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Abstract

We study the off-policy evaluation (OPE) prob-
lem in an infinite-horizon Markov decision pro-
cess with continuous states and actions. We recast
the @-function estimation into a special form of
the nonparametric instrumental variables (NPIV)
estimation problem. We first show that under
one mild condition the NPIV formulation of Q-
function estimation is well-posed in the sense of
L2-measure of ill-posedness with respect to the
data generating distribution, bypassing a strong as-
sumption on the discount factor v imposed in the
recent literature for obtaining the L? convergence
rates of various ()-function estimators. Thanks
to this new well-posed property, we derive the
first minimax lower bounds for the convergence
rates of nonparametric estimation of ()-function
and its derivatives in both sup-norm and L2-norm,
which are shown to be the same as those for the
classical nonparametric regression (Stone, 1982).
We then propose a sieve two-stage least squares
estimator and establish its rate-optimality in both
norms under some mild conditions. Our general
results on the well-posedness and the minimax
lower bounds are of independent interest to study
not only other nonparametric estimators for Q-
function but also efficient estimation on the value
of any target policy in off-policy settings.

1. Introduction

In recent years, there is a surging interest in studying batch
reinforcement learning (RL), which utilizes previously col-
lected data to perform sequential decision making (Sutton &
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Barto, 2018) and does not require interacting with task envi-
ronment or accessing a simulator. The batch RL techniques
are especially attractive in many high-stake real-world appli-
cation domains where it is too costly or infeasible to access a
simulator, such as mobile health (Liao et al., 2018), robotics
(Pinto & Gupta, 2016), digital marketing (Thomas et al.,
2017) and precision medicine (Kosorok & Laber, 2019),
and others. Nevertheless, the batch setting still posits sev-
eral theoretical challenges that tamper the generalizability of
many RL algorithms in practice. Among them, one central
challenge is the distributional mismatch between the data
collecting process and the target distribution for evaluation
(Levine et al., 2020).

Motivated by these, we study the off-policy evaluation
(OPE) problem, which is considered one of fundamental
problems in batch RL. The goal of OPE is to leverage pre-
collected data generated by a so-called behavior policy to
evaluate the performance (e.g., value) of a new/target pol-
icy. In particular, we investigate theoretical property of
nonparametric estimation of ()-function in the setting of
infinite-horizon Markov decision processes (MDPs) (with
discounted rewards, continuous states and actions).

We make several important contributions to the existing
literature. Motivated by Bellman equation, we formulate
@-function estimation under the framework of a nonpara-
metric instrumental variable (NPIV) model. We first show
that, under mild regularity conditions, the NPIV formula-
tion of QQ-function estimation is well-posed in the sense of
L2-measure of ill-posedness with respect to the data gen-
erating distribution. This essentially justifies the valid use
of the L2-norm of Bellman error/residual to measure the
accuracy of (Q-function estimation in the batch setting. Next,
we derive the minimax lower bounds for the convergence
rates in sup-norm and in L2-norm for the estimation of
Q@-function and its derivatives. Thanks to the general well-
posedness result, the lower bounds are shown to be the same
as those for the nonparametric regression estimation in the
ii.d. setting (Stone, 1982; Tsybakov, 2009). Thus the non-
parametric (Q-function estimation could be as easy as the
nonparametric regression in terms of the worst case rate.
Using the NPIV formulation, we also propose sieve 2SLS
estimators to estimate the (Q-function (and its derivatives)
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and establish their convergence rates in both sup-norm and
L?-norm. In particular, B-spline and wavelet 2SLS estima-
tors are shown to achieve the sup-norm lower bound for
Holder class of Q-functions (and the derivatives), and many
more linear sieve (such as polynomials, cosines, splines,
wavelets) 2SLS estimators are shown to achieve the L2-
norm lower bound for Sobolev class of ()-functions (and
the derivatives). Our results on L2-norm convergence rates
under mild conditions are particularly useful for obtaining
efficient estimation and optimal inference on the value (i.e.,
the expectation of the () function) of a target policy. To the
best of our knowledge, ours are the first minimax results
for non-parametrically estimating ()-function of continuous
states and actions in the off-policy setting. The general re-
sults on the well-posedness and the minimax lower bounds
(in sup-norm and in L?-norm) are of independent interest
to study properties of other nonparametric estimators for
@-function and the related estimators of the marginal impor-
tance weight (see, e.g., (Liu et al., 2018)) in the off-policy
setting.

1.1. Closely Related Work

Estimation of ()-function for a fixed policy is a key build-
ing block for many RL algorithms. There is a growing
literature on nonparametric estimation of (-function in the
infinite-horizon and off-policy setting. See some recent the-
oretical development in (Farahmand et al., 2016; Shi et al.,
2020; Uehara et al., 2021) among many others. Specifi-
cally, (Farahmand et al., 2016) established L? error bound
for Bellman error of their Q-function estimator. (Shi et al.,
2020; Uehara et al., 2021) derived that L?-norm conver-
gence rates and error bounds for their respective nonpara-
metric Q-function estimators under a strong assumption that
is essentially equivalent to restricting the discount factor ~y to
be close to zero. Our well-posedness result implies that their
L?-norm convergence rates of their respective estimators
for Q-function remain valid without their strong assumption
on the discount rate y. See Section 3 and Remark 5.6 for
more detailed discussions.

The connection of estimating ()-function in Bellman equa-
tion to instrumental variables estimation, to the best of our
knowledge, has been first pointed out by (Bradtke & Barto,
1996) for their celebrated least-squares temporal difference
(LSTD) method for parametric models. Recently, the re-
lation between nonparametric (-function estimation and
nonparametric instrumental variables (NPIV) estimation has
also been observed by some applied work (such as (Chen
et al., 2021)) and theoretical work (such as (Duan et al.,
2021) that focuses on the on-policy setting). The NPIV
model has been extensively investigated in econometric lit-
erature; see, e.g., (Newey & Powell, 2003; Ai & Chen, 2003;
Hall & Horowitz, 2005; Blundell et al., 2007; Darolles et al.,
2011; Chen & Reiss, 2011; Chen & Christensen, 2018) for

earlier reference. However, there is some subtle difference
between the nonparametric (Q-function estimation and the
NPIV one. It is known that a generic NPIV model with
continuous endogenous variables is a difficult ill-posed in-
verse problem in econometrics, but we show that estimation
of a nonparametric ()-function of continuous states and ac-
tions can be well-posed under mild regularity conditions
that are typically assumed in batch RL literature. Our well-
posedness result implies that nonparametric estimation and
inference on OPE and related batch RL problems could be
much simpler than the difficult ill-posed NPIV problems
studied in the existing econometric literature.

The rest of the paper is organized as follows. Section 2
presents the framework of infinite-horizon MDPs and some
necessary notations. In Section 3, we show that the nonpara-
metric Q-function estimation in sup-norm and in L?-norm
are both well-posed. Section 4 establishes the minimax
lower bounds for the rates of convergence for nonparamet-
ric estimation of Q-function in sup-norm and in L2-norm
respectively. In Section 5, we propose sieve 2SLS esti-
mation of the @-function and its derivatives. Under some
mild condition, we establish their rates of convergence in
both sup-norm and L2-norm, which coincide with the lower
bounds. Section 6 briefly concludes. All proofs are given in
the appendix.

2. Preliminaries and Notation

Consider a single trajectory {(S:, A¢, Ri)}i>0 where
(St, Ay, Ry) denotes the state-action-reward triplet collected
at time ¢. Let S and A be the state and action spaces, respec-
tively. We assume both state and action are continuous (as
the discrete and finite spaces are easier). A policy associated
with this trajectory defines an agent’s way of choosing the
action at each decision time ¢. In this paper, we focus on
using the batch data to evaluate the performance of a station-
ary policy denoted by 7, which is a function mapping from
the state space S to a probability distribution over A. In
particular, 7(a | s) refers to the probability density function
of choosing action a € A given the state value s € S. In
addition, let S x A C R for some d > 2, and B(S) be the
family of Borel subsets of S.

The main goal of this paper is to estimate the so-called
Q-function of a target policy 7 using the batch data. Specif-
ically, given a stationary policy 7 and any state-action pair
(s,a) € S x A, we define Q)-function as

—+o0

Q7 (s,a) = Z'ytIE“(Rt|SO =s,Ap = a),

t=0
where E™ denotes the expectation assuming the actions are
selected according to 7, and 0 < v < 1 denotes some
discounted factor that balances the trade-off between im-
mediate and future rewards. We consider the framework of
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a time-homogeneous MDP and hence make the following
two assumptions, which are foundation of many Q)-function
estimations.

Assumption 2.1. There exists a transition kernel P such
that forevery ¢t > 0, s € S, a € A and any set B € B(S),

Pr(St+1 €b ‘ Sy = SaAt = a, {SijjaRj}0§j<t)
:P(St+1 S B ‘ St = S,At = a),

where {S;, 4;, R;},.;., = 0if t = 0. In addition, there
exists a probability density function ¢ for the transition
kernel P.

Assumption 2.2. Forevery t > 0, Ry = R(S¢, A, St1),
i.e., a measurable function of (S, A;, S;+1). In addition,
there exists a finite constant Ry, such that |R;| < Rpax
forall¢t > 0.

Letr(s,a) = E[R:|S; = s, Ay = a| forevery t > 0, s €
S and a € A. Assumption 2.2 implies that | (S, A¢)| <
Ryax for all t > 0. We note that the uniformly bounded
reward assumption is imposed for simplicity only, and can
be replaced by assuming existence of higher order condi-
tional moments of R; given (S, A;); see, e.g., (Chen &
Christensen, 2015; 2018).

To estimate )™, by Assumptions 2.1 and 2.2, one approach
is to solve the following Bellman equation, i.e.,

Q" (s,a) =E[R;|S: =5, At = a (D

+’YE[/ m(a’ | Si+1)Q™ (Si+1,a’)da’ | Sy = s, Ay = al,
a’€A

forany t > 0, s € S and @ € A. Throughout this paper, we
assume the integration with respect to 7 in (1) can be exactly
evaluated as long as the integrand is known. In practice, one
can use Monte Carlo method to approximate this integration
since the target policy 7 is known.

Now suppose the given batch data consist of N trajecto-
ries, which correspond to N independent and identically
distributed copies of {(S¢, A¢, Ri) }1>0. For1 < i < N,
data collected from the ith trajectory are represented by
{(Sit,Ait, Rit, Sit+1) o<t<r. We then aim to leverage
this batch data to estimate ()-function of a target policy 7.
Before presenting our theoretical results and methods, we
make one additional assumption on the data generating pro-
cess. Let 7° be a stationary policy and 7°(a | s) refers to
the conditional probability density of choosing the action a
given the state value s.

Assumption 2.3. The batch data

{(Si,t, A, Riyt, Sii1) Yo<i<Ti<i<n — are
by the policy 7°.

Dy =
generated

Assumptions 2.1-2.3 are standard in the literature of batch
RL. Note that in the literature the policy 7 is often called

the behavior policy and mostly different from the target one
m. Next, we introduce the average visitation probability mea-
sure. Let ¢ ! (s, a) be the marginal probability density of a
state-action pair (s, a) at the decision point ¢ induced by the
behavior policy 7°. Then the average visitation probability
density across 7" decision points is defined as

b 1 f b
d} (s,a) = T Z qf (s,a).
t=0

The corresponding expectation with respect to J}b is de-
noted by E. We further let ¢ (s, a’ | s,a) be the t-step
visitation probability density function induced by a policy 7
at (s’,a’) given an initial state-action pair (s,a) € S x A.

Notation:  For generic sequences {w(N)}n>1 and
{0(N)}n>1, the notation w(N) = §(N) (resp. w(N) <
6(N)) means that there exists a sufficiently large constant
(resp. small) constant ¢; > 0 (resp. c2 > 0) such that
w(N) > c10(N) (resp. w(N) < c20(N)). We use
w(N) < 0(N) when w(N) 2 6(N) and w(N) < 6(N).
For matrix and vector norms, we use || @ ||, to denote ei-
ther the vector /,-norm or operator norm induced by the
vector £4-norm, for 1 < ¢ < oo, when there is no confu-
sion. Apin(®) and Apax(e) denote the minimum and maxi-
mum eigenvalues of some square matrix, respectively. For
any random variable X, we use L?(X) to denote the class
of all measurable functions with finite g-th moments for
1 < g < oco. Then the L9-norm is denoted by || ® ||Lq(x)-
When there is no confusion in the underlying distribution,
we also write it as || ® ||« or || ® ||4. In particular, || ® || de-
notes the sup-norm. In addition, we use Big O,, and small o,
as the convention. We often use (S, A, R, S") or (S, A, S")
to represent some generic transition tuples, where the transi-
tion probability density is ¢. Lastly, we introduce the Holder
class of functions ¢ : X C R? — R with smoothness p > 0
as

Aoo(p,L)é{g | sup [0l < L,

0<|leellx<Lp]

sup su
ai|lali=|p] .yEX 2HY

(03 (07
0%g(x) — 0%9(y)| <L}’
o = yllg,

where X = S x A C R? is a compact rectangular
support with nonempty interior, |p| denotes the integer
no larger than p for any p > 0, a non-negative vector
a = (a1,qz, -+ ,a4) and

o o(g) = 9%g(x)
0°9) = Jrroug o

We let A2(p, L) be the Sobolev space of smoothness p with
radius L and support X', where the underlying measure is
Lebesque measure.
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3. A Special Form of NPIV Models:
Well-posedness

In this section, we formulate Q-function estimation under
the framework of a nonparametric instrumental variables
(NPIV) model, which has been extensively studied in econo-
metrics (e.g., (Al & Chen, 2003; Newey & Powell, 2003;
Blundell et al., 2007)). A generic NPIV model takes the
expression as

Y =ho(X)+U, with E[UW]=0, (2

where hg is an unknown function to estimate, X is called
endogenous variables, IV is called instrumental variables,
and U represents some random error. Motivated by Equation
(1), we consider the following special form of a NPTV model
with Assumptions 2.1-2.3 for Q-function estimation:

Ry = W™ (S, Ay, Si41; Q) + Uy, with - E[U;|S;, Al =0
(3)

for0 <t <T —1, where

h™(s,a,s;Q) = Q(s,a) — ’y/ 7(a’1s")Q(s',a")da'.

a’eA

We also write h”™ (s, a,s’; Q) as h™(Q)(s,a,s’) and h =
h™(Q™) when there is no confusion. By requiring
E[U;] S, A;] = 0 for 0 < ¢ < T — 1, we recover the
Bellman Equation (1). Therefore Model (3) can be used to
estimate ()™ nonparametrically, where Sy 1 can be under-
stood as endogenous variables and (S;, A;) as instrumental
variables under the framework of the NPIV model. Let
L?(S, A) be the space of square integrable functions against
the probability measure with density J}b and L2(S, A, S")
against the probability measure with density J?b x q. Denote
the conditional expectation operator by 7 : L?(S, A, S") —
L?(S, A),ie., forevery (s,a) € S x A,

Tf(s,a) =E[f(S,A,5)]S =s,A=d
and in particular,

Th™(Q)(s,a) = E[h™(S, A,S";Q)|S = s, A = a.

3.1. Well-posedness in sup-norm

In this subsection, we show that Q-function estimation is
in general well-posed in sup-norm given by the following
lemma.

Lemma 3.1. For any discount factor 0 < v < 1 and
any uniformly bounded function @Q defined over (S, A), the
following inequalities hold.

Q= QMoo < 1@ — Q7o )
1

1 T T ™ s
émllTh (Q@—Q)[l < ﬁ||h (Q—Q™)loo-

]' s
——Ih
1+~

Lemma 3.1 implies that to obtain the sup-norm rate for
Q7, it is sufficient to focus on ||A™(QT — Q7)||0, Which is
the sup-norm of so-called temporal difference error. One
key reason of having such an inequality is the fact that
Bellman operator is y-contractive with respect to the sup-
norm. However, it is hard to develop an estimator that
minimizes the sup-norm of Bellman error in the batch setting
so as to directly bound the sup-norm. Instead most existing
methods are focused on minimizing the Z?-norm of Bellman
error. This motivates us to study the well-posedness in L2-
norm below.

3.2. Well-posedness in L?-norm

Lemma 3.1 in general may not hold for L2-norm with re-
spect to the data generating process (e.g., J?b) due to the
distributional mismatch between the behavior policy and the
target one, which is one fundamental barrier in analyzing
OPE problem in the literature as discussed in the introduc-
tion. To characterize the difficulty of L?-estimating Q™
under Model (3), we define a L2-measure of ill-posedness

as
1A (@)l L2(s,a,57)
oer2(s,a) ITh™(Q)| L2(s,a)

T = 5)
It can be seen that 7 > 1 and could be arbitrarily large
in general, which can be used to quantify the level of ill-
posedness in estimating Q™. We impose the following mild
assumption to ensure the well-posedness in L?-norm in the
sense of 7 < 1.

Assumption 3.2. (a) There exist positive constants p,;, and
P1,max such that the average visitation probability density
function J}b satisfies pmin < J?b (5,a) < p1.max for every
(s,a) € S x A. (b) The target policy 7 is absolutely
continuous with respect to 7° and ¢™ (s’,a’ | s, a) < D2, max
for some positive constant pa max.

Let prax = Max(P1 max, P2,max)- 10 general, boundedness
assumption on the data generating probability density in As-
sumption 3.2 (a) is standard in the classical non-parametric
estimation such as (Huang et al., 1998; Chen & Christensen,
2015). In our setting, that the average visitation probability
density is uniformly bounded away from 0 is also called
coverage assumption frequently used in RL literature such
as (Precup et al., 2000; Antos et al., 2008a; Kallus & Uehara,
2019) among many others. This assumption can be relaxed
to the so-called partial coverage if one is willing to impose
some structure assumption on Q™. See recent studies in
(Duan et al., 2020; Xie et al., 2021; Agarwal et al., 2021;
Uehara & Sun, 2021). Assumption 3.2 (b) imposes one mild
identification condition on the target policy. It essentially
states that our batch data are able to identify the value of
the target policy. Lastly, we remark that when both S and A
are discrete and finite, Assumption 3.2 (b) is automatically
satisfied because of Assumption 3.2 (a). In the following,
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we use || o |2, to denote L?-norm with respect to some
probability distribution/density v.

Now we are ready to present a key theorem in this paper,
which can not only be used to establish the minimax-optimal
sup-norm and L2?-norm rates for estimating Q™, but also
provide a foundation for many existing OPE estimators.

Theorem 3.3. For any policy 7, discount factor 0 < v < 1,
and any two square integrable functions Q1 and Q2 defined
over (S, A) with respect to J”b, under Assumptions 2.1, 2.3
and 3.2, the following inequalities hold.

Pmin
(1 - ’Y)HQl - Q2||27d_;r_‘b (6)

< HThﬂ(Ql - QQ)”Q’J;I’ < ||h7r(Q1 - Q2)||27j;bxq‘

In particular, the L? measure of ill-posedness

\/pmax(l + pmax'ﬂ)

— Pmin

<1
~ ’\/pmin(1 - ’7) ~

Theorem 3.3 rigorously justifies the validity of using L?-
norm to measure the Bellman error, which has been widely
adopted in the existing literature for constructing various
estimators for the Q-function. To see this, let Q1 = Q7
and Q2 = @ in Theorem 3.3, where () denotes some esti-
mator for Q7. Then the first inequality in (6) with Bellman
equation (1) implies that

1@ = @l g S Ir + (VP = D)Qlly g

where the right hand side of the above inequality is called
Bellman error (or residual) and recall that r is the reward
function defined in Assumption 2.2. Therefore L2-norm of
Bellman error of any Q-function estimator provides a valid
upper bound for the L? error bound of this estimator to the
true Q7. Many existing estimators such as (Antos et al.,
2008b; Farahmand et al., 2016; Uehara & Jiang, 2019; Feng
et al., 2020) indeed are based on minimizing the L2-norm
of Bellman error. Therefore our Theorem 3.3 provides a
theoretical guarantee for their procedures. Notice that The-
orem 3.3 is established without imposing any restriction
on the structure of Q-function, it can be used to obtain L?
error bounds for many different non-parametric estimators
of @-function obtained using different models and/or meth-
ods such as LSTD, kernel methods or neural networks. For
example, combining our Theorem 3.3 with Theorem 11 of
(Farahmand et al., 2016) immediately gives L?-error bound
for their estimator to the true Q™. Applying our Theorem
3.3 to Example 6 of (Uehara et al., 2021) one can obtain
L?-error bound for their neural network estimator to Q™.

We also remark that the well-posed result in Theorem 3.3
can be extended to other metrics such as L'-norm, based

on which one may develop a new estimator for )-function
by minimizing the empirical approximation of L'-norm of
Bellman error. We conjecture that such an estimator could
achieve robustness compared with the existing ones, espe-
cially when the reward distribution is heavy tailed. Lastly,
there is a very recent work (Wang et al., 2022), which devel-
oped a sufficient and necessary condition for establishing
the well-posedness of Bellman operator in terms of L2-norm
with respect to the data generating process. Besides they
also developed some sufficient conditions that are similar to
our Assumption 3.2 in establishing this well-posedness.

4. Minimax Lower Bounds

In this section, we establish minimax lower bounds in both
sup-norm and in L2-norm for estimation of nonparametric
Q-function in OPE problem. The well-posedness property
essentially indicates that non-parametric ()-function estima-
tion is as easy as the classical non-parametric regression in
the i.i.d. setting in terms of the worst case rate.

Recall that by Theorem 3.3, under Assumptions 2.1, 2.3
and 3.2, for any square integrable function () defined over
S x A, we have

imin (1 7}_}/)HQ“27&;5 < HThW(Q)“Z(i;b (7)

max

<@y gty S 1@l 250+

Denote a generic transition tuple as {S; ¢, 4; ¢, R ¢, Szﬂt}
indexed by (i, t). Then we have the following lower bound
results for estimating @™ and its derivative in terms of the
sup-norm.

Theorem 4.1. Let d¥ be the average visitation probabil-
ity density defined over S x A induced by some policy
v such that Assumption 3.2 holds with J}b and 7 re-
placed by d” and v respectively. Suppose the data Dy =
{Si,t7 Ai,t> Ri,t7 S;,t}lﬁiSNﬁStST*l are derom Model
(3), where the probability density of (S; i, Ai ) is d” with
the transition probability density q and for every 0 <
t <T—1and1 < i < N, E[U} ]S, Aiy] > 0%,
where o is some positive constant, then we have for any
0< Ha”fl <D

liminf inf  sup

NT—=00 § Qeoo(p.L)

> ¢(log(NT) /NT)@fnanel)/(zmd)) > >0,

P2 (10 - 0°Qlle ®)

for some constants ¢ and ¢, where inf ) denotes the infimum

over all estimators using Dy, and Pr® denotes the Jjoint
probability distribution of Dy with h™ = h™(Q) in Model
(3).

The following theorem provides lower bound results in
terms of L2-norm.
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Theorem 4.2. Under all conditions in Theorem 4.1, for
0 < |la|le, < p, we have

2(j0°Q - 0"Ql.

liminf inf  sup

NT—00 Q QeAsz(p,L)

> g(NT) (el fp)/(2p+d>> > >0,

for some constant ¢ and ¢ .

As we can see from Theorems 4.1 and 4.2, the minimax
lower bounds for the rates of estimating ()-function and
its derivatives are the same as those for nonparametric re-
gression in the i.i.d setting (Stone, 1982). To the best of
our knowledge, these are the first lower bound results for
nonparametrically estimating ()-function and its derivatives
in the infinite-horizon MDP. In the following section, we
proposed simple estimators that match these lower bounds.

5. Sieve 2SLS Estimation of ()-function

Given the NPIV Model (3) as a reformulation of Bellman
equation, we now adopt the idea from for example (Blundell
et al., 2007; Chen & Christensen, 2018) to construct a sieve
2SLS estimator for Q™. Define two sieve basis functions as

¢J(S,a) = (le(Sva)"" 7’¢JJ(Sva))T’ (10)
b5 (s,a) = (bxi(s,a), - bk (s,a))’, (11)

to model Q™ and the space of instrumental variables re-
spectively. Let U ; = closure{W j1,...,¥;;} C L?(S, A)
and By = closure{bg1,...,bxx} C L%(S, A) denote the
sieve spaces for Q™ and instrumental variables, respectively.
Here the underlying probability measure of L?(S, A) is
d}b. Examples of basis functions include splines or wavelet
bases (See more examples in (Huang et al., 1998; Chen,
2007)). The construction of wavelet bases can also be
found in Appendix C. We remark that the numbers of basis
functions J and K are allowed to grow with either NV or T',
but require that J < K < ¢J for some ¢ > 1. Due to the
special structure of Model (3), it also makes sense to simply

let K = J and v/ = b¥. Additionally, we let ¥ (s) =
(faeA m(als)Yi(s,a)da, - -

Correspondingly, a sample version of all these functions
can be defined as

U= (7 (S1,1, A1)
w‘](SN,T—l,AN,T—l))T e RIWNDXJ

B = (b"(S1.0, A1,0),b" (S1.1, A11) -+,
bK(SN,T—l,bN,T—1))T e RIWNTIxK

Gr = (Y (S1.1),¥7(S12) -,

Y3 (S1,7), %7 (S2,0), -+ 7 (Snyr)) T € RVDXY,
For notational simplicity, let (s, a,s’) = ¥”(s,a) —
vl (s"), and correspondmgly I, = ¥ — 4G,. We
also denote «7,(s,a,s') = yj(s,a) =y [, m(a |

Soeam(als)rs(s,a)da) .

s')da’y7; (s, a’) for each element of £ (s,a,s’) € R’
Then the sieve 2SLS estimator for Q™ can be constructed as

Q" (s,0) =47 (s,0) ", (12)
with ¢= [[B(B'B)"B'I';] I''B(B'B)"B'R,

where (Z)~ denotes the generalized inverse of some matrix
Z and R = (RI,O; Rl,l s ,R]\r/]“,l)—r c RNTX1 The
corresponding estimator for the derivatives of Q™ is denoted
by 9*QT™ for any vector «. Here ¢ can be understood as a
minimizer of the following optimization problem.

minimize |B(B'B)"'BT(R —Txc)|,.
ceRY
Note that the sieve 2SLS estimator given in (12) becomes
the solution of the modified Bellman residual minimiazion
in (Farahmand et al., 2016) when their function spaces are
modeled by sieve ones.

5.1. Sieve measure of ill-posedness in NPIV

An important quantity related to a generic NPIV model (2)
is called sieve L? measure of ill-posedness, which char-
acterizes the difficulty of non-parametrically estimating
ho using the sieve estimation. Here a similar measure
of ill-posedness can be defined under Model (3). Let
07 = {h™(Q) € L*(S,A,5") : Q € U,;}. Adapting
from the sieve L? measure of ill-posedness in (Blundell
et al., 2007), we define an average sieve L? measure of
ill-posedness across T' decision points under Model (3) as

h !
1Pl L2(s,4,57) (13)

T] — .
neomhzo ||ThlL2(s,4)

It can be seen that 7; > 1. Basically 7; measures how
much information has been smoothed out by the conditional
expectation operator 7 over the space ©7. For a generic
NPIV model (2), 7; grows to infinity as JJ goes to infinity;
see, e.g. (Blundell et al., 2007; Chen & Christensen, 2018).
By definition we have 7; < 7 < 1 for all J > 1. Thus
Theorem 3.3 directly implies that the NPIV Model (3) is
also well-posed under the L? sieve measure of ill-posedness
defined in (13). Based on this result, minimax-optimal sup-
norm and L2-norm rates for the sieve 2SLS estimator of Q™
can be established in the following subsections.

5.2. Sup-norm Convergence Rates

In this subsection, we establish the sup-norm convergence
rate of Q™ to Q™. We first introduce an additional assump-
tion on the data generating process.

Assumption 5.1. The stochastic process {S;, A;}+>0 in-
duced by the behavior policy 7’ is a stationary, exponen-
tially 3-mixing stochastic process. The (3-mixing coeffi-
cient at time lag k satisfies that 8, < Byexp(—p1k) for



On Well-posedness and Minimax Optimal Rates of Nonparametric Q-function Estimation in Off-policy Evaluation

Bo > 0 and B; > 0. The induced stationary density is
denoted by a’.

Assumption 5.1 is imposed to characterize the dependency
among observations over time because the observed data
modeled by MDP are not i.i.d. and transition tuples are de-
pendent. Most of previous works in RL assume transition tu-
ples are independent, which is stronger than Assumption 5.1
. The B-mixing coefficient at time lag k basically means that
the dependency between {S;, A; }¢<; and {St, At }i> (k)
decays to O at an exponential rate with respect to k. See
(Bradley, 2005) for the exact definition of the exponentially
B-mixing. A fast mixing rate is imposed here mainly for
technical simplicity and our sup-norm and L?-norm con-
vergence rates are not affected by the mixing coefficients.
Indeed, Assumption 5.1 can be relaxed to stationary distri-
bution with certain algebraic S-mixing, and by using the
matrix Bernstein inequality for general S-mixing sequences
developed by (Chen & Christensen, 2015), one may obtain
the same convergence rates as those in Theorems 5.4 and
5.5 below. We can also relax the strictly stationary assump-
tion with some extra notation. Since this is not our focus,
we do not impose the weakest possible assumptions on the
temporal dependence in this paper. When both Assumptions
3.2 and 5.1 hold, the average visitation probability density
J}b used in Assumption 3.2 becomes the induced stationary
density d™ . We will omit v in || ®|l2,, when v = a’.
Throughout the remaining of this section, unless otherwise
specified, (S, A) has the probability density d™ and the
density of (S, A, S") is dr’ x q.

Define Lo p~ (S, A,5") = {h™(Q) : Q € L*(S, A)}. Let
I : Ly~ (S, A, S") — OF denote the L7 (S, A, S") map-
ping onto O7, i.e., [1;hf = h(I1;Q™), where I1;Q™ =
argmingew, [|Q™ — Q|| L2(s,4), and let I : L?(S, A) —
By denote the L?(S, A) orthogonal projection onto Bp.
LetII;hf = arg minhe@}r I T (hG —h) ||L2(S,A) denote
the sieve 2SLS projection of A onto ©7. Let ©7, = {h €
O7 |||k L2(s,4,57) = 1}. We make one additional assump-
tion below for controlling the approximation error of using
the sieve bases.

Assumption 5.2. (a) supjcor (Mg T —T)hllr2(s,4) =
07(1), where 0;(1) refers to a quantity that converges to 0
when J — 00; (b) |y (h3 — TLyhT)|lee < Cy X ||hE —
IT;hJ| s for some constants C.

Assumption 5.2 (a) is a mild condition on approximat-
ing ©7F by a sieve space Bg. For fixed J (and K),
SUPjcor |(IIxT — T)h||z2(s,4) can be interpreted as
an inherent Bellman error (for a fixed policy 7), which
is widely used in the literature of RL such as the analy-
sis of fitted-q iteration (See Assumption 4.2 of (Agarwal
et al., 2019)). Assumption 5.2 (b) is also mild because
that [[IL;(h§ — ILshf) [ L2(s,a) < 11AG — HyhGllL2(s,a)

holds automatically by the projection property. Here we
strengthen it in terms of the sup-norm.

To derive the sup-norm convergence rate, following the
proof of (Chen & Christensen, 2018), we split ||Q’r Q™ |loo
into two terms. Let Q7 (s,a) = ¢/ (s,a)T¢ with ¢ =
[CIB(B"B)"B'T,| TIB(B"B)~B' Hy, where

Hy = (h{(S1,0,A1,0,51,1), hg(S1,1,A1,1,51,2),

h(Snr—1,An7-1,Sn7)) " € RNT.

Then by triangle inequality, we have HQ’T Q’THoo < ”er
Q" |lse + |Q™ — Q™ ||se. The first term ||Q™ — Q™ || oo can
be interpreted as an estimation error, while the second term
|Q™ — Q|| can be understood as the approximation error.
Denote GY, ; = E[kl(S,A,S8)kI(S,A,8)T] and e; =
)\min(GZJ)- Let

G = sup [[[GT) 2 (5,0, 5') |

K
s,a,s’

Gy = E[DX (S, A" (5, 4)7]
&p = sup [ (s,a) |
G = sup |Gy /0" (s, a) |

for each J and K by omitting their dependence on J and K
for notation simplicity, and define ¢ = max{(3, (" }. In the
following lemma, we derive bounds for the aforementioned
two terms.

Lemma 5.3. (1) Let Assumptions 2.1-2.3, 3.2, 5.1, and As-
sumption 5.2(a) hold. If (*\/1og(NT)/NT = O(1), then
we have the following sup-norm bound for the estimation
error.

1@ = QI = 0, (66 V/Tog N/(NTey)).  (14)

(2) Let Assumptions 5.1-5.2  hold. If
¢2\/log(J)1og(NT)/NT = O(1) then the approxi-
mation error can be controlled by

1Q™ = Q7lloe = Op(I1Q7

—T1,Q™|00)- (15)

By examining the proof of Lemma 5.3, it is possible to
derive the finite sample error bounds for both ||Q™ — Q7 ||«
and ||Q™ — Q™ ||co. We omit them for brevity.

Theorem 5.4. Let Assumptions 2.1-2.3, 3.2, 5.1, and 5.2
hold and Q™ € A (p, L) for some L. Suppose that the
sieve space VU j is spanned by a B-spline or wavelet basis
of (Cohen et al., 1993) with regularity larger than p, and
By is spanned by a wavelet, spline or cosine basis. If
J\/log(J)log(NT)/NT = O(1), then we have:

Q™ = Q7lloe = Op (J 7/ +

J(log J)/(NT)). (16)
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NT
log(NT)

2p > d, we have for all 0 < |||, < p,

V¥ @r+d) and assuming

Further, by choosing J = (

% log(NT) p=lole
0°G7 — 0Q7 ]l = 0, ) )

The smoothness parameter p in Theorem 5.4 represents the
smoothness level of the true (Q-function and characterizes
the size of the functional class that the true Q-function
belongs to. We require 2p > d in Theorem 5.4 mainly for
deriving the sup-norm rate in order to achieve the optimality
when considering Holder class of functions. Theorem 5.4
shows that in terms of the batch data sample size of N'T', the
sup-norm rate of our 2SLS estimator Q™ to Q™ is the same
as the optimal one in the classical non-parametric regression
estimation (Stone, 1982) using B-splines. The sup-norm
convergence rate of ™ can be useful to develop uniform
confidence bands (UCBs) for the ()-function using results
in (Chen & Christensen, 2018) for example. Such UCBs
may be incorporated into the framework of pessimistic RL
algorithms such as (Jin et al., 2021; Xie et al., 2021). In
addition, we can also show that the sup-norm bounds on the
constant factor ~ is of order (1 — ~y)~3. Finally, the results
on the sup-norm rates for estimating the derivatives of the
Q-function may be useful to some actor-critic algorithms
such as (Silver et al., 2014; Kallus & Uehara, 2020; Xu
et al., 2021).

5.3. L2-norm Convergence Rates

In this subsection we present the L? convergence rates of
our 2SLS estimator for the ()-function. We do not require
Assumption 5.2 (b) as the L?-stability condition holds auto-
matically.

Theorem 5.5. Let Assumptions 2.1-2.3, 3.2, 5.1, and 5.2 (a)
hold. If ¢\/log(NT)log(J)/NT = o(1), then:

IQ™ = Qll2 = Op(v/J/(NT) + Q" ~ TL,Q7|2)-
(18)

IfQ™ € Aay(p, L) withp > 0, and U j and B are spanned
by some commonly used bases such as polynomials, trigono-
metric polynomials, splines and wavelets with regularity
greater than p, by choosing J =< (NT)% 2P+d) e have:
Sforall 0 < |lalle, <p,

10°Q7 = 0°Q" |12 = O, (vl =P/ Crra)

AAccording to Theorem 5.5, the sieve 2SLS estimator
Q™ achieves the minimax optimal L2-norm convergence
rate to Q™ under conditions much weaker than those
for the optimal sup-norm convergence rate. Let F' be
a known marginal distribution of the initial state. It is
well-known that one can estimate the value of a target

policy 7, i.e.v™ = [ _s[[,c47(a]s)Q7(s,a)da]F(ds)
by a simple plug-in sieve 2SLS estimator " =
Loeslfoeam(als)Q7(s,a)da]F(ds). Theorem 5.5 is par-
ticularly useful in establishing the asymptotic normality of
VNT @™ — v™).

Remark 5.6. (1) Recently (Shi et al., 2020) presented a
sieve LSTD estimator for Q™ and obtained the L?-norm
rate of convergence (See (E.46) in appendix of their pa-
per for more details) under some conditions including their
Assumption (A3.) or a small discount factor v condition.
They then apply their L2-norm convergence rate to estab-
lish the v/ N T-asymptotic normality of plug-in sieve LSTD
estimator for the value v”. Note that their sieve LSTD is a
special case of our sieve 2SLS with By = U yand K = J,
and the sieve LSTD automatically satisfies our Assumption
5.2 (a). Our Theorem 5.5 establishes the L2-norm conver-
gene rate for their sieve LSTD estimator without the need
to impose the strong condition of a small discount factor
v (or Assumption (A3.)). Thus we may require weaker
conditions for establishing the asymptotic normality of the
plug-in sieve 2SLS estimator for the value. We leave details
to the longer version of the paper. (2) In this paper, to obtain
the optimal rates of convergence in L2-norm (and sup-norm)
of our sieve 2SLS estimator for the Q™ function, we assume
strictly stationary data for simplicity. We note that (Shi et al.,
2020) did not impose this strict stationarity in their 2-norm
rate and asymptotic normality calculation. However, they
need to assume the distribution of the initial state S; o in the
batch data is bounded away from 0 uniformly in 7. Indeed
it is possible to replace the strict stationary condition in
our Assumption 5.1 by imposing the geometric ergodicity
and using the truncation argument to obtain the same sup-
norm and L?-norm convergence rates for our sieve 2SLS
estimator. We leave it for the future work.

6. Conclusion

In this paper, we consider nonparametric estimation of Q-
function of continuous states and actions in the OPE set-
ting. Under some mild conditions, we show that the NPIV
model (3) for estimating ()-function nonparametrically is
well-posed in the sense of L2-measure of ill-posedness, by-
passing the need of imposing a strong condition on the dis-
count factor 7 in the recent literature. The well-posedness
property effectively implies that the minimax lower bounds
for nonparametric estimation of ()-function coincide with
those for a nonparametric regression in sup-norm and in
L?-norm under the i.i.d. setting. Under mild sufficient con-
ditions, we also establish that the sup-norm and the L2-norm
rates of convergence of our proposed sieve 2SLS estimators
for Q-function achieve the lower bounds, and hence are
minimax-optimal. These rate results are useful for optimal
estimation and inference on various functionals, such as
the value, of the Q-function by plugging in our sieve 2SLS
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estimators. In particular, one can easily develop uniform
confidence bands (UCBs) for the Q)-function by slightly
modifying the UCBs result in (Chen & Christensen, 2018)
for a NPIV function estimated via a spline or wavelet sieve
2SLS. We leave this to future work due to the length of the

paper.

In this paper we focus on the direct method of using Bell-
man equation to nonparametrically estimate )-function in
the OPE setting. In the existing literature, there are two
additional model-free approaches to perform OPE. One is
using the recently proposed marginal importance sampling
for the infinite horizon setting such as (Liu et al., 2018;
Nachum et al., 2019; Xie et al., 2019; Uehara et al., 2020;
Zhang et al., 2020a;b). The other approach combines the di-
rect method and marginal importance sampling to construct
the so-called doubly robust estimators for the value of the
target policy (see, e.g., (Kallus & Uehara, 2019; Tang et al.,
2020; Shi et al., 2021) among many others). Our results on
the well-posedness and the minimax lower bounds for )
function estimation should be useful to establish theoretical
properties of these alternative approaches under conditions
that are weaker than the existing ones. Finally, since OPE
serves as the foundation of many RL algorithms, our results
on @)-function estimation of a target policy can also be use-
ful to other policy learning methods such as those proposed
in (Ernst et al., 2005; Antos et al., 2008b; Le et al., 2019;
Liao et al., 2020; Jin et al., 2021; Zanette et al., 2021). We
leave details to future work.
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A. Proofs in Section 3
A.1. Proof of Lemma 3.1

It is sufficient to show that ||Q — Q|| < ﬁ ITh™(Q — Q)| o0, while other inequalities can be readily seen. It can be
observed that

1Q = Q7llse < ITA™(Q = Q) oo +V[E™[(Q = Q7)(S", A) [ S =0, A= o] || (19)
STA™Q = @M)loe +711Q — Q7 [loo (20)

where the first line follows the triangle inequality. This immediately implies

™ 1 g i
1Q — Q7o < ﬁHT’l Q- Q")ls- 21

A.2. Proof of Theorem 3.3

For the first statement of Theorem 3.3, it is enough to focus on the first inequality, while the second one is given by Jensen’s
inequality. Let Z be the identity operator and P™ be the operator such that P™ f(s,a) = E™ [f(St1, Arr1) | St = s, Ay = a
for any ¢ > 0. By induction, we can show that (P™)* f(s,a) = E™ [f(Siix, Arsx) | St = s, Ay = a]. For some integer Z,
which will be specified later, we have

Q1 — Q2||27g;b <| (I— ’Y{(Pﬁ)t_) (Q1— Q2) ||27g;b (P (Q1 — Q) HQ,J# :
(I) (In)

We first focus on deriving an upper bound for (/7). By Jensen’s inequality, we can show that

(DY < / E™ [(Q1 — Q2)(S, A7) | So = 5, Ao = a] dj (s, a)dsda

s€S,acA

:/ . ,4/ . A(Ql—Qg)Q(s’,a’)qg(s’,a’|s,a)ds'da’(j§b(s,a)dsda
seS,ac s’e€S,a’ €

~rlim
:/ (Q1— Qz)z(sl,a')qT;é (s',a')ds'da’
s'e€S,a’€A
b,
Zfr.iﬂ'(slja,/) ~
= / (Ql _ QQ)Q(S,, a/)ij,iid%b (s’7a')ds'da’
s'€S,a’eA da‘; (3/7 a’)

Pmax 2
< —= — _
- Pmin HQl Q2||27d}b)

b, —
where g7.;" (s, a’) refers to the marginal probability density function by composition between d?b and g7 . The last equation
b. _
holds because Ej";,;tiﬂ is absolutely continuous with respect to d?b (s',a’) by Assumption 3.2. The last inequality is also

given by Assumption 3.2 since cjgfti”(s’, d)=E[¢F(s',a'| S, A)] < pmax forevery (s,a) € S x A (As long as one-step
transition density is bounded above, t-step will also be bounded above.). Now for any £ > 0, we can choose ¢ sufficiently
large such that

’yi V pmax/pmin S g,

which implies that v¢ x (IT) < ¢]|Q;1 — Qz2l|, grv- This further shows that
»ap

1@1 = Qall gzr < (1 - e)~t x (I).
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In the following, we derive an upper bound for (I). Let g = (Z — vP™)(Q1 — Q2). By a similar argument as before, we
have

(1) = | (T=AP™ + 4P = 2P 4+ 44 1P =4 (P™)) (Q1 = Q2) I g

-1
< AINPTHHET - vPTN(@1 - Q2)ll,, gz

k=0

t—1
= X I ol g

Pmax
<27 - ||9||2dw

Sl 75 Prmax
1- i Pmin

||g||27j}”'

Summarizing together, we can obtain that

(1 - 5)71(1 - ’yf) Pmax -
HQl - Q2||27J;b S 1 — v Prin HTh (Ql - Q2)||27J§b7

where we note that Th™(Q1 — QQ2) = g. Since ¢ is arbitrary, let € go to 0, we have

1 max T
B 707 (@1 — Q2)ly gyt

Q1— Q2ll, gro < ——
H ||27dT 1- Y Pmin

In the remaining proof, we show 7 is bounded above. Note that for any Q € L?(S, A),

(@)= [ wta' 157018 a0 ) ]

E [(Q(S,A))%] + Pmax)® /Q2 s, a) d7r (s,a)dsda

pmln

||h7r(Q)||2L2(S,A,S') =E

pmdx’y
S+ eLyg2

min

where the first inequality is given by AM-GM, Jensen’s inequalities and Assumption 3.2 by noting that dT 4+1(5,0) < Pmax
for any s € § and a € A. Then by the first inequality given in (6), we can show that

Pmin

- 7) vV Pmin ’

\/pmax 1 + pmax'Y )
TS

which concludes our proof.

B. Notations

In this section, we clarify several notations used in the remaining appendix. Unless specified, for any transition tuple
(S, A, S"), the probability density of (S, A) is ~ d™ and the probability density of S’ given (.5, A) is ¢. In addition, E refers
to the expectation taken with respect to d™. We recall the definition of some quantities below, which will appear in our
proof.

Gr = G, = E[rl(S A S)k(S,AS)]=ElT/(NT)
Gy = Gorx = EBE(S, A)bK(S A)T] = E[BT B/(NT)]

Gy = Gyg = ERI(S,A)0(S,A)7]

ST o= SL, = ER(S A5, A, 8] = E[BTT,/(NT)].
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We assume that X™ has a full column rank J. Denote ej = )\min(GZ, 7). Let

— —1/2
Gr = CLy = sup [[[GF 1%k (s, a,8) e G = Goic = sup |G, PH5 (s, 0) |
s,a,s s,a
&=y = s k(s 0,8 o &0 = & = sup [ (s,a)
s,a,s’ s,a

for each J and K, and ¢ = max{(y,k, ([ ;}. Define
(G, 25 = [T (G 7] (G A

and similarly for (@;1/ 22”)[, where

~ BT ~ B'B

T = u d Gp= .
N

C. Lower bounds

In this section, the probability density of (.S; ¢, A;+) is d” and the expectation is with respect to the density d”.

C.1. Lower bounds for Sup-norm Rates

The proof mainly follows that of Theorem 3.2 in (Chen & Christensen, 2018). Consider the Gaussian reduced form of NPIV
model with known operator 7T:

Riy = Thi(Sit, Aig) + Ui, (22)
Uit | (Sie, Ait) ~ N(0,0%(Sis, Air)),

forl1 <i< Nand0 <t <T —1. The known of operator T is equivalent to knowing the transition density g. By Lemma 1
of (Chen & Reiss, 2011), the minimax lower bound of Model (3) is no smaller than Model (22). In the following, we thus
focus on Model (22) and make use of Theorem 2.5 of (Tsybakov, 2009).

We restrict S x A = [0,1]¢. Let {$j7k7c, %7;67@}]'7 &, be a tensor-product wavelet basis of regularity larger than p for
L%(]0,1]%), where j is the resolution level, k = (kq, ko, -+ ,kq) € {0,1,---,27 —1}%, and G is a vector indicating
which element in a Daubechies pair {¢, ¢} is used. Note that ¢ has support [—-M + 1, M| for some positive integer
M. All these pairs are generated by CDV wavelets (Cohen et al., 1993). Following the proof of (Chen & Christensen,
2018), we consider a class of submodels around Q™. In particular, for a given j, consider the wavelet space (S x A);,

which consists of 2/¢ functions {1/, ¢} ke{0,...,21—13¢ With G chosen as all ¢ functions. For some constant 7, consider

{Jj,k,G}k'e{,«,.. ,2i—1—M}e as interior wavelets and Vika(s,a) = Hzl_;1¢j,km‘(5m)¢?‘,kd (a) for k = (ky,--- ,kq) €
{r,-++,27 —1— M}* where s = (s1, -+ ,84-1) €S,a € Aand ;1. (e) = 27/%¢)(27(e) — k) for 1 < m < d. Then
for sufficiently large 7, there exists aset Z C {r,---,(2/ — M — 1)}¢ of interior wavelets with Card(Z) > 2%, where

Card(e) refers to the cardinality, such that at least one coordinate of support(1; x, ) and support({/;jy ks,c) is empty for all
ki # ko € {r,---,29 — 1 — M}%. In addition, we have Card(Z) < 27 by definition.

Then for any Q™ € A (p, L) such that [|Q™||y». < L/2, where || ® || y»_is the Besov norm and for each i € Z, define
QF = Q" + 2 1TV, .

Correspondingly, for every (s, a, s'), let

hT(s,a,s") = hl(s,a,s") + cp2 I (P Hd/2) <1ijl—_g(s, a) — 'y/ W(a’|s’){pvj_,i’g(s’,a’)da’) ,

€A
where cg is some positive constant specified later. It can be seen that for all ¢ € Z,
leo2 P25 5 (s, 0|z, S co.

Hence ||Q7 ||xz, < L for sufficient small co.
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For ¢ € {O}d U 7, consider Model (22) with the true function A] and define the joint probability density of

P = H;»V:OHZ:OldV(Sj,o, Aj,o)phg (R;¢]Sj, Aj,t)Q(Sj/',t | S Ajt),

by recalling that they are i.i.d. samples, where p;~ denotes the conditional density of reward given a state-action pair. In
particular, when i = {0}¢, QF = Q™ and hT = h™.

First of all, for sufficiently small ¢y, we can show
o2 9T D)5 gllar. Seo < L
for every ¢ € Z. In addition, by Equation (7), we have
V pmin/pmax(l - W)COQ_j(p+d/2) S ||TCO2_j(p+d/2) (Jj,i,G(Sa A) - 7/ ﬂ-(a/|S/)1Zj,i,G(S/7 al)da/> HQ (23)
a’eA
< 2 I D), (24)

Secondly, for every ¢ € Z, the Kullback-Leibler distance K (P;, Py) can be bounded as

~ ~ 2
oL T(w-ic( m,t f (a'|5), ) m.i,c(Sh, a’)da’))
) 293 (2p+d) ( J5t A rea™ m, ¥ m,t
KRy <y o 30 S Lt @
m=1 t=0 ,ty “Am,
< NTch_j(2p+d>, 26)

by the condition in Theorem 4.1. By choosing 27/ =< (NT/log(NT))'/(2P+4) it gives that
K(P;, Py) S clog(NT),

and log(Card(Z)) = j 2 log(NT) — loglog(NT). So for sufficiently small ¢y and large NT, K(P;, Py) <

~ ~

1/8log(Card(Z)) for every i € .
Lastly, it can be seen that for 71,75 € Z and i1 # i,
10°QF, = 9*QF, oo = 027D 07055, 6 — 0°Uj.00,6 10

> 90277 (P+d/2) 97d/29illalle, \WMHOC

_ 2002—j(P—\|<¥|\21)||¢\0t| lloos
where the first inequality is given by recalling that at least one coordinate of support(w] k1,c) and support(% k»,G) 1S empty
forall ky # ko € {r,---,27 — 1 — M}?. Here || refers to T1¢ _,%m ).
Note that 277 (P=lleller) = (log(NT)/NT)®P~lleller)/(2p+d)  Then Theorem 2.5 of (Tsybakov, 2009) implies that for any
0< Ha”fl <p,

liminfinf sup Pr< (||8"‘C§ —09Q|loo > c(log(NT)/NT)(p*“O‘”’fl)/(2p+d)) > >0, (27)
NT—o0 Q Q€A (p,L)

for some constants ¢ and c’.

C.2. Lower bounds for 7.2-norm Rates

The proof mainly follows that of Theorem G.3 in (Chen & Christensen, 2018). Again we focus on Model (22) and apply
Theorem 2.5 of (Tsybakov, 2009).

We restrict S x A = [0,1]¢. Let {&ijk,g, Jj7k7g}j7 &, be a tensor-product wavelet basis of regularity larger than p for
L?([0,1]%), where j is the resolution level, k = (ki, kg, ,kq) € {0,1,---,27 — 1}%, and G is a vector indicating
which element in a Daubechies pair {¢,} is used. Note that ¢ has support [-M + 1, M| for some positive integer
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M. All these pairs are generated by CDV wavelets (Cohen et al., 1993). Following the proof of (Chen & Christensen,
2018), we consider a class of submodels around Q™. In particular, for a given j, consider the wavelet space (S x A);,

which consists of 27¢ functions {{/;J kG {0, 29— 1} with G chosen as all ¢ functions. For some constant r, consider

{%’k’G}ke{r 2i—1—M}e as interior wavelets and % ra(s,a) = TE L0 (sm)bjr,(a) for k = (ky, -+ kg) €
{r,---,27 =1 — M} where s = (s1, -+ ,84_1) €S,a € Aand 1, 1, (8) = 27/24)(27 (8) — k )for1<m§d.Then
for sufficiently large 7, there exists aset Z C {r,---,(2/ — M — 1)}¢ of interior wavelets with Card(Z) 2 24 where

Card(e) refers to the cardinality, such that at least one coordinate of support(wj, ki,c) and support(wJ ks,c) is empty for all
ky # ko € {r,--- ,29 — 1 — M}%. In addition, we have Card(Z) < 2/¢ by definition.

Then for any Q™ € Aq(p, L/2), where || o ||Ag2 is the Sobolev norm with smoothness p. For each 0 = {6;};cz, where
6; € {0,1}, define
Qf = Q" + o2 PN 0it).i.c(s,a),
ieT
Correspondingly, let
hi(s,a,s") = h3(s,a,s") + o277 PFT4/2) (Z 0:;.0.c(s,a) / Aﬂ(a'\s’) Zﬁi{/zj’iyg(s’, a’)da’) ,
‘e

€L i€T

where ¢ is some positive constant specified later. Based on the construction, there are 2¢4(Z) combinations of 6. It can be
seen that for every 6,

[| o2 (PH+d/2) Z 91‘%,1‘,(:('7 ')HA;2
ieT

<002—j(1)+d/2) Z 9%22jp
i€L
<co

Hence ||QF [|az , < L for sufficient small co.

First of all, it can be seen that for every 6, and 65,

10%QF, — 0°Qf,ll2 = co2 7 WH2=Nele) N "Gy, — 05 1)29/291* (27 @ i) |

€L
> COQ—j(IH-d/Q—HaHzl) Z _ 92 ||2j/2¢|a\(2j ° _Z)H%
1€T
22 o) (S g, 2 0,
€T

where the second inequality is given by recalling that at least one coordinate of support(%ﬁ k) and support({/;j, ks, G) 1S
empty for all ky # ko € {r,---,27 —1 — M}?. Here 1!*/(27 @ —i) = TI¢ _,0%m)(27 ® —i,,). The last line is based
on that 7:/;“,@ € C¥ withw > p > ||a|l¢, and is compactly supported with the bounded above and below density, then
[127/24)() (27 @ —4)|| =< 1. Take j large enough. By Varshamov-Gilbert bound, we can show that there exists a subset of

{6©) ... 9"} such that §(0) = {0}Cod(T) | 1+ < 2Cad(T) and \/Zjezﬂ(ﬁgi) # 9§k)) > 204/2 where 0 < i < k < I*.
Therefore || QT — QT ||la 2 o277~ llelle) for 0 < i < k < I*, where we denote Qqy = Q;. Similarly, we denote

~

For 0 < m < I*, consider Model (22) with the true function A}, and define the joint probability distribution of
{Sj: Ajies Rjt, S5y hi<j<nvo<t<r—1 as P such that

P, = HéyZOHtT;oldy(Sj,m Ajo)pnr (RjilSse, Aj)a(S5 4 1 Sj.es Ajit),

by recalling that they are ¢.7.d. samples.
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Secondly, for sufficiently small ¢, we can show for every 0 < m < I*
||602*J'(p+d/2) 2957")%,7:,GIIA5 . <o < LJ2
i€Z

. In addition, by Equation (7), we have

V/Prin/Pmax(1 = 7)co2 7 PTYD ST 00 ) glls < ([ Tep2 e/ (Zaf%j,i,c(s,m

i€l 1€T
- / ﬂa’lS’)Z@S’”%’/?j,i,c:(sca')da’) B
a’eA i€l
< co2 I (P+d/2) I Z Hgm)%',i,GHz
ieT
< COQ—j(p+d/2) Z(@(m))z
ieT

= co27IP.
Moreover, for every 0 < m < I*, the distance K (P,,, P;) can be bounded as
K(va PO)

<Loggsra 3 3 gy T user O30St Ant) = Jo e o T(0151) e 00,6 S )N,
UQ(Sk,t,Ak,t)

k=1 t=0
<SNTE277p),

by the condition in Theorem 4.1. By choosing 27 = (NT)Y/(2P+4) it gives that
K (P, Po) S g(NT)Y P,

and log(I*) > 2/¢ < (NT)%/(?p+d) by recalling that I* =< 2¢4(Z) and Card(Z) = 27¢. So for sufficiently small ¢y and
large NT, K(P,,, Py) < 1/8log(Z*) forevery 1 <m € I*.

Note that 27 (P—llelles) — (N (lelle; =p)/(2p+d) Then Theorem 2.5 of (Tsybakov, 2009) implies that

liminfinf sup Pr< (||C§ - Q|2 > E(NT)(l‘a||él_p)/(2p+d)> >d >0, (28)
NT=eo Q QeAa(p.L)

for some constants ¢ and ¢'.

D. Proof of Theorem 5.4

Let Qf ; solves infgew, [|[Q" — @Qllo-  Under all assumptions in Lemmas 5.3, we have as long as
¢*\/log(J)1og(NT)/NT = O(1),

10" - @l
<@~ @l + 107 - Q7
<0, (2 716,V Tog TIINTE)) + 0,(1) % Q7 - T1Q" o

0y (/008 NN JINTe)) + Op (DTl Q7 = QF -

where the first inequality is by triangle inequality and the last inequality is given by Lebesgue’s lemma and 7; < 1.
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To proceed our proof, we only consider the wavelet basis of (Cohen et al., 1993) for Bg and W ;, while results of other
bases given in Theorem 5.4 can be derived similarly. Based on the property of wavelet basis, we can show that ||TLs||c < 1,
where the proof is given in (Chen & Christensen, 2015). Since Q™ € A (p, L), we have [|Q™ — QF ;o < O(J~?/) by
e.g., (Huang et al., 1998). Summarizing together, we have

1@ = @7l = Oy (rs€s1/Q0g 1) [(NTey) + T 7/%).

According to Lemma H.1 and by the property of wavelet bases, e; > (1 — 7)?p2; /Pmax
G < ¢ < V/J,and &; < +/J. Hence we have our first statement that

2 1. Similarly, we can show that

~

IQ™ = Q"o = Op (7 7/ + /T (log 7)/(NT)), (29)
d/(2p+d)
as long as J/log(J) log(NT)/NT = O(1). Lastly, by choosing .J < (%) , which satisfies the constraint,
we have
H@w Qe =0 <<1Og(NT)>p/(2p+d)>
o TP NT ’

Next, we present the proof related to the derivative case. Note that by the previous result, we have
1Q7 — Qoo = 0,(J /).
In addition, by Bernstein inequalities in approximation theory, we have
10°Qlloc = O(J1I4 /%) | Q]
for all () € ¥ ;. Hence we can show that by Lemma 3.1 and 5.3 Result (2),
109Q7 = 9* Q" [loo < 10°Q™ = 8*(MsQ™) oo + [0°Q™ — 0*(T,Q)
< O/ Q7 —T1,Q || oo + |0°QT — 0 (T1,Q™)|ox
< O/ [AT = TR |oe + 07Q — 8 (T1Q™)os
< Op(J~ P lele)/ ) 4 (10°QT — 0 QT |loo + 10°QT — 0*(T1,Q™) |0
< Oy (J- 01l - 119°Q7 — 07 Q| + O(T114 /1) QT — Qe
By choosing Q7 such that [|Q% — Q™ ||c = O(J7P/4) and [|0°Q7 — 0*(T1;Q7)||0e = O(J P~ llelle)/d) e have
Haa@w — 0°Q || = OP(J—(p—I\a\Izl)/d>_
Finally, we can derive that
10°Q™ = 0°Q" |l < 0°Q = 0*Q" [loc + [|0°Q" — 0°Q7 |
<O /) |Q7 = Q7 [loe + 0°Q — 8*Q7||oo
< 0(J118/40, (&5/(log J)/(NT) ) + 0y~ ¥~ e/ ),

where the last inequality is given by Lemma 5.3 (1). This concludes our proof.

E. Proof of Lemma 5.3 Result (1)

The proof consists of three steps.
Step 1: Decompose the difference between ¢ and ¢.
¢—¢=[!BB"B"B'I,] I!B(B"B)"B" (R — Hy)
R - Hy )
NT

+ <_[EWTG;IZ7‘-]_1EWTG;1 + [iw—l—é;iﬂ]—iﬂ—ré;) BT(
= (1) + (1),

_ [ZTK’ TG;12W}712W TGb—lBT(

R—HO)
NT
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where . .
B'T, ~ B'B

pry d = .

and Gy = —r

iﬂ'

Step 2: Bound the first term (7). Define an event

[Gb]_l/ZBTB[Gb]_l/Q 1
ENT {H NT KIIS5 (s

where [ is an identity matrix with size K. By Lemma H.2 (b), we have

H [Gb}71/2BTB[Gb]71/2

! - IKH — 0,(¢y/T0a(NT) log(K) ] (NT)),

as long as (+/log(NT)log(K)/(NT) = o(1). Hence we obtain that Pr(£5,) = o(1) by the assumption in Lemma 5.3
that ¢2\/log(NT)log(K)/(NT) = O(1) and ¢ > V/J.

Now for any = > 0, we can show that

P([[(Dllee > ) (30)
| T
< ;P ( ~NT ; 2 q; (Sits Ait) (Rise — hg (Sives Ai, Sier1)) |> 33,5NT> + Pr(Exr), (31)

where ¢7 (S; ¢, Ait) = {[E7 TGS ST TG R (S, A,»7t)}j (j-th element of a vector). Note that
E[R; ¢+ — hi(Sit, Aity Sipy1) | Sie, Aid] =0,
by the Bellman equation (1). Therefore the sequence
{45 (Sies Aie) (Rise — hg (Sies Aies Sit1)) Yo<e<(T—1),1<i<N

forms a mean 0 martingale. We aim to apply Freedman’s inequality. Firstly, by Assumption 2.2 on the reward, we have

2RmaX
|Rit — hg (Sie, Aie, Sier1)| < -

In addition, we can show that

g5 (Si,es Ait)l
<IET TG ST TG (S, Ait) e,
<G V2l G V28 TGy s (GR 2 G 2 TGy e Gy PR (i, At e,
S#a

SyKer

where o
-1 _ L2(S,A,8") -3 m—1/2
ST = sup ————""—— = s;in (G, >X,[GT ;
JK heer ”HKThHLZ(S,A) ( b [ ] ])

and s, refers to the minimum singular value. One can show that s7 11( < 77 < 1by Lemma A.1 of (Chen & Christensen,
2018) using Assumption 5.2 (a)

Secondly, we can show that conditioning on Enr,

N T-1
6NTR,
; 2 E {{Q;F(Si,ta Ai) (Rie — hi (Sie, Aigs Sz’,t+1))}2 | Sits Ai,t} < W-
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This relies on the following argument. Conditioning on Ex, for every j,

N T-1

D

1

(]

E [(q] (Sit, Ai))? | Sie, At

~+
o

.
Il

!

=™ TG e TGy P0Gy P (S, A |12,

M-

=1

.
i
=

t
T s - ™ — T —1/2
< HETT GG

BNT | ot
<TG,

3NT T — T — ™ — T[] — — T —
1L I (€4 I N € i (€l (€4 e A

3NT
Som
255 €y

where the first inequality is given by the event Eyp. Then by Freedman’s inequality (e.g., Theorem 1.1 of (Tropp, 2011)),

we can show,
log J
I = 2
(Dl = O (w/NTeJ> , (32)

as long as ¢+/log(J)/(NT) = o(1).
Define .
(G, P57 = [T (Gy) '] BT (Ge)

and similarly for (éb_lmi”)l_.
Step 3: We bound the second term (I7). Relying on Lemmas H.5 (a) and H.3, we have

D)., (33)

<|(G, 2SN GG — (6P Nle |Gy P BT (R — Ho) /(NT) |2 (34)
Rmax K

=0, (3¢ 08N T log 1)/ (NTe)) Oy 2 577) (35)

:o,,( log(J) /(NTeJ)), (36)

by the assumption in Lemma 5.3 (1) that (2/log(NT)/v/NT = O(1) and the fact that { > V'K and s5;. < 7; < 1. This
completes the proof of Lemma 5.3(1) by noting that sup,c s ,c 4 7 (s, a)|l¢, = & by definition.

F. Proof of Lemma 5.3 Result (2)

We first prove the following Lemma.

Lemma F.1. Suppose that (2+/1og(J) log(NT)/v'NT = O(1) and let Assumptions 5.1-5.2 hold. Then |[h™ —IL;hT|| oo <
Op(1) x [k = TL1hg [|oo-

The proof follows similarly as Lemma A.3 of (Chen & Christensen, 2018). Note that the difference between h™ and IT Jh{
can be decomposed as
h™(s,a,s') — IL;hT (s, a,s")
=II(h] — I1;hT)(s,a,s')
+(7 (5,0, 8) (G, 287) 7 {G, VA (BT (Ho — Tey) /(NT) — B[V (S, A)(hG (S, A, §") = h5(S, A, S)))}
+(r7 (s, 0,8) (G, PE) Gy PGP — (G P )Gy BT (Hy — Trey) /(NT)
=)+ (II) + (II1).
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For (I), by Assumption 5.2 (b), we can show that ||(I)]|ec < ||R§ — I1yAJ ||co- For (IT), by Lemma H.4, we can show

. log(NT)log(K). |, » B
1UD) e < 625750y (G 2ELTLEEDy iy a7
log(NT)log(K
= 0, (¢t BN g = 0(1) 5 — 1185 G®)

where we use the fact that ¢ > max{( x, (.7}, 575 < 77 < 1 and that ¢2/log(J) log(NT)/v/NT = O(1). For (I11)
term, by Lemma H.5(b), we can show that

I(I1T)]| oo
<o (G P2 G PG = (G Pl G P BT (Ho = Trey) [ (NT) e,
log Jlog(NT log(NT)log K\ . » " - x
<10y (0 BTNy 10, (G e[ T OB 1105 o+ ITLAT (4 — 1085 15.)
log Jlog(NT) log(NT)log K\, » ” " .
<70y (¢ Nizﬂ(){Op(Cb,K %)”ho —TLhg oo + (G —TLrhg)| 25,4 }

log(J)log(NT
=0, (¢ DNy 11 .

=0,(V)||hg — T shg | £2(s,4),

by the condition that ¢2+/log(.J) log(NT)/VNT = O(1).

Now, we return to Result (2) of Lemma 5.3. By Lemma 3.1, we can see that

1Q™ = Q" lloe S IIR™ = hf |l
<|[B™ = T shT ||leo + ||hE — TshT ||oo
=0, (D) [hg — A oo,
<O0,()[|Q™ = TL1Q" |0,

which concludes our proof.

G. Proof of Theorem 5.5

The idea of proof is similar to that in Lemma 5.3 (1) and Theorem 5.4. By triangle inequality, we have H@“ — Q72 <

107 = Q™ |2+ | Q™ —T1,Q™ ||+ | Q™ —TIL; Q™| In the following Step 1-3, we first bound ||h™ — 7 |5 since | Q™ — Q™ ||2 <
||h™ — h™||2. The last step is to bound ||Q™ — IT;Q™ 2.

Step 1: Decompose the difference between /ﬁ”(s, a,s') and h™ (s, a, s') as follows.

(7 (s,a,8)) "¢ = (v (s,0)) "€ = (¥ (s,) [Tz B(B"B)"B'Tx] T B(B'B)” B (R~ Hy)

T

R — H
:(K,,,{(&a,8/))T[ZWTG;IEW]_1ZWTGJIBT(io)
NT
~ s~~~ R — H
(<] (s,0,8) T (<157 TG SITIETTG 4 (87 TG SR ) BT (<)
—(I) + (I1),
where
R T R T
E”:B L and Gb:B B
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Step 2: Bound the first term (). Note that

1)z = [k (o, 0, 0)) T[S7 TG £ 187 TG BT
R Moy,
NT 't
RoHy K
)l = Oy ).

_ ”[G;r]l/Z[ETr TG;12W]712W TGb—lBT(

< s NG, 2B

where the last inequality is given by Lemma H.3 and s TE<.

Step 3: we bound the second term (/7). Relying on Lemmas H.5 (b) and H.3, we have

[AD)||2 (39)

<|GmM2{(G, e G PG — (G PR e Gy P BT (R — Ho) /(NT)| 2 (40)
Rmax K

=0, (53¢ ToatNT) 1og 1) INT) ) 0,72 57) o

0, (VE/(NT)), (42)

by the assumption in Theorem 5.5 that ¢/log(NT)log(.J)/vV/NT) = o(1) and s < 1.
Step 4: In the remaining proof, we show the bound for [|Q™ — IT;Q™||. By Theorem 3.3, we can show that,
L+NIQ™ =TLQ7||2 S [|B™ = TLA™|2.

Then by a similar proof in Appendix F, we can show that as long as {+/log(NT) log(J)/vVNT) = O(1),

IQ™ = TL,Q7[|2 < Op(1) x |Q =T, Q ||z = Op(1) x J /4,
where we use the existing result on the approximation error of the linear sieve in the last equation. Summarizing Step 1-4
together, we obtain the statements in Theorem 5.5. Finally, we conclude our proof by the similar argument in the proof of
Theorem 5.4 for the derivatives case.

H. Technical Lemmas

Lemma H.1. For any policy 7, under Assumptions 2.1, 2.3, 3.2 and 5.1, we have

er pmm (17 ) wy

pmax

Sorevery J > 1, where wy = Apin (E [¢J(S A)(¥7(S, A)) ])

Proof. By definition,
e = dmin {E [ (475, 4) = 107(8") (47 (5, 4) = () |}

Applying Theorem 3.3 with Q1 (s, a) = (17 (S, A)) "z and Q2(s,a) = 0 for every s € S and a € A (recall that the sieve
space is a subset of L?(S, A)), we have

2TE [(67(5,4) =10 2(8)) (07 (5. 4) = 70(8) | @
AE [92(8") | S, A]) (47 (S, A) — AR [¢1(8") | S, A])T] z

(@78,
— (" (S, A) - [ v1(5') | 5, A]) |3
> Dmin (1~ )? ||<w (S, A)) |3 > jj (1 =) 2wyl

max

>xTIE ( J

where the first inequallty is given by Jensen’s inequality and the last inequality is by the definition of w ;. O
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By examining the proof, we can see that the above lemma also holds for J}b without Assumption 5.1.

Next we present several technical lemmas adapted from (Chen & Christensen, 2018). Define the orthonormalized matrix
estimators

Gy = GGG,
Gre = [GRTtRarier e
smo G;l/ziﬂ[G:]_lm,

~ T
where GT = F]’{,gf. Let Gf = Ik, GL° = I; and X7 ° denote their corresponding expected values.

Lemma H.2. Under Assumption 5.1, the following three bounds hold.

IGE° —GE°lle = Op(CE s/ (log(NT)log(J))/(NT))
IGe = Gglle = Op(Gricv/(log(NT)log K)/(NT))
IS7° =™ = Op(max(Gox, CFy) v/ (log(NT) log K)/(NT)) .

as N, T, J, K — oo as long as (\/(log(NT)log(J)/NT = o(1).

Proof. The proof follows similarly from Lemma 2.2 of (Chen & Christensen, 2015). The basic idea is to use Berbee’s
coupling lemma (e.g., Theorem 4.2 of (Chen & Christensen, 2015)) and matrix Bernstein’s inequality (e.g., (Tropp, 2015)).
For brevity, we only show the proof of the second statement in Lemma H.2, while others are similar.

Let X;; = G;l/sz(Sm, Ai ) [VE(Sis Am)]TG;l/Q/(NT) — Ix/NT and E[X; ;] = O x k. Denote the upper bound
of mixing coefficient as S(w) = By exp(—Siw), where By and (; are given in Assumption 5.1. By Berbee’s lemma,
for a fixed ¢ with 1 < 7 < N and some integer w, the stochastic process {X; ;}+>0 can be coupled by a process Yz*t
such that Y; p = {X; (k—1)w+j}o<j<w and Y = {Xz*(k L w+g}0<3<w are identically distributed for each k¥ > 1 and

P(Yr # Y,) < B(w). In addition, the sequence {{Y;} | k = 2z,z > 1} are independent and so are the sequence
{{Y;%} | k=22 + 1,2 > 0}. Denote I, as the indices of the corresponding even number block and I, as indices of the
correspondmg odd number blocks in {0, - - - , T—1}. Let I, be the indices in the remainders, i.e., I, = {|T/w]w, --- ,T—1}
and thus Card(I,) < w. We construct a coupled stochastic process for every 1 < 7 < N trajectory. Now by triangle
inequality, we can show that for z > 0

N T-1
Pr() YD Xialle, > 42)
i=1 t=0
N |[T/w|w—1 N |[T/w|w-1
<Pr(Y_ D Xiille >20) +Pr(| Z > Xidlle, = @) +Pr IIZ Z (X3¢ = Xit)lle, = @)
i=1  t=0 i=1tel,
o | NTB(w)
<Pr(| Y > Xille = ) +Pr(] Z D Xiille, =) +Pr(| Z D Xidlle, = 0
i=1tel, i=1tel, i=1tel,
By choosing w = clog(NT) for sufficiently large ¢, we can show that
NTB(w) o 1
w "~ NT'

For the term Pr(]| Zf\il > ver, Xiille, > ), notice that va 1 2_ter, Xi1 has been decomposed into the sum of fewer than
kw—1

N x |T]/w independent matrices, i.e., Z; ) = 32,5 "1y, X[, k > 1. One can show that || Z; ||, < % = wR and
max([|Z;7 125 2 1125 T 25 ll2) < % = w?0?. Then by matrix Berstein’s inequality, we have

N 2
—x*/2
P X ¥ > <2K 5 :
(1> Xidlles 2 @) < 2K exp ((NT)wa2 + wR:v/S)

i=1tel,
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Then we can bound this probability towards 0 as ' — oo by choosing © = C'o/wNT log(K) for sufficiently large C' with
the condition given in the statement that R+/wlog(K) = o(cV/NT), i.e., (1/log(NT)log(K)/VNT = o(1). Similar
argument can be applied to Pr(|| vazl Yover, Xitlle, > ).

Next, we derive an upper bound for Pr(|| Zfil > ter, Xitlle, > 7) for some > 0. By Bernstein’s inequality and

Ztelr X+ are independent for 1 < ¢ < IV, we have

N =2
_ —z°/2
Pl 03 Xl > 9) < 2K 0w (s o).

i=1tel,

By choosing = C1o+/NTw log(K) for sufficiently large C';, we can show that

N
Pr(| Z Z Xitlle, > %) S Kfcl(T/w)Jrl’

i=1tel,

as long as ¢/log(NT)log(K)/vNT = o(1). Without loss of generality, we can assume w < T', which completes the
proof in the second statement of Lemma H.2 as the probability converges to 0 as long as K — oo. Otherwise the result in
the statement can be obtained directly by using the Bernstein’s inequality in the i.i.d setting without using Berbee’s lemma.
Other statements follow similarly. O

Lemma H.3. Under Assumptions 2.1 and 2.2, G;l/zBT(R — Hp)/(NT)|lez = Op(?"f‘“v"\ [ 5).

Proof. We apply the Markov inequality. Note that

G, *BT (R — Ho)/(NT)|2

4RZ,
S Ina,)(2 K/NT,
(1=7)
because all the terms in Gb_l/ *BT(R — Hy)/(NT) are uncorrelated by the Bellman equation (1). Hence the proof
completes. O
Lemma H4. Let h%(s,a,s') = kl(s,a,8') c; for any deterministic c; € R’/ and H; =

s7
(R (810, A1,0,511), R (S1.1, A1.1,51.2)s -, B (SNT—1, ANT—1,SNn7)) " = Trcy. Under Assumptions 5.1,

|G, *(BT (Ho — Hy)[(NT) = EB™(S, A)(h5 (S, 4.5") = h3(S, A, 5)]) e
_ o, ( \/cb,KlogWT) log(K) ) mum> |

NT
provided +/ W =o(1).

Proof. We again use Berbee’s coupling lemma and matrix Bernstein’s inequality (e.g., (Dedecker & Louhichi, 2002; Chen
& Christensen, 2015)) and get the result. The argument is similar to that in the proof of Lemma H.2. In particular, let

Ziw = Gy P05 (S0, Aist) (WG (Sis Ao Sisern) — B3 (Sies Aivgs Sie1))-
It can be seen that || Z; 4|le, < Cb. i ||hG — hslloo and
max{E[Z;, Zi.), B[Zi  Z}', ]} < G rellhg — hsll%,

which gives the result. O
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Lemma H.5. Let 57;.C\/(log(NT)log J)/(NT) = o(1), and Assumption 5.1 is satisfied. Then:

(@ NG P26 PG — (G VP e = 0y (s7¢/(og(NT) log J)/(NTe))

() NGT2UG, S GGy = (G5 Hle = 0y (s77¢/(og(NT) log J)/(NT)) )

where

- — 7'r — a1~ —
(G, ey = [[7(G) 7] T TGy
and similarly for ( 1/22”)

Proof. We use the similar proof as Lemma F.10 of (Chen & Christensen, 2018) with Berbee’s coupling lemma again. The
argument is also similar to that in the proof of Lemma H.2. We omit here for brevity. O



