
Online and Consistent Correlation Clustering

Vincent Cohen-Addad * 1 Silvio Lattanzi * 1 Andreas Maggiori * 2 Nikos Parotsidis * 1

Abstract

In the correlation clustering problem the input is
a signed graph where the sign indicates whether
each pair of points should be placed in the same
cluster or not. The goal of the problem is to
compute a clustering which minimizes the num-
ber of disagreements with such recommendation.
Thanks to its many practical applications, corre-
lation clustering is a fundamental unsupervised
learning problem and has been extensively stud-
ied in many different settings. In this paper we
study the problem in the classic online setting
with recourse; The vertices of the graphs arrive
in an online manner and the goal is to maintain
an approximate clustering while minimizing the
number of times each vertex changes cluster. Our
main contribution is an algorithm that achieves
logarithmic recourse per vertex in the worst case.
We also complement this result with a tight lower
bound. Finally we show experimentally that our
algorithm achieves better performances than state-
of-the-art algorithms on real world data.

1. Introduction
Clustering is a fundamental problem in unsupervised learn-
ing. In clustering one is interested in partitioning the input
elements so that similar elements are grouped together and
different elements are assigned to different clusters. A nat-
ural way to capture this notion is the classic correlation
clustering problem. Thanks to its simple and elegant for-
mulation, the correlation clustering problem received a lot
of attention from the theory and applied communities and
it has found many practical applications including finding
clustering ensembles (Bonchi et al., 2013), duplicate detec-
tion (Arasu et al., 2009), community mining (Chen et al.,
2012), disambiguation tasks (Kalashnikov et al., 2008), au-

*Equal contribution 1Google 2EPFL, Lausanne, Switzer-
land. Correspondence to: Andreas Maggiori <an-
dreas.maggiori@epfl.ch>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

tomated labelling (Agrawal et al., 2009; Chakrabarti et al.,
2008) and many more.

Formally, in the correlation clustering problem (Bansal et al.,
2004) we receive as input a weighted graph, where posi-
tive edges represent similarities between nodes and negative
edges represent dissimilarities between them. The goal is
to find a partitioning of the input graph so that the sum of
the weights of the negative edges inside clusters and the
positive edges between clusters is minimized. The problem
is NP-hard and several approximation algorithms have been
proposed for it. In particular, when we focus on the cases
where all edges have weights in {−1,+1} the best known
algorithm (Chawla et al., 2015) has an approximation guar-
antee of 2.06 while for arbitrary weights a O(log n) approx-
imation algorithm is also known (Demaine et al., 2006)1.

Since real world datasets continuously evolve in time, the
design of approximation algorithms that maintain a good
solution over time is becoming a central question in machine
learning. Unfortunately, classic approximation algorithms
often are either unpractical or they return very unstable so-
lutions on dynamic datasets. In particular, the clustering
returned by the algorithm may drastically change over time,
potentially leading to inconsistent decisions. For this reason
a lot of attention has been devoted in the past few years
in designing efficient and consistent clustering algorithms
for evolving datasets (Lattanzi & Vassilvitskii, 2017; Ficht-
enberger et al., 2021; Jaghargh et al., 2019; Cohen-Addad
et al., 2019; Guo et al., 2021). In this paper, we study the
correlation clustering problem in the online setting. In this
setting, nodes arrive one at the time and with them also their
clustering preferences to the previously disclosed nodes are
revealed, or in other word the set of positive and negative
edges to the nodes that have already arrived. The algorithm
has to assign a cluster to every node at its arrival and this
assignment cannot change in the course of the algorithm.

Unfortunately this setting is too restrictive and in fact it has
been shown (Mathieu et al., 2010) that any algorithm for
the online correlation clustering problem has at least Ω(n)
competitive ratio. Intuitively, this is true because if the first

1Note also that there is an important amount of work on the
version of the problem where the objective is to maximize the
number of positive edges whose both endpoints are in the same
cluster plus the number negative edges across clusters

Online and Consistent Correlation Clustering

edge that is revealed is a positive edge than one cannot dis-
tinguish the case that this edge is part of a large clique or
is the only bridge between two cliques. To get beyond this
negative result, the problem has been studied in the random
setting where Ailon et al. (2008) show that the Pivot algo-
rithm is 3-competitive when vertices arrive in random order
and in the semi-online model (Lattanzi et al., 2021) when
a random fraction of the instance is revealed in advance
and where Pivot still obtain a constant approximation. One
main shortcoming of these results is that they make a strong
assumption on the arrival order and for that reason they may
not provide any guarantee in real world scenarios.

To overcome this limitation, in this paper we consider the
correlation clustering problem in the online model with re-
course. In this model, nodes and edges are still revealed in
an online fashion but the algorithm can re-assign nodes to
different clusters after each arrival. The goal in this setting is
to minimize the number of cluster re-assignments executed
by the algorithm while still maintaining a constant factor
approximation. From a practical perspective, this setting is
interesting because it captures well the cases where chang-
ing the clustering assignment is possible but expensive. This
is for example the case when the output clustering is used
as input in a machine learning pipeline and so re-assigning
points requires re-training. From a theoretical perspective,
this setting allows us to study formally the trade-off between
stability of the solution and quality of approximation. For
this reasons other classic clustering problems were studied
in this setting (Lattanzi & Vassilvitskii, 2017; Fichtenberger
et al., 2021; Cohen-Addad et al., 2019; Guo et al., 2021).

Our contributions. Our first contribution is to design an
algorithm that has logarithmic recourse per node and that
maintains a constant approximation to the correlation clus-
tering problem at any point in time. Our algorithm is dif-
ferent from previous algorithms for correlation clustering
in the online setting and draws inspiration from a recent
result in the setting of parallel algorithms for correlation
clustering (Cohen-Addad et al., 2021). From a very high
level perspective the main idea behind the algorithm is to
track dense structure in the graph in an approximate sense
by carefully designing lazy updates of the clustering.

We then present a lower bound showing that any algorithm
that maintains a constant approximation to the optimal solu-
tion has to incur at least logarithmic recourse per node.

Finally, we complement our theoretical results with an ex-
perimental analysis showing that our algorithm produces at
the same time solutions that are stable and of high-quality.
In particular, when compared with the Pivot algorithm, sug-
gested by previous work (Ailon et al., 2008; Lattanzi et al.,
2021) in the classical online setting, we notice that our algo-
rithm produces solutions that are substantially more stable
and of higher quality.

2. Problem Definition
We focus on the disagreements minimization version of
the correlation clustering problem where the input is a
signed undirected graph G = (V,E, s) where each edge
e = {u, v} is assigned a sign s(e) ∈ {+,−} and the goal
is to find a partition of the vertexes such that the number
of ′−′ edges inside the same cluster and ′+′ edges in be-
tween clusters is minimized. For simplicity we denote the
set of ′+′ and ′−′ edges by E+ and E− respectively. It is
convenient to represent a solution to the problem, namely a
clustering of the vertices of the graph, using an assignment
function f : V −→ Z; Then, the clustering induced by f
is a partition of the nodes C = {C1, C2, . . . , Ck} such that
two nodes u, v belong to the same partition, i.e., cluster
Ci, if and only if f(u) = f(v), or in other words, they are
assigned the same cluster id. Given a partition function f
and a clustering C induced by f we slightly abuse notation
and denote by f(C) the common cluster id of all nodes in
cluster C ∈ C. Hence, the cost of an assignment function or
the clustering induced by the latter is equal to:

cost(f) =
∑

{u,v}∈E+

f(u)6=f(v)

1 +
∑

{u,v}∈E−
f(u)=f(v)

1

In the online setting nodes arrive one at a time, revealing
upon arrival all the edges to previously arrived nodes. Let
G = (V,E, s) be a signed undirected graph, then an in-
stance of the online correlation clustering problem can be de-
scribed by a pair I = (G, σ) where G is the final graph and
σ is an order on the vertices of G: σ = 〈v1, v2, . . . , v|V |〉.
For any 0 6 t 6 |V |, let Vt = 〈v1, v2, . . . , vt〉 be the set
of the first t nodes in the order σ. We refer to these nodes
as the nodes that have arrived until time t, and we refer to
vt as the node arriving at time t. We let Gt be the signed
subgraph of G induced by Vt with the sign induced by s
on the edges whose both endpoints are in Vt. We also de-
note by NGt(u) the set of neighbors of node u in Gt that
share a positive edge with u under the sign function s and
by fOPTt an assignment function which induces an opti-
mal correlation clustering solution for graph Gt. Note that
the solution of an algorithm Alg on an online instance I
can be described as a sequence of assignment functions
f1, f2, . . . , f|V |, denoted for simplicity by f1,2,...,|V |. We
say that f1,2,...,|V | is a c-approximation to the optimal so-
lution if cost(ft) 6 c · cost(fOPTt), ∀t ∈ {1, 2, . . . , |V |}.
Additionally, an algorithm is a c-competitive algorithm if the
solution it produces is a c-approximation for all instances I .

The recourse of a node u, r(u), that arrived at time t is
the number of times the assignment function sequence
changes the cluster id assigned to u. That is r(u) =∑
t′>t 1{ft′−1(u) 6= ft′(u)}. The recourse of an algorithm

is the worst case recourse over all instances I and nodes u.

Online and Consistent Correlation Clustering

Algorithm 1 AGREEMENT

1: Input: A signed graph G′, and a parameter ε
2: Output: A clustering C of G′

3: Initialize: G←− E+(G′), Ĝ←− E+(G′)

4: Step 1: Remove all edges of Ĝ whose endpoints are
not in ε-agreement in G.

5: Step 2: Remove all edges of Ĝ whose endpoints are
both light.

6: Step 3: Compute the connected components C̃ of Ĝ.
7: return C̃

3. Algorithm
In this section we present our algorithm along with a proof
sketch of the guarantees that it provides (the full proofs are
available in the appendix). Before we describe the algorithm,
we need to introduce some notation. Let Ct be the clustering
of Gt induced by the assignment function ft. A cluster is
called singleton if it contains a single node. We denote by
S(Ct) the set of nodes that belong to a singleton cluster in
Ct. Respectively, we use H(Ct) to denote the set of nodes
that belong to a non-singleton cluster in Ct.

The Agreement algorithm. Our algorithm uses as a sub-
routine the static algorithm introduced in (Cohen-Addad
et al., 2021); we refer to this algorithm as the Agreement
algorithm. The Agreement algorithm makes use of the
following definitions and lemmas. Given a signed graph
Gt, the Agreement algorithm is executed on the graph
G = (V (Gt), E

+(Gt)). In the following, NG(u) denotes
the neighborhood of node u in G.

Definition 1. Two nodes u, v are in ε-agreement in G if
|NG(u)4NG(v)| < εmax{|NG(u)|, |NG(v)|}, where the
symbol4 denotes the symmetric difference of two sets.

Definition 2. A node u is light if it is in ε-agreement with
less than an ε fraction of its neighborhood.

Since the Agreement algorithm is a central ingredient of our
algorithm, and our analysis depends on its properties, we
present it in Algorithm 1.

At a high-level the algorithm performs lazy cluster-
assignment updates. Namely, at each time t, our algo-
rithm re-runs the Agreement algorithm (which produces
an O(1)-approximate solution for graph Gt) and only up-
dates the cluster ids of the vertices that joined a different
(non-singleton) cluster at time t compared to the clustering
at time t − 1. A final rule changes the ids of clusters that
have grown in size by a constant factor. We use C̃t to refer
to the clustering produced by running the Agreement algo-
rithm on Gt, and f̃t to refer to the assignment function that
induces C̃t. Similarly, we use f̃t(C) to refer to the unique
cluster id of a cluster C ∈ C̃t.

Evolving clusters. We keep track of clusters that evolve
over time. Each evolving cluster is associated with a unique
cluster id. The life-cycle of a cluster starts whenever a
cluster id is seen for the first time, and it ends whenever no
node uses the cluster id anymore. We monitor the growth of
each evolving cluster using the following definition.
Definition 3 (Origin cluster). Let ID be a cluster id that
is used by the assignment function ft, and let tmin be the
minimum t for which ID is used by ftmin

. The origin cluster
of ID, denoted by Origin(ID), is the cluster with id ID
in the clustering induced by ftmin

.

Once a cluster C ∈ Ct becomes a constant factor larger in
size compared to the origin cluster with the same id, we
assign a fresh id to C (hence making C the origin cluster
of that fresh id). We do this so that we can later bound the
competitive ratio of the clusters that we output.

The algorithm. Our Online Agreement (Agree-On) algo-
rithm is described in details in Algorithm 2. At a high-level,
the algorithm has three main phases which are executed for
every node-arrival.

• Offline re-clustering phase: We run the Agreement
algorithm on Gt. Let C̃t be the resulting clustering and
f̃t be the assignment function inducing C̃t.

• Initial assignment phase: This phase combines
C̃t−1, C̃t as well as the previously maintained cluster-
ing Ct−1 to produce Ct. First, it assigns a new unique
id to the newly arrived node vt, if {vt} is a singleton
cluster of C̃t. Then it applies the following three rules
to set the ids of all nodes (except possibly vt):

– Rule 1: For each non-singleton cluster C ∈ C̃t
if there exists a non-singleton intersecting cluster
C ′ ∈ C̃t−1 then assign the cluster id of ft−1(C ′)
to all nodes in C. This essentially identifies C
and C ′ to be part of the same evolving cluster.
We exploit structural properties to show that any
non-singleton cluster C ∈ C̃t intersects at most
one non-singleton cluster C ′ ∈ C̃t−1.

– Rule 2: For each non-singleton cluster C ∈ C̃t
that consists entirely of nodes that were in single-
ton clusters of C̃t−1 (but not necessarily in single-
ton clusters of Ct−1), and potentially the newly
arrived node, do the following. If there is a cluster
C ′ ∈ Ct−1 containing the majority of the nodes
in C, then C gets the same cluster id as C ′; oth-
erwise C receives a new unique cluster id and C
becomes the origin cluster of that id.

– Rule 3: ensures that each singleton cluster in C̃t
retains its previous cluster id.

At the end of this phase, for each non-singleton cluster
C ∈ C̃t we have assigned the id of a cluster C ′ ∈ Ct

Online and Consistent Correlation Clustering

to all nodes in C. This assignment induces a mapping
from ids of non-singleton clusters C ∈ C̃t to ids of non-
singleton clusters C ′ ∈ Ct; we represent this mapping
using the assignment function φt.

• Assignment refinement phase: After forming an initial
clustering of Ct, this phase identifies clusters C ∈ C̃t
that are significantly larger compared to the size of
their origin cluster of φf̃C . Such clusters become new
origin clusters and receive a new unique cluster id.

Algorithm intuition: The crux of our algorithm is the com-
bination of the notion of origin clusters together with f̃t,
f̃t−1, and ft−1. Before presenting some useful structural
properties of our algorithm, we show that the algorithm is
well defined; that is, we show that for any time t, Ct indeed
forms a partition of Vt. We start from the fact that C̃t is
a partition of Vt. Each non-singleton cluster of C ∈ C̃t is
assigned an id by either Rule 1 or Rule 2, since C consists
of nodes that form singleton clusters of C̃t−1 and at most
one non-singleton cluster C ′ ∈ C̃t−1 intersecting C. All
singleton clusters of C̃t are assigned an id by Rule 3; if vt
is a singleton cluster in C̃t, then it is assigned an id right
before the main loop of the algorithm.

In the appendix we prove several properties of our algorithm
with respect to the assignment functions f̃t, ft. We mention
these properties and refer to the appendix for their proof.

1. Let C be a non-trivial cluster of C̃t. Then, at time t all
nodes of C are assigned the same cluster id in ft. This
is ensured by Rule 1 and Rule 2.

2. Let C,C ′ be two non-trivial clusters of C̃t. Then, ft
assigns to all nodes in cluster C a cluster id that is
distinct from the one assigned to the nodes in C ′.

3. LetC be a non-trivial cluster of C̃t, we denote by SCt =

{v ∈ S(C̃t) : ft(v) = ft(C)} the set of nodes which
do not belong to C but are clustered together with
C in Ct. Note that: (a) for each u ∈ SCt it holds
ft(u) 6= f̃t(u); and (b) every node u for which it holds
ft(u) = ft(C) belongs to C ∪ SCt .

To simplify our proof sketch we make the following sim-
plifying assumption regarding the structure of C̃t. (Please
refer to the appendix for the full proofs not using these
assumption).

Assumption 3.1. Let C ∈ C̃t be a non-trivial cluster and
let u ∈ C. Node u has, in Gt, at least (1 − ε)|C| positive
edges to nodes inC and at most ε|C| positive edges to nodes
outside C.

Algorithm 2 ONLINE AGREEMENT (Agree-On)

1: Input: An online instance I = (G, σ), a parameter ε
2: Output: An assignment function sequence f1,2,...,|V |
3: Initialization: G−1 ←− ∅, IDnext ←− 0
4: on arrival of vt do
5: Gt ←− Gt−1 ∪ {vt}
6: C̃t ←− AGREEMENT(Gt, ε)

7: if vt ∈ S(C̃t) then
8: Origin(IDnext)←− {vt}
9: IDnext ←− IDnext + 1

10: end if
11: for all C ∈ C̃t s.t. |C| > 1 do
12: //* Rule 1:
13: if ∃ C ′ ∈ C̃t−1 s.t. C ∩ C ′ 6= ∅, |C ′| > 1 then
14: for u ∈ C do ft(u)←− ft−1(C ′) endfor
15: end if
16: //* Rule 2:
17: if C \ vt ⊆ S(C̃t−1) then
18: if ∃C ′ ∈ Ct−1 s.t. |C ′ ∩ C| > |C|/2 then
19: for u ∈ C do ft(u)←− ft−1(C ′) endfor
20: else
21: for u ∈ C do ft(u)←− IDnext endfor
22: Origin(IDnext)←− C
23: IDnext ←− IDnext + 1
24: end if
25: end if
26: end for
27: //* Rule 3:
28: for all u ∈ S(C̃t) \ vt do ft(u)←− ft−1(u) endfor
29: //* Store φt
30: for all C ∈ C̃t s.t. |C| > 1 do
31: φt(f̃t(C))←− ft(C)
32: end for
33: //* Assignment refinement phase
34: Let C′ be the current clustering induced by ft.
35: for all C ∈ C̃t s.t. |C| > 1 do
36: Let C ′ ∈ C′ be the cluster s.t. C ⊆ C ′.
37: if |C| > (3/2)|Origin(ft(C

′))| then
38: for u ∈ S(C̃t) do ft(u)←− IDnext endfor
39: IDnext ←− IDnext + 1
40: Origin(IDnext)←− C
41: end if
42: end for
43: end on

3.1. Bounding the competitive ratio

In this section we give an overview on how we prove
that cost(ft) 6 Θ(cost(fOPTt)). We do this by proving
cost(ft) 6 Θ(cost(f̃t)), which combined with the fact that
cost(f̃t) 6 Θ(cost(fOPTt)) implies the constant competi-
tive ratio of our algorithm.

Online and Consistent Correlation Clustering

For convenience, we use E+(X,Y) (resp., E−(X,Y)) to
denote the edges in E+(Gt) ∩ (X × Y) (resp., E−(Gt) ∩
(X × Y)).

The proof consists of two parts. First, we prove that the cost
incurred on ft by the edges on nodes in S(f̃t) is bounded
by Θ(cost(fOPTt)). Then, we move to showing that the
cost incurred on ft by the edges on nodes in H(f̃t) is also
Θ(cost(fOPTt)).

We first sketch the first part of the proof. Notice that the cost
incurred on ft for the edges of a node u ∈ S(f̃t) is only
larger than the cost incurred on f̃t for the edges of u if ft
clusters u in a non-singleton cluster C. Fix a cluster C ∈ Ct.
We bound |E−(C,C)| by Θ(|E+(S(f̃t) ∩ C, Vt)|). To do
so, we prove that C is not much larger than its origin cluster
and that further it holds that |E−(u,C)| > Θ(|C|) for each
u ∈ S(f̃t) ∩ C. The latter is proved by using properties of
the clusters generated by the Agreement algorithm.

Now we move to sketching the second part of the proof. Let
C1, C2, . . . , Ck be the set of non-singleton clusters of C̃t,
then ft and f̃t disagree exactly on SC1

t , SC2
t , . . . , SCk

t . Fix
a specific pair C, SCt , and note that for this pair:

1. f̃t pays |E+(C ∪SCt , Vt \C ∪SCt)|+ |E+(C, SCt)|+
|E−(C,C)|.

2. ft pays |E+(C ∪SCt , Vt \C ∪SCt)|+ |E−(C, SCt)|+
|E−(SCt , S

C
t)|

Combining this, with the first part of the proof, we get that
cost(ft) is at most: ∑
C∈C̃t:|C|>1

|E−(C, SCt)|+ |E−(SCt , S
C
t)|

+ Θ(cost(f̃t))

6

 ∑
C∈C̃t:|C|>1

|SCt ||C|+ |SCt |2
+ Θ(cost(f̃t))

and,

cost(f̃t) >
∑

C∈C̃t:|C|>1

|E+(C, SCt)|

To conclude, we are left to argue that |SCt ||C| + |SCt |2 =

Θ(|E+(C, SCt)|) for any non-trivial cluster C ∈ C̃t.

Let C ∈ C̃t be a cluster whose nodes get assigned cluster id
after f̃t(C).

Note that the assignment refinement phase, takes an initial
version of Ct and if there is a cluster C ∈ C̃t that is sig-
nificantly larger than Origin(ft(C)), then all nodes in C
receive a new cluster id in Ct and the origin cluster of the

newly formed cluster is set to be C. At a high level the as-
signment refinement phase, forces a cluster of ft to remain
as similar as possible to its origin cluster. For simplicity
here we make the following assumption (for a full proof
without this assumption please refer to the appendix).

Assumption 3.2. Let C ′ ∈ C̃t′ and C ∈ C̃t be two non-
singleton clusters, for t′ < t. If they are part of the same
evolving cluster (i.e., if φt′(f̃t′(C ′)) = φt(f̃t(C))), then
|C ′ ∩ C ′′| > (1/2) max{|C ′|, |C ′′|}.

We start by lower bounding the number of positive edges
between nodes in SCt and nodes in C, i.e., |E+(C, SCt)|.
Note that any node u ∈ SCt must have been part of a non-
trivial cluster C ′ ∈ C̃t′ s.t. φt′(f̃t′(C

′)) = φt(f̃t(C)),
for some time t′ < t. Hence, from Assumption 3.2
we get that |C ∩ C ′| > (1/2) max{|C|, |C ′|}. More-
over, from Assumption 3.1 we know that node u has at
least (1 − ε)|C ′| positive edges inside C ′. Combining
the latter two facts we can conclude that node u has at
least (1/2 − ε)|C| edges shared with nodes in C. Thus,
|E+(C, SCt)| > |SCt |(1/2 − ε)|C|. Combining the latter
with the trivial upper bound |E+(C, SCt)| 6 |SCt ||C| we
get that |E+(C, SCt)| = Θ(1)|SCt ||C|.

To conclude the proof it suffices to show that |SCt | =
Θ(1)|C|. From assumption 3.1 we have that positive edges
between nodes in C and nodes outside C are at most ε|C|2.
On the other hand, we just argued that |E+(C, SCt)| 6
Θ(1)|SCt ||C|. By combining these two facts we get that
Θ(1)|SCt ||C| < ε|C|2 and consequently |SCt | 6 Θ(1)|C|.

3.2. Bounding the recourse

At a high level, the recourse is at most O(log|V |) because,
roughly speaking, whenever a node changes cluster id then
the size of the origin cluster corresponding to the new cluster
id is a multiplicative factor larger than the size of the origin
cluster which corresponds to the old cluster id. The proof
of the latter is quite technical and we defer it to section F of
the appendix.

4. Lower Bound
In this section we present an online correlation clustering
instance where any algorithm that achieves constant compet-
itive ratio requires Ω(log n) recourse per node, in the worst
case, where n the total number of nodes in the end.

Let c > 1 be a constant. Initially our instance reveals two
nodes u, v with a positive edge between them. The rest of
the node arrival sequence works in logarithmically many
phases. Our instance forces any c-competitive algorithm A
to behave as follows. At odd phasesA clusters u, v together
while at even phases it clusters u, v separately. Let r be the
total number of phases, then note that such a construction

Online and Consistent Correlation Clustering

forces either u or v to have a recourse of at least r/4.

Lemma 4.1. Let c > 1 be a constant. Any online algorithm
for the correlation clustering problem with a competitive
ratio smaller than c has a recourse Ω (log (n)) where n
denotes the total number of nodes.

Proof. For a simpler description, we are using an unsigned
graph to describe our construction. The actual signed in-
stance is constructed by replacing every existing edge with
a ‘+’ edge, while every missing edge between two already
revealed nodes with a ‘-’ edge.

We use two main gadgets: 1) cliques Csu,v of size s whose
nodes are connected to both u and v, and 2) cliques Csu
(resp., Csv) of size s whose nodes are all connected to u
(resp., v). We note that different cliques share no edge
between them.

Initially, our adversarial node arrival sequence reveals the
two base nodes. At that point any algorithm with a bounded
competitive ratio connects the two nodes since the optimum
solution has cost 0.

In phase 0, our adversarial sequence reveals a pair of cliques
C2c
u , C2c

v . Note that the optimal solution cluster u with
C2c
u in a single cluster and v with C2c

v in a second cluster,
achieving a total cost of 1 (the positive edge between the
base nodes). Any solution that clusters u, v together costs
at least 2c as any splitting of the two clusters leaves at least
2c− 1 inter-clusters edges while merging the two clusters
costs Ω(c2). Thus, any algorithm with a competitive ratio
less than c splits the nodes u, v to two clusters.

In phase 1, our sequence reveals a clique C(2c)3

u,v . The op-
timal solution costs OPT = 2 · 2c and is achieved by
clustering u, v, C(2c)3

u,v in the same cluster and each other
clique into a separate cluster. Notice that any splitting of
the cluster C(2c)3

u,v leaves at least (2c)3 − 1 inter-clusters
edges. Hence, any c-competitive online algorithm clusters
u, v together with clique C(2c)3

u,v , otherwise it costs at least
(2c)3 − 1 > c · 4c = c ·OPT .

Following the same pattern, at even phases i our sequence
reveals the pair of cliques C(2c)3i

u and C(2c)3i

v forcing any c-
competitive algorithm to cluster u and v separately, while at
odd phases i our sequence reveals the clique C(2c)3i

u,v forcing
any c-competitive algorithm to cluster u and v together.

We next prove the claim for even and odd phases separately.
First, assume i is even. At the end of phase i, the optimum
solution clusters v with C(2c)3i

v in a single cluster, u with
C

(2c)3i

u into a second cluster, and every other clique into
a separate cluster on its own. The above clustering has
a cost of OPT = 2 ·

(
((2c)3 + (2c)6 + · · ·+ (2c)3(i−1)

)
.

Any algorithm where u, v are in the same cluster has a cost

of (2c)3i > c · 2 ·
(
((2c)3 + (2c)6 + · · ·+ (2c)3(i−1)

)
>

c ·OPT . Thus, any c-competitive online algorithm assign
u and v to different clusters.

Next, assume i is odd. At the end of phase i, the opti-
mum solution is formed by clustering u, v, and C

(2c)3i

u,v

together and every other clique into a separate cluster on
its own. The above clustering has a cost of OPT =
2 ·
(
((2c)3 + (2c)6 + · · ·+ (2c)3(i−1)

)
. Any algorithm

where u, v are in different clusters has a cost of (2c)3i >
c·2·

(
((2c)3 + (2c)6 + · · ·+ (2c)3(i−1)

)
> c·OPT . Thus,

any c-competitive online algorithm clusters u and v together.

Let r be the number of phases . Given that every 2 phases,
u, v are clustered together and then separately again, at least
one of u, v needs to increase its recourse by at least 1. Thus,
after r rounds, one of u, v incurs recourse at least r/4.

To end the proof let the last phase r be an odd round, then
the total number of nodes is n = 2 + 2 · 2c + (2c)3 + 2 ·
(2c)6+(2c)9+...+(2c)3r < 2·(2c)3r+1 < (2c)3r+2. Thus,
r = Ω(log(n)/log(c)) which concludes the proof.

5. Experiments
5.1. Datasets

Our study includes four graphs that are formed by user-to-
user interactions. Specifically, we consider a Social network
(musae-facebook), an email network (email-Enron), a
collaboration network (ca-AstroPh), and a paper citation
network (cit-HepTh). All but the cit-HepTh datasets are
static undirected graphs. As an effort to considered a real-
istic dataset for experimenting with online algorithms, we
use the dataset cit-HepTh which has timestamps on the
nodes indicating a natural arrival order. Since cit-HepTh
is directed, we transform it to an undirected graph by ig-
noring edge directions. In all of our datasets we removed
all parallel-edges. Our datasets are obtained from SNAP
(Leskovec & Krevl, 2014); their basic characteristics are
summarized in Table 1.

#nodes #edges online?
musae-facebook 22,470 171,002 no

email-Enron 36,692 183,831 no
ca-AstroPh 18,772 198,110 no

cit-HepTh 27,770 352,807 yes

Table 1. Basic characteristics of our datasets.

5.2. Baselines
PIVOT. As one of the baselines, we consider the 3-
approximate pivoting algorithm introduced by Ailon et
al. (Ailon et al., 2008). We refer to this algorithm as PIVOT.
In the offline model, PIVOT works as follows. First, it cre-
ates a random order of the nodes, marks all nodes as unclus-

Online and Consistent Correlation Clustering

tered, and then iterates over the nodes in the aforementioned
random order. If the current node v is still unclustered,
then v forms a cluster together with all of its unclustered
neighbors and they are marked as clustered.

The naive way to use PIVOT in the online setting is to re-run
it from scratch following every node arrival, each time with
a fresh random order. However, we re-use the same random
order of the previously arrived nodes, which leads to an
improved practical performance both in terms of recourse
and running time. That is, whenever a new node arrives it is
inserted in the preexisting random order at a random position
(the relative order of the previously arrived nodes remains
unchanged). We call the latter order the new random order.
It is not hard to verify that all clustering choices of the
algorithm regarding nodes which precede the newly arrived
node in the new random order remain the same compared
to the execution of the algorithm in the previous iterations
(before the arrival of the last node). Thus, we only simulate
the algorithm starting from visiting the index of the newly
arrived node in the new random order onward.

AGREE-OFF. This baseline reruns the Agreement algo-
rithm following each node arrival. In our experiments we
set the parameters β = λ = 0.2, as this setting exhibited
the best behavior in (Cohen-Addad et al., 2021).

Greedy recourse minimization. For the baselines we as-
sume that there is no consistent cluster id assignment to
the clusters produced after each node arrival, and hence,
measuring recourse as per our definition would give an
unfair advantage to our (more designated) algorithm. To
have a fair comparison, we measure recourse independently
of the actual cluster ids that each algorithm assigns. That
is, given two clusterings Ct−1, Ct from consecutive runs of
some algorithm we reassign the cluster ids of Ct such that
we minimize the number of nodes that have distinct cluster
ids in Ct−1 and Ct. Specifically, we construct a bipartite
graph B = (U ∪ V,E) where each node of U (resp., V)
represents a cluster Cu ∈ Ct−1 (resp., Cv ∈ Ct), and there is
an edge (u, v) ∈ E∩{U×V } with weightw ifCu overlaps
with Cv on w nodes (if the Cu and Cv do not overlap, there
is no edge (u, v)). To re-assign the ids of the clusters in
Ct, we run the greedy 2-approximate maximum bipartite
matching on B, and each cluster C ∈ Ct that is matched
with a cluster C ′ ∈ Ct gets the same cluster id as C; if C ′

remains unmatched then it receives a new unique cluster id
2. Finally, the recourse is computed by counting the number
of nodes with distinct cluster ids in Ct−1 and Ct. We apply
this post-processing to all algorithms (including ours).

2Although one can solve the maximum bipartite matching ex-
actly, this task is expensive and orthogonal to our study.

Figure 1. The cost of the clustering produced by the different algo-
rithms for the dataset cit-HepTh.

5.3. Setup

Our code is written in C++ and is available online3. We run
our experiments on a e2-standard-16 Google Cloud instance,
with 16 cores, 2.20GHz Intel(R) Xeon(R) processor, and 64
GiB main memory.

For the datasets email-Enron, ca-AstroPh, musae-
facebook, we use a random arrival order, as the nodes
are not timestamped. For the dataset cit-HepTh, we con-
sider the arrival order implied by the timestamps on the
nodes. Once a node v arrives, it reveals only its edges to the
previously arrived nodes (the remaining edges are revealed
once the other endpoint of each such edge arrives).

5.4. Results
Solution quality. Figure 1 shows the cost of the cluster
produced by each of the algorithms that we consider through-
out the sequence of node arrivals, on the dataset cit-HepTh.
The plots for the other datasets are shown in Figure 5 in the
appendix. In all datasets but ca-AstroPh the AGREE-OFF
and AGREE-ON perform significantly better than PIVOT.
The latter implies that the solution calculated by AGREE-
ON is at most a 3-approximation of the offline optimum.
We would like to underline that the best algorithm in terms
of approximation guarantees for the correlation clustering
problem is an LP-based variation of PIVOT in (Chawla et al.,
2015). However, the latter algorithm due to its high com-
putational cost becomes quickly infeasible to run even for
graphs where the number of nodes is one or two orders of
magnitude smaller than the ones we use in our experiments.
Thus, the state-of-the-art algorithm for the correlation clus-
tering problem both in terms of practical performance and
provable guarantees is PIVOT, and we successfully compare
against it.

While not immediately visible from the plots, AGREE-ON
performs slightly better than AGREE-OFF in all datasets.

3https://github.com/google-research/
google-research/tree/master/online_
correlation_clustering

 https://github.com/google-research/google-research/tree/master/online_correlation_clustering
 https://github.com/google-research/google-research/tree/master/online_correlation_clustering
 https://github.com/google-research/google-research/tree/master/online_correlation_clustering

Online and Consistent Correlation Clustering

Figure 2. The quality of the clustering produced by the different
algorithms for the dataset cit-HepTh, relatively to SINGLETONS.

PIVOT AGREE-OFF AGREE-ON

email-Enron 14 3 1
ca-AstroPh 10 2 1

musae-facebook 10 3 1
cit-HepTh 13 5 1

Table 2. The maximum recourse per node over the whole sequence
of node arrivals, for the four datasets that we considered.

This is due to the fact that once a set of nodes C is clustered
together at time t1, AGREE-ON keeps the nodes in C clus-
tered together at times t > t1 even if the nodes in C obtain
many outgoing edges from C, whereas AGREE-OFF would
split C under such a scenario.

Our datasets are sparse throughout the arrival sequence.
Sparse graphs tend to not have a good correlation cluster-
ing structure, and often the clustering that consists of only
singleton clusters is a competitive solution; we denote such
a solution as SINGLETONS. We illustrate this in Figure 2
for the dataset cit-HepTh (and in Figure 6, in the appendix,
for the other datasets), where we present the cost function
relatively to SINGLETONS. After a small number of node
arrivals, PIVOT performs clearly worse than SINGLETONS,
while AGREE-OFF and AGREE-ON always perform better
or equally well compare to SINGLETONS. These findings
are not surprising. On the one hand, PIVOT is more likely to
create clusters with very small density which results to a lot
of negative intra-cluster edges. On the other hand, AGREE-
OFF (and hence AGREE-ON) creates singleton clusters if the
graph contains no clear clustering structure; which implies
that AGREE-OFF produces a clustering that is never worse
than the one produced by SINGLETONS. Unlike the case
of our particular datasets, AGREE-OFF (and consequently
AGREE-ON) often produces many medium-sized clusters
on sparse graphs4 (Cohen-Addad et al., 2021) implying
performance significantly better that SINGLETONS.

4Unfortunately, it was not reasonable to run the whole arrival
sequence on the same datasets, due to their size.

Figure 3. The total recourse incurred by the algorithms that we
consider on the dataset cit-HepTh, in log scale.

Figure 4. The running time (in seconds) of the algorithms that we
consider on the dataset cit-HepTh, in log scale.

Recourse. Table 2 shows the maximum recourse of a
node, for each dataset. Both AGREE-OFF and AGREE-ON
perform significantly better than PIVOT, while AGREE-ON
never changes the cluster id of a node twice. Recall that the
greedy reassignment post-processing benefits all algorithms.

Next, we investigate the total recourse that each algorithm
incurs over the whole node-arrival sequence, i.e., the sum
of the recourse of each node. The plot for the dataset cit-
HepTh is shown in Figure 3. The plots for the other datasets
are in Figure 5 in the appendix. AGREE-ON consistently
incurs 1-2 order of magnitude less recourse compared to
PIVOT, and up to an order of magnitude less recourse com-
pared to AGREE-OFF.

Running time. For simplicity the version of AGREE-ON
described in 2 computes the clustering C̃t by naively rerun-
ning the Agreement algorithm 1 on the graph Gt. However,
we can easily use most of the prior information to com-
pute the clustering C̃t without rerunning the Agreement
algorithm from scratch. To this end, note that for any node
u ∈ Gt\{vt} its degree can be updated inO(1) by checking
if u and the newly arrived node vt share an edge. Moreover
let u, v ∈ Gt−1 be two nodes which share an edge, then the
size of the symmetric difference of their neighborhoods can
be updated in O(1) by checking if the newly arrived node is
the neighbor of exactly one of them. Thus, all ε−agreements

Online and Consistent Correlation Clustering

between nodes u, v ∈ Gt−1 can be updated in linear time. In
addition, checking the ε−agreement between two nodes u, v
without any prior information takes time O(min{du, dv}).
Consequently we can check the ε−agreement between the
newly arrived node and all its neighbors in time O(d2vt).
Finally, lines 7− 43 of AGREE-ON for each new node ar-
rival can be easily implemented in linear time. Overall, a
careful implementation of AGREE-ON would yield to an
algorithm whose complexity for the whole arrival sequence
is O(

∑
u d

2
u) + n ·O(n+m) = O(nm) (matching Pivot’s

complexity) instead of O(n2m) from a naive implementa-
tion of the pseudocode.

As expected, in terms of running time, AGREE-OFF per-
forms comparably to PIVOT as shown in Figure 4 for the
dataset cit-HepTh (and in Figure 5, in the appendix, for the
other datasets). On the other hand, due to the required post-
processing (lines 7− 43 of the pseudocode) following the
computation made by AGREE-OFF, AGREE-ON performs
less than 2× slower compared to AGREE-OFF and PIVOT.
Since the latter post-processing requires linear time, this
seems to imply that in practice all these three algorithms re-
quire O(n) time per node arrival. This is in contrast to their
trivial worst-case performance of O(

∑
v∈V d

2(v)) time for
AGREE-OFF and O(m) time for PIVOT, per update.

Take away message. Cluster stability is an important
property of online and dynamic algorithms. Our experi-
ments suggest that AGREE-ON not only significantly out-
performs the baselines in terms of recourse, but produces
solutions comparable and often better compared to the state-
of-the-art algorithms.

Conclusions and Future Work
We present a new algorithm for online correlation cluster-
ing with strong consistency guarantees. In particular, our
algorithm is simple, efficient and obtains optimal recourse.
We also study the empirical performance of our algorithm
showing its effectiveness in practice.

A natural future direction is to improve the approximation
factor obtained by our algorithm and to study other classic
clustering problems in the online setting with recourse.

6. Acknowledgments
Andreas Maggiori was supported by the Swiss National
Science Fund (SNSF) grant no 200020–182517 “Spatial
Coupling and Interpolation Methods for the Analysis of
Coding and Estimation”. Part of this work was done while
Andreas Maggiori was an intern at Google Research, hosted
by Nikos Parotsidis.

References
Agrawal, R., Halverson, A., Kenthapadi, K., Mishra, N.,

and Tsaparas, P. Generating labels from clicks. In Pro-
ceedings of the Second ACM International Conference
on Web Search and Data Mining, pp. 172–181, 2009.

Ailon, N., Charikar, M., and Newman, A. Aggregating
inconsistent information: Ranking and clustering. J.
ACM, 55(5), nov 2008. ISSN 0004-5411. doi: 10.
1145/1411509.1411513. URL https://doi.org/
10.1145/1411509.1411513.

Arasu, A., Ré, C., and Suciu, D. Large-scale deduplication
with constraints using dedupalog. In 2009 IEEE 25th
International Conference on Data Engineering, pp. 952–
963. IEEE, 2009.

Bansal, N., Blum, A., and Chawla, S. Correlation clustering.
Machine learning, 56(1):89–113, 2004.

Bonchi, F., Gionis, A., and Ukkonen, A. Overlapping cor-
relation clustering. Knowledge and information systems,
35(1):1–32, 2013.

Chakrabarti, D., Kumar, R., and Punera, K. A graph-
theoretic approach to webpage segmentation. In Pro-
ceedings of the 17th international conference on World
Wide Web, pp. 377–386, 2008.

Chawla, S., Makarychev, K., Schramm, T., and Yaroslavtsev,
G. Near optimal lp rounding algorithm for correlation-
clustering on complete and complete k-partite graphs. In
Proceedings of the forty-seventh annual ACM symposium
on Theory of computing, pp. 219–228, 2015.

Chen, Y., Sanghavi, S., and Xu, H. Clustering sparse graphs.
In Proceedings of the 25th International Conference on
Neural Information Processing Systems-Volume 2, pp.
2204–2212, 2012.

Cohen-Addad, V., Hjuler, N., Parotsidis, N., Saulpic, D.,
and Schwiegelshohn, C. Fully dynamic consistent facil-
ity location. In NeurIPS’19-33rd Conference on Neural
Information Processing Systems, 2019.

Cohen-Addad, V., Lattanzi, S., Mitrovic, S., Norouzi-Fard,
A., Parotsidis, N., and Tarnawski, J. Correlation clus-
tering in constant many parallel rounds. In Proceedings
of the 38th International Conference on Machine Learn-
ing, ICML 2021, 18-24 July 2021, Virtual Event, volume
139 of Proceedings of Machine Learning Research, pp.
2069–2078. PMLR, 2021.

Demaine, E. D., Emanuel, D., Fiat, A., and Immorlica,
N. Correlation clustering in general weighted graphs.
Theoretical Computer Science, 361(2-3):172–187, 2006.

https://doi.org/10.1145/1411509.1411513
https://doi.org/10.1145/1411509.1411513

Online and Consistent Correlation Clustering

Fichtenberger, H., Lattanzi, S., Norouzi-Fard, A., and Svens-
son, O. Consistent k-clustering for general metrics. In
Proceedings of the 2021 ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pp. 2660–2678. SIAM, 2021.

Guo, X., Kulkarni, J., Li, S., and Xian, J. Consistent k-
median: Simpler, better and robust. In International
Conference on Artificial Intelligence and Statistics, pp.
1135–1143. PMLR, 2021.

Jaghargh, M. R. K., Krause, A., Lattanzi, S., and Vassil-
vtiskii, S. Consistent online optimization: Convex and
submodular. In The 22nd International Conference on Ar-
tificial Intelligence and Statistics, pp. 2241–2250. PMLR,
2019.

Kalashnikov, D. V., Chen, Z., Mehrotra, S., and Nuray-
Turan, R. Web people search via connection analysis.
IEEE Transactions on Knowledge and Data Engineering,
20(11):1550–1565, 2008.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Lattanzi, S. and Vassilvitskii, S. Consistent k-clustering.
In International Conference on Machine Learning, pp.
1975–1984. PMLR, 2017.

Lattanzi, S., Moseley, B., Vassilvitskii, S., Wang, Y., and
Zhou, R. Robust online correlation clustering. In
NeurIPS, 2021.

Leskovec, J. and Krevl, A. SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data, June 2014.

Mathieu, C., Sankur, O., and Schudy, W. Online correlation
clustering. In 27th International Symposium on Theoret-
ical Aspects of Computer Science, STACS 2010, March
4-6, 2010, Nancy, France, pp. 573–584, 2010.

http://snap.stanford.edu/data
http://snap.stanford.edu/data

Online and Consistent Correlation Clustering

Algorithm 3 AGREEMENT

1: Input: A graph G, and a parameter ε
2: Output: A clustering C of G
3: Initialize: Ĝ←− G
4: Step 1: Remove all edges of Ĝ whose endpoints are not in ε-agreement in G.
5: Step 2: Remove all edges of Ĝ whose endpoints are both light.
6: Step 3: Compute the connected components C of Ĝ.
7: return C

A. Preliminaries
In all the subsequent sections we will convert, for simplicity, a complete undirected signed graph G′ = (V,E′, s) into a
non-signed undirected graph G = (V,E) where for each pair of nodes {u, v} there is an edge between them in G if and
only if s ({u, v}) =′ +′. Thus the absence of an edge between two nodes corresponds to a negative edge in the original
signed graph and the presence of an edge to a positive edge in the original graph. Note that the correlation clustering cost of
an assignment function f and the clustering C induced by f becomes:

cost(f) =
∑

{u,v}∈E
f(u)6=f(v)

1 +
∑

{u,v}6∈E
f(u)=f(v)

1

In addition, the Agreement algorithm 1 presented in the main paper needs to be redefined in order to take as input a
non-signed graph instead of a signed one. Thus, when we refer to the Agreement algorithm we will refer to Algorithm 3.

B. Properties of the Agreement algorithm
In this section we will restate some useful definitions and lemmas from (Cohen-Addad et al., 2021) regarding the Agreement
algorithm and prove some additional structural properties of the clustering produced by the latter. For simplicity, we set both
parameters λ, β of the Agreement algorithm to be λ = β = ε. We will denote the clustering computed by the Agreement
algorithm on a graph G as C̃ and by f̃ the assignment function that induces the latter clustering5.

A cluster C ∈ C̃ will be called non-trivial/non-singleton if |C| > 2 and singleton/trivial otherwise. In addition, we will
denote by fO the assignment function that induces the optimal correlation clustering solution O of a graph G.

For completeness, we start by restating the two basic definitions used by the Agreement algorithm.

Definition 4. Two nodes u, v are in ε-agreement in G if |NG(u)4NG(v)| < εmax{|NG(u)|, |NG(v)|}, where the symbol
4 denotes the symmetric difference of two sets.

Definition 5. A node u is light if it is in ε-agreement with less than an ε fraction of its neighborhood.

As a direct consequence of the two latter definitions 1, 2 we have that:

Proposition B.1. If u, v are in ε-agreement then |NG(u) ∩NG(v)| > (1− ε)max{|NG(u)|, |NG(v)|}

Note that the latter proposition also implies that nodes which are in ε-agreement have similar degrees.

Proposition B.2. If u, v are in ε-agreement then (1− ε)|NG(u)| 6 |NG(v)| 6 |NG(u)|
1−ε

An important property of clustering C̃ which will permit us to bound the approximation ratio of our solution, is that its cost
constitutes a constant factor approximation to the cost of the optimal correlation clustering. That is:

Lemma 6 (rephrased from (Cohen-Addad et al., 2021)). Let C̃ = Agreement(G, ε) then for ε small enough cost(f̃) 6
Θ(1) cost(fO).

The following lemmas prove that the non-trivial clusters of C̃ form dense subgraphs in the initial graph G with a small
number of outgoing edges.

5Note that a clustering may be induced by many different assignment functions, but two different clusterings cannot be induced by the
same assignment function.

Online and Consistent Correlation Clustering

Lemma B.3 (rephrased from (Cohen-Addad et al., 2021)). Let C be a non-trivial cluster of C̃ and u a node which belongs
to C. Then |NG(u) ∩ C| > (1− 9ε)|C|.
Lemma B.4 (rephrased from (Cohen-Addad et al., 2021)). Let C be a non-trivial cluster of C̃ and u, v two nodes which
belong to C. Then u and v are in an 5ε-agreement. If, in addition, there exists a node w ∈ C such that both u, v are in
ε-agreement with w then u and v are in an 3ε-agreement.

Note that by combining the latter Lemma B.4 with Propositions B.1 and B.2 we can conclude that nodes in the same cluster
C ∈ C̃ have similar neighborhoods.

While lemma B.3 proves that the size of the intersection of a node’s neighborhood NG(u) with the cluster C to which it
belongs is lower bounded by (1−Θ(ε))|C| the following lemma also proves that it is lower bounded by (1−Θ(ε))|NG(u)|.
Lemma 7. Let C be a non-trivial cluster of C̃ then for a small enough constant ε it holds that:

1. If |C| > 10 then every node in C has at least a (1− 3ε)-fraction of its edges in G to nodes in C.

2. If |C| < 10 then nodes in C form a clique with no outgoing edges in G.

Proof. In this proof, we will heavily rely on the structure of Ĝ, the intermediate graph used by the Agreement algorithm.
To that end, note that any cluster C ∈ C̃ corresponds to a connected component of Ĝ. In addition, note that to derive Ĝ
from G the Agreement algorithm deletes edges between light nodes, thus any non-trivial cluster of C̃ (which corresponds to
a connected component of Ĝ) contains at least one heavy node and any light node is connected in Ĝ (and consequently
in ε-agreement) with at least one heavy node of the same cluster. We prove the first part of the lemma by distinguishing
between two cases, i.e. if u is heavy or if u is a light node.
If u is a heavy node of C then by definition u is in ε-agreement with at least an (1 − ε) fraction of its neighborhood.
Consequently, since edges between a heavy and a light node are not deleted, |NG(u) ∩ C| > (1− ε)|NG(u)|.
If u is light then let v ∈ NĜ(u) ∩ C be a heavy neighboring node with whom u is in ε-agreement. Since u and v are in an
ε-agreement from Proposition B.1 we get that:

|NG(u) ∩NG(v)| > (1− ε) max{|NG(u)|, |NG(v)|} ⇒ (1)

|(NG(u) ∩ C) ∩ (NG(v) ∩ C)|+ |(NG(u) \ C) ∩ (NG(v) \ C)| > (1− ε) max{|NG(u)|, |NG(v)|} ⇒ (2)

|(NG(u) ∩ C) ∩ (NG(v) ∩ C)| > (1− ε) max{|NG(u)|, |NG(v)|} − |(NG(u) \ C) ∩ (NG(v) \ C)| ⇒ (3)

|NG(u) ∩ C| > (1− ε) max{|NG(u)|, |NG(v)|} − |NG(v) \ C| ⇒ (4)

|NG(u) ∩ C| > (1− ε) max{|NG(u)|, |NG(v)|} − ε|NG(v)| ⇒ (5)

|NG(u) ∩ C| > (1− ε)|NG(u)| − ε

1− ε
|NG(u)| ⇒ (6)

|NG(u) ∩ C| > (1− 3ε)|NG(u)| (7)

Where:

1. from line (4) to line (5) we used the fact that node v is heavy , hence the set of nodes with which v is not in ε-agreement
(a) is a superset of NG(v) ∩ C; and (b) is at most ε|NG(v)|;

2. from line (5) to line (6) we used that since u, v are in ε-agreement, from proposition B.2 we get that NG(v) 6 NG(u)
1−ε ;

and

3. from line (6) to line (7) we use that (1− ε− ε
1−ε) > (1− 3ε) holds for ε small enough.

We proceed into proving the second part of the lemma. Note that from the first part of the lemma we get that for every node
u ∈ C, |NG(u)| 6 |C|

1−3ε . In order to prove that C forms a clique, assume towards a contradiction that there exist two nodes
u, v ∈ C such that there is no edge (u, v) in G. W.l.o.g. we can assume that u, v have a common neighbor in Ĝ (otherwise
no pair of nodes which belong to C would have a common neighbor and C would be empty) and consequently from lemma
B.4 they are in an 3ε-agreement. Thus, we get:

|NG(u)4NG(v)| 6 3εmax{|NG(u)|, |NG(v)|} 6 3ε
|C|

1− 3ε
< 1 (1)

Online and Consistent Correlation Clustering

which is a contradiction for all ε < 1/31 whenever |C| 6 9.
Now, it remains to prove that whenever |C| 6 9 there is no outgoing edge in G from a node in C to a node which is not
in C. By using NG(u) 6 |C|

1−3ε we can deduce that whenever |C| 6 9 and ε < 1/31 we have |NG(u)| = |C|. The latter
together with the fact that any two nodes u, v ∈ C have an edge between them is enough to deduce that NG(u) = C and C
has no outgoing edges.

At that point it is important to recapitulate all the lemmas concerning non-trivial cluster of C̃ and their consequences. To
that end, let u, v be two nodes which belong to the same non-trivial cluster C of C̃, then for ε small enough the following
properties hold.

Property 1 |NG(u) ∩ C| > (1− 3ε)|NG(u)|

Property 2 |NG(u) \ C| < 3ε|NG(u)|

Property 3 |C| > (1− 3ε)|NG(u)|

Property 4 |NG(u) ∩ C| > (1− 9ε)|C|

Property 5 |C \NG(u)| < 9ε|C|

Property 6 |NG(u)| > (1− 9ε)|C|

Property 7 |NG(u) ∩NG(v)| > (1− 5ε) max{|NG(u)|, |NG(v)|}

Property 8 |NG(v)|(1− 5ε) 6 |NG(u)| 6 |NG(v)|
1−5ε

Property 9 |C \NG(u)| < 9ε|C| < 9ε
1−9ε |NG(u)|

Property 10 |NG(u) \ C| < 3ε|NG(u)| < 3ε
1−3ε |C|

Property 11 NG(u) ∩NG(v) 6= ∅

Note that Properties 2, 3, 5, 6, 9, 10, 11 are straightforward consequences of Properties 1, 4, 7, 8 which are stated in the
lemmas and propositions of this section.

C. Dynamic Analysis of the clustering sequence C̃1, C̃2, . . . , C̃t, . . .

The Agreement algorithm computes at any new arrival of a node ut a clustering C̃t of graph Gt. In the subsequent sections
we will bound the competitive ratio of our solution and the worst case recourse of any node. To bound the competitive ratio
we prove that our solution at time t, induced by the assignment function ft, is close to the solution C̃t induced by f̃t. To
bound the recourse we will ensure that for any node u most of the time ft(u) = ft−1(u). Thus it is clear that for the latter
two facts to be approximately true we need f̃t ≈ f̃t−1 which, at a high level, is equivalent to prove that the structure of C̃t is
similar to the structure of C̃t−1. The current section is devoted to prove the latter. At an intuitive level the lemmas presented
in this section prove that:

1. A node which belongs to a non-trivial cluster of C̃t−1 will either belong to the same non-trivial cluster in C̃t or it will
form a trivial cluster in C̃t. Thus, a node cannot change non-trivial clusters in consecutive rounds.

2. Two non-trivial clusters of C̃t−1 cannot merge in C̃t.

3. A cluster in C̃t−1 cannot split in two or more non-trivial clusters in C̃t.

Lemma 8. Let ε be a small enough constant and C and C ′ be non-trivial clusters of C̃t−1 and u, v two nodes in C, C ′

respectively. In C̃t, u and v cannot belong to the same cluster.

Online and Consistent Correlation Clustering

Proof. Assume towards a contradiction that u, v belong to the same cluster of C̃t. Then bothC andC ′ should have been large
clusters with more than 9 nodes, as otherwise from Lemma 7 we have that in Gt, u and v have at most 1 common neighbor
(the newly arrived node). This, contradicts Property 7 since |NGt(u) ∩NGt(v)| > (1− 5ε) max{|NGt(u)|, |NGt(v)|} >
(1− 5ε) · 2 > 1 for ε small enough.
Thus, both C and C ′ have at least 10 nodes each. Given that C ∩ C ′ = ∅, we can upper bound |NGt−1

(u) ∩NGt−1
(v)|

by |NGt−1
(u) \ C| + |NGt−1

(v) \ C ′| which (by Property 2) is less than 3ε(|NGt−1
(u)| + |NGt−1

(v)|) <
6εmax{|NGt−1

(u)|, |NGt−1
(v)|}. In addition, we have |NGt

(u) ∩ NGt
(v)| 6 |NGt−1

(u) ∩ NGt−1
(v)| + 1 and by

Property 7 |NGt(u) ∩ NGt(v)| > (1 − 5ε) max{|NGt(u)|, |NGt(v)|}, By combining the upper and lower bounds on
|NGt(u) ∩NGt(v)| we get that (1− 11ε) max{|NGt(u)|, |NGt(v)|} < 1 which is false for ε small enough.

Lemma 9. Let ε be a small enough constant and let C be a cluster in C̃t−1 and vt the newly arrived node at time t, then for
any two distinct non-trivial clusters C1 and C2 in C̃t either C1 ∩ C = ∅ or C2 ∩ C = ∅.

Proof. IfC is singleton, the statement is trivially true asC1∩C2 = ∅. Next, we assume the contrary. Towards a contradiction
assume that C1 ∩ C 6= ∅ and C2 ∩ C 6= ∅. Let u ∈ C ∩ C1 and v ∈ C ∩ C2. Then, by Property 11 u and v have a
common neighbor in Gt−1 and, hence, both clusters C1 and C2 of C̃t have an outgoing edge from C1 and C2, respectively,
in Gt. By Lemma 7, we conclude that |C1| > 10, |C2| > 10. Since C1 ∩ C2 = ∅ we can bound |NGt(u) ∩NGt(v)| by
|NGt

(u)\C1|+|NGt
(v)\C2|which (by Property 2) is at most 3ε(|NGt

(u)|+|NGt
(v)|) < 6εmax{|NGt

(u)|, |NGt
(v)|} 6

6εmax{|NGt−1
(u)|, |NGt−1

(v)|}+ 6ε.

At the same time |NGt−1
(u) ∩ NGt−1

(v)| > (1 − 5ε) max{|NGt−1
(u)|, |NGt−1

(v)|} from Property 7. By noting that
|NGt

(u) ∩NGt
(v)| > |NGt−1

(u) ∩NGt−1
(v)| we get:

6ε > (1− 11ε) max{|NGt−1
(u)|, |NGt−1

(v)|}

which is false for ε small enough.

Lemma 10. Let ε be a small enough constant and let C ′, C be two clusters in C̃t−1, C̃t respectively. If C ∩ C ′ 6= ∅ then
|C| < 2|C ′|.

Proof. Let u ∈ C ∩ C ′. Note that |NGt(u)| 6 |NGt−1(u)| + 1. In addition, from Property 3 we get that |NGt−1(u)| 6
|C ′|/(1− 3ε) and from Property 6 we get that |NGt

(u)]| > (1− 9ε)|C|. By combining the latter inequalities we get that
(1− 9ε)|C| 6 |C ′|/(1− 3ε) + 1, from which we can conclude that |C| < 2|C ′| for ε small enough.

Proposition C.1. Let ε be a small enough constant, let C ′, C be two non-trivial clusters in C̃t−1 and C̃t, respectively, and
vt the newly arrived node at time t. Then, if C ∩ C ′ 6= ∅ we have that all nodes in C \ (C ′ ∪ {vt}) form trivial clusters in
C̃t−1 and |C \ C ′| 6 |C|/2.

Proof. Note that if |C| has size 2 the lemma follow trivially, so we assume that |C| > 3.

The fact that all nodes in C \ (C ′ ∪ {vt}) form trivial clusters in C̃t is a direct consequence of Lemma 8, since nodes from
two different non-trivial clusters of C̃t−1 cannot be in agreement in the same cluster of C̃t. To prove that |C \ C ′| 6 |C|/2
we argue that the intersection of C,C ′ must be large, i.e., it suffices to argue that |C ∩ C ′| > |C|/2.

Let u ∈ C ∩ C ′. Then from Property 1 we have that |NGt−1
(u) ∩ C ′| > (1 − 3ε)|NGt−1

(u)| and |NGt
(u) ∩ C| >

(1− 3ε)|NGt(u)|. In addition, note that NGt−1(u) ∩ C ′ = NGt(u) ∩ C ′, hence |NGt(u) ∩ C ′| > (1− 3ε)|NGt−1(u)| >
(1 − 3ε)(|NGt(u)| − 1). By combing these inequalities we get: |NGt(u) ∩ C ∩ C ′| > (1 − 6ε)|NGt(u)| − 1 + 3ε >
(1− 9ε)(1− 6ε)|C| − 1 + 3ε > |C|/2 where in the second inequality we used Property 6 and in the last inequality the fact
that |C| > 3 and that the inequality (1− 9ε)(1− 6ε)x− 1 + 3ε > x/2 is true for x > 3 and ε small enough.

D. Main Algorithm Notation
Before proceeding, for completeness, we introduce again some auxiliary notation and definitions which are used by the
Online Agreement Algorithm 2. We denote by C̃t the clustering computed by the Agreement algorithm and by Ct the
clustering solution computed by Online Agreement at time t. In addition, we denote by ft, f̃t the assignment functions
which induce the clusterings Ct, C̃t, respectively. With a slight abuse of notation we denote by ft(S), f̃t(S) the common
cluster id assigned to a set of nodes S by the respective assignment functions.

Online and Consistent Correlation Clustering

Let C be a clustering. We use S(C), H(C) to denote the set of nodes that belong to trivial and non-trivial, respectively,
clusters of C.

As underlined in the main paper, a crucial definition which permits us to keep track of the growth of an evolving cluster is
the origin cluster definition:

Definition 11 (Origin cluster). Let ID be a cluster id that is used by the assignment function ft, and let tmin be the
minimum t for which ID is used by ftmin

. The origin cluster of ID, denoted by Origin(ID), is the cluster with id ID in
the clustering induced by ftmin

.

An important observation is that, by construction, for any cluster C ′ ∈ C̃t the function ft6 assigns the same cluster id to all
nodes in C ′. In addition, note that ft may assign the latter cluster id, i.e., ft(C ′), also to nodes which form trivial clusters in
C̃t, i.e., nodes in S(C̃t). For that reason, for a cluster C ′ ∈ C̃t we denote the set of nodes in S(C̃t) to which ft assigns cluster
id ft(C ′) as SC

′

t , that is:
SC
′

t = {u ∈ S(C̃t) : ft(u) = ft(C
′)}

We mention the following trivial proposition, which is implied by the Assignment refinement phase of Online Agreement, as
it is heavily used in all of our lemmas.

Proposition D.1. Let C ′ be a cluster of C̃t. Then |C ′| < (3/2)|Origin(ft(C
′))|.

E. Bound the competitive ratio

Lemma 12. Let ε be a small enough constant and C ′ a non-trivial cluster of C̃t such that Origin(ft(C
′)) ∩ C ′ 6= ∅. Then

|Origin(ft(C
′)) ∩ C ′| > (1− 20ε)|Origin(ft(C

′))|.

Proof. For simplicity, let C = Origin(ft(C
′)) and assume w.l.o.g. that C was formed at some time t0 < t (otherwise the

lemma follows trivially since C = C ′). Let x ∈ C ∩ C ′. Since x ∈ C, Property 4 gives that |NGt0
(x) ∩ C| > (1− 9ε)|C|.

Thus, at time t the edges of x outside C ′, i.e., |NGt(x) \ C ′| are at least (1− 9ε)|C| − |C ∩ C ′|. From Property 2 we get
|NGt

(x) \ C ′| < 3ε|NGt
(x)|. By combining the lower and upper bound we get the following inequality:

(1− 9ε)|C| − |C ∩ C ′| < 3ε|NGt
(x)| ⇒

(1− 9ε)|C| − |C ∩ C ′|
3ε

< |NGt
(x)|

From Proposition D.1 we know that |C ′| < 3/2|C| and from Property 3 we get that (1− 3ε)|NGt(x)| 6 |C ′|. Thus:

(1− 3ε)|NGt(x)| < 3/2|C| ⇒

|NGt
(x)| < 3|C|

2(1− 3ε)

Combining the lower and upper bound on NGt(x) we get:

|C ∩ C ′| > |C|
(

1− 9ε− 9ε

2(1− 3ε)

)
> (1− 20ε)|C|

for ε small enough.

Lemma 13. Le ε be a small enough constant and C ′ a non-trivial cluster of C̃t. Then Origin(ft(C
′)) ∩ C ′ 6= ∅.

Proof. For simplicity, let C = Origin(ft(C
′)) and assume w.l.o.g. that C was formed at some time t0 < t (otherwise

the lemma follows trivially since C = C ′). Assume towards contradiction that C ′ is the first such cluster which does
not intersect with C = Origin(ft(C

′)) . Since ft(C ′) = ft0(C) there exists a node u ∈ C ′ and a cluster C ′′ of C̃t′ for
t′ ∈ [t0, t) such that C ′′ ∩ C 6= ∅, u ∈ C ′′ and ft′(C ′′) = ft0(C). Indeed if such a node u and cluster C ′′ do not exist then
ft(C

′) 6= ft0(C) because we assumed that C ′ is the first cluster s.t. C ′ ∩ C = ∅ and ft(C ′) = ft0(C), and moreover, in

6note that also the function f̃t assigns the same cluster id to all nodes in C′.

Online and Consistent Correlation Clustering

order for C ′ to be assigned the same cluster id as C it should intersect a non-singleton cluster of C̃t−1 which has the same
cluster id as C.

We lower bound the number of edges u has towards nodes of C. To that end, note that at time t′ from Property 4 it holds
that |NGt′ (u) ∩ C ′′| > (1− 9ε)|C ′′|. In addition to that, due to the Lemma 12 we have that |C ∩ C ′′| > (1− 20ε)|C| >
(1 − 20ε) 2

3 |C
′′| > |C′′|

2 , where the second inequality comes from the fact that |C ′′| < 3/2|C| and the third inequality is
true for ε small enough. By combining the last two inequalities we get:

|NGt′ (u) ∩ (C ′′ ∩ C)| > |C ′′ ∩ C| − |(C ′′ ∩ C) \NGt′ (u)| (1)

> |C ′′ ∩ C| − |C ′′ \NGt′ (u)| (2)

> |C ′′|/2− 9ε|C ′′| (3)

> |C ′′|/3 (4)

>
(1− 20ε)

3
|C| (5)

>
|C|
6

(6)

Where:

1. from line (3) to line (4) (1/2− 9ε) > 1/3 is true for ε small enough;

2. from line (4) to line (5) we used Lemma 12; and

3. from line (5) to line (6) (1−20ε)
3 > 1

6 is true for ε small enough.

Consequently at time t, since C ′ ∩ C = ∅, |NGt
(u) \ C ′| > |NGt

(u) ∩ C| > |NGt
(u) ∩ (C ′′ ∩ C)| > |C|

6 . By combining
the latter with |NGt(u) \ C ′| < 3ε

1−3ε |C
′| from Property 10 we get

|C ′| > 1− 3ε

18ε
|C| > 3

2
|C|

for ε small enough.

However, because of Proposition D.1, we get that |C ′| < 3
2 |C|, which is a contradiction. This concludes the proof.

Note that by combining the two latter Lemmas 12 and 13 we can deduce that an origin cluster which gets assigned by an
assignment function ft′ cluster id s has a large intersection with a cluster of C̃t whose nodes get assigned cluster id s by an
assignment function ft for t > t′. Formally:

Corollary E.1. Le ε be a small enough constant and C ′ a non-trivial cluster of C̃t. Then |Origin(ft(C
′)) ∩ C ′| >

(1− 20ε)|Origin(ft(C
′))|.

Using corollary E.1 we can deduce that there cannot be two clusters C1, C2 of C̃t whose nodes get assigned the same cluster
id by ft.

Lemma 14. Le ε be a small enough constant and C ′, C ′′ be two non-trivial clusters of C̃t. Then ft(C ′) 6= ft(C
′′).

Proof. Towards a contradiction assume that nodes in C ′, C ′′ get assigned the same cluster id s by ft and let C = Origin(s).
Then from Corollary E.1 we have that |C ∩ C ′| > (1 − 20ε)|C|, |C ∩ C ′′| > (1 − 20ε)|C|. In addition, C ′, C ′′ are
different clusters of the same clustering C̃t, hence they should not intersect, that is C ′ ∩ C ′′ = ∅. Thus, we have
|C| > |C ∩ C ′|+ |C ∩ C ′′| > (2− 40ε)|C| which is false for ε small enough.

An important quantity we need to bound is the number of nodes which belong to trivial clusters of C̃t and get assigned by ft
the same cluster id as nodes which belong to non-trivial clusters of C̃t. To that end, Corollary E.1 is crucial. The following
lemmas bound the latter quantity.

Online and Consistent Correlation Clustering

Lemma 15. Let ε be a small enough constant and C ′ be a non-trivial cluster of C̃t, SC
′

t = {u ∈ S(C̃t) : ft(u) = ft(C
′)}

be the set of nodes that get assigned cluster id ft(C ′) by ft and form trivial clusters in C̃t and C be the origin cluster which
corresponds to cluster id ft(C ′), that is C = Origin(ft(C

′)). Then every node u ∈ SC′t has at least 2|C|/9 edges to nodes

of C and the total number of edges between nodes in SC
′

t and C ∩ C ′ is at least |S
C′
t ||C|
10 >

|SC′
t ||C

′|
15 .

Proof. Let t0 6 t be the time when the origin clusterC was formed. By Corollary E.1 we know that |C∩C ′| > (1−20ε)|C|
and since by Proposition D.1 it holds that |C ′| < 3/2|C| we get that |C ∩ C ′| > |C ′|/2 for ε small enough.

Let x ∈ SC′t . Since ft(x) = ft0(C) there exists t′ ∈ [t0, t] and a cluster C ′′ of C̃t′ such that: (1) ft′(C ′′) = ft0(C); and
(2) x ∈ C ′′. Again by the Corollary E.1 we get that |C ∩ C ′′| > |C ′′|/2 for ε small enough. Since x ∈ C ′′ we also have
|NGt′ (x) ∩ C ′′| > (1− 9ε)|C ′′|. By combining the two latter inequalities we get that:

|NGt′ (x) ∩ (C ′′ ∩ C)| > |C ′′ ∩ C| − |(C ′′ ∩ C) \NGt′ (x)| (1)

> |C ′′ ∩ C| − |C ′′ \NGt′ (x)| (2)

> |C ′′|/2− 9ε|C ′′| (3)

> |C ′′|/3 (4)

> 2|C|/9 (5)

Where:

1. from line (3) to line (4) we used the fact that (1/2− 9ε) > 1/3 holds for ε small enough; and

2. from line (4) to line (5) we used the fact that |C ′′| < 3/2|C| holds by Proposition D.1.

Consequently, every node of SC
′

t has at least 2|C|/9 edges to nodes of C. Using the latter we can deduce that the total
number of edges between nodes of SC

′

t and C ∩ C ′ is at least:

|SC
′

t |
2

9
|C| − |C \ C ′||SC

′

t | > |SC
′

t |
2

9
|C| − 20ε|C||SC

′

t | = |SC
′

t ||C|
(

2

9
− 20ε

)
>
|SC′t ||C|

10

Where:

1. the first inequality comes from Corollary E.1; and

2. the last inequality holds since (2
9 − 20ε) > 1

10 for ε small enough.

To conclude the lemma just note that by Proposition D.1 |C ′| < 3/2|C| and consequently |S
C′
t ||C|
10 >

|SC′
t ||C

′|
15 .

Lemma 16. Let ε be a small enough constant, C ′ be a cluster of C̃t and SC
′

t = {u ∈ S(C̃t) : ft(u) = ft(C
′)} be the set of

nodes that get assigned cluster id ft(C ′) by ft and form trivial clusters in C̃t. Then |SC′t | < 100ε|C ′|.

Proof. Let C be the origin cluster corresponding to cluster id ft(C ′), that is C = Origin(ft(C
′)). By Lemma 15 we know

that the total number of edges between nodes of SC
′

t and C ∩ C ′ is at least |S
C′
t ||C|
10 . Thus, by averaging there is a node

r ∈ C ∩ C ′ with at least |S
C′
t ||C|

10|C∩C′| >
|SC′

t ||C|
10|C| >

|SC′
t |
10 edges to nodes of SC

′

t . Thus, for that node r it holds that:

1. |NGt(r) \ C ′| >
|SC′

t |
10 ; and

2. |NGt(r) \ C ′| < 3ε
1−3ε |C

′| from Property 10

Online and Consistent Correlation Clustering

By combining these two bounds we conclude that |SC′t | < 30ε
1−3ε |C

′| < 100ε|C ′| for ε small enough.

Before stating the main theorem of this section, we underline that by Ot we denote the optimal correlation clustering
solution for graph Gt and by fOt the assignment function which induces that clustering.

Theorem E.2. The Online Agreement Algorithm is a constant competitive ratio algorithm, that is, for any time t

cost(ft) 6 Θ(1) · cost(fOt)

Proof. Fix a time t, from Lemma 6 we have that the cost of clustering C̃t is a constant factor approximation to the cost of
the optimal correlation clustering solution Ot. Thus to prove the theorem it suffices to prove that the cost of our solution
is a constant factor approximation to the cost of C̃t. W.l.o.g. we assume that cost(f̃t) < cost(ft), otherwise the theorem
becomes trivial.

First, note that for any non-trivial cluster C of C̃t both ft and f̃t cluster all nodes of C together. Now, fix a node u which
forms a trivial cluster in C̃t. While f̃t clusters u as a singleton cluster ft may cluster u in a larger cluster. We concentrate
on the case where ft clusters u in a larger cluster C∗, as this is the case where the cost of the two assignment functions
may differ. Both assignment functions maintain, at all time, the following invariant: if two nodes v, v′ belong to different
non-trivial clusters of C̃t then they are assigned to different clusters in Ct. Thus, C∗ may contain the nodes of at most one
non-trivial cluster of C̃t.

We start by arguing that if C∗ ⊆ S(C̃t) we can safely charge the cost that ft pays for clustering all nodes of C∗ together
to what f̃t pays for clustering them apart. To argue the latter, it suffices to prove that |(u, v) 6∈ E : u ∈ C∗, v ∈ C∗| 6
Θ(1)|(u, v) ∈ E : u ∈ C∗, v ∈ V |. To that end, note that C∗ ⊆ C ′ ∪ SC′t′ for some t′ < t and non-trivial cluster C ′ ∈ C̃t′ .
W.l.o.g. assume t′ is the last time the latter holds and let C be the origin cluster corresponding to ft′(C ′). Then, by Lemma
15 any node in C∗ has at least 2|C|/9 edges to nodes in C, hence |(u, v) ∈ E : u ∈ C∗, v ∈ C∗| > |C∗| · 2|C|/9 =
Θ(1)|C||C∗|. At the same time we have that |(u, v) 6∈ E : u ∈ C∗, v ∈ C∗| 6 |C∗|2 6 |C∗|(|C ′| + |SC′t′ |) 6
|C∗|(|C ′|+ 100ε|C ′|) = Θ(1)|C∗||C|, where we used Lemma 16 and the fact that C is the origin cluster of C ′. Thus, for
the rest of the proof we can assume that C∗ 6⊆ S(C̃t) by loosing only a constant factor in the approximation guarantees.

Since C∗ = C ∪SCt for some non-trivial cluster C ∈ C̃t, we have that under the assignment function ft all nodes in C ∪SCt
are clustered together while under the assignment function f̃t nodes in C are clustered together and each node in SCt is
clustered as a singleton. To relate the two costs cost(f̃t), cost(ft) we define the following sets of pairs of nodes and assume
that pair of nodes are not ordered so that they are not double counted:

• PCS(C) = {(u, v) ∈ E : u ∈ C, v ∈ SCt }.

• NCS(C) = {(u, v) 6∈ E : u ∈ C, v ∈ SCt }

• PSS(C) = {(u, v) ∈ E : u ∈ SCt , v ∈ SCt }

• NSS(C) = {(u, v) 6∈ E : u ∈ SCt , v ∈ SCt }

• PV S(C) = {(u, v) ∈ E : u ∈ Vt \ (C ∪ SCt), v ∈ SCt }

• NV S(C) = {(u, v) 6∈ E : u ∈ Vt \ (C ∪ SCt), v ∈ SCt }

• PCC(C) = {(u, v) ∈ E : u ∈ C, v ∈ C}

• NCC(C) = {(u, v) 6∈ E : u ∈ C, v ∈ C}

Note that: (1) pairs of nodes in sets PCS(C), PSS(C) contribute to cost(f̃t) but not to cost(ft); (2) pairs of nodes in sets
NCS(C), NSS(C) contribute to cost(ft) but not to cost(f̃t); (3) pairs of nodes in PV S(C) and NCC(C) contribute to
both costs; and (4) pairs of nodes in NV S(C) and PCC(C) do not contribute to none of the two costs. In addition, we
have that for every two different clusters C,C ′ ∈ C̃t by Lemma 14 the sets SCt , S

C′

t do not intersect, hence the difference of

Online and Consistent Correlation Clustering

the two costs can be rewritten as:

cost(ft)− cost(f̃t) =
∑

C∈C̃t:|C|>1

(|NCS(C)|+ |NSS(C)| − |PCS(C)| − |PSS(C)|)

6
∑

C∈C̃t:|C|>1

(|NCS(C)|+ |NSS(C)|)

We are left to prove that |NCS(C)| 6 Θ(1)|PCS(C)| and |NSS(C)| 6 Θ(1)|PCS(C)| for every C ∈ C̃t. This way we
deduce that cost(ft) − cost(f̃t) 6 Θ(1)

∑
C∈C̃t:|C|>1|PCS(C)|. Note that the latter suffices to prove the Lemma since

cost(f̃t) >
∑
C∈C̃t:|C|>1|PCS(C)|.

We lower bound the size of PCS(C) by |S
C
t ||C|
15 using7 Lemma 15. In addition from the definition of set NCS(C) we can

upper bound its size by |SCt ||C|, hence, deduce that |NCS(C)| 6 15|PCS(C)| . Finally, note that for set NSS(C) we
have:

|NSS(C)| 6 |SCt |2 < 100ε|SCt ||C| 6 100ε|PSC(C)|

where the first inequality comes from the definition of set NSS(C), the second inequality from Lemma 16 and the third
inequality from the lower bound on the size of PSC(C). This concludes the proof.

F. Bound the worst case recourse
In this section we bound the worst case recourse of any node by O(log(n)) where n is the number of nodes in the final
graph. To do the latter we prove that whenever a node changes from a non-trivial cluster C ′1 ∈ C̃t1 whose nodes get assigned
cluster id s1 by ft1 to another non-trivial cluster C ′2 ∈ C̃t2 whose nodes get assigned cluster id s2 by ft2 then the origin
cluster corresponding to the new cluster id is bigger than the one corresponding to the old cluster id by a multiplicative term.
Since the maximum size of an origin cluster is n, changing non–trivial clusters and consequently changing the origin cluster
corresponding to the assigned cluster id can happen at most log(n) times.

We will first prove that if two origin clusters are “close” in size then they cannot be intersecting.

Lemma 17. Let ε be a small enough constant and let C1, C2 be two origin clusters with cluster ids s1, s2 formed at different
times t1, t2 respectively with t1 < t2. If |C2| < 5/4|C1| then C1 ∩ C2 = ∅.

Proof. Towards a contradiction assume that C1 ∩ C2 6= ∅ and let u ∈ C1 ∩ C2. As a first step of the proof we will
argue that since C1 ∩ C2 is non-empty then |C1 ∩ C2| must be large. Since u ∈ C1 ∩ C2 from Property 4 we have that
|NGt1(u) ∩ C1| > (1− 9ε)|C1|. Thus, |NGt2

(u) \ C2| > (1− 9ε)|C1| − |C1 ∩ C2|. Combining the latter with the upper
bound on |NGt2

(u) \ C2| from Property 10 we get:

(1− 9ε)|C1| − |C1 ∩ C2| <
3ε

1− 3ε
|C2| ⇒ (1)

(1− 9ε)|C1| −
3ε

1− 3ε
|C2| < |C1 ∩ C2| ⇒ (2)

(1− 9ε)|C1| −
15ε

4(1− 3ε)
|C1| < |C1 ∩ C2| ⇒ (3)

(1− 20ε)|C1| < |C1 ∩ C2| (4)

Where:

1. from line (2) to line (3) we used that |C2| < 5/4|C1|; and

2. from line (3) to line (4) we used that (1− 9ε)− 15ε
4(1−3ε) > (1− 20ε) is true for ε small enough.

7Note that cluster C corresponds to cluster C′ in Lemma 15

Online and Consistent Correlation Clustering

Now, we will argue that at time t2 − 1 there should be a node v ∈ C1 ∩ C2 such that ft2−1(v) 6= s1.

Let vt2 be the newly arrived node at time t2 and note that because of lemma 8, C2 is formed either:

Case 1: exclusively from nodes in S(C̃t2−1) ∪ {vt2} (by using Rule 2); or

Case 2: by a subset of nodes C ′ 6= ∅ in a non-trivial cluster C ′′ ∈ C̃t2−1 and nodes in S(C̃t2−1) ∪ {vt2}.

We will continue by proving that in neither of these two cases all nodes in C1 ∩ C2 can have the same cluster id s1 at time
t2 − 1.

Before doing so, note that by combining (1 − 20ε)|C1| < |C1 ∩ C2| and |C2| < 5/4|C1| we can deduce that (4/5)(1 −
20ε)|C2| < |C1 ∩ C2| and consequently |C1 ∩ C2| > |C2|/2 for ε small enough.

In Case 1 where C2 is formed exclusively by nodes in S(C̃t2−1) ∪ {vt2}, if all nodes v ∈ C1 ∩ C2 have a cluster id s1 at
time t2 − 1 then, since |C1 ∩ C2| > |C2|/2 by Rule 2 of Algorithm 2 the new cluster would have had s1, and not s2, as a
cluster id before the Assignment refinement phase. In addition, since |C2| < 5/4|C1| < 3/2|C1| the assignment function
ft2 will still assign s1 after the Assignment refinement phase, which is a contradiction. Thus, in this case all nodes in
C1 ∩ C2 cannot have the same cluster id s1 at time t2 − 1.

In Case 2 note that all nodes in C ′ at time t2 − 1 have a cluster id different from s1, otherwise ft2 would have assigned
cluster id s1 to all nodes in C2 before the Assignment refinement phase and also after the Assignment refinement phase
since |C2| < 5/4|C1| < 3/2|C1|. Thus, since in Case 2 C ′ is non-empty,

• either C1 ∩ C2 ∩ C ′ is non-empty, and consequently there is a node in C1 ∩ C2 ⊇ C1 ∩ C2 ∩ C ′, whose cluster id at
time t2 − 1 is different from s1; or

• C1 ∩ C2 ∩ C ′ is empty and all nodes in C1 ∩ C2 form trivial clusters in C̃t2−1. In that case, as in Case 1 there should
be a node in C1 ∩ C2 whose id at time t2 − 1 is different than s1, otherwise the Algorithm 2 would have assigned the
same cluster id s1 to C2.

Consequently, there exists a node v ∈ C1 ∩ C2 such that ft2−1(v) 6= s1.

Since there exists a node v ∈ C1 ∩ C2 such that ft2−1(v) 6= s1, w.l.o.g. we can assume that v was the last node to
change cluster id before time t2. Let C ′′′ ∈ C̃t′ be last non-trivial cluster to which v belonged for t′ ∈ (t1, t2 − 1) before
changing cluster id. We proceed by bounding the size of C ′′′. From Property 3 |NGt2

(v)| 6 |C2|
1−3ε <

5
4

1
1−3ε |C1|, hence

|NGt2
(v)| < 5

4
1

1−3ε |C1|. At the same time from Property 6 |NGt2
(v)| > |NGt′ (v)| > (1− 9ε)|C ′′′|, thus

|C ′′′| < 1

1− 9ε

5

4

1

1− 3ε
|C1| <

4

3
|C1|

for ε small enough. Now using the same arguments as in the beginning of the proof where we lower bounded the size of
C1 ∩C2 we can argue that |C ′′′ ∩C1| > (1− 20ε)|C1| for ε small enough. Consequently, because w.l.o.g. we assumed that
v is the last node of C1 ∩ C2 to change cluster id, we have that ft2−1(w) = ft′(C

′′′),∀w ∈ C1 ∩ C2 ∩ C ′′′. In addition
note that from |C1 ∩ C2| > (1− 20ε)|C1| and |C ′′′ ∩ C1| > (1− 20ε)|C1| we can deduce:

|C1 ∩ C2 ∩ C ′′′| > (1− 40ε)|C1| >
4

5
(1− 40ε)|C2| >

|C2|
2

where the last inequality holds for ε small enough.

Let C ′′′′ be the origin cluster corresponding to ft′(C ′′′). From corollary E.1 we know that |C ′′′′| < |C′′′|
(1−20ε) . Combining

that with |C1 ∩ C2 ∩ C ′′′| > 4
5 (1− 40ε)|C2| ⇒ 5

4(1−40ε) |C
′′′| > |C2|. We conclude that |C2| < (3/2)|C ′′′′|.

Again, we will continue the proof by distinguishing between two cases:

Case 1: where C2 is formed exclusively by nodes in S(C̃t2−1) ∪ {vt2}; and

Online and Consistent Correlation Clustering

Case 2: where C2 is formed by a subset of nodes C ′ 6= ∅ in a non-trivial cluster C ′′ ∈ C̃t2−1 and nodes in
S(C̃t2−1) ∪ {vt2}.

In Case 1 we have that C2 is formed by nodes in S(C̃t2−1) ∪ {vt} where at least half of the nodes have cluster id ft′(C ′′′)
at time t2 − 1. By Rule 2 all nodes in C2 get as a cluster id ft′(C ′′′) before the Assignment refinement phase and remain
with that cluster id also after the Assignment refinement phase since |C2| < (3/2)|C ′′′′|. Thus all nodes in C2 get cluster
id ft′(C ′′′) and C2 is not an origin cluster in that case, which is a contradiction.

In Case 2, we can argue again that nodes in C ′ cannot have as a cluster id ft′(C ′′′) since |C2| < (3/2)|C ′′′′| and C2 would
not be an origin cluster. Thus, all nodes of C2 whose cluster id is ft′(C ′′′) at time t2− 1 form trivial clusters in C̃t2−1. From
proposition C.1 such nodes are at most |C2|/2 which contradicts the fact that |C1 ∩ C2 ∩ C ′′′| > |C2|

2 .

Which leads to a contradiction. The lemma follows.

Lemma 18. Let node v be a node which belongs to a non-trivial cluster C ′1 ∈ C̃t1 and to a non-trivial cluster C ′2 ∈ C̃t2
for t1 < t2. If ft1(C ′1) 6= ft2(C ′2) then denote by C1 and C2 the origin clusters corresponding to cluster ids ft1(C ′1) and
ft2(C ′2) respectively. Then |C2| > (5/4)|C1|.

Proof. Towards a contradiction assume that |C2| < 5/4|C1|.

From lemma 12 we have that |C1 ∩ C ′1| > (1 − 20ε)|C1| and from Proposition D.1 we also have that |C ′1| < (3/2)|C1|.
Combining the latter two inequalities we get |C1 ∩ C ′1| >

|C′1|
2 for ε small enough. Note that |NGt1

(v) ∩ (C ′1 ∩ C1)| >
|NGt1

(v) ∩ C ′1| − |C ′1 \ C1| > (1 − 9ε)|C ′1| − |C ′1|/2 > |C ′1|/3 > |C1|/4 where: (1) in the second inequality we used
Property 6 and the fact that |C1 ∩ C ′1| > |C ′1|/2; (2) in the third inequality we used that (1− 9ε− 1/2) > 1/3 for ε small
enough; and (3) in the last inequality we used that |C1| < |C′1|

1−20ε from lemma 12 and (1− 20ε)/3 > 1/4 for ε small enough.

We will continue by upper bounding |NGt2
(v) \ C2|. To that end from lemma 12 and following the same reasoning as we

did to bound |C1 ∩ C ′1| we get that |C2 ∩ C ′2| > |C ′2|/2. In addition:

|NGt2
(v) \ C2| 6 |NGt2

(v) \ C2 ∩ C ′2| 6 |NGt2
(v) \ C ′2|+ |C ′2 \ C2| 6

3ε

1− 3ε
|C ′2|+ |C ′2|/2 <

<

(
3ε

1− 3ε
+

1

2

)
|C2|

1− 20ε

Where in the third inequality we used Property 10 and in the last lemma 12.

From lemma 17 we have that C1 ∩ C2 = ∅ and NGt1
(v) ⊆ NGt2

(v) so |NGt1
(v) ∩ C1| 6 |NGt2

(v) \ C2|. Combining the
lower and upper bound of the latter two quantities, for ε small enough we end up in a contradiction.

|C1|/4 <
(

3ε

1− 3ε
+

1

2

)
|C2|

1− 20ε
⇒ |C2| > 5/4|C1|

Which leads to a contradiction.

Theorem F.1. The Online Agreement Algorithm has a worst case recourse of O(log n), that is:

r(u) = O(log n),∀v ∈ V

Proof. Fix a node u and assume that at time t node u belongs to a non-trivial cluster C ∈ C̃t with cluster id s assigned by ft.
Note that node u will get assigned a new cluster id by an assignment function ft′′ whenever one of the following scenarios
happen:

1. node u forms a trivial cluster in C̃t′ for t′ > t and at a later time t′′ > t′ enters a non-trivial cluster in C̃t′′ with a
different cluster id s′; and

2. node u forms a trivial cluster in C̃t′ for t′ > t and at a later time t′′ > t′ its cluster id changes to s′ by the Assignment
refinement phase.

Online and Consistent Correlation Clustering

Note that (1) can happen at most O(log n) times due to lemma 18 and each time it happens the recourse of u increases by 1.
In addition, note that after (2) happens there are two possibilities; either u remains in a trivial cluster and it never changes its
cluster id again or it enters a new non-trivial cluster with cluster id s′′. The former can happen at most once and increases
the recourse by 1, while the latter increases the recourse by 2 and by lemma 18 can happen at most O(log n) times. Thus
the overall recourse of u is O(log n).

G. Omitted experiments
Due to the artificial random arrival sequence that we used for the datasets musae-facebook, ca-AstroPh, email-Enron,
the first part of the arrival sequence corresponds to a graph with many disconnected (often singletons) components and
nodes with small degree. This causes PIVOT to perform better than the rest of the algorithms at the beginning of each arrival
sequence as shown in Figure 6, but this behavior is not representative in a more natural arrival sequence (as in the case of
cit-HepTh in Figure 2). To illustrate this, consider the case where the arrival sequence creates many small line-graphs of
constant length. On each such component PIVOT includes a constant number of edges inside clusters with density more than
half, hence the cost of the solution produced by PIVOT is a constant fraction smaller compared to SINGLETONS. On the
other hand, AGREE-OFF will put all nodes of a line subgraph (of length > 2) into singleton clusters.

(a) Clustering cost, email-Enron. (b) Recourse, email-Enron, log-scale. (c) Run time, email-Enron, log-scale.

(d) Clustering cost, ca-AstroPh. (e) Recourse, ca-AstroPh, log-scale. (f) Run time, ca-AstroPh, log-scale.

(g) Clustering cost, musae-facebook (h) Recourse, musae-facebook, log-scale. (i) Run time, musae-facebook, log-scale.

Figure 5. Comparison of our algorithm with the two baselines, for the datasets email-Enron, ca-AstroPh, and musae-facebook.

Online and Consistent Correlation Clustering

(a) Clustering cost relatively to the number of edges, email-
Enron.

(b) Clustering cost relatively to the number of edges, ca-
AstroPh.

(c) Clustering cost relatively to the number of edges, musae-
facebook.

Figure 6. Comparison of our algorithm with the two baselines, for the datasets email-Enron, ca-AstroPh, and musae-facebook.

