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Abstract

The performance of a language model has been
shown to be effectively modeled as a power-law
in its parameter count. Here we study the scaling
behaviors of Routing Networks: architectures that
conditionally use only a subset of their parame-
ters while processing an input. For these models,
parameter count and computational requirement
form two independent axes along which an in-
crease leads to better performance. In this work
we derive and justify scaling laws defined on these
two variables which generalize those known for
standard language models and describe the per-
formance of a wide range of routing architectures
trained via three different techniques. Afterwards
we provide two applications of these laws: first de-
riving an Effective Parameter Count along which
all models scale at the same rate, and then using
the scaling coefficients to give a quantitative com-
parison of the three routing techniques considered.
Our analysis derives from an extensive evaluation
of Routing Networks across five orders of magni-
tude of size, including models with hundreds of
experts and hundreds of billions of parameters.

1. Introduction

It is a commonly held belief that increasing the size of
a neural network leads to better performance, especially
when training on large and diverse real-world datasets. This
vague and debated notion has become increasingly justified
as large empirical studies have shown that the performance
of models on many interesting classes of problems are well
understood as power-laws; where a multiplicative increase
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in model size leads to an additive reduction in the model’s
loss (Kaplan et al., 2020; Hernandez et al., 2021; Henighan
et al., 2020; Rosenfeld et al., 2019). These relationships are
not well understood, but a key implication is that a sequence
of small' models can be used both to infer the performance
of models many times more powerful, but also to provide
global information about the scalability of an architecture.

Enter Routing Networks: models with the unusual prop-
erty that each input interacts with only a subset of the net-
work’s parameters — chosen independently for each dat-
apoint (Bengio et al., 2016; 2013; Denoyer & Gallinari,
2014). For a Routing Network, the number of parameters
is nearly independent from the computational cost of pro-
cessing a datapoint. This bifurcates the definition of size
and prevents a scaling law in parameters alone from fully
describing the model class. Specific Routing Networks have
been trained successfully at large scales (Fedus et al., 2021;
Du et al., 2021; Artetxe et al., 2021), but the general scaling
behavior is not well understood. In this work we analyze
the behavior of routed language models so that we might
infer the scaling laws that describe their performance.

Key contributions. We analyze three different tech-
niques for training Routing Networks, detailed in §3:
Sinkhorn-BASE, a sparse mixture-of-experts (SMOE) ap-
proach modifying BASE (Lewis et al., 2021); non-parametric
HASH Layers (Roller et al., 2021); and routing via Rein-
forcement Learning (RL-R). With models up to 200 billion
parameters, we observe the following:

1. Routing improves the performance of language models
across all sizes and variants attempted (see Fig. 1).

2. Training a Routing Network with RL (§3.3), a tech-
nique used in early routing work (Bengio et al., 2013), is of
comparable effectiveness to state-of-the-art techniques.

3. The performance of all Routing Networks is accurately
described by scaling laws in the number of experts and in
the underlying dense model size (§4) which generalize those
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Figure 1. (a) The performance achieved by Routing Networks when varying the number of experts for a fixed dense model size is
described by a bilinear function (Eq. 1), (b) whose level curves indicate how to trade model size with expert count to maintain a fixed

performance, (¢) and which can be manipulated to align dense and routed model performance under a shared power law.

from Kaplan et al. (2020).

4. These laws can be restated in terms of parameter count
and inference compute, capturing an even wider set of rout-
ing architectures under a shared fit (§4.4).

5. They further imply an Effective Parameter Count: a
mapping equating the performance and scaling for both
dense and routed networks (§5).

The data used to derive the scaling laws is available in a
GitHub repository?.

2. Background

We first review the language modelling problem and exist-
ing scaling laws before discussing the process of routing a
neural network and how it is applied to language models.

Language modelling. We consider the problem of au-
toregressively predicting natural language, a task with con-
sistent and predictable scaling characteristics across many
orders of magnitude (Henighan et al., 2020; Kaplan et al.,
2020). The objective is to maximize the likelihood of a se-
quence of tokens P(x1, ..., z7) factored auto-regressively
as p(z1,...,x7) = HZTp (@i|zj<i). Our primary metric
of performance is the negative log-likelihood of a validation
dataset whose statistics match the training distribution. We
focus on this validation loss, but briefly consider zero-shot
transfer to other tasks in App. E.

Scaling laws for large-scale data. We train on a multi-
trillion-token compendium of English language text com-
prising documents from the internet alongside open-source
text datasets, details of which are given in Rae et al. (2021).
In this setting Kaplan et al. (2020) argue that the converged
performance of a model trained on a dataset of infinite size is

https://github.com/deepmind/scaling_
laws_for_routing

a power-law in the model’s parameter count N. Our dataset
is not infinite, but its size — and the lack of any observed
overfitting — make this a reasonable approximation. We
consider the final (and best) evaluation value as the con-
verged value, though this is also an approximation which is
discussed further in App. F.

2.1. Routing Networks

Power-law scaling implies the performance of a language
model increases with size, but so too does the compute
needed to train the model. This undesirable connection be-
tween size and computation motivates a search for architec-
tures wherein the two are disentangled. Routing Networks
are one such class of model: a type of neural network that
incorporates a specific flavor of conditional computation. In
a Routing Network, each input (e.g., a token of text) is trans-
formed into an output while only interacting with a fixed
subset of the network’s parameters — dynamically selected
based on the input itself. Many sparsely-activated networks
have this property, but here we exclusively study the layout
based on Sparse Mixtures of Experts (Shazeer et al., 2017)
where multiple sub-components of a deep neural network
(i.e., several layers) are independently converted to routed
equivalents and jointly trained with the rest of the network.

Routing a single layer. The core idea of a routed layer
is that multiple versions of the parameters are kept, and
a per-input decision on which version to use is made. To
route a layer fy in E ways, we start by creating F separate
versions of the parameters 6 ({61, ...0g}) where f using the
i-th version of the parameters (f; = fp,) is termed the i-th
Expert. To determine which expert to pick given the input,
we introduce an additional router function p : RM — [1, E]
associated to the layer, typically a small network itself, with
parameters . The routed form h of f is then given by
h(z) £ fyz)(x). When performance increases with E,
routing gives a method by which to improve a neural net-
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work with minimal computational increase (corresponding
only to the compute needed by p(x)).

We also consider the K-way routed generalization, where
the router outputs a set of integers as p(-) : RM — [1, E]",
and we set the output of the layer to be the sum of the
outputs of each expert, namely h(z) £ Y. o) Ji(@). We
default to K’ = 1, but revisit this in §4.4.

Routed Transformers We apply routing to a decoder-
only Transformer (Vaswani et al., 2017) to measure the
scaling properties that result: an architecture chosen due
to its state-of-the-art performance. Details of the base-
line architecture we use are in App. A. We will refer to
non-routed Transformers as dense models, in opposition
to Routed Transformers which sparsely activate some of
their parameters. Our conversion to a Routed Transformer
is the same as is used in prior work (Lepikhin et al., 2020;
Fedus et al., 2021). Namely, we apply routing to every other
set of feedforward components (FFWs) of the Transformer,
sub-components that act on each timestep independently.
Though different layers can have different numbers of ex-
perts, here all routed layers share the same number of experts
E, and we will refer to the network as being routed E/ ways.

Model size and inference cost. We use N to indicate a
network’s dense model size: the number of parameters any
one input interacts with. This is in opposition to P: the
total number of parameters. For a dense model, P = N,
whereas for a Routing Network P is roughly proportional
to N - E, with factors that depend on details of the routing
architecture (§4.4). Except for a small overhead due to
running the routers, the cost F' (in TeraFLOPs) of executing
a Routed Transformer is the same as its dense equivalent.

Training Details. All models are trained on TPUs with
JAX (Bradbury et al., 2018) using a combination of data,
expert (see App. C) and sharding parallelism (Shoeybi et al.,
2019). Models were trained with a sequence length of 2048
and batch size of 256 for 250,000 steps, i.e. 130 billion
tokens, regardless of NV or E. This is an important detail,
and we discuss some of the implications in App. F. All
were optimized with AdamW (Loshchilov & Hutter, 2018)
and ZeRO Stage 1 was used to shard the optimizer state
(Rajbhandari et al., 2020). App. A contains further details.

3. Routing Techniques

If the benefit of Routing Networks is the decoupling of pa-
rameter capacity from network cost, the fundamental diffi-
culty is in effectively learning the parameters ¢ of the router
given the non-differentiability of its output. Much research
in Routing Networks has therefore focused on techniques
for learning ¢. A major finding of this work is that three

notably different techniques of training Routing Networks
are effectively described by the same scaling laws. We now
introduce and contextualize these three methods.

3.1. Sparse Mixture-of-Experts via Weighting

Sparse Mixture-of-Experts (SMOE) methods (Shazeer et al.,
2017) solve the problem of non-differentiability by reusing
the probability of expert selection as a scalar multiplier on
that expert’s output, guaranteeing a gradient passed to the
logits of selected experts despite the the non-differentiability
of sampling from those logits. Formally, the router is
given as p(z) = topk(Wz + b), where Wx + b is an
unnormalized distribution over [1, E] from which the ex-
perts corresponding to the top K values are selected. In
the final output of the routed layer, the normalized log-
its are reused as gating weights, i.e. the final output
of the routed layer is h(z) = > ;¢ ) 9i(@) fi(z) where
g(x) = softmax(Wax + b).

Though this formulation supplies a gradient to ¢ = (W, b),
it represents changes to the scalar multiplier and does not
directly correspond to optimizing expert selection. This
method is nevertheless effective, and can be seen as a sparse
approximation to dense mixture of experts models (Eigen
et al., 2014; Jacobs et al., 1991) where the likelihood of
skipping an expert is inversely proportional to the value of
its scalar gate g;.

It was conjectured that SMOESs require (K > 2)-way rout-
ing to produce effective gradients in the routers (Shazeer
et al., 2017), and many attempts at incorporating routing
into large Transformers use K = 2 (Lepikhin et al., 2020;
Du et al., 2021). However recently this has been challenged,
and stable modifications have been proposed for K = 1;
namely the Switch Transformer (Fedus et al., 2021). Most
SMOEs, including Switch, are reliant on auxiliary balancing
losses which encourage the router output p(x) to be more
uniform across minibatches of inputs. To improve on this,
BASE (Lewis et al., 2021) post-processes the router output
with a Hungarian Matching algorithm that re-assigns expert
selections to ensure that all experts are selected evenly.

Our implementation of BASE replaces the Hungarian Match-
ing with a regularized Optimal Transport formulation (Cu-
turi, 2013) using the Sinkhorn algorithm as an approximate
matching step during expert selection. This substantially
improves routing efficiency on accelerated hardware (details
in §B.2.1). We call the resulting method Sinkhorn-BASE
(S-BASE), and use it as the representative of SMOE methods,
as early tests showed the benefit of its balancing mechanism.

3.2. Input-based Deterministic Hash Routing

An alternative approach eschews extra parameters com-
pletely and represents p as a fixed function of the input.
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Figure 2. Validation losses with fits from Equation 1 plotted as a dotted line for S-BASE, HASH and RL-R respectively. On the right, the
prediction curves for all model sizes and all techniques overlapping to show relative performance. Fits to Eq. (7) are overlaid in grey.

This is the concept pioneered by HASH Layers (Roller et al.,
2021) which circumvents the need to simultaneously learn
 and . Our implementation takes the token ID assigned to
the input by the SentencePiece tokenizer (Kudo & Richard-
son, 2018) and uses the remainder of it divided by E as the
expert selection. See §B.4 for details.

3.3. Routing via Reinforcement Learning

Finally, we re-analyze a technique that optimizes the router
via Reinforcement Learning (a class of methods we call
RL-R), which was proposed in early work on neural con-
ditional computation (Bengio et al., 2013; 2016; Bengio,
2017; Denoyer & Gallinari, 2014). In this approach each
router is seen as a policy whose actions are the selection
of an expert in each routed layer and whose observations
are the activations passed to that router. After completing
the forward pass, the probability the Routed Transformer
assigns to the correct output token can be used as a reward,
maximization of which is equivalent to minimization of
NLL. To jointly train the experts and the router, we mini-
mize a composite loss formed with the language modelling
loss and a policy-gradient term (Sutton et al., 2000) using
the selected set of experts as actions. We highlight that the
optimal expert selection is dependent not only on the input
activations but on the parameters of the rest of the network.
This disrupts the theoretical underpinning, crucial to RL,
that this is a Markov Decision Process. Nevertheless, it has
been observed that this theoretical issue does not effect the
practicality of the method (Rosenbaum et al., 2019).

Relative to SMOE, RL-R benefits from directly optimizing
actions to improve the language modelling loss. However
this absence of bias comes with complications, especially
the high variance of the gradient (Rosenbaum et al., 2019;
Denoyer & Gallinari, 2014). We use REINFORCE with a
learned baseline (Williams, 1992; Sutton & Barto, 2018)
to address this issue, so that improving the policy means
increasing the likelihood of selecting experts which lead to
a better than average next token prediction. As with SMOE,
we find it useful to add a balancing term. To our knowledge,

Table 1. Leave-One-Out RMSLE Fit in (V, E). The last row is
computed for each model size independently; this gives an lower
bound of the error of any joint scaling law.

L log-log prediction Eq. | S-BASE RL-R  HASH
Separably linearin N, £ (5) 80e-4  90e-4  90e-4
Bilinear in (N, E) (7) | 60e-4  57e-4  60e-4
Bilin. + saturat. in (N, E) (1) 58¢-4  56e-4 56e-4
Per-N fits in (E) “) ‘ 46e-4  29e-4 19e-4

we are the first to experiment routing with Reinforcement
Learning on large Transformer-based language models—we
therefore explore key ablations in Appendix B.3.

4. Scaling Behavior at Convergence

Our main hypothesis is that the converged log-loss of a
Routing Network trained on an autoregressive language
modelling task as described in §2 is bilinear in the terms
log N and log E, where N is the number of parameters used
per input’, E is the number of experts in the routed layers,
and Fis a saturating transformation of E. Specifically, we
fit the 6-parameter scaling law:

log L(N, E) 2 alog N+blog E+clog Nlog E+d (1)
1 1

+ .
—1
E-1+ (Ell - E1x> P

Where a, b, ¢, d, F g and Fy 5 are coefficients to be fit by
the data. This can be generalized across a wider range of
routing architectures by a change of variables, using the
model inference cost F' and the total number of parame-
ters P, as:

where £

| =

log L(F, B) £ alog F+blog B+clog Flog B+d, (2)

where B = % and B — B is the same saturating transform
as E — E. Before justifying Equation (1), we validate

3Equivalent to the number of parameters ignoring routing.
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Table 2. Dense scaling values (see also Appendix F).

an =0.078 N, = 3.568¢el13
an = 0.076 N, = 8.8el3

Ours
Kaplan et al. (2020)

its candidacy by fitting it to empirical data obtained on a
large sweep of models. This sweep consists of a Routing
Network trained for each of the three techniques described
in §3: across six model sizes (described in Table 4) while
varying F across [2,4,8,16,32,64,128,256,512]. This
totals 168 different models, including dense baselines.

The observed losses for each model are shown in Fig. 2(a-c).
We fit Eq. (1) to each routing method and plot predictions for
fixed values of NV as dotted lines. The goodness-of-fit across
all methods is apparent, as is the clear behavior that increas-
ing E leads to a reduction in validation loss. Fig. 2(d) plots
the relative predictions for all three techniques, clearly show-
ing that S-BASE performs best across all model sizes, fol-
lowed by RL-R, followed by HASH (see §5.3). The remain-
der of this section justifies the chosen functional forms (1)
and (2) by introducing a simple naive scaling law and pro-
gressively improving the fit; first supposing independent
power laws in N and E (§4.1), then introducing a multi-
plicative interaction (§4.2) and saturation in the second term
(64.3), followed by a change of variables (§4.4). The benefit
gained by this progression of fits can be seen in Table 1
where we list the leave-one-out RMSLE (the root-mean-
square-log-error) of each proposed form. Notations are
recalled in Fig. 3*.

4.1. Separable Scaling Laws in Model Size and Experts

Kaplan et al. (2020) argue that the converged performance
of a dense model with N parameters can be modelled accu-
rately as the two-parameter power law

L(N) = (]fv) @)

where ay £ —a and N, £ 10%~%, We can re-estimate
these coefficients from the performance of our own dense
models, leading to estimations in Table 2. The similarity
of oy is a reassuring sanity check (there are differences in
dataset, vocabulary, tokenization and model effect V,.).

log L(N) £ alog N+d, ie.

An immediate hypothesis is that for all values of IV, scaling
in E obeys a similar power law:

log Ly(E) £ blogE + d’ 4

Because Ly (1) = L(N) (a fact we will call dense equiva-

“The learning curves collected in this sweep from which
our analysis derives are available at https://github.com/
deepmind/scaling_laws_for_routing

lence), (3) and (4) can be combined into:
log Ly(E) £ alog N + blog E + d, 3)

corresponding to the multiplicative separated power law:

1079\ 11"
Ly(E) = — 6
W= (%) (5) ©
If Eq. (4) fits observed data for any N we can proceed with
an assumption that scaling in E obeys a power-law for fixed

N. Observing a constant b across N would allow to fit
Eq. (5) to models ranging across N and E simultaneously.

Fitting. The first hypothesis is easily tested and confirmed
to a reasonable degree. We fit Eq. (4) for each technique
and value of N separately, plotted as colored lines in Fig. 4.
The values of b are shown in Fig. 3.

Z ol ShAsE P N | Base model # params
Q Hash /{:/’ E | #experts

L -0.025 g P | Total # params

=~
S -0.03 =° F' | Inference flops
z o .
v ¥ B | Param. utilisat. ratio
25M 55M 130M 370M 1.3B N Eff param count

Base model size

Figure 3. Left: b(N) increases with N. Right: Notations.

We observe that b(N) is increasing with N (values listed
in Table 6), corresponding to a reduction in benefit from
routing as size increases, with a slope that is approximately
linear in log IV (Fig. 3). Eq. (5) requires that b remains fixed
across N; therefore we expect it to poorly predict model
performance. We can attempt a fit nevertheless: plotted
in grey in Fig. 4. Qualitatively, this mis-predicts some
validation losses by over 0.2, particularly overestimating the
performance at large NV and E. As reported in Table 1, the
fit has held-out RMSLE values greater than 0.045.

4.2. Quadratic Interaction in NV and F

This motivates us to introduce a simple extension: that of
a multiplicative interaction between log N and log E. This
is conveniently the exact function which leads to b scaling
with log N and takes the following form:

log L(N, E)2alog N+blog E+clog Nlog E+d  (7)

This function has the property that the log-log slope in both
N and FE are affine in the logarithm of the other variable. In
other words, with F or N fixed, the performance L scales
with N or FE following (3) and (4) with slopes given by:

dlog L

a(E) & “logN ~° + clog(E) )
dlog L
b(N) 2 *ms:E = b+ clog(N),
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Figure 4. Fits for S-BASE and RL-R (HASH in Fig. 21). Dashed
lines are solutions to Eq. (4) with b(IN) given by Table 6 while
dotted lines are solutions to Eq.(7). Solutions for Eq. (5) are in grey.
The separable solution fails to account for decreasing performance
given by expert scaling.

b(N) matches the behavior reported in Table 6. A trans-
posed table, fitting sets of models with fixed E and changing
N, can be found to match the behavior predicted by a(E)
(see Table 8). There are two symmetric non-logarithmic
representations of (7), useful for comparison to (6):

10d/a a 1 b+clog(N)
o= (Y (1)

104/b b 1 a+clog(E)
()&

Fitting. Fitting the bilinear (7) instead of (5) substantially
reduces the prediction error for large NV (Table 1, Eq. (5)
vs Eq. (7)), as displayed in Fig. 4 (dotted lines match the
dashed ones, where the grey separable fit doesn’t). We ver-
ify dense equivalence: ay ~ a, while N, ~ exp(d/a),
and thus the law (7) gives similar prediction to the refer-
ence law (3) for dense models. Predictions for fixed IV are
visualized as grey lines in Fig. 2.

Interpretation. In Eq. (7), when c is positive, the expert
improvement slope b(N) reduces with model size N. All
three routing techniques considered therefore predict dimin-
ishing improvements from routing when increasing scale.
However, the scaling of S-BASE is predicted (and seen) to
be substantially better. When designing a new technique,
we can fit (7) and predict a better scaling behavior if the
fitted c is lower than with other techniques. A clear goal
for future work in routing techniques should be to find a
method with scaling coefficient ¢ = 0.

4.3. Bounded Scaling in F

Equation (5) models scaling in E as a power law. For both
small and large values of E, there are reasons to expect
some deviation. If a routing technique degrades with E (for
instance, the variance of gradients in RL-R will increase),
performance for large £ might be worse than predicted.

On the other hand, fixed overhead (e.g., interference from
auxiliary losses) might worsen scaling for low values of F,
counter-intuitively leading to better than expected perfor-
mance. Both phenomena appear clearly in Fig. 2. We seek
to model this saturation such that the limit behavior in E is
bounded on both sides with the following transformation:

1 1
2 . (10)
E - Emin + (Ell“ - El_ )

Emax

&l =

This is constructed so that we have E(Emin) = FEart, while
E— Einax as B — 00. Egyy and Ey .y are parameters of
the transformation, while we fix Ey,;, = 1, indicating the
lower bound of meaningful expert counts. E can be seen
as a thresholded version of E: increasing past Ep,,x will
give improvement, but not following a power law. Simi-
larly, when Eggapy > 1, FE > E for small values of E. The
form (10) is selected for having nice properties clearly re-
lated to its parameters, useful in our comparative analysis
in §5.1. Practically, we found that the fit is the same over a
wide range of different saturation functions.

Fitting. Solving Equation (1), equal to Eq. (7) with £ —
E, is complicated by its non-convexity. We find the co-
efficients (a,b, ¢, d, Egtart, Emax) as the best of repeated
solutions provided by the L-BFGS-B algorithm (Byrd et al.,
1995). Fig. 2 shows fitted curves from these equations;
coefficients are reported in Table 3.

Interpretation. Relative to using the simple bilinear
law (7), fitting Eq. (1) improves prediction for the low-
est and highest values of I considered. Crucially, while
the deviation from a power-law (and therefore improve-
ment in RMSLE) is relatively minor for the values of E/
considered, the deviation is nonetheless clear (seen best
looking at the raw losses in Fig. 22). We believe it is im-
portant to model this saturation because (as argued in §5.2)
the limit behavior of model performance as N increases
is substantially different when bounded, with important
properties that are independent of Ey,,x. We further hy-
pothesize that future work, able to test still larger values
of F, will see a more quantitative benefit from including
these terms. This can be already observed in Fig. 21 when
noting that the law (7) does not over and under estimate the
performance for £ = {2, 4,256,512} as it does in Fig. 4.
Level curves of Eq. (1) enumerate the {(V, F)} which are
predicted to achieve fixed performance, as visualized in
Fig 1(b). This demonstrates of the power of routing: a
model with N = 5 million and E = 128 equals the perfor-
mance of a model with N = 55 million and £ = 1,which
requires over ten times more compute per inference.
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Figure 6. Example of different parameterizations of Eq. (10)

4.4. Generalizing Across Architecture Variants

The models trained so far use fixed choices for two key
details of routing: the number of experts executed per-
datapoint K and the frequency of routed layers across depth
R (previously set at 1 and 0.5, respectively). For any se-
lected value of K and R we may fit Eq. (1) to observed
performance, but since these variables are independent of
N and E, we do not expect the same coefficients to remain
valid across values of K and R. To allow for a unified
scaling law, we modify Eq. (1) to use terms in F', the Ter-
aFLOPs required per forward pass, and in the ratio B = £
where P is the total number of parameters. Specifically, F'
is motivated by the approximation from Kaplan et al. (2020)
that ' = 2N. B, the parameter utilization ratio, is an affine
function of E, close to linear when most parameters lie in
the routed components of the model.

Using (F, B) instead of (N, E) (and setting Fyi, to %)
results in Eq. (2). To show the advantage of this change of
variables we conduct two experiments: varying K across
{1,2,4} and R across {0.25,0.5,1.0}. In both cases, we
vary E € {8,64,256} and N € {15M,370M,870M }.

Fitting. Eq. (2) predicts the scaling behavior of models as
well as Eq. (1) for a given routing architecture, as indicated
in Fig. 25. The benefit of the change of variables is seen
most clearly in Fig. 5, which plots contours of fixed loss

value as functions of (IV, E) and of (F, B). For varying
(K, R), the loss surface as a function of N and E changes:
meaning a joint fit would be inaccurate. Plotted as functions
of (F, B), the loss surface is almost the same, suggesting
a shared fit between all three methods (see Fig. 26 and
Fig. 27 for joint fits for K and R respectively). We highlight
that R = 0.25 deviates slightly. Plausible explanations
are discussed in §D.4. The possibility to use a shared fit
indicates a singular takeaway: the architectural details K
and R little affect the scaling behavior of a Routing Network.
The loss of the network can thus be predicted based only on
inference flops F' and total number of parameters P.

5. Scaling Law Applications

Next we provide three applications of these scaling laws.
This analysis must be considered in its specific context: that
the scaling laws were fit to a set of models which were all
trained to 130 billion tokens regardless of N and E. We
expect the coefficients and limits described in this section
to be tightly dependent on this specific token count (but
not our overall analysis, which we expect to be robust). In
particular, we expect Nyt to increase with added data.

Prior work has established the notion of an optimal relation-
ship between N and training-token count® (Kaplan et al.,
2020; Hoffmann et al., 2022). Our analysis cannot be con-
ducted in the optimal-token-count setting, since it is unclear
how we should change the amount of data given a change in
E. Future work establishing this interaction might reapply
our analysis in that context (we examine this issue in more
depth in App. F).

5.1. Effective Parameter Equivalence

We leverage Eq. (1) to compute the size N of a dense model
giving the same performance as a Routing Network. Specif-

SGiven N, one selects a token-count such that performance is
maximized relative to other model sizes trained on however many
tokens requires an equivalent amount of compute for that size.



Unified Scaling Laws for Routed Language Models

‘ a b C d Eslan Emax
S-BASE | -0.082 -0.108 0.009 1.104 1.847 314.478
RL-R -0.083 -0.126 0.012 1.111 1.880 469.982
HASH -0.087 -0.136  0.012 1.157 4.175 477.741
Table 3. Solutions to Eq. (1).
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£ 1008 Neutorr — RL-R
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Figure 7. Maximum effective parameter count as a function of base
model size extrapolated from our coefficients. Routing helps until
a certain size Neuofr, that varies strongly between methods (S-BASE
being the best)

ically, we solve for L(N,1) = L(N, E), yielding

b/a(Estart)

N 2 (N)Q(E)/C“(Escart)(E/Estart> (11)
Here a(E) = a + clog E. Given a model with NV and E,
we call NV that model’s Effective Parameter Count (or EPC).
Eq. (1) predicts that the performance of all models increases
as a power law in this variable

log L(N,E) = alog N(N, E) + d. (12)
The result of plotting all models as a function of N is shown
in Fig. 1(c): a good fit across four orders of magnitude.
Scaling in terms of [V results in a unifying power law: valid
for dense and routed language models alike.

5.2. Routing Behavior for Large N

EPC leads to a better grasp of the behavior of routing as
N increases. Of immediate interest is Neyof: the value
of N where N(N,E) < N. For larger N, routing will
not improve performance. This is easily found to obey
10g Newoft = 2. Newoir €quals 937B, 85B and 83B for s-
BASE, RL-R and HASH respectively.
Next we consider Nyay(N) £ maxg N(N, E), ie. the
maximal effective parameter count that a routing network
can reach. Eq. (11) predicts that log N is an affine function
of log N for any fixed E, and Nyax(N) = N for N >
Neuofi- Therefore log Ny is piecewise-affine in log IV, as
displayed in Fig. 7:

VN < Ncutoff = 10_%7 Nmax(N) (N) Emax)a

=N
VN > Noutoff; Nmax(N) = N. (13)

Note that N,,.. is continuous near Ny, since for all F,
N (Neuotts ) = Newofi- Moreover, the slope of Ny (+)
for N < Neyofr 18 positive whenever Epyax < Egpart 10~a/¢,
which is true for our coefficients. In this setting Nyax(+)
is a non-decreasing function of N. Therefore for any rout-
ing network where N < Neyotts N < Niax(N) < Newofts
meaning routing will never let you train a model more pow-
erful than N . Note that despite this value not depending
on Eyax, its existence crucially depends on the saturating

transformation: without it IV, is unbounded.

5.3. Comparative Analysis

Kaplan et al. (2020) use scaling laws to encapsulate and con-
trast the behavior of entire model classes. Here we mirror
this analysis by using the scaling laws we have proposed to
summarize the relative behavior of the three routing tech-
niques considered. We make four concrete observations:

e S-BASE consistently outperforms RL-R and HASH,
though RL-R is very competitive at smaller N.

o All routing techniques suffer from reducing efficacy as
N increases. Amongst the three techniques, S-BASE
scales best: the fitted parameter c is lowest.

e For small IV, RL-R and S-BASE scale similarly with ex-
pert count and better than HASH (as indicated by com-
puting the effective expert slope b(N) = b + clog N).

e HASH and RL-R maintain power-law behavior for
longer than S-BASE (larger Fy,,x). However they suf-
fer from more interference (c); leading to worse perfor-
mance for most model sizes.

e HASH has large initial overhead (bigger E,y), clearly
visible as a more obvious curvature at small F.

For a practitioner interested in applying routing techniques,
we conclude with some recommendations:

1. Use routing when training any model with N < 1.3B.

2. S-BASE is a good default routing algorithm. RL-R will
sometimes match S-BASE in performance but is less
robust and scalable (§D.1).

3. Target using E € {64,128} experts. Larger values
will continue to improve, but with diminishing returns.

4. Use K=1 experts. Route layers at frequency 0.5 <
R < 1; lower frequency reduces performance.

5. Future routing research should focus on the terms ¢
and E\,.x; indicative of limits to arbitrary scaling.

6. New routing techniques must be validated at multiple
values of N and E when comparing with prior work.
Results on single sizes cannot be extrapolated.
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6. Related Work

In studying the empirical aspects of scaling, this work fol-
lows Kaplan et al. (2020); which triggered much research
including Henighan et al. (2020), Hernandez et al. (2021)
and Ghorbani et al. (2021). The underlying theory is less
understood, but there is some exploration of this space in-
cluding Hutter (2021) and Bahri et al. (2021).

These studies, and ours, are mutually reliant on a large
corpus of work improving the scalability of Transformers.
This includes models like GPT-2 (Radford et al., 2019),
GPT-3 (Brown et al., 2020), Jurassic-1 (Lieber et al., 2021)
and Gopher (Rae et al., 2021), as well as work improving the
ability of these models to be efficiently parallelized across
multiple devices, including Shoeybi et al. (2019), Narayanan
et al. (2019), Kim et al. (2021) and Xu et al. (2021).

Parallel to all this has been a long study of Routing Net-
works; a term introduced by Rosenbaum et al. (2018) but
developed extensively in the literature as Conditional Com-
putation (Bengio et al., 2013; 2016; Bengio, 2017; Denoyer
& Gallinari, 2014) and Mixture of Experts (Jacobs et al.,
1991; Collobert et al., 2003; Eigen et al., 2014). The frame-
work is sometimes further generalized, seen as per-example
architecture search in Ramachandran & Le (2018) or as
a graph problem in Denoyer & Gallinari (2014). Routing
was popularized for large scale training by Shazeer et al.
(2017), and furthered by work including GShard (Lepikhin
et al., 2020), Switch Transformer (Fedus et al., 2021) and
GLaM (Du et al., 2021). In this vein, Artetxe et al. (2021)
undertake a comparative analysis of dense networks and
SMOEs with ¥ = 512 that aligns with our results. Finally,
the core routing architecture is still being improved. Nie
et al. (2021) adapt K through training where Hazimeh et al.
(2021) learn it via a differentiable loss. Ramachandran &
Le (2018) increase K through depth and encourage architec-
tural diversity across experts. Caccia et al. (2021) grows F
throughout training and Rajbhandari et al. (2022) propose
networks where E' changes with depth.

7. Conclusion

Using conditional computation to scale neural networks
has long been a research goal, and methods based on Rout-
ing Networks have been increasing in popularity. Here we
have introduced a scaling law that models the behavior of
these networks (Eq. (1)). This scaling law predicts that, for
all models considered, introducing routing into a language
model improves performance. That improvement follows a
power-law in the number of experts F that diminishes with
model size IV, and can be further generalized across rout-
ing architectures with Eq. (2). These scaling laws quantify
the differences between three different routing techniques
and lead to a single scalar (Eq. (11)) that simultaneously

describes the performance of routed and dense models alike.

Our analysis hints towards a number of interesting research
directions. Future work might investigate whether larger
models continue to obey the performance our laws have pre-
dicted, or see whether a wider set of routing architectures
or tasks display similar scaling behavior. Alternatively, in-
vestigations into the relationship explained in §5.3 between
optimal token count and E would be extremely informa-
tive, helping future scaling work more precisely identify the
correct routed model size for a given computational budget.

This work provides an empirical framework with which to
analyze future innovations in routing. We hope the over-
whelming evidence we provide towards the benefits of rout-
ing encourage it to be more rapidly adopted as a powerful
tool for model improvement, whose scaling characteris-
tics align with traditional methods of scaling (in depth and
width) and which will remain beneficial up to models with
base model size greater than 900 billion parameters.
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Figure 8. Training curves color-coded by random seed for 1, 8 and 256 experts and the step-wise maximum disagreement between runs.

A. Architecture

Our Transformer (Vaswani et al., 2017) is based on the architecture in (Radford et al., 2019) with relative positional
encodings (Dai et al., 2019). Text is tokenized via SentencePiece (Kudo & Richardson, 2018) with 32,000 tokens and a
byte-level backoff. We use Megatron-style FFW sharding (Shoeybi et al., 2019) where useful. Parameters are stored in
bfloat16 but all optimizer statistics are kept in float32. As a result, the activations of the language models are calculated
in bfloat16 (though we explicitly upcast to perform all operations involving a softmax, including the Attention Block and
Router, in full float32 precision). This is crucial to maintain stability on larger models (Fedus et al., 2021; Rae et al., 2021).
The learning rate starts at 1e-7 and decays to 2e-5 with a cosine decay rate over the entire 250, 000 steps, after an initial
warmup phase ramping up to 2e-4 in the first 1500 steps.

We use seven different model sizes, with names and architectures specified in the following table. The width of the hidden
layer dg,, is fixed at four times the width of the activations d 4.1, and we use the same dimension for keys and values.

Name | dpodel  Miayers Mheads K/Vsize Actual # Params

15M | 512 6 8 32 16,527, 360
25M | 512 8 8 64 27,279, 360
55M | 640 10 12 64 57,369, 600
130M | 896 12 16 64 132,163, 584
370M | 1536 12 12 128 368, 123,904
870M | 2048 16 16 128 872, 546, 304
13B | 2048 24 16 128 1,308, 819, 456

Table 4. Model definitions used throughout this work.

The number of models we trained was too large to practically include multiple runs of each model with different seeds. To
give an idea of the potential error introduced by random chance, we trained all three routing techniques with 3 different
seeds on a 130M model for 100, 000 steps with 8 and 256 experts (along with a dense baseline). Results are shown in
Fig. 8. Different seeds (which influence not only parameter initialization but Expert Parallelism — see Appendix C) lead to
extremely minimal model divergence after an initial transitory period, with different seeds diverging by no more than 0.01
before 100, 000 steps. This is a close match to the 0.02 error mentioned in (Kaplan et al., 2020)°.

B. Detailed Routing Techniques
Here we detail aspects of the routing techniques crucial to their implementation and provide comparisons to key alternatives.

% Anecdotally, throughout the development of this work we used 0.02 as the cutoff to denote statistical significance.
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B.1. Balancing Losses

We encourage uniform routing in both our SMoE and RL-R methods with the differentiable load balancing loss adapted
from the mean square auxiliary loss in Shazeer et al. (2017) and introduced in Lepikhin et al. (2020); Fedus et al. (2021).

E
LB:E.Zme-% (14)
e=1
Where m,. is the mean gate per expert:
1
me =5 D pe() (15)
rEB
And g, is the gating decision per expert:
Je = Z 1{argmax p(z), e} (16)
r€B

For z in batch B of size N and policy p(x) = softmax(W,x + by). There are two cases where the selected experts may
not be the ones used: in S-BASE after the Sinkhorn redistribution step (see §B.2.1) and when experts are skipped due to
load-balancing (see §C.2). In both cases, the balancing loss is applied to the original gating decisions made by the policy.
We found that the auxiliary loss is less effective if post-balancing experts were considered.

B.2. SMoE with Sinkhorn redistribution (S-BASE)

Our implementation of S-BASE differs from that proposed in Lewis et al. (2021) in two ways. First, we replace the auction
algorithm for re-assigning expect selections with a continuous rebalancing process implemented via a Sinkhorn algorithm
(Cuturi, 2013; Peyré & Cuturi, 2019). Second, we add a shuffling step, similar to Lewis et al. (2021), before computing the
optimal assignment via Sinkhorn per-device (as opposed to across all devices as done in Lewis et al. (2021)). In addition, we
did not use any input jitter on the activations sent to p as we did not see a noticeable effect. This is in line with BASE but
differs from recommendations in other SMOE papers (Lepikhin et al., 2020; Fedus et al., 2021).

B.2.1. SINKHORN REDISTRIBUTION

We rebalance expert selections using a Sinkhorn layer applied on top of the router logits, an idea that was explored
independently in parallel by Kool et al. (2021). This is substantially more efficient on our accelerator cluster than a hard
matching algorithm. We consider H € RT*4 the intermediary embeddings of the networks before the application of a
routed layer (folded on the batch and time axes of respective sizes b and ¢, with T’ £ pt). Those are fed to the linear router,
which output a logits matrix L; = H;W + b € RT*¢, Here E is the number of experts, and W € R¥*¥ and b € R are
the router parameters. From these logits, SMOE and RL-R computes expert selection probabilities II by applying a softmax
operation along the expert axis. In doing this, we compute selection probabilities for each input separately, without taking
into consideration any capacity constraints on expert, forcing us to introduce load-balancing later (§C.2). We seek a proper
way to integrate constraints in a mathematically grounded framework.

Mathematically, II is obtained by solving a simple problem with constraints: each input must, on average, prefer exactly one
expert. This is made clear by the variational formulation of the softmax:

I € R7*F 2 [softmax(L;)|icn ) = argmax (I, L) — H(I) an
>0,
Vi€[T], 2 e (m Pis =1,

where H is the Shannon entropy of the matrix I, i.e. H(II) £ Z¢T21 Zle pij log p;;, and [-] denotes horizontal stacking.
This variational formulation offers a natural alternative to incorporate extra constraints. For ideal performance, each expert

should be assigned the same number of tokens on average B = % We therefore add E additional constraints:

T

{¥ielEL Y =B}, (s)

i=1
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which yields the doubly constrained regularized linear problem

I € RT*E 2 argmax (I, L) — H(II), (19)
II >0,
under the constraints Vie [T, Zle pij = 7,
1

) T
Vi€lELYimpii =%
that we recognize as the regularized Kantorovich problem of optimal transport (Kantorovitch, 1958; Cuturi, 2013).

We solve this problem using the Sinkhorn algorithm (Knopp & Sinkhorn, 1967), that takes the logit matrix L € RT*F
and returns a soft-assignment matrix IT € R7* ¥ The Sinkhorn algorithm solves Eq. (19) by alternated ascent in the dual
(see Peyré & Cuturi (2019) for details). Starting from fo = 0 € R” and gy = 0 € R, we set

E
Vie[T],  (fix1); = —log % > exp(Lij — (g1);), (20)
=1
1 x
vj € lE] (gt+1); = —log ZQXP(LU‘ = (fe+1),)-
=1

These updates converge towards an optimal couple (f, g), such that

1
II = ﬁexp(—L—i—f@g) 21

is the solution to Eq. (19), where (f & g);; £ f; + g; for all i,j € [T] x [E]. As detailed below, we early stop the
iterations (20) by measuring the primal violation of constraints in L; norm, i.e. when

> D))

j=1 i=1|j

1
1 (e)i; = 7| S Co (22)

1
(e)yy — &

T
=1

E

K2

Once the plan is computed, we greedily select, for each token, the device with highest device-selection probability, effectively
applying an argmax operation on top of the Sinkhorn logits to form a transportation plan projection.

Comparison to S-BASE and performance. Compared to using an exact (early-stopped) auction algorithm as Lewis et al.
(2021), the complexity of the Sinkhorn algorithm is in O(N x E) versus O((N x E)3/?), and its update are well adapted
to batch computations on TPU/GPU. In contrast, the auction algorithm must be run on CPU as it is a greedy per-coordinate
algorithm; it becomes a computational bottleneck applied to models with many routed layers. Replacing the softmax output
by an regularized optimal transport plan is very naturally interpreted as adding a balancing distribution constraint to the
softmax operator. Using an auction algorithm on top of the softmax assignment does not have this property.

Moreover, the Sinkhorn algorithm can be halted before it has fully converged with a proper tolerance parameter (22) where
Lewis et al. (2021) uses a hard number of iterations. We find an error tolerance of e, = 1072 gives consistently good
performance. In practice we observe an end-to-end model overhead of 1% to 3% compared to Switch (the same routing
technique without this reassignment). This computational offset is negligible compared to the per-step performance gain.
Without the rebalancing step, Switch is very sensitive to balancing loss hyperparameters (as noted in Lewis et al. (2021))
whereas S-BASE maintains uniform routing decisions with improved performance and robustness while varying £/ and N.

B.2.2. SHUFFLING TOKENS

Similar to Lewis et al. (2021), we shuffle router inputs across workers by first computing a random permutation of the inputs
and sending the tth row of the batch to the L%Jth worker. We found that this shuffling stage was necessary to prevent
training from becoming unstable at larger scales. Our hypothesis is that the re-assignment provides a subtle side channel
through which information can be propagated backwards in time, and this can be abused by larger models resulting in the
validation loss diverging during training. Adding a shuffling stage ameliorates this issue by introducing a large number of
irrelevant elements to the rebalancing process, making it harder to infer behavior of future inputs. Further work is needed to
confirm this theory, but the introduction of the shuffling step does eliminate this performance degradation.
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Figure 9. The RLR-B method consistently outperforms RLR-G and RLR-S across scales. We found that Nucleus Sampling gives a
significant improvement over Greedy Reinforce. However, performance is slightly improved by adding a learned baseline.

B.3. Routing with Reinforcement Learning (RL-R)

We will first describe a naive REINFORCE (Williams, 1992) implementation of routing, then describe possible extensions
and improvements which lead to the form used in the main text as RL-R.

Our implementation of REINFORCE uses the balancing loss in Equation 14 and a policy gradient loss:
1N
L= N;mgm.& (23)

Where R; is the reward for each sequence in the batch of size N and 7 is the normalized expert preferences output by a
linear transformation as in SMOE. The proper thing is for p, the selected experts, to be samples from the distribution 7,
but we found that this substantially degraded performance at larger scales. This phenomenon can be attributed towards
unwanted interference, where exploratory steps for p which turn out to be unnecessary lead to bad gradient updates to the
rest of the network (Rosenbaum et al., 2019). We therefore consider a greedy selection method, where router outputs are
selected as p(x) = TopK(softmax(W,z + by)).

While sampling (even when tuning softmax temperature) decreased the performance of the model, we would nevertheless
like to regain some of its exploratory power. To ameliorate this, we can use Nucleus Sampling (Holtzman et al., 2019),
which samples from the top-p set of experts E®),

P / if E®)
Plle) = (e)/p’ ifec =, o4)
0 otherwise.
Where E®) is the smallest set of experts such that:
> Ple)=p (25)
ec E(P)

This eliminates the possibility of selecting experts with very low likelihood, while still introducing some randomness. It
is important to emphasize that this introduces a distributional shift to the samples, which can be corrected with off-policy
correction methods such as Importance Sampling.

An alternative improvement is to learn an additional baseline function for each router. This method has an additional entropy
regularization loss and computes advantages A; = R; — b; for the learned baseline b;:

1 1 o 1
L:N;l()gpi'Ai_ﬁgl()gpi'pi“‘ﬁ;vi (26)
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Where we use the Huber Loss to calculate the value loss v;.

y {;(Ri—bi)Q if [R; — bi| <6,

27
§(|R; —b;| — 36)  otherwise. 7

‘We numerate three RL-R variants below:

e Greedy REINFORCE (RLR-G). REINFORCE selecting the top-k experts and no additional auxiliary losses.

e Nucleus-sampled REINFORCE (RLR-S). REINFORCE using nucleus sampling to eliminate less reliable expert
selections and reduce noise in the policy gradient update. In this method we sample from the top-p truncated distribution.
Nucleus sampling at a fixed top-p scales well with increasing the number of experts.

e REINFORCE with baseline (RLR-B). Our RL method which stabilizes training with a learned baseline and a policy
entropy regularization loss. We learn a baseline with a value function that has a single hidden layer of size %.

Table 5 details the hyperparameters chosen for each RL-R variant and Fig. 9 contains validation losses across a number
of models. Note that the entropy loss is negative to encourage a more concentrated policy, and the weight must be tuned
jointly with the load balancing loss to keep routing balanced. This is in line with Bengio et al. (2016), who also use two loss
terms to both encourage early specialization and expert diversity. Additionally, since the policy entropy loss has a similar
effect to nucleus sampling, we did not see an improvement from including both regularization methods. RLR-B consistently
performed the best, especially with regards to scalability in £/ and N. For that reason we selected it as our prime example,
and refer to it as RL-R elsewhere.

Table 5. Selected hyperparameters for RL-R variants.
Hyperparameter RLR-G RLR-S RLR-B

Policy entropy weight 0. 0. -5e-4
Load balancing weight 1. 1. 1.
Policy gradient weight le-1 le-1 le-2
Nucleus top-p - 0.9 1.
Value weight - - le-2
Value hidden layers - - 1
Value loss type - - Huber

B.4. Hash layers (HASH)

HASH is simple compared to RL-R or S-BASE, but is highly reliant on the particular choice of hashing function. Many
functions rely on knowing the integer ID which the tokenizer assigns to each unique token (characters, bytes, subwords, etc.).
Roller et al. (2021) describe multiple alternative functions, including pre-computing expert assignments for each token using
a greedy assignment based on the frequency counts of the token on the training set. They do not observe any improvement
in terms of perplexity relative to simpler random assignments of token to expert, but argue that balanced hashing has better
properties for distributed training.

Our implementation uses a simple modular hashing function, namely the token index modulo the number of experts. Tokens
are indexed by our tokenizer in an order that is roughly ordered by their underlying frequencies in the training dataset,
which means this strategy will be more balanced than an arbitrarily random assignment, while simpler to implement than
fully balanced hashing. We note that poor balancing with increasing expert count is to some extent inevitable for any
routing technique that defines one-to-one mappings between tokens and experts, assuming a bounded Expert Capacity (see
Section C.2), as it becomes progressively harder to assign high frequency tokens into a bigger number of smaller buckets
due to the tokens’ heavy-tailed distribution. This can be seen in Fig. 10.

C. Distributed Routing Details

Here we describe the key aspects of Routing relevant to training on large clusters. We note there are several libraries
available for supporting large-scale Routing, including DeepSpeed (Kim et al., 2021; Rajbhandari et al., 2022) and GSPMD
(Xu et al., 2021). Unfortunately these were incompatible with our preexisting infrastructure.
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Figure 10. HASH becomes less balanced as E increases. Here we compare three hash routing strategies using the token frequency
in our validation set. The lines represent the amount of tokens sent to each expert, ordered from most subscribed to least subscribed.
The dotted line represents the point where tokens are likely to overflow under our bounded Expert Capacity setup (C' = 2). greedy
implements Balanced assignment as described in Roller et al. (2021), where the per-token frequency tables are pre-computed and tokens
are assigned to the most empty expert ordered by frequency; random assigns each token to a random expert; and modulo uses the
technique described in this paper. Note that (a) the token distribution is different from the one used by the tokenizer and (b) this simulation
is based on marginal token frequencies, not batches of sequences. The greedy strategy does improve the workload for the mid range
(E = 64), but not significantly for low (E = 8) or high (F = 512) numbers of experts. modulo provides a modest improvement over
random.

C.1. Expert Parallelism

We briefly review parallelism techniques, building up to Expert Parallelism, a technique for efficiently distributing parameters
over an accelerator cluster. For a more in-depth exposition we recommend Lewis et al. (2021), Lepikhin et al. (2020) or
Rajbhandari et al. (2022). In a fully data-parallel world, every device has an identical copy of all parameters © and a different
input batch X. Each device executes a forward and backward pass on X and (usually) does a synchronous all-reduce across
all devices on the gradients to ©. This is effective, but requires one copy of © for each device, wasteful when |©] is large.

The general class of techniques known as Model Parallelism reduce this duplication by having any individual device store
only a subset of the entire model parameters. This reduction in memory comes with a cost: no longer can a single device
take an input and produce the model’s output; that device no longer contains all of ©. Most techniques therefore require
some additional synchronization or data exchange.

Sharding Parallelism (Shoeybi et al., 2019) takes advantage of a mathematical property present both in 2-layer-MLPs and
a Transformer’s attention blocks: namely, that the output can be represented as the sum of N components, where each
component applies the same functional form with independent weights on the same input. Shoeybi et al. (2019) contains
more details, but a simplified example can be given for a matrix multiplication where we observe the effect of splitting a
matrix into columnwise sub-matrices: W = [W1, ..., Wy]z = va W x. The effect of applying this technique such that
each device has a separate subcolumn is to prevent the duplication of the weight matrices (which consist of the vast majority
of ©). The disadvantage is that all devices must see the same input, meaning the total throughput of data on the cluster
has been reduced N-fold. In addition, the sum described above is actually now a sum across devices, which introduces
additional communication overhead.

Expert Parallelism takes further advantage of the structure of a routed layer to similarly reduce the necessity of parameter
duplication while avoiding the need to duplicate data between devices. In particular, rather than duplicating experts across
all devices, each device contains only a subset of the experts which are not replicated anywhere else. Different devices still
see different inputs. The key motivation is that a given input = never needs to interact with the parameters corresponding
to experts which the router did not send x to. Therefore, a single input x need only be present on a single device (the one
which contains the experts which the router selected for x) to produce the correct output. In order to produce an output, the
router selects an expert for all inputs and an additional data-exchange is introduced which sends all inputs to the device
which contains the requested experts. Each device then processes the inputs it was sent, then returns all inputs to their
original devices. Crucially, a roughly uniform router distribution leads to an evenly balanced computation across devices.
This allows routed layers to be stored across a cluster with no duplicated data and without a reduction in data throughput.
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The downside is that this data exchange required across devices is generally more costly than the cross-device-sum required
by sharding. More details are given in Lewis et al. (2021). Previous work (Fedus et al., 2021) suggests using one expert
per device. We believe this to be an implementation detail dependent on many aspects of the infrastructure in use. For us,
typically using 4 or 8 local experts per device gave good performance.

All of Data, Sharding and Expert parallelism can be applied simultaneously. We use all three methods at will, selecting
the combination which works fastest for a given cluster structure and model size. There are still more variations of model
parallelism, notably Pipeline Parallelism (Narayanan et al., 2019; Huang et al., 2019), which we do not use.

C.2. Load Balancing

This at-will changing of parallelism techniques is dependent on the parallelism not affecting the output of the model. This
is generally true, but expert parallelism brings in one complicating factor: load balancing. In the description above, we
emphasized that a roughly-uniform router (averaged over a minibatch) will send the same number of inputs to each device
(we will call the expected value B.S,,,). However, in the worst case all inputs on all devices might select the same expert,
and therefore need to be sent to a single device. If memory is pre-allocated to accommodate this worse case, then each
device must have enough free memory to potentially store the entire global batch size: prohibitive for large clusters.

The most common solution is to specify a capacity factor C, and only allocate space for BS,, x C tokens. When an
expert is oversubscribed tokens are dropped at random until no experts are exceeding capacity. Having C' > 1 is useful
during training to prevent unnecessarily large numbers of tokens from being dropped. We set C' = 2 for all experiments
(though during evaluation we always allow all tokens to be routed to the desired expert). This strategy works well for the
Transformer architecture due to its residual connections — dropping a token means skipping that transformer block. As long
as the amount of dropped tokens is kept at a reasonable bound, it does not impact learning.

An optimization we support is allowing an oversubscribed expert to use the memory allocated by an undersubscribed
expert on the same device. This reduces the average number of tokens which are skipped, but does so at the minor cost of
introducing an interaction between tokens being skipped and the specific co-habitation of experts on devices. In practice
we do not find this to have a large effect. We note that the rebalancing used in S-BASE substantially ameliorates the load
balancing problem by attempting to force all experts to be assigned the same number of tokens. However because we use the
approximate Sinkhorn algorithm, not a hard matching algorithm, over-subscription still happens (though at a much reduced
rate) and so these steps are still taken.

D. Architectural Variations

Throughout this work we have focused on a narrow subset of possible Routing Net architectures, which we believe are
representative of recent work on large scale Routing Nets (Roller et al., 2021; Fedus et al., 2021; Lewis et al., 2021; Shazeer
et al., 2017; Artetxe et al., 2021; Lepikhin et al., 2020). However, we also experimented with many variations of these
architectures, some of which we highlight now in more depth.

D.1. Robustness to hyper-parameter changes

We evaluated the robustness of S-BASE and RL-R to changes in hyperparameters in Fig. 11. We focus on £ = 512 due to
anecdotal experience that the largest performance variance occurred at this scale. RL-R is found to be highly sensitive to the
hyperparameters in Table 5, especially the choice of balancing weight. In addition, changes to the policy entropy weight can
lead to unbalanced routers when the balancing weight is not tuned jointly.

Unlike Switch which has been shown to be sensitive to the choice of balancing loss (Roller et al., 2021), S-BASE is robust to
changes in balancing weight for values of 1e — 3 to 1. S-BASE also has competitive performance without a balancing loss,
but training is less stable. Additionally, Switch has higher expert oversubscription rates even when tuning the balancing
weight.

D.2. Varying Routing Frequencies

All of our models thus far have been routed every other layer with experts which are single FFWs (Lepikhin et al., 2020;
Fedus et al., 2021). However, Lewis et al. (2021); Roller et al. (2021) explored stacking FFWs in the experts and placing N

routed layers at NL_HJ{,V—_& We consider the performance impact of alternative routing frequencies, varying the frequency
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Figure 11. Hyperparameter sensitivity at 512E 55M. For RL-R, hyperparameter selection has the largest impact on model performance of
the three methods. The top performing RL-R models outperform HASH and are comparable with S-BASE. However, non-optimal RL-R
configurations perform worse than the other two methods.
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Figure 12. The model performance improves with increasing routing frequency for S-BASE, while HASH flattens at higher frequencies for
8E (left), 64E (middle) and 256E (right).

R = % and placing routed layers at %%

We compare routing every layer to routing at frequencies R € {%, i, %} For routing a single layer we chose the second to
last layer (Roller et al., 2021), but consider routing at % in subsection D.4. S-BASE scales well with routing frequency, but
HASH degrades in performance as shown in Fig. 12. At a single routed layer, HASH has the lowest validation loss across
model sizes.

D.3. Varying the Routing Policy

Motivated by the improved scaling results for S-BASE, we investigate whether learning a routing policy becomes more
beneficial as the frequency of routers increases.

Shared routing decisions. In Fig. 13, the routing decisions are made at the first routed layer and shared across layers,
which keeps the number of routers constant as R increases. As HASH selects experts based on the token index at the input
layer, its routing function is unchanged for this variant. S-BASE and HASH have similar losses for shared routing decisions,
whereas S-BASE improves when learning to route at each expert layer.

Permuting the hash function. Conversely, we tested a variant of HASH where the hash function at each router uses a
static permutation of the input tokens to select the experts. This allows tokens to be routed to the same expert at some layers
without having the same hash. We found that performance was unchanged for this variant, suggesting that increasing the
number of possible routing paths does not necessarily impact performance for static policies.

These router variants suggest that methods which can adapt to each expert layer will outperform static policies. Further
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Figure 13. Shared expert selections across layers has a large effect on performance for S-BASE (in grey) at 25M. S-BASE scales similarly
to HASH in the single router case.
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Figure 14. (a) S-BASE and HASH scale similarly when routing a single layer at L. — 1. (b) We see similar performance for S-BASE and
HASH at 32E 1.3B when routing at % with three FFWs per expert. However, S-BASE performance is improved for interleaving three

routed layers.

work is needed in analyzing how policies can more effectively learn to route across layers.

D.4. Routing a Single Layer

We analyzed the scaling behavior of HASH and S-BASE when only routing a single layer. We observed that the routing gains
for R = % deviated from higher frequencies, which also impacted R = % to a lesser degree. We attribute this performance
regression to the suboptimal behavior of the first routed layer. In both cases the total number of routers is low, and the first
layer has a larger impact on overall performance than at higher routing frequencies. For R = % the complexity of routing is
reduced and a simpler routing method can reach competitive performance. HASH and S-BASE have similar performance
across expert counts in this case, as shown in Fig. 14.

We also compared routing a single layer at % with three FFWs per expert to three evenly spaced routed layers in Fig. 14.
Similar to the results shown in (Roller et al., 2021), three evenly spaced routed layers has slightly better performance than
three stacked FFWs for a 32E 1.3B model. We also found that S-BASE benefits more from interleaving the routed and dense
layers, which is consistent with our routing frequency results.

D.5. Varying number of experts per datapoint

In this work we have focused on routing each datapoint to a single expert at all routing layers, i.e. for the case where K = 1.
However, SMoE models have historically routed datapoints to more than one expert (Shazeer et al., 2017; Lepikhin et al.,
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Figure 15. Example of scaling curves for a dense model and a S-BASE (64E) model. When looking at performance per parameter, higher
values of K are always better. But lower values of K are generally more flop efficient, and achieve a better loss for a given FLOP budget.

2020; Ramachandran & Le, 2018). Increasing K incurs in extra computation on the experts, but this additional computation
may be helpful for the end result, reflecting in better loss. Moreover, routing a datapoint through more experts means
each expert gets to see more data for each forward pass, which may speed up training. For these reasons, it is not obvious
that K = 1 is the best setup. Section 4.4 investigated this and argued both that the generalized formula Equation (2) can
accommodate such cases and also that the resulting fits show no substantial difference in performance for K. However we
explore this variance more in Fig. 15: plotting both scaling curves for varying values of K as well as plotting the loss in
terms of F'. Higher values of K invariably yield better performance per step, but they are not necessarily more flop efficient.
In fact, K = 1 is always in the pareto front. We can verify that this holds for varying numbers of experts.

Note that this difference in flop-efficiency is not only theoretical, and is also followed by increased communication costs
when using expert parallelism. We observed in practice that reducing K by half amounted to close to 2x speedup in inference
and training.

E. Effects of scaling strategy on Zero-shot Transfer

There is a strong relationship between the validation loss we have been discussing and the downstream performance of models
and specific tasks (Kaplan et al., 2020). However, recent work has shown that this relationship is not as straightforward for
large Routing Networks, and individual tasks can benefit more or less from expert scaling. For example, Artetxe et al. (2021)
show a narrowing performance gap between a SMOE Routing Network with £ = 512 and its dense equivalent, with more
marked improvement from routing in some tasks like HellaSwag and PIQA than in in tasks like Winogrande and ReCoRD.
Likewise, Fedus et al. (2021) shows that Switch benefits more from scale better in 7TrivaQA than in SuperGlue.

A detailed analysis of the scaling properties of Routing Networks and how that transfers to downstream tasks merits
dedicated work. Here we start the conversation by looking at zero-shot transfer on a set of well known downstream tasks:
LAMBADA (Paperno et al., 2016), The Pile (Gao et al., 2020), Curation Corpus (Curation, 2020), WikiText-103 (Merity
et al., 2016) and C4 (Raffel et al., 2020).

We estimate the scaling coefficients individually for each task and routing technique. For simplicity of interpretation we
ignore the bounded scaling term and focus on the bilinear fit on Eq. 7. The coefficients can be seen in Table H. We expect
that scaling in both N and E will improve the downstream performance. The key question revolves around understanding
changes in the relative magnitude of a, b and c as we move from task to task.

Viewing Table H it is immediately clear that the individual scaling coefficients vary greatly across tasks, i.e. different
tasks have different relative gains at Zero-Shot performance as we move to larger scales. This can be better shown in
Fig. 16, where all coefficients are displayed in a single plot. The variation across tasks are not the same for a and b. e.g.
WikiText-103 has higher values for b and lower for @ when compared to the validation set. This means that even though tasks
see monotonic improvement in performance by scaling through either adding more experts or increasing the base model
size, some tasks benefit more and some less from which method is used.
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Figure 16. Individual scaling coefficients for different tasks and routing techniques, compared to the coefficients estimated in the validtion
set. Different techniques also scale differently depending on the task, but this also depends on the interaction term (see Fig. 17)

For a more complete picture, we can account for the NV and F interaction coefficient ¢ by incorporating it into one of the
scaling coefficients — by holding the other quantity fixed — which leads to a(F) and b(N) (see Section 4.2). This can be
seen in Fig. 17 for varying values of N and F.

We see that S-BASE tends to dominate with lower coefficients at higher values of I/ and N (due to its smaller interaction
term relative to scaling terms), but this varies across tasks. For example, RL-R shows better b(N') for most values of N in
LAMBADA, until it is overtaken by S-BASE at N = 4100, but S-BASE is always superior in C4. Moreover, the ordering is
not consistent between HASH and RL-R across tasks, even though they often do not cross. This all means it is difficult to
establish superior performance of a routing technique without looking at a variety of tasks and scales.

We often want to compare Routing Networks with a dense baseline with the same performance on the validation set, and see
how this changes on downstream tasks. We can use these parameters in a simplified version of the Effective Parameter Count
(EPC, Equation 11), by assuming Eg;4,¢ = 1 and E,;,4, = 00, such that FE =E. First, we note that since the coefficients
vary greatly across tasks, each task will have a different EPC for the same network configuration. Moreover, the effects of
scaling by varying E' and N will vary across tasks. Say we have a routing net of size N with E experts and we want to
increase its base model size by a factor of x while keeping the same number of experts. The effect on /N in this case will be
a multiplication by z*(F)/a(1) = gl+clog B gince ¢ varies per task, the improvement achieved by increasing the base model
size will also be task dependent.

Say we have a routing net of size N with E experts and we want to increase its base model size by a factor of z while
keeping the same number of experts. The effect on NV in this case will be a multiplication by z¢(#)/a(1) = zl+3 18 E_§ince
< varies per task, the improvement achieved by increasing the base model size will also be task dependent.

For example, the EPC yq1idation for N=110M, E=32 is 370M, but EPC jqmpada for the same model is 284M, while EPC ,;; is
535M. The key implication here is not only do the values change, but their slopes are different. This means that downstream
tasks must be analyzed carefully: a practitioner could scale a model via routing expecting some overarching improvement,
but get a much diminished (or enhanced!) improvement on specific downstream tasks, depending on their specific values of
band c.

F. On Convergence, or Lack Thereof

Here we digress on two important details, both focusing on token count. First we argue that discussing converged
performance of large transformers on modern and massive text datasets is probably a misnomer; scaling analyses should
focus on optimal performance at a fixed number of tokens. Second, we provide evidence arguing against a proposed equation
in Kaplan et al. (2020) (Eq. (1.6)).

F.1. Convergence on Large Datasets

There are two cases where the converged performance of a model can be clearly defined. The first is when continued training
of the model produces no improved results (even analyzed at logarithmic scale in the number of tokens), the second is when
continued training leads to reduced validation performance: overfitting.

Our models exhibit neither behavior. No overfitting is seen even for our largest models, likely due to the complexity and size
of the dataset used. Furthermore, despite being trained for 130 billion tokens, not even our smallest models have saturated.
We push this envelope even further: training two additional sets of 1 5M models with 1, 64, 128 and 512 experts. The first
set is trained for just 75, 000 steps, and the second for 1, 000, 000 steps: four times more data (half a trillion tokens). We
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Figure 17. Estimated scaling coefficent for Zero-shot performance across different datasets. Top half: The coefficient for increasing £/
while keeping IV fixed for varying values of IV at different downstream tasks. Middle: The coefficient for increasing N varying values of
E.

+J 1
C ® 1-Experts
g —0.020 ® 64-Experts
) ® 128-Experts
> —0.022 ® 512-Experts
") o ’ —— 75000 Steps Trained
3 S o N P 250000 Steps Trained
- £ _0.024 —-- 1000000 Steps Trained
5 e :
° 9] AN
© 2 -0.026 3
S w -
© Y— \
> © _0.028 . \
0] y
s \
n —0.030 \
2.4 <
10B 100B 1T 10B 100B 1T
Token Count Token Count

Figure 18. On the left: validation performance over time for 150/ models trained with different expert counts and over three different
lengths of training. On the right, the coefficient b from fitting Eq. (4), representing scaling from E across intermediate values.

highlight that this involves corresponding changes to the cosine cycle decay. We exclusively train HASH models, both due to
limits in the number of extra models we were able to train and also because it has the largest value of Fy .

Results from these models are plotted in Fig. 18 (left). 15M with no routing, the smallest model we train as part of this work,
is still far from having saturated its performance capability. Indeed, training for 4x longer further reduces the validation loss
by 0.05. This pattern continues, and is exacerbated, when increasing the expert count: the same model with £ = 512 gets a
0.07 reduction in loss from 4x more tokens.

It is clear then that the very smallest models considered have yet to converge. The same is certainly true for larger ones,
and probably more so. If 500 billion tokens is a lower bound to the convergence point of 15M, the analysis in Kaplan et al.
(2020) would predict needing trillions of tokens to converge 1. 3B: much more than what was used to train some of the
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Figure 19. a) Values of a found for dense models across training. b) RMSE for these same fits. ¢) Three attempts to fit Eq. (29). In black
the standard fit. In orange and grey fits only using and ignoring the final 150, 000 steps respectively.

largest language models yet created (Brown et al., 2020). For large, complex text datasets of the scale used to train large
language models, convergence is not a proper criteria.

F.2. Performance Qualified on Token Count

Rather than claiming analysis at a non-observed point of convergence, we emphasize that the scaling behavior we have
described in this work is valid only as a function of a particular number of steps (or tokens). At each point, we can define
instantaneous values of scaling coefficients, with the values from all models taken at S steps’.

In fact, the situation is more complicated that simply conditioning our scaling coefficients on token count. We can see this
by plotting b, the scaling coefficient for changes in expert-count in Fig. 18(right). An immediate observation is that the
values of b are non-constant, supporting the need to qualify scaling on token count. A second, more substantial point, is that
these values are not uniquely defined by token count. For a given number of tokens, the scaling behavior of three different
sets of models is completely different, dependent on how far into the learning rate schedule those sets of models were. We
note that this behavior is suggested by experiments in Kaplan et al. (2020) (App. D.6).

Attempting to find the full set of parameters on which these scaling terms depend is beyond the scope of this work. We
highlight just the importance of insuring that all variables possible are matched when comparing values to calculate scaling
coefficients.

F.3. Performance Modeled as L(N, S)

We conclude by highlighting one implication of the fact that scaling coefficients are dependent on token count. We analyze
only the dense models trained as part of this work, and calculate values of a in Equation (3) for all dense models trained as
part of the primary sweep across all step counts; plotted in Fig. F.3(a) with RMSE values plotted in Fig. F.3(b). First, it
is important to emphasize that the fits remain good throughout S (after an initial period of transience). Namely, though
the slope is different, the validation losses for a given intermediate S follow a power law about as well as they do later in
training (if anything, more so). Second, the estimated coefficients a are clearly monotonically increasing with .S.

(Kaplan et al., 2020) propose (Eq. 1.6) a unified prediction of the loss achieved by a model with size N training for S steps:

L(N,8) = <JX[) ; (i,) (28)

This comes with the subtlety that S must be defined as the number of steps when training at the averaged critical batch size,

where our models are trained with a fixed batch size. This means a proper analysis must use .S,,;, with § = S(1+ el LBfa = )*1

"This sidesteps the issue of critical batch size (McCandlish et al., 2018; Kaplan et al., 2020), consideration of which requires a
substantially larger sweep of models. Future work estimating the critical batch size will likely lead to better model fits.
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Figure 20. RL-R performance for 64E continues to scale well compared to dense up to 7B base model size.

for constants B, and ap. It is important to highlight however that S,,;,, as described in Kaplan et al. (2020), should be
independent of N. This implies that 8% (L(N,S)) is independent of S, or in log-log space:

dlog(L(N*,S))

s 2 = —ay (29)
8N N*=10N

This prediction of constant scale is in concrete opposition to the increasing value seen in Fig. F.3(a). We can furthermore

check that this functional form cannot be obviously fit to our learning curves, with examples show in Fig. F.3(c).

There are subtle differences between training setups, and we do not want to claim our experiments wholly disprove the
conjecture in (Kaplan et al., 2020). However, the results in Fig. F.3 motivate us to assume that Eq. (F.3) cannot be used to
model our specific training curves. A consequence of this is that we can also no longer conclude Equation B.5 from (Kaplan
et al., 2020), that:
o

L(Neyp(C),C) = (1+ ?:)L(Neff’ o0) (30)
With this equation, we might be able to lower-bound true converged performance (which we have not seen in our models) by
inference from compute-efficient performance, which has been achieved by the majority of our models.

G. Large Scale Routing Behavior, Coefficient Sensitivity, and Future Work

Our analysis predicts that larger values of E will continue to improve performance, especially for small models, at a
diminishing rate. §5.2 also predicts that routing will continue to help with increasing NV for at least one, if not two orders of
magnitude larger base model size. Practical compute limitations prevented our sweep from exploring these regimes, and
there are interesting unanswered questions in the limit of these two variables. In particular, exact predictions of Nyt are
highly dependent on the precise value of b, where error in the second decimal place shifts predicted values by orders of
magnitude (not surprising, as it is the slope of a line in log-log space).

We believe exploring the limit behavior of NV and FE, especially arriving at a more precise value of b, is crucial. Anecdotally,
we can report the results of one experiment: a large RL-R model with N > 7,000, 000, providing a rough upper bound for
error in b for RL-R. In particular, we trained a model with dy,0qe1 = 4096, Nayers = 32, Nheads = 32, E = 64 and K/V
size of 128. There are some important eccentricities of this model which affect its match to the fits described in this work: it
was trained with a batch size of 1024 for 100k steps with a policy gradient weight of le-1 and balancing weight of le-1.
Other training details are consistent with Section 2.1.

The performance of this model, relative to a dense model of the same size and also to a number of smaller models, is
plotted in Fig. 20 evaluated at 100B tokens. The changes described above prevent the analysis in this work from accurately
predicting this model’s performance, but one key feature remains: the routed 7B model substantially outperforms the
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baseline. This is of particular interest since just a 0.01 decrease in b would predict an Ny at 9B, meaning we would
already be close to the regime where routing would cease to work. Nevertheless, at this value routing is clearly still a major
improvement, and our estimate of b is unlikely to be a substantial overshoot.

While the differences between this model and those analyzed in the paper make concrete extrapolation impossible, it shows
that routing techniques still maintain competitive improvements at almost an order of magnitude larger value of N than
analyzed and it is unlikely the scaling coefficients measured in this work substantially overestimate the routing technique’s
scalability. We encourage future work probing the limits of routing networks, both in N and E, to better understand their
properties and provide more accurate predictions of their scaling coefficients.

H. Extra Plots and Tables

This section contains some helpful visualizations and data which are not included in the main text.

Table 6. Values of b(N') with hold-out RMSEs in parentheses.

‘ 15M 25M 130M 370M 1.3B
S-BASE -0.035 -0.031 -0.029 -0.024 -0.019
(0.035) (0.019) (0.017) (0.014) (0.012)
RL-R -0.033 -0.031 -0.027 -0.022 -0.016
(0.016) (0.013) (0.013) (0.014) (0.009)
HASH -0.031 -0.029 -0.025 -0.021 -0.015
(0.039) (0.029) (0.023) (0.016) (0.011)
| a b c d

S-BASE | 0.079 0.088 0.007 1.072

RL-R 0.080 0.105 0.010 1.076

HASH 0.081 0.097 0.009 1.086

Table 7. Fits to Equation (7).

| s-BASE RL-R  HashLayers
4 0.077  0.075 0.077
8 0.073  0.073 0.075
32 0.070  0.067 0.069
64 0.066  0.063 0.066
128 | 0.064  0.060 0.063
256 | 0.058 0.056 0.059
512 | 0.060 0.053 0.056

Table 8. Values of a(E) for different values of E
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Figure 21. Affine fits for HASH with a shared slope in grey.
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Figure 22. The validation loss for all S-BASE models plotted as a function of expert count (left), the total number of parameters (center)
and the ratio of parameters to TeraFLOPs per inference (right).
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Figure 23. The validation loss for all RL-R models plotted as a function of expert count (left), the total number of parameters (center) and
the ratio of parameters to TeraFLOPs per inference (right).
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Figure 25. Fitting S-BASE and RL-R with Eq. (1) and Eq. (2).
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Figure 26. Joint fits to Equation (2) for K € {1,2,4}.
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Figure 27. Joint fits to Equation (2) for R € {0.25,0.5,1.0}.

a b c d RMSE

policy dataset
Dense Validation Set  -0.078 1.063 0.014
LAMBADA -0.203 1.952 0.039
The Pile -0.102 1.239 0.020
CC -0.097 1.133 0.041
WikiText-103  -0.090 1.172 0.015
C4 -0.066 1.009 0.014
Hash Validation Set  -0.082 -0.102  0.009 1.102 0.022
LAMBADA -0.213  -0.167 0.015 2.049 0.051
The Pile -0.111  -0.161 0.014 1.325 0.023
CC -0.101 -0.101 0.010 1.177 0.045
WikiText-103  -0.093  -0.086 0.007 1.208 0.027
C4 -0.070 -0.088 0.008 1.045 0.021
S-Base  Validation Set  -0.081 -0.092 0.008 1.086 0.025
LAMBADA -0.211  -0.152 0.012 2.020 0.048
The Pile -0.110  -0.117 0.008 1.309 0.028
CC -0.100 -0.101 0.010 1.154 0.050
WikiText-103  -0.092 -0.074 0.005 1.194 0.025
C4 -0.068 -0.081 0.007 1.031 0.024
RL-R Validation Set  -0.081 -0.107 0.010 1.090 0.022
LAMBADA -0.212  -0.190 0.016 2.030 0.051
The Pile -0.110 -0.149 0.012 1.320 0.030
CC -0.100 -0.113 0.011 1.156 0.045
WikiText-103  -0.092 -0.091 0.008 1.195 0.023
C4 -0.069 -0.092 0.009 1.033 0.022

Table 9. Scaling coefficients for different downstream tasks.



