace|
∑

m∈Msubspace

(Y (km))i(Y
(km))>i =

K∑
k=1

p
(k)
subspace(Y

(k))i(Y
(k))i

>

=: Gi, (15b)

where p(k)
subspace denotes the fraction of sample trajectories generated by the k-th model, namely,

p
(k)
subspace :=

1

|Msubspace|
∑

m∈Msubspace

1(km = k), 1 ≤ k ≤ K. (16)

As a consequence, if Tsubspace and |Msubspace| are both sufficiently large, then one might expect Ĥi (resp. Ĝi) to be a
reasonably good approximation of Hi (resp. Gi), the latter of which has rank at most K and has V ?

i (resp. U?
i ) as its

eigenspace. All this motivates us to compute the rank-K eigenspaces of Ĥi + Ĥ>i and Ĝi + Ĝ>i in Algorithm 2.

A.2. Clustering

This step seeks to divide the sample trajectories inMclustering intoK clusters (albeit not perfectly), such that the trajectories in
each cluster are primarily generated by the same LDS model. We intend to achieve this by performing pairwise comparisons
of the autocovariance matrices associated with the sample trajectories.

Key observation. Even though (A(k),W (k)) 6= (A(`),W (`)) for k 6= `, it is indeed possible that Γ(k) = Γ(`) or
Y (k) = Y (`). Therefore, in order to differentiate sample trajectories generated by different systems based on Γ(A,W ) and
Y (A,W ), it is important to ensure separation of (Γ(k),Y (k)) and (Γ(`),Y (`)) when k 6= l, which can be guaranteed by
the following fact.

Fact A.1. If (A(k),W (k)) 6= (A(`),W (`)), then we have either Γ(k) 6= Γ(`) or Y (k) 6= Y (`) (or both).

Proof. First, observe that the definitions of {Γ(k),Y (k)} in (5) suggest that we can recoverA(k),W (k) from Γ(k),Y (k) as
follows:

A(k) = Y (k)Γ(k)−1
, W (k) = Γ(k) −A(k)Γ(k)A(k)>. (17)
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Algorithm 2 Subspace estimation
1: Input: short trajectories {Xm}m∈Msubspace

, whereXm = {xm,t}0≤t≤Tsubspace
.

2: Let N ← bTsubspace/4c, and Ω1 ← {N + j, 1 ≤ j ≤ N},Ω2 ← {3N + j, 1 ≤ j ≤ N}.
3: for (m, i, j) ∈Msubspace × [d]× [2] do
4: Compute

hm,i,j ←
1

|Ωj |
∑
t∈Ωj

(xm,t)i xm,t, gm,i,j ←
1

|Ωj |
∑
t∈Ωj

(xm,t+1)i xm,t.

5: end for
6: for i = 1, . . . , d do
7: Compute

Ĥi ←
1

|Msubspace|
∑

m∈Msubspace

hm,i,1h
>
m,i,2, Ĝi ←

1

|Msubspace|
∑

m∈Msubspace

gm,i,1g
>
m,i,2,

8: Let Vi ∈ Rd×K (resp. Ui) be the top-K eigenspace of Ĥi + Ĥ>i (resp. Ĝi + Ĝ>i ).
9: end for

10: Output: subspaces {Vi,Ui}1≤i≤d.

With this, we can prove the fact by contradiction. Suppose instead that Γ(k) = Γ(`) and Y (k) = Y (`), then (17) yields

A(k) = Y (k)Γ(k)−1
= Y (`)Γ(`)−1

= A(`), and

W (k) = Γ(k) −A(k)Γ(k)A(k)> = Γ(`) −A(`)Γ(`)A(`)> = W (`),

which is contradictory to the assumption that (A(k),W (k)) 6= (A(`),W (`)).

Idea. Let us compare a pair of sample trajectories {xt}0≤t≤Tclustering
and {zt}0≤t≤Tclustering

, where {xt} is generated by the
system (A(k),W (k)) and {zt} by the system (A(`),W (`)). In order to determine whether k = `, we propose to estimate
the quantity ‖Γ(k) − Γ(`)‖2F + ‖Y (k) − Y (`)‖2F using the data samples {xt} and {zt}, which is expected to be small
(resp. large) if k = ` (resp. k 6= `). To do so, let us divide {0, 1, . . . , Tclustering} evenly into four segments, and denote by Ω1

(resp. Ω2) the 2nd (resp. 4th) segment, akin to what we have done in the previous step. Observe that

Ui
>E
[(

(xt+1)ixt − (zt+1)izt
)]
≈ Ui>

(
(Y (k))i − (Y (`))i

)
for all 1 ≤ i ≤ d and t ∈ Ω1 ∪ Ω2. Assuming sufficient mixing and utilizing (near) statistical independence due to sample
splitting, we might resort to the following statistic

statY :=

d∑
i=1

〈
Ui
> 1

|Ω1|
∑
t∈Ω1

(
(xt+1)ixt − (zt+1)izt

)
,Ui
> 1

|Ω2|
∑
t∈Ω2

(
(xt+1)ixt − (zt+1)izt

)〉
, (19)

whose expectation is given by

E[statY ] ≈
d∑
i=1

〈
Ui
>((Y (k))i − (Y (`))i

)
,Ui
>((Y (k))i − (Y (`))i

)〉
=

d∑
i=1

∥∥∥Ui>((Y (k))i − (Y (`))i
)∥∥∥2

2
≈

d∑
i=1

∥∥(Y (k))i − (Y (`))i
∥∥2

2
=
∥∥Y (k) − Y (`)

∥∥2

F
;

here, the first approximation is due to the near independence between samples from Ω1 and those from Ω2, whereas the
second approximation holds if each subspace Ui is sufficiently close to U?

i = span{(Y (j))i, 1 ≤ j ≤ K}. The purpose of
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Algorithm 3 Clustering
1: Input: short trajectories {Xm}m∈Mclustering

, where Xm = {xm,t}0≤t≤Tclustering
; subspaces {Vi,Ui}1≤i≤d; testing

threshold τ ; number of copies G.
2: Let N ← bTclustering/4Gc, and

Ωg,1 ←
{

(4g − 3)N + j, 1 ≤ j ≤ N
}
, Ωg,2 ←

{
(4g − 1)N + j, 1 ≤ j ≤ N

}
, 1 ≤ g ≤ G.

3: for (m, i, g, j) ∈Mclustering × [d]× [G]× [2] do
4: Compute

hm,i,g,j ←
1

|Ωg,j |
∑
t∈Ωg,j

(xm,t)i xm,t, gm,i,g,j ←
1

|Ωg,j |
∑
t∈Ωg,j

(xm,t+1)i xm,t.

5: end for
6: // Compute the similarity matrix S:
7: for (m,n) ∈Mclustering ×Mclustering do
8: for g = 1, . . . , G do
9: Compute

statΓ,g ←
d∑
i=1

〈
Vi
>(hm,i,g,1 − hn,i,g,1),Vi>(hm,i,g,2 − hn,i,g,2)〉, (18a)

statY,g ←
d∑
i=1

〈
Ui
>(gm,i,g,1 − gn,i,g,1),Ui>(gm,i,g,2 − gn,i,g,2)〉, (18b)

10: end for
11: Set Sm,n ← 1

(
median

{
statΓ,g, 1 ≤ g ≤ G

}
+ median

{
statY,g, 1 ≤ g ≤ G

}
≤ τ

)
.

12: end for
13: DivideMclustering into K clusters {Ck}1≤k≤K according to {Sm,n}m,n∈Mclustering

.
14: Output: clusters {Ck}1≤k≤K .

utilizing {Ui} is to reduce the variance of statY . Similarly, we can compute another statistic (by replacing {Ui} with {Vi}
and (xt+1)i, (zt+1)i with (xt)i, (zt)i) as follows:

statΓ :=

d∑
i=1

〈
Vi
> 1

|Ω1|
∑
t∈Ω1

(
(xt)ixt − (zt)izt

)
,Vi
> 1

|Ω2|
∑
t∈Ω2

(
(xt)ixt − (zt)izt

)〉
, (20)

which has expectation

E[statΓ] ≈
d∑
i=1

‖Vi>((Γ(k))i − (Γ(`))i)‖22 ≈ ‖Γ(k) − Γ(`)‖2F.

Consequently, we shall declare k 6= ` if statΓ + statY exceeds some appropriate threshold τ .

Procedure. We are now positioned to describe the proposed clustering procedure. We first compute the statistics statΓ

and statY for each pair of sample trajectories inMclustering by means of the method described above, and then construct a
similarity matrix S, in a way that Sm,n is set to 0 if statΓ + statY (computed for them-th and n-th trajectories) is larger than
a threshold τ , or set to 1 otherwise. In order to enhance the robustness of these statistics, we divide {0, 1, . . . , Tclustering}
into 4G (instead of 4) segments, compute G copies of statΓ and statY , and take the medians of these values. Next, we
apply a mainstream clustering algorithm (e.g. spectral clustering (Chen et al., 2021b)) to the similarity matrix S, and
divideMclustering into K disjoint clusters {Ck}1≤k≤K . The complete clustering procedure is provided in Algorithm 3. The
threshold τ shall be chosen to be on the order of min1≤k<`≤K{‖Γ(k) − Γ(`)‖2F + ‖Y (k) − Y (`)‖2F} (which is strictly
positive due to Fact 2.1), and it suffices to set the number of copies G to be on some logarithmic order. Our choice of these
parameters are specified in Theorem 3.4.
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Algorithm 4 Least squares and covariance estimation
1: Input: clusters {Ck}1≤k≤K .
2: for k = 1, . . . ,K do
3: Compute

Â(k) ←
( ∑
m∈Ck

∑
0≤t≤Tm−1

xm,t+1xm,t
>
)( ∑

m∈Ck

∑
0≤t≤Tm−1

xm,txm,t
>
)−1

, and (22a)

Ŵ (k) ← 1∑
m∈Ck Tm

∑
m∈Ck

∑
0≤t≤Tm−1

ŵm,tŵ
>
m,t, where ŵm,t = xm,t+1 − Â(k)xm,t. (22b)

4: end for
5: Output: estimated models {Â(k), Ŵ (k)}1≤k≤K .

A.3. Model estimation

Suppose that we have obtained reasonably good clustering accuracy in the previous step, namely for each 1 ≤ k ≤ K, the
cluster Ck output by Algorithm 3 contains mostly trajectories generated by the same model (A(π(k)),W (π(k))), with π
representing some permutation function of {1, . . . ,K}. We propose to obtain a coarse model estimation and covariance
estimation, as summarized in Algorithm 4. More specifically, for each k, we use the samples {{xm,t}0≤t≤Tm}m∈Ck to
obtain an estimate ofA(π(k)) by solving the following least-squares problem (Simchowitz et al., 2018; Sarkar & Rakhlin,
2019)

Â(k) := arg min
A

∑
m∈Ck

∑
0≤t≤Tm−1

‖xm,t+1 −Axm,t‖22, (21)

whose closed-form solution is given in (22a). Next, we can use Â(k) to estimate the noise vector

ŵm,t := xm,t+1 − Â(k)xm,t ≈ wm,t,

and finally estimate the noise covarianceW (π(k)) with the empirical covariance of {ŵm,t}, as shown in (22b).

A.4. Classification

Procedure. In the previous steps, we have obtained initial clusters {Ck}1≤k≤K and coarse model estimates
{Â(k), Ŵ (k)}1≤k≤K . With the assistance of additional sample trajectories {Xm}m∈Mclassification

, we can infer their la-
tent labels and assign them to the corresponding clusters; the procedure is stated in Algorithm 5 and will be explained shortly.
Once this is done, we can run Algorithm 4 again with the updated clusters {Ck} to refine our model estimates, which is
exactly the last step of Algorithm 1.

Rationale. The strategy of inferring labels in Algorithm 5 can be derived from the maximum likelihood estimator, under
the assumption that the noise vectors {wm,t} follow Gaussian distributions. Note, however, that even in the absence of
Gaussian assumptions, Algorithm 5 remains effective in principle. To see this, consider a short trajectory {xt}0≤t≤T
generated by model (A(k),W (k)), i.e. xt+1 = A(k)xt + wt where E[wt] = 0, cov(wt) = W (k). Let us define the
following loss function

L(A,W ) := T · log det(W ) +

T−1∑
t=0

(xt+1 −Axt)>W−1(xt+1 −Axt). (23)

With some elementary calculation, we can easily check that for any incorrect label ` 6= k, it holds that E[L(A(`),W (`))−
L(A(k),W (k))] > 0, with the proviso that (A(k),W (k)) 6= (A(`),W (`)) and {xt} are non-degenerate in some sense; in
other words, the correct model (A(k),W (k)) achieves the minimal expected loss (which, due to the quadratic form of the
loss function, depends solely on the first and second moments of the distributions of {wt}, as well as the initial state x0).
This justifies the proposed procedure for inferring unknown labels in Algorithm 5, provided that Tm is large enough and that
the estimated LDS models are sufficiently reliable.
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Algorithm 5 Classification

1: Input: short trajectories {Xm}m∈Mclassification
, where Xm = {xm,t}0≤t≤Tm ; coarse models {Â(k), Ŵ (k)}1≤k≤K ;

clusters {Ck}1≤k≤K .
2: for m ∈Mclassification do
3: Infer the label of the m-th trajectory by

k̂m ← arg min
`

{
Tm · log det(Ŵ (`)) +

Tm−1∑
t=0

(xm,t+1 − Â(`)xm,t)
>(Ŵ (`))−1(xm,t+1 − Â(`)xm,t)

}
,

then add m to cluster Ck̂m .
4: end for
5: Output: updated clusters {Ck}1≤k≤K .

B. Detailed analysis
This section provides detailed, modular theoretical results for the performance of Algorithms 2–5, and concludes with a
proof for the main theorems in Section 3.2 (i.e. the performance guarantees of Algorithm 1).

Subspace estimation. The following theorem provides upper bounds on the errors of subspaces {Vi,Ui} output by
Algorithm 2, assuming sufficient mixing of the short trajectories.

Theorem B.1. Consider the model (1) under the assumptions in Sections 2 and 3.1. There exist some universal constants
C1, C2, C3 > 0 such that the following holds. Suppose that we run Algorithm 2 with data {Xm}m∈Msubspace

obeying

Tsubspace ≥ C1 · tmix, Ttotal,subspace ≥ C2 · tmixd · log
Ttotald

δ
, where tmix :=

1

1− ρ
· log

(
dκATtotal

δ

)
.

Then with probability at least 1− δ, Algorithm 2 outputs {Vi,Ui}1≤i≤d satisfying the following: for all 1 ≤ k ≤ K and
1 ≤ i ≤ d,

max
{
‖(Γ(k))i − ViVi>(Γ(k))i‖2, ‖(Y (k))i −UiUi>(Y (k))i‖2

}
≤ C3 · Γmax

(
K

pmin

)1/2(
tmixd

Ttotal,subspace
log3 Ttotald

δ

)1/4

. (24)

Our proof (deferred to Appendix C.2) includes a novel perturbation analysis; the resulted error bound (24) has a
1/T

1/4
total,subspace dependence and is gap-free (i.e. independent of the eigenvalue gaps of the ground-truth low-rank ma-

trices, which can be arbitrarily close to zero in the worst case). It is possible to adapt the existing perturbation results in
(Kong et al., 2020b;a) to our setting (which we include in Lemma C.3 in the appendix for completeness); however, one
of them is dependent on the eigenvalue gaps, while the other one incurs a worse 1/T

1/6
total,subspace dependence. It would be

interesting future work to investigate whether a gap-free bound with a 1/T
1/2
total,subspace dependence is possible.

Clustering. Our next theorem shows that Algorithm 3 achieves exact clustering ofMclustering, if Tclustering is sufficiently
large and subspaces {Vi,Ui} are accurate. The proof is deferred to Appendix C.3.

Theorem B.2. Consider the model (1) under the assumptions in Sections 2 and 3.1. There exist universal constants
C1, C2, c3 > 0 such that the following holds. Suppose that we run Algorithm 3 with data {Xm}m∈Mclustering

, independent
subspaces {Vi,Ui}1≤i≤d and parameters τ , G that satisfy the following:

• The threshold τ obeys 1/8 < τ/∆2
Γ,Y < 3/8;

• The short trajectory length Tclustering = NG, where

G ≥ C1 · log
|Mclustering|

δ
, N ≥ C2

(
Γ2

maxκ
2
A

√
dK

∆2
Γ,Y

+ 1

)
1

1− ρ
log

((
Γmax

∆Γ,Y
+ 2

)
dκATtotal

δ

)
;
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• The subspaces {Vi,Ui}1≤i≤d satisfy that, for all 1 ≤ i ≤ d and 1 ≤ k ≤ K,

max

{
‖(Γ(k))i − ViVi>(Γ(k))i‖2, ‖(Y (k))i −UiUi>(Y (k))i‖2

}
≤ c3

∆Γ,Y√
d
. (25)

Then with probability at least 1− δ, Algorithm 3 achieves exact clustering: for all m1,m2 ∈ Mclustering, Sm1,m2
= 1 if

and only if the m1-th and m2-th trajectories are generated by the same model, i.e. they have the same label km1
= km2

.

Least squares and covariance estimation. The next result controls the model estimation errors of Algorithm 4, under
the assumption that every cluster is pure.

Theorem B.3. Consider the model (1) under the assumptions in Section 3.1. There exist universal constants C1, C2, C3 > 0
such that the following holds. Let {Ck}1≤k≤K be subsets ofMclustering ∪Mclassification such that for all 1 ≤ k ≤ K, Ck
contains only short trajectories generated by model (A(k),W (k)), namely km = k for all m ∈ Ck. Suppose that for all
m ∈Mclustering ∪Mclassification, Tm ≥ 4, and for all 1 ≤ k ≤ K,

T
(k)
total :=

∑
m∈Ck

Tm ≥ C1dκ
2
wι, where ι := log

( Γmax

Wmin

dκATtotal

δ

)
.

Let Â(k), Ŵ (k) be computed by (22) in Algorithm 4. Then with probability at least 1− δ, one has

‖Â(k) −A(k)‖ ≤ C2

√
dκwι

T
(k)
total

,
‖Ŵ (k) −W (k)‖
‖W (k)‖

≤ C3

√
dι

T
(k)
total

, 1 ≤ k ≤ K.

Our proof (postponed to Appendix C.4) is based on the techniques of (Simchowitz et al., 2018; Sarkar & Rakhlin, 2019), but
with two major differences. First, the authors of (Simchowitz et al., 2018; Sarkar & Rakhlin, 2019) consider the setting
where ordinary least squares is applied to a single continuous trajectory generated by a single LDS model; this is not the
case for our setting, and thus our proof and results are different from theirs. Second, the noise covariance matrix W is
assumed to be σ2Id in (Simchowitz et al., 2018; Sarkar & Rakhlin, 2019), while in our case, {W (k)}1≤k≤K are unknown
and need to be estimated.

Classification. Our last theorem shows that Algorithm 5 correctly classifies all trajectories inMclassification, as long as
the coarse models are sufficiently accurate and the short trajectory lengths are large enough; these conditions are slightly
different for Cases 0 and 1 defined in (8). See Appendix C.5 for the proof.

Theorem B.4. Consider the model (1) under the assumptions in Section 3.1. There exist universal constants c1, c2, C3 > 0
such that the following holds. Suppose that we run Algorithm 5 with data {Xm}m∈Mclassification

and independent coarse
models {Â(k), Ŵ (k)}1≤k≤K satisfying ‖Â(k) −A(k)‖ ≤ εA, ‖Ŵ (k) −W (k)‖ ≤ εW for all k. Then with probability at
least 1− δ, Algorithm 5 correctly classifies all trajectories inMclassification, provided that

For Case 0: εA ≤ c1∆A,W

√
Wmin

Γmaxκw,cross(d+ ι)
,

εW
Wmin

≤ c2 ·min
{

1,
∆A,W√
κw,crossd

}
, (26a)

Tm ≥ C3

(
κ2
w +

κ6
w,cross

∆2
A,W

)
ι2, m ∈Mclassification; (26b)

For Case 1: εA ≤ c1∆A,W

√
Wmin

Γmaxκw,crossκ2
A(d+ ι)

,
εW
Wmin

≤ c2 ·min
{

1,
∆A,W√
κw,crossd

}
, (26c)

Tm ≥ C3

(
κ2
w +

κ6
w,cross

∆2
A,W

)
ι2 +

1

1− ρ
log(2κA), m ∈Mclassification, (26d)

where ι := log Ttotal

δ is a logarithmic term.
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Proof of Theorems 3.4 and 3.5. Our main theorems are direct implications of the above guarantees for the individual
steps.

• Stage 1: To begin with, according to Theorem B.1, if the condition (9a) on Tsubspace and Ttotal,subspace hold, then
the subspaces {Vi,Ui} output by Line 3 of Algorithm 1 are guaranteed to satisfy the error bounds (25) required by
Theorem B.2. This together with the condition (9b) on Tclustering ensures exact clustering in Line 4.

• Stage 2: Based on this, if we further know that Ttotal,clustering obeys condition (9b) for Case 0 or (11a) for Case 1, then
Theorem B.3 tells us that the coarse model estimation in Line 5 satisfies the error bounds (26a) or (26c) required by
Theorem B.4. Together with the assumption (9c) or (11b) on Tclassification, this guarantees exact classification in Line 7
of Algorithm 1, for either Case 0 or 1. At the end, the final model estimation errors (10) follow immediately from
Theorem B.3.

Note that all the statements above are high-probability guarantees; it suffices to take the union bound over these steps, so
that the performance guarantees of Theorems 3.4 and 3.5 hold with probability at least 1− δ. This finishes the proof of our
main theorems.
Remark B.5. The step of subspace estimation in Algorithm 1 is non-essential and optional; it allows for a smaller Tclustering,
but comes at the price of complicating the overall algorithm. For practitioners who prefer a simpler algorithm, they
might simply remove this step (i.e. Line 3 of Algorithm 1), and replace the rank-K subspaces {Vi,Ui} with Id (i.e. no
dimensionality reduction for the clustering step). The theoretical guarantees continue to hold with minor modification:
in Corollary 3.7, one simply needs to remove the conditions on Tsubspace, Ttotal,subspace, and in the condition for Tclustering,
replace the factor

√
K/d (where K is due to dimensionality reduction) with

√
d/d = 1. This is one example regarding how

our modular algorithms and theoretical analysis can be easily modified and adapted to accommodate different situations.

C. Proofs for Appendix B
This section starts with some preliminaries about linear dynamical systems that will be helpful later. Then, it provides the
main proofs for the theorems in Appendix B.

C.1. Preliminaries

Truncation of autocovariance. Recall the notation Γ(k) =
∑∞
i=0A

(k)iW (k)(A(k)i)> from (3) and (5). We add a
subscript t to represent its t-step truncation:

Γ
(k)
t :=

t−1∑
i=0

A(k)iW (k)(A(k)i)>. (27)

Also recall the assumption of exponential stability in Assumption 3.1, namely ‖(A(k))t‖ ≤ κAρt. As a result, Γ
(k)
t is close

to Γ(k):

0 4 Γ(k) − Γ
(k)
t =

∞∑
i=t

A(k)iW (k)(A(k)i)> = A(k)tΓ(k)(A(k)t)>,

‖Γ(k) − Γ
(k)
t ‖ ≤ ‖Γ(k)‖‖A(k)t‖2 ≤ ‖Γ(k)‖κ2

Aρ
2t ≤ Γmaxκ

2
Aρ

2t. (28)

Moreover, let Y (k)
t := A(k)Γ

(k)
t , then Y (k)

t is also close to Y (k):

‖Y (k) − Y (k)
t ‖ ≤ ‖A(k)‖‖Γ(k) − Γ

(k)
t ‖ ≤ Γmaxκ

3
Aρ

2t. (29)

“Independent version” of states. Given some mixing time tmix, we define x̃m,t(tmix) as the (tmix−1)-step approximation
of xm,t :

x̃m,t = x̃m,t(tmix) :=

tmix−2∑
i=0

(A(km))iwm,t−i−1 ∼ N (0,Γ
(km)
tmix−1), tmix ≤ t ≤ Tm, 1 ≤ m ≤M. (30)
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Since x̃m,t consists of only the most recent noise vectors, it is independent of the history up to xm,t−tmix+1. Our proofs for
Stage 1 will rely on this “independent version” {x̃m,t} of states {xm,t}; the basic idea is that, for an appropriately chosen
tmix, a trajectory of length T can be regarded as a collection of T/tmix independent samples. We will often use the notation ·̃
to represent the “independent version” of other variables as well.

Boundedness of states. The following lemma provides upper bounds for {‖x̃m,t‖2} and {‖xm,t‖2}. This will help to
control the effects of mixing errors and model estimation errors in the analyses later.
Lemma C.1 (Bounded states). Consider the model (1) under the assumptions in Sections 2 and 3.1. Fix any tmix ≥ 3.
Then with probability at least 1 − δ, we have ‖x̃m,t‖2 ≤ C0

√
Γmax(d+ log(Ttotal/δ)) for all 1 ≤ m ≤ M, tmix ≤

t ≤ Tm, where C0 > 0 is some universal constant; moreover, for both cases of initial states defined in (8), all states
{{xm,t}0≤t≤Tm}1≤m≤M are bounded throughout:

• Case 0: with probability at least 1− δ, we have ‖xm,t‖2 ≤ C0

√
Γmax(d+ log(Ttotal/δ)) for all m, t.

• Case 1: suppose that tmix ≥ 1
1−ρ log(

√
2κA), and Tm ≥ tmix for all m, then with probability at least 1 − δ, we

have ‖xm,t‖2 ≤ 3C0κA
√

Γmax(d+ log(Ttotal/δ)) for all m, t, and ‖xm,t‖2 ≤ 2C0

√
Γmax(d+ log(Ttotal/δ)) for all

t ≥ tmix or t = 0.

Proof. First, recall from Corollary 7.3.3 of (Vershynin, 2018) that, if random vector a ∼ N (0, Id), then for all u ≥ 0,
we have P(‖a‖2 ≥ 2

√
d+ u) ≤ 2 exp(−cu2). Since x̃m,t ∼ N (0,Γ

(km)
tmix−1), where Γ

(km)
tmix−1 4 Γ(km) 4 ΓmaxId, we have

P(‖x̃m,t‖2 ≥
√

Γmax(2
√
d+ u)) ≤ 2 exp(−cu2). Taking the union bound, we have

P
(

there exists m, t such that ‖x̃m,t‖2 ≥
√

Γmax(2
√
d+ u)

)
≤

M∑
m=1

Tm∑
t=tmix

P
(
‖x̃m,t‖2 ≥

√
Γmax(2

√
d+ u)

)
≤ 2Ttotal exp(−cu2) ≤ δ,

where the last inequality holds if we pick u ≥
√

1
c log 2Ttotal

δ . This finishes the proof of the first claim in the lemma. Next,
we prove the boundedness of {‖xm,t‖2}.

• Case 0: It is easy to check that xm,t ∼ N (0,Γ
(km)
t ), where Γ

(km)
t 4 Γ(km) 4 ΓmaxId. The boundedness of

{‖xm,t‖2} can be proved by a similar argument as before, which we omit for brevity.

• Case 1: Define ξm,t := xm,t − (A(km))txm,0 ∼ N (0,Γ
(km)
t ). By a similar argument as before, we have with

probability at least 1 − δ, ‖ξm,t‖2 ≤ C0

√
Γmax(d+ log(Ttotal/δ)) for all m, t. Morever, for any t ≥ tmix ≥

1
1−ρ log(

√
2κA), we have ‖(A(km))t‖ ≤ κAρt ≤ 1/2. With this in place, we have

xm+1,0 = xm,Tm = (A(km))Tmxm,0 + ξm,Tm , and thus

‖xm+1,0‖ ≤ ‖(A(km))Tm‖‖xm,0‖2 + ‖ξm,Tm‖2 ≤
1

2
‖xm,0‖2 + C0

√
Γmax(d+ log

Ttotal

δ
).

Recall the assumption that x1,0 = 0; by induction, we have ‖xm,0‖2 ≤ 2C0

√
Γmax(d+ log(Ttotal/δ)) for all

1 ≤ m ≤M . Now, we have for all m, t,

‖xm,t‖2 ≤ ‖(A(km))txm,0‖2 + ‖ξm,t‖2

≤ κA‖xm,0‖2 + C0

√
Γmax(d+ log

Ttotal

δ
) ≤ 3C0κA

√
Γmax(d+ log

Ttotal

δ
);

moreover, for t ≥ tmix, since ‖(A(km))t‖ ≤ 1/2, we obtain a better bound

‖xm,t‖2 ≤ ‖(A(km))txm,0‖2 + ‖ξm,t‖2

≤ 1

2
‖xm,0‖2 + C0

√
Γmax(d+ log

Ttotal

δ
) ≤ 2C0

√
Γmax(d+ log

Ttotal

δ
).

This shows the boundedness of {‖xm,t‖2} and completes our proof of the lemma.
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C.2. Proof of Theorem B.1

Theorem B.1 is an immediate consequence of Lemmas C.2 and C.3 below. The former shows the concentration of Ĥi, Ĝi

around the targeted low-rank matricesHi,Gi, while the latter is a result of perturbation analysis.

Lemma C.2. Under the setting of Theorem B.1, with probability at least 1− δ, we have for all 1 ≤ i ≤ d,

max
{
‖Ĥi −Hi‖, ‖Ĝi −Gi‖

}
. Γ2

max

√
tmixd

Ttotal,subspace
log3 Ttotald

δ
.

Lemma C.3. Consider the matrix M? =
∑K
k=1 p

(k)y(k)y(k)> ∈ Rd×d, where 0 < p(k) < 1,
∑K
k=1 p

(k) = 1, and
y(k) ∈ Rd. LetM be symmetric and satisfy ‖M −M?‖ ≤ ε, and U ∈ Rd×K be the top-K eigenspace ofM . Then we
have

K∑
k=1

p(k)‖y(k) −UU>y(k)‖22 ≤ 2Kε, (31)

and for all 1 ≤ k ≤ K, it holds that

‖y(k) −UU>y(k)‖2 ≤ min

{(
2Kε

p(k)

)1/2

,
2ε

λmin(M)
‖y(k)‖2,

√
2

(
ε

p(k)
‖y(k)‖2

)1/3
}
. (32)

For our main analyses in Sections 3.2 and B, we choose the first term on the right-hand side of (32).

C.2.1. PROOF OF LEMMA C.2

We first analyze the idealized case with i.i.d. samples; then we make a connection between this i.i.d. case and the actual
case of mixed LDSs, by utilizing the mixing property of linear dynamical systems. We prove the result of Lemma C.2 for
‖Ĝi −Gi‖ only, since the analysis for ‖Ĥi −Hi‖ is mostly the same (and simpler in fact).

Step 1: the idealized i.i.d. case. With some abuse of notation, suppose that for all 1 ≤ m ≤ M , we have for some
km ∈ {1, . . . ,K},

xm,t, zm,t
i.i.d.∼ N (0, Γ̃(km)), wm,t,vm,t

i.i.d.∼ N (0,W (km)),

xm,t
′ = A(km)xm,t +wm,t, zm,t

′ = A(km)zm,t + vm,t, 1 ≤ t ≤ N,

where for all 1 ≤ k ≤ K, it holds thatW (k), Γ̃(k) 4 Γ(k) 4 ΓmaxId. Notice that cov(xm,t
′) = A(km)Γ̃(km)(A(km))> +

W (km) 4 A(km)Γ(km)(A(km))>+W (km) = Γ(km) 4 ΓmaxId. Consider the i.i.d. version of matrix Ĝi and its expectation
Gi defined as follows:

Ĝi :=
1

MN

M∑
m=1

N∑
t=1

((
xm,t

′)
i
xm,t

)((
zm,t

′)
i
zm,t

)>
, Gi =

K∑
k=1

p(k)(Ỹ (k))i(Ỹ
(k))>i ,

where (Ỹ (k))i is the transpose of the i-th row of Ỹ (k) := A(k)Γ̃(k). For this i.i.d. setting, we claim that, if the i.i.d. sample
size MN satisfies MN & d · log(MNd/δ), then with probability at least 1− δ,

‖Ĝi −Gi‖ . Γ2
max

√
d

MN
log3 MNd

δ
, 1 ≤ i ≤ d. (33)

This claim can be proved by a standard covering argument with truncation; we will provide a proof later for completeness.

Step 2: back to the actual case of mixed LDSs. Now we turn to the analysis of Ĝi defined in (14) versus its expectation
Gi defined in (15b), for the mixed LDSs setting. We first show that Ĝi can be writte as a weighted average of some matrices,
each of which can be further decomposed into an i.i.d. part (as in Step 1) plus a negligible mixing error term. Then we
analyze each term in the decomposition, and finally put pieces together to show that Ĝi ≈ Gi.
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Step 2.1: decomposition of the index set Ω1 × Ω2. Recall the definition of index sets Ω1,Ω2 in Algorithm 2. Denote
the first index of Ω1 (resp. Ω2) as τ1 + 1 (resp. τ2 + 1), and let ∆ := τ2 − τ1 be their distance. Also denote N := |Ω1| =
|Ω2| � Tsubspace. For any t ∈ Ω1 and 1 ≤ j ≤ N , define

sj(t) := Cycle(t+ ∆ + j; Ω2) =

{
t+ ∆ + j if t+ ∆ + j ≤ τ2 +N,

t+ ∆ + j −N otherwise,

where Cycle(i; Ω) represents the cyclic indexing of value i on set Ω. Then we have

Ω1 × Ω2 =
{

(t1, t2), t1 ∈ Ω1, t2 ∈ Ω2

}
= ∪Nj=1

{(
t, sj(t)

)
, t ∈ Ω1

}
.

We further define
Sτ := {τ1 + τ + f · tmix : f ≥ 0, τ + f · tmix ≤ N}, 1 ≤ τ ≤ tmix,

so that Ω1 = ∪tmix
τ=1Sτ . Notice that for each τ , the elements of Sτ are at least tmix far apart. Putting together, we have

Ω1 × Ω2 = ∪Nj=1 ∪
tmix
τ=1

{(
t, sj(t)

)
, t ∈ Sτ

}
. (34)

Step 2.2: decomposition of Ĝi. In the remaining proof, we denote xm,t′ := xm,t+1 for notational consistency. Using
the decomposition (34) of Ω1 × Ω2, we can rewrite Ĝi defined in (14) as a weighted average of Ntmix matrices:

Ĝi =
1

|Msubspace|
∑

m∈Msubspace

1

N2

∑
(t1,t2)∈Ω1×Ω2

(x′m,t1)i xm,t1 · (x′m,t2)i xm,t2
> =

N∑
j=1

tmix∑
τ=1

|Sτ |
N2
· Fi,j,τ ,

where

Fi,j,τ :=
1

|Msubspace| · |Sτ |
∑

m∈Msubspace

∑
t∈Sτ

(xm,t
′)i xm,t · (x′m,sj(t))i xm,sj(t)

>. (35)

Recalling the definition of x̃m,t in (30) and Γ
(k)
t in (27), we have

xm,t = x̃m,t + (A(km))tmix−1xm,t−tmix+1︸ ︷︷ ︸
=:δm,t

= x̃m,t + δm,t,

where
‖δm,t‖2 ≤ ‖(A(km))tmix−1‖ · ‖xm,t−tmix+1‖2 ≤ κAρtmix−1‖xm,t−tmix+1‖2, (36)

and x̃m,t ∼ N (0,Γ
(k)
tmix−1) is independent of δm,t. Moreover,

xm,t
′ = A(km)xm,t +wm,t = x̃′m,t +A(km)δm,t, where x̃′m,t := A(km)x̃m,t +wm,t.

We can rewrite xm,sj(t) = x̃m,sj(t) + δm,sj(t) and x′m,sj(t) = x̃′m,sj(t) +A(km)δm,sj(t) in a similar manner. Putting this
back to (35), one has

Fi,j,τ =
1

|Msubspace| · |Sτ |
∑

m∈Msubspace

∑
t∈Sτ

(xm,t
′)i xm,t · (x′m,sj(t))i xm,sj(t)

>

=
1

|Msubspace| · |Sτ |
∑

m∈Msubspace

∑
t∈Sτ

(x̃′m,t +A(km)δm,t)i (x̃m,t + δm,t) · (x̃′m,sj(t) +A(km)δm,sj(t))i (x̃m,sj(t) + δm,sj(t))
>

=
1

|Msubspace| · |Sτ |
∑

m∈Msubspace

∑
t∈Sτ

(x̃′m,t)i x̃m,t · (x̃′m,sj(t))i x̃m,sj(t)
>

︸ ︷︷ ︸
=:F̃i,j,τ

+ ∆i,j,τ , (37)

where ∆i,j,τ contains all the {δm,t} terms in the expansion. The key observation here is that, by our definition of index set
Sτ , the {x̃m,t} terms in F̃i,j,τ are independent, and thus we can utilize our earlier analysis of the i.i.d. case in Step 1 to
study F̃i,j,τ .
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Step 2.3: analysis for each term of the decomposition. Towards showing Ĝi ≈ Gi, we prove in the following that
F̃i,j,τ concentrates around its expectation G̃i, which is close toGi; moreover, the error term ∆i,j,τ becomes exponentially
small as tmix grows. More specifically, we have the following:

• Recall the notation Y (k)
tmix−1 = A(k)Γ

(k)
tmix−1. It holds that

E[F̃i,j,τ ] = G̃i :=

K∑
k=1

p(k)(Y
(k)
tmix−1)i(Y

(k)
tmix−1)i

>
.

According to our result (33) for the i.i.d. case, for fixed j, τ , we have with probability at least 1− δ,

1 ≤ i ≤ d, ‖F̃i,j,τ − G̃i‖ . Γ2
max

√
d

|Msubspace| · |Sτ |
log3 |Msubspace| · |Sτ |d

δ

. Γ2
max

√
tmixd

Ttotal,subspace
log3 Ttotal,subspaced

δ
. (38)

• Recall from (29) that ‖Y (k) − Y (k)
tmix−1‖ ≤ Γmaxκ

3
Aρ

2(tmix−1). Therefore,

∥∥(Y (k))i(Y
(k))i

>
− (Y

(k)
tmix−1)i(Y

(k)
tmix−1)i

>∥∥
≤
(
‖(Y (k))i‖2 + ‖(Y (k)

tmix−1)i‖2
)
‖(Y (k))i − (Y

(k)
tmix−1)i‖2

≤
(
2‖Y (k)‖+ ‖Y (k) − Y (k)

tmix−1‖
)
‖Y (k) − Y (k)

tmix−1‖
≤
(
2ΓmaxκA + Γmaxκ

3
Aρ

2(tmix−1)
)
· Γmaxκ

3
Aρ

2(tmix−1)

=
(
2 + κ2

Aρ
2(tmix−1)

)
· Γ2

maxκ
4
Aρ

2(tmix−1) ≤ 3Γ2
maxκ

4
Aρ

2(tmix−1),

where we use the mild assumption that tmix ≥ 1+ log κA
1−ρ , and the fact that ‖Y (k)‖, ‖Y (k)

tmix−1‖ ≤ ΓmaxκA. Consequently,

‖Gi − G̃i‖ ≤
K∑
k=1

p(k)
∥∥∥(Y (k))i(Y

(k))i
>
− (Y

(k)
tmix−1)i(Y

(k)
tmix−1)i

>∥∥∥ ≤ 3Γ2
maxκ

4
Aρ

2(tmix−1). (39)

• By Lemma C.1, if tmix & 1
1−ρ log(2κA), then we have with probability at least 1−δ, all the xm,t’s and x̃m,t’s involved

in the definition of ∆i,j,τ in (37) have `2 norm bounded by
√

Γmaxpoly(d, κA, log(Ttotal/δ)). This together with the
upper bound on ‖δm,t‖2 in (36) implies that for all i, j, τ , it holds that

‖∆i,j,τ‖ ≤ Γ2
max · poly

(
d, κA, log

Ttotal

δ

)
· ρtmix−1. (40)

Step 2.4: putting pieces together. With (38), (39) and (40) in place and taking the union bound, we have with probability
at least 1− δ, for all 1 ≤ i ≤ d,

‖Ĝi −Gi‖ =

∥∥∥∥ N∑
j=1

tmix∑
τ=1

|Sτ |
N2
· Fi,j,τ −Gi

∥∥∥∥ ≤ max
j,τ
‖F̃i,j,τ − G̃i‖+ ‖G̃i −Gi‖+ max

j,τ
‖∆i,j,τ‖

. Γ2
max

√
tmixd

Ttotal,subspace
log3 Ttotal,subspaced

δ
+ Γ2

maxκ
4
Aρ

2(tmix−1) + Γ2
max · poly

(
d, κA, log

dTtotal

δ

)
· ρtmix−1

. Γ2
max

√
tmixd

Ttotal,subspace
log3 Ttotald

δ
,

where the last inequality holds if tmix & 1
1−ρ log

(
dκATtotal

δ

)
. This finishes the proof of Lemma C.2.
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Proof of (33). Define the truncating operator

Trunc(x;D) := x · 1(|x| ≤ D), x ∈ R, D ≥ 0.

Consider the following truncated version of Ĝi:

ĜTrunc
i :=

1

MN

M∑
m=1

N∑
t=1

(
Trunc

((
xm,t

′)
i
;D0

)
xm,t

)(
Trunc

((
zm,t

′)
i
;D0

)
zm,t

)>
(the truncating level D0 will be specified later), and let ETrunc

i := E
[
ĜTrunc
i

]
be its expectation. In the following, we first

show that ĜTrunc
i concentrates around ETrunc

i , and then prove that ETrunc
i ≈ Gi.

• By a standard covering argument, we have

‖ĜTrunc
i −ETrunc

i ‖ = sup
u,v∈Sd−1

u>
(
ĜTrunc
i −ETrunc

i

)
v ≤ 4 sup

u,v∈N1/8

u>
(
ĜTrunc
i −ETrunc

i

)
v,

whereN1/8 denotes the 1/8-covering of the unit sphere Sd−1 and has cardinality |N1/8| ≤ 32d. For fixed u,v ∈ N1/8,
one has

u>ĜTrunc
i v =

1

MN

M∑
m=1

N∑
t=1

Trunc
((
xm,t

′)
i
;D0

)
u>xm,t · Trunc

((
zm,t

′)
i
;D0

)
v>zm,t,

where (cf. Chapter 2 of (Vershynin, 2018) for the definitions of subgaussian norm ‖ · ‖ψ2
and subexponential norm

‖ · ‖ψ1
) ∣∣∣∣Trunc

((
xm,t

′)
i
;D0

)∣∣∣∣, ∣∣∣∣Trunc
((
zm,t

′)
i
;D0

)∣∣∣∣ ≤ D0, ‖u>xm,t‖ψ2
, ‖v>zm,t‖ψ2

.
√

Γmax.

Hence ∥∥∥∥Trunc
((
xm,t

′)
i
;D0

)
u>xm,t · Trunc

((
zm,t

′)
i
;D0

)
v>zm,t

∥∥∥∥
ψ1

. D2
0Γmax,

and by Bernstein’s inequality (Corollary 2.8.3 of (Vershynin, 2018)), we have

P
(∣∣∣u>(ĜTrunc

i −ETrunc
i

)
v
∣∣∣ ≥ τ) ≤ 2 exp

(
−c0MN

( τ

D2
0Γmax

)2
)

for all 0 ≤ τ ≤ D2
0Γmax. Taking the union bound over u,v ∈ N1/8, we have with probability at least 1− δ/2,

‖ĜTrunc
i −ETrunc

i ‖ . D2
0Γmax

√
d+ log 1

δ

MN
, provided that MN & d+ log

1

δ
.

• Note that

‖Gi −ETrunc
i ‖ =

∥∥∥∥∥
K∑
k=1

p(k)Ext,zt∼N (0,Γ̃(k))

[(
(xt
′)i(zt

′)i − Trunc
(
(xt
′)i
)
Trunc

(
(zt
′)i
))
xtzt

>
]∥∥∥∥∥,

where for each k,∥∥∥∥∥Ext,zt∼N (0,Γ̃(k))

[(
(xt
′)i(zt

′)i − Trunc
(
(xt
′)i
)
Trunc

(
(zt
′)i
))
xtzt

>
]∥∥∥∥∥

= sup
u,v∈Sd−1

∣∣∣∣∣Ext,zt∼N (0,Γ̃(k))

[
(xt
′)i(zt

′)iu
>xtv

>zt ·
(

1− 1
(
|(xt′)i| ≤ D0, |(zt′)i| ≤ D0

))]∣∣∣∣∣
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≤ sup
u,v∈Sd−1

√
E
(

(xt′)i(zt′)iu>xtv>zt

)2
√
E
(

1− 1
(
|(xt′)i| ≤ D0, |(zt′)i| ≤ D0

))2

. Γ2
max

√
P(|N (0,Γmax)| > D0)

. Γ2
max exp

(
−c1

D2
0

Γmax

)
.

Finally, notice that if the truncating level D0 is sufficiently large, then we have Ĝi = ĜTrunc
i with high probability. More

formally, we have shown that for fixed 1 ≤ i ≤ d, if MN & d+ log(1/δ), then

P
(
‖Ĝi −Gi‖ . D2

0Γmax

√
d+ log 1

δ

MN
+ Γ2

max exp

(
−c1

D2
0

Γmax

))
≥ 1− δ

2
−
∑
m,t

P
(
|(xm,t′)i| > D0 or |(zm,t′)i| > D0

)
.

If we pick the truncating level D0 �
√

Γmax log(MN/δ), then it is easy to check that with probability at least 1− δ,

‖Ĝi −Gi‖ . D2
0Γmax

√
d+ log 1

δ

MN
. Γ2

max

√
d

MN
log3 MN

δ
.

Taking the union bound over 1 ≤ i ≤ d finishes our proof of (33).

C.2.2. PROOF OF LEMMA C.3

Define ∆ := M −M?, and denote the eigendecomposition of M? and M as M? = U?Λ?U
>
? and M = UΛU> +

U⊥Λ⊥U
>
⊥ , where diagonal matrix Λ (resp. Λ?) contains the top-K eigenvalues ofM (resp.M?). Then we have

Λ = U>MU = U>M?U +U>∆U =

K∑
k=1

p(k)U>y(k)y(k)>U +U>∆U ,

Λ? = U>? M?U? =

K∑
k=1

p(k)U>? y
(k)y(k)>U?.

Substracting these two equations gives

K∑
k=1

p(k)
(
U>? y

(k)y(k)>U? −U>y(k)y(k)>U
)

= Λ? −Λ +U>∆U .

Taking the trace of both sides, we get

K∑
k=1

p(k)
(
‖U>? y(k)‖22 − ‖U>y(k)‖22

)
= Tr

(
Λ? −Λ

)
+ Tr

(
U>∆U

)
.

On the left-hand side,

‖U>? y(k)‖22 − ‖U>y(k)‖22 = ‖y(k)‖22 − ‖U>y(k)‖22 = ‖y(k) −UU>y(k)‖22 ≥ 0,

while on the right-hand side,

Tr(Λ? −Λ) =

K∑
k=1

(
λk(Λ?)− λk(Λ)

) (i)

≤ K‖∆‖ ≤ Kε, Tr(U>∆U) ≤ ‖∆‖ · Tr(U>U) = ‖∆‖ · Tr(IK) ≤ Kε,

where (i) follows from Weyl’s inequality. Putting things together, we have proved (31), which immediately leads to the first
upper bound in (32). The second upper bound in (32) follows from a simple application of Davis-Kahan’s sin Θ theorem
(Davis & Kahan, 1970), and the third term is due to Lemma A.11 of (Kong et al., 2020b); we skip the details for brevity.
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C.3. Proof of Theorem B.2

Our proof follows the three steps below:

1. Consider the idealized i.i.d. case, and characterize the expectations and variances of the testing statistics computed by
Algorithm 3;

2. Go back to the actual case of mixed LDSs, and analyze one copy of statΓ,g or statY,g defined in (18) for some fixed
1 ≤ g ≤ G, by decomposing it into an i.i.d. part plus a negligible mixing error term;

3. Analyze median{statΓ,g, 1 ≤ g ≤ G} and median{statY,g, 1 ≤ g ≤ G}, and prove the correct testing for each pair of
trajectories, which implies that Algorithm 3 achieves exact clustering.

Step 1: the idealized i.i.d. case. Recall the definition of statY in (19) when we first introduce our method for clustering.
For notational convenience, we drop the subscript in statY , and replace xt+1, zt+1 with xt′, zt′; then, with some elementary
linear algebra, (19) can be rewritten as

stat =

d∑
i=1

〈
Ui
> 1

|Ω1|
∑
t∈Ω1

(
(xt
′)ixt − (zt

′)izt
)
,Ui
> 1

|Ω2|
∑
t∈Ω2

(
(xt
′)ixt − (zt

′)izt
)〉

=
〈
U>

1

|Ω1|
∑
t∈Ω1

vec
(
xt(xt

′)> − zt(zt′)>
)
,U>

1

|Ω2|
∑
t∈Ω2

vec
(
xt(xt

′)> − zt(zt′)>
)〉
,

where we define a large orthonormal matrix

U :=


U1 0 . . . 0

0 U2
. . .

...
...

. . . . . . 0
0 . . . 0 Ud

 ∈ Rd
2×dK , (41)

In this step, we consider the idealized i.i.d. case:

t ∈ Ω1 ∪ Ω2, xt
i.i.d.∼ N (0, Γ̃(k)), wt

i.i.d.∼ N (0, W̃ (k)), xt
′ = Ã(k)xt +wt,

zt
i.i.d.∼ N (0, Γ̃(l)), vt

i.i.d.∼ N (0, W̃ (l)), zt
′ = Ã(l)zt + vt,

where Γ̃(k), Γ̃(l), W̃ (k), W̃ (l) are d× d covariance matrices, and Ã(k), Ã(l) are d× d state transition matrix. Our goal is to
characterize the expectation and variance of stat in this i.i.d. case.

Before we present the results, we need some additional notation. First, let {ei}1≤i≤d be the canonical basis of Rd, and
define

Ỹ (k) := Ã(k)Γ̃(k),

Σ(k) :=
(
Ã(k) ⊗ Id

)(
(Γ̃(k))1/2 ⊗ (Γ̃(k))1/2

)(
Id2 + P

)(
(Γ̃(k))1/2 ⊗ (Γ̃(k))1/2

)(
(Ã(k))> ⊗ Id

)
,

where P ∈ Rd2×d2

is a symmetric permutation matrix, whose (i, j)-th block is eje>i ∈ Rd×d, 1 ≤ i, j ≤ d. Let Ỹ (l),Σ(`)

be defined similarly, with Ã(k), Γ̃(k) replaced by Ã(l), Γ̃(l). Moreover, define

µk,l := U>vec
(

(Ỹ (k) − Ỹ (l))>
)
∈ RdK , (42a)

Σk,l := U>
(
Σ(k) + W̃ (k) ⊗ Γ̃(k) + Σ(`) + W̃ (l) ⊗ Γ̃(l)

)
U ∈ RdK×dK . (42b)

Now we are ready to present our results for the i.i.d. case. The first lemma below gives a precise characterization of E[stat]
and var(stat), in terms of µk,l and Σk,l; the second lemma provides some upper and lower bounds, which will be handy for
our later analyses.
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Lemma C.4. Denote N = min{|Ω1|, |Ω2|}. For the i.i.d. case just described, one has

E[stat] = ‖µk,l‖22, var(stat) ≤ 1

N2
Tr(Σ2

k,l) +
2

N
µ>k,lΣk,lµk,l,

and the inequality becomes an equality if |Ω1| = |Ω2| = N .

Lemma C.5. Consider the same setting of Lemma C.4. Furthermore, suppose that

Γ̃(k), Γ̃(l) 4 ΓmaxId, W̃ (k), W̃ (l) 4WmaxId, ‖Ã(k)‖, ‖Ã(l)‖ ≤ κA

for some 0 < Wmax ≤ Γmax and κA ≥ 1. Then the following holds true.

• (Upper bound on expectation) It holds that

E[stat] = ‖µk,l‖22 ≤ ‖Ỹ (k) − Ỹ (l)‖2F. (43)

• (Lower bound on expectation) If Ỹ (k) 6= Ỹ (l) and subspaces {Ui}1≤i≤d satisfy

1 ≤ i ≤ d, max
{
‖(Ỹ (k))i −UiUi>(Ỹ (k))i‖2, ‖(Ỹ (l))i −UiUi>(Ỹ (l))i‖2

}
≤ ε, (44)

for some ε ≥ 0, then we have

E[stat] = ‖µk,l‖22 ≥
∥∥Ỹ (k) − Ỹ (l)

∥∥2

F
− 4ε

d∑
i=1

∥∥(Ỹ (k))i + (Ỹ (l))i
∥∥

2
.

• (Upper bound on variance) The matrix Σk,l is symmetric and satisfies

0 4 Σk,l 4 6Γ2
maxκ

2
AIdK ;

this, together with the earlier upper bound (43) on ‖µk,l‖22, implies that

var(stat) ≤ 1

N2
Tr(Σ2

k,l) +
2

N
µ>k,lΣk,lµk,l .

(
Γ2

maxκ
2
A

N

)2

dK +
Γ2

maxκ
2
A

N
‖Ỹ (k) − Ỹ (l)‖2F.

Step 2: one copy of statY,g, statΓ,g for a fixed g. Now we turn back to the mixed LDSs setting and prove Theorem B.2.
Let us focus on the testing of one pair of short trajectories {xm1,t}, {xm2,t} for some m1,m2 ∈ Mclustering, m1 6= m2.
For notational consistency, in this proof we rewrite these two trajectories as {xt} and {zt}, their labels km1

, km2
as k, `,

and the trajectory length Tclustering as T , respectively. Also denote xt′ := xt+1 and zt′ := zt+1. Recall the definition of
{statY,g}1≤g≤G in (18b); for now, we consider one specific element and ignore the subscript g. Recalling the definition of
U ∈ Rd2×dK in (41), we have

statY =

d∑
i=1

〈 1

N

∑
t∈Ω1

Ui
>((xt′)ixt − (zt

′)izt
)
,

1

N

∑
t∈Ω2

Ui
>((xt′)ixt − (zt

′)izt
)〉

=
〈
U>

1

N

∑
t∈Ω1

vec
(
xt(xt

′)> − zt(zt′)>
)
,U>

1

N

∑
t∈Ω2

vec
(
xt(xt

′)> − zt(zt′)>
)〉
,

where N = bT/4Gc = |Ω1| = |Ω2|.

In the following, we show how to decompose statY into an i.i.d. term plus a negligible mixing error term, and then analyze
each component of this decomposition; finally, we put pieces together to give a characterization of statY , or {statY,g}1≤g≤G
when we put the subscript g back in at the end of this step.
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Step 2.1: decomposition of statY . Define S1,τ1 := {t1 + τ1 + f · tmix : f ≥ 0, τ1 + f · tmix ≤ |Ω1|}, where t1 + 1 is the
first index of Ω1, and the mixing time tmix will be specified later; define S2,τ2 similarly. Note that for each τ1, the elements
of S1,τ1 are at least tmix far apart; moreover, we have Ω1 = ∪tmix

τ1=1S1,τ1 ,Ω2 = ∪tmix
τ2=1S2,τ2 , and thus

1

N

∑
t∈Ω1

vec
(
xt(xt

′)> − zt(zt′)>
)

=

tmix∑
τ1=1

|S1,τ1 |
N

· 1

|S1,τ1 |
∑

t∈S1,τ1

vec
(
xt(xt

′)> − zt(zt′)>
)
,

1

N

∑
t∈Ω2

vec
(
xt(xt

′)> − zt(zt′)>
)

=

tmix∑
τ2=1

|S2,τ2 |
N

· 1

|S2,τ2 |
∑

t∈S2,τ2

vec
(
xt(xt

′)> − zt(zt′)>
)
.

Therefore, we can rewrite statY as a weighted average

statY =

tmix∑
τ1=1

tmix∑
τ2=1

wτ1,τ2 · statτ1,τ2Y , where

wτ1,τ2 :=
|S1,τ1 ||S2,τ2 |

N2
,

tmix∑
τ1=1

tmix∑
τ2=1

wτ1,τ2 = 1, and

statτ1,τ2Y :=
〈
U>

1

|S1,τ1 |
∑

t∈S1,τ1

vec
(
xt(xt

′)> − zt(zt′)>
)
,U>

1

|S2,τ2 |
∑

t∈S2,τ2

vec
(
xt(xt

′)> − zt(zt′)>
)〉
. (45)

We can further decompose statτ1,τ2Y into an i.i.d. term plus a small error term. To do this, recalling the definition of x̃m,t in
(30) and dropping the subscript m, we have

xt = A(k)tmix−1
xt−tmix+1︸ ︷︷ ︸

=:δx,t

+ x̃t = δx,t + x̃t,

xt
′ = A(k)xt +wt = A(k)δx,t + (A(k)x̃t +wt)︸ ︷︷ ︸

=:x̃′t

= A(k)δx,t + x̃′t,

where x̃t ∼ N (0,Γ
(k)
tmix−1). Similarly, we rewrite zt = δz,t + z̃t, zt

′ = A(`)δz,t + z̃′t. Plugging these into the right-hand
side of (45) and expanding it, one has

statτ1,τ2Y = s̃tat
τ1,τ2
Y + ∆τ1,τ2

Y , where

s̃tat
τ1,τ2
Y :=

〈
U>

1

|S1,τ1 |
∑

t∈S1,τ1

vec
(
x̃t(x̃

′
t)
> − z̃t(z̃′t)>

)
,U>

1

|S2,τ2 |
∑

t∈S2,τ2

vec
(
x̃t(x̃

′
t)
> − z̃t(z̃′t)>

)〉
,

and ∆τ1,τ2
Y involves {δx,t, δz,t} terms.

Step 2.2: analysis of each component. First, notice that the {x̃t, z̃t} terms in the definition of s̃tat
τ1,τ2
Y are independent;

this suggests that we can characterize s̃tat
τ1,τ2
Y by applying our earlier analysis for the i.i.d. case in Step 1. Second,

∆τ1,τ2
Y involves {δx,t, δz,t} terms, which in turn involveA(k)tmix−1

,A(`)tmix−1
and thus will be exponentially small as tmix

increases, thanks to Assumption 3.1. More formally, we have the following:

• Applying Lemmas C.4 and C.5 with (Γ̃(k), Γ̃(l)) = (Γ
(k)
tmix−1,Γ

(`)
tmix−1), (W̃ (k), W̃ (l)) = (W (k),W (`)) and

(Ã(k), Ã(l)) = (A(k),A(`)), we have

E
[
s̃tat

τ1,τ2
Y

]
=
∥∥U>vec((Y

(k)
tmix−1 − Y

(`)
tmix−1)>)

∥∥2

2
,

var
(
s̃tat

τ1,τ2
Y

)
.

(
Γ2

maxκ
2
A

Ñ

)2

dK +
Γ2

maxκ
2
A

Ñ

∥∥Y (k)
tmix−1 − Y

(`)
tmix−1

∥∥2

F
,

where Ñ := min{|S1,τ1 |, |S2,τ2 |} � N/tmix.
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• By Lemma C.1, with probability at least 1 − δ, all {xt, x̃t, zt, z̃t} terms involved in the definition of ∆τ1,τ2
Y has `2

norm bounded by
√

Γmaxpoly(d, κA, log(Ttotal/δ)). This implies that∣∣∆τ1,τ2
Y

∣∣ ≤ Γ2
max · poly

(
d, κA, log

Ttotal

δ

)
· ρtmix−1.

Step 2.3: putting pieces together. Putting the subscript g back in, we have already shown that

statY,g =

tmix∑
τ1=1

tmix∑
τ2=1

wτ1,τ2 · statτ1,τ2Y,g

=

tmix∑
τ1=1

tmix∑
τ2=1

wτ1,τ2 · s̃tat
τ1,τ2
Y,g︸ ︷︷ ︸

=:s̃tatY,g

+

tmix∑
τ1=1

tmix∑
τ2=1

wτ1,τ2 ·∆τ1,τ2
Y,g︸ ︷︷ ︸

=:∆Y,g

= s̃tatY,g + ∆Y,g,

where

E
[
s̃tatY,g

]
=
∥∥U>vec((Y

(k)
tmix−1 − Y

(`)
tmix−1)>)

∥∥2

2
,

var
(
s̃tatY,g

)
≤ max

τ1,τ2
var(s̃tat

τ1,τ2
Y,g ) .

(
Γ2

maxκ
2
A

Ñ

)2

dK +
Γ2

maxκ
2
A

Ñ

∥∥Y (k)
tmix−1 − Y

(`)
tmix−1

∥∥2

F
,∣∣∆Y,g

∣∣ ≤ max
τ1,τ2
|∆τ1,τ2

Y,g | ≤ Γ2
max · poly

(
d, κA, log

Ttotal

δ

)
· ρtmix−1.

So far in Step 2, we have focused on the analysis of statY,g. We can easily adapt the argument to study statΓ,g as well;
the major difference is that, in Step 2.2, we should apply Lemmas C.4 and C.5 with (Γ̃(k), Γ̃(l)) = (Γ

(k)
tmix−1,Γ

(`)
tmix−1),

(W̃ (k), W̃ (l)) = (0,0), (Ã(k), Ã(l)) = (Id, Id), and subspaces {Ui} replaced by {Vi} instead. The final result is that, for
all 1 ≤ g ≤ G,

statΓ,g = s̃tatΓ,g + ∆Γ,g,

where

E
[
s̃tatΓ,g

]
=
∥∥V >vec((Γ

(k)
tmix−1 − Γ

(`)
tmix−1)>)

∥∥2

2
,

var
(
s̃tatΓ,g

)
.

(
Γ2

maxκ
2
A

Ñ

)2

dK +
Γ2

maxκ
2
A

Ñ

∥∥Γ(k)
tmix−1 − Γ

(`)
tmix−1

∥∥2

F
,∣∣∆Γ,g

∣∣ ≤ Γ2
max · poly

(
d, κA, log

Ttotal

δ

)
· ρtmix−1.

Step 3: analysis of the medians, and final results. Recall the following standard result on the concentration of medians
(or median-of-means in general; see Theorem 2 of (Lugosi & Mendelson, 2019)).
Proposition C.6 (Concentration of medians). Let X1, . . . XG be i.i.d. random variables with mean µ and variance σ2.
Then we have |median{Xg, 1 ≤ g ≤ G} − µ| ≤ 2σ with probability at least 1− e−c0G for some constant c0.

Notice that by construction, {s̃tatY,g}1≤g≤G are i.i.d. (and so are {s̃tatΓ,g}1≤g≤G). Applying Proposition C.6 to our case,
we know that if G & log(1/δ), then with probability at least 1− δ, the following holds:

• If k = `, i.e. the two trajectories are generated by the same LDS model, then

median{statΓ,g, 1 ≤ g ≤ G}+ median{statY,g, 1 ≤ g ≤ G}
≤ median{s̃tatΓ,g}+ median{s̃tatY,g}+ max

g
|∆Γ,g|+ max

g
|∆Y,g|

≤ 2

√
var(s̃tatΓ,g) + 2

√
var(s̃tatY,g) + Γ2

max · poly
(
d, κA, log

Ttotal

δ

)
· ρtmix−1

.
Γ2

maxκ
2
A

√
dK

Ñ
+ Γ2

max · poly
(
d, κA, log

Ttotal

δ

)
· ρtmix−1; (46)
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• On the other hand, if k 6= `, then

median{statΓ,g, 1 ≤ g ≤ G}+ median{statY,g, 1 ≤ g ≤ G}

≥ median{s̃tatΓ,g}+ median{s̃tatY,g} −
(

max
g
|∆Γ,g|+ max

g
|∆Y,g|

)
≥ E[s̃tatΓ,g] + E[s̃tatY,g]− 2

(√
var(s̃tatΓ,g) +

√
var(s̃tatY,g)

)
− Γ2

max · poly
(
d, κA, log

Ttotal

δ

)
· ρtmix−1

≥
∥∥∥V >vec((Γ

(k)
tmix−1 − Γ

(`)
tmix−1)>)

∥∥∥2

2
+
∥∥∥U>vec((Y

(k)
tmix−1 − Y

(`)
tmix−1)>)

∥∥∥2

2

− C0

(
Γ2

maxκ
2
A

√
dK

Ñ
+

√
Γ2

maxκ
2
A

Ñ

(
‖Γ(k)

tmix−1 − Γ
(`)
tmix−1‖F + ‖Y (k)

tmix−1 − Y
(`)
tmix−1‖F

))
− Γ2

max · poly
(
d, κA, log

Ttotal

δ

)
· ρtmix−1. (47)

We need to further simplify the result (47) for the k 6= ` case. According to (28) and (29), we have

‖Y (k) − Y (k)
tmix−1‖F ≤ Γmax

√
dκ3

Aρ
2(tmix−1) =: εmix,

‖Γ(k) − Γ
(k)
tmix−1‖F ≤ Γmax

√
dκ2

Aρ
2(tmix−1) ≤ εmix,

which implies that

‖Γ(k)
tmix−1 − Γ

(`)
tmix−1‖F ≤ ‖Γ(k) − Γ(`)‖F + 2εmix,∥∥∥V >vec

(
(Γ

(k)
tmix−1 − Γ

(`)
tmix−1)>

)∥∥∥2

2
≥ max

{
‖V >vec

(
(Γ(k) − Γ(`))>

)
‖2 − 2εmix, 0

}2

≥
∥∥∥V >vec

(
(Γ(k) − Γ(`))>

)∥∥∥2

2
− 4εmix

∥∥∥V >vec((Γ(k) − Γ(`))>)
∥∥∥

2

≥
∥∥∥V >vec

(
(Γ(k) − Γ(`))>

)∥∥∥2

2
− 4εmix‖Γ(k) − Γ(`)‖F.

We can do a similar analysis for ‖Y (k)
tmix−1 − Y

(`)
tmix−1‖F and ‖U>vec((Y

(k)
tmix−1 − Y

(`)
tmix−1)>)‖22. Moreover, we claim (and

prove later) that if the subspaces {Vi,Ui} satisfy the condition (25) in the theorem, then∥∥∥V >vec((Γ(k) − Γ(`))>)
∥∥∥2

2
+
∥∥∥U>vec((Y (k) − Y (`))>)

∥∥∥2

2
≥ 1

2

(
‖Γ(k) − Γ(`)‖2F + ‖Y (k) − Y (`)‖2F

)
. (48)

Putting these back to (47), we have for the k 6= ` case,

median{statΓ,g, 1 ≤ g ≤ G}+ median{statY,g, 1 ≤ g ≤ G}

≥
∥∥∥V >vec

(
(Γ(k) − Γ(`))>

)∥∥∥2

2
+
∥∥∥U>vec

(
(Y (k) − Y (`))>

)∥∥∥2

2

− 4εmix

(
‖Γ(k) − Γ(`)‖F + ‖Y (k) − Y (`)‖F

)
− C0

(
Γ2

maxκ
2
A

√
dK

Ñ
+

√
Γ2

maxκ
2
A

Ñ

(
‖Γ(k) − Γ(`)‖F + ‖Y (k) − Y (`)‖F + 4εmix

))
− Γ2

max · poly
(
d, κA, log

Ttotal

δ

)
· ρtmix−1

(i)

≥ 1

2

(
‖Γ(k) − Γ(`)‖2F + ‖Y (k) − Y (`)‖2F

)
− 0.01

(
‖Γ(k) − Γ(`)‖2F + ‖Y (k) − Y (`)‖2F

)
− C1

(
Γ2

maxκ
2
A

√
dK

Ñ
+

√
Γ2

maxκ
2
A

Ñ

√
‖Γ(k) − Γ(`)‖2F + ‖Y (k) − Y (`)‖2F

)
− Γ2

max · poly
(
d, κA, log

Ttotal

δ

)
· ρtmix−1
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(ii)

≥ 0.48
(
‖Γ(k) − Γ(`)‖2F + ‖Y (k) − Y (`)‖2F

)
− C1

(
Γ2

maxκ
2
A

√
dK

Ñ
+

√
Γ2

maxκ
2
A

Ñ

√
‖Γ(k) − Γ(`)‖2F + ‖Y (k) − Y (`)‖2F

)
, (49)

where (i) holds if tmix & 1
1−ρ log(( Γmax

∆Γ,Y
+ 2)dκA) so that εmix ≤ 10−3∆Γ,Y , and (ii) holds if tmix & 1

1−ρ log(( Γmax

∆Γ,Y
+

2)dκATtotal

δ ) so that Γ2
max · poly(d, κA, log Ttotal

δ ) · ρtmix−1 ≤ 10−3∆2
Γ,Y .

Putting (46) and (49) together, we can finally check that, if it further holds that Ñ � N/tmix & Γ2
maxκ

2
A

√
dK

∆2
Γ,Y

+ 1, then we
have with probability at least 1− δ,

median{statΓ,g}+ median{statY,g}

{
≤ 1

8∆2
Γ,Y if k = `,

≥ 3
8

(
‖Γ(k) − Γ(`)‖2F + ‖Y (k) − Y (`)‖2F

)
≥ 3

8∆2
Γ,Y if k 6= `.

This together with our choice of testing threshold τ ∈ [∆2
Γ,Y /8, 3∆2

Γ,Y /8] in Algorithm 3 implies correct testing of the two
trajectories {xt}, {zt}. Finally, taking the union bound over all pairs of trajectories inMclustering leads to correct pairwise
testing, which in turn implies exact clustering ofMclustering; this completes our proof of Theorem (B.2).

C.3.1. PROOF OF LEMMA C.4

We first assume |Ω1| = |Ω2| = N for simplicity. Recall that

stat =
〈
U>

1

|Ω1|
∑
t∈Ω1

vec
(
xt(xt

′)> − zt(zt′)>
)

︸ ︷︷ ︸
=:a

,U>
1

|Ω2|
∑
t∈Ω2

vec
(
xt(xt

′)> − zt(zt′)>
)

︸ ︷︷ ︸
=:b

〉
= 〈a, b〉,

where a, b ∈ RdK are i.i.d., and

E[a] = E
[
U>vec

(
xt(xt

′)> − zt(zt′)>
)]

= U>vec
(

(Ỹ (k) − Ỹ (l))>
)

= µk,l.

Therefore, we have the expectation
E[stat] =

〈
E[a],E[b]

〉
= ‖µk,l‖22.

It remains to compute the variance var(stat) = E[stat2]− E[stat]2, where

E[stat2] = E
[
(a>b)2

]
= Tr

(
E[bb>]E[aa>]

)
= Tr

(
E[aa>]2

)
. (50)

Here E[aa>] = E[a]E[a]> + cov(a), and since a is an empirical average of N i.i.d. random vectors, we have

cov(a) =
1

N
cov(f), where f := U>vec

(
xt(xt

′)> − zt(zt′)>
)
∈ RdK .

For now, we claim that

cov(f) = U>(Σ(k) + W̃ (k) ⊗ Γ̃(k) + Σ(`) + W̃ (l) ⊗ Γ̃(l))U = Σk,l, (51)

which will be proved soon later. Putting these back to (50), one has

E[aa>] = cov(a) + E[a]E[a]> =
1

N
Σk,l + µk,lµ

>
k,l,

E[aa>]2 =
1

N2
Σ2
k,l +

1

N
(Σk,lµk,lµ

>
k,l + µk,lµ

>
k,lΣk,l) + ‖µk,l‖22µk,lµ>k,l,

and finally

var(stat) = E[stat2]− E[stat]2 = Tr(E[aa>]2)− ‖µk,l‖42 =
1

N2
Tr(Σ2

k,l) +
2

N
µ>k,lΣk,lµk,l,

which completes our calculation of the variance for the case of |Ω1| = |Ω2| = N . For the more general case where
(without loss of generality) |Ω1| = N ≤ |Ω2|, we simply need to modify the equation (50) to an inequality E[stat2] =
Tr(E[bb>]E[aa>]) ≤ Tr(E[aa>]2), and the remaining analysis is the same. This finishes the proof of Lemma C.4.
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Proof of (51). For notational simplicity, we drop the subscripts t in the definition of f . Then we have f = U>vec
(
x(x′)>−

z(z′)>
)
, and hence

cov(f) = U>cov
(

vec
(
x(x′)− z(z′)>

))
U = U>

(
cov
(
vec(x(x′)>)

)
+ cov

(
vec(z(z′)>)

))
U , (52)

where the second equality uses the independence between (x,x′) and (z, z′).

Let us focus on cov
(
vec(x(x′)>)

)
. For notational simplicity, for now we rewrite Ã(k), W̃ (k), Γ̃(k) as A,W ,Γ. Define

y := Γ−1/2x ∼ N (0, Id), and recall that x′ = Ax + w where w ∼ N (0,W ). Using the fact that vec(ABC) =
(C> ⊗A)vec(B) for any matrices of compatible shape, we have

g := vec
(
x
(
x′
)>)

= vec(xx>A>) + vec(xw>)

= (A⊗ Id)vec(xx>) + vec(xw>) = (A⊗ Id)vec(Γ1/2yy>Γ1/2) + vec(xw>)

= (A⊗ Id)(Γ1/2 ⊗ Γ1/2)vec(yy>)︸ ︷︷ ︸
=:g1

+ vec(xw>)︸ ︷︷ ︸
=:g2

= g1 + g2.

Note that E[g2] = 0, E[g] = E[g1], and E[g1g
>
2 ] = 0. Hence

cov(g) = E[gg>]− E[g]E[g]> = cov(g1) + E[g2g
>
2 ]. (53)

For the second term on the right-hand side, we have

g2 = vec(xw>) =

w1x
...

wdx

 , E[g2g
>
2 ] = E

[
[wiwjxx

>]1≤i,j≤d

]
= W ⊗ Γ;

as for the first term, we claim (and prove soon later) that

cov
(

vec(yy>)
)

= Id2 + P , (54)

which implies that

cov(g1) = cov
(

(A⊗ Id)(Γ1/2 ⊗ Γ1/2)vec(yy>)
)

= (A⊗ Id)(Γ1/2 ⊗ Γ1/2)cov
(

vec(yy>)
)

(Γ1/2 ⊗ Γ1/2)(A> ⊗ Id)

= (A⊗ Id)(Γ1/2 ⊗ Γ1/2)(Id2 + P )(Γ1/2 ⊗ Γ1/2)(A> ⊗ Id).

Putting these back to (53), one has

cov
(
vec(x(x′)>)

)
= cov(g) = (A⊗ Id)(Γ1/2 ⊗ Γ1/2)(Id2 + P )(Γ1/2 ⊗ Γ1/2)(A> ⊗ Id) +W ⊗ Γ,

which is equal to Σ(k) + W̃ (k) ⊗ Γ̃(k) if we return to the original notation of Ã(k), W̃ (k), Γ̃(k). By a similar analysis, we
can show that cov

(
vec(z(z′)>)

)
= Σ(`) + W̃ (l) ⊗ Γ̃(l). Putting these back to (52) finishes our calculation of cov(f).

Finally, it remains to prove (54). Denote

u := vec(yy>) =

y1y
...

ydy

 .
Then E[u] = vec(Id), and thus E[u]E[u]> = [eie

>
j ]1≤i,j≤d. Next, consider

E[uu>] = E
[
[yiyjyy

>]1≤i,j≤d

]
.
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• For i = j,

E
[
y2
i yky`

]
=


3 if k = ` = i,

1 if k = ` 6= i,

0 if k 6= `,

and hence E[y2
i yy

>] = Id + 2eie
>
i .

• For i 6= j,

E
[
yiyjyky`

]
=

{
1 if k = i, ` = j or k = j, ` = i,

0 otherwise,

and hence E[yiyjyy
>] = eie

>
j + eje

>
i .

Putting together, the (i, j)-th d × d block of cov(u) = E[uu>] − E[u]E[u]> is equal to Id + eie
>
i if i = j, and eje>i

if i 6= j. In other words, cov(vec(yy>)) = cov(u) = Id2 + P , where P = [eje
>
i ]1≤i,j≤d is a symmetric permutation

matrix; this completes our proof of (54).

C.3.2. PROOF OF LEMMA C.5

First, it holds that

‖µk,l‖22 =

d∑
i=1

∥∥∥Ui>((Ỹ (k))i − (Ỹ (l))i
)∥∥∥2

2
≤

d∑
i=1

∥∥∥(Ỹ (k))i − (Ỹ (l))i

∥∥∥2

2
= ‖Ỹ (k) − Ỹ (l)‖2F,

which gives the upper bound on E[stat] = ‖µk,l‖22. For the lower bound, the triangle inequality tells us that∥∥∥Ui>((Ỹ (k))i − (Ỹ (l))i
)∥∥∥

2
=
∥∥∥UiUi>(Ỹ (k))i −UiUi>(Ỹ (l))i

∥∥∥
2
≥ max

{
‖(Ỹ (k))i − (Ỹ (l))i‖2 − 2ε, 0

}
,

which implies that ∥∥∥Ui>((Ỹ (k))i − (Ỹ (l))i
)∥∥∥2

2
≥ ‖(Ỹ (k))i − (Ỹ (l))i‖22 − 4ε‖(Ỹ (k))i − (Ỹ (l))i‖2,

and hence

‖µk,l‖22 =

d∑
i=1

∥∥∥Ui>((Ỹ (k))i − (Ỹ (l))i
)∥∥∥2

2
≥

d∑
i=1

‖(Ỹ (k))i − (Ỹ (l))i‖22 − 4ε

d∑
i=1

‖(Ỹ (k))i − (Ỹ (l))i‖2

= ‖Ỹ (k) − Ỹ (l)‖2F − 4ε

d∑
i=1

‖(Ỹ (k))i − (Ỹ (l))i‖2.

It remains to upper bound Σk,l. Recall the definition

Σk,l = U>
(
Σ(k) + W̃ (k) ⊗ Γ̃(k) + Σ(`) + W̃ (l) ⊗ Γ̃(l)

)
U .

We will utilize the following basic facts: (1) for square matrices A and B with eigenvalues {λi} and {µj} respectively,
their Kronecker product A⊗B has eigenvalues {λiµj}; (2) For matricesA,B,C,D of compatible shapes, it holds that
(A⊗B)(C ⊗D) = (AC)⊗ (BD). These imply that

0 4 W̃ (k) ⊗ Γ̃(k) 4 ‖W̃ (k)‖‖Γ̃(k)‖Id2 4WmaxΓmaxId2 ,

and

0 4 Σ(k) =
(
Ã(k) ⊗ Id

)(
(Γ̃(k))1/2 ⊗ (Γ̃(k))1/2

)(
Id2 + P

)(
(Γ̃(k))1/2 ⊗ (Γ̃(k))1/2

)(
(Ã(k))> ⊗ Id

)
4 2
(
Ã(k) ⊗ Id

)(
(Γ̃(k))1/2 ⊗ (Γ̃(k))1/2

)(
(Γ̃(k))1/2 ⊗ (Γ̃(k))1/2

)(
(Ã(k))> ⊗ Id

)
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= 2
(
Ã(k) ⊗ Id

)(
Γ̃(k) ⊗ Γ̃(k)

)(
(Ã(k))> ⊗ Id

)
4 2Γ2

max

(
Ã(k) ⊗ Id

)(
(Ã(k))> ⊗ Id

)
= 2Γ2

max

(
Ã(k)(Ã(k))>

)
⊗ Id 4 2Γ2

maxκ
2
AId2 .

Using the conditions Wmax ≤ Γmax and κA ≥ 1, we have

Σ(k) + W̃ (k) ⊗ Γ̃(k) 4 (WmaxΓmax + 2Γ2
maxκ

2
A)Id2 4 3Γ2

maxκ
2
AId2 .

We can upper bound Σ(`) + W̃ (l) ⊗ Γ̃(l) by the same analysis. As a result,

Σk,l 4 U
>(6Γ2

maxκ
2
AId2)U = 6Γ2

maxκ
2
AU
>U = 6Γ2

maxκ
2
AIdK ,

which finishes the proof of Lemma C.5.

C.3.3. PROOF OF (48)

Let ε be the right-hand side of the condition (25) on the subspaces. Then, applying the second point of Lemma C.5 (with
Ỹ (k) = Y (k), Ỹ (l) = Y (`)) tells us that∥∥∥U>vec

(
(Y (k) − Y (`))>

)∥∥∥2

2
≥
∥∥Y (k) − Y (`)

∥∥2

F
− 4ε

d∑
i=1

∥∥(Y (k))i − (Y (`))i
∥∥

2

≥ ‖Y (k) − Y (`)‖2F − 4ε
√
d‖Y (k) − Y (`)‖F,

where the last line follows from the Cauchy-Schwarz inequality:

d∑
i=1

∥∥(Y (k))i − (Y (`))i
∥∥

2
≤

√√√√d

d∑
i=1

∥∥(Y (k))i − (Y (`))i
∥∥2

2
=
√
d
∥∥Y (k) − Y (`)

∥∥
F
.

We can lower bound ‖V >vec((Γ(k) − Γ(`))>)‖22 similarly. Putting pieces together, we have∥∥∥V >vec
(
(Γ(k) − Γ(`))>

)∥∥∥2

2
+
∥∥∥U>vec

(
(Y (k) − Y (`))>

)∥∥∥2

2

≥ ‖Γ(k) − Γ(`)‖2F + ‖Y (k) − Y (`)‖2F − 4ε
√
d
(
‖Γ(k) − Γ(`)‖F + ‖Y (k) − Y (`)‖F

)
≥ 1

2

(
‖Γ(k) − Γ(`)‖2F + ‖Y (k) − Y (`)‖2F

)
,

where the last inequality is due to the assumption ε . ∆Γ,Y /
√
d. This completes our proof of (48).

C.4. Proof of Theorem B.3

It suffices to prove the error bounds for one specific value of k, and then take the union bound over 1 ≤ k ≤ K. For
notational convenience, in this proof we rewrite T (k)

total,A
(k), Â(k),W (k), Ŵ (k) as T,A, Â,W , Ŵ , respectively. We will

investigate the close-form solution Â, and prepare ourselves with a self-normalized concentration bound; this will be helpful
in finally proving the error bounds for ‖Â−A‖ and ‖Ŵ −W ‖.

Step 1: preparation. Recall the least-squares solution

Â =
( ∑
m∈Ck

∑
0≤t≤Tm−1

xm,t+1xm,t
>
)( ∑

m∈Ck

∑
0≤t≤Tm−1

xm,txm,t
>
)−1

.

Using the notation

X :=


...

xm,t
>

...


0≤t≤Tm−1,m∈Ck

∈ RT×d, X+ :=


...

xm,t+1
>

...

 , N :=


...

wm,t
>

...

 ,
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we have
X>+ = AX> +N>, Â = X>+X(X>X)−1 = A+N>X(X>X)−1,

namely
∆A := Â−A = N>X(X>X)−1. (55)

We will utilize the following matrix form of self-normalized concentration; see Lemma C.4 of (Kakade et al., 2020).

Lemma C.7 (Self-normalized concentration, matrix form). Consider filtrations {Ft}, and random vectors {xt, zt} sat-
isfying xt ∈ Ft−1 and zt|Ft−1 ∼ N (0, Id). Let V ∈ Rd×d be a fixed, symmetric, positive definite matrix, and denote
V T :=

∑T
t=1 xtxt

> + V . Then with probability at least 1− δ,∥∥∥∥(V T )−1/2
( T∑
t=1

xtzt
>
)∥∥∥∥ .

√
d+ log

1

δ
+ log

det(V T )

det(V )
.

Step 2: estimation error of Â. Let us rewrite (55) as

∆>A = (X>X)−1/2 · (X>X)−1/2X>N . (56)

It is obvious thatX>X plays a crucial role. Recall from Lemma C.1 that with probability at least 1− δ, ‖xm,t‖2 ≤ Dvec

for some Dvec .
√

Γmax · poly(d, κA, log(Ttotal/δ)). Then trivially we have the upper bound

X>X 4 D2
vecT · Id =: Vup.

For a lower bound, we claim (and prove later) that with probability at least 1− δ,

X>X <
1

5
T ·W =: Vlb, provided that T & κ2

wd · log
( Γmax

Wmin

κAdTtotal

δ

)
. (57)

Now we are ready to control ‖Â−A‖ = ‖∆A‖. From (56), we have

‖∆A‖ ≤ ‖(X>X)−1/2‖ · ‖(X>X)−1/2X>N‖.

First, the lower bound (57) onX>X tells us that ‖(X>X)−1/2‖ . 1/
√
T · λmin(W ). Moreover, applying Lemma C.7

with V = Vlb, one has with probability at least 1− δ,

‖(X>X)−1/2X>N‖ . ‖(X>X + V )−1/2X>N‖ . ‖W 1/2‖

√
d+ log

1

δ
+ log

det(Vup + Vlb)

det(Vlb)

.
√
‖W ‖

√
d · log

( Γmax

Wmin

dκATtotal

δ

)
. (58)

Putting these together, we have

‖∆A‖ .
1√

T · λmin(W )
·
√
‖W ‖

√
d · log

( Γmax

Wmin

dκATtotal

δ

)
.

√
d · κw
T

log
( Γmax

Wmin

dκATtotal

δ

)
,

which proves our upper bound for ‖Â−A‖ in the theorem.

Step 3: estimation error of Ŵ . By the definition of ŵm,t = xm,t+1 − Âxm,t = wm,t −∆Axm,t, we have

N̂ :=


...

ŵ>m,t
...

 ∈ RT×d,

N̂> = N> −∆AX
> = N> −N>X(X>X)−1X> = N>

(
IT −X(X>X)−1X>

)
.
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Notice that IT −X(X>X)−1X> is a symmetric projection matrix. Therefore,

Ŵ =
1

T
N̂>N̂ =

1

T
N>

(
IT −X(X>X)−1X>

)
N ,

and thus
Ŵ −W =

( 1

T
N>N −W

)
− 1

T
N>X(X>X)−1X>N . (59)

The first term on the right-hand side can be controlled by a standard result for covariance estimation (see Proposition D.1):
with probability at least 1− δ, ∥∥∥ 1

T
N>N −W

∥∥∥ . ‖W ‖

√
d+ log 1

δ

T
.

As for the second term, we rewrite it as

1

T
N>X(X>X)−1X>N =

1

T

(
(X>X)−1/2X>N

)>(
(X>X)−1/2X>N

)
.

Applying our earlier self-normalized concentration bound (58), we have

∥∥∥ 1

T
N>X(X>X)−1X>N

∥∥∥ .
‖W ‖d · log( Γmax

Wmin

dκATtotal

δ )

T
.

Putting these back to (59), we have

‖Ŵ −W ‖ ≤ ‖ 1

T
N>N −W ‖+ ‖ 1

T
N>X(X>X)−1X>N‖

. ‖W ‖

√
d+ log 1

δ

T
+ ‖W ‖

d · log( Γmax

Wmin

dκATtotal

δ )

T
. ‖W ‖

√
d · log( Γmax

Wmin

dκATtotal

δ )

T
,

where the last inequality uses T & d · log( Γmax

Wmin

dκATtotal

δ ). This finishes our proof of Theorem B.3.

C.4.1. PROOF OF (57)

We start with the following decomposition:

X>X =
∑
m∈Ck

∑
0≤t≤Tm−1

xm,txm,t
> <

∑
m∈Ck

∑
1≤t≤Tm−1

xm,txm,t
>

=
∑
m∈Ck

∑
0≤t≤Tm−2

xm,t+1xm,t+1
> =

∑
m∈Ck

∑
0≤t≤Tm−2

(Axm,t +wm,t)(Axm,t +wm,t)
>

=
∑
m∈Ck

∑
0≤t≤Tm−2

wm,twm,t
>

︸ ︷︷ ︸
:=P

+
∑
m∈Ck

∑
0≤t≤Tm−2

(
Axm,txm,t

>A> +Axm,twm,t
> +wm,txm,t

>A>
)

︸ ︷︷ ︸
=:Q

= P +Q. (60)

Lower bound for P . By Proposition D.1, we have with probability at least 1− δ,

‖ 1

T − |Ck|
P −W ‖ . ‖W ‖

√
d+ log 1

δ

T
. λmin(W ) · Id, provided that T & κ2

w(d+ log
1

δ
).

As a result, we have 1
T−|Ck|P < 1

2W , which implies P < 1
4T ·W .
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Lower bound forQ. Let Nε be an ε-net of the unit sphere Sd−1 (where the value of 0 < ε < 1 will be specified later),
and let π be the projection onto Nε. Recall the standard result that |Nε| ≤ (9/ε)d. Moreover, for any v ∈ Sd−1, denote
∆v := v − π(v), which satisfies ‖∆v‖2 ≤ ε. Then we have

λmin(Q) = inf
v∈Sd−1

v>Qv = inf
v∈Sd−1

(π(v) + ∆v)>Q(π(v) + ∆v)

≥ inf
v∈Sd−1

π(v)>Qπ(v)− (2ε+ ε2)‖Q‖ ≥ inf
v∈Nε

v>Qv − 3ε‖Q‖. (61)

For ‖Q‖, we simply use a crude upper bound, based on the boundedness of {‖xm,t‖2} (Lemma C.1): with probability at
least 1− δ, one has

‖Q‖ ≤
∑
m∈Ck

∑
0≤t≤Tm−2

(
‖Axm,t‖22 + 2‖Axm,t‖2‖wm,t‖2

)
. Γmax · poly

(
κA, d, Ttotal,

1

δ

)
. (62)

Next, we lower bound infv∈Nε v
>Qv. First, consider a fixed v ∈ Nε; denoting ym,t := Axm,t and um,t :=

W−1/2wm,t ∼ N (0, Id), we have

v>Qv =
∑
m∈Ck

∑
0≤t≤Tm−2

(v>ym,t)
2 + 2

∑
m∈Ck

∑
0≤t≤Tm−2

v>ym,t · u>m,tW 1/2v,

where u>m,tW
1/2v ∼ N (0,v>Wv). Lemma D.2 (the scalar version of self-normalized concentration) tells us that, for

any fixed λ > 0, with probability at least 1− δ,∑
m∈Ck

∑
0≤t≤Tm−2

v>ym,t · u>m,tW 1/2v ≥ −
√
v>Wv

(λ
2

∑
m∈Ck

∑
0≤t≤Tm−2

(v>ym,t)
2 +

1

λ
log

1

δ

)
≥ −

√
‖W ‖

(λ
2

∑
m∈Ck

∑
0≤t≤Tm−2

(v>ym,t)
2 +

1

λ
log

1

δ

)
.

Replacing δ with δ/(9/ε)d and taking the union bound, we have with probability at least 1− δ, for any v ∈ Nε,

v>Qv ≥
∑
m∈Ck

∑
0≤t≤Tm−2

(v>ym,t)
2 −

√
‖W ‖

(
λ
∑
m∈Ck

∑
0≤t≤Tm−2

(v>ym,t)
2 +

2

λ

(
d · log

9

ε
+ log

1

δ

))
=
(
1−

√
‖W ‖λ

) ∑
m∈Ck

∑
0≤t≤Tm−2

(v>ym,t)
2 −

√
‖W ‖ 2

λ

(
d · log

9

ε
+ log

1

δ

)
.

With the choice of λ = 1/
√
‖W ‖, this implies

v>Qv ≥ −2‖W ‖(d · log
9

ε
+ log

1

δ
), for all v ∈ Nε. (63)

Putting (62) and (63) back to (61), we have with probability at least 1− δ,

λmin(Q) ≥ inf
v∈Nε

v>Qv − 3ε‖Q‖ ≥ −C0

(
‖W ‖

(
d · log

9

ε
+ log

1

δ

)
+ εΓmax · poly

(
κA, d, Ttotal,

1

δ

))
for some universal constant C0 > 0.

Putting things together. Recall the decomposition X>X < P + Q in (60). We have already shown that if T &
κ2
w(d+ log 1

δ ), then with probability at least 1− δ,

X>X < P +Q <
1

4
T ·W − C0

(
‖W ‖

(
d · log

9

ε
+ log

1

δ

)
+ εΓmax · poly

(
κA, d, Ttotal,

1

δ

))
Id.

It is easy to check that, if we further choose

ε � 1

poly(κA, d, Ttotal,
1
δ ,

Γmax

Wmin
)
, T & κ2

wd · log
( Γmax

Wmin

κAdTtotal

δ

)
,

then we haveX>X < 1
5T ·W , which finishes the proof of (57).
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C.5. Proof of Theorem B.4

In this proof, we show the correct classification of one short trajectory {xm,t}0≤t≤Tm (with true label km) for some
m ∈Mclassification; then it suffices to take the union bound to prove the correct classification of all trajectories inMclassification.
For notational simplicity, we drop the subscript m and rewrite {xm,t}, Tm, km as {xt}, T , k, respectively. The basic idea
of this proof is to show that

L(Â(`), Ŵ (`)) > L(Â(k), Ŵ (k)) (64)

for any incorrect label ` 6= k, where L is the loss function defined in (23) and used by Algorithm 5 for classification. Our
proof below is simply a sequence of arguments that finally transform (64) into a sufficient condition in terms of the coarse
model errors εA, εW and short trajectory length T .

Before we proceed, we record a few basic facts that will be useful later. First, the assumption ‖Ŵ (k) −W (k)‖ ≤ εW ≤
0.1Wmin implies that λmin(Ŵ (k)) ≥ 0.9λmin(W (k)), and Ŵ (k) is well conditioned with κ(Ŵ (k)) . κ(W (k)) ≤ κw.
Morever, by Lemma C.1, with probability at least 1− δ, we have for all 0 ≤ t ≤ T ,

• In Case 0, ‖xt‖2 ≤ Dx .
√

Γmax(d+ log Ttotal

δ ), provided that T & 1;

• In Case 1, ‖xt‖2 ≤ Dx . κA

√
Γmax(d+ log Ttotal

δ ), provided that T & 1
1−ρ log(2κA).

Now we are ready to state our proof. Throughout our analyses, we will make some intermediate claims, whose proofs will
be deferred to the end of this subsection.

Step 1: a sufficient condition for correct classification. In the following, we prove that for a fixed ` 6= k, the condition
(64) holds with high probability; at the end of the proof, we simply take the union bound over ` 6= k. Using xt+1 =
A(k)xt +wt where wt ∼ N (0,W (k)), we can rewrite the loss function L as

L(A,W ) = T · log det(W ) +

T−1∑
t=0

wt
>W−1wt

+

T−1∑
t=0

xt
>(A(k) −A)>W−1(A(k) −A)xt + 2

T−1∑
t=0

wt
>W−1(A(k) −A)xt.

After some basic calculation, (64) can be equivalently written as

L(Â(`), Ŵ (`))− L(Â(k), Ŵ (k)) = (A) + (B)− (C) > 0,

where (A) := T ·
(

log det(Ŵ (`))− log det(Ŵ (k))
)

+

T−1∑
t=0

wt
>
(

(Ŵ (`))−1 − (Ŵ (k))−1
)
wt

(B) :=
( T−1∑
t=0

xt
>(A(k) − Â(`))>(Ŵ (`))−1(A(k) − Â(`))xt + 2

T−1∑
t=0

wt
>(Ŵ (`))−1(A(k) − Â(`))xt

)
(C) :=

( T−1∑
t=0

xt
>(A(k) − Â(k))>(Ŵ (k))−1(A(k) − Â(k))xt + 2

T−1∑
t=0

wt
>(Ŵ (k))−1(A(k) − Â(k))xt

)
Step 2: a lower bound for (A) + (B) − (C). Intuitively, we expect that (A) + (B) should be large because the LDS
models (A(k),W (k)) and (A(`),W (`)) are well separated, while (C) should be small if (Â(k), Ŵ (k)) ≈ (A(k),W (k)).
More formally, we claim that the following holds for some universal constants C1, C2, C3 > 0:

• With probability at least 1− δ,

(A) ≥ T ·
[

log det(Ŵ (`))− log det(Ŵ (k)) + Tr
(

(W (k))1/2
(
(Ŵ (`))−1 − (Ŵ (k))−1

)
(W (k))1/2

)]
− C1

√
T
∥∥∥(W (k))1/2

(
(Ŵ (`))−1 − (Ŵ (k))−1

)
(W (k))1/2

∥∥∥
F

log
1

δ
; (65)
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• With probability at least 1− δ,

(B) ≥ C2

(
T
‖A(k) − Â(`)‖2F

κw,cross
− κwκw,cross log

1

δ

)
, (66)

provided that T & κ2
w log2(1/δ);

• With probability at least 1− δ,

(C) ≤ C3

(
T
D2
x‖A(k) − Â(k)‖2

Wmin
+ κw log

1

δ

)
, (67)

provided that T & 1 (under Case 0) or T & 1
1−ρ log(2κA) (under Case 1).

Putting these together, we have with probability at least 1− δ,

(A) + (B)− (C) ≥ C4 · T ·
[

log
det(Ŵ (`))

det(Ŵ (k))
+ Tr

(
W (k)

(
(Ŵ (`))−1 − (Ŵ (k))−1

))
+
‖A(k) − Â(`)‖2F

κw,cross
− D2

x‖A(k) − Â(k)‖2

Wmin

]
− C5

[√
T
∥∥∥(W (k))1/2

(
(Ŵ (`))−1 − (Ŵ (k))−1

)
(W (k))1/2

∥∥∥
F

+ κwκw,cross

]
log

1

δ

for some universal constants C4, C5 > 0, provided that T & κ2
w log2 1

δ (under Case 0), or T & κ2
w log2 1

δ + 1
1−ρ log(2κA)

(under Case 1). Now we have a lower bound of (A) + (B)− (C) as an order-T term minus a low-order term. Therefore,
to show (A) + (B)− (C) > 0, it suffices to prove that (a) the leading factor of order-T term is positive and large, and (b)
the low-order term is negligible compared with the order-T term. More specifically, under the assumption that the coarse
models {Â(j), Ŵ (j)} satisfy ‖Â(j) −A(j)‖ ≤ εA, ‖Ŵ (j) −W (j)‖ ≤ εW ≤ 0.1Wmin for all 1 ≤ j ≤ K, we make the
following claims:

• (Order-T term is large.) Define the leading factor D̂k,` of the order-T term and a related parameter Dk,` as follows:

D̂k,` := log
det(Ŵ (`))

det(Ŵ (k))
+ Tr

(
W (k)

(
(Ŵ (`))−1 − (Ŵ (k))−1

))
+
‖A(k) − Â(`)‖2F

κw,cross
− D2

x‖A(k) − Â(k)‖2

Wmin
,

Dk,` :=
1

κw,cross

(
‖W (k) −W (`)‖2F

W 2
max

+ ‖A(k) −A(`)‖2F
)

&
∆2
A,W

κw,cross
, (68)

where the last inequality follows from Assumption 3.1. They are related in the sense that

Dk,` . D̃k,` := log
det(W (`))

det(W (k))
+ Tr

(
W (k)

(
(W (`))−1 − (W (k))−1

))
+
‖A(k) −A(`)‖2F

κw,cross
, (69)

where D̃k,` is defined in the same way as D̂k,`, except that the coarse models are replaced with the accurate ones;
moreover, we have

Dk,` . D̂k,`, provided that εA .

√
WminDk,`

D2
x

, εW .Wmin

√
Dk,`

d
. (70)

• (Low-order term is negligible.) With (70) in place, we have

(A) + (B)− (C)

≥ C6T ·Dk,` − C5

[√
T
∥∥∥(W (k))1/2

(
(Ŵ (`))−1 − (Ŵ (k))−1

)
(W (k))1/2

∥∥∥
F

+ κwκw,cross

]
log

1

δ
. (71)

We claim that

if T &

(
κ5
w,cross

Dk,`
+ 1

)
log2 1

δ
, then (A) + (B)− (C) ≥ C7T ·Dk,` > 0. (72)
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Step 3: putting things together. So far, we have proved that for a short trajectory generated by (A(k),W (k)) and for a
fixed ` 6= k, it holds with probability at least 1− δ that L(Â(`), Ŵ (`)) > L(Â(k), Ŵ (k)), provided that

εA .

√
WminDk,`

D2
x

, εW .Wmin ·min
{

1,

√
Dk,`

d

}
, T &


(
κ2
w +

κ5
w,cross

Dk,`

)
log2 1

δ for Case 0,(
κ2
w +

κ5
w,cross

Dk,`

)
log2 1

δ + 1
1−ρ log(2κA) for Case 1.

Plugging in the relation Dk,` & ∆2
A,W /κw,cross and Dx .

√
Γmax(d+ log Ttotal

δ ) (for Case 0) or Dx .

κA

√
Γmax(d+ log Ttotal

δ ) (for Case 1), the above conditions become

For Case 0: εA .

√
Wmin∆2

A,W

Γmaxκw,cross(d+ log Ttotal

δ )
, εW .Wmin ·min

{
1,

∆A,W√
κw,crossd

}
,

T &
(
κ2
w +

κ6
w,cross

∆2
A,W

)
log2 1

δ
;

For Case 1: εA .

√
Wmin∆2

A,W

Γmaxκw,crossκ2
A(d+ log Ttotal

δ )
, εW .Wmin ·min

{
1,

∆A,W√
κw,crossd

}
,

T &
(
κ2
w +

κ6
w,cross

∆2
A,W

)
log2 1

δ
+

1

1− ρ
log(2κA).

Finally, taking the union bound over all ` 6= k as well as over all trajectories in Mclassification finishes the proof of
Theorem B.4.

C.5.1. PROOF OF (65).

Since wt
i.i.d.∼ N (0,W (k)), we have

T−1∑
t=0

wt
>((Ŵ (`))−1 − (Ŵ (k))−1

)
wt = z>Mz,

where z ∼ N (0, ITd), and M ∈ RTd×Td is a block-diagonal matrix with Q := (W (k))1/2((Ŵ (`))−1 −
(Ŵ (k))−1)(W (k))1/2 ∈ Rd×d as its diagonal blocks. Therefore, by the Hanson-Wright inequality (Theorem 6.2.1
of (Vershynin, 2018)), we have

P
(∣∣∣z>Mz − E[z>Mz]

∣∣∣ ≥ u) ≤ 2 exp

(
− cmin

{ u2

‖M‖2F
,

u

‖M‖

})
,

where ‖M‖2F = T‖Q‖2F, ‖M‖ = ‖Q‖, and E[z>Mz] = Tr(M) = T · Tr(Q). Choosing u &
√
T‖Q‖F log 1

δ , we have
with probability at least 1−δ, |z>Mz−T ·Tr(Q)| ≤ C1

√
T‖Q‖F log 1

δ , which immediately leads to our lower bound (65)
for (A).

C.5.2. PROOF OF (66).

Denote ut = (W (k))−1/2wt ∼ N (0, Id) and yt = (W (k))1/2(Ŵ (`))−1(A(k) − Â(`))xt. Then we have

(B) =

T−1∑
t=0

xt
>(A(k) − Â(`))>(Ŵ (`))−1(A(k) − Â(`))xt + 2

T−1∑
t=0

ut
>yt.

By Lemma D.2, we have with probability at least 1− δ,
∑T−1
t=0 ut

>yt ≥ −(λ2
∑T−1
t=0 ‖yt‖22 + 1

λ log 2
δ ) for any fixed λ > 0.

This implies that

(B) ≥
T−1∑
t=0

xt
>(A(k) − Â(`))>(Ŵ (`))−1(A(k) − Â(`))xt − λ

T−1∑
t=0

yt
>yt −

2

λ
log

2

δ
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=

T−1∑
t=0

xt
>(A(k) − Â(`))>

(
(Ŵ (`))−1 − λ · (Ŵ (`))−1W (k)(Ŵ (`))−1

)
(A(k) − Â(`))xt −

2

λ
log

2

δ
.

Choosing λ = 0.05/(κwκw,cross), we have λ · (Ŵ (`))−1W (k)(Ŵ (`))−1 4 0.1(Ŵ (`))−1, and thus

(B) ≥ 0.9

T−1∑
t=0

xt
>(A(k) − Â(`))>(Ŵ (`))−1(A(k) − Â(`))xt − 40κwκw,cross log

2

δ

≥ 0.9λmin

(
(Ŵ (`))−1

) T−1∑
t=0

xt
>(A(k) − Â(`))>(A(k) − Â(`))xt − 40κwκw,cross log

2

δ
. (73)

Now it remains to lower bound
∑T−1
t=0 xt

>∆xt, where ∆ := ∆>A∆A and ∆A := A(k) − Â(`). Since ∆ < 0, we have

T−1∑
t=0

xt
>∆xt ≥

T−2∑
t=0

xt+1
>∆xt+1 =

T−2∑
t=0

(A(k)xt +wt)
>∆(A(k)xt +wt)

=

T−2∑
t=0

wt
>∆wt︸ ︷︷ ︸

(i)

+

T−2∑
t=0

xt
>A(k)>∆A(k)xt + 2

T−2∑
t=0

wt
>∆A(k)xt︸ ︷︷ ︸

(ii)

. (74)

We can lower bound (i) by the Hanson-Wright inequality, similar to our previous proof of (65); the result is that, with
probability at least 1− δ, one has

(i) ≥ T · Tr
(

(W (k))1/2∆(W (k))1/2
)
− C0

√
T
∥∥(W (k))1/2∆(W (k))1/2

∥∥
F

log
1

δ
.

To lower bound (ii), we apply Lemma D.2, which shows that with probability at least 1− δ,∣∣∣∣ T−2∑
t=0

wt
>∆A(k)xt

∣∣∣∣ ≤ λ

2

T−2∑
t=0

xt
>(A(k))>∆W (k)∆A(k)xt +

1

λ
log

2

δ
,

for any fixed λ > 0, hence

(ii) ≥
T−2∑
t=0

xt
>A(k)>(∆− λ ·∆W (k)∆)A(k)xt −

2

λ
log

2

δ
.

Recall ∆ = ∆>A∆A, and thus ∆ − λ · ∆W (k)∆ = ∆>A(Id − λ · ∆AW
(k)∆>A)∆A < 0 if we choose λ =

1/(‖W (k)‖‖∆A‖2) = 1/(‖W (k)‖‖∆‖); this implies that

(ii) ≥ − 2

λ
log

2

δ
= −2‖W (k)‖‖∆‖ log

2

δ
.

Putting these back to (74), we have

T−1∑
t=0

xt
>∆xt ≥ (i) + (ii)

≥ T · Tr
(

(W (k))1/2∆(W (k))1/2
)
− C0

√
T
∥∥(W (k))1/2∆(W (k))1/2

∥∥
F

log
1

δ
− 2‖W (k)‖‖∆‖ log

2

δ

≥ T · λmin(W (k))Tr(∆>A∆A)− C0

√
T‖W (k)‖‖∆>A∆A‖F log

1

δ
− 2‖W (k)‖‖∆>A∆A‖ log

2

δ

≥ T · λmin(W (k))‖A(k) − Â(`)‖2F ·
(

1− C0√
T
κ(W (k)) log

1

δ
− 2

T
κ(W (k)) log

2

δ

)
≥ 0.9T · λmin(W (k))‖A(k) − Â(`)‖2F,
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where the last inequality holds if T & κ2
w log2 1

δ .

Going back to (73), we have

(B) ≥ 0.9λmin((Ŵ (`))−1)

T−1∑
t=0

xt
>∆xt − 40κwκw,cross log

2

δ

≥ 0.81T · λmin((Ŵ (`))−1)λmin(W (k))‖A(k) − Â(`)‖2F − 40κwκw,cross log
2

δ

≥ 0.7T
‖A(k) − Â(`)‖2F

κw,cross
− 40κwκw,cross log

2

δ
,

which finishes the proof of (66).

C.5.3. PROOF OF (67).

Denote ∆ = A(k) − Â(k), ut = (W (k))−1/2wt ∼ N (0, Id) and yt = (W (k))1/2(Ŵ (k))−1∆xt. Then one has

(C) =

T−1∑
t=0

xt
>∆>(Ŵ (k))−1∆xt + 2

T−1∑
t=0

wt
>(Ŵ (k))−1∆xt =

T−1∑
t=0

xt
>∆>(Ŵ (k))−1∆xt + 2

T∑
t=1

ut
>yt.

By Lemma D.2, we have with probability at least 1 − δ,
∑T−1
t=0 ut

>yt ≤ λ
2

∑T−1
t=0 ‖yt‖22 + 1

λ log 2
δ for any fixed λ > 0.

This implies that

(C) ≤
T−1∑
t=0

xt
>∆>(Ŵ (k))−1∆xt + λ

T−1∑
t=0

yt
>yt +

2

λ
log

2

δ

=

T−1∑
t=0

xt
>∆>(Ŵ (k))−1∆xt + λ

T−1∑
t=0

xt
>∆>(Ŵ (k))−1W (k)(Ŵ (k))−1∆xt +

2

λ
log

2

δ

=

T−1∑
t=0

xt
>∆>

(
(Ŵ (k))−1 + λ · (Ŵ (k))−1W (k)(Ŵ (k))−1

)
∆xt +

2

λ
log

2

δ

≤ 1.5

(
1

λmin(W (k))
+

λ · ‖W (k)‖
λmin(W (k))2

) T−1∑
t=0

xt
>∆>∆xt +

2

λ
log

2

δ
.

Choosing λ � 1/κw and recalling ‖xt‖2 ≤ Dx, we have (C) . 1
Wmin

T ·D2
x‖∆‖2 + κw log 1

δ , which finishes the proof of
(67).

C.5.4. PROOF OF (69).

Denote ∆ := W (k) −W (`). Then the right-hand side of (69) becomes

D̃k,` = log detW (`) − log detW (k) + Tr
(
W (k)(W (`))−1 − Id

)
+
‖A(k) −A(`)‖2F

κw,cross

= log detW (`) − log det(W (`) + ∆) + Tr
(

(W (`) + ∆)(W (`))−1 − Id
)

+
‖A(k) −A(`)‖2F

κw,cross

= log detW (`) − log det
(

(W (`))1/2
(
Id + (W (`))−1/2∆(W (`))−1/2

)
(W (`))1/2

)
+ Tr

(
(W (`))−1/2∆(W (`))−1/2

)
+
‖A(k) −A(`)‖2F

κw,cross

= Tr(X)− log det(Id +X) +
‖A(k) −A(`)‖2F

κw,cross
,

where we defineX := (W (`))−1/2∆(W (`))−1/2. Notice thatX is symmetric and satisfies

X + Id = (W (`))−1/2W (k)(W (`))−1/2 � 0,
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‖X‖ ≤
∥∥(W (`))−1/2

∥∥2∥∥W (k) −W (`)
∥∥ ≤ 2Wmax

Wmin
= 2κw,cross,

‖X‖2F =
∥∥(W (`))−1/2∆(W (`))−1/2

∥∥2

F
≥ ‖∆‖

2
F

W 2
max

.

Therefore, by Lemma D.3, we have

Tr(X)− log det(Id +X) ≥ ‖X‖2F
6κw,cross

≥ ‖W
(k) −W (`)‖2F

6κw,crossW 2
max

,

and thus

D̃k,` = Tr(X)− log det(Id +X) +
‖A(k) −A(`)‖2F

κw,cross
≥ ‖W

(k) −W (`)‖2F
6κw,crossW 2

max

+
‖A(k) −A(`)‖2F

κw,cross
� Dk,`,

which finishes the proof of (69).

C.5.5. PROOF OF (70).

Recall the definition

D̂k,` = log
det(Ŵ (`))

det(Ŵ (k))
+ Tr

(
W (k)

(
(Ŵ (`))−1 − (Ŵ (k))−1

))
+
‖A(k) − Â(`)‖2F

κw,cross
− D2

x‖A(k) − Â(k)‖2

Wmin
.

First, we have

log
det(Ŵ (`))

det(Ŵ (k))
+ Tr

(
W (k)

(
(Ŵ (`))−1 − (Ŵ (k))−1

))
=

[
log

det(Ŵ (`))

det(W (k))
+ Tr

(
W (k)

(
(Ŵ (`))−1 − (W (k))−1

))]
︸ ︷︷ ︸

(i)

−
[

log
det(Ŵ (k))

det(W (k))
+ Tr

(
W (k)

(
(Ŵ (k))−1 − (W (k))−1

))]
︸ ︷︷ ︸

(ii)

.

We can lower bound (i) by the same idea of our earlier proof for (69), except that we replaceW (`) in that proof with Ŵ (`);
this gives us

(i) &
‖W (k) − Ŵ (`)‖2F
κw,crossW 2

max

.

As for (ii), applying Lemma D.3 withX = (W (k))−1/2(Ŵ (k) −W (k))(W (k))−1/2, one has

(ii) = Tr(X)− log det(X + Id) ≤ ‖X‖2F ≤
εW

2d

W 2
min

.

Putting things together, we have

D̂k,` = (i)− (ii) +
‖A(k) − Â(`)‖2F

κw,cross
− D2

x‖A(k) − Â(k)‖2

Wmin

≥ C1
1

κw,cross

(
‖W (k) − Ŵ (`)‖2F

W 2
max

+ ‖A(k) − Â(`)‖2F
)

︸ ︷︷ ︸
(iii)

− C2

(
εW

2d

W 2
min

+
D2
xεA

2

Wmin

)
︸ ︷︷ ︸

(iv)

(75)

If εW , εA satisfy (70), then (iv) ≤ c0Dk,` for some sufficiently small constant c0 > 0. As for (iii), according to the
definition of Dk,` in (68), there are two possible cases:
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• If 1
κw,cross

‖W (k)−W (`)‖2F
W 2

max
≥ Dk,`

2 , then it is easy to check that (70) implies that

εW
√
d

Wmax
≤ 1

4

‖W (k) −W (`)‖F
Wmax

,

and hence

(iii) &
1

κw,cross

‖W (k) − Ŵ (`)‖2F
W 2

max

≥ 1

κw,cross

(
‖W (k) −W (`)‖F

Wmax
− εW

√
d

Wmax

)2

&
1

κw,cross

‖W (k) −W (`)‖2F
W 2

max

& Dk,`.

• On the other hand, if 1
κw,cross

‖A(k) −A(`)‖2F ≥
Dk,`

2 , then one can check that (70) implies that

εA
√
d ≤ 1

4
‖A(k) −A(`)‖F,

and hence

(iii) &
‖A(k) − Â(`)‖2F

κw,cross
≥ (‖A(k) −A(`)‖F − εA

√
d)2

κw,cross
&
‖A(k) −A(`)‖2F

κw,cross
& Dk,`.

In sum, it is always guaranteed that (iii) & Dk,`. Going back to (75), we claim that D̂k,` ≥ (iii)− (iv) & Dk,` as long as
εW and εA satisfy (70), which finishes the proof of (70).

C.5.6. PROOF OF (72).

Recall the lower bound (71) for (A) + (B)− (C). We want to show that the low-order term is dominated by the order-T
term, namely T ·Dk,`. First, if T & κwκw,cross

Dk,`
log 1

δ , then κwκw,cross log 1
δ . T ·Dk,`. Next, we have

∥∥∥(W (k))1/2
(
(Ŵ (`))−1 − (Ŵ (k))−1

)
(W (k))1/2

∥∥∥
F

≤
∥∥W (k)

∥∥ · ∥∥(Ŵ (`))−1 − (Ŵ (k))−1
∥∥

F
=
∥∥W (k)

∥∥ · ∥∥(Ŵ (`))−1(Ŵ (k) − Ŵ (`))(Ŵ (k))−1
∥∥

F

≤
∥∥W (k)

∥∥ · ∥∥(Ŵ (`))−1
∥∥ · ∥∥(Ŵ (k))−1

∥∥ · (‖W (k) −W (`)‖F + 2
√
dεW

)
≤ 2Wmax

W 2
min

(
‖W (k) −W (`)‖F + 2

√
dεW

)
=

2κw,cross

Wmin

(
‖W (k) −W (`)‖F + 2

√
dεW

)
.

Notice that the definition (68) of Dk,` implies that ‖W (k) −W (`)‖F ≤
√
κw,crossW 2

maxDk,`, and thus∥∥∥(W (k))1/2
(
(Ŵ (`))−1 − (Ŵ (k))−1

)
(W (k))1/2

∥∥∥
F
.
κw,cross

Wmin

(√
κw,crossW 2

maxDk,` +
√
dεW

)
.

Now it is easy to checked that

if T &

(
κ5
w,cross

Dk,`
+
(κw,cross

√
dεW

WminDk,`

)2
)

log2 1

δ
,

then
√
T
∥∥∥(W (k))1/2

(
(Ŵ (`))−1 − (Ŵ (k))−1

)
(W (k))1/2

∥∥∥
F

log
1

δ
. T ·Dk,`.

Due to our assumption (70) on εW , we have (
κw,cross

√
dεW

WminDk,`
)2 .

κ2
w,cross

Dk,`
≤ κ5

w,cross

Dk,`
, and thus it suffices to have T &

(
κ5
w,cross

Dk,`
+ 1) log2 1

δ , which finishes the proof of (72).
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D. Miscellaneous results
Proposition D.1. Consider at, bt

i.i.d.∼ N (0, Id), 1 ≤ t ≤ N , where N & d + log(1/δ). Then with probability at least
1− δ, ∥∥∥∥ 1

N

N∑
t=1

ata
>
t − Id

∥∥∥∥ .

√
d+ log 1

δ

N
,

∥∥∥∥ 1

N

N∑
t=1

atb
>
t

∥∥∥∥ .

√
d+ log 1

δ

N
.

The proof follows from a standard covering argument (cf. (Vershynin, 2018)), which we skip for brevity.

Lemma D.2 (Self-normalized concentration, scalar version). Suppose that random vectors {ut,yt}1≤t≤T and filtrations
{Ft}0≤t≤T−1 satisfy Ft = σ(ui, 1 ≤ i ≤ t), yt ∈ Ft−1, and ut|Ft−1 ∼ N (0, Id). Then for any fixed λ > 0, with
probability at least 1− δ, we have ∣∣∣∣ T∑

t=1

ut
>yt

∣∣∣∣ < λ

2

T∑
t=1

∥∥yt∥∥2

2
+

1

λ
log

2

δ
.

Proof. Using basic properties of the Gaussian distribution, we have for all fixed λ ∈ R,

E
[

exp
( T∑
t=1

(
λ · ut>yt −

1

2
λ2‖yt‖22

))]

= E
[

exp
( T−1∑
t=1

(
λ · ut>yt −

1

2
λ2‖yt‖22

))
· E
[

exp
(
λ · u>T yT −

1

2
λ2‖yT ‖22

)
|FT−1

]
︸ ︷︷ ︸

≤1

]

≤ E
[

exp
( T−1∑
t=1

(
λ · ut>yt −

1

2
λ2‖yt‖22

))]
.

Continuing this expansion leads to the result E[exp(
∑T
t=1(λ · ut>yt − 1

2λ
2‖yt‖22))] ≤ 1. Now, letting z = log(2/δ) and

using Markov’s inequality, we have

P
( T∑
t=1

(
λ · ut>yt −

1

2
λ2‖yt‖22

)
≥ z
)

= P
(

exp
( T∑
t=1

(
λ · ut>yt −

1

2
λ2‖yt‖22

))
≥ exp(z)

)

≤ exp(−z) · E
[

exp
( T∑
t=1

(
λ · ut>yt −

1

2
λ2‖yt‖22

))]
≤ exp(−z) =

δ

2
.

In other words, with probability at least 1 − δ/2, we have
∑T
t=1(λ · ut>yt − 1

2λ
2‖yt‖22) < z = log(2/δ), which

implies
∑T
t=1 ut

>yt <
λ
2

∑T
t=1 ‖yt‖22 + 1

λ log 2
δ if λ > 0. By a similar argument (but with λ replaced by −λ), we

have with probability at least 1 − δ/2,
∑T
t=1(−λ · ut>yt − 1

2λ
2‖yt‖22) < log(2/δ), which implies

∑T
t=1 ut

>yt >

−(λ2
∑T
t=1 ‖yt‖22 + 1

λ log 2
δ ) if λ > 0. Finally, taking the union bound finishes the proof of the lemma.

Lemma D.3. Consider a symmetric matrixX ∈ Rd×d that satisfies Id +X � 0. If ‖X‖ ≤ B for some B ≥ 2, then we
have

Tr(X)− log det(Id +X) ≥ ‖X‖
2
F

3B
.

On the other hand, ifX < − 1
2Id, then we have

Tr(X)− log det(Id +X) ≤ ‖X‖2F.

Proof. Denote {λi}1≤i≤d as the eigenvalues ofX , which satisfies λi > −1 for all 1 ≤ i ≤ d. Then

Tr(X)− log det(Id +X) =

d∑
i=1

λi − log

d∏
i=1

(1 + λi) =

d∑
i=1

(
λi − log(1 + λi)

)
.
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It can be checked (via elementary calculus) that, for all−1 < λ ≤ B where B ≥ 2, it holds that λ− log(1 +λ) ≥ λ2/(3B).
Therefore,

Tr(X)− log det(Id +X) ≥
d∑
i=1

λ2
i

3B
=
‖X‖2F

3B
,

which completes the proof of our first claim. Similarly, it can be checked that, for all λ ≥ −1/2, one has λ−log(1+λ) ≤ λ2,
which implies that

Tr(X)− log det(Id +X) ≤
d∑
i=1

λ2
i = ‖X‖2F;

this completes the proof of our second claim.

Fact D.4. In the setting of Section 3.1, it holds that Γmax ≤Wmaxκ
2
A/(1− ρ) and ∆Γ,Y ≥ ∆A,W ·WmaxWmin/(4κ

2
AΓmax).

Proof. First, consider Γ =
∑∞
i=0A

iW (Ai)>, where ‖W ‖ ≤ Wmax and ‖Ai‖ ≤ κAρ
i. Then we have ‖Γ‖ ≤∑∞

i=0 ‖Ai‖2‖W ‖ ≤Wmaxκ
2
A

∑∞
i=0 ρ

2i ≤Wmaxκ
2
A/(1− ρ), which proves our upper bound for Γmax.

Next, let us turn to ∆Γ,Y . Our proof below can be viewed as a quantitative version of the earlier proof for Fact 2.1. We
will show that, if the autocovariance matrices between the k-th and the `-th models are close (in Frobenius norm), then the
models themselves should also be close; our lower bound for ∆Γ,Y in terms of ∆A,W then follows from contraposition.

Consider two LDS models (A(k),W (k)) 6= (A(`),W (`)) and their autocovariance matrics (Γ(k),Y (k)), (Γ(`),Y (`)).
Recall from (17) thatA(k) = Y (k)Γ(k)−1

andW (k) = Γ(k)−A(k)Γ(k)A(k)> = Γ(k)−A(k)Y (k)>;A(`) andW (`) can
be expressed similarly.

• First, regardingA(k) −A(`), one has

A(k) −A(`) = Y (k)Γ(k)−1
− Y (`)Γ(`)−1

= (Y (k) − Y (`))Γ(k)−1
+ Y (`)(Γ(k)−1

− Γ(`)−1
),

where
Y (`)(Γ(k)−1

− Γ(`)−1
) = Y (`)Γ(`)−1

(Γ(`) − Γ(k))Γ(k)−1
= A(`)(Γ(`) − Γ(k))Γ(k)−1

.

Therefore, we have

‖A(k) −A(`)‖F ≤ ‖Y (k) − Y (`)‖F‖Γ(k)−1
‖+ ‖A(`)‖‖Γ(`) − Γ(k)‖F‖Γ(k)−1

‖

≤ 1

Wmin
‖Y (k) − Y (`)‖F +

κA
Wmin

‖Γ(`) − Γ(k)‖F, (76)

where the last line follows from Γ(k) <W (k) <WminId and ‖A(`)‖ ≤ κAρ ≤ κA.

• Next, we turn to the analysis ofW (k) −W (`), which satisfies

W (k) −W (`) = (Γ(k) − Γ(`))− (A(k)Y (k)> −A(`)Y (`)>),

‖W (k) −W (`)‖F ≤ ‖Γ(k) − Γ(`)‖F + ‖A(k)Y (k)> −A(`)Y (`)>‖F.

Notice that

‖A(k)Y (k)> −A(`)Y (`)>‖F = ‖A(k)(Y (k) − Y (`))> + (A(k) −A(`))Y (`)>‖F

≤ ‖A(k)(Y (k) − Y (`))>‖F + ‖(A(k) −A(`))Y (`)>‖F
≤ κA‖Y (k) − Y (`)‖F + κAΓmax‖A(k) −A(`)‖F,

where the last line is due to ‖Y (`)‖ = ‖A(`)Γ(`)‖ ≤ ‖A(`)‖ · ‖Γ(`)‖ ≤ κAΓmax. Therefore, we have

‖W (k) −W (`)‖F ≤ ‖Γ(k) − Γ(`)‖F + κA‖Y (k) − Y (`)‖F + κAΓmax‖A(k) −A(`)‖F. (77)
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For notational simplify, denote ∆A := A(k) −A(`), ∆W := W (k) −W (`), ∆Γ := Γ(k) − Γ(`), ∆Y := Y (k) − Y (`).
From (77), one has

‖∆A‖2F +
‖∆W ‖2F
W 2

max

≤ ‖∆A‖2F +
3

W 2
max

(
‖∆Γ‖2F + κ2

A‖∆Y ‖2F + κ2
AΓ2

max‖∆A‖2F
)

≤ 3

W 2
max

‖∆Γ‖2F +
3κ2

A

W 2
max

‖∆Y ‖2F +
(

1 +
3κ2

AΓ2
max

W 2
max

)
‖∆A‖2F

≤ 3

W 2
max

‖∆Γ‖2F +
3κ2

A

W 2
max

‖∆Y ‖2F +
4κ2

AΓ2
max

W 2
max

‖∆A‖2F,

where the last line follows from κ2
AΓ2

max/W
2
max ≥ 1. Morever, (76) tells us that ‖∆A‖2F ≤ 2

W 2
min
‖∆Y ‖2F +

2κ2
A

W 2
min
‖∆Γ‖2F.

Putting together, we have

‖∆A‖2F +
‖∆W ‖2F
W 2

max

≤ 3

W 2
max

‖∆Γ‖2F +
3κ2

A

W 2
max

‖∆Y ‖2F +
4κ2

AΓ2
max

W 2
max

‖∆A‖2F

≤ 3

W 2
max

‖∆Γ‖2F +
3κ2

A

W 2
max

‖∆Y ‖2F +
4κ2

AΓ2
max

W 2
max

( 2

W 2
min

‖∆Y ‖2F +
2κ2

A

W 2
min

‖∆Γ‖2F
)

=
( 3

W 2
max

+
4κ2

AΓ2
max

W 2
max

2κ2
A

W 2
min

)
‖∆Γ‖2F +

( 3κ2
A

W 2
max

+
4κ2

AΓ2
max

W 2
max

2

W 2
min

)
‖∆Y ‖2F

≤ 11κ4
AΓ2

max

W 2
maxW

2
min

(
‖∆Γ‖2F + ‖∆Y ‖2F

)
.

In sum, we have just shown that, if ‖∆Γ‖2F + ‖∆Y ‖2F < ∆2
Γ,Y , then ‖∆A‖2F +

‖∆W ‖2F
W 2

max
<

11κ4
AΓ2

max

W 2
maxW

2
min

∆2
Γ,Y . Equivalently (by

contraposition), if ‖∆A‖2F +
‖∆W ‖2F
W 2

max
≥ ∆2

A,W , then ‖∆Γ‖2F + ‖∆Y ‖2F ≥
W 2

maxW
2
min

11κ4
AΓ2

max
∆2
A,W . This proves our lower bound

for ∆Γ,Y in terms of ∆A,W .

Example D.5. It has been known that in our Case 1 (i.e. a single continuous trajectory), the quick switching of multiple
LDS models may lead to exponentially large states, even if each individual model is stable (Liberzon, 2003). We give a quick
example for completeness. Consider

A(k) = 0.99

[
0 2
1
2 0

]
, A(`) = 0.99

[
0 3
1
3 0

]
,

both satisfying the stability condition in Assumption 3.1 with ρ = 0.99 < 1 and hence tmix � 1/(1−ρ) = 100. Suppose that
each short trajectory has only a length of 2, and the m-th (resp. (m+ 1)-th) trajectory has label km = ` (resp. km+1 = k).
Then xm+2,0 is equal toA(k)A(`)xm,0 plus a mean-zero noise term, where

A(k)A(`) = 0.992

[
0 2
1
2 0

] [
0 3
1
3 0

]
= 0.992

[
2
3 0
0 3

2

]
has spectral radius 0.992 · 3/2 > 1; this will cause the exponential explosion of the states.

E. Extensions of Algorithm 1
Different trajectory lengths. Recall that in Section 2, we assume that all short trajectories within each subset of data
Mo have the same length Tm = To. If this is not the case, we can easily modify our algorithms in the following ways:

• For subspace estimation, the easiest way to handle different Tm’s is to simply truncate the trajectories inMsubspace

so that they have the same length Tsubspace = minm∈Msubspace
Tm, and then apply Algorithm 2 without modification.

However, this might waste many samples when some trajectories ofMsubspace are much longer than others; one way to
resolve this is to manually divide the longer trajectories into shorter segments of comparable lengths, before doing
truncation. A more refined method is to modify Algorithm 2 itself, by re-defining the index sets Ω1,Ω2 separately
for each trajectory; moreover, in the definition of Ĥi and Ĝi, one might consider assigning larger weights to longer
trajectories, instead of using the uniform weight 1/|Msubspace|.
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• For clustering (or pairwise testing) ofMclustering, we can handle various Tm’s similarly, by either truncating each pair
of trajectories to the same length, or modifying Algorithm 3 itself (via re-defining the index sets {Ωg,1,Ωg,2}1≤g≤G
separately for each trajectory).

• Our methods for model estimation and classification, namely Algorithms 4 and 5, are already adaptive to different
Tm’s inMclustering andMclassification, and hence need no modification.

Unknown parameters. Next, we show how to handle the case when certain parameters are unknown to the algorithms:

• In Algorithm 2, we set the dimension of the output subspaces {Vi,Ui} to be K (the number of models). If K is
unknown, we might instead examine the eigenvalues of Ĥi + Ĥ>i and Ĝi + Ĝ>i , and pick the subspace dimension
that covers most of the energy in the eigenvalues.

• In Algorithm 3, we need to know the separation parameter ∆Γ,Y (in order to choose the testing threshold τ appropriately)
and the number of models K (for clustering). If either ∆Γ,Y or K is unknown, we might instead try different values of
threshold τ , and pick the one that (after permutation) makes the similarity matrix S block-diagonal with as few blocks
as possible.

F. Additional experiments
F.1. Synthetic experiments: clustering and classification

First, we take a closer look at the performance of our clustering method (Algorithm 3) through synthetic experiments.
We set the parameters d = 40,K = 2, ρ = 0.5, δ = 0.12. The LDS models are generated by A(k) = (ρ ± δ)R and
W (k) = Id, whereR is a random orthogonal matrix. We let |Mclustering| = 5d, and vary Tclustering ∈ [10, 60]. We run our
clustering method on the datasetMclustering, either with or without the assistance of subspace estimation (Algorithm 2) and
dimensionality reduction. For the former case, we use the same datasetMclustering for subspace estimation, without sample
splitting, which is closer to practice; for the latter, we simply replace the subspaces {Vi,Ui} with Id. The numerical results
are illustrated in Figure 3 (left), confirming that (1) in both cases, the clustering error decreases as Tclustering increases, and
(2) subspace estimation and dimensionality reduction significantly improve the clustering accuracy.

Next, we examine the performance of our classification method (Algorithm 5) in the same setting as above. We first obtain
a coarse model estimation by running Stage 1 of Algorithm 1 on the dataset Mclustering, with |Mclustering| = 10d and
Tclustering = 30. Then, we run classification on the datasetMclassification, with varying Tclassification ∈ [4, 50]. The numerical
results are included in Figure 3 (right), showing that the classification error rapidly decreases to zero as Tclassification grows.

Figure 3. Left: mis-clustering rate versus Tclustering. Right: mis-classification rate versus Tclassification.

F.2. Real-data experiments: MotionSense

To show the practical relevance of the proposed algorithms, we work with the MotionSense dataset (Malekzadeh et al.,
2019). This datasets consists of multivariate time series of dimension d = 12, collected (at a rate of 50Hz) by accelerometer



Learning Mixtures of Linear Dynamical Systems

and gyroscope sensors on a mobile phone while a person performs various activities, such as “jogging”, “walking”, “sitting”,
and so on. In our experiments, we break the data into 8-second short trajectories, and treat the human activities as latent
variables. Figure 4 (left) illustrates what the data looks like. Notice that the time series do not satisfy the mixing property
assumed in our theory, but are rather periodic instead.

As a preliminary attempt to apply our algorithms in the real world, we show that the proposed clustering method (which
is one of the most crucial step in our overall approach), without any modification, works reasonably well even for this
dataset. To be concrete, we apply Algorithm 3 (without dimensionality reduction, i.e. {Vi,Ui} are set to Id) to a mixture of
12 “jogging” and 12 “walking” trajectories. Figure 4 (right) shows the resulted distance matrix, which is defined in the
same way as Line 11 of Algorithm 3, but without thresholding. Its clear block structure confirms that, with an appropriate
choice of threshold τ , Algorithm 3 will return an accurate/exact clustering of the mixed trajectories. These results are strong
indication that the proposed algorithms in this work might generalize to much broader settings than what our current theory
suggests, and we hope that this will inspire further extensions and applications of the proposed methods.

Figure 4. Left: examples of “jogging” and “walking” trajectories from the MotionSense dataset. Right: the distance matrix constructed
by Algorithm 3 for 12 “jogging” and 12 “walking” trajectories.
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