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Abstract

We study the off-policy evaluation (OPE) prob-
lem in an infinite-horizon Markov decision pro-
cess with continuous states and actions. We recast
the Q-function estimation into a special form of
the nonparametric instrumental variables (NPIV)
estimation problem. We first show that under
one mild condition the NPIV formulation of Q-
function estimation is well-posed in the sense of
L2-measure of ill-posedness with respect to the
data generating distribution, bypassing a strong as-
sumption on the discount factor γ imposed in the
recent literature for obtaining the L2 convergence
rates of various Q-function estimators. Thanks
to this new well-posed property, we derive the
first minimax lower bounds for the convergence
rates of nonparametric estimation of Q-function
and its derivatives in both sup-norm and L2-norm,
which are shown to be the same as those for the
classical nonparametric regression (Stone, 1982).
We then propose a sieve two-stage least squares
estimator and establish its rate-optimality in both
norms under some mild conditions. Our general
results on the well-posedness and the minimax
lower bounds are of independent interest to study
not only other nonparametric estimators for Q-
function but also efficient estimation on the value
of any target policy in off-policy settings.

1. Introduction
In recent years, there is a surging interest in studying batch
reinforcement learning (RL), which utilizes previously col-
lected data to perform sequential decision making (Sutton &
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Barto, 2018) and does not require interacting with task envi-
ronment or accessing a simulator. The batch RL techniques
are especially attractive in many high-stake real-world appli-
cation domains where it is too costly or infeasible to access a
simulator, such as mobile health (Liao et al., 2018), robotics
(Pinto & Gupta, 2016), digital marketing (Thomas et al.,
2017) and precision medicine (Kosorok & Laber, 2019),
and others. Nevertheless, the batch setting still posits sev-
eral theoretical challenges that tamper the generalizability of
many RL algorithms in practice. Among them, one central
challenge is the distributional mismatch between the data
collecting process and the target distribution for evaluation
(Levine et al., 2020).

Motivated by these, we study the off-policy evaluation
(OPE) problem, which is considered one of fundamental
problems in batch RL. The goal of OPE is to leverage pre-
collected data generated by a so-called behavior policy to
evaluate the performance (e.g., value) of a new/target pol-
icy. In particular, we investigate theoretical property of
nonparametric estimation of Q-function in the setting of
infinite-horizon Markov decision processes (MDPs) (with
discounted rewards, continuous states and actions).

We make several important contributions to the existing
literature. Motivated by Bellman equation, we formulate
Q-function estimation under the framework of a nonpara-
metric instrumental variable (NPIV) model. We first show
that, under mild regularity conditions, the NPIV formula-
tion of Q-function estimation is well-posed in the sense of
L2-measure of ill-posedness with respect to the data gen-
erating distribution. This essentially justifies the valid use
of the L2-norm of Bellman error/residual to measure the
accuracy ofQ-function estimation in the batch setting. Next,
we derive the minimax lower bounds for the convergence
rates in sup-norm and in L2-norm for the estimation of
Q-function and its derivatives. Thanks to the general well-
posedness result, the lower bounds are shown to be the same
as those for the nonparametric regression estimation in the
i.i.d. setting (Stone, 1982; Tsybakov, 2009). Thus the non-
parametric Q-function estimation could be as easy as the
nonparametric regression in terms of the worst case rate.
Using the NPIV formulation, we also propose sieve 2SLS
estimators to estimate the Q-function (and its derivatives)
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and establish their convergence rates in both sup-norm and
L2-norm. In particular, B-spline and wavelet 2SLS estima-
tors are shown to achieve the sup-norm lower bound for
Hölder class of Q-functions (and the derivatives), and many
more linear sieve (such as polynomials, cosines, splines,
wavelets) 2SLS estimators are shown to achieve the L2-
norm lower bound for Sobolev class of Q-functions (and
the derivatives). Our results on L2-norm convergence rates
under mild conditions are particularly useful for obtaining
efficient estimation and optimal inference on the value (i.e.,
the expectation of the Q function) of a target policy. To the
best of our knowledge, ours are the first minimax results
for non-parametrically estimating Q-function of continuous
states and actions in the off-policy setting. The general re-
sults on the well-posedness and the minimax lower bounds
(in sup-norm and in L2-norm) are of independent interest
to study properties of other nonparametric estimators for
Q-function and the related estimators of the marginal impor-
tance weight (see, e.g., (Liu et al., 2018)) in the off-policy
setting.

1.1. Closely Related Work

Estimation of Q-function for a fixed policy is a key build-
ing block for many RL algorithms. There is a growing
literature on nonparametric estimation of Q-function in the
infinite-horizon and off-policy setting. See some recent the-
oretical development in (Farahmand et al., 2016; Shi et al.,
2020; Uehara et al., 2021) among many others. Specifi-
cally, (Farahmand et al., 2016) established L2 error bound
for Bellman error of their Q-function estimator. (Shi et al.,
2020; Uehara et al., 2021) derived that L2-norm conver-
gence rates and error bounds for their respective nonpara-
metricQ-function estimators under a strong assumption that
is essentially equivalent to restricting the discount factor γ to
be close to zero. Our well-posedness result implies that their
L2-norm convergence rates of their respective estimators
for Q-function remain valid without their strong assumption
on the discount rate γ. See Section 3 and Remark 5.6 for
more detailed discussions.

The connection of estimating Q-function in Bellman equa-
tion to instrumental variables estimation, to the best of our
knowledge, has been first pointed out by (Bradtke & Barto,
1996) for their celebrated least-squares temporal difference
(LSTD) method for parametric models. Recently, the re-
lation between nonparametric Q-function estimation and
nonparametric instrumental variables (NPIV) estimation has
also been observed by some applied work (such as (Chen
et al., 2021)) and theoretical work (such as (Duan et al.,
2021) that focuses on the on-policy setting). The NPIV
model has been extensively investigated in econometric lit-
erature; see, e.g., (Newey & Powell, 2003; Ai & Chen, 2003;
Hall & Horowitz, 2005; Blundell et al., 2007; Darolles et al.,
2011; Chen & Reiss, 2011; Chen & Christensen, 2018) for

earlier reference. However, there is some subtle difference
between the nonparametric Q-function estimation and the
NPIV one. It is known that a generic NPIV model with
continuous endogenous variables is a difficult ill-posed in-
verse problem in econometrics, but we show that estimation
of a nonparametric Q-function of continuous states and ac-
tions can be well-posed under mild regularity conditions
that are typically assumed in batch RL literature. Our well-
posedness result implies that nonparametric estimation and
inference on OPE and related batch RL problems could be
much simpler than the difficult ill-posed NPIV problems
studied in the existing econometric literature.

The rest of the paper is organized as follows. Section 2
presents the framework of infinite-horizon MDPs and some
necessary notations. In Section 3, we show that the nonpara-
metric Q-function estimation in sup-norm and in L2-norm
are both well-posed. Section 4 establishes the minimax
lower bounds for the rates of convergence for nonparamet-
ric estimation of Q-function in sup-norm and in L2-norm
respectively. In Section 5, we propose sieve 2SLS esti-
mation of the Q-function and its derivatives. Under some
mild condition, we establish their rates of convergence in
both sup-norm and L2-norm, which coincide with the lower
bounds. Section 6 briefly concludes. All proofs are given in
the appendix.

2. Preliminaries and Notation
Consider a single trajectory {(St, At, Rt)}t≥0 where
(St, At, Rt) denotes the state-action-reward triplet collected
at time t. Let S and A be the state and action spaces, respec-
tively. We assume both state and action are continuous (as
the discrete and finite spaces are easier). A policy associated
with this trajectory defines an agent’s way of choosing the
action at each decision time t. In this paper, we focus on
using the batch data to evaluate the performance of a station-
ary policy denoted by π, which is a function mapping from
the state space S to a probability distribution over A. In
particular, π(a | s) refers to the probability density function
of choosing action a ∈ A given the state value s ∈ S. In
addition, let S ×A ⊆ Rd for some d ≥ 2, and B(S) be the
family of Borel subsets of S.

The main goal of this paper is to estimate the so-called
Q-function of a target policy π using the batch data. Specif-
ically, given a stationary policy π and any state-action pair
(s, a) ∈ S ×A, we define Q-function as

Qπ(s, a) =

+∞∑
t=0

γtEπ(Rt|S0 = s,A0 = a),

where Eπ denotes the expectation assuming the actions are
selected according to π, and 0 ≤ γ < 1 denotes some
discounted factor that balances the trade-off between im-
mediate and future rewards. We consider the framework of
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a time-homogeneous MDP and hence make the following
two assumptions, which are foundation of many Q-function
estimations.

Assumption 2.1. There exists a transition kernel P such
that for every t ≥ 0, s ∈ S, a ∈ A and any set B ∈ B(S),

Pr(St+1 ∈ B |St = s,At = a, {Sj , Aj , Rj}0≤j<t)

=P (St+1 ∈ B |St = s,At = a),

where {Sj , Aj , Rj}0≤j<t = ∅ if t = 0. In addition, there
exists a probability density function q for the transition
kernel P .

Assumption 2.2. For every t ≥ 0, Rt = R(St, At, St+1),
i.e., a measurable function of (St, At, St+1). In addition,
there exists a finite constant Rmax such that |Rt| ≤ Rmax

for all t ≥ 0.

Let r(s, a) = E [Rt |St = s,At = a] for every t ≥ 0, s ∈
S and a ∈ A. Assumption 2.2 implies that |r(St, At)| ≤
Rmax for all t ≥ 0. We note that the uniformly bounded
reward assumption is imposed for simplicity only, and can
be replaced by assuming existence of higher order condi-
tional moments of Rt given (St, At); see, e.g., (Chen &
Christensen, 2015; 2018).

To estimate Qπ , by Assumptions 2.1 and 2.2, one approach
is to solve the following Bellman equation, i.e.,

Qπ(s, a) = E[Rt |St = s,At = a] (1)

+γE[
∫
a′∈A

π(a′ |St+1)Q
π(St+1, a

′)da′ |St = s,At = a],

for any t ≥ 0, s ∈ S and a ∈ A. Throughout this paper, we
assume the integration with respect to π in (1) can be exactly
evaluated as long as the integrand is known. In practice, one
can use Monte Carlo method to approximate this integration
since the target policy π is known.

Now suppose the given batch data consist of N trajecto-
ries, which correspond to N independent and identically
distributed copies of {(St, At, Rt)}t≥0. For 1 ≤ i ≤ N ,
data collected from the ith trajectory are represented by
{(Si,t, Ai,t, Ri,t, Si,t+1)}0≤t<T . We then aim to leverage
this batch data to estimate Q-function of a target policy π.
Before presenting our theoretical results and methods, we
make one additional assumption on the data generating pro-
cess. Let πb be a stationary policy and πb(a | s) refers to
the conditional probability density of choosing the action a
given the state value s.

Assumption 2.3. The batch data DN =
{(Si,t, Ai,t, Ri,t, Si,t+1)}0≤t<T,1≤i≤N are generated
by the policy πb.

Assumptions 2.1-2.3 are standard in the literature of batch
RL. Note that in the literature the policy πb is often called

the behavior policy and mostly different from the target one
π. Next, we introduce the average visitation probability mea-
sure. Let qπ

b

t (s, a) be the marginal probability density of a
state-action pair (s, a) at the decision point t induced by the
behavior policy πb. Then the average visitation probability
density across T decision points is defined as

d̄π
b

T (s, a) =
1

T

T−1∑
t=0

qπ
b

t (s, a).

The corresponding expectation with respect to d̄π
b

T is de-
noted by E. We further let qπt (s

′, a′ | s, a) be the t-step
visitation probability density function induced by a policy π
at (s′, a′) given an initial state-action pair (s, a) ∈ S ×A.

Notation: For generic sequences {ϖ(N)}N≥1 and
{θ(N)}N≥1, the notation ϖ(N) ≳ θ(N) (resp. ϖ(N) ≲
θ(N)) means that there exists a sufficiently large constant
(resp. small) constant c1 > 0 (resp. c2 > 0) such that
ϖ(N) ≥ c1θ(N) (resp. ϖ(N) ≤ c2θ(N)). We use
ϖ(N) ≍ θ(N) when ϖ(N) ≳ θ(N) and ϖ(N) ≲ θ(N).
For matrix and vector norms, we use ∥ • ∥ℓq to denote ei-
ther the vector ℓq-norm or operator norm induced by the
vector ℓq-norm, for 1 ≤ q < ∞, when there is no confu-
sion. λmin(•) and λmax(•) denote the minimum and maxi-
mum eigenvalues of some square matrix, respectively. For
any random variable X , we use Lq(X) to denote the class
of all measurable functions with finite q-th moments for
1 ≤ q ≤ ∞. Then the Lq-norm is denoted by ∥ • ∥Lq(X).
When there is no confusion in the underlying distribution,
we also write it as ∥ • ∥Lq or ∥ • ∥q . In particular, ∥ • ∥∞ de-
notes the sup-norm. In addition, we use BigOp and small op
as the convention. We often use (S,A,R, S′) or (S,A, S′)
to represent some generic transition tuples, where the transi-
tion probability density is q. Lastly, we introduce the Hölder
class of functions g : X ⊆ Rd → R with smoothness p > 0
as

Λ∞(p, L) ≜

{
g | sup

0≤∥α∥1≤⌊p⌋
∥∂αg∥∞ ≤ L,

sup
α:∥α∥1=⌊p⌋

sup
x,y∈X ,x ̸=y

|∂αg(x)− ∂αg(y)|
∥x− y∥α−⌊p⌋

ℓ2

≤ L

}
,

where X = S × A ⊂ Rd is a compact rectangular
support with nonempty interior, ⌊p⌋ denotes the integer
no larger than p for any p > 0, a non-negative vector
α = (α1, α2, · · · , αd) and

∂αg(x) =
∂αg(x)

∂xα1
1 ∂xα2

2 · · · ∂xαd

d

.

We let Λ2(p, L) be the Sobolev space of smoothness p with
radius L and support X , where the underlying measure is
Lebesque measure.
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3. A Special Form of NPIV Models:
Well-posedness

In this section, we formulate Q-function estimation under
the framework of a nonparametric instrumental variables
(NPIV) model, which has been extensively studied in econo-
metrics (e.g., (Ai & Chen, 2003; Newey & Powell, 2003;
Blundell et al., 2007)). A generic NPIV model takes the
expression as

Y = h0(X) + U, with E[U |W ] = 0, (2)

where h0 is an unknown function to estimate, X is called
endogenous variables, W is called instrumental variables,
andU represents some random error. Motivated by Equation
(1), we consider the following special form of a NPIV model
with Assumptions 2.1-2.3 for Q-function estimation:

Rt = hπ(St, At, St+1;Q
π) + Ut,with E[Ut|St, At] = 0

(3)

for 0 ≤ t ≤ T − 1, where

hπ(s, a, s′;Q) = Q(s, a)− γ

∫
a′∈A

π(a′|s′)Q(s′, a′)da′.

We also write hπ(s, a, s′;Q) as hπ(Q)(s, a, s′) and hπ0 =
hπ(Qπ) when there is no confusion. By requiring
E[Ut|St, At] = 0 for 0 ≤ t ≤ T − 1, we recover the
Bellman Equation (1). Therefore Model (3) can be used to
estimate Qπ nonparametrically, where St+1 can be under-
stood as endogenous variables and (St, At) as instrumental
variables under the framework of the NPIV model. Let
L2(S,A) be the space of square integrable functions against
the probability measure with density d̄π

b

T and L2(S,A, S′)

against the probability measure with density d̄π
b

T ×q. Denote
the conditional expectation operator by T : L2(S,A, S′) →
L2(S,A), i.e., for every (s, a) ∈ S ×A,

T f(s, a) = E[f(S,A, S′)|S = s,A = a]

and in particular,

T hπ(Q)(s, a) = E[hπ(S,A, S′;Q)|S = s,A = a] .

3.1. Well-posedness in sup-norm

In this subsection, we show that Q-function estimation is
in general well-posed in sup-norm given by the following
lemma.

Lemma 3.1. For any discount factor 0 ≤ γ < 1 and
any uniformly bounded function Q defined over (S,A), the
following inequalities hold.

1

1 + γ
∥hπ(Q−Qπ)∥∞ ≤ ∥Q−Qπ∥∞ (4)

≤ 1

1− γ
∥T hπ(Q−Qπ)∥∞ ≤ 1

1− γ
∥hπ(Q−Qπ)∥∞.

Lemma 3.1 implies that to obtain the sup-norm rate for
Q̂π , it is sufficient to focus on ∥hπ(Q̂π −Qπ)∥∞, which is
the sup-norm of so-called temporal difference error. One
key reason of having such an inequality is the fact that
Bellman operator is γ-contractive with respect to the sup-
norm. However, it is hard to develop an estimator that
minimizes the sup-norm of Bellman error in the batch setting
so as to directly bound the sup-norm. Instead most existing
methods are focused on minimizing theL2-norm of Bellman
error. This motivates us to study the well-posedness in L2-
norm below.

3.2. Well-posedness in L2-norm

Lemma 3.1 in general may not hold for L2-norm with re-
spect to the data generating process (e.g., d̄π

b

T ) due to the
distributional mismatch between the behavior policy and the
target one, which is one fundamental barrier in analyzing
OPE problem in the literature as discussed in the introduc-
tion. To characterize the difficulty of L2-estimating Qπ

under Model (3), we define a L2-measure of ill-posedness
as

τ = sup
Q∈L2(S,A)

∥hπ(Q)∥L2(S,A,S′)

∥T hπ(Q)∥L2(S,A)
. (5)

It can be seen that τ ≥ 1 and could be arbitrarily large
in general, which can be used to quantify the level of ill-
posedness in estimating Qπ . We impose the following mild
assumption to ensure the well-posedness in L2-norm in the
sense of τ ≲ 1.

Assumption 3.2. (a) There exist positive constants pmin and
p1,max such that the average visitation probability density
function d̄π

b

T satisfies pmin ≤ d̄π
b

T (s, a) ≤ p1,max for every
(s, a) ∈ S × A. (b) The target policy π is absolutely
continuous with respect to πb and qπ(s′, a′ | s, a) ≤ p2,max

for some positive constant p2,max.

Let pmax = max(p1,max, p2,max). In general, boundedness
assumption on the data generating probability density in As-
sumption 3.2 (a) is standard in the classical non-parametric
estimation such as (Huang et al., 1998; Chen & Christensen,
2015). In our setting, that the average visitation probability
density is uniformly bounded away from 0 is also called
coverage assumption frequently used in RL literature such
as (Precup et al., 2000; Antos et al., 2008a; Kallus & Uehara,
2019) among many others. This assumption can be relaxed
to the so-called partial coverage if one is willing to impose
some structure assumption on Qπ. See recent studies in
(Duan et al., 2020; Xie et al., 2021; Agarwal et al., 2021;
Uehara & Sun, 2021). Assumption 3.2 (b) imposes one mild
identification condition on the target policy. It essentially
states that our batch data are able to identify the value of
the target policy. Lastly, we remark that when both S and A
are discrete and finite, Assumption 3.2 (b) is automatically
satisfied because of Assumption 3.2 (a). In the following,



On Well-posedness and Minimax Optimal Rates of Nonparametric Q-function Estimation in Off-policy Evaluation

we use ∥ • ∥2,ν to denote L2-norm with respect to some
probability distribution/density ν.

Now we are ready to present a key theorem in this paper,
which can not only be used to establish the minimax-optimal
sup-norm and L2-norm rates for estimating Qπ, but also
provide a foundation for many existing OPE estimators.

Theorem 3.3. For any policy π, discount factor 0 ≤ γ < 1,
and any two square integrable functions Q1 and Q2 defined
over (S,A) with respect to d̄π

b

T , under Assumptions 2.1, 2.3
and 3.2, the following inequalities hold.√

pmin

pmax
(1− γ)∥Q1 −Q2∥2,d̄πb

T

(6)

≤ ∥T hπ(Q1 −Q2)∥2,d̄πb
T

≤ ∥hπ(Q1 −Q2)∥2,d̄πb
T ×q.

In particular, the L2 measure of ill-posedness

τ ≲

√
pmax(1 +

pmaxγ2

pmin
)

√
pmin(1− γ)

≲ 1.

Theorem 3.3 rigorously justifies the validity of using L2-
norm to measure the Bellman error, which has been widely
adopted in the existing literature for constructing various
estimators for the Q-function. To see this, let Q1 = Qπ

and Q2 = Q̃ in Theorem 3.3, where Q̃ denotes some esti-
mator for Qπ . Then the first inequality in (6) with Bellman
equation (1) implies that

∥Q̃−Qπ∥
2,d̄π

b
T

≲ ∥r + (γPπ − I)Q̃∥
2,d̄π

b
T

,

where the right hand side of the above inequality is called
Bellman error (or residual) and recall that r is the reward
function defined in Assumption 2.2. Therefore L2-norm of
Bellman error of any Q-function estimator provides a valid
upper bound for the L2 error bound of this estimator to the
true Qπ. Many existing estimators such as (Antos et al.,
2008b; Farahmand et al., 2016; Uehara & Jiang, 2019; Feng
et al., 2020) indeed are based on minimizing the L2-norm
of Bellman error. Therefore our Theorem 3.3 provides a
theoretical guarantee for their procedures. Notice that The-
orem 3.3 is established without imposing any restriction
on the structure of Q-function, it can be used to obtain L2

error bounds for many different non-parametric estimators
of Q-function obtained using different models and/or meth-
ods such as LSTD, kernel methods or neural networks. For
example, combining our Theorem 3.3 with Theorem 11 of
(Farahmand et al., 2016) immediately gives L2-error bound
for their estimator to the true Qπ. Applying our Theorem
3.3 to Example 6 of (Uehara et al., 2021) one can obtain
L2-error bound for their neural network estimator to Qπ .

We also remark that the well-posed result in Theorem 3.3
can be extended to other metrics such as L1-norm, based

on which one may develop a new estimator for Q-function
by minimizing the empirical approximation of L1-norm of
Bellman error. We conjecture that such an estimator could
achieve robustness compared with the existing ones, espe-
cially when the reward distribution is heavy tailed. Lastly,
there is a very recent work (Wang et al., 2022), which devel-
oped a sufficient and necessary condition for establishing
the well-posedness of Bellman operator in terms ofL2-norm
with respect to the data generating process. Besides they
also developed some sufficient conditions that are similar to
our Assumption 3.2 in establishing this well-posedness.

4. Minimax Lower Bounds
In this section, we establish minimax lower bounds in both
sup-norm and in L2-norm for estimation of nonparametric
Q-function in OPE problem. The well-posedness property
essentially indicates that non-parametric Q-function estima-
tion is as easy as the classical non-parametric regression in
the i.i.d. setting in terms of the worst case rate.

Recall that by Theorem 3.3, under Assumptions 2.1, 2.3
and 3.2, for any square integrable function Q defined over
S ×A, we have√

pmin

pmax
(1− γ)∥Q∥

2,d̄π
b

T

≤ ∥T hπ(Q)∥
2,d̄π

b
T

(7)

≤∥hπ(Q)∥
2,d̄π

b
T ×q ≲ ∥Q∥

2,d̄π
b

T

.

Denote a generic transition tuple as {Si,t, Ai,t, Ri,t, S′
i,t}

indexed by (i, t). Then we have the following lower bound
results for estimating Qπ and its derivative in terms of the
sup-norm.
Theorem 4.1. Let dν be the average visitation probabil-
ity density defined over S × A induced by some policy
ν such that Assumption 3.2 holds with d̄π

b

T and πb re-
placed by dν and ν respectively. Suppose the data DN =
{Si,t, Ai,t, Ri,t, S′

i,t}1≤i≤N,0≤t≤T−1 are i.i.d. from Model
(3), where the probability density of (Si,t, Ai,t) is dν with
the transition probability density q and for every 0 ≤
t ≤ T − 1 and 1 ≤ i ≤ N , E[U2

i,t |Si,t, Ai,t] ≥ σ2,
where σ is some positive constant, then we have for any
0 ≤ ∥α∥ℓ1 < p,

lim inf
NT→∞

inf
Q̂

sup
Q∈Λ∞(p,L)

PrQ
(
∥∂αQ̂− ∂αQ∥∞ (8)

≥ c(log(NT )/NT )(p−∥α∥ℓ1
)/(2p+d)

)
≥ c′ > 0,

for some constants c and c′, where infQ̂ denotes the infimum
over all estimators using DN , and PrQ denotes the joint
probability distribution of DN with hπ = hπ(Q) in Model
(3).

The following theorem provides lower bound results in
terms of L2-norm.
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Theorem 4.2. Under all conditions in Theorem 4.1, for
0 ≤ ∥α∥ℓ1 < p, we have

lim inf
NT→∞

inf
Q̂

sup
Q∈Λ2(p,L)

PrQ
(
∥∂αQ̂− ∂αQ∥2 (9)

≥ c̄(NT )(∥α∥ℓ1
−p)/(2p+d)

)
≥ c̄′ > 0,

for some constant c̄ and c̄′.

As we can see from Theorems 4.1 and 4.2, the minimax
lower bounds for the rates of estimating Q-function and
its derivatives are the same as those for nonparametric re-
gression in the i.i.d setting (Stone, 1982). To the best of
our knowledge, these are the first lower bound results for
nonparametrically estimating Q-function and its derivatives
in the infinite-horizon MDP. In the following section, we
proposed simple estimators that match these lower bounds.

5. Sieve 2SLS Estimation of Q-function
Given the NPIV Model (3) as a reformulation of Bellman
equation, we now adopt the idea from for example (Blundell
et al., 2007; Chen & Christensen, 2018) to construct a sieve
2SLS estimator for Qπ . Define two sieve basis functions as

ψJ(s, a) = (ψJ1(s, a), · · · , ψJJ(s, a))⊤, (10)

bK(s, a) = (bK1(s, a), · · · , bKK(s, a))⊤, (11)

to model Qπ and the space of instrumental variables re-
spectively. Let ΨJ = closure{ΨJ1, . . . ,ΨJJ} ⊂ L2(S,A)
and BK = closure{bK1, . . . , bKK} ⊂ L2(S,A) denote the
sieve spaces for Qπ and instrumental variables, respectively.
Here the underlying probability measure of L2(S,A) is
d̄π

b

T . Examples of basis functions include splines or wavelet
bases (See more examples in (Huang et al., 1998; Chen,
2007)). The construction of wavelet bases can also be
found in Appendix C. We remark that the numbers of basis
functions J and K are allowed to grow with either N or T ,
but require that J ≤ K ≤ cJ for some c ≥ 1. Due to the
special structure of Model (3), it also makes sense to simply
let K = J and ψJ = bK . Additionally, we let ψJπ (s) =
(
∫
a∈A π(a|s)ψJ1(s, a)da, · · · ,

∫
a∈A π(a|s)ψJJ(s, a)da)

⊤.
Correspondingly, a sample version of all these functions
can be defined as

Ψ = (ψJ(S1,1, A1,1) · · · ,

ψJ(SN,T−1, AN,T−1))
⊤ ∈ R(NT )×J ,

B = (bK(S1,0, A1,0), b
K(S1,1, A1,1) · · · ,

bK(SN,T−1, bN,T−1))
⊤ ∈ R(NT )×K ,

Gπ = (ψJ
π (S1,1), ψ

J
π (S1,2) · · · ,

ψJ
π (S1,T ), ψ

J
π (S2,1), · · · , ψJ

π (SN,T ))
⊤ ∈ R(NT )×J .

For notational simplicity, let κJπ(s, a, s
′) = ψJ(s, a) −

γψJπ (s
′), and correspondingly Γπ = Ψ − γGπ. We

also denote κπJj(s, a, s
′) = ψJj(s, a) − γ

∫
a′∈A π(a

′ |

s′)da′ψπJj(s
′, a′) for each element of κJπ(s, a, s

′) ∈ RJ .
Then the sieve 2SLS estimator for Qπ can be constructed as

Q̂π(s, a) = ψJ(s, a)⊤ĉ, (12)

with ĉ =
[
Γ⊤
πB(B⊤B)−B⊤Γπ

]−
Γ⊤
πB(B⊤B)−B⊤R,

where (Z)− denotes the generalized inverse of some matrix
Z and R = (R1,0, R1,1 · · · , RN,T−1)

⊤ ∈ RNT×1. The
corresponding estimator for the derivatives ofQπ is denoted
by ∂αQ̂π for any vector α. Here ĉ can be understood as a
minimizer of the following optimization problem.

minimize
c∈RJ

∥B(B⊤B)−1B⊤(R− Γπc)∥2ℓ2 .

Note that the sieve 2SLS estimator given in (12) becomes
the solution of the modified Bellman residual minimiazion
in (Farahmand et al., 2016) when their function spaces are
modeled by sieve ones.

5.1. Sieve measure of ill-posedness in NPIV

An important quantity related to a generic NPIV model (2)
is called sieve L2 measure of ill-posedness, which char-
acterizes the difficulty of non-parametrically estimating
h0 using the sieve estimation. Here a similar measure
of ill-posedness can be defined under Model (3). Let
ΘπJ = {hπ(Q) ∈ L2(S,A, S′) : Q ∈ ΨJ}. Adapting
from the sieve L2 measure of ill-posedness in (Blundell
et al., 2007), we define an average sieve L2 measure of
ill-posedness across T decision points under Model (3) as

τJ = sup
h∈Θπ

J :h̸=0

∥h∥L2(S,A,S′)

∥T h∥L2(S,A)
. (13)

It can be seen that τJ ≥ 1. Basically τJ measures how
much information has been smoothed out by the conditional
expectation operator T over the space ΘπJ . For a generic
NPIV model (2), τJ grows to infinity as J goes to infinity;
see, e.g. (Blundell et al., 2007; Chen & Christensen, 2018).
By definition we have τJ ≤ τ ≲ 1 for all J ≥ 1. Thus
Theorem 3.3 directly implies that the NPIV Model (3) is
also well-posed under the L2 sieve measure of ill-posedness
defined in (13). Based on this result, minimax-optimal sup-
norm and L2-norm rates for the sieve 2SLS estimator of Qπ

can be established in the following subsections.

5.2. Sup-norm Convergence Rates

In this subsection, we establish the sup-norm convergence
rate of Q̂π to Qπ. We first introduce an additional assump-
tion on the data generating process.

Assumption 5.1. The stochastic process {St, At}t≥0 in-
duced by the behavior policy πb is a stationary, exponen-
tially β-mixing stochastic process. The β-mixing coeffi-
cient at time lag k satisfies that βk ≤ β0 exp(−β1k) for
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β0 ≥ 0 and β1 > 0. The induced stationary density is
denoted by dπ

b

.

Assumption 5.1 is imposed to characterize the dependency
among observations over time because the observed data
modeled by MDP are not i.i.d. and transition tuples are de-
pendent. Most of previous works in RL assume transition tu-
ples are independent, which is stronger than Assumption 5.1
. The β-mixing coefficient at time lag k basically means that
the dependency between {St, At}t≤j and {St, At}t≥(j+k)

decays to 0 at an exponential rate with respect to k. See
(Bradley, 2005) for the exact definition of the exponentially
β-mixing. A fast mixing rate is imposed here mainly for
technical simplicity and our sup-norm and L2-norm con-
vergence rates are not affected by the mixing coefficients.
Indeed, Assumption 5.1 can be relaxed to stationary distri-
bution with certain algebraic β-mixing, and by using the
matrix Bernstein inequality for general β-mixing sequences
developed by (Chen & Christensen, 2015), one may obtain
the same convergence rates as those in Theorems 5.4 and
5.5 below. We can also relax the strictly stationary assump-
tion with some extra notation. Since this is not our focus,
we do not impose the weakest possible assumptions on the
temporal dependence in this paper. When both Assumptions
3.2 and 5.1 hold, the average visitation probability density
d̄π

b

T used in Assumption 3.2 becomes the induced stationary
density dπ

b

. We will omit ν in ∥ • ∥2,ν when ν = dπ
b

.
Throughout the remaining of this section, unless otherwise
specified, (S,A) has the probability density dπ

b

and the
density of (S,A, S′) is dπ

b × q.

Define L2,hπ (S,A, S′) =
{
hπ(Q) : Q ∈ L2(S,A)

}
. Let

ΠJ : L2,hπ (S,A, S′) → ΘπJ denote the L2
hπ (S,A, S′) map-

ping onto ΘπJ , i.e., ΠJhπ0 = hπ0 (ΠJQ
π), where ΠJQ

π =
argminQ∈ΨJ

∥Qπ−Q∥L2(S,A), and let ΠK : L2(S,A) →
BK denote the L2(S,A) orthogonal projection onto BK .
Let Π̃Jhπ0 = argminh∈Θπ

J
∥ΠKT (hπ0 −h)∥L2(S,A) denote

the sieve 2SLS projection of hπ0 onto ΘπJ . Let ΘπJ,1 = {h ∈
ΘπJ | ∥h∥L2(S,A,S′) = 1}. We make one additional assump-
tion below for controlling the approximation error of using
the sieve bases.
Assumption 5.2. (a) suph∈Θπ

J,1
∥(ΠKT − T )h∥L2(S,A) =

oJ(1), where oJ(1) refers to a quantity that converges to 0

when J → ∞; (b) ∥Π̃J(hπ0 − ΠJh
π
0 )∥∞ ≤ C1 × ∥hπ0 −

ΠJh
π
0∥∞ for some constants C1.

Assumption 5.2 (a) is a mild condition on approximat-
ing ΘπJ by a sieve space BK . For fixed J (and K),
suph∈Θπ

J,1
∥(ΠKT − T )h∥L2(S,A) can be interpreted as

an inherent Bellman error (for a fixed policy π), which
is widely used in the literature of RL such as the analy-
sis of fitted-q iteration (See Assumption 4.2 of (Agarwal
et al., 2019)). Assumption 5.2 (b) is also mild because
that ∥Π̃J(hπ0 − ΠJh

π
0 )∥L2(S,A) ≤ ∥hπ0 − ΠJh

π
0∥L2(S,A)

holds automatically by the projection property. Here we
strengthen it in terms of the sup-norm.

To derive the sup-norm convergence rate, following the
proof of (Chen & Christensen, 2018), we split ∥Q̂π−Qπ∥∞
into two terms. Let Q̃π(s, a) = ψJ(s, a)⊤c̃ with c̃ =
[Γ⊤
πB(B⊤B)−B⊤Γπ]

−Γ⊤
πB(B⊤B)−B⊤H0, where

H0 = (hπ0 (S1,0, A1,0, S1,1), h
π
0 (S1,1, A1,1, S1,2), · · · ,

hπ0 (SN,T−1, AN,T−1, SN,T ))
⊤ ∈ RNT .

Then by triangle inequality, we have ∥Q̂π−Qπ∥∞ ≤ ∥Q̂π−
Q̃π∥∞ + ∥Qπ − Q̃π∥∞. The first term ∥Q̂π − Q̃π∥∞ can
be interpreted as an estimation error, while the second term
∥Qπ− Q̃π∥∞ can be understood as the approximation error.
Denote Gπκ,J = E[κJπ(S,A, S′)κJπ(S,A, S

′)⊤] and eJ =
λmin(G

π
κ,J). Let

ζπκ = sup
s,a,s′

∥[Gπκ,J ]−1/2κJπ(s, a, s
′)∥ℓ2

Gb = E[bK(S,A)bK(S,A)⊤]

ξψ = sup
s,a

∥ψJ(s, a)∥ℓ1

ζb = sup
s,a

∥G−1/2
b bK(s, a)∥ℓ2

for each J and K by omitting their dependence on J and K
for notation simplicity, and define ζ = max{ζb, ζπκ}. In the
following lemma, we derive bounds for the aforementioned
two terms.

Lemma 5.3. (1) Let Assumptions 2.1-2.3, 3.2, 5.1, and As-
sumption 5.2(a) hold. If ζ2

√
log(NT )/NT = O(1), then

we have the following sup-norm bound for the estimation
error.

∥Q̂π − Q̃π∥∞ = Op

(
ξψ
√
(log J)/(NTeJ)

)
. (14)

(2) Let Assumptions 5.1-5.2 hold. If
ζ2
√

log(J) log(NT )/NT = O(1) then the approxi-
mation error can be controlled by

∥Qπ − Q̃π∥∞ = Op(∥Qπ −ΠJQ
π∥∞). (15)

By examining the proof of Lemma 5.3, it is possible to
derive the finite sample error bounds for both ∥Q̂π − Q̃π∥∞
and ∥Qπ − Q̃π∥∞. We omit them for brevity.

Theorem 5.4. Let Assumptions 2.1-2.3, 3.2, 5.1, and 5.2
hold and Qπ ∈ Λ∞(p, L) for some L. Suppose that the
sieve space ΨJ is spanned by a B-spline or wavelet basis
of (Cohen et al., 1993) with regularity larger than p, and
BK is spanned by a wavelet, spline or cosine basis. If
J
√
log(J) log(NT )/NT = O(1), then we have:

∥Q̂π −Qπ∥∞ = Op
(
J−p/d +

√
J(log J)/(NT )

)
. (16)
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Further, by choosing J ≍ ( NT
log(NT ) )

d/(2p+d) and assuming
2p > d, we have for all 0 ≤ ∥α∥ℓ1 < p,

∥∂αQ̂π − ∂αQπ∥∞ = Op((
log(NT )

NT
)

p−∥α∥ℓ1
2p+d ). (17)

The smoothness parameter p in Theorem 5.4 represents the
smoothness level of the true Q-function and characterizes
the size of the functional class that the true Q-function
belongs to. We require 2p > d in Theorem 5.4 mainly for
deriving the sup-norm rate in order to achieve the optimality
when considering Hölder class of functions. Theorem 5.4
shows that in terms of the batch data sample size ofNT , the
sup-norm rate of our 2SLS estimator Q̂π to Qπ is the same
as the optimal one in the classical non-parametric regression
estimation (Stone, 1982) using B-splines. The sup-norm
convergence rate of Q̂π can be useful to develop uniform
confidence bands (UCBs) for the Q-function using results
in (Chen & Christensen, 2018) for example. Such UCBs
may be incorporated into the framework of pessimistic RL
algorithms such as (Jin et al., 2021; Xie et al., 2021). In
addition, we can also show that the sup-norm bounds on the
constant factor γ is of order (1− γ)−3. Finally, the results
on the sup-norm rates for estimating the derivatives of the
Q-function may be useful to some actor-critic algorithms
such as (Silver et al., 2014; Kallus & Uehara, 2020; Xu
et al., 2021).

5.3. L2-norm Convergence Rates

In this subsection we present the L2 convergence rates of
our 2SLS estimator for the Q-function. We do not require
Assumption 5.2 (b) as the L2-stability condition holds auto-
matically.

Theorem 5.5. Let Assumptions 2.1-2.3, 3.2, 5.1, and 5.2 (a)
hold. If ζ

√
log(NT ) log(J)/NT = o(1), then:

∥Q̂π −Qπ∥2 = Op(
√
J/(NT ) + ∥Qπ −ΠJQ

π∥2).
(18)

If Qπ ∈ Λ2(p, L) with p > 0, and ΨJ and BK are spanned
by some commonly used bases such as polynomials, trigono-
metric polynomials, splines and wavelets with regularity
greater than p, by choosing J ≍ (NT )d/(2p+d), we have:
for all 0 ≤ ∥α∥ℓ1 < p,

∥∂αQ̂π − ∂αQπ∥2 = Op

(
(NT )

(∥α∥ℓ1
−p)/(2p+d)

)
.

According to Theorem 5.5, the sieve 2SLS estimator
Q̂π achieves the minimax optimal L2-norm convergence
rate to Qπ under conditions much weaker than those
for the optimal sup-norm convergence rate. Let F be
a known marginal distribution of the initial state. It is
well-known that one can estimate the value of a target

policy π, i.e.,vπ =
∫
s∈S [

∫
a∈A π(a | s)Q

π(s, a)da]F (ds)
by a simple plug-in sieve 2SLS estimator v̂π =∫
s∈S [

∫
a∈A π(a | s)Q̂

π(s, a)da]F (ds). Theorem 5.5 is par-
ticularly useful in establishing the asymptotic normality of√
NT (v̂π − vπ).

Remark 5.6. (1) Recently (Shi et al., 2020) presented a
sieve LSTD estimator for Qπ and obtained the L2-norm
rate of convergence (See (E.46) in appendix of their pa-
per for more details) under some conditions including their
Assumption (A3.) or a small discount factor γ condition.
They then apply their L2-norm convergence rate to estab-
lish the

√
NT -asymptotic normality of plug-in sieve LSTD

estimator for the value vπ. Note that their sieve LSTD is a
special case of our sieve 2SLS with BK = ΨJ and K = J ,
and the sieve LSTD automatically satisfies our Assumption
5.2 (a). Our Theorem 5.5 establishes the L2-norm conver-
gene rate for their sieve LSTD estimator without the need
to impose the strong condition of a small discount factor
γ (or Assumption (A3.)). Thus we may require weaker
conditions for establishing the asymptotic normality of the
plug-in sieve 2SLS estimator for the value. We leave details
to the longer version of the paper. (2) In this paper, to obtain
the optimal rates of convergence in L2-norm (and sup-norm)
of our sieve 2SLS estimator for the Qπ function, we assume
strictly stationary data for simplicity. We note that (Shi et al.,
2020) did not impose this strict stationarity in their L2-norm
rate and asymptotic normality calculation. However, they
need to assume the distribution of the initial state Si,0 in the
batch data is bounded away from 0 uniformly in i. Indeed
it is possible to replace the strict stationary condition in
our Assumption 5.1 by imposing the geometric ergodicity
and using the truncation argument to obtain the same sup-
norm and L2-norm convergence rates for our sieve 2SLS
estimator. We leave it for the future work.

6. Conclusion
In this paper, we consider nonparametric estimation of Q-
function of continuous states and actions in the OPE set-
ting. Under some mild conditions, we show that the NPIV
model (3) for estimating Q-function nonparametrically is
well-posed in the sense of L2-measure of ill-posedness, by-
passing the need of imposing a strong condition on the dis-
count factor γ in the recent literature. The well-posedness
property effectively implies that the minimax lower bounds
for nonparametric estimation of Q-function coincide with
those for a nonparametric regression in sup-norm and in
L2-norm under the i.i.d. setting. Under mild sufficient con-
ditions, we also establish that the sup-norm and the L2-norm
rates of convergence of our proposed sieve 2SLS estimators
for Q-function achieve the lower bounds, and hence are
minimax-optimal. These rate results are useful for optimal
estimation and inference on various functionals, such as
the value, of the Q-function by plugging in our sieve 2SLS
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estimators. In particular, one can easily develop uniform
confidence bands (UCBs) for the Q-function by slightly
modifying the UCBs result in (Chen & Christensen, 2018)
for a NPIV function estimated via a spline or wavelet sieve
2SLS. We leave this to future work due to the length of the
paper.

In this paper we focus on the direct method of using Bell-
man equation to nonparametrically estimate Q-function in
the OPE setting. In the existing literature, there are two
additional model-free approaches to perform OPE. One is
using the recently proposed marginal importance sampling
for the infinite horizon setting such as (Liu et al., 2018;
Nachum et al., 2019; Xie et al., 2019; Uehara et al., 2020;
Zhang et al., 2020a;b). The other approach combines the di-
rect method and marginal importance sampling to construct
the so-called doubly robust estimators for the value of the
target policy (see, e.g., (Kallus & Uehara, 2019; Tang et al.,
2020; Shi et al., 2021) among many others). Our results on
the well-posedness and the minimax lower bounds for Q
function estimation should be useful to establish theoretical
properties of these alternative approaches under conditions
that are weaker than the existing ones. Finally, since OPE
serves as the foundation of many RL algorithms, our results
on Q-function estimation of a target policy can also be use-
ful to other policy learning methods such as those proposed
in (Ernst et al., 2005; Antos et al., 2008b; Le et al., 2019;
Liao et al., 2020; Jin et al., 2021; Zanette et al., 2021). We
leave details to future work.
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A. Proofs in Section 3
A.1. Proof of Lemma 3.1

It is sufficient to show that ∥Q−Qπ∥∞ ≤ 1
1−γ ∥T h

π(Q−Qπ)∥∞, while other inequalities can be readily seen. It can be
observed that

∥Q−Qπ∥∞ ≤ ∥T hπ(Q−Qπ)∥∞ + γ∥Eπ [(Q−Qπ)(S′, A′) |S = •, A = •] ∥∞ (19)

≤ ∥T hπ(Q−Qπ)∥∞ + γ∥Q−Qπ∥∞, (20)

where the first line follows the triangle inequality. This immediately implies

∥Q−Qπ∥∞ ≤ 1

1− γ
∥T hπ(Q−Qπ)∥∞. (21)

A.2. Proof of Theorem 3.3

For the first statement of Theorem 3.3, it is enough to focus on the first inequality, while the second one is given by Jensen’s
inequality. Let I be the identity operator and Pπ be the operator such that Pπf(s, a) = Eπ [f(St+1, At+1) |St = s,At = a]
for any t ≥ 0. By induction, we can show that (Pπ)kf(s, a) = Eπ [f(St+k, At+k) |St = s,At = a]. For some integer t̄,
which will be specified later, we have

∥Q1 −Q2∥2,d̄πb
T

≤ ∥
(
I − γ t̄(Pπ)t̄

)
(Q1 −Q2) ∥2,d̄πb

T︸ ︷︷ ︸
(I)

+γ t̄ ∥(Pπ)t̄ (Q1 −Q2) ∥2,d̄πb
T︸ ︷︷ ︸

(II)

.

We first focus on deriving an upper bound for (II). By Jensen’s inequality, we can show that

{(II)}2 ≤
∫
s∈S,a∈A

Eπ
[
(Q1 −Q2)

2(St̄, At̄) |S0 = s,A0 = a
]
d̄π

b

T (s, a)dsda

=

∫
s∈S,a∈A

∫
s′∈S,a′∈A

(Q1 −Q2)
2(s′, a′)qπt̄ (s

′, a′ | s, a)ds′da′d̄π
b

T (s, a)dsda

=

∫
s′∈S,a′∈A

(Q1 −Q2)
2(s′, a′)q̃π

b;π
T ;t̄ (s′, a′)ds′da′

=

∫
s′∈S,a′∈A

(Q1 −Q2)
2(s′, a′)

q̃π
b;π

T ;t̄ (s′, a′)

d̄π
b

T (s′, a′)
d̄π

b

T (s′, a′)ds′da′

≤ pmax

pmin
∥Q1 −Q2∥22,d̄πb

T

,

where q̃π
b;π

T ;t̄ (s′, a′) refers to the marginal probability density function by composition between d̄π
b

T and qπt̄ . The last equation

holds because q̃π
b;π

T ;t̄ is absolutely continuous with respect to d̄π
b

T (s′, a′) by Assumption 3.2. The last inequality is also

given by Assumption 3.2 since q̃π
b;π

T ;t̄ (s′, a′) = E
[
qπt̄ (s

′, a′ |S,A)
]
≤ pmax for every (s, a) ∈ S ×A (As long as one-step

transition density is bounded above, t̄-step will also be bounded above.). Now for any ε > 0, we can choose t̄ sufficiently
large such that

γ t̄
√
pmax/pmin ≤ ε,

which implies that γ t̄ × (II) ≤ ε∥Q1 −Q2∥2,d̄πb
T

. This further shows that

∥Q1 −Q2∥2,d̄πb
T

≤ (1− ε)−1 × (I).
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In the following, we derive an upper bound for (I). Let g = (I − γPπ)(Q1 −Q2). By a similar argument as before, we
have

(I) = ∥
(
I − γPπ + γPπ − γ2(Pπ)2 + · · ·+ γ t̄−1(Pπ)t̄−1 − γ t̄(Pπ)t̄

)
(Q1 −Q2) ∥2,d̄πb

T

≤
t̄−1∑
k=0

γk∥(Pπ)k(I − γPπ)(Q1 −Q2)∥2,d̄πb
T

=

t̄−1∑
k=0

γk∥(Pπ)kg∥
2,d̄π

b
T

≤
t̄−1∑
k=0

γk
√
pmax

pmin
∥g∥

2,d̄π
b

T

≤ 1− γ t̄

1− γ

√
pmax

pmin
∥g∥

2,d̄π
b

T

.

Summarizing together, we can obtain that

∥Q1 −Q2∥2,d̄πb
T

≤ (1− ε)−1(1− γ t̄)

1− γ

√
pmax

pmin
∥T hπ(Q1 −Q2)∥2,d̄πb

T

,

where we note that T hπ(Q1 −Q2) = g. Since ε is arbitrary, let ε go to 0, we have

∥Q1 −Q2∥2,d̄πb
T

≤ 1

1− γ

√
pmax

pmin
∥T hπ(Q1 −Q2)∥2,d̄πb

T

In the remaining proof, we show τ is bounded above. Note that for any Q ∈ L2(S,A),

∥hπ(Q)∥2L2(S,A,S′) = E

[(
Q(S,A)− γ

∫
a′∈A

π(a′ |S′)Q(S′, a′)da′
)2
]

≲ 2E
[
(Q(S,A))2

]
+

2pmaxγ
2

pmin

∫
Q2(s, a)d̄π

b

T (s, a)dsda

≲ (1 +
pmaxγ

2

pmin
)∥Q∥2

2,d̄π
b

T

,

where the first inequality is given by AM-GM, Jensen’s inequalities and Assumption 3.2 by noting that d̄π
b

T+1(s, a) ≲ pmax

for any s ∈ S and a ∈ A. Then by the first inequality given in (6), we can show that

τ ≲

√
pmax(1 +

pmaxγ2

pmin
)

(1− γ)
√
pmin

,

which concludes our proof.

B. Notations
In this section, we clarify several notations used in the remaining appendix. Unless specified, for any transition tuple
(S,A, S′), the probability density of (S,A) is ∼ dπb and the probability density of S′ given (S,A) is q. In addition, E refers
to the expectation taken with respect to dπb . We recall the definition of some quantities below, which will appear in our
proof.

Gπκ = Gπκ,J = E[κJπ(S,A, S′)κJπ(S,A, S
′)⊤] = E[Γ⊤

π Γπ/(NT )]

Gb = Gb,K = E[bK(S,A)bK(S,A)⊤] = E[B⊤B/(NT )]
Gψ = Gψ,J = E[ψJ(S,A)ψJ(S,A)⊤]
Σπ = ΣπK,J = E[bK(S,A)κJπ(S,A, S

′)⊤] = E[B⊤Γπ/(NT )] .
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We assume that Σπ has a full column rank J . Denote eJ = λmin(G
π
κ,J). Let

ζπκ = ζπκ,J = sup
s,a,s′

∥[Gπκ,J ]−1/2κJπ(s, a, s
′)∥ℓ2 ζb = ζb,K = sup

s,a
∥G−1/2

b bK(s, a)∥ℓ2

ξπκ = ξπκ,J = sup
s,a,s′

∥κJπ(s, a, s′)∥ℓ1 ξψ = ξJ = sup
s,a

∥ψJπ (s, a)∥ℓ1

for each J and K, and ζ = max{ζb,K , ζπκ,J}. Define

(G
−1/2
b Σπ)−l =

[
[Σπ]⊤(Gb)

−1Σπ
]−1

[Σπ]⊤(Gb)
−1/2,

and similarly for (Ĝ−1/2
b Σ̂π)−l , where

Σ̂π =
B⊤Γπ
NT

and Ĝb =
B⊤B

NT
.

C. Lower bounds
In this section, the probability density of (Si,t, Ai,t) is dν and the expectation is with respect to the density dν .

C.1. Lower bounds for Sup-norm Rates

The proof mainly follows that of Theorem 3.2 in (Chen & Christensen, 2018). Consider the Gaussian reduced form of NPIV
model with known operator T :

Ri,t = T hπ0 (Si,t, Ai,t) + Ui,t, (22)

Ui,t | (Si,t, Ai,t) ∼ N (0, σ2(Si,t, Ai,t)),

for 1 ≤ i ≤ N and 0 ≤ t ≤ T − 1. The known of operator T is equivalent to knowing the transition density q. By Lemma 1
of (Chen & Reiss, 2011), the minimax lower bound of Model (3) is no smaller than Model (22). In the following, we thus
focus on Model (22) and make use of Theorem 2.5 of (Tsybakov, 2009).

We restrict S × A = [0, 1]d. Let {ϕ̃j,k,G, ψ̃j,k,G}j,k,G be a tensor-product wavelet basis of regularity larger than p for
L2([0, 1]d), where j is the resolution level, k = (k1, k2, · · · , kd) ∈ {0, 1, · · · , 2j − 1}d, and G is a vector indicating
which element in a Daubechies pair {ϕ, ψ} is used. Note that ϕ has support [−M + 1,M ] for some positive integer
M . All these pairs are generated by CDV wavelets (Cohen et al., 1993). Following the proof of (Chen & Christensen,
2018), we consider a class of submodels around Qπ. In particular, for a given j, consider the wavelet space (S × A)j ,
which consists of 2jd functions {ψ̃j,k,G}k∈{0,··· ,2j−1}d with G chosen as all ψ functions. For some constant r, consider
{ψ̃j,k,G}k∈{r,··· ,2j−1−M}d as interior wavelets and ψ̃j,k,G(s, a) = Πd−1

m=1ψj,km(sm)ψj,kd(a) for k = (k1, · · · , kd) ∈
{r, · · · , 2j − 1−M}d, where s = (s1, · · · , sd−1) ∈ S , a ∈ A and ψj,km(•) = 2j/2ψ(2j(•)− km) for 1 ≤ m ≤ d. Then
for sufficiently large j, there exists a set I ⊆ {r, · · · , (2j −M − 1)}d of interior wavelets with Card(I) ≳ 2dj , where
Card(•) refers to the cardinality, such that at least one coordinate of support(ψ̃j,k1,G) and support(ψ̃j,k2,G) is empty for all
k1 ̸= k2 ∈ {r, · · · , 2j − 1−M}d. In addition, we have Card(I) ≲ 2jd by definition.

Then for any Qπ ∈ Λ∞(p, L) such that ∥Qπ∥Λp
∞ ≤ L/2, where ∥ • ∥Λp

∞ is the Besov norm and for each i ∈ I, define

Qπi = Qπ + c02
−j(p+d/2)ψ̃j,i,G.

Correspondingly, for every (s, a, s′), let

hπi (s, a, s
′) = hπ0 (s, a, s

′) + c02
−j(p+d/2)

(
ψ̃j,i,G(s, a)− γ

∫
a′∈A

π(a′|s′)ψ̃j,i,G(s′, a′)da′
)
,

where c0 is some positive constant specified later. It can be seen that for all i ∈ I,

∥c02−j(p+d/2)ψ̃j,i,G(s, a)∥Λp
∞ ≲ c0.

Hence ∥Qπi ∥Λp
∞ ≤ L for sufficient small c0.
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For i ∈ {0}d ∪ I, consider Model (22) with the true function hπi and define the joint probability density of
{Sj,t, Aj,t, Rj,t, S′

j,t}1≤j≤N,0≤t≤T−1 as Pi such that

Pi = ΠNj=0Π
T−1
t=0 d

ν(Sj,0, Aj,0)phπ
i
(Rj,t|Sj,t, Aj,t)q(S′

j,t |Sj,t, Aj,t),

by recalling that they are i.i.d. samples, where phπ
i

denotes the conditional density of reward given a state-action pair. In
particular, when i = {0}d, Qπi = Qπ and hπi = hπ .

First of all, for sufficiently small c0, we can show

∥c02−j(p+d/2)ψ̃j,i,G∥Λp
∞ ≲ c0 ≤ L

for every i ∈ I. In addition, by Equation (7), we have√
pmin/pmax(1− γ)c02

−j(p+d/2) ≤ ∥T c02−j(p+d/2)
(
ψ̃j,i,G(S,A)− γ

∫
a′∈A

π(a′|S′)ψ̃j,i,G(S
′, a′)da′

)
∥2 (23)

≲ c02
−j(p+d/2). (24)

Secondly, for every i ∈ I, the Kullback-Leibler distance K(Pi, P0) can be bounded as

K(Pi, P0) ≤
1

2
c202

−j(2p+d)
N∑
m=1

T−1∑
t=0

E


(
T
(
ψ̃j,i,G(Sm,t, Am,t)−

∫
a′∈A π(a

′|S′
m,t)ψ̃m,i,G(S

′
m,t, a

′)da′
))2

σ2(Sm,t, Am,t)

 (25)

≲ NTc202
−j(2p+d), (26)

by the condition in Theorem 4.1. By choosing 2j ≍ (NT/ log(NT ))1/(2p+d), it gives that

K(Pi, P0) ≲ c20 log(NT ),

and log(Card(I)) ≳ j ≳ log(NT ) − log log(NT ). So for sufficiently small c0 and large NT , K(Pi, P0) ≤
1/8 log(Card(I)) for every i ∈ I.

Lastly, it can be seen that for i1, i2 ∈ I and i1 ̸= i2,

∥∂αQπi1 − ∂αQπi2∥∞ = c02
−j(p+d/2)∥∂αψ̃j,i1,G − ∂αψ̃j,i2,G∥∞

≳ 2c02
−j(p+d/2)2jd/22j∥α∥ℓ1 ∥ψ|α|∥∞

= 2c02
−j(p−∥α∥ℓ1

)∥ψ|α|∥∞,

where the first inequality is given by recalling that at least one coordinate of support(ψ̃j,k1,G) and support(ψ̃j,k2,G) is empty
for all k1 ̸= k2 ∈ {r, · · · , 2j − 1−M}d. Here ψ|α| refers to Πdm=1∂

αmψ.

Note that 2−j(p−∥α∥ℓ1
) = (log(NT )/NT )(p−∥α∥ℓ1

)/(2p+d). Then Theorem 2.5 of (Tsybakov, 2009) implies that for any
0 ≤ ∥α∥ℓ1 < p,

lim inf
NT→∞

inf
Q̂

sup
Q∈Λ∞(p,L)

PrQ
(
∥∂αQ̂− ∂αQ∥∞ ≥ c(log(NT )/NT )(p−∥α∥ℓ1

)/(2p+d)
)
≥ c′ > 0, (27)

for some constants c and c′.

C.2. Lower bounds for L2-norm Rates

The proof mainly follows that of Theorem G.3 in (Chen & Christensen, 2018). Again we focus on Model (22) and apply
Theorem 2.5 of (Tsybakov, 2009).

We restrict S × A = [0, 1]d. Let {ϕ̃j,k,G, ψ̃j,k,G}j,k,G be a tensor-product wavelet basis of regularity larger than p for
L2([0, 1]d), where j is the resolution level, k = (k1, k2, · · · , kd) ∈ {0, 1, · · · , 2j − 1}d, and G is a vector indicating
which element in a Daubechies pair {ϕ, ψ} is used. Note that ϕ has support [−M + 1,M ] for some positive integer
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M . All these pairs are generated by CDV wavelets (Cohen et al., 1993). Following the proof of (Chen & Christensen,
2018), we consider a class of submodels around Qπ. In particular, for a given j, consider the wavelet space (S × A)j ,
which consists of 2jd functions {ψ̃j,k,G}k∈{0,··· ,2j−1}d with G chosen as all ψ functions. For some constant r, consider
{ψ̃j,k,G}k∈{r,··· ,2j−1−M}d as interior wavelets and ψ̃j,k,G(s, a) = Πd−1

m=1ψj,km(sm)ψj,kd(a) for k = (k1, · · · , kd) ∈
{r, · · · , 2j − 1−M}d, where s = (s1, · · · , sd−1) ∈ S , a ∈ A and ψj,km(•) = 2j/2ψ(2j(•)− km) for 1 ≤ m ≤ d. Then
for sufficiently large j, there exists a set I ⊆ {r, · · · , (2j −M − 1)}d of interior wavelets with Card(I) ≳ 2dj , where
Card(•) refers to the cardinality, such that at least one coordinate of support(ψ̃j,k1,G) and support(ψ̃j,k2,G) is empty for all
k1 ̸= k2 ∈ {r, · · · , 2j − 1−M}d. In addition, we have Card(I) ≲ 2jd by definition.

Then for any Qπ ∈ Λ2(p, L/2), where ∥ • ∥Λp
2,2

is the Sobolev norm with smoothness p. For each θ = {θi}i∈I , where
θi ∈ {0, 1}, define

Qπθ = Qπ + c02
−j(p+d/2)

∑
i∈I

θiψ̃j,i,G(s, a),

Correspondingly, let

hπθ (s, a, s
′) = hπ0 (s, a, s

′) + c02
−j(p+d/2)

(∑
i∈I

θiψ̃j,i,G(s, a)− γ

∫
a′∈A

π(a′|s′)
∑
i∈I

θiψ̃j,i,G(s
′, a′)da′

)
,

where c0 is some positive constant specified later. Based on the construction, there are 2Card(I) combinations of θ. It can be
seen that for every θ,

∥c02−j(p+d/2)
∑
i∈I

θiψ̃j,i,G(•, •)∥Λp
2,2

≲c02
−j(p+d/2)

√∑
i∈I

θ2i 2
2jp

≤c0

Hence ∥Qπθ ∥Λp
2,2

≤ L for sufficient small c0.

First of all, it can be seen that for every θ1 and θ2,

∥∂αQπθ1 − ∂αQπθ2∥2 = c02
−j(p+d/2−∥α∥ℓ1

)∥
∑
i∈I

(θ1,i − θ2,i)2
j/2ψ|α|(2j • −i)∥2

≳ c02
−j(p+d/2−∥α∥ℓ1

)

√∑
i∈I

(θ1,i − θ2,i)2∥2j/2ψ|α|(2j • −i)∥22

≍ 2c02
−j(p+d/2−∥α∥ℓ1

)

√∑
i∈I

I(θ1,i ̸= θ2,i),

where the second inequality is given by recalling that at least one coordinate of support(ψ̃j,k1,G) and support(ψ̃j,k2,G) is
empty for all k1 ̸= k2 ∈ {r, · · · , 2j − 1 −M}d. Here ψ|α|(2j • −i) = Πdm=1∂

αmψ(2j • −im). The last line is based
on that ψ̃j,i,G ∈ Cω with ω > p > ∥α∥ℓ1 and is compactly supported with the bounded above and below density, then
∥2j/2ψ(α)(2j • −i)∥2 ≍ 1. Take j large enough. By Varshamov-Gilbert bound, we can show that there exists a subset of

{θ(0), · · · , θ(I∗)} such that θ(0) = {0}Card(I), I∗ ≍ 2Card(I), and
√∑

j∈I I(θ(i)j ̸= θ
(k)
j ) ≳ 2jd/2, where 0 ≤ i ≤ k ≤ I∗.

Therefore ∥Qπi − Qπk∥2 ≳ c02
−j(p−∥α∥ℓ1

) for 0 ≤ i ≤ k ≤ I∗, where we denote Qθ(i) = Qi. Similarly, we denote
hπ
θ(i)

= hπi .

For 0 ≤ m ≤ I∗, consider Model (22) with the true function hπm and define the joint probability distribution of
{Sj,t, Aj,t, Rj,t, S′

j,t}1≤j≤N,0≤t≤T−1 as Pi such that

Pm = ΠNj=0Π
T−1
t=0 d

ν(Sj,0, Aj,0)phπ
m
(Rj,t|Sj,t, Aj,t)q(S′

j,t |Sj,t, Aj,t),

by recalling that they are i.i.d. samples.
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Secondly, for sufficiently small c0, we can show for every 0 ≤ m ≤ I∗

∥c02−j(p+d/2)
∑
i∈I

θ
(m)
i ψ̃j,i,G∥Λp

2,2
≲ c0 ≤ L/2

. In addition, by Equation (7), we have

√
pmin/pmax(1− γ)c02

−j(p+d/2)∥
∑
i∈I

θ
(m)
i ψ̃j,i,G∥2 ≲ ∥T c02−j(p+d/2)

(∑
i∈I

θ
(m)
i ψ̃j,i,G(S,A)

−γ
∫
a′∈A

π(a′|S′)
∑
i∈I

θ
(m)
i ψ̃j,i,G(S

′, a′)da′
)
∥2

≲ c02
−j(p+d/2)∥

∑
i∈I

θ
(m)
i ψ̃j,i,G∥2

≲ c02
−j(p+d/2)

√∑
i∈I

(θ(m))2

≍ c02
−jp.

Moreover, for every 0 ≤ m ≤ I∗, the distance K(Pm, P0) can be bounded as

K(Pm, P0)

≤1

2
c202

−j(2p+d)
N∑
k=1

T−1∑
t=0

E[
(T (
∑
i∈I θ

(m)
i ψ̃j,i,G(Sk,t, Ak,t)−

∫
a′∈A π(a

′|S′
k,t)

∑
i∈I θ

(m)
i ψ̃j,i,G(S

′
k,t, a

′)da′))2

σ2(Sk,t, Ak,t)
]

≲NTc202
−j(2p),

by the condition in Theorem 4.1. By choosing 2j ≍ (NT )1/(2p+d), it gives that

K(Pm, P0) ≲ c20(NT )
d/(2p+d),

and log(I∗) ≳ 2jd ≍ (NT )d/(2p+d) by recalling that I∗ ≍ 2Card(I) and Card(I) ≍ 2jd. So for sufficiently small c0 and
large NT , K(Pm, P0) ≤ 1/8 log(I∗) for every 1 ≤ m ∈ I∗.

Note that 2−j(p−∥α∥ℓ1
) = (NT )(∥α∥ℓ1

−p)/(2p+d). Then Theorem 2.5 of (Tsybakov, 2009) implies that

lim inf
NT→∞

inf
Q̂

sup
Q∈Λ2(p,L)

PrQ
(
∥Q̂−Q∥2 ≥ c̄(NT )(∥α∥ℓ1

−p)/(2p+d)
)
≥ c̄′ > 0, (28)

for some constants c̄ and c̄′.

D. Proof of Theorem 5.4
Let Qπ0,J solves infQ∈ΨJ

∥Qπ − Q∥∞. Under all assumptions in Lemmas 5.3, we have as long as
ζ2
√

log(J) log(NT )/NT = O(1),

∥Q̂π −Qπ∥∞
≤∥Q̂π − Q̃π∥∞ + ∥Q̃π −Qπ∥∞

≤Op
(Rmax

1− γ
τJξJ

√
(log J)/(NTeJ)

)
+Op(1)× ∥Qπ −ΠQπ∥∞

≤Op
(
ξJ
√
(log J)/(NTeJ)

)
+Op(1)∥ΠJ∥∞∥Qπ −Qπ0,J∥∞,

where the first inequality is by triangle inequality and the last inequality is given by Lebesgue’s lemma and τJ ≲ 1.
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To proceed our proof, we only consider the wavelet basis of (Cohen et al., 1993) for BK and ΨJ , while results of other
bases given in Theorem 5.4 can be derived similarly. Based on the property of wavelet basis, we can show that ∥ΠJ∥∞ ≲ 1,
where the proof is given in (Chen & Christensen, 2015). Since Qπ ∈ Λ∞(p, L), we have ∥Qπ −Qπ0,J∥∞ ≲ O(J−p/d) by
e.g., (Huang et al., 1998). Summarizing together, we have

∥Q̂π −Qπ∥∞ = Op

(
τJξJ

√
(log J)/(NTeJ) + J−p/d

)
.

According to Lemma H.1 and by the property of wavelet bases, eJ ≳ (1− γ)2p2min/pmax ≳ 1. Similarly, we can show that
ζb ≤ ζ ≲

√
J , and ξJ ≲

√
J . Hence we have our first statement that

∥Q̂π −Qπ∥∞ = Op
(
J−p/d +

√
J(log J)/(NT )

)
, (29)

as long as J
√
log(J) log(NT )/NT = O(1). Lastly, by choosing J ≍

(
NT

log(NT )

)d/(2p+d)
, which satisfies the constraint,

we have

∥Q̂π −Qπ∥∞ = Op

((
log(NT )

NT

)p/(2p+d))
.

Next, we present the proof related to the derivative case. Note that by the previous result, we have

∥Qπ − Q̃π∥∞ = Op(J
−p/d).

In addition, by Bernstein inequalities in approximation theory, we have

∥∂αQ∥∞ = O(J∥α∥ℓ1
/d)∥Q∥∞,

for all Q ∈ ΨJ . Hence we can show that by Lemma 3.1 and 5.3 Result (2),

∥∂αQ̃π − ∂αQπ∥∞ ≤ ∥∂αQ̃π − ∂α(ΠJQ
π)∥∞ + ∥∂αQπ − ∂α(ΠJQ

π)∥∞
≤ O(J∥α∥ℓ1

/d)∥Q̃π −ΠJQ
π∥∞ + ∥∂αQπ − ∂α(ΠJQ

π)∥∞
≤ O(J∥α∥ℓ1

/d)∥h̃π −ΠJh
π
0∥∞ + ∥∂αQπ − ∂α(ΠJQ

π)∥∞
≤ Op(J

−(p−∥α∥ℓ1
)/d) + ∥∂αQπ − ∂αQπJ∥∞ + ∥∂αQπJ − ∂α(ΠJQ

π)∥∞
≤ Op(J

−(p−∥α∥ℓ1
)/d) + ∥∂αQπ − ∂αQπJ∥∞ +O(J∥α∥ℓ1

/d)∥QπJ −Qπ∥∞.

By choosing QπJ such that ∥QπJ −Qπ∥∞ = O(J−p/d) and ∥∂αQπJ − ∂α(ΠJQ
π)∥∞ = O(J−(p−∥α∥ℓ1

)/d), we have

∥∂αQ̃π − ∂αQπ∥∞ = Op(J
−(p−∥α∥ℓ1

)/d).

Finally, we can derive that

∥∂αQ̂π − ∂αQπ∥∞ ≤ ∥∂αQ̂π − ∂αQ̃π∥∞ + ∥∂αQ̃π − ∂αQπ∥∞
≤ O(J∥α∥ℓ1

/d)∥Q̂π − Q̃π∥∞ + ∥∂αQ̃π − ∂αQπ∥∞

≤ O(J∥α∥ℓ1
/d)Op

(
ξJ
√
(log J)/(NT )

)
+Op(J

−(p−∥α∥ℓ1
)/d),

where the last inequality is given by Lemma 5.3 (1). This concludes our proof.

E. Proof of Lemma 5.3 Result (1)
The proof consists of three steps.

Step 1: Decompose the difference between ĉ and c̃.

ĉ− c̃ = [Γ⊤
πB(B⊤B)−B⊤Γπ]

−Γ⊤
πB(B⊤B)−B⊤(R−H0)

= [Σπ⊤G−1
b Σπ]−1Σπ⊤G−1

b B⊤(
R−H0

NT
)

+
(
−[Σπ⊤G−1

b Σπ]−1Σπ⊤G−1
b + [Σ̂π⊤Ĝ−

b Σ̂
π]−Σ̂π⊤Ĝ−

b

)
B⊤(

R−H0

NT
)

= (I) + (II),
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where

Σ̂π =
B⊤Γπ
NT

and Ĝb =
B⊤B

NT
.

Step 2: Bound the first term (I). Define an event

ENT =

{∥∥∥∥ [Gb]−1/2B⊤B[Gb]
−1/2

NT
− IK

∥∥∥∥ ≤ 1

2

}
,

where IK is an identity matrix with size K. By Lemma H.2 (b), we have∥∥∥∥ [Gb]−1/2B⊤B[Gb]
−1/2

NT
− IK

∥∥∥∥ = Op(ζb
√
log(NT ) log(K)/(NT )),

as long as ζ
√
log(NT ) log(K)/(NT ) = o(1). Hence we obtain that Pr(EcNT ) = o(1) by the assumption in Lemma 5.3

that ζ2
√
log(NT ) log(K)/(NT ) = O(1) and ζ ≥

√
J .

Now for any x > 0, we can show that

P (∥(I)∥ℓ∞ > x) (30)

≤
J∑
j=1

P

(
| 1

NT

N∑
i=1

T−1∑
t=0

qπj (Si,t, Ai,t) (Ri,t − hπ0 (Si,t, Ai,t, Si,t+1)) |> x, ENT

)
+ Pr(EcNT ), (31)

where qπj (Si,t, Ai,t) =
{
[Σπ⊤G−1

b Σπ]−1Σπ⊤G−1
b bK(Si,t, Ai,t)

}
j

(j-th element of a vector). Note that

E [Ri,t − hπ0 (Si,t, Ai,t, Si,t+1) | Si,t, Ai,t] = 0,

by the Bellman equation (1). Therefore the sequence

{qπj (Si,t, Ai,t) (Ri,t − hπ0 (Si,t, Ai,t, Si,t+1))}0≤t≤(T−1),1≤i≤N

forms a mean 0 martingale. We aim to apply Freedman’s inequality. Firstly, by Assumption 2.2 on the reward, we have

|Ri,t − hπ0 (Si,t, Ai,t, Si,t+1)| ≤
2Rmax

1− γ
.

In addition, we can show that

|qπj (Si,t, Ai,t)|
≤∥[Σπ⊤G−1

b Σπ]−1Σπ⊤G−1
b bK(Si,t, Ai,t)∥ℓ2

≤∥[Gπκ]−1/2∥ℓ2∥[[Gπκ]−1/2Σπ⊤G−1
b Σπ[Gπκ]

−1/2]−1[Gπκ]
−1/2Σπ⊤G

−1/2
b ∥ℓ2∥G

−1/2
b bK(Si,t, Ai,t)∥ℓ2

≤ ζ

sJK
√
eJ
,

where

s−1
JK = sup

h∈Θπ
J

∥h∥L2(S,A,S′)

∥ΠKT h∥L2(S,A)
= smin(G

− 1
2

b Σπ[G
π
κ]

−1/2]),

and smin refers to the minimum singular value. One can show that s−1
JK ≤ τJ ≲ 1 by Lemma A.1 of (Chen & Christensen,

2018) using Assumption 5.2 (a)

Secondly, we can show that conditioning on ENT ,

N∑
i=1

T−1∑
t=0

E
[{
qπj (Si,t, Ai,t) (Ri,t − hπ0 (Si,t, Ai,t, Si,t+1))

}2 | Si,t, Ai,t
]
≤ 6NTR2

max

(1− γ)2s2JKeJ
.
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This relies on the following argument. Conditioning on ENT , for every j,
N∑
i=1

T−1∑
t=0

E
[
(qπj (Si,t, Ai,t))

2 |Si,t, Ai,t
]

=

N∑
i=1

T−1∑
t=0

∥{[Σπ⊤G−1
b Σπ]−1Σπ⊤G

−1/2
b }j•G−1/2

b bK(Si,t, Ai,t)∥2ℓ2

≤3NT

2
∥{[Σπ⊤G−1

b Σπ]−1Σπ⊤G
−1/2
b }j•∥2ℓ2

≤3NT

2
∥[Σπ⊤G−1

b Σπ]−1∥2ℓ2

≤3NT

2
∥[Gπκ]−1/2[[Gπκ]

−1/2Σπ⊤G−1
b Σπ[Gπκ]

−1/2]−1[Gπκ]
−1/2∥2ℓ2

≤ 3NT

2s2JKeJ
,

where the first inequality is given by the event ENT . Then by Freedman’s inequality (e.g., Theorem 1.1 of (Tropp, 2011)),
we can show,

∥(I)∥ℓ∞ = Op

(√
log J

NTeJ

)
, (32)

as long as ζ
√
log(J)/(NT ) = o(1).

Define
(G

−1/2
b Σπ)−l =

[
[Σπ]⊤(Gb)

−1Σπ
]−1

[Σπ]⊤(Gb)
−1/2,

and similarly for (Ĝ−1/2
b Σ̂π)−l .

Step 3: We bound the second term (II). Relying on Lemmas H.5 (a) and H.3, we have

∥(II)∥ℓ∞ (33)

≤∥(G−1/2
b Σ̂π)−l Ĝ

−1/2
b G

1/2
b − (G

−1/2
b Σπ)−l ∥ℓ2∥G

−1/2
b B⊤(R−H0)/(NT )∥ℓ2 (34)

=Op

(
s−2
JKζ

√
(log(NT ) log J)/(NTeJ)

)
Op(

Rmax

1− γ

√
K

NT
) (35)

=Op

(√
log(J)/(NTeJ)

)
, (36)

by the assumption in Lemma 5.3 (1) that ζ2
√
log(NT )/

√
NT = O(1) and the fact that ζ ≥

√
K and s−1

JK ≤ τJ ≲ 1. This
completes the proof of Lemma 5.3(1) by noting that sups∈S,a∈A ∥ψJ(s, a)∥ℓ1 = ξJ by definition.

F. Proof of Lemma 5.3 Result (2)
We first prove the following Lemma.

Lemma F.1. Suppose that ζ2
√
log(J) log(NT )/

√
NT = O(1) and let Assumptions 5.1-5.2 hold. Then ∥h̃π−ΠJh

π
0∥∞ ≤

Op(1)× ∥hπ0 −ΠJh
π
0∥∞.

The proof follows similarly as Lemma A.3 of (Chen & Christensen, 2018). Note that the difference between h̃π and ΠJh
π
0

can be decomposed as

h̃π(s, a, s′)−ΠJh
π
0 (s, a, s

′)

=Π̃(hπ0 −ΠJh
π
0 )(s, a, s

′)

+(κJπ(s, a, s
′))⊤(G

−1/2
b Σπ)−l {G

−1/2
b (B⊤(H0 − ΓπcJ)/(NT )− E[bK(S,A)(hπ0 (S,A, S

′)− hπJ(S,A, S
′))])}

+(κJπ(s, a, s
′))⊤{(Ĝ−1/2

b Σ̂π)−l Ĝ
−1/2
b G

−1/2
b − (G

−1/2
b Σπ)−l }G

−1/2
b B⊤(H0 − ΓπcJ)/(NT )

=(I) + (II) + (III).
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For (I), by Assumption 5.2 (b), we can show that ∥(I)∥∞ ≲ ∥hπ0 −ΠJh
π
0∥∞. For (II), by Lemma H.4, we can show

∥(II)∥∞ ≤ ζπκ,Js
−1
JKOp

(
ζb,K

√
log(NT ) log(K)

NT

)
∥hπ0 −ΠJh

π
0∥∞ (37)

= Op
(
ζ2
√

log(NT ) log(K)

NT

)
∥hπ0 −ΠJh

π
0∥∞ = O(1)∥hπ0 −ΠJh

π
0∥∞, (38)

where we use the fact that ζ ≥ max{ζb,K , ζκ,J}, s−1
JK ≤ τJ ≲ 1 and that ζ2

√
log(J) log(NT )/

√
NT = O(1). For (III)

term, by Lemma H.5(b), we can show that

∥(III)∥∞
≤ζκ,J∥(Ĝ−1/2

b Σ̂π)−l Ĝ
−1/2
b G

−1/2
b − (G

−1/2
b Σπ)∥ℓ2∥G

−1/2
b B⊤(H0 − ΓπcJ)/(NT )∥ℓ2

≤ζκ,JOp
(
ζ

√
log J log(NT )

NT

)
{Op

(
ζb,K

√
log(NT ) logK

NT

)
∥hπ0 −ΠJh

π
0∥∞ + ∥ΠKT (hπ0 −ΠJh

π
0 )∥L2(S,A)}

≤ζκ,JOp
(
ζ

√
log J log(NT )

NT

)
{Op

(
ζb,K

√
log(NT ) logK

NT

)
∥hπ0 −ΠJh

π
0∥∞ + ∥(hπ0 −ΠJh

π
0 )∥L2(S,A)}

=Op
(
ζ2
√

log(J) log(NT )

NT

)
∥(hπ0 −ΠJh

π
0 )∥L2(S,A)

=Op(1)∥hπ0 −ΠJh
π
0∥L2(S,A),

by the condition that ζ2
√
log(J) log(NT )/

√
NT = O(1).

Now, we return to Result (2) of Lemma 5.3. By Lemma 3.1, we can see that

∥Q̃π −Qπ∥∞ ≲ ∥h̃π − hπ0∥∞
≤∥h̃π −ΠJh

π
0∥∞ + ∥hπ0 −ΠJh

π
0∥∞

=Op(1)∥hπ0 −ΠJh
π
0∥∞,

≤Op(1)∥Qπ −ΠJQ
π∥∞,

which concludes our proof.

G. Proof of Theorem 5.5
The idea of proof is similar to that in Lemma 5.3 (1) and Theorem 5.4. By triangle inequality, we have ∥Q̂π −Qπ∥2 ≤
∥Q̂π−Q̃π∥2+∥Q̃π−ΠJQ

π∥2+∥Qπ−ΠJQ
π∥2. In the following Step 1-3, we first bound ∥ĥπ−h̃π∥2 since ∥Q̂π−Q̃π∥2 ≲

∥ĥπ − h̃π∥2. The last step is to bound ∥Q̃π −ΠJQ
π∥2.

Step 1: Decompose the difference between ĥπ(s, a, s′) and h̃π(s, a, s′) as follows.

(κJπ(s, a, s
′))⊤ĉ− (ψJ(s, a))⊤c̃ = (ψJ(s, a))⊤[Γ⊤

πB(B⊤B)−B⊤Γπ]
−Γ⊤

πB(B⊤B)−B⊤(R−H0)

=(κJπ(s, a, s
′))⊤[Σπ⊤G−1

b Σπ]−1Σπ⊤G−1
b B⊤(

R−H0

NT
)

+(κJπ(s, a, s
′))⊤

(
−[Σπ⊤G−1

b Σπ]−1Σπ⊤G−1
b + [Σ̂π⊤Ĝ−

b Σ̂
π]−Σ̂π⊤Ĝ−

b

)
B⊤(

R−H0

NT
)

=(I) + (II),

where

Σ̂π =
B⊤Γπ
NT

and Ĝb =
B⊤B

NT
.
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Step 2: Bound the first term (I). Note that

∥(I)∥2 = ∥(κJπ(•, •, •))⊤[Σπ⊤G−1
b Σπ]−1Σπ⊤G−1

b B⊤(
R−H0

NT
)∥2

= ∥[Gπκ]1/2[Σπ⊤G−1
b Σπ]−1Σπ⊤G−1

b B⊤(
R−H0

NT
)∥ℓ2

≤ s−1
KJ∥G

−1/2
b B⊤(

R−H0

NT
)∥ℓ2 = Op(

√
K

NT
),

where the last inequality is given by Lemma H.3 and s−1
JK ≲ 1.

Step 3: we bound the second term (II). Relying on Lemmas H.5 (b) and H.3, we have

∥(II)∥2 (39)

≤∥[Gπκ]1/2{(G
−1/2
b Σ̂π)−l Ĝ

−1/2
b G

1/2
b − (G

−1/2
b Σπ)−l }∥ℓ2∥G

−1/2
b B⊤(R−H0)/(NT )∥ℓ2 (40)

=Op

(
s−2
JKζ

√
(log(NT ) log J)/(NT )

)
Op(

Rmax

1− γ

√
K

NT
) (41)

=Op

(√
K/(NT )

)
, (42)

by the assumption in Theorem 5.5 that ζ
√
log(NT ) log(J)/

√
NT ) = o(1) and s−1

JK ≲ 1.

Step 4: In the remaining proof, we show the bound for ∥Q̃π −ΠJQ
π∥2. By Theorem 3.3, we can show that,

(1 + γ)∥Q̃π −ΠJQ
π∥2 ≲ ∥h̃π −ΠJh

π∥2.

Then by a similar proof in Appendix F, we can show that as long as ζ
√
log(NT ) log(J)/

√
NT ) = O(1),

∥Q̃π −ΠJQ
π∥2 ≤ Op(1)× ∥Qπ −ΠJQ

π∥2 = Op(1)× J−p/d,

where we use the existing result on the approximation error of the linear sieve in the last equation. Summarizing Step 1-4
together, we obtain the statements in Theorem 5.5. Finally, we conclude our proof by the similar argument in the proof of
Theorem 5.4 for the derivatives case.

H. Technical Lemmas
Lemma H.1. For any policy π, under Assumptions 2.1, 2.3, 3.2 and 5.1, we have

eJ ≳
p2min

pmax
(1− γ)2ωJ

for every J ≥ 1, where ωJ = λmin(E
[
ψJ(S,A)(ψJ(S,A))⊤

]
)

Proof. By definition,

eJ = λmin

{
E
[(
ψJ(S,A)− γψJπ (S

′)
) (
ψJ(S,A)− γψJπ (S

′)
)⊤]}

.

Applying Theorem 3.3 with Q1(s, a) = (ψJ(S,A))⊤x and Q2(s, a) = 0 for every s ∈ S and a ∈ A (recall that the sieve
space is a subset of L2(S,A)), we have

x⊤E
[(
ψJ(S,A)− γψJπ (S

′)
) (
ψJ(S,A)− γψJπ (S

′)
)⊤]

x

≥x⊤E
[(
ψJ(S,A)− γE

[
ψJπ (S

′) | S,A
]) (

ψJ(S,A)− γE
[
ψJπ (S

′) | S,A
])⊤]

x

=∥(ψJ(S,A)− γE
[
ψJπ (S

′) | S,A
]
)⊤x∥22

≥ pmin

pmax
(1− γ)2∥(ψJ(S,A))⊤x∥22 ≥ pmin

pmax
(1− γ)2ωJ∥x∥2ℓ2 ,

where the first inequality is given by Jensen’s inequality and the last inequality is by the definition of ωJ .
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By examining the proof, we can see that the above lemma also holds for d̄π
b

T without Assumption 5.1.

Next we present several technical lemmas adapted from (Chen & Christensen, 2018). Define the orthonormalized matrix
estimators

Ĝob = G
−1/2
b ĜbG

−1/2
b

Ĝπ, oκ = [Gπκ]
−1/2Ĝπκ[G

π
κ]

−1/2

Σ̂π, o = G
−1/2
b Σ̂π[Gπκ]

−1/2,

where Ĝπκ =
Γ⊤
π Γπ

NT . Let Gob = IK , Gπ oκ = IJ and Σπ o denote their corresponding expected values.

Lemma H.2. Under Assumption 5.1, the following three bounds hold.

∥Ĝπ, oκ −Gπ, oκ ∥ℓ2 = Op(ζ
π
κ,J

√
(log(NT ) log(J))/(NT ))

∥Ĝob −Gob∥ℓ2 = Op(ζb,K
√

(log(NT ) logK)/(NT ))

∥Σ̂π, o − Σπ, o∥ℓ2 = Op(max(ζb,K , ζ
π
κ,J)

√
(log(NT ) logK)/(NT )) .

as N,T, J,K → ∞ as long as ζ
√

(log(NT ) log(J)/NT = o(1).

Proof. The proof follows similarly from Lemma 2.2 of (Chen & Christensen, 2015). The basic idea is to use Berbee’s
coupling lemma (e.g., Theorem 4.2 of (Chen & Christensen, 2015)) and matrix Bernstein’s inequality (e.g., (Tropp, 2015)).
For brevity, we only show the proof of the second statement in Lemma H.2, while others are similar.

Let Xi,t = G
−1/2
b bK(Si,t, Ai,t)[b

K(Si,t, Ai,t)]
⊤G

−1/2
b /(NT )− IK/NT and E[Xi,t] = 0K×K . Denote the upper bound

of mixing coefficient as β(w) = β0 exp(−β1w), where β0 and β1 are given in Assumption 5.1. By Berbee’s lemma,
for a fixed i with 1 ≤ i ≤ N and some integer w, the stochastic process {Xi,t}t≥0 can be coupled by a process Y ∗

i,t

such that Yi,k = {Xi,(k−1)w+j}0≤j<w and Y ∗
i,k = {X∗

i,(k−1)w+j}0≤j<w are identically distributed for each k ≥ 1 and
P (Yi,k ̸= Y ∗

i,k) ≤ β(w). In addition, the sequence {{Y ∗
i,k} | k = 2z, z ≥ 1} are independent and so are the sequence

{{Y ∗
i,k} | k = 2z + 1, z ≥ 0}. Denote Ie as the indices of the corresponding even number block and Io as indices of the

corresponding odd number blocks in {0, · · · , T−1}. Let Ir be the indices in the remainders, i.e., Ir = {⌊T/w⌋w, · · · , T−1}
and thus Card(Ir) < w. We construct a coupled stochastic process for every 1 ≤ i ≤ N trajectory. Now by triangle
inequality, we can show that for x > 0

Pr(∥
N∑
i=1

T−1∑
t=0

Xi,t∥ℓ2 ≥ 4x)

≤Pr(∥
N∑
i=1

⌊T/w⌋w−1∑
t=0

X∗
i,t∥ℓ2 ≥ 2x) + Pr(∥

N∑
i=1

∑
t∈Ir

Xi,t∥ℓ2 ≥ x)) + Pr(∥
N∑
i=1

⌊T/w⌋w−1∑
t=0

(X∗
i,t −Xi,t)∥ℓ2 ≥ x)

≤Pr(∥
N∑
i=1

∑
t∈Io

X∗
i,t∥ℓ2 ≥ x) + Pr(∥

N∑
i=1

∑
t∈Ie

X∗
i,t∥ℓ2 ≥ x) + Pr(∥

N∑
i=1

∑
t∈Ir

Xi,t∥ℓ2 ≥ x) +
NTβ(w)

w
.

By choosing w = c log(NT ) for sufficiently large c, we can show that

NTβ(w)

w
≲

1

NT
.

For the term Pr(∥
∑N
i=1

∑
t∈Io X

∗
i,t∥ℓ2 ≥ x), notice that

∑N
i=1

∑
t∈Io X

∗
i,t has been decomposed into the sum of fewer than

N × ⌊T ⌋/w independent matrices, i.e., Z∗
i,k =

∑kw−1
t=(k−1)wX

∗
i,t, k ≥ 1. One can show that ∥Z∗

i,k∥ℓ2 ≤ w(ζ2+1)
NT = wR̄ and

max(∥Z∗
i,k[Z

∗
i,k]

⊤∥2, ∥[Z∗
i,k]

⊤Z∗
i,k∥2) ≤

w2(ζ2+1)
(NT )2 = w2σ2. Then by matrix Berstein’s inequality, we have

Pr(∥
N∑
i=1

∑
t∈Io

X∗
i,t∥ℓ2 ≥ x) ≤ 2K exp

(
−x2/2

(NT )wσ2 + wR̄x/3

)
.
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Then we can bound this probability towards 0 as K → ∞ by choosing x = Cσ
√
wNT log(K) for sufficiently large C with

the condition given in the statement that R̄
√
w log(K) = o(σ

√
NT ), i.e., ζ

√
log(NT ) log(K)/

√
NT = o(1). Similar

argument can be applied to Pr(∥
∑N
i=1

∑
t∈Ie X

∗
i,t∥ℓ2 ≥ x).

Next, we derive an upper bound for Pr(∥
∑N
i=1

∑
t∈Ir Xi,t∥ℓ2 ≥ x̄) for some x̄ > 0. By Bernstein’s inequality and∑

t∈Ir Xi,t are independent for 1 ≤ i ≤ N , we have

Pr(∥
N∑
i=1

∑
t∈Ir

Xi,t∥ℓ2 ≥ x̄) ≤ 2K exp

(
−x̄2/2

Nw2σ2 + wR̄x̄/3

)
.

By choosing x̄ = C1σ
√
NTw log(K) for sufficiently large C1, we can show that

Pr(∥
N∑
i=1

∑
t∈Ir

Xi,t∥ℓ2 ≥ x̄) ≲ K−C1(T/w)+1,

as long as ζ
√
log(NT ) log(K)/

√
NT = o(1). Without loss of generality, we can assume w ≤ T , which completes the

proof in the second statement of Lemma H.2 as the probability converges to 0 as long as K → ∞. Otherwise the result in
the statement can be obtained directly by using the Bernstein’s inequality in the i.i.d setting without using Berbee’s lemma.
Other statements follow similarly.

Lemma H.3. Under Assumptions 2.1 and 2.2, ∥G−1/2
b B⊤(R−H0)/(NT )∥ℓ2 = Op(

Rmax

1−γ

√
K
NT ).

Proof. We apply the Markov inequality. Note that

∥G−1/2
b B⊤(R−H0)/(NT )∥22

≤ 4R2
max

(1− γ)2
K/NT,

because all the terms in G−1/2
b B⊤(R − H0)/(NT ) are uncorrelated by the Bellman equation (1). Hence the proof

completes.

Lemma H.4. Let hπJ(s, a, s
′) = κJπ(s, a, s

′)⊤cJ for any deterministic cJ ∈ RJ and HJ =
(hπJ(S1,0, A1,0, S1,1), h

π
J(S1,1, A1,1, S1,2), . . . , h

π
J(SN,T−1, AN,T−1, SN,T ))

⊤ = ΓπcJ . Under Assumptions 5.1,

∥G−1/2
b (B⊤(H0 −HJ)/(NT )− E[bK(S,A)(hπ0 (S,A, S

′)− hπJ(S,A, S
′))])∥ℓ2

= Op

(√
ζb,K log(NT ) log(K)

NT
× ∥hπ0 − hJ∥∞

)
.

provided
√

log(NT ) log(K)
NT = o(1).

Proof. We again use Berbee’s coupling lemma and matrix Bernstein’s inequality (e.g., (Dedecker & Louhichi, 2002; Chen
& Christensen, 2015)) and get the result. The argument is similar to that in the proof of Lemma H.2. In particular, let

Zi,t = G
−1/2
b bK(Si,t, Ai,t)(h

π
0 (Si,t, Ai,t, Si,t+1)− hπJ(Si,t, Ai,t, Si,t+1)).

It can be seen that ∥Zi,t∥ℓ2 ≤ ζb,K∥hπ0 − hJ∥∞ and

max{E[Z⊤
i,tZi,t],E[Zi,tZ⊤

i,t]} ≤ ζ2b,K∥hπ0 − hJ∥2∞,

which gives the result.
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Lemma H.5. Let s−1
JKζ

√
(log(NT ) log J)/(NT ) = o(1), and Assumption 5.1 is satisfied. Then:

(a) ∥(Ĝ−1/2
b Σ̂π)−l Ĝ

−1/2
b G

1/2
b − (G

−1/2
b Σπ)−l ∥ℓ2 = Op

(
s−2
JKζ

√
(log(NT ) log J)/(NTeJ)

)
(b) ∥[Gπκ]1/2{(Ĝ

−1/2
b Σ̂π)−l Ĝ

−1/2
b G

1/2
b − (G

−1/2
b Σπ)−l }∥ℓ2 = Op

(
s−2
JKζ

√
(log(NT ) log J)/(NT ))

)
where

(G
−1/2
b Σπ)−l =

[
[Σπ]⊤(Gb)

−1Σπ
]−1

Σπ]⊤(Gb)
−1/2,

and similarly for (Ĝ−1/2
b Σ̂π)−l .

Proof. We use the similar proof as Lemma F.10 of (Chen & Christensen, 2018) with Berbee’s coupling lemma again. The
argument is also similar to that in the proof of Lemma H.2. We omit here for brevity.


