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Abstract

Anomaly detection within multivariate time se-
ries (MTS) is an essential task in both data min-
ing and service quality management. Many re-
cent works on anomaly detection focus on de-
signing unsupervised probabilistic models to ex-
tract robust normal patterns of MTS. In this paper,
we model channel dependency and stochasticity
within MTS by developing an embedding-guided
probabilistic generative network. We combine it
with adaptive Variational Graph Convolutional
Recurrent Network (VGCRN) to model both
spatial and temporal fine-grained correlations in
MTS. To explore hierarchical latent representa-
tions, we further extend VGCRN into a deep vari-
ational network, which captures multilevel infor-
mation at different layers and is robust to noisy
time series. Moreover, we develop an upward-
downward variational inference scheme that con-
siders both forecasting-based and reconstruction-
based losses, achieving an accurate posterior ap-
proximation of latent variables with better MTS
representations. The experiments verify the supe-
riority of the proposed method over the current
state of the art.

1. Introduction
Multivariate time series (MTS) data are increasingly col-
lected in various real-world systems, such as internet ser-
vices (Su et al., 2019; 2021), content delivery networks (Dai
et al., 2021), power plants (Len et al., 2007), and wearable
devices (Djurdjanovic et al., 2003). Anomaly detection
and diagnosis of MTS in information technology refers to
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identifying the abnormal status in certain time steps and pin-
pointing the root causes, and it has become an active topic in
data science. Although traditional statistical-based anomaly
detection methods (Chen et al., 2013; Siffer et al., 2017;
Chandola et al., 2009) have been proved to be effective,
they heavily rely on the prior knowledge and are unfriendly
to complex MTS. Machine learning-based methods (Pang
et al., 2020), which have drawn significant recent atten-
tion, can be classified into two primary categories, which
are supervised (Liu et al., 2015; Shon & Moon, 2007; Ya-
mada et al., 2013) and unsupervised (Malhotra et al., 2016;
Hundman et al., 2018; Li et al., 2019; Dai et al., 2021; Su
et al., 2021; Chen et al., 2019) methods. Due to the labor-
intensive data annotation and the lack of anomaly instances
in real-world scenarios, supervised methods tend to become
impractical. Hence, the unsupervised anomaly detection
has been widely studied in recent years. Among them, one
line of the research mainly focuses on learning spatial char-
acteristics in the multivariate metrics but ignores temporal
dependencies across time steps (Zong et al., 2018; Audibert
et al., 2020; Su et al., 2021). Another line of the work is
recurrent neural networks (RNNs) based anomaly detection,
modeling the temporal dependencies via recurrent struc-
ture (Malhotra et al., 2016; Li et al., 2019; Dai et al., 2021;
Su et al., 2021). Besides, recent research also focuses on
capturing inter-channel relationships of MTS with convo-
lutional neural networks (CNNs) (Li et al., 2021; Zhang
et al., 2019b; Chen et al., 2020) or graph neural networks
(GNNs) (Deng & Hooi, 2021; Song et al., 2020; Bai et al.,
2019), which have been proved to be effective in capturing
normal patterns of MTS. However, all these methods ignore
the stochasticity of MTS, thus failing to achieve the robust
anomaly detection.

To consider the stochasticity of MTS, some probabilistic
methods (Xu et al., 2018; Su et al., 2021), especially dynam-
ical models (Dai et al., 2021; Li et al., 2021), are developed
and exhibit promising performance. To further capture the
inter-relationship, graph structures are also incorporated
into the inference network of probabilistic dynamic models
(Zhao et al., 2020). Despite the good performance that ex-
isting probabilistic anomaly detection methods claim, we
notice two phenomena in MTS that they have difficulty deal-
ing with effectively: 1): Anomalies in MTS are always
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Figure 1. (a) 8 days MTS from the Distributed Network Dataset
(DND), which are Key Performance Indicators (KPIs) collected
from the distributed network; (b) Relations between channels in
(a). Regions highlighted in red and blue represent the ground-truth
anomaly and normal that is misjudged to anomaly by previous
methods, respectively.

reflected by both the changes of temporal and relational
characteristics, such as region 2 in Fig. 1, while many tem-
poral fluctuations, such as regions 3 and 5, may easily lead
to the misjudgment by probabilistic dynamic models. How-
ever, there is still no probabilistic method that is able to
capture the relational information of MTS in the generative
process and consider its stochasticity for the robust repre-
sentation learning, which may restrict the models’ capacity
in capturing anomalies, while avoiding the misjudgment of
fluctuations. 2): There are always some noisy time series
in MTS, such as “Out rate,” “In rate,” and “Hit TTFB” in
Fig. 1 (a), that can cause both temporal and relational fluc-
tuations, thus easily leading to the misjudgment, as shown
in region 4 in Fig. 1 (a) and (b). Most existing probabilistic
methods are still shallow models (Sønderby et al., 2016;
Zhou et al., 2016; Child, 2021; Guo et al., 2018; Zhang
et al., 2018), which may have limited representational space,
limiting their robustness to these noisy time series.

Retaining the advantages of existing probabilistic models
in capturing the non-deterministic dynamics within MTS,
while relaxing their constraints that can not model the non-
deterministic relational information in generative process,
we propose a novel Deep Variational Graph Convolutional
Recurrent Network (DVGCRN) that consists of a developed
Deep Embedding-guided Probabilistic generative Network
(DEPN) to model hierarchical non-deterministic inter-
relationships within MTS, Stacked Graph Convolutional
Recurrent Network (SGCRN) to model multilevel tempo-
ral dependencies, and Gaussian-distributed channel embed-
dings to characterize the similarity and stochasticity of dif-
ferent channels, as illustrated in Fig. 6. For efficient infer-
ence, firstly, we construct an upward-downward autoencod-
ing inference method. It combines the bottom-up likelihood
and the up-bottom prior information of the parameters to per-
form the accurate posterior inference. Then, we introduce a
joint optimization objective that combines the forecasting-
based loss for SGCRN and the reconstruction-based loss for
DEPN to ensure better time-series representation learning.

Our contributions can be summarized as follows:

• We propose VGCRN, a novel stochastic model con-
sisting of the developed EPN and GCRN, for robust
anomaly detection of MTS. It is capable of discover-
ing both non-deterministic temporal dependencies and
channel relationships within MTS.

• To explore hierarchical latent representations and long-
term temporal dependencies, and reveal multilevel
inter-relationships of MTS, we extend VGCRN to a
deep stochastic model called DVGCRN.

• We develop an upward-downward inference scheme
for accurate inference and integrating the advantages of
both forecasting-based and reconstruction-based mod-
els by introducing a joint optimization objective.

• Experimental results on real-world and public datasets
substantiate the superiority of DVGCRN as compared
with the current state of the art.

2. Related work
Anomaly detection, an important task in MTS analysis, has
attracted increasing concerns of operation engineers in re-
cent years. Due to the superior ability in modeling complex
functions, deep learning methods have dominated the stud-
ies of MTS. A majority of such works utilize recurrent
structures to model the temporal dependencies in MTS. For
example, a representative study called EncDec-AD (Malho-
tra et al., 2016) employs an LSTM-based encoder&decoder
to capture the normal patterns of temporal dependencies
for MTS and determine abnormal ones depending on re-
construction errors. Telemanom (Hundman et al., 2018)
utilizes an LSTM (Sepp & Jurgen, 1997) to predict val-
ues of telemetry channels in the spacecraft and detect an
anomaly based on residual errors between the predicted and
observed values. To consider the stochasticity within MTS,
OmniAnomaly (Su et al., 2019) and SDFVAE (Dai et al.,
2021) present stochastic recurrent neural networks (SRNNs)
to learn robust representations and detect anomalies by using
the likelihood. Despite the effectiveness of existing dynamic
methods in real-world scenarios, their ultimate potentials
have been limited since they completely ignore the spatial
correlations among channels within MTS.

To consider the inter-relationships of different channels
within MTS, MSCRED (Zhang et al., 2019a) introduces
a multi-scale convolutional recurrent encoder&decoder to
learn spatial correlations and temporal characteristics in
MTS and detect anomalies via residual signature matri-
ces. InterFusion (Li et al., 2021) incorporates recurrent
and convolutional structures into a unified framework to
capture both temporal and inter-metric information. Re-
cently, GNNs have gradually attracted more attentions in
exploring the relationships. Thus, some GNN-based meth-
ods for anomaly detection have been developed (Deng &
Hooi, 2021; Zhao et al., 2020). These works have been
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proved to be effective in discovering normal patterns of
MTS. However, these methods are still shallow models with
a limited fitting power and fail to model stochastic inter
relationships in a generative process.

3. Proposed model
In this section, we first define the problem solved in this
paper. We then present VGCRN that integrates the GCRN
and EPN into a well-defined unified framework for anomaly
detection of MTS. Finally, we add a hierarchical generative
procedure with multiple channel embeddings.

3.1. Problem definition
We define the n-th MTS as xn = {x1,n,x2,n, ...,xT,n} ∈
RT×V , where n = 1, ...N and N is the number of MTS. T
is the duration of xn and the observation at time t, xt,n ∈
RV , is a V dimensional vector and V denotes the number of
time series. MTS anomaly detection is defined as a problem
that determines whether an observation from a certain task
and at a certain time is anomalous or not.

3.2. Channel embedding
To reflect the characteristics of different channels in MTS,
similar with Deng & Hooi (2021), we first introduce an
embedding vector for each channel in MTS as:

α
(0)
i ∈ Rd, i ∈ {1, 2, ..., V }, α(0) = [α

(0)
1 , ...,α

(0)
V ]. (1)

Then, the relationships between different channels can be
indicated by the inner product of embeddings, and they
are initialized randomly followed by being trained along
with other parameters of the model. Besides, to capture
inter-relationships of latent representations, we introduce
the layer-wise embedding vectors as:

α
(l)
i ∈ Rd, i ∈ {1, 2, ...,Kl}, l ∈ {1, 2, ..., L} (2)

where Kl refers to the dimension of latent space of DEPN
module. Moreover, to model stochastic of the inter-
relationships, we define channel embeddings as Gaussian
distributed vectors:

α
(l)
i = N (µ̂

(l)
i , diag(σ̂(l)

i )) (3)

The embeddings are employed and optimized in both the
DEPN and DGCRN modules of DVGCRN with both the
reconstruction and prediction losses.

3.3. Variational graph convolutional recurrent network

3.3.1. EMBEDDING-GUIDED PROBABILISTIC
GENERATIVE NETWORK

Distinct from traditional probabilistic generative models that
ignore the relations of different channels, we propose EPN
that captures the inter-dependencies of MTS by introducing

channel embeddings into generation process as:

W x
zµ = softmax(α(0)Tα(1)),W x

hµ = softmax(α(0)Tβ)

zt,n ∼ N
(
µt,n, diag

(
σt,n

))
,µt,n = f

(
W h,µht−1,n

)
µx

t,n = f
(
W x

zµzt,n +W x
hµht−1,n

)
xt,n ∼ N

(
µx

t,n, diag
(
σx

t,n

)) (4)

where zt,n ∈ RK refers to the Gaussian distributed prob-
abilistic latent variables, whose means and covariance pa-
rameters are µt,n and σt,n. ht,n ∈ RK

′

denotes the de-
terministic latent states of the GCRN module, introduced
in the next subsection. f(·) refers to the non-linear activa-
tion function and α(l) = [α

(l)
1 , ...,α

(l)
Kl

] ∈ Rd×Kl . µx
t,n and

σx
t,n are the mean and variance parameters of xt,n, they are

all trainable variables. The channel embeddings are incor-
porated into the generative process by defining the factor
loading matrices W x

zµ as the inner product of them, thus
to model the similarity of different channels and capture
the complex inter-relationships between channels. W h,µ

represents the connection matrix between ht−1,n and zt,n,
W x

h,µ represents the connection matrix between ht−1,n and

xt,n. β ∈ Rd×K
′

is the mapping matrix that transmit ht,n

into the embedding space of zt,n.

Compared with previous probabilistic generative network,
EPN module discovers the latent semantic structure of
each channel as an embedding vector, and provides a low-
dimensional channel representation, thus capturing the rela-
tionships between each other according to the similarity of
channel embeddings, and enhancing the robust representa-
tion learning in complex MTS scenarios.

3.3.2. GRAPH CONVOLUTIONAL RECURRENT NETWORK

To consider both temporal dependencies and inter-relations,
we introduce GCRN module by incorporating graph convo-
lutional and recurrent structure into a combined framework.
Specifically, with the latent representations and channel
embeddings in Eq. (4), we first adopt data adaptive graph
convolutional generation module (Bai et al., 2020) to infer
the hidden inter-dependence of data automatically as:

A = ReLU
(
[α(0),α(1)]T [α(0),α(1)]

)
H

(0)
t,n = ln([xt,n,zt,n]), Ã = Q− 1

2AQ− 1
2

H
(1)
t,n = ln(1 + exp(WÃH

(0)
t,n))

(5)

where H
(0)
t,n is the combination of input and probabilistic

latent states. [·] means the concatenate operation. Similar
as defining the graph by nodes similarity, the spatial de-
pendencies between each pair of channels are inferred by
multiplying their embeddings and referred to as a symmetric
adjacent matrix A. Ã is the normalized symmetric adja-
cent matrix with degree matrix Q. W ∈ R(V+K)×K

′

is
GCN filter. Generally speaking, we aggregate and propagate
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Figure 2. Graphical illustration of each operation of the DVGCRN.

the structural and relational information of both the MTS
and the latent states of probabilistic models into H

(1)
t,n via

a GCN. To discover the complex temporal correlations, we
further introduce a recurrent structure into our model and
formalize as:

ht,n = fθ(H
(1)
t,n,ht−1,n) (6)

where fθ(·) is a non-linear transition function, which can
be implemented by an LSTM with parameter θ. The la-
tent states h(l)

t,n are updated with H
(1)
t,n and ht−1,n, thus to

incorporate both relational and temporal information.

3.4. Deep variational graph convolutional recurrent
network

To further improve the generalization capacity, a straightfor-
ward extension of VGCRN is to apply hierarchical prior on
the EPN module and stacked structure on the GCRN module.
Therefore, as shown in Fig. 2, we construct a multi-layer
probabilistic model named DVGCRN.

3.4.1. DEEP EMBEDDING-GUIDED PROBABILISTIC
GENERATIVE NETWORK

To capture the hierarchical structural and relational charac-
teristics, as shown in Fig. 2 (b), we formulate DEPN into a
hierarchical generation process and incorporate multi-level
embedding channels at each layer as:

W
(l)
hµ = softmax(α(l)Tβ(l))

W (l)
zµ = softmax(α(l−1)Tα(l))

µ
(L)
t,n = f

(
W

(L)
hµ h

(L)
t−1,n

)
µ

(l)
t,n = f

(
W (l+1)

zµ z
(l+1)
t,n +W

(l)
hµh

(l)
t−1,n

)
, ...

z
(l)
t,n ∼

(
µ

(l)
t,n,diag

(
σ

(l)
t,n

))
, l = 1, ..., L

(7)

The generation process from z
(1)
t,n to xt,n is the same as

Eq. 4. z(l)
t,n ∈ RKl denotes the Gaussian distributed prob-

abilistic latent variables at layer l. h
(l)
t,n ∈ Rdl denotes

the deterministic latent states of SGCRN at the l-th layer.
We convert channels at different layers into a shared prob-
abilistic embedding space as Eq. (1), (2) and (3), and de-
fine the factor loading matrix W (l)

zµ ∈ RKl×Kl−1 at layer
l < L as the inner product of channel embeddings at the

l-th and (l − 1)-th layers, which can not only capture the
relationships between channels at adjacent layers, but also
help to inject information to higher layers as in Duan et al.
(2021), thus ensuring the expressive ability of deep structure.
W (l)

zµ ∈ RKl×dl , refers to a matrix that transits temporal

information from h
(l)
t,n to the probabilistic latent variables.

β(l) is the mapping matrix at layer l.

3.4.2. STACKED GRAPH CONVOLUTIONAL RECURRENT
NETWORK

To consider multilevel temporal dependencies and inter-
relations, we extend GCRN into a multilayer network named
SGCRN, as shown in Fig. 2(c). For the first layer of SGCRN,
we formulate it in the same way as Eqs. (5) and (6). Then,
the formulation of higher layers can be expressed as:

A(l) = ReLU
(
[α(l−1),α(l)]T [α(l−1),α(l)]

)
H̃

(l)
t,n = ln(z

(l−1)
t,n

T
,z

(l)
t,n

T
), Ã

(l)
= Q− 1

2A(l)Q− 1
2

H
(l)
t,n = ln(1 + exp(W (l)Ã

(l)
H̃

(l)
t,n)), l = 2, ..., L

h
(l)
t,n = LSTM(l)([H

(l)
t,n,h

(l−1)
t,n ],h

(l)
t−1,n)

(8)

where z
(l)
t,n is the latent state at layer l, and we introduce

a GCN at each layer to combine the structure and relation
information within z

(l)
t,n. To better utilize the dependencies

between channels at both the same and adjacent layers, we
combine z

(l)
t,n with z

(l−1)
t,n as the input of GCN at layer

l to construct the adjacent matrix as A(l). The W (l) ∈
R(Kl−1+Kl)×K

′
l refers to the GCN’s filter at layer l. After

getting H
(l)
t,n with GCN at each layer, a stacked LSTM is

introduced to further characterize multi-level and long-range
temporal dependencies. Besides, to obtain better time-series
representations, we assign SGCRN prediction task as:

x̂T,n = f(W psT−1,n), sT−1,n = [h
(1)
T−1,n, ...,h

(L)
T−1,n] (9)

where sT−1,n ∈ Rd1+...+dL is the concatenation of latent
states across all layers and W p ∈ RV×(d1+...+dL) denotes
a weight matrix for predicting xT,n.

In summary, DVGCRN integrates DEPN to enhance gen-
eralization capacity with hierarchical prior and capture the
dependencies between channels in embedding space, and the
SGCRN to characterize multilevel relational and temporal
dependencies into a well-defined hybrid Bayesian frame-
work with the shared probabilistic channel embeddings.

3.4.3. UPWARD-DOWNWARD INFERENCE SCHEME

Following VAE-based models (Kingma & Welling, 2014;
Rezende et al., 2014), a flexible variational distribution
q(zt,n|xt,n) could be defined to approximate the true pos-
terior distribution p(zt,n|−). To avoid collapsing of the
stochastic latent variables at higher layers into their prior
caused by the hierarchical structure (Zhou et al., 2015; Guo
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et al., 2020), we not only construct a deterministic-upward
path that links the recurrent latent states to the multi-layer
latent representations from l = 1 to l = L, but also parame-
terize a mapping from input xt,n to them:

µ̂
(l)
t,n = f(C(l)

xµxt,n +C
(l)
hµht−1,n)

σ̂
(l)
t,n = f(C(l)

xσxt,n +C
(l)
h,nht−1,n)

(10)

Where {C(l)
xµ,C

(l)
xσ} ∈ RV×dl and {C(l)

hµ,C
(l)
hσ} ∈ Rd

′
l×dl

are all learnable parameters of the inference network. Then,
DVGCRN combines the obtained latent features with the
prior from the stochastic-downward path to construct the
variational posterior of latent states from l = L to l = 1:

q
(
z
(l)
t,n

)
= N (µ

(l)
t,n, diag

(
σ

(l)
t,n

)
)

µ
(l)
t,n = linear(µ̂(l)

t,n +W (l)
zµz

(l+1)
t,n )

σ
(l)
t,n = Softplus(linear(σ̂(l)

t,n + 1))

(11)

Based on the structure of the inference network, the poste-
rior of probabilistic latent variables of DVGCRN are approx-
imated by combing the bottom-up likelihood and up-bottom
prior information from the generative distribution, thus to
enable richer latent representations for DVGCRN.

Moreover, we conclude the properties of DCGCRN in Sec-
tion. F in the Appendix, and all properties ensure more ex-
pressive and robust representations of normal MTS patterns,
thus achieves accurate detection for both ground-truth and
misjudgment regions in Fig. 1.

3.5. Model training
We combine prediction and reconstruction tasks into the
optimization objective. Specifically, the forecasting-based
model focuses on single-time step prediction, while the
reconstruction-based model learns a latent representation
for entire MTS. For DVGCRN, given channel embedding
α(1:L) and model parameters referred to as W (1;L), the
marginal likelihood of the MTS dataset D is defined as:

P (D|{α(l),W (l)}Ll=1) =

∫ T∏
t=1

p(xt,n|z(1)
t,n,α

(0),α(1))

+ [

L∏
l=1

T∏
t=1

p(z
(l)
t,n|z

(l−1)
t,n ,α(l),α(l−1))]

+ [

L∏
l=1

p(xT,n|h(l)
1:T−1,n,α

(l))]dz1:L
1:T,n

where the first and the second terms are reconstruction loss,
while the third one is prediction loss. The inference task is
to learn the parameters of both the DEPN and DGCRN, as
well as the shared channel embeddings. Similar to VAEs,
the optimization objective of DVGCRN can be achieved by
maximizing the evidence lower bound (ELBO) of the log

Algorithm 1 Upward-Downward Autoencoding Variational
Inference for DVGCRN

Set mini-batch size as M , the number of convolutional filters K
and hyperparameters;
Initialize the parameters of inference networks Ω, DEPN Ψ ,
SGCRN θ and the channel embeddings α(0:L);
repeat

Randomly select a mini-batch of M MTS consist of T subse-
quences to form a subset {x1:T,i}Mi=1;
Draw random noise {ϵ(l)t,n}

T,M,L
t=1,n=1,l=1 from uniform distri-

bution for sampling latent states {z(l)t,n}
T,M,L
t=1,n=1,l=1;

Calculate ∇L
(
Ω,Ψ;X, ϵ

(l)
t,i ,θ,α

(0:L)
)

according to
Eq. (12), and update encoder parameters Ω and decoder
parameters Ψ jointly;

until convergence
return global parameters {Ω,Ψ,θ,α(0:L)}.

marginal likelihood, which can be computed as:

L =

N∑
n=1

[
T∑

t=1

E
q(z

(1)
t,n)

[
ln p

(
xt,n|z(1)

t,n,α
(0),α(1)

)]
+ γ

L∑
l=1

E
q(z

(l)
t,n)

[
ln p

(
xT,n|h(l)

1:T−1,n,α
(l)
)]

−
T∑

t=1

L∑
l=1

E
q(z

(1)
t,n)

[ln
q
(
z
(l)
t,n|xt,n,h

(l)
t−1,n

)
p
(
z
(l)
t,n | z(l−1)

t,n ,α(l),α(l−1)
) ]


(12)

As we can see, different from traditional ELBO, which
only consists of the expected log-likelihood of genera-
tive model ensuring reconstruction performance and the
Killback–Leibler (KL) divergence that constrains the varia-
tional distribution q(z

(l)
t,n) to be close to its prior p(z(l)

t,n), the
ELBO for DVGCRN also incorporates the prediction loss by
SGCRN to ensure the expressive time-series representation.
γ > 0 is a hyper-parameter to balance the forecasting-based
error and the reconstruction-based probability, which is cho-
sen by grid search on the validation set. The parameters
of DEPN module, inference module, SGCRN module and
channel embeddings, defined as {Ψ(l)}Ll=1, {Ω(l)}Ll=1, Θ
and {α(l)}Ll=1 respectively, in DVGCRN are jointly updated
by stochastic gradient descent (SGD), as described in Algo-
rithm. 1.

4. Anomaly detection based on DVGCRN
4.1. Overview of the framework
The overview framework for MTS unsupervised detection
employing DVGCRN is shown in Fig. 3. It contains three
components. The first one pre-processes the original mul-
tivariate time series data so that it can be used to train the
model. Specifically, normalization and sliding time window
approaches (Dai et al., 2021) are adopted. We then em-
ploy DVGCRN to learn the representations of MTS. Finally,
anomalies are detected in terms of the reconstruction and
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Figure 3. Overall framework of anomaly detection for MTS based
on DVGCRN.

prediction probability inferred from the DVGCRN.

4.2. Anomaly score
Since the model is trained to learn normal patterns of multi-
variate time series, the more an observation follows normal
patterns, the more likely it can be reconstructed and pre-
dicted well with higher confidence. Hence, we apply the
reconstruction probability and prediction error of xt as the
anomaly score to determine whether an observed variable is
anomalous or not (An & Cho, 2015), and it is computed as:

St,n =
(
Sr
t,n + γ(−Sp

t,n)
)/

(1 + γ)

Sr
t,n = log p(xt,n|zt,n),Sp

t,n = (xt,n − x̂t,n)
2

(13)

where Sr
t,n and Sp

t,n are reconstruction and prediction score,
respectively. An observation xt will be classified as anoma-
lous if St,n is below a specific threshold. To better utilize the
multi-layer representations and improve the robustness, we
are motivated to modify the reconstruction anomaly score
as an united conditional probability as:

Ŝr
t,n =

1

L
log p

(
xt,n,z

(1)
t,n, ..., z

(L−1)
t,n | z(L)

t,n

)
=

1

L
(log p(xt,n|z(1)

t,n) +

L−1∑
l=1

log(z
(l)
t,n | z(l+1)

t,n ))
(14)

From a practical point of view, we use the Peaks-Over-
Threshold (POT) (Siffer et al., 2017) approach to help se-
lect threshold. In our case, the lower anomaly scores are
more likely considered to be extreme values since the lower
anomaly score, the greater chance it belongs to outlier.

5. Experiment
5.1. Experiment setting
Baseline methods:We compare DVGCRN with state-of-
the-art online anomaly detection methods for MTS: 1) Non-
dynamical methods, including VAE (Kingma & Welling,
2014), a basic probabilistic generative model; Ladder VAE
(Sønderby et al., 2016), a deep VAE structured model;
2) Dynamical methods, including LSTM-NTD (Hundman
et al., 2018), a deterministic recurrent autoencoding model;
VRNN (Chung et al., 2015), a probabilistic dynamic model
for describing high-dimensional sequences; OmniAnomaly
(Su et al., 2019), a stochastic RNN-based model; SDFVAE
(Dai et al., 2021), a static and dynamic factorized VAE-
based framework. 3) relational methods, including GNNs

(Deng & Hooi, 2021), a graph networks for anomaly de-
tection; InterFusion (Li et al., 2021) that considers inter-
relationships with convolutional structure.

Hyper-parameters: For baselines, we use the official pa-
rameter settings reported in their experiments. For our
DVGCRN, we implement it using Pytorch library with mini-
batch 256 for 120 running epochs. The Adam optimizer is
used with learning rate 0.0002. Besides, we set tempera-
ture coefficient β in ELBO equation increasing from 0 to
1 during the first 10 training epochs. And the probability p
associated with POT is set to be 0.004 empirically.

Datasets: We conduct extensive experiments on twofold
datasets: 1) the DND, a real-world multivariate KPI dataset;
2) the SMD, the MSL, and the SMAP, three public datasets
released by (Su et al., 2019) and (Hundman et al., 2018),
details of which can be found in the Appendix.

Hardware platform: All experiments are performed on
workstation equipped with a CPU i7-10700 and accelerated
by one GPU NVIDIA RTX 3090 with 24GB VRAM.

Evaluation metrics: Similar to previous studies (Dai
et al., 2021; Su et al., 2021; 2019), we employ Preci-
sion, Recall, and F1-score as evaluation metrics to com-
pare the performance of the different methods. Particularly,
F1 is deemed as a comprehensive indicator since it bal-
ances precision and recall. And our code is available at
https://github.com/BoChenGroup/DVGCRN.

5.2. Quantitative comparison
The influence of model parameters: In this part, we dis-
cuss the effect of model parameters on anomaly detection
performance. Setting the network structure as [15, 10, 5],
we first evaluate the effect of window size T , the data prep-
processing parameter introduced in Sec. 4.1, which deter-
mines the range of temporal dependencies. Fig. 4 (left)
shows the variation of detection accuracy of our model with
T ranging from 5 to 25. Clearly, as the length of T in-
creases, there is a common trend for the detection accuracy
of DVGCRN with different layers. Specifically, it grows
first and then keeps stabilized, which can be attributed to
the limited capacity of models in the length of temporal de-
pendencies they can capture. Particularly, for the sake that
DVGCRN with deeper layer can get longer range of tem-
poral dependencies, thus achieving more performance im-
provement with the increase of T . Besides, fixing T = 20,
we investigate the effect of network size, including L and
{dl}Ll=1, on the performance of anomaly detection and re-
port the results in Fig. 4 (middle). As we can see, there is a
clear trend of improvement in anomaly detection accuracy
by increasing the network depth given a limited first-layer
width, indicating the effectiveness of hierarchical structure
in enhancing the representation and generalization power.
However, with the increase of the hidden-layer width given

http://v.kuwo.com/
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Table 1. Detection performance of different methods. The best results are bolded.

Methods Network Size Latent Size DND SMD MSL SMAP

P R F1-score P R F1-score P R F1-score P R F1-score

VAE (Kingma & Welling, 2014) - 15 0.913 0.635 0.749 0.989 0.685 0.809 0.781 0.813 0.797 0.755 0.737 0.746
ladder VAE (Sønderby et al., 2016) - 15-10-5 0.813 0.772 0.765 0.990 0.753 0.855 0.842 0.823 0.832 0.792 0.775 0.783
LSTM-NTD (Hundman et al., 2018) 20 - 0.585 0.614 0.599 0.568 0.644 0.604 0.593 0.537 0.564 0.896 0.885 0.891

VRNN (Chung et al., 2015) 20 15 0.802 0.777 0.789 0.970 0.795 0.874 0.884 0.902 0.893 0.805 0.821 0.813
GNN (Deng & Hooi, 2021) 20 - 0.826 0.796 0.811 0.829 0.964 0.891 0.881 0.889 0.885 0.812 0.944 0.873

OmniAnomaly (Su et al., 2019) 20 15 0.919 0.723 0.809 0.819 0.968 0.887 0.887 0.912 0.899 0.742 0.978 0.843
InterFusion (Li et al., 2021) - 15 0.853 0.782 0.816 0.829 0.968 0.893 0.882 0.926 0.903 0.889 0.910 0.899
SDFVAE (Dai et al., 2021) 20 15 0.964 0.711 0.818 0.882 0.926 0.903 0.853 0.894 0.873 0.884 0.908 0.896

VGCRN-rec 20 15 0.902 0.751 0.820 0.959 0.835 0.893 0.881 0.924 0.902 0.890 0.911 0.901
VGCRN 20 15 0.822 0.831 0.826 0.959 0.850 0.901 0.889 0.920 0.904 0.886 0.930 0.908

DVGCRN-layer2 20-15 15-10 0.929 0.754 0.832 0.960 0.850 0.902 0.890 0.922 0.906 0.905 0.915 0.910
DVGCRN-layer3 20-15-10 15-10-5 0.930 0.756 0.834 0.950 0.876 0.912 0.886 0.930 0.908 0.908 0.916 0.912

DVGCRN-layer3-M 20-15-10 15-10-5 0.929 0.782 0.849 0.950 0.883 0.915 0.888 0.941 0.914 0.916 0.920 0.914

Figure 4. F1-score of the DVGCRN on the DND as a function of
window size (left), network size (middle) and embedding dimen-
sion (right).
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Figure 5. Ablation studies of the DVGCRN on the DND (left) and
the SMD (right) datasets.

a fixed depth, the performance for anomaly detection of
DVGCRN first increases and then decreases, which can be
attributed to that the hidden states with the higher dimen-
sion contain more useful information and thus enable DEPN
to learn more robust representation of MTS, while higher
latent dimension may results in higher computational cost,
making the model harder to optimize and easier to over-fit.
In addition, Fig.4 (right) also shows the effect of different
embedding dimension d on DVGCRN, which not only in-
fluences the quality of the learned graph but also decides
the parameter diversity in DEPN. DVGCRN with 2 or 3
layers achieves the best performance when the embedding
dimension is 256, while single-layer DVGCRN performs
best when d = 128, indicating that the excessively small
and large channel embedding dimension will also lead to
poorer performance for the same reason with network size
discussed above.

Anomaly detection performance: We compare the pro-
posed models with baselines introduced in Sec. 5.1 F1-
score, and report the average results on five independent
runs in Table.1. It is obvious that probabilistic methods
achieve better results than deterministic ones with the same
architecture since they consider the stochastic within MTS.

Both recurrent and graph structures can boost the perfor-
mance, indicating that the effectiveness of temporal and
relational characteristics on learning normal patterns of
MTS. VGCRN achieves better results than other probabilis-
tic methods for incorporating the two structures. Besides,
VGCRN-rec refers to VGCRN optimized with only recon-
struction loss, it underperforms the VGCRN, illustrating
that the effectiveness of our loss in Eq. (12). The details
please refer to the Appendix. DVGCRN with three layers
achieves the best detection performance among all methods,
which demonstrates that the richer structure and relation
information provided by the deep probabilistic models can
further improve the learning of robust representations of
MTS. “-M” denotes using the developed anomaly score in
Eq.14, which does help according to the results. Moreover,
we also list the F1-best performance of different methods in
the Appendix.

Ablation study: We conduct ablation study to analyze
the roles of graph, recurrent and hierarchical structure in
the proposed models by comparing the performance of
DVGCRN, VGCRN, DVGCRN w/o graph by removing
α(l), DVGCRN w/o recurrent by setting T = 1 and the basic
VAE. Observations can be drawn from Fig. 5 that each com-
ponent incorporated into DVGCRN can bring significant
improvement on performance.

5.3. Qualitative analysis
Anomaly score: To show the efficiency of different models
in capturing the normal patterns of time series intuitively,
we visualize the anomaly score of the case study. Firstly,
we compare anomaly scores between VGCRN, DVGCRN
with three layers, and some baselines, including LSTM-
NTD, GNN, OmniAnomaly, and InterFusion. The results
are visualized in Fig. 7. As deterministic methods, LSTM-
NTD and GNN get more turbulent anomaly scores since
they ignore the stochastic of MTS. Considering the inter-
relationship within MTS, GNN exhibits more distinct spikes
in the anomaly regions than LSTM-NTD. For probabilistic
methods, considering both temporal and inter-metric depen-
dencies, InterFusion outperforms OmniAnomaly. Model-
ing relational and temporal characteristic in the generative
process and considering their variations, VGCRN realizes
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Figure 7. Case studies of reconstruction anomaly scores on the
SMD mechine-1-1 dataset. Regions highlighted in red represent
ground-truth anomaly segments.

smoother anomaly scores than previous methods. Moreover,
DVGCRN has better representation power with the help of
hierarchical architecture, leading to more stable anomaly
scores when compared with its shallow peers, such as the
regions highlighted in blue in Fig. 7, while it exhibits consid-
erable spikes in anomaly regions. Anomaly scores further
demonstrate the capability of DVGCRN in learning normal
patterns of complex MTS, which echoes the numerical re-
sults in Table 1. Moreover, we visualize log-likelihoods of
latent states in Fig. 7 (g) and (h). It is interesting to notice
that they are stable at normal time steps and turbulent at
abnormal ones, which tends to result in the stationary of
modified anomaly scores. This phenomena illustrates the
superiority of the multi-layer structure and the developed
anomaly score in Eq. 14.

Latent representations and relationships: To better
demonstrate the effectiveness of hierarchical and graph
structures, we further visualize the learned latent represen-
tations and corresponding relational matrices of different
layers, which are calculated by the inner product of chan-
nel embedding vectors, in Fig. 6. The latent representa-
tions at low layer are specific and vary intensely, while
they vary smoothly as the depth increases, which is criti-
cal for DVGCRN to capture the temporal interactions be-
tween multiple closely time steps. Besides, there are char-
acteristic fluctuations in anomaly time steps from bottom
to top layers, indicating the effectiveness of features at

each layer. Moreover, Fig. 6 (right) presents a subset of
the corresponding relational matrices to these channels at
each layer. As we can see, with the increase of the layers,
the relational matrices exhibit stronger diagonal property,
meaning that the feature channels are likely to be depen-
dent on themselves, which matches the characteristic of
DVGCRN that channels at higher layers have the ability
to cover long-time dependencies and contain more general
information. Moreover, as DVGCRN mapping channels at
different layers into the shared embedding space, it can also
capture the relationships among channels at different layers
by softmax(α(l−1)Tα(l)), which is denoted with the con-
necting line in Fig. 6. Thus injecting the learned knowledge
of a lower layer to a higher layer, which can help the higher
layer optimization and derive better representations for the
normal patterns of MTS.

6. Conclusion
We propose VGCRN as a new unsupervised probabilistic
method for anomaly detection of MTS, which combines our
developed novel EPN with GCRN into a unified framework
by a sharing embedding channel, thus learning the robust
representations of MTS by considering both temporal, inter-
relationship and stochasticity characteristics. Then, we ex-
tend VGCRN to a deep version, DVGCRN, which is able
to explore the hierarchical information of MTS. Besides,
for efficient and accurate inference, we propose an upward-
downward inference scheme combined with a hybrid recon-
struction and prediction optimization target. Through both
qualitative and quantitative experiments on real-world and
public datasets, our models are shown to achieve promising
results on anomaly detection and diagnosis.
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Appendix for ”Deep Variational Graph Convolutional Recurrent Network for
Multivariate Time Series Anomaly Detection”

A. Datasets
We conduct extensive experiments on four categories of
datasets: one real-world dataset named the DND, a mul-
tivariate KPI dataset, and three public datasets named the
SMD, the MSL and the SMAP that were released by (Su
et al., 2019) and (Hundman et al., 2018), respectively. The
basic statistical information of datasets is reported in Table
2. The DND, multivariate KPIs dataset, is collected from
a large internet company in China. It contains 12 websites
monitored with 36 KPIs individually. These websites are
different from each other in types of services, e.g., Video
on Demand (VoD) or live streaming video, etc. Besides, for
each website, KPIs span about one and a half months and
are collected every 60 seconds. In our experiments, for each
website, the first half of the KPIs are used for training, while
the last half are used for testing. Note that ground-truth
anomalies at test time of the DND have been confirmed
by human operators. For the public datasets, the Server
Machine Dataset (SMD) is a real-world public dataset (Su
et al., 2019) that contains the data from 28 server machines
that are monitored by 38 KPIs individually. In addition, for
each server machine, KPIs span about five weeks. the Mars
Science Laboratory (MSL) rover dataset is also a real-world
public and expert-labeled dataset from NASA (Hundman
et al., 2018) containing the data of 27 entities and each of
them is monitored by 55 metrics. Note that the other Soil
Moisture Active Passive (SMAP) satellite dataset is also
released by NASA (Hundman et al., 2018), and both MSL
and SMAP are collected from spacecraft where the first
dimension is the value of the telemetry channel, while the
rest dimensions are command information that encoded as
0 or 1.

B. Time efficiency of DVGCRN
Table 3 shows the time efficiency of the DVGCRN in term
of its training and testing time on the hardware platform
introduced before. It can be seen from Table 3 that the
DVGCRN can perform anomaly detection for a sample
within one-tenth second versus the data collecting interval
of 60 seconds. Hence, the DVGCRN can be deployed in
an offline training and online detection manners (Dai et al.,
2021; Su et al., 2019).

Table 2. Basic statistics of datasets

Statistics DND SMD MSL SMAP
Dimensions 12*36 28*38 27*55 55*25

Granularity (sec) 60 60 60 60
Training set size 344,843 708,405 58,317 135,181
Testing set size 344,844 708,420 73,729 427,617

Anomaly ratio (%) 3.44 4.16 10.72 13.13

Table 3. Training and testing time of DVGCRN

Datasets Training times per
epoch (min)

Testing times per
sample (sec)

DND 31.2 0.068
SMD 28.8 0.069
MSL 2.1 0.084

SMAP 3.2 0.047

C. Balance between prediction and
reconstruction

As discussed in Sec. 3.5, we combine both the prediction
and the reconstruction loss on the DVGCRN, and introduce
a parameter γ to balance the effects of them. Besides, γ
are also used in Eq. 13 to get the anomaly score. Here, we
evaluate the influence of γ to anomaly detection and report
the results in Fig. 9. As we can see, excessively small and
large γ will lead to the poor performance, illustrating the
effectiveness of both the reconstruction and the prediction
losses. Besides, for DND dataset, which has more noisy
time series, high weight for reconstruction loss is good for
detection, since probabilistic module can be robustness to
noises and fluctuates. For SMD dataset, which has less
noisy time series but contains more complex temporal de-
pendencies, high weight for prediction loss is beneficial for
learning better representation of time series.

D. More Ablation studies
To better illustrate the efficiency of our hierarchical embed-
ding guided generation process of DVGCRN, we further
do more ablation studies with F1-score and complexity in
Fig. 9. Specifically, Fig. 9 (a) lists the F1-score of DVGCRN,
DVGCRN w/o recurrent and DVGCRN w/o graph with dif-
ferent layers, while Fig. 9 (b) lists the the number of pa-
rameters changes with different layers. From Fig. 9, we



Submission and Formatting Instructions for ICML 2022

Figure 8. F1-scores of the DVGCRN on the DND (left) and the SMD (right) as a function of the balance parameter γ.

can conclude that: a) Affected by amount and complexity
of the data, the performance of models will not always im-
prove with the increasing number of layers; b) DVGCRN
with one module but multiple layers are more complex than
VGCRN, and they always underperform DVGCRN with
multiple layers.

E. More anomaly detection performance
In Table 1, we use F1-score for performance evaluation
and select threshold with POT approach, which is com-
monly used in OmniAnomaly, GNN and so on. Besides,
we also test the F1-best performance, which is calculated
by obtaining all F1-scores for each MTS by enumerating
all thresholds and using the best F1-score as the final score,
of different methods and list the results in Table 4. F1-best
describes the best performance models can reach, but it
is difficult to achieve in practice, while F1-score reflects
models’ generalization and robustness ability. As shown
in Table 4, DVGCRN outperforms other methods on two
metrics, illustrating the efficiency of the proposed method.

F. Model properties
Comparing with previous methods for modeling MTS, our
proposed DVGCRN has the following properties:

1): Incorporating Gaussian-distributed channel embeddings
into probabilistic generative process, modeling the stochas-
ticity of different channels and their dependencies in MTS.
2): Enhancing generalization capacity with hierarchical
structure and multi-layer channel embeddings, discover-
ing multi-level representations and corresponding inter-
dependencies of MTS;

3): Under the guidance of hierarchical statistic latent vari-
ables and channel embeddings by DEPN module, which
exhibits different statistical properties across layers, and op-
timized with prediction loss, SGCRN can extract multi-scale
temporal structures for better representation learning;

4): The prior of the latent variable in DEPN is conditioned
on the previous latent states of SGCRN, thus to capture
temporal dependencies for richer representations (Chung
et al., 2015).

All of these properties ensure more expressive and robust
representations of normal MTS patterns, thus achieves ac-
curate detection for both ground-truth and misjudgment
regions in Fig. 1.
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Table 4. The detection performance of different methods.

Methods DND SMD MSL SMAP

F1-best F1-score F1-best F1-score F1-best F1-score F1-best F1-score

GNN (2021 AAAI) 0.826 0.811 0.829 0.891 0.881 0.885 0.867 0.873
OmniAnomaly (2019 KDD) 0.816 0.809 0.954 0.887 0.903 0.899 0.859 0.843

SDFVAE (2021 WWW) 0.941 0.818 0.882 0.903 0.853 0.873 0.884 0.896
InterFusion (2021 KDD) 0.927 0.816 0.982 0.893 0.946 0.903 0.939 0.899

MTAD-GAT (2020 ICDM) 0.919 0.814 0.980 0.894 0.942 0.901 0.940 0.908

VGCRN (Ours) 0.940 0.826 0.986 0.901 0.950 0.904 0.941 0.908
DVGCRN (Ours) 0.953 0.849 0.989 0.915 0.955 0.914 0.949 0.914

Emebedding-guided Probabilistic Network

Probabilistic Network

(a) (b)

(c) (d)

Figure 9. Ablation studies on the DND with the F1-score and #Param as a function of layers.


