Shuffle Private Linear Contextual Bandits

Sayak Ray Chowdhury “! Xingyu Zhou *?

Abstract

Differential privacy (DP) has been recently in-
troduced to linear contextual bandits to formally
address the privacy concerns in its associated per-
sonalized services to participating users (e.g., rec-
ommendations). Prior work largely focus on two
trust models of DP — the central model, where a
central server is responsible for protecting users’
sensitive data, and the (stronger) local model,
where information needs to be protected directly
on users’ side. However, there remains a fun-
damental gap in the utility achieved by learning
algorithms under these two privacy models, e.g.,
if all users are unique within a learning horizon T,
O(V/T) regret in the central model as compared
to O(T?/*) regret in the local model. In this work,
we aim to achieve a stronger model of trust than
the central model, while suffering a smaller regret
than the local model by considering recently popu-
lar shuffle model of privacy. We propose a general
algorithmic framework for linear contextual ban-
dits under the shuffle trust model, where there
exists a trusted shuffler — in between users and the
central server— that randomly permutes a batch
of users data before sending those to the server.
We then instantiate this framework with two spe-
cific shuffle protocols — one relying on privacy
amplification of local mechanisms, and another
incorporating a protocol for summing vectors and
matrices of bounded norms. We prove that both
these instantiations lead to regret guarantees that
significantly improve on that of the local model,
and can potentially be of the order O(7/°) if all
users are unique. We also verify this regret be-
havior with simulations on synthetic data. Finally,
under the practical scenario of non-unique users,
we show that the regret of our shuffle private algo-
rithm scale as O(T?/?), which matches what the

“Equal contribution 'Boston University, USA *Wayne State
University, USA. Correspondence to: Sayak Ray Chowdhury
<sayak@bu.edu>, Xingyu Zhou <xingyu.zhou@wayne.edu>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

central model could achieve in this case.

1. Introduction

In the linear contextual bandit problem (Auer, 2003; Chu
etal., 2011), a learning agent observes the context informa-
tion ¢; of an user at every round . The goal is to recommend
an action a; to the user so that the resulting reward y; is
maximized. The mean reward is given by a linear function
of an unknown parameter vector 8* € R4, d € N, i.e.,

Eye | e, ai] = (07, d(ct, ar))

where ¢ : C x X — R maps a context-action pair to a
d-dimensional feature vector, and (-, -) denotes the standard
Euclidean inner product. The context and action sets C and
X are arbitrary, and can also possibly be varying with time.
An agent’s performance over 7' rounds is typically measured
through the cumulative pseudo-regret

acX

REg(T) = Zj:l |:maX<9*7 d)(ct?a» - <9*7 (b(ctv at)>)

which is the total loss suffered due to not recommending the
actions generating highest possible rewards corresponding
to observed contexts. This framework has found applica-
tions in many real-life settings such as internet advertise-
ment selection (Abe et al., 2003), article recommendation
in web portals (Li et al., 2010), mobile health (Tewari &
Murphy, 2017), to name a few. The general applicability
of this framework has motivated a line of work (Shariff &
Sheffet, 2018; Zheng et al., 2020) studying linear contextual
bandit problems under the additional constraint of differen-
tial privacy (Dwork, 2008), which guarantees that the users’
contexts and generated rewards will not be inferred by an
adversary during this learning process.

To illustrate the privacy concern in the contextual bandit
problem, let us consider a mobile medical application in
which an mobile app recommends a tailored treatment plan
(i.e., action) to each patient (i.e., user) based on her personal
information such as age, weight, height, medical history
etc. (i.e., context). Meanwhile, this mobile app’s recom-
mendation algorithm also needs to be updated once in a
while in a cloud server after collecting data from a batch
of patients, including treatment outcomes (i.e., rewards)

Shuffle Private Linear Contextual Bandits

and contexts, which are often considered to be private and
sensitive information. Hence, each patient would like to
obtain a personalized and effective treatment plan while
guaranteeing their sensitive information remains protected
against a potential adversarial attack in this interactive pro-
cess. Protection of privacy is typically achieved by injecting
sufficient noise in users’ data (Arora et al., 2014; Xin &
Jaakkola, 2014), which results in a loss in utility (i.e., an
increase in regret) of the recommended action. Hence, the
key question is how to balance utility and privacy carefully.

This has motivated studies of linear contextual bandits under
different trust models of differential privacy (i.e., who the
user will trust with her sensitive data). On one end of the
spectrum lies the central model, which guarantees privacy to
users who trust the learning agent to store their raw data in
the server and use those to update its strategy of recommend-
ing actions. Under this trust model, Shariff & Sheffet (2018)

~ o /
has shown that the cumulative regret is O(W),

where € and § are privacy parameters with smaller values
denoting higher level of protection. Perhaps unsurprisingly,
this regret bound — due to the high degree of trust — matches
the optimal © (v/T") scaling for non-private linear contextual
bandits (Chu et al., 2011). However, this relatively high trust
model is not always feasible since the users may not trust
the agent at all. This is captured by the local model, where
any data sent by the users must already be private, and the
agent can only store those randomized data in the server.
This is a strictly stronger notion of privacy, and hence, often
comes at a price. Under this trust model, Zheng et al. (2020)
(T3/4(10g(;/5))1/4)

b}

has shown that the cumulative regret is 0]
which, as expected, is much worse than that in the central
model. This naturally leads to the following question:

Can a finer trade-off between privacy and regret in linear
contextual bandits be achieved?

Furthermore, in both Shariff & Sheffet (2018) and Zheng
et al. (2020), the learning agents update their strategy at
every round. This not only puts excessive computational
burden on the server (due to T updates each taking at least
O(d?) time and memory) but also could be practically in-
feasible at times. For example, consider the above mobile
health application. The cloud server is often infeasible to
update the algorithm deployed in mobile app after interac-
tions with each single user. Rather, a more practical strategy
is to update the algorithm after collecting a batch of users’
data (e.g., a one-month period of data).

Motivated by these, we consider the linear contextual bandit
problem under an intermediate trust model of differential
privacy, known as the shuffle model (Cheu et al., 2019;
Erlingsson et al., 2019) in the hope to attain a finer regret-
privacy trade-off, while only using batch updates. In this
new trust model, there exists a shuffler between users and
the central server which permutes a batch of users’ random-

ized data before they are viewed by the server so that it can’t
distinguish between two users’ data. Shuffling thus adds
an another layer of protection by decoupling data from the
users that sent them. Here, as in the local model, the users
don’t trust the server. However, it is assumed that they have
a certain degree of trust in the shuffler since it can be effi-
ciently implemented using cryptographic primitives (e.g.,
mixnets) due to its simple operation (Bittau et al., 2017;
Apple, 2017). The shuffle model provides the possibility to
achieve a stronger privacy guarantee than the central model
while suffering a smaller utility loss than the local model.
The key intuition behind this is that the additional random-
ness of the shuffler creates a privacy blanket (Balle et al.,
2019b) so that each user now needs much less random noise
to hide her information in the crowd. Indeed, the shuffle
model achieves a better trade-off between utility and privacy
as compared to central and local model in several learning
problems such as empirical risk minimization (Girgis et al.,
2021), stochastic convex optimization (Lowy & Razaviyayn,
2021; Cheu et al., 2021), and standard multi-arm bandits
(Tenenbaum et al., 2021). However, little is known about
(linear) contextual bandits in the shuffle model due to its
intrinsic challenges. That is, in addition to rewards, the con-
texts are also sensitive information that need to be protected,
which not only results in the aforementioned large gap in
regret between local and central model!, but also leads to
new challenges in the shuffle model. Against this backdrop,
we make the following contributions:

* We design a general algorithmic framework (Algo-
rithm 1) for private linear contextual bandits in the
shuffle model. It decomposes the learning process into
three black-box components: a local randomizer at
each user, an analyzer at the central server and a shuf-
fler in-between. We instantiate the framework with
two specific shuffle protocols. The first one directly
builds on privacy amplification of existing local mech-
anisms. The other one utilizes an efficient mechanism
for summing vectors with bounded ¢5 norms.

* We show that both shuffle protocols provide stronger
privacy protection compared to the central model. Fur-
thermore, when all users are unique, we prove a regret
bound of O (T3/ 5) for both the protocols, which im-

proves over the 0] (T3/ 4) regret of local model. Hence,
we achieve a finer trade-off between regret and privacy.
We further perform simulations on synthetic data that
corroborate our theoretical results.

* As apractical application of our general framework, we
show that under the setting of non-unique or returning
users, the regret of both our shuffle protocols matches
the one that the central model would achieve in the

'In contrast, for MAB, the problem-independent upper bounds
in the local and central model are both O(\/T) (Ren et al., 2020a).

Shuffle Private Linear Contextual Bandits

same setting. This, along with the fact that both shuffle
protocols also offer a certain degree of local privacy,
further elaborate usefulness of shuffle model in private
linear contextual bandits.

Related work. Due to the utility gap present between cen-
tral and local models, a significant body of recent work have
focused on the shuffle model (Balle et al., 2019b; Feldman
et al., 2020; Ghazi et al., 2019; Balle et al., 2019a). A nice
overview of recent work in the shuffle model is presented
in Cheu (2021). Regret performance of multi-armed bandit
algorithms under central and local trust models have been
considered in Mishra & Thakurta (2015); Sajed & Shef-
fet (2019); Ren et al. (2020a); Chen et al. (2020); Zhou &
Tan (2020); Dubey (2021); Tossou & Dimitrakakis (2017),
whereas online learning algorithms under full information
have appeared in Guha Thakurta & Smith (2013); Agarwal
& Singh (2017). Recently, the two models have also been
adopted to design differentially private control and reinforce-
ment learning algorithms (Vietri et al., 2020; Garcelon et al.,
2020; Chowdhury et al., 2021; Chowdhury & Zhou, 2021).
Han et al. (2021) consider linear bandits with stochastic
contexts, and show that O(+/T /<) regret can be achieved
even in the local model. In contrast, in this work, we allow
the contexts to be arbitrary and can even be adversarially
generated, which pose additional challenges.

Batched linear bandits are studied in Han et al. (2020); Ren
et al. (2020b), where the authors show that only O(v/T)
model update is sufficient to achieve corresponding mini-
max optimal regrets. In the shuffle private model, batched
learning not only reduces the model update frequency, but
more importantly plays a key role in amplifying privacy
via shuffling a batch of users’ data. Interestingly, as a by-
product, our established generic regret bound also improves
over the non-private one in Ren et al. (2020b) in the sense
that no restriction is required for the regularizer.

Concurrent and independent work. While preparing this
submission, we have noticed that Garcelon et al. (2021)
also study linear contextual bandits in the shuffle model.
The authors claim that a single fixed batch schedule is not
sufficient to obtain a better regret-privacy trade-off in shuffle
model. They propose to use separate asynchronous sched-
ules — a fixed batch scheme for the shuffler and an adaptive
model update scheme for the server. In contrast, thanks to a
tighter analysis, we show that a single fixed batch schedule
is indeed sufficient to attain the same regret-privacy trade-
off in shuffle model. Moreover, we believe, there exists a
fundamental gap in their analysis for the adaptive model
update, which might make their results ungrounded. We
provide a detailed discussion on this in Section 6, which
highlights the key difference in dealing with adaptive up-
date in the non-private and the private settings. Finally, in
addition to the above differences in theoretical results, our

established generic framework enables to design flexible
shuffle private protocols for linear contextual bandits that
are able to handle a wide range of practically interested
privacy budget ¢ rather than a restricted small value ¢ < 1
in the concurrent work (Garcelon et al., 2021).

2. Privacy in the Shuffle Model

In this section, we introduce the shuffle model, and its cor-
responding privacy notion called the shuffle differential pri-
vacy. Before that, we recall definitions of differential pri-
vacy under central and local models (Dwork et al., 2014).

2.1. Central and Local Differential Privacy

Throughout, we let D denote the data universe, and n € N
the number of (unique) users. Let D; € D,t =1,2,...,n,
denote the data point of user 4, and D_; € D"~ ! denote
collection of data points of all but the i-th user. Let & > 0
and 0 € (0, 1] be given privacy parameters.

Definition 2.1 (Differential Privacy (DP)). A mechanism
M satisfies (e, §)-DP if for each user ¢ € [n], each data set
D, D’ € D™, and each event £ in the range of M,

PIM(D;,D_;) € €] < exp(e)P[M(D},D_;) € £] + 6.

Definition 2.2 (Local Differential Privacy (LDP)). A mech-
anism M satisfies (g, J)-LDP if for each user ¢ € [n], each
data point D;, D} € D and each event £ in the range of M,

P[M(D;) € &) < exp(e)P[M(D)) € €] + 6.

Roughly speaking, a central DP (or, simply, DP) mechanism
ensures that the outputs of the mechanism on two neigh-
bouring data sets (i.e., those differ only on one user) are
approximately indistinguishable. In contrast, local DP en-
sures that the output of the local mechanism for each user is
indistinguishable.

2.2. Shuffle Differential Privacy

A (standard) shuffle protocol P = (R, S, .A) consists of
three parts: (i) a (local) randomizer R, (ii) a shuffler S
and (iii) an analyzer A. For n users, the overall protocol
works as follows. Each user i first applies the randomizer
on its raw data D; and then sends the resulting messages
R(D;) to the shuffler. The shuffler S permutes messages
from all the users uniformly at random and then reports the
permuted messages S(R(D1), ..., R(Dy,)) to the analyzer.
Finally, the analyzer .A computes the output using received
messages. In this protocol, the users trust the shuffler but not
the analyzer. Hence, the privacy objective is to ensure that
the outputs of the shuffler on two neighbouring datasets are
indistinguishable in the analyzer’s view. To this end, define
the mechanism (S o R™)(D) := S(R(D1),...,R(Dn)),
where D € D™.

Shuffle Private Linear Contextual Bandits

Definition 2.3 (Shuffle differential privacy (SDP)). A pro-
tocol P = (R, S, A) for n users satisfies (g, §)-SDP if the
mechanism S o R" satisfies (e, §)-DP.

To achieve benefits of the shuffle model in intrinsically
adaptive algorithms (e.g., gradient descent, multi-armed
bandits etc.), one needs to divide the users into multiple
batches, and run a potentially different shuffle protocol on
each batch (Cheu et al., 2021; Tenenbaum et al., 2021). This
is quite natural since the shuffler needs enough users’ data
to infuse sufficient randomness so as to amplify the privacy.
Moreover, each protocol might depend on the output of the
preceding protocols to foster adaptivity. Formally, a general
M -batch, M € N, shuffle protocol P for n users works as
follows. In each batch m, we simply run a standard single-
batch shuffle protocol for a subset of n,, users (such that
n= Zm Ny,) With randomizer R,,,, shuffler S and analyzer
A. To ensure adaptivity, the randomizer R,,, and number of
users n,, for the m-th batch could be chosen depending on
outputs of the shuffler from all the previous batches, given
by {S (Rm/(D1), .-, Rm(Dn,,,)) }m,<m. The objective
of privacy is same as in the single-batch protocol — the
analyzer’s view must satisfy DP. However, instead of a
single-batch output, one need to protect outputs of all the
M batches. To this end, define the (composite) mechanism
Mp = (SoR,...,8 o R¥), where each individual
mechanism S o R operates on n,, users’ data, i.e., on

m
datasets from D",

Definition 2.4 (M -batch SDP). An M -batch shuffle proto-
col P is (g, 0)-SDP if the mechanism Moy is (g, §)-DP.

3. A Shuffle Algorithm for Contextual Bandits

In this section, we introduce a general algorithmic frame-
work (Algorithm 1) for linear contextual bandits under the
shuffle model. We build on the celebrated LinUCB algo-
rithm (Chu et al., 2011; Abbasi-Yadkori et al., 2011), which
is an application of the optimism in the face of uncertainty
principle to linear bandits. Throughout the paper, we make
the following assumptions, which are standard in the litera-
ture (Chu et al., 2011; Shariff & Sheffet, 2018).

Assumption 3.1 (Boundedness). The rewards are bounded
for all ¢, i.e., y; € [0,1]. Moreover, the parameter vector
and the features have bounded norm, i.e., ||[#*[|, < 1 and

Supc,a Hgb(ca a)||2 < 1'2

3.1. Algorithm: Shuffle Private LinUCB

Our shuffle algorithm for contextual bandits consist of
batches with a fixed size B, i.e., we have total M = T'/B
batches.? The central idea is to construct, for each batch m,

2All terms are assumed to be bounded by one via normalization.
3We assume, wlog, total number of rounds 7" is multiple of B.

Algorithm 1 Shuffle Private LinUCB

1: Parameters: Batch size B € N, regularization A >0,
confidence radii {3, }m >0, feature map ¢ : CxX —R?
2: Initialize: Batch counter m =1, end-time ¢, = Q, batch
statistics V= A1y, ug =0, parameter estimate 6y =0
3: for local usert=1,2,... do
4: Observe user’s context information ¢; € C N
5: Choose action a; € argmax, ¢y (P(ct, a),0m—1) +
B [9(er, Dy,
6: Observe reward y;
7: # For the local randomizer:
8: Send randomized messages M; 1 = R1(¢P(cy, ar)ye)
and My » = Ra(¢(ct, ar)d(ct,ar)) to the shuffler
9: ift = mB then

10: # For the shuffler:

11: Set batch end-time: ¢,,, =t

12: Permute all received messages uniformly at ran-
dom Y1 = S1({Mr1}e,_ 4+1<r<t,) and
Yino =82 ({Mra2}e, +1<r<tn)

13: # For the analyzer (server):

14: Compute per-batch statistics u,, = A;1(Y,.1) and
Vi = Az (Y, 2) using shuffled messages

15: Update overall batch statistics: t,, = Um—1 + Um,
Vm =Vimn-1+ Vm N

16: Compute parameter estimate 0,, =V, Y,

17: Send updated models (6,5, V;,) to users

18: Increase batch counter: m = m + 1

19: endif

20: end for

a d-dimensional ellipsoid &, with centre é\m, shape matrix
V. and radius (3, so that it contains the unknown param-
eter 6* with high probability. Moreover, the ellipsoids are
designed while keeping the privacy setting in mind. They
depend on the randomizer, shuffler and analyzer employed
in the shuffle protocol based on required privacy levels ¢, 6.
The personal data of user ¢ in batch m is given by the fea-
ture vector ¢(cy, a;) and reward y;, where the action a; is
selected given the context c; as

ar €argmax{(@(ce, @), 1) + A1 6(er, @)y, 1}
ac

We consider a fixed randomizer across all the batches given
by two functions R; and Rq that locally operate on the
vectors ¢(cy, a;)y; and matrices ¢(ct, as)d(cs, ar) ", respec-
tively. Similarly, we have shuffler functions S and S5 oper-
ating on batches (of size B) of those respective randomized
messages. Finally, the analyzer functions A; and As re-
ceive permuted messages from S and S, and output, for
each batch m/, an aggregate vector u,,, and matrix V,,,
respectively. The central server uses this aggregate batch
statistics to construct the ellipsoid: V,,, =)\Id—f—zz,:l Vi

Shuffle Private Linear Contextual Bandits

and 9m = V L Z /1 Uy . For a given confidence level
€ , the radlus of the ellipsoid is set as 3, =

<\/210g + dlog (1+%)+\F),Wheretm is the
time when batch m ends. The regularizer A and thus, in
turn, the confidence radius 3, typically depend on the total
noise infused in the shuffle protocol. On a high level, these
randomizer, shuffler and analyzer functions together pro-
vide suitable random perturbations to the Gram matrices and
feature-reward vectors based on the privacy budget €, 6, and
in turn, they affect the regret performance via the noise lev-
els of these perturbations. Next, we turn to discuss specific
choices of these functions, and the associated performance
guarantees of Algorithm 1 under those choices.

3.2. Achieving SDP via LDP Amplification

In this section, we show that our general framework (Algo-
rithm 1) enables us to directly utilize existing LDP mecha-
nisms for linear contextual bandits to achieve a finer utility-
privacy trade-off. The key idea here is to leverage the ex-
plicit privacy amplification property of the shuffle protocol
(Feldman et al., 2020). Roughly, the privacy guarantee can
be amplified by a factor of v/B by randomly permuting
the output of an LDP mechanism independently operating
on a batch of B different users. In other words, the same
level of privacy can be achieved for each user by adding a
V/B factor less noise in the presence of shuffler, yielding a
better utility. Specifically, we instantiate Algorithm 1 with
the shuffle protocol Pamp = (Ramp, Samp; Aamp), Where we
employ standard Gaussian mechanism (Dwork et al., 2014)
as randomizer functions. Essentially, we inject independent
Gaussian perturbation to each entry of the vector ¢(cz, at)ys
and the matrix ¢(cy, a;)¢(cs, ar) | with variances o2 and 03,
respectively. We make sure the noisy matrix is symmetric
by perturbing upper diagonal entries, and copying those to
the lower terms. The noise variances are properly tuned
depending on the sensitivity of these elements to achieve
desired level of privacy. In this case, the shuffler functions
simply permute its data uniformly at random, and the job of
the analyzer is to simply add its received data (i.e., vectors
or matrices). We defer further details on the protocol Pamp
to Appendix B and focus on performance guarantees first.

Theorem 3.2 (Performance under LDP amplification). Fix
time horizon T €N, batch size B € [T, confidence level a €

(0, 1], privacy budgets 6 € (0,1], € € (0, 1/ %]. Then,
Algorithm 1 instantiated using shuffle protocol Py, with
44/210g(2. 53/5) log(2/6)

noise o1 = 09 = , and regularizer
A=0(VToi(vVd++/log(T/Ba enjoys the regret

log"/*(B/3)
c1/2p1/4

Reg(T)= OGZB log T+ d3/A3/4 10g2(T/a9 ,

with probability at least 1 — .. Moreover, it satisfies O (g, 0)-

shuffle differential privacy (SDP).

Corollary 3.3. Setting batch size B = O(T?/%) in Algo-
rithm 1, we can achieve regret O (ﬁ\//; logl/Q(T/5)).4

Comparsion with central and local DP models. At this
point, we turn to compare the regret of our Shuffle Private
LinUCB algorithm to that of LinUCB under central model
with JDP guarantee’® (Shariff & Sheffet, 2018) and local
model with LDP (Zheng et al., 2020) guarantee. As men-

tioned before, LinUCB achieves 10) (\/?) and O (T3/4>

regret under JDP and LDP guarantees, respectively. As seen
in Corollary 3.3, our regret bound in the shuffle trust model
lies perfectly in between these two extremes. Importantly, it
improves over the 7/ scaling in the (stronger) local trust
model, achieving a better trade-off between regret and pri-
vacy. However, it couldn’t achieve the optimal v/T" scaling
in the (weaker) central trust model. It remains an open ques-
tion whether /T regret can be achieved under any notion
of privacy stronger than the central model.

Remark 3.4. Our shuffle protocol Pamp, by design, provides
a certain level of local privacy to each user. Specifically,
for batch size B, Algorithm 1is O(e+/B/log(2/4),d/B)-
LDP. Furthermore, since shuffe model ensures a higher level
of trust than the central model, Algorithm 1 is also O(g,)-
JDP. See Appendix B for details.

Apart from achieving a refined utility-privacy trade-off, the
above shuffle protocol Pamp requires minimum modifica-
tions over existing LDP mechanisms. However, the privacy
guarantee in Theorem 3.2 holds only for small privacy bud-
get € particularly when the batch size B is large, which could
potentially limit its application in some practical scenarios
(e.g., when ¢ is around 1 or larger (Apple, 2017)). More-
over, Pamp needs to communicate and shuffle real vectors
and matrices, which are often difficult to encode on finite
computers in practice (Canonne et al., 2020; Kairouz et al.,
2021) and a naive use of finite precision approximation may
lead to a possible failure of privacy protection (Mironov,
2012). To overcome these limitations of Pamp, We introduce
a different instantiation of Algorithm 1 in the next section.

3.3. Achieving SDP via Vector Summation

We instantiate Algorithm 1 with the shuffle protocol Pye. =
(Rvecs Svec, Avec), Where we rely on a particularly efficient
and accurate mechanism for summing vectors with bounded
l5 norms (Cheu et al., 2021). First, the local randomizer
Rvec adopts a one-dimensional randomizer that operates

“Note that with a careful choice of B (depending on privacy
parameters ¢, d), we can have a better regret dependence on €, 6.
See Corollary B.2 for details.

SIDP, or, joint differential privacy, is a notion of privacy under
central trust model specific to contextual bandits. See Appendix D.

Shuffle Private Linear Contextual Bandits

independently on each entry of the vector ¢(c;, a;)y; and
the matrix ¢(c;, a;)(ct, az) ", respectively. This adopted
one-dimensional randomizer transmits only bits (0/1) via
a fixed-point encoding scheme (Cheu et al., 2019), and en-
sures privacy by injecting binomial noise. In particular,
given any entry z € [0, 1], it is first encoded as =T+,
using an accuracy parameter g € N, where = |zg| and
~v1 ~ Ber(zg —). Then a binomial noise is generated,
~2 ~Bin(b, p), where parameters b€ N, p € (0, 1) control
the privacy noise. The output of the one-dimensional ran-
domizer is simply a collection of total g + b bits, in which
Z+y, bits are 1 and the rest are 0. Combining the outputs
of the one-dimensional randomizer for each entry of vector
é(ct, as)y; and matrix ¢(cy, a;)p(cs, ar) ', yield final out-
puts of randomizer. The shuffler functions in Sy, simply
permutes all the received bits uniformly at random. The
job of the analyzer Ay is to add the received bits for each
entry, and remove the bias introduced due to encoding and
binomial noise. This is possible since bits are already la-
beled entry-wise when leaving Rve.. The constants g, b, p
are left as tunable parameters of Py,, and need to be set
properly depending on the desired level of privacy. The
detailed implementation of this scheme is deferred to Ap-
pendix C. The following theorem states the performance
guarantees of Algorithm 1 instantiated with Pyec.

Theorem 3.5 (Performance under vector sum). Fix batch
size B € [T], privacy budgets ¢ € (0,15], 6 € (0,1/2).
Then, Algorithm 1 instantiated with Py,. with parameters

0% 1oe? (d?
p=1/4, g = max{2VB,d,4} and b = 6918578(01/6)
is (€,0)-SDP, where C' > 1 is some sufficiently large

constant. Furthermore, for any o € (0, 1], setting \ =

e) (bg(dﬁ# Wd+ log(T/Ba)>, it enjoys the regret

log'/?(d?/5)

d3/A3/4 1og2(T/a)>

with probability at least 1 — a.
Remark 3.6. Similar to Corollary 3.3, an 0] (T\j/;) regret

can also be achieved in this case by setting B =O(T%/%),
but the dependence on & is now: log'/?(d2 /) as compared
to log'/?(T'/§). Moreover, in contrast to Theorem 3.2, the
guarantees hold for a wide range of ¢, making Py, better
suitable for practical purposes (Apple, 2017). Finally, as
before, if B also depends on privacy parameters, the depen-
dence on ¢, § can be improved, see Corollary C.2.

Remark 3.71. Pye. can also be regarded as privacy amplifica-
tion of Binomial mechanism (rather than Gaussian mecha-
nism in Papp), which is the reason that it also offers a certain
degree, O(E\/E ,9), to be precise, of LDP guarantee.

Remark 3.8. Both shuffle protocols, Pamp and Py, in fact,
can be tuned to satisfy (e, §)-LDP by sacrificing on regret
performance. See Corollaries B.3 and C.3 for details.

3.4. Key Techniques: Overview

In this section, we provide a generic template of regret
bound for linear contextual bandits under the shuffle model
of privacy. To this end, we need following notations to dis-
cuss the effect of noise added by shuffle protocol, in the
learning process. Let n,, = Uy, — Zi:tmilﬂ (e, ar)yy
and N,, =V, —Ziztm_lﬂ é(c,as)d(ce,ar) " denote the
total noise added during batch m in the feature-reward vec-
tor, and in the Gram-matrix, respectively. Furthermore,
assume that there exist constants o; and o5 such that for
each batch m, (i) Z:Z/zl Ny, 18 @ random vector whose
entries are independent, mean zero, sub-Gaussian with vari-
ance at most o5, and (i) >, _, N,/ is a random symmet-
ric sub-Gaussian matrix whose entries on and above the
diagonal are independent with variance at most 55. Let
0?2 =max{c?,53}. Then, we have the following result.

Lemma 3.9 (Informal). With the choice of A ~ o(v/d +

log(T/(Bc))), the regret of Algorithm 1 satisfies

Reg(T)=0 (dB+d\/T +VoTdY 4) with high probability.

With the above result, one only needs to determine the noise
variance o2 under different privacy protocols. We illus-
trate this with the shuffle protocols introduced in previous
sections. First, note that since we assume unique users, Al-
gorithm 1 is SDP if each batch is SDP. Now, for the LDP
amplification protocol Pamp, in order to guarantee SDP for
each batch with sufficiently small privacy loss ¢, it suffices
to work with an LDP mechanism with loss ev/B by virtue
of amplification.® We ensure this by choosing Gaussian
mechanism with noise variance O(1/(¢2B)). Hence, the
total noise variance added by P, is 0% =~ 0(52%)- Thus,
by Lemma 3.9, we obtain the result in Theorem 3.2. Sim-
ilarly, for the vector sum protocol Py, we ensure Py, to
be SDP by properly setting parameters g, b, p. Moreover,
the analyzer’s outputs are unbiased estimates of the sum
of the non-private vectors (matrices) within that batch, and
the entry-wise private noise is sub-Gaussian with variance
of O(E%) Thus, the total noise variance added by Py, is
o2~ O(%), and hence, by Lemma 3.9, we have the result
in Theorem 3.5.

Remark 3.10. Lemma 3.9, in fact, can serve as a general
template of regret for private linear contextual bandit al-
gorithms. For example, for the local model (Zheng et al.,
2020), B=1and 02~ %, yielding O (%) regret. Simi-
larly, for the central model (Shariff & Sheffet, 2018), B=1
and 02~ 8T which yields 9} (%) regret.

SWe provide intuition without worrying about the details related
to d-dependent terms. Refer to Appendix A for formal proofs.

Shuffle Private Linear Contextual Bandits

4. Regret Performance under Returning Users

Similar to existing work on differentially private bandits, in
previous sections, we have assumed that all participating
users are unique, i.e., each user participates in the protocol
only at one round. A more practical scenario is that an user
can contribute with her data at multiple rounds. For example,
consider the mobile medical application described in the
introduction. The cloud server can collect one particular
user’s data during multiple batches to track the effectiveness
of its treatment plan over a period, and hence, use same
user’s data multiple times to update its recommendation
algorithm. Motivated by this, we provide privacy and regret
guarantees of Algorithm 1 under the setting of retfurning
users in linear contextual bandits. We first define the setting
of returning users that we consider in this section, and then
state the performance guarantee for Algorithm 1.

Assumption 4.1 (Returning Users). For a given time hori-
zon T € N and batch size B € [T, any user can participate
in all M = T/ B batches, but within each batch m € [M],
she only contributes once.

In addition to the above motivating example, this assumption
also captures many practical adaptive learning scenarios
such as clinical trials and product recommendations, in
which each trial (batch) involves a group of unique people,
but the same person may participate in multiple trials (Ren
et al., 2020b; Schwartz et al., 2017).

Theorem 4.2 (Performance guarantees (informal)). Under
Assumption 4.1, we obtain the following results for Payp
and Py, respectively.

(i) For any ¢ < %1og(2/6)V2T and § € (0,1], Algo-
rithm 1 instantiated using Pan, with noise levels 01 =09 =
16108(2/0) T(log’(ST/5 is O(e,0)-SDP, and enjoys, with

hlgh-probabzlzty the regret bound

Reg(T) = O (‘E + M?d?’/“ log3/4(T/5)> .

(ii) For any € < 15, § € (0,1/2), there exist choices of
parameters g,beN, pe (0,1/2) depending on B, e, such
that Algorithm 1 instantiated using Py, is (€,0)-SDP, and,
enjoys, with high probability, the regret bound

~ [dT MT
Reg(T)=0 (CJZ\/[+1/Ed3/4 log3/4(d2M/5)> .

Proof sketch. In contrast to Section 3 for unique users,
where (e, §)-SDP guarantee for Algorithm 1 can be estab-
lished by showing each batch is (¢, §)-SDP, we now need
to guarantee that outputs of all the batches together have a
total privacy loss of (¢,). This is due to the fact that now
each batch can potentially operate on same set of users, and

hence, one need to use advanced decomposition to calculate
the total privacy loss. This leads to scaling up the noise
variance by a multiplicative factor of O(M) at each batch,
which eventually leads to the above bound (the additional
M factor in § also comes from advance composition). [

Interestingly, the privacy (e, §)-dependent term in above
regret bounds match the one that can be achieved in the
user-level central trust model that handles returning users.
Note that, since existing work in the central model of privacy
(i.e., under JDP guarantee) assume unique users (Shariff &
Sheffet, 2018), we first generalize it to handle returning
users. This can be viewed as the same form of generaliza-
tion from event-level DP to user-level DP under continual
observation, where the adjacent relation between two data
streams changes from the flip of one single round to the
flip of multiple rounds associated with a single user (Dwork
et al., 2010). See Appendix D for formal definitions of
event-level and user-level joint differential privacy (JDP).
As in standard notion of DP, one straightforward approach
for converting event-level JDP to user-level JDP is to use
group privacy (Dwork et al., 2014). However, this black-
box approach would blow up the terms dependent on 4. To
overcome this, we propose a simple modification of original
(event-level) algorithm in Shariff & Sheffet (2018) so that
it can handle returning users. In particular, user-level JDP
can be achieved by scaling up the noise variance by a mul-
tiplicative factor of M2, if any user participates in at most
My rounds. This follows from the fact that flipping one
user now would change the /5 sensitivity of the expanded
binary-tree nodes from O(y/log T') to O(My+/logT). Note
that we use M to distinguish from the number of batches
M since there is no batch concept in standard central model.
This modified version enjoys the following regret guarantee.

Proposition 4.3. If any user participates in at most M
rounds, the algorithm in Shariff & Sheffet (2018), with the
above modification to handle user-level privacy, achieves
the high-probability regret bound

Reg(T) = (d\F+\/]\ﬁ)Td3/4log1/4(1/6)>.

Remark 4.4. Comparing Theorem 4.2 and Proposition 4.3,
we observe that the cost of privacy in the shuffie model
is essentially same (upto a log factor) as in the central
model under the setting of returning users. In particular,
if M = My = T"/3 rounds (i.e., the same number of possi-

ble returning rounds for any user), the regret is 0] (T\ZJ)

in both shuffle and user-level central trust models. See
Appendix E for complete proofs and more details.

Shuffle Private Linear Contextual Bandits

LinUCB
LinUCB-JDP
LinUCB-SDP-Amp
LinUCB-SDP-Vec
LinUCB-LDP

LinUCB
LinUCB-JDP

1000

3000

2000 LinUCB-LDP

Regret
Regret

1000

LinUCB-SDP-Amp
LinUCB-SDP-Vec

LinUCB
LinUCB-JDP
LinUCB-SDP-Amp
b5 LinUCB-SDP-Vec
50 LinUCB-LDP
o

=

0 5000 10000

Round

5000

(@)e =02

be=1

10000
Round

15000 20000 0 5000 10000

Round

15000 20000

(©e=10

Figure 1: Comparison of cumulative regret for LinUCB (non-private), LinUCB-JDP (central model), LinUCB-SDP (shuffle model) and
LinUCB-LDP (local model) with varying privacy level € = 0.2 (a), ¢ = 1 (b) and € = 10 (¢). For ¢ = 0.2 (higher privacy level), gap
between private and non-private regret is higher as compared to € = 10 (lower privacy level). In all cases, regret of LinUCB-SDP lies
perfectly in between LinUCB-JDP and LinUCB-LDP, achieving finer regret-privacy trade-off.

5. Simulation Results

In this section, we empirically evaluate the regret perfor-
mance of Algorithm 1 (under shuffle model), which we
abbreviate as LinUCB-SDP-Amp and LinUCB-SDP-Vec
when instantiated with Papp and Pyec, respectively. We
compare them with the algorithms of Shariff & Sheffet
(2018) and Zheng et al. (2020) under central and local
models, which we call LinUCB-JDP and LinUCB-LDP,
respectively. We benchmark these against the non-private
algorithm of Abbasi-Yadkori et al. (2011), henceforth re-
ferred as LinUCB. For all the experiments, we consider
100 arms, set 7" = 20000 rounds, and average our results
over 50 randomly generated bandit instances. Each instance
is characterized by an (unknown) parameter 8* and feature
vectors of dimension d = 5. To ensure boundedness, similar
to Vaswani et al. (2020), we generate each 6* and feature
vectors by sampling a (d—1)-dimensional vectors of norm
1/+/2 uniformly at random, and append it with a 1/+/2 entry.
We consider Bernoulli {0, 1} rewards. We fix 6 =0.1 and
plot the results for varying privacy level ¢ € {0.2,1,10} in
Figure 1. We use Batchsize B = 20 for LinUCB-SDP. We
postpone the results for d = 10, 15 to Appendix G.

From Figure 1, we observe that the regret performance
of LinUCB-SDP (under both shuffle protocols Pamp, and
Pvee) 1s indeed better than LinUCB-LDP. In addition, it is
not surprising that LinUCB-SDP incurs a larger regret than
LinUCB-JDP. Moreover, the regret performance of LinUCB-
SDP (in fact for any private algorithm) comes closer to that
of LinUCB as ¢ increases, i.e, as the privacy guarantee
becomes weaker. The experimental findings are consistent
with our theoretical results.”

"Code is available at https: //github.com/sayakrc/
Differentially-Private-Bandits.

6. Concluding Remarks

We conclude by discussing some important theoretical and
practical aspects about shuffle protocols, and in general,
about privacy in linear contextual bandits.

Communications. In the protocol Pamp, €ach participating
user at each round need to send one d-dimensional real
vector and one d X d real matrix. On the other hand, the
protocol Py, only communicates 0/1 bits. In particular,
each participating user at each round sends out a total of
O(d?(g+D)) bits, where g+b ~ /B-+log(1/5) /. Hence,
Pvec might be more feasible in practice than Papp.

Batched algorithms for local and central models. Exist-
ing work on differentially private linear contextual bandits
under both local and central models perform sequential up-
date, i.e., the model estimates are updated after each round.
As mentioned before, this may not be feasible in practice
due to computational load. Fortunately, our proposed al-
gorithm (Algorithm 1) along with its generic regret bound
(Lemma 3.9) also offers a simple way to design and analyze
private algorithms for local and central models with batched
update. In particular, we show that it suffices to update after
every B = O(TS/ 4) rounds to achieve the same privacy-
regret trade-off as in the sequential local model and every
B = O(V/T) to match the sequential central model. See
Appendix F for the details.

Adaptive model update. One might wonder whether
we can further reduce the update frequency to O(logT")
via an adaptive model update schedule based on the stan-
dard determinant trick (Lemma 12 of Abbasi-Yadkori et al.
(2011)). In this approach, the key step is to establish that
lp(c, a)val <nllé(e, a)HV;l, where 7; <t is the most
recent model update time before ¢. To this end, if one uses
the determinant trick, one can obtain that

det(V;)

det(V7,)

if the condition V; = V., holds. Note that this is true in

[o(c; a)lly-r < llo(e; a)lly,-

https://github.com/sayakrc/Differentially-Private-Bandits
https://github.com/sayakrc/Differentially-Private-Bandits

Shuffle Private Linear Contextual Bandits

the non-private setting. However, this does not necessarily
hold in private settings due to the added noise, which, to
the best of our knowledge, is the key analytical gap in the
current proof of the main result (Theorem 10) in Garcelon
et al. (2021). As we can see, this issue exists in all three
trust models when one needs to use the noisy design matrix
to determine the update frequency via the determinant trick.

Close the gap. For the case of unique users, we have
shown that shuffle model enables us to achieve a regret
O(T3/%), which is between local model regret O(T/4)
and central model regret O(VT). One important question
is how to further close the gap. To this end, one might
first need to have a tight lower bound for the regret under
the local model. To the best of our knowledge, Liao et al.
(2021) presents the first lower bound under local model
O mdﬁ). It is unclear to us whether the

upper bound and lower bound are tight for the local model?®.

Advanced shuffle protocols. We use vector summation
protocol in Cheu et al. (2021) rather than advanced shuffle
protocols (in terms of communication cost) (e.g., Ghazi et al.
(2020); Balle et al. (2020)) because it is simple to imple-
ment and suffices to deliver our main message. Another
key technical reason is that the random noise introduced
by these advanced shuffle protocols is (discrete) Laplace,
which at best exhibits sub-exponential tail behavior. Now,
in contextual bandits, one need to protect both rewards and
feature vectors, and a principled way to achieve privacy is to
inject suitable random noise to the matrices ¢(-)¢(-) " and
vectors ¢(+)y generated by rewards and features. This raises
the need to control respective norms of random vectors and
random symmetric matrices with i.i.d. sub-exponential en-
tries in order to achieve a meaningful utility/regret bound. In
contrast, our current adopted shuffle protocol from Cheu et
al results in random vectors and matrices with Binomial en-
tries, which have sub-Gaussian tails. Hence, the respective
norms can be controlled using standard results from random
matrix theory. However, we are not aware of non-trivial
bounds on matrix norms with sub-exponential entries (i.e.,
without a simple union bound over co-ordinates), which
abstains us from using advanced shuffle protocols.

Pure DP in the shuffle model. First, let us highlight the
reason why we focus only on approximate DP. Existing
linear contextual bandit algorithms under central and local
privacy models consider only approximate DP, and our main
motivation in this work is to close the gap in regret achieved
under these two models via shuffling. Second, almost all the
existing shuffle protocols can only guarantee approximate
DP. To the best of knowledge, the very recent work (Cheu &
Yan, 2021) develops the first shuffle protocol that is able to
achieve pure DP with an error of O(1/¢). However, since

8Note that Zheng et al. (2020) conjecture that the lower bound
for the local model is ©2(7°%/*), see Appendix G therein.

this new protocol also relies on discrete Laplace noise, the
same challenge of controlling norms of vectors and matri-
ces with sub-exponential entries in contextual bandits still
remain. At mentioned before, to the best of our knowledge,
it remains open to derive non-trivial (i.e., without a simple
union bound over co-ordinates) concentration bounds on the
norm for Laplace random matrices. That being said, if there
indeed exist non-trivial concentrations for sub-exponential
or Laplace matrices, our derived result (i.e., Lemma A.2)
can also be used to derive meaningful regret bounds under
this new protocol.

Regret in low-privacy regime: As in previous works, we
focus on the high-privacy regime. One may wonder if it is
possible to potentially achieve O(v/T + /T /<) regret after

eco0
n ’
by Lemma B.4). For example, this is possible if one can

amplification in the low-privacy regime (i.e., € ~

replace ¢, 3 by e~ in the second term of the regret bound
in Proposition F.1 However, this essentially amounts to
requiring a mechanism that guarantees (gg, 6o)-LDP for
o > 1 by injecting (sub)-Gaussian noise with standard
deviation o = O(e~¢°). To the best of our knowledge, we
are unaware of any such mechanism. The standard Gaussian
mechanism fails to satisfy this since it needs o = ©(1/,/gg)
to achieve (eq,dp)-DP in low-privacy regime. For pure
DP, the state-of-the-art staircase mechanism (Geng et al.,
2015), requires a noise with ¢ = O(e~°°/2) rather than
o = O(e™%°). This again can’t guarantee /T /¢ regret
even if one manages to apply it in our context (with proper
matrix-norm bounds). That being said, if there indeed exists
the above required mechanism, our results can be used to
establish the desired v/T /¢ regret in low-privacy regime.

Future work. One immediate future research direction is
to address the above adaptive model update in the private
settings. We also believe our framework can be general-
ized to design shuffle private algorithms for reinforcement
learning with linear function approximation (e.g., linear mix-
ture Markov decision processes (MDPs)) to achieve finer
trade-off between the local model (Liao et al., 2021) and the
central model (Zhou, 2022).

Acknowledgements

We thank anonymous reviewers for their useful comments,
which helped preparing the final version. XZ would like
to thank Albert Cheu for insightful discussions on shuffle
protocols. SRC is grateful to a CISE Postdoctoral fellowship
of Boston University.

References

Abbasi-Yadkori, Y., Pal, D., and Szepesvdri, C. Improved
algorithms for linear stochastic bandits. In Advances in

Shuffle Private Linear Contextual Bandits

Neural Information Processing Systems, pp. 2312-2320,
2011.

Abe, N., Biermann, A. W., and Long, P. M. Reinforcement
learning with immediate rewards and linear hypotheses.
Algorithmica, 37(4):263-293, 2003.

Agarwal, N. and Singh, K. The price of differential pri-
vacy for online learning. In International Conference on
Machine Learning, pp. 32-40. PMLR, 2017.

Apple. Learning with privacy at scale. 2017. URL https:
//machinelearning.apple.com/research/
learning-with-privacy-at-scale.

Arora, S., Yttri, J., and Nilsen, W. Privacy and security
in mobile health (mhealth) research. Alcohol research:
current reviews, 36(1):143, 2014.

Auer, P. Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning
Research, 3:397-422, March 2003. ISSN 1532-4435.

Balle, B., Bell, J., Gascon, A., and Nissim, K. Differentially
private summation with multi-message shuffling. arXiv
preprint arXiv:1906.09116, 2019a.

Balle, B., Bell, J., Gascoén, A., and Nissim, K. The privacy
blanket of the shuffle model. In Annual International
Cryptology Conference, pp. 638—667. Springer, 2019b.

Balle, B., Bell, J., Gascon, A., and Nissim, K. Private sum-
mation in the multi-message shuffle model. In Proceed-
ings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, pp. 657-676, 2020.

Bittau, A., Erlingsson, Ij., Maniatis, P., Mironov, I., Raghu-
nathan, A., Lie, D., Rudominer, M., Kode, U., Tinnes,
J., and Seefeld, B. Prochlo: Strong privacy for analytics
in the crowd. In Proceedings of the 26th Symposium on
Operating Systems Principles, pp. 441-459, 2017.

Canonne, C. L., Kamath, G., and Steinke, T. The discrete
gaussian for differential privacy. In NeurIPS, 2020.

Chan, T. H., Shi, E., and Song, D. Private and contin-
ual release of statistics. In International Colloquium on
Automata, Languages, and Programming, pp. 405-417.
Springer, 2010.

Chen, X., Zheng, K., Zhou, Z., Yang, Y., Chen, W., and
Wang, L. (locally) differentially private combinatorial
semi-bandits. In International Conference on Machine
Learning, pp. 1757-1767. PMLR, 2020.

Cheu, A. Differential privacy in the shuffle model: A survey
of separations. arXiv preprint arXiv:2107.11839, 2021.

Cheu, A. and Yan, C. Pure differential privacy from secure
intermediaries. arXiv preprint arXiv:2112.10032, 2021.

Cheu, A., Smith, A., Ullman, J., Zeber, D., and Zhilyaey,
M. Distributed differential privacy via shuffling. In An-
nual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, pp. 375-403.
Springer, 2019.

Cheu, A., Joseph, M., Mao, J., and Peng, B. Shuffle
private stochastic convex optimization. arXiv preprint
arXiv:2106.09805, 2021.

Chowdhury, S. R. and Zhou, X. Differentially private re-
gret minimization in episodic markov decision processes.
arXiv preprint arXiv:2112.10599, 2021.

Chowdhury, S. R., Zhou, X., and Shroff, N. Adaptive control
of differentially private linear quadratic systems. In 2021
IEEE International Symposium on Information Theory
(I1SIT), pp. 485-490. IEEE, 2021.

Chu, W,, Li, L., Reyzin, L., and Schapire, R. E. Contextual
bandits with linear payoff functions. In International Con-
ference on Artificial Intelligence and Statistics (AISTATS),
volume 15, pp. 208-214, 2011.

Dubey, A. No-regret algorithms for private gaussian process
bandit optimization. In International Conference on Arti-
ficial Intelligence and Statistics, pp. 2062-2070. PMLR,
2021.

Dwork, C. Differential privacy: A survey of results. In
International conference on theory and applications of
models of computation, pp. 1-19. Springer, 2008.

Dwork, C., Naor, M., Pitassi, T., and Rothblum, G. N. Dif-
ferential privacy under continual observation. In Proceed-
ings of the forty-second ACM symposium on Theory of
computing, pp. 715-724, 2010.

Dwork, C., Roth, A., et al. The algorithmic foundations of
differential privacy. Found. Trends Theor. Comput. Sci.,
9(3-4):211-407, 2014.

Erlingsson, U., Feldman, V., Mironov, 1., Raghunathan, A.,
Talwar, K., and Thakurta, A. Amplification by shuffling:
From local to central differential privacy via anonymity.
In Proceedings of the Thirtieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 2468-2479. SIAM,
2019.

Feldman, V., McMillan, A., and Talwar, K. Hiding
among the clones: A simple and nearly optimal anal-
ysis of privacy amplification by shuffling. arXiv preprint
arXiv:2012.12803, 2020.

https://machinelearning.apple.com/research/learning-with-privacy-at-scale
https://machinelearning.apple.com/research/learning-with-privacy-at-scale
https://machinelearning.apple.com/research/learning-with-privacy-at-scale

Shuffle Private Linear Contextual Bandits

Garcelon, E., Perchet, V., Pike-Burke, C., and Pirotta, M.
Local differentially private regret minimization in rein-
forcement learning. arXiv preprint arXiv:2010.07778,
2020.

Garcelon, E., Chaudhuri, K., Perchet, V., and Pirotta, M.
Privacy amplification via shuffling for linear contextual
bandits. arXiv preprint arXiv:2112.06008, 2021.

Geng, Q., Kairouz, P., Oh, S., and Viswanath, P. The stair-
case mechanism in differential privacy. IEEE Journal of
Selected Topics in Signal Processing, 9(7):1176-1184,
2015.

Ghazi, B., Golowich, N., Kumar, R., Pagh, R., and Vel-
ingker, A. On the power of multiple anonymous messages.
arXiv preprint arXiv:1908.11358, 2019.

Ghazi, B., Kumar, R., Manurangsi, P., and Pagh, R. Private
counting from anonymous messages: Near-optimal accu-
racy with vanishing communication overhead. In Interna-
tional Conference on Machine Learning, pp. 3505-3514.
PMLR, 2020.

Girgis, A., Data, D., Diggavi, S., Kairouz, P., and Suresh,
A. T. Shuffled model of differential privacy in feder-
ated learning. In International Conference on Artificial
Intelligence and Statistics, pp. 2521-2529. PMLR, 2021.

Guha Thakurta, A. and Smith, A. (nearly) optimal algo-
rithms for private online learning in full-information and

bandit settings. Advances in Neural Information Process-
ing Systems, 26:2733-2741, 2013.

Han, Y., Zhou, Z., Zhou, Z., Blanchet, J., Glynn, P. W., and
Ye, Y. Sequential batch learning in finite-action linear
contextual bandits. arXiv preprint arXiv:2004.06321,
2020.

Han, Y., Liang, Z., Wang, Y., and Zhang, J. Generalized lin-
ear bandits with local differential privacy. arXiv preprint
arXiv:2106.03365, 2021.

Hsu, J., Huang, Z., Roth, A., Roughgarden, T., and Wu,
Z. S. Private matchings and allocations. SIAM Journal
on Computing, 45(6):1953-1984, 2016.

Kairouz, P., Liu, Z., and Steinke, T. The distributed discrete
gaussian mechanism for federated learning with secure
aggregation. In NeurIPS, 2021.

Kearns, M., Pai, M., Roth, A., and Ullman, J. Mechanism
design in large games: Incentives and privacy. In Proceed-
ings of the 5th conference on Innovations in theoretical
computer science, pp. 403—410, 2014.

Li, L., Chu, W., Langford, J., and Schapire, R. E. A
contextual-bandit approach to personalized news article

recommendation. In Proceedings of the 19th interna-
tional conference on World wide web, pp. 661-670, 2010.

Liao, C., He, J., and Gu, Q. Locally differentially private re-
inforcement learning for linear mixture markov decision
processes. arXiv preprint arXiv:2110.10133, 2021.

Lowy, A. and Razaviyayn, M. Private federated learning
without a trusted server: Optimal algorithms for convex
losses. arXiv preprint arXiv:2106.09779, 2021.

Mironov, I. On significance of the least significant bits for
differential privacy. In Proceedings of the 2012 ACM
conference on Computer and communications security,
pp. 650-661, 2012.

Mishra, N. and Thakurta, A. (nearly) optimal differentially
private stochastic multi-arm bandits. In Proceedings of
the Thirty-First Conference on Uncertainty in Artificial
Intelligence, pp. 592601, 2015.

Ren, W., Zhou, X., Liu, J., and Shroff, N. B. Multi-armed
bandits with local differential privacy. arXiv preprint
arXiv:2007.03121, 2020a.

Ren, Z., Zhou, Z., and Kalagnanam, J. R. Batched learn-
ing in generalized linear contextual bandits with general
decision sets. IEEE Control Systems Letters, 2020b.

Sajed, T. and Sheffet, O. An optimal private stochastic-
mab algorithm based on optimal private stopping rule.
In International Conference on Machine Learning, pp.
5579-5588. PMLR, 2019.

Schwartz, E. M., Bradlow, E. T., and Fader, P. S. Cus-
tomer acquisition via display advertising using multi-
armed bandit experiments. Marketing Science, 36(4):
500-522, 2017.

Shariff, R. and Sheffet, O. Differentially private contextual
linear bandits. Advances in Neural Information Process-
ing Systems, 31:4296-4306, 2018.

Tenenbaum, J., Kaplan, H., Mansour, Y., and Stemmer, U.
Differentially private multi-armed bandits in the shuf-
fle model. In Beygelzimer, A., Dauphin, Y., Liang,
P, and Vaughan, J. W. (eds.), Advances in Neural In-
formation Processing Systems, 2021. URL https:
//openreview.net/forum?id=P0AeY-efPEx.

Tewari, A. and Murphy, S. A. From ads to interventions:
Contextual bandits in mobile health. In Mobile Health,
pp. 495-517. Springer, 2017.

Tossou, A. and Dimitrakakis, C. Achieving privacy in the
adversarial multi-armed bandit. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 31,
2017.

https://openreview.net/forum?id=P0AeY-efPEx
https://openreview.net/forum?id=P0AeY-efPEx

Shuffle Private Linear Contextual Bandits

Vaswani, S., Mehrabian, A., Durand, A., and Kveton, B.
Old dog learns new tricks: Randomized ucb for bandit

problems. In International Conference on Artificial Intel-
ligence and Statistics, pp. 1988-1998. PMLR, 2020.

Vershynin, R. High-dimensional probability: An introduc-
tion with applications in data science, volume 47. Cam-
bridge university press, 2018.

Vietri, G., Balle, B., Krishnamurthy, A., and Wu, S. Private
reinforcement learning with pac and regret guarantees.
In International Conference on Machine Learning, pp.
9754-9764. PMLR, 2020.

Wang, T., Zhou, D., and Gu, Q. Provably efficient reinforce-
ment learning with linear function approximation under
adaptivity constraints. arXiv preprint arXiv:2101.02195,
2021.

Xin, Y. and Jaakkola, T. Controlling privacy in recom-
mender systems. Neural Information Processing Systems,
2014.

Zheng, K., Cai, T., Huang, W., Li, Z., and Wang, L. Locally
differentially private (contextual) bandits learning. In
NeurlPS, 2020.

Zhou, X. Differentially private reinforcement learning
with linear function approximation. arXiv preprint
arXiv:2201.07052, 2022.

Zhou, X. and Tan, J. Local differential privacy for bayesian
optimization. arXiv preprint arXiv:2010.06709, 2020.

Shuffle Private Linear Contextual Bandits

A. A Unified Regret Analysis Under Differential Privacy

In this section, we will formally state Lemma 3.9, i.e., the generic regret of Algorithm 1 under sub-Gaussian private noise
and then present its proof.

Let’s first recall the following notations. For each batch m € [M], let Ny, := V., — iztmfl 41 B(et, a) (e, a;) " denote

the additional noise injected into the non-private Gram-matrix and similarly let n,, := u,, — iztm,l 11 o(ct, ay)y; denote
the additional noise injected into the non-private feature-reward vector. Then, we let H,, := Alg + Z:il N; to denote the

m

total noise in the first m batches plus the regularizer, and similarly let A, := " | n,.

Assumption A.1 (Regularity). For any « € (0, 1], H,, is positive definite and there exist constants Amax, Amin and v
depending on «, such that with probability at least 1 — «, for all m € [M]

[Hnll € Amaxes [[Ho || € 1/ Amins il g2 < v

With the above regularity assumption and the boundedness in Assumption 3.1, we fist establish the following general regret
bound of Algorithm 1, which can be viewed as a direct generalization of the results in (Shariff & Sheffet, 2018) to the
batched case.

Lemma A.2. Let Assumptions A.1 and 3.1 hold. Fix any o € (0, 1], with probability at least 1 — «, the regret of Algorithm 1
satisfies

dB T T
Reg(T) < I 1 8Bt [dT'] 1
eg()_10g2 Og(+d)\mm)+ ﬁM\/ og(+d)\min),

2 T
Bari=14/2log | — | +dlog 1+ 4+ vV Amax + V.
« d)\min

In fact, Lemma 3.9 in the main paper is a simple application of Lemma A.2 by considering the following assumption.

where

Assumption A.3 (sub-Gaussian private noise). There exist constants o1 and &5 such that for all m € [M]: (i) Z:Z/Zl N

is a random vector whose entries are independent, mean zero, sub-Gaussian with variance at most 5%, and (ii) ZZ/:1 N,

is a random symmetric matrix whose entries on and above the diagonal are independent sub-Gaussian random variables with
variance at most 53. Let 02 =max{57, 55 }.

Now, we are well-prepared to formally state Lemma 3.9 in the main paper.

Lemma A.4 (Formal statement of Lemma 3.9). Let Assumptions A.3 and 3.1 hold. Fix time horizon T' € N, batch size B €
[T, confidence level a € (0, 1]. Set A = ©(max{1,0(v/d + /log(T/(Ba))}) and By, = \/2 log (2) +dlog (14 &)+
V'A. Then, Algorithm I achieves regret

Reg(T) =0 (dB log T + dﬁlog(T/a)) +0 (\/0de3/4 longog(T/a)>

with probability at least 1 — a.

Remark A.5. The above lemma also presents a regret bound for non-private batched LCB when o = 0. Note that in this case,
our regret bound is achieved with a dimension-independent regularizer, in contrast to the necessary condition on A = O(d)
as required in (Ren et al., 2020b) to attain the optimal regret.

A.1. Proofs

In this section, we present proofs for Lemma A.2 and Lemma A.4 above, respectively.

Proof of Lemma A.2. Let £ be the event given in Assumption A.l, which holds with probability at least 1 — « under
Assumption A.1. In the following, we condition on the event £. We first show that 6,,, concentrates around the true parameter

Shuffle Private Linear Contextual Bandits

6* with a properly chosen confidence radius (3, for all m € [M]. To this end, note that

0 -1
em = Vm Um,
t””.

tm m -1 m
= (Z o(ce, ar)o(cy, at)T + Mg+ Z Nm) <Z B(ce, ap)ys + nm)
t=1 t=1 i=1

i=1

- <i d(ce, ar) (e, at)T + Hm) <i o(ct, at)ys + hm> .

t=1

By the linear reward function y; = (¢(ct, at), 0*) + 1 and elementary algebra, we have

tm
0* — é\m = anl <Hm9* — Z ¢(Ct7(lt)’l7t — hm> .

t=1

Thus, multiplying both sides by anl/ 2, yields

tm
] o 9m‘ . ; (et as)ne o+ 1 Hon |1 + o1
(a) || i
< Zcb(%at)m + 10 HHm + ”hmHH;Ll)
t=1 (Gm~+Aminl) ™1
where (a) holds by V,,, = H,, and V,,, = G, + Amind with G,,, := §21 é(ct,as)é(ce,a;) " under event €. Further,

by the boundedness condition of 6* and event &, [0*||;; < V/Amax and ||hp| ;-1 < v. For the remaining first

term, we can use self-normalized inequality (cf. Theorem 1 in (Abbasi-Yadkori et al., 2011)) with the filtration F; =

o(c1,a1,Y1,- -, Ct, Aty Yt, Cri1,arr1)- In particular, we have with probability at least 1 — «, for all m € [M]
t
- 1 det(Gp, + Aminl)
<4/21 — 1 . 1
Sanom| ()G
t=1 (Gnl +)\minI)_l

Now, using the trace-determinant lemma (cf. Lemma 10 in (Abbasi-Yadkori et al., 2011)) and the boundedness condition on
l¢(c,a)||, we have

d
det(Gm + AminI) < <>\min -+ t;;) .

Putting everything together, we have with probability at least 1 — 2q, for all m € [M],) 0 — é\mHv < Bm, where

Bm = 4/ 2log l +dlog 1+ b + v/ Amax + V.
« dAmin

With the above concentration result and our OFUL-type algorithm, the regret can be upper bounded as follows.

tm

M
R = |28m1 Y. (letenadlly, s,
m=1 | t=tm_1+1
M [tim
<> 128 > (I6ena)l,onmn) @)
m=1 t=tym_1+1

At this moment, we note that the standard elliptical potential lemma (cf. Lemma 11 in (Abbasi-Yadkori et al., 2011)) cannot
be applied to our batch setting due to the delay of G,,.

Shuffle Private Linear Contextual Bandits

To handle this, inspired by (Wang et al., 2021), we let ‘A/k = Zle B(ce,ar)p(cs, ar) T + Aminly, that is, a (virtual) design
matrix at the end of time k. Hence, we have G,,,_1 + Amindg = V3 (m_1) Moreover, forany ¢,,—1 < t < tp,, letmy = t,,—1,
that is, mapping ¢ to the starting time of the batch that includes ¢. Finally, let I';(-,-) := Bas - [|[¢(-,)| p-1-

With above notations, the bound in (2) can be rewritten as follows.

M tm
RO < Y |26 30 (16t alic,)
m=1 t=tm—_1+1

T
= Z Qme (Ct, at)
t=1
In the sequential case (i.e., B = 1), we always have m; = ¢t — 1. Thus, the key is to bound the difference between I',,,, (ct, at)
and I';_1 (¢¢, ay). To this end, we have the following claim, which will be proved at the end.
Claim A.6. Define the set ¥ as follows
v = {t S [T] : Fmt (Ct, at)/Ft_l(ct, at) > 2}

Then, we have

dr T
U< ——7I 1 .
| | - 2M10g2 Og< * d)\min>

According to Claim A.6, we can decompose regret as follows.
()P
R(T) <> min{2Ty,, (¢, ar), 1}
t=1

= Z min{2rmt (Ct7 at)v 1} + Z min{ZFmt (Ctv at)v 1}

tew tg v

(b)
< W)+ > min{dl_y (e ar), 1}
tgw

(©) T
< W]+ > 4By min{|¢(c, ar)lg-1, 1}
t=1

@ dT T T
< —1 1+ — 8 dT'1 1
~ 2Mlog 2 o8 (+ d>\min> * ﬁM\/ o (- dAmin)

where (a) holds by the boundedness of reward; (b) holds by definition of W¥; (c) holds by the fact that 35, > 1; (d) follows
from Claim A.6 and standard argument for linear bandit, i.e., Cauchy-Schwartz and standard elliptical potential lemma (cf.
Lemma 11 in (Abbasi-Yadkori et al., 2011)). Hence, we have finished the proof of Lemma A.2.

Finally, we give the proof of Claim A.6.

For any t € U, suppose t,,—1 <t < &, for some m. Then, we have m; = t(,;,_1) and

~ ~ (@) ~ ~ O
logdet(V4,,) — logdet(V;,,_,,) > logdet(V;—1) — logdet(V,,,) > 2log(I'm, (ct, ar) /Te-1(ce, ar)) > 2log 2,

where (a) holds by the fact ‘A/tm > ‘A/t_l; (b) holds by Lemma 12 in (Abbasi-Yadkori et al., 2011), that is, for two positive
definite matrices A, B € R4*? satisfying A = B, then for any z € RY, ||z|| , < ||z|| 5 - \/det(A)/ det(B). Note that here
we also use det(A) = 1/ det(A~!) for any matrix;

Therefore, if we let U := {m € [M] : log det(‘A/tm) —log det(f}}(mf”) > 2log 2}, then we have || < (T/M)|@| Thus,
we only need to bound |¥|. Note that for each m, log det(V;,) — log det(‘A/t(m_l)) > 0, and hence

M
~ ~ ~ -~ EN det(GM +)\minI>
2log2 - |¥| < E logdet(V4,,) —logdet(V;,,_,)) < E logdet(V;,,) — logdet(V;,,_,,) = log (det o) >

melfl m=1

Shuffle Private Linear Contextual Bandits

Algorithm 2 Local Randomizer R amp

1: Parameters: 01,09, d
2: function R;(¢(c, a)y)
3: Sample fresh noise n ~ N(0, 0311 q)

4 M;=d¢(c,a)y+n

5: return M

6: end function

7: function Ry(é(c,a)p(c,a)’)

8: Sample fresh noise N(; jy ~ N(0,07),Vi < j < dandlet N(; ;) = N, 5
9: My = ¢(c,a)¢p(c,a)” + N

10: return M,
11: end function

Finally, using the same analysis as in (1), yields

which directly implies the result of Claim A.6. O

Proof of Lemma A.4. To prove the result, thanks to Lemma A.2, we only need to determine the three constants A ax, Amin
and v under the sub-Gaussian private noise assumption in Assumption A.3. To this end, we resort to concentration bounds
for sub-Gaussian random vector and random matrix.

To start with, under (i) in Assumption A.3, by the concentration bound for the norm of a vector containing sub-Gaussian
entries (cf. Theorem 3.1.1 in (Vershynin, 2018)) and a union bound over m, we have for all m € [M] and any « € (0, 1],
with probability at least 1 — /2, for some absolute constant ¢,

Zni = hml € By = c1 - 51 - (Vd + /log(M/a)).

By (ii) in Assumption A.3, the concentration bound for the norm of a sub-Gaussian symmetric random matrix (cf. Corollary
4.4.8 (Vershynin, 2018)) and a union bound over m, we have for all m € [M] and any « € (0, 1], with probability at least
1-—a/2,

Y ONi| <5y =252 (Vd+ \log(M/a))
i=1
for some absolute constant co. Thus, if we choose A = 2Xy, we have ||H,,| = |[Mg+ > o N;|| < 3%y, ie,

Amax = 32N, and Ay = X . Finally, to determine v, we note that

1 1/2
ol < = lmll < - (o (V+ VViog{M]a)) o= v:
where 0 = max{o1,02}. The final regret bound is obtained by plugging the three values into the result given by
Lemma A.2. O

B. Analysis of LDP Amplification Protocol
B.1. Pseudocode of Pymp

The shuffle protocol is given by Pamp = (R amp; Samp, Aamp), in Which R am, is presented in Algorithm 2, Samp is presented
in Algorithm 3, and Aamp is presented in Algorithm 4.

Shuffle Private Linear Contextual Bandits

Algorithm 3 Shuffler Samp

1: Input: {M;1},;cp and {M; 2} ¢, in which B is a batch and M ; € R, M, € R%*? come from user 7

2: function S1({M:1}-eB)

3: Generate a uniform permutation 7 of indexes in 5
SetY; = (Mﬂ'(l),lv e, Mvr(B),l)
return Y;

end function

: function Sy ({M:2}-eB)

Generate a uniform permutation 7 of indexes in B

9: SetY; = (Mﬂ(1)727...,Mﬁ(B)72)
10: return Y,
11: end function

AN A

Algorithm 4 Analyzer Aamp
1: Input: Shuffled outputs Yy = (My(1),1,..., Mr(p)1) and Yo = (Mr(1).2, ..., Mr(B),2)
2: function A;(Y7)

3: return Zf:l M) 1

4: end function
5
6
7

: function A;(Y3)
return 2?:1 Moiy,2
: end function

B.2. Main Results

Theorem B.1 (Restatement of Theorem 3.2). Fix time horizon T € N, batch size B € [T, confidence level o € (0,1], ,

and privacy budgets ¢ € (0, log(;/é)], 0 € (0,1]. Then, Algorithm 1 instantiated with shuffle protocol Pa, with noise
levels 01 =09= 2 log(zf%é) 08C/9) " ind regularizer \ = ©(\/To1(V/d + \/log(T/Ba)), enjoys the regret

log'/*(B/d)log'/*(2/9)
c1/2p1/4

Reg(T)= O(dB log T+ B3T3 log T log(T/a)> ,

with probability at least 1 — «. Moreover, it satisfies O(e, §)-shuffle differential privacy (SDP).

Corollary B.2 (Utility-targeted). Under the same assumption in Theorem B.1 and Algorithm 1 is instantiated with Pyy,p.
Let B = O(d~Y/5e=2/5T3/5 10g"/>(T/6) 1og"/®(2/6), Algorithm I achieves O(e, §)-SDP with regret

Reg(T) = O <d4/5T3/5572/5 log!/>(T/5) log1/5(2/6)) .
Simultaneously, Algorithm 1 also achieves O(g,0)-JDP and O(eg, 09)-LDP where
=0 (54/5T3/10d‘1/ 101g1/10(7/5) 1og*2/5(2/5)) . % =0 (6d1/5T‘3/552/5 log~/%(T/5) 1og*1/5(2/5)) .

Corollary B.3 (Privacy-targeted). Let Assumption 3.1 hold and Algorithm 1 is instantiated with Pay,. For any €q € [0, 1]
and 0y € (0,1], let 0y = 09 = 47”210?()2'5/60). Then, for all B € [T), Algorithm 1 is (gg, 00)-LDP. Further suppose
B= O((fl/‘lT?’/‘L&gl/2 log'/4(1/80)), then Algorithm 1 achieves regret

Reg(T) =0 (d3/4T3/4551/ 2log!/*(1 /50)) .
Simultaneously, Algorithm 1 achieves O(g,0)-SDP and O(g, 0)-JDP where

c=0 (68/4T_3/8d1/8 1og3/8(1/50)) L8 = O(d0d= AT/ 451 10g /4 (1/60)).

Shuffle Private Linear Contextual Bandits

B.3. Proofs

To prove Theorem B.1, we need the following important lemma, which can be seen as a special case of Theorem 3.8
in (Feldman et al., 2020). In particular, in our paper, we consider a fixed local randomizer rather than the more general
adaptive one in (Feldman et al., 2020). Another difference is that we consider the case of randomizer-then-shuffle rather
than the shuffle-then-randomizer. However, as pointed in (Feldman et al., 2020), the two cases are equivalent when the local
randomizer is a fixed one.

Lemma B.4 (Amplification by shuffling). Consider a one-round protocol P = (R, S, A) over n users. Let R be an
(€0, 60)-LDP mechanism. Then, for any 6 € [0, 1] such that &g < 108(1515257577)» P is (€,0)-SDF, i.e., the analyzer’s view

is (€,0)-DP, where

~ e —1 [8y/efolog(4/d") 8eco ~ e~eo
< = o 1
5_log<1+e€0+1< Tn + - O0=0+E+1) {1+ 5 ndo,

That is, wheneg > 1, € = O (@) and wheneg <1, =0 (60\/@)

Roughly speaking, we have a privacy amplification by a factor v/n due to shuffling, which is the key to our analysis.

VB _ _eVB
Viog(1/6') — \/log(2/6)’
(0, /log(2/8)/v/B], we have ¢y < 1, which implies £ = O(c). Meanwhile, we let 5y = 6/B for any 6 € [0, 1], which
implies that & = O(6). Now, we are only left to choose o1 and o5 in R amp s0 that it is (¢, d9)-LDP. To this end, via the
standard Gaussian mechanism and boundedness assumption, we have when

4,/21og(2.5/d0)
01 =09 = — o)

Proof of Theorem B.1. To apply Lemma B.4, we choose ¢’ = ¢/2 and g9 = For any ¢ €

Ramp 18 (€0, 8)-LDP. Finally, plugging in ¢ = £v/B/+/log(2/§) and &, = §/B, yields

41/21og(2.5B/5)log(2/6)

01 =09 = .
L eVB

Finally, plugging the value o = /2T log(QE.i}/BE/(;) log(2/9) (since there are total at most 7" noise) into the regret bound in

Lemma A.4 yields the required results. O

Proof of Corollary B.2. To establish the regret bound, we simply choose a balanced B in the regret bound given by
Theorem B.1. To prove the JDP guarantee, we will use the powerful Billboard lemma (cf. Lemma 9 in (Hsu et al., 2016)),
which says that an algorithm is JDP if the action recommended to each user is a function of her private data and a common
signal computed in a differential private way. In our case, the private data is user’s context and the common signal is the
updated policy (i.e., é,n and design matrix V,,,), which is a post-processing of shuffle outputs. Thus, the SDP guarantee
directly implies the JDP guarantee in our case. Finally, the LDP guarantee simply follows from the standard Gaussian
mechanism with parameter €9 = ev/B/+/log(2/8) and 6y = J/B. O

Proof of Corollary B.3. The LDP guarantee follows from standard Gaussian mechanism. To show the regret bound, we will
use the result in Theorem B.1. In particular, comparing the values of o1, o5 in Corollary B.3 and the values in Theorem B.1,

eov/log(2/9)

we can plug e = — v and 0 = o B into the regret bound in Theorem B.1. Then, with a balanced choice of B, we

obtain the required regret. The SDP guarantee also follows from Theorem B.1 with ¢ = Y2222 ”1;%(2/6) and § = 0y B. Finally,
as in the proof of Corollary B.2, the JDP guarantee follows from SDP guarantee and Billboard lemma. O

Shuffle Private Linear Contextual Bandits

Algorithm 5 Local Randomizer Ryve.

1: Parameters: g, b, p, d

2: # Local randomizer for a scalar within [0, A]

3: function R*(z, A)

Setz = |zg/A]

Sample rounding value v; ~ Ber(zg/A —)
Setx =T+

Sample binomial noise 7y ~ Bin(b, p)

Set m be a multi-set containing Z + 2 copies of 1 and (g + b) — (Z + 72) copies of 0.
return m

10: end function

11: function R, (¢(c,a)y)

12: SetAy =1

13: for each coordinate k € [d] do

R A A

14: Shift data wy, = [¢(c, a)y|r + Ay
15: Run the scalar randomizer my, = R*(wy, A1)
16: end for

17: # Labeled outputs (all bits in my, are labeled by k)
18: M, = {(k,mk)}ke[d]

19: return M,

20: end function

21: function Ry(é(c,a)p(c,a)T)

22: Set Ay =1

23: forall: <j <ddo

24: Shift data w j) = [p(c, a)p(c,a) T 5) + Az
25: Run the scalar randomizer to obtain M) = R* (w(i,j)a As) and M) = M(4,5)
26: end for

27: # Labeled outputs

28: Mo = {((45), m(i.5)} gyl x1d)
29: return M,

30: end function

C. Analysis of Vector Summation Protocol

C.1. Pseudocode of Pye,

The shuffle protocol is given by Pyec = (Rvec, Svec, Avec), in which Ry is presented in Algorithm 5, Sy is presented in
Algorithm 6, and Ay is presented in Algorithm 7. Note that the original algorithm for the analyzer in (Cheu et al., 2021)
has a small issue in the de-bias process (cf. Algorithm 2 in (Cheu et al., 2021)). In particular, instead of subtracting the norm
A, one needs to subtract B - A, see Lines 11 and 19 in Algorithm 7. Here, B corresponds to 7 in Algorithm 2 of (Cheu
etal., 2021).

C.2. Main Results

Theorem C.1 (Restatement of Theorem 3.5). Fix batch size B € [T), privacy budgets € € (0,15], § € (0,1/2). Then,
10402 los? 2
Algorithm 1 instantiated with Py,. with parameters p = 1/4, g = max{2v/B, d,4} and b = 2109 1f2é4(d +1/0) is

(€,06)-SDP. Furthermore, for any a € (0, 1], setting A\=0 (% Wd+ log(T/(Ba))), it enjoys the regret

log'/?(d?/9)

Reg(T)=0 (dB log T+ RV

d3AT3 log T log(T/a)) ,

with probability at least 1 — a.
Corollary C.2 (Utility-targeted). Under the same assumption in Theorem C.1 and Algorithm 1 is instantiated with Py,.. Let

Shuffle Private Linear Contextual Bandits

Algorithm 6 Shuffler Sy

I: Input: {M;1},e5 and {M;2}-cp, in which B is a batch of users. M;; = {(k,my)}relq and My =
{((2,9), m(i5)) } 5.5 e[d) x[q) are labeled data of user 7
2: function S1({M; 1}-eB)
Uniformly permutes all messages, i.e., a total of (g +) - B - d bits
Set y. be the collection of bits labeled by k € [d]
SetY; = {yh . ,yd}
return Y;
end function
: function Sy ({M;2},eB)
Uniformly permutes all messages, i.e., a total of (g + b) - B - d? bits
10: Set y(; ;) be the collection of bits labeled by (i, j) € [d] x [d]
1 Set Yz = {yj)}g)elaxd
12: return Y,
13: end function

R A

B = O(d~Y/5e=2/5T3/510g%/%(d? /5)), Algorithm 1 achieves (¢, 8)-SDP with regret
Reg(T) = O <d4/5T3/55*2/5 log2/5(d2/6)) .
Simultaneously, Algorithm 1 also achieves O(g,0)-JDP and O(eg, 09)-LDP where
co = O (403104711010 7(@2/5)), 8 = O(9).

Corollary C.3 (Privacy-targeted). Let Assumption 3.1 hold and Algorithm 1 is instantiated with Py,.. For any e € (0, 15]
and 6y € (0,1/2), let

(d? 2
24101+ g2 - (log (2142}

2
€0

g = max{d,4}, b= , p=1/4,

Then, for all B € [T], Algorithm 1 is (gg,60)-LDP. Further suppose B = O(d_1/4T3/4561/2(10g(d2/50))1/2), then
Algorithm 1 achieves regret

Reg(T) = O d3/4T3/4710g1/2(d2/60) :
Ve

Simultaneously, Algorithm 1 also achieves O(e, 6)-SDP and O(e, 6)-JDP where

c=0 (55/4T_3/8d1/8(log(d2/60))_1/4> 6= 0().

C.3. Proofs

Proof of Theorem C.1. The privacy part follows from the one-round SDP guarantee of vector summation protocol in (Cheu
et al., 2021). In particular, by Theorem 3.2 in (Cheu et al., 2021), we have to properly choose parameters g, b, p in Ryec. To
this end, by adapting the results of Lemma 3.1 in (Cheu et al., 2021), we have in our case when one chooses

4(@+1)))2
24104 g - (log (151
e?B ’

g:max{Q\/E,d,ll}, b= p=1/4,

Pvec is (€, 6)-SDP. It is worth pointing out that here we choose b such that p = 1/4, which is necessary for our following
analysis on the tail of the private noise. This is the key difference compared to the original one in (Cheu et al., 2021) where
the variance of the noise is sufficient.

Shuffle Private Linear Contextual Bandits

Algorithm 7 Analyzer Ave.

Input: Shuffled outputs Y1 = {y }reiq) and Yo = {y(i 5) } (i.5)e[d) xd

1:
2: Initialize: g, b, p
3: # Analyzer for a collection y of (g + b) - B bits using A
4: function A*(y, A)
5: return 2 ((Zggb)"g yi)—p-b- B)
6: end function
7: function A;(Y7)
8: Al =1
9: for each coordinate k € [d] do
10: Run analyzer on k-th labeled data to obtain z;, = A*(yg, A1)
11: Re-center: o, = 2, — B - A\
12: end for
13: return{oy,...,0}
14: end function
15: function A5 (Y3)
16: Ag =1
17. forall: < j <ddo
18: Run analyzer on (4, j)-th labeled data to obtain z(; ;) = A*(y(), A2)
19: Re-center: o(; jy = z(;,5) — B - Az and o3y = 0(;)
20: end for
21: return {0 } (i j)efd)x(d]
22: end function

Now, we turn to regret analysis. Thanks to our general regret bound in Corollary A.4, we only need to verify the condition of
sub-Gaussian private noise in the protocol Pye. (in particular Rye). To this end, we need a more careful analysis compared
to (Cheu et al., 2021) as the issue pointed above. Fix any coordinate k € [d], we will determine the private noise in k, which
motivates us to check the scalar randomizer R* in Ry... Consider a batch of users. Let z; denote the sum of g + b bits
generated by user ¢ using R*. That is, we have

Zi =T + 71,5+ V2,

This implies that

g - g
zi —bp= A A iy e X bp.
Define shifted random variables ¢ ; := 1 ; + Z; — %xi and o ; := 72,; — bp. Thus, taking the summation over all 7 within
a given batch B of size B, yields

Zzi—B~b~p:%Z%-f-zbu-l-zbz,iv

ieB i€B i€B ieB

which implies that

?(Zzi—B'b'P> szri-%zjh,ri-%zbmw

i€B i€B i€B i€B

Note that the above is exactly the output of the analyzer A* in Py,.. Thus, to verify the sub-Gaussian condition in
Assumption A.3, we only need to show that the last two terms above are zero-mean and sub-Gaussian random variables. To
this end, we note that y; ; is draw from Ber({x; — ;). Hence, E [1; ;] = 0 and ¢ ; is sub-Gaussian with variance 1 since
t1,; € [~1,1]. By independence of private noise across i, we have) .z ¢1,; is sub-Gaussian with variance of B. Similarly,
since y2,; is independently sampled from binomial Bin(b, p), we have [[15 ;] = 0 and), 5 t2 ; can be viewed as a sum of
B - b bounded random variable within [0, 1], hence it is sub-Gaussian with variance of B - b/4. Therefore, the total noise

Shuffle Private Linear Contextual Bandits

A Zielﬁ Lty ZieB t2,; is sub-Gaussian with variance given by

g
A? A? (a) 1 1 (log(d?/6))?
972 * B + ? : B * b/4 = g72 * B + 972 * B N b/4 == O <62> .

where (a) holds by the fact that in Pye., A = 1. Thus, this implies that 57,53 in Assumption A.3 are satisfied with
O (M (log(iﬂ), hence ¢ in Lemma A.4 is given by 0 = O (« /T/ Bw), which leads to the following regret
bound

i log(d2/6))!/?
R(T)=0 (dB+ (log(d*/9)) 4341434
NG
Hence, we finish the proof. O

Proof of Corollary C.2. The regret bound simply follows from a balanced choice of B in Theorem C.1. As before, JDP
follows from SDP and Billboard lemma. To show the LDP guarantee, one way is to use DP property of Binomial mechanism
and the refined advanced composition in (Cheu et al., 2021) across dimensions (cf. Lemma 3.3 in (Cheu et al., 2021)).
However, there is a simple way to achieve this by noting that when B = 1, the SDP guarantee of Pye. also implies LDP
guarantee since now the shuffle output is the same as the output at each local randomizer®. Thus, by comparing the values of
b for a general B and the case when B = 1, we can see that ¢g = ¢V B and Jy = 9, i.e., an implicit privacy amplification
by v/B. Note that, this simple way might lead to a larger term in 6. A careful analysis via Binomial mechanism and the
(refined) advanced composition could yield something like ¢ = ev/B/+/log(d?/§) and §y = 6/d?, where d* comes from
the d x d matrix in the computation. Here we choose the simple way to avoid additional complexity for clarity. O

Proof of Corollary C.3. The LDP guarantee follows from the same trick as in the proof of Corollary C.2 which helps to
avoid Binomial mechanism and advance composition over dimensions. To establish the regret bound, we can compare the
values of b in Corollary C.3 and the one in Theorem C.1. In particular, we can plug ¢ = % and 6 = J into the regret
bound in Theorem C.1. Then, with a balanced choice of B, we obtain the required regret. The SDP guarantee also follows
from Theorem C.1 with € = 5—\/% and § = d¢. Finally, as in the proof of Corollary B.2, the JDP guarantee follows from SDP
guarantee and Billboard lemma. [

D. Joint Differenital Privacy

In this section, we will give formal DP definitions in the central model for linear contextual bandits. In particular, we
first present the standard (event-level) definition which assumes all users are unique and then generalize it to (user-level)
definition that allows for returning users. To this end, we first give the following general DP definition.

Definition D.1 (General DP). A randomized mechanism M : D — R satisfies (¢, §)-differential privacy if for any two
adjacent datasets X, X’ € D and for any measurable subsets of outputs)V C R it holds that

PM(X) € Y] <exp(e)P[M(X') € V] +6.

Remark D.2. All the DP definitions in our main paper can be viewed as a particular instantiation of Definition D.1 in terms
of adjacent relation between two datasets and the corresponding output sequences.

A straightforward adaptation of Definition D.1 to linear contextual bandits in the central model is to consider the sequence
of T unique users as the dataset, denoted by Uz := {uy,...,ur} € U7, and the corresponding prescribed actions as the
output sequence, denoted by M(Ur) := {ay,...,a;} € AT. This is the central trust model because the learning agent in
the protocol can have direct access to users’ sensitive information, but all the prescribed actions via the deployed algorithm
are indistinguishable on two neighboring user sequences. Unfortunately, it is not hard to see that this is in conflict with the
goal of personalization of linear contextual bandits, which essentially requires the algorithm to prescribe different actions to
different users according to their contexts. Indeed, as shown in (Shariff & Sheffet, 2018), any learning protocol that satisfy
the above notion of privacy protection has to incur a linear regret. Hence, to obtain a non-trivial utility-privacy trade-off,
we need to relax DP to the notion called joint differential privacy (JDP) (Kearns et al., 2014) in the central model, which

“Here, we can assume that each local randomizer already randomly orders the g + b bits before they are sent out.

Shuffle Private Linear Contextual Bandits

requires that simultaneously for any user u; € Ur, the joint distribution of the actions recommended to all users other than
u, be differentially private in the type of the user u;. It weakens the classic DP notion only in that the action suggested
specifically to u; may be sensitive in her type (i.e., context and reward responses'®), as required by personalization. However,
JDP is still a very strong definition since it protects u; from any arbitrary collusion of other users against her, so long as she
does not herself reveal the action suggested to her. Formally, we let M _;(Ur) := M(Ur) \ {a:} to denote all the actions
prescribed by the deployed algorithm excluding the one recommended to u; and based on it we have the definition of JDP as
follows.

Definition D.3 (Joint Differential Privacy (JDP)). A learning process of linear contextual bandits is (e, §)-joint differentially
private if its deployed algorithm M : U7 — AT satisfies that for all t € [T, for all neighboring user sequences
Ur, Uy € UT differing only on the ¢-th user and for all set of actions .A_; C AT~ given to all but the ¢-th user,

P[M_y(Ur) € A_y] < exp(e)P[M_(UL) € A_y] + 6.

The above JDP definition assumes that all the 7" users are unique, which is the standard event-level DP considered in
existing similar works (Shariff & Sheffet, 2018; Vietri et al., 2020; Chowdhury & Zhou, 2021). That is, since each user only
contributes one event in the total 7" rounds, two user sequences Uy and U’ are said to be adjacent if they only differ at one
round t € [T].

However, a more practical situation is that one user could contribute her data at multiple rounds, i.e., returning users. This
motivates us to consider a user-level JDP, in which two user sequences Ur and U are adjacent if one replaces all the data
associated with user w to v’ in Uy results in UZ.. In this case, changing one user in the sequence could affect the data at
multiple rounds. Accordingly, the output sequences need to remove all the actions at these rounds to avoid the conflict
with personalization. Following the notations in (Dwork et al., 2010), we say Ur and U} are neighboring sequences if
there exist u, u’ such that if one replace some of w in Uy, the resultant sequence is U/.. Formally, Ur, U/ are neighboring
with neighboring indices Z, if there exist u, u’ € U and index set Z C [T'] such that Up|z.y—s = Uf, in which Ur|z.y—u
means replacing v by «’ in Ur at all indices in Z. Meanwhile, we let M _7(Ur) := M(Ur) \ az, where a7 is the set of
actions at indices in Z. With these notations, we have the following formal definition.

Definition D.4 (User-level JDP). A learning process of linear contextual bandits is (£, 0)-joint differentially private if its
deployed algorithm M : YT — AT satisfies that for all neighboring user sequences Ur, U € U7 with neighboring indices
given by Z, and for all set of actions A_7 C AT~ 17l

P[M_7(Uzr) € A_z] < exp(e)P [M_z(U}) € A_z] + 6.

Remark D.5. A straightforward way to achieve user-level JDP via event-level JDP is to use group privacy property of
DP (Dwork et al., 2014; Vietri et al., 2020). In particular, suppose a mechanism is (e, §)-JDP (event-level), then it is
(ke, ke(k=Deg)-JDP (user-level) if each user contributes at most & rounds. This black-box approach leads to a large increase
in 9. We will show that a careful and direct analysis can improve this part while the linear increase in ¢ is unchanged. This
makes sense since the sensitivity now increases by a factor of k.

E. Regret and Privacy Analysis Under Returning Users

We consider the following returning users case.

Assumption E.1 (Returning Users). Fix a batch size B, any particular user can potentially participates in all M = T /B
batches, but within each batch m € [M], she only contributes once.

Under the above assumption, our previous SDP guarantee from one-round SDP protocol is no longer true. Instead, we now
need to guarantee that outputs of all the batches together have a total privacy loss of (e, §), since all of them may reveal the
sensitive information of a given user if she participates in all the batches, i.e., worst-case scenario. To this end, we resort to
advanced composition theorem (Dwork et al., 2014), which is restated as follows for an easy reference.

Theorem E.2 (Advanced composition). Given target privacy parameters ' € (0,1) and §' > 0, to ensure (', kd + §')-DP

Sor the composition of k (adaptive) mechanisms, it suffices that each mechanism is (g,0)-DP with € = g

2./2klog(1/8")"

10Technically speaking, the type of the user is identified by the reward response she would give to all possible actions recommended
based on her context information.

Shuffle Private Linear Contextual Bandits

E.1. LDP Amplification Protocol

Theorem E.3 (Formal statement of (i) in Theorem 4.2). Let Assumption 3.1 and Assumption E.1 hold. For any € €
[0, 2 1og(2/6)v/2T), 6 € (0,1] and B € [T}, let o1 = 05 = 1610g(2/9) ng(log(w/&)). Then, Algorithm 1 instantiated using

Pamp is O(,8)-SDP. Furthermore, for any o € (0, 1], setting A\ = O(V/To1(Vd + \/log(T/Bq)), it has the following
regret

T MT
Reg(T) = O (f]lw logT + 1/ ?d?’/‘* log/*(T/6) log'/?(2/6) longog(T/a)) .

The following corollary says that if the batch schedule also depends on privacy parameters, one can improve the dependence
one,ie., frome=1/2 to g=1/3,

Corollary E.4 (Utility-targeted). Under the same assumption in Theorem E.3 and B = O(d~'/%c=1/3T?/3(1og(T/5))'/?),
Algorithm 1 instantiated using Pamp achieves O (e, §)-SDP with regret

R(T) =0 (d5/6T2/3e’1/3 (log(T/6))" 2) .

Proof of Theorem E.3. First, by advanced composition in Theorem E.2, if we let each batch’s privacy parameters be
- - _ . .)
Em = S NATTTEI) and d,, = 6/(2M), then final privacy guarantee is (£, §)-DP. Thus, we only need to replace ¢ by &,

and 0 by d,,, in Theorem B.1 O

E.2. Vector Summation Protocol

Theorem E.5 (Formal statement of (ii) in Theorem 4.2). Let Assumption 3.1 and Assumption E.I hold. Then, for any
€ <150 € (0,1/2) and B € [T}, let

107 10g(2/6) - g* - T - (log (%a“))f

g =max{2VB,d,4}, b= e ,

p=1/4.
Algorithm I instantiated using P, is (€,0)-SDP. Furthermore, for any o € (0, 1], setting

e (prog(a/a) 8T/ (1, iogrT Ba))>) |

then it has the regret bound

dr MT
Reg(T)=0 (M logT'+4/ ?dg/‘l log®/*(d®>M /6) longog(T/a)> .

Corollary E.6 (Utility-targeted). Under the same assumption in Theorem E.5, B = O(d—Y/%c=1/3T2/3(1og(Td?/5))"/?),
Algorithm 1 instantiated using Pye. achieves (g, 0)-SDP with regret

R(T) = O (a*/°T%/% 1% (10(d*T/3))?) .

Proof of Theorem E.5. First, by advanced composition in Theorem E.2, if we let each batch’s privacy parameters be
£

Em = WYt and ¢,, = 0/(2M), then final privacy guarantee is (¢, §)-DP. Thus, we only need to replace € by &,
and § by d,,, in Theorem C.1 O

E.3. JDP under Returning Users

As mentioned before, existing algorithm with JDP guarantee assumes unigue users, i.e., event-level JDP given by Defini-
tion D.3. To handle returning users, we need to consider user-level JDP given by Definition D.4. One straightforward way is

Shuffle Private Linear Contextual Bandits

to resort to group privacy (Dwork et al., 2014). That is, if any user appears at most M, rounds in the process, the original
(e, 6)-JDP algorithm proposed in (Shariff & Sheffet, 2018) now achieves (Mye, My exp((My — 1)€)d)-JDP (user-level).
However, this black-box will incur a large loss in the ¢ term. To overcome this, we note that a simple modification of the
added noise in the original algorithm in (Shariff & Sheffet, 2018) will work. In particular, we scale up the noise variance by
a multiplicative factor of M, if any user participates in at most M rounds. This follows from the fact that flipping one user
now would change the ¢» sensitivity of the expanded binary-tree nodes from O(+1/log T) to O(My+/logT). Then, utilizing
our derived generic regret bound in Lemma A.4, yields the following result.

Proposition E.7. If any user participates in at most My rounds, the algorithm in Shariff & Sheffet (2018), with the above
modification to handle user-level privacy, achieves the high-probability regret bound

Reg(T) = O (d\/T+ \/@dw‘ 10g1/4(1/(5)> .

Proof. The key idea behind the regret analysis in the central model for linear contextual bandits in (Shariff & Sheffet, 2018)
is to utilize the following two properties of the so-called tree-based mechanism (or binary counting mechanism) (Chan
et al., 2010): (i) change of each leaf-node (corresponding to a user’s data) only incurs the change of /5-sensitivity of the
expanded binary-tree by O(y/logT); (ii) for any ¢ € [T], the summation of data from time 1 to ¢ only involves at most
O(log T') tree nodes. Property (i) is used to compute the added noise at each node to guarantee privacy while property (ii) is
used to compute the total noise in the private sum when bounding the regret. Now, in the case of returning users, if we flip
one user’s data, it will change the l5-sensitivity of the expanded binary-tree by O(Mj+/log T), i.e., an additional M factor
in the sensitivity, which leads to the additional Mg factor in the added noise. Property (ii) is the same as before, i.e., total
number of noise is at most O(log T'). Finally, by Lemma A.4, we have the result. [

F. Batched Algorithms for Local and Central Models

To start with, for the batched algorithm in the local model, one can simply replace the shuffler in Algorithm 1 by an identity
mapping while using the same local randomizer as in (Zheng et al., 2020) (i.e., Gaussian mechanism). We call this algorithm
Batched-Local-LinUCB. Thanks to Lemma A.4, we have the following privacy and regret guarantees.

Proposition F.1. Ler Assumption 3.1 hold. Fix any ¢y € [0,1], 69 € (0,1] and o € [0,1], let 01 = 09 = 47”210522'5/60).
Then, for all B € [T, Bathed-Local-LinUCB is (¢, 8o)-LDP and with probability at least 1 — «

R(1) =0 B+ T3/4d3/4(10g(\1//;0))1/ (1)),

Remark F.2. The above theorem indicates that it suffices to update every B = O(TS/ 4) to ensure the same privacy and
regret guarantees as in the sequential case.

For the batched algorithm in the central model, we can make the following simple modification over the sequential one
in (Shariff & Sheffet, 2018), which relies on the seminal tree-based algorithm (Chan et al., 2010) at the central server
(analyzer) to balance between privacy and regret. In the batched case, instead of updating the binary-tree nodes after every
round, the server updates them only after each batch by treating the the sum of the statistics (i.e., vectors or matrices)
within the batch as a single new observation. We call this algorithm Batched-Central-LinUCB. With this modification and
Lemma A.4, we have the following privacy and regret guarantees.

Proposition F.3. Let Assumption 3.1 hold. Fix any ¢ € [0,1], § € (0,1] and o € [0,1]. Then, for all B € [T),
Bathed-Central-LinUCB is (&, §)-JDP and with probability at least 1 — «

R(T)=0 (dB + \/Td3/4(10g(1\;?)1/4 log(T/a)) :

Remark F.4. The above theorem indicates that it suffices to update every B = O(\/T) to attain the same privacy-regret
trade-off as in the sequential case.

G. Additional Experimental Results

Shuffle Private Linear Contextual Bandits

6000

4000

Regret

2000

Figure 2: Comparison of cumulative regret for LinUCB (non-private), LinUCB-JDP (central model), LinUCB-SDP (shuffle model) and
LinUCB-LDP (local model) with privacy level € = 1 for varying feature dimension d = 10 (a) and d = 15 (b). In all cases, regret of

LinUCB
LinUCB-JDP

LinUCB-SDP-Amp
LinUCB-SDP-Vec
LinUCB-LDP

0 5000 10000 15000 20000
Round

(a)d =10

Regret

6000

4000

2000

LinUCB
LinUCB-JDP ~

LinUCB-SDP-Amp ~
LinUCB-SDP-Vec /
LinUCB-LDP

5000 10000 15000 20000
Round

(b)yd =15

LinUCB-SDP lies perfectly in between LinUCB-JDP and LinUCB-LDP, achieving finer regret-privacy trade-off.

