
Transfer and Marginalize: Explaining Away Label Noise with Privileged
Information

Mark Collier 1 Rodolphe Jenatton 1 Efi Kokiopoulou 1 Jesse Berent 1

Abstract
Supervised learning datasets often have privileged
information, in the form of features which are
available at training time but are not available at
test time e.g. the ID of the annotator that provided
the label. We argue that privileged information is
useful for explaining away label noise, thereby re-
ducing the harmful impact of noisy labels. We de-
velop a simple and efficient method for supervised
learning with neural networks: it transfers via
weight sharing the knowledge learned with priv-
ileged information and approximately marginal-
izes over privileged information at test time. Our
method, TRAM (TRansfer and Marginalize), has
minimal training time overhead and has the same
test-time cost as not using privileged information.
TRAM performs strongly on CIFAR-10H, Ima-
geNet and Civil Comments benchmarks.

1. Introduction
Supervised learning problems are typically formalized as
learning a conditional distribution p(y|x), y ∈ Y and x ∈
X from (xi, yi), i = 1, ..., N pairs. Yet we often have
access to additional features a ∈ A at training time that will
not be available at test time. These features are known as
privileged information (Vapnik & Vashist, 2009), or PI for
short. An example of PI are features describing the human
annotator that provided a given label, such as the annotator
ID, the length of time to provide the label, the experience of
the annotator, etc. Annotators do not always agree on the
correct label for a given x, some annotators may be more
reliable than others and the reliability of annotators may
depend on the location of x in the input domain X (Snow
et al., 2008; Sheng et al., 2008).

The expanded training dataset consists of (xi,ai, yi)
triplets. Given that our test-time predictive distribution can-

1Google AI. Correspondence to: Mark Collier <markcol-
lier@google.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

not be conditioned on a, what use is this PI? As a thought
experiment, suppose there exists a malicious (or lazy) anno-
tator that provides random labels. It is known that random
labels harm the performance of supervised learning models
(Frénay & Verleysen, 2013; Song et al., 2020; Cordeiro &
Carneiro, 2020). If these random labels can be explained
away via access to PI, such as the annotator ID, then this
harm can be prevented. In particular we can use the PI to
explain away noise in the labels which otherwise would be
irreducible aleatoric uncertainty.

More formally, suppose the PI a is predictive of y given
x, in the sense that the conditional mutual information
I(y;a|x) is non-zero. Then, the entropy of y is reduced
if we condition on both x and a rather than x alone, as
summarised in the intuitive Lemma 1.1.

Lemma 1.1. I(y;a|x)> 0⇒H(y|x,a)<H(y|x).

In §2.1, we make the implication of this lemma crisper for
a particular model, proving that under certain conditions,
PI can be leveraged to lower the expected risk for linear
regression problems. Additionally, prior work has proven
that PI can lead to generalization bounds with better sample
complexity (Vapnik & Vashist, 2009; Lambert et al., 2018).

Inspired by prior work and our theoretical analysis of a
simple linear model, we focus on exploiting PI in super-
vised deep neural networks. The production deployment of
such models often has tight latency and memory constraints.
Hence a number of methods have been developed to utilize
PI with the same test time memory and computation cost
as networks trained without PI (Yang et al., 2017; Lambert
et al., 2018; Lopez-Paz et al., 2015). Yang et al. (2017)
uses PI as a form of input-dependent regularizer. Lambert
et al. (2018) train with heteroscedastic Gaussian dropout,
with the training-time dropout variance a function of the PI.
Lopez-Paz et al. (2015) distill a network trained with PI into
a network without access to a.

Below we develop a method, TRAM, which transfers knowl-
edge via weight sharing from the part of the network trained
using PI to the test time network which does not have access
to PI. At test time, TRAM makes a simple, efficient ap-
proximation to the integral p(y|x) =

∫
p(y|x,a)p(a|x)da.

Making predictions without PI is no more costly than that

TRAM: Explaining Away Label Noise with Privileged Information

with a standard network trained without access to PI. Unlike
prior work which requires specific, typically architecture-
dependent, techniques such as Gaussian Dropout, we need
not constrain the form of the predictors to make the down-
stream marginalization possible. Implementation and train-
ing are simple.

In summary the paper contributions are the following:

• To better illustrate when PI is useful, we show ana-
lytically that, under certain conditions, PI reduces the
expected risk for specific linear regression models.

• We provide empirical evidence suggesting that the rep-
resentations learned with access to PI are more robust
against label noise.

• We propose a novel efficient method, TRAM, which
exploits PI in supervised deep neural networks and has
zero computational overhead at prediction time.

• Empirically, we show that our method performs better
than a series of baselines on CIFAR-10H, ImageNet
and CivilComments benchmarks.

2. Exploiting Privileged Information
To build up intuition and to better illustrate situations where
PI can be useful, we start with a simple linear model where
a formal analysis can be carried out. Next, we look into
non-linear models and provide a motivating experiment
suggesting that useful PI can be leveraged in deep networks
to improve representation learning.

2.1. When can PI be helpful? An analysis in a Simple
Linear Model

We consider the following regression generative model with
target y

y = x>w? + a>v? + ε

where x ∈ Rd and a ∈ Rm correspond to standard and PI
features respectively, while ε ∼ N (0, σ2) stands for some
additive noise. The two unknown parameters (w?,v?) es-
tablish the relationships between the target y and the fea-
tures (x,a). To model the fact that the PI features can
themselves depend on the x—e.g., raters having diverging
assessments on ambiguous input samples—we assume that
a ∼ p(a|x) = N (µ(x)|Σ(x)) for some mean and covari-
ance dependent on x.

Let us assume we have n observations from this generative
model represented by y ∈ Rn,X ∈ Rn×d, A ∈ Rn×m and
µ(X) ∈ Rn×m. We are interested in comparing different
predictors τ(X) that can predict y only based on X , as
required in the case of PI. To compare the predictors, we use
the concept of risk Eε∼p(ε),a∼p(a|x)[R(τ(X))], formally

defined in Appendix I, to capture the expected error of τ
in predicting y; see Section 3.5 in Bach (2021) for more
background about risk analysis.

We defer to Appendix I a rigorous exposition of the results
and convey instead here some intuitive messages. We first
focus on the comparison between

• (NO-PI) the standard least-square estimate that is
given by ŵ0 = (X>X)−1X>y, ignoring A, and

• (PI) the joint least-square estimate defined by
[ŵ1; v̂1] = (Q>Q)−1Q>y with Q = [X,A] in
Rn×(d+m). At prediction time, if we had access to
(xtest,atest) for (PI), we would predict with ŵ>1 xtest+
v̂>1 atest. However, since atest is not available in our con-
text, we use instead its (assumed known) mean µ(xtest),
similar to mean imputation (Little & Rubin, 2019).

Writing Πx the orthogonal projector associated with X ,
defined in Appendix I, our analysis shows that as long as

• Variance of PI: The variance {(v?)>Σ(xi)v
?}ni=1

due to PI is large enough and/or

• Non-overlapping PI: The PI features A have a sig-
nificant average component outside of the subspace
spanned by the features X , i.e., the term below is large
enough

1

n
‖(I −Πx)µ(X)v?‖2, (1)

then the estimator (PI) has a lower risk compared to
(NO-PI). In other words, it is provably better to exploit
the PI A at training time instead of ignoring it.

Our analysis further covers the case of (marg.NO-PI)
where we marginalize ŵ0 with respect to PI and we predict
with XEa∼p(a|x)[ŵ0], which we compare with (marg.
PI) the marginalized predictions Ea∼p(a|x)[Xŵ1 +Av̂1].
In that case, we can show the same conclusion as
previously, with the exception that the variance term
{(v?)>Σ(xi)v

?}ni=1 does not have influence anymore,
only (1) drives the comparison. Indeed, the proof in Ap-
pendix I shows that marginalizing removes from the risk
expressions the terms related to the variance of PI. While the
above analysis is conducted in a simplified setup of a linear
regression model, the conclusions drawn from the analysis
motivate our method and we verify these conclusions hold-
up empirically in both small-scale controlled experiments
(§2.2) and for large-scale neural network classification mod-
els trained on large datasets (§5).

TRAM: Explaining Away Label Noise with Privileged Information

(a) Learning the representation φ(x) w/o PI (top), w/ PI (bottom).

(b) Representations learned w/ No PI vs. w/o PI (regression).

(c) Representations learned w/ No PI vs. w/o PI (classification).

Figure 1: Synthetic representation-learning experiments.

2.2. PI helps to learn better representations: A
motivating experiment

Our analysis of a linear model has established key insights
into the conditions under which PI is provably useful. We
now look at synthetic non-linear neural network experi-
ments, which provide empirical evidence that PI can be help-
ful in the non-linear setting as well. In particular, we show
that representations learned with access to PI can explain
away label noise and transfer better than representations
learned without access to PI. This motivating experiment
forms the basis of our TRAM method. First, we present a
regression experiment and then extend it to classification.

Regression experiment. We simulate a noisy annotator
with PI a binary indicator, a ∼ Bernoulli(0.3), such that

a = 1 represents the case where the noisy annotator pro-
vides a random label independent of x:

y = (1− a) · sin(2πx) + a · v + ε, (2)

where x ∈ [0, 1], v ∼ U(−1, 1) and ε ∼ N (0, 0.1).

We then fit two networks to N = 2, 500 training examples
generated according to this process. The first network does
not have access to PI and is a two-layer MLP, see top left
of Fig. 1a for an illustration and Appendix D.2 for further
details. The second network has access to PI, see bottom of
Fig. 1a. The part of the network which learns the x repre-
sentation, φ, is defined exactly as the no-PI MLP. q(y|x,a),
the output head with access to PI, see Fig. 1a, is a single
layer MLP, with the concatenation of a and φ(x) as inputs;
see bottom left of Fig. 1a.

We then freeze the non-linear representations φ(x) learned
by both networks. In the second step, for the regres-
sion task, we fit a linear model based on (φ(xi), yi), i =
1, . . . , N . The linear model can be solved exactly using
the (L2-regularized) ordinary least squares solution. We
plot the results in Fig. 1b. We see that the representations
learned by the model with access to PI in step #1 enable a
near perfect fit to the true expected marginal distribution,
E(a,y)∼p(a,y|x)[y], over X . However without access to PI
the noise term a · v cannot be explained away. As a result,
the linear model fit on top of the representations learned
without PI is substantially worse than the model fit using
the two-step procedure. We emphasize that both models
have exactly the same capacity. In Appendix G, we further
perform a sensitivity analysis to the scale of ε. As expected,
and predicted by our theory, as the magnitude of the noise
which is independent of PI grows, the method which has
access to PI converges to the no-PI solution.

Classification experiment. We extend the setting above
to a classification task, squashing the output of (2) into a
sigmoid. The labels are obtained by thresholding at 0.5.
The domain X is set to [−2, 2] to have multiple decision
boundaries; see Appendix D.1 for more details about the
setup. We see in Fig. 1c that the logistic-regression classifier
fit on the representations learned with access to PI (green
line) matches the oracle classifier (pink line) that marginal-
izes over the noise sources. The fit is better than when the
classifier uses the no-PI representations (orange line). Quan-
titatively, the PI and NO-PI classifiers respectively match
the oracle classifier 96.7% and 91.0% of the time.

Large-scale experiment. In Appendix E we extend this
representation learning procedure to a large-scale image
classification case. We learn a representation with and with-
out access to PI on a relabeled version of ImageNet (details
in §5.2) using a ResNet-50 (He et al., 2016). We then freeze
the representation and evaluate using a linear model. Access
to PI improves the representations learned.

TRAM: Explaining Away Label Noise with Privileged Information

Figure 2: The TRAM method in diagrammatic form.

3. Method: TRAM
We consider learning under privileged information (Vapnik
& Vashist, 2009), LUPI. Our proposed method, TRAM,
consists of a single neural network with two output heads,
providing predictions for both p(y|x,a) and p(y|x); see
Fig. 2. There are two key ingredients to TRAM; (i) the
p(y|x) head is a simple, yet a provably valid, approximation
to the marginal

∫
p(y|x,a)p(a|x)da and (ii) a partition of

the parameter space such that the neural network weights are
shared between the two output heads, and that these shared
weights are updated solely based on the gradients from the
p(y|x,a) head which has access to PI. Below we develop
TRAM in the classification setting, in §3.4 we extend the
method to the regression setting.

3.1. Ingredient #1: Marginalize over PI at test time

A natural probabilistic approach to LUPI is (i) to learn the
conditional distribution p(y|x,a) during training and (ii)
then, at test time, marginalize over theA domain, computing
p(y|x) =

∫
p(y|x,a)p(a|x)da (Lambert et al., 2018).

Making predictions with the marginal p(y|x) is motivated
by the following observation. Consider the set of distribu-
tionsQ overC class labels,Q = {q(y|·)|∀x ∈ X , q(y|x) ∈
∆C} where ∆C is the C-dimensional simplex. Among all
the distributions q ∈ Q, the marginal x 7→ p(y|x) mini-
mizes the following optimization problem:

min
q∈Q

E(x,a)∼p(x,a) [DKL(p(y|x,a)‖q(y|x))] . (3)

See proof in Appendix B. In words, p(y|x) is optimal in
the sense that it minimizes the expected KL divergence to
p(y|x,a). Note further that the mean imputation scheme
which provably reduces the expected risk for a linear regres-
sion model, §2.1, corresponds precisely to marginalizing
over PI at test time when the PI satisfies the assumption that
they are distributed Gaussian.

Directly computing p(y|x) has two problems; (i) it is typ-

ically intractable and (ii) p(a|x) is unknown and so must
be learned, which is a challenging generative modelling
problem in itself. A Monte Carlo (MC) estimate of the
integral using samples from A in the training set is only
practical with the independence assumption p(a|x) =
p(a), so that p(y|x) reduces to

∫
p(y|x,a)p(a)da ≈

1
S

∑S
s=1 p(y|x,as) with as ∼ p(a).

Unfortunately this independence assumption is often vio-
lated in practice. In addition the memory and computational
cost of MC estimation scales linearly in S, the number of
MC samples. This O(S) scaling is undesirable for produc-
tion deployment with strict latency requirements.

Due to the challenge of computing the integral directly,
we propose a simple approximation q(y|x;w) to p(y|x).
It exploits the property (3) of p(y|x) as the distribution
minimizing the expected KL divergence to its conditional
p(y|x,a). We choose q to be cheap to evaluate at test
time. For example, for a multi-class vanilla TRAM classifier
q(y|x;w) = softmax(Wφ(x)).

3.2. Ingredient #2: Transfer via weight sharing

We partition the parameter space into four disjoint subsets;

1. Let φ(x) be a feature extractor for x ∈ X .

2. Similarly, let ψ(φ(x),a) be a feature extractor jointly
applied to (φ(x),a) for (x,a) in X ×A.

3. The weights w parameterize the marginal distribution:
q(y|x;w) = q(y|φ(x);w).

4. The weights u parameterize the conditional distri-
bution q(y|x,a;u), namely we have the equality
q(y|x,a;u) = q(y|ψ(φ(x),a);u).

Two-step approach. Motivated by Eq. (3), the connection
between LUPI and multi-task learning (Jonschkowski et al.,
2016) and our synthetic representation learning experiments,
§2.2, we consider the following two-step approach:

min
u,φ,ψ

E(x,a,y)∼p(x,a,y)
[
L1(y, q(y|x,a))

]
(4)

min
w

E(x,a,y)∼p(x,a,y)
[
L2(y, q(y|x))

]
with φ = φ? (5)

L1 and L2 are arbitrary loss functions. We assume φ and ψ
are parameterized by neural networks, so minφ,ψ refers to
optimizing the network weights.

Crucially φ? is the feature extractor learned in (4) with
access to PI. This weight sharing enables knowledge transfer
to the network trained without PI. Given Eq. (3), if we make
the standard choice of setting L2 to be the cross-entropy
loss, Eq. (5) approximates the true marginal distribution
p(y|x) (observe that the KL divergence in Eq. (3) reduces
to the cross-entropy loss function for L2 when taking the
one-hot training labels for p(y|x,a)).

TRAM: Explaining Away Label Noise with Privileged Information

Table 1: Comparison to related work.

METHOD p(a|x) TRAINING TEST COST WEIGHT APPROXIMATE p(y|x)
REQUIRED SHARING

IMPUTATION × 1 MODEL, 1 STEP = NO PI X ×
DISTILLATION (LOPEZ-PAZ ET AL., 2015) × 2 MODELS, 2 STEPS = NO PI × ×
HET. DROPOUT (LAMBERT ET AL., 2018) × 1 MODEL, 1 STEP = NO PI X X
MIML-FCN+ (YANG ET AL., 2017) × 1 MODEL, 1 STEP = NO PI × ×
FULL MARGINALIZATION X 1 MODEL, 1 STEP O(S × NO PI) X X

TRAM (OURS) × 1 MODEL, 1 STEP = NO PI X X
HET-TRAM (OURS) × 1 MODEL, 1 STEP = NO PI X X
DISTILLED-TRAM (OURS) × 2 MODELS, 2 STEPS = NO PI X X

Merging the two steps. To further simplify the above
approach, we propose to merge Eq. (4) and Eq. (5) into
a single training procedure. To that end, and reusing the
terminology commonly used in deep-learning frameworks,
let us define

π(y|x;w) = q
(
y|stop gradient(φ(x));w

)
which coincides with q(y|x) except that its gradient only
depends on w. For some β > 0, we then consider:

min
u,w,φ,ψ

E(x,a,y)∼p(x,a,y)
[
L2(y, π(y|x))+βL1(y, q(y|x,a))

]
as the joint training objective. In practice, since the parame-
ters of the two losses are partitioned, we can set β = 1 and
fold instead the search over β into the search of the learn-
ing rate, hence not introducing an extra hyperparameter. In
Appendix E we show empirically that the one-step and the
two-step processes perform equivalently on ImageNet.

3.3. TRAM variants

Privileged information may only explain away some of label
noise uncertainty. Below we propose two TRAM variants
which combine TRAM with existing noisy labels methods.

Het-TRAM. Heteroscedastic classifiers model label noise
that is input-dependent and have been successfully applied
in large-scale image classification (Collier et al., 2021). Of
particular relevance for PI, even if the conditional distribu-
tion q(y|x,a) is homoscedastic, the marginal q(y|x) can
become heteroscedastic (see Appendix C for details).

Hence we propose Het-TRAM, a TRAM variant in which
q(y|x) is heteroscedastic. This increases the expressiveness
of q, improving the approximation in the second step of our
optimization procedure, Eq. (5). We implement the method
of Collier et al. (2021) to make q(y|x) heteroscedastic.

Distilled-TRAM. Distillation (Hinton et al., 2015) is a
technique for transferring knowledge between two neu-
ral networks. Distillation has been previously applied to

LUPI (Lopez-Paz et al., 2015). The teacher and student
network for distillation can have the same parameterization
(Furlanello et al., 2018). In Distilled-TRAM, we use the
single-step TRAM method, setting the loss function, L1

in (4) to the distillation loss. The soft labels for the distilla-
tion loss come from a teacher network, previously trained
with access to PI (hence the 2 steps and models in Table 1).

3.4. Regression

We developed TRAM and Het-TRAM focusing on the
classification setting but our approach is trivial to gen-
eralize to regression problems. In the regression case,
we can choose the predictive distribution to be Gaussian,
q(y|x) = N (µ(x), σ2(x)). For vanilla TRAM we can
choose σ2(x) = 1, while for Het-TRAM we can choose
σ2(x) = softplus(w>σ φ(x)) so that both µ and σ2 are
parameterized by neural networks (Kendall & Gal, 2017).
In our case, we use the shared feature extractor φ(x). L1 in
Eq. (4) and L2 in Eq. (5) are replaced by the Gaussian nega-
tive log-likelihood. Our small-scale regression experiment,
Fig. 1b, demonstrates the efficacy of the two-step TRAM
method for regression problems.

4. Related Work
Vapnik & Vashist (2009) develop a framework for the LUPI
paradigm and introduce the SVM+ method for training Sup-
port Vector Machines in this regime. The slack variables
for the SVM+ constraints are a function of the PI. SVM+
has been extended in the SVM literature (Lapin et al., 2014;
Vapnik & Izmailov, 2015; Wu et al., 2021). Jonschkowski
et al. (2016) provide a unifying framework that connects
together multi-task learning, multi-view learning and LUPI.

Yang et al. (2017) extend the SVM+ approach to neural
network models with their MIML-FCN+ method. The au-
thors formulate a two-tower network similar to ours, but
without weight sharing between the towers. Both towers
make independent predictions given x or a as inputs. The
tower with access to PI predicts the loss of the other tower

TRAM: Explaining Away Label Noise with Privileged Information

and this prediction is regularized to be close to the true loss.
In this way the PI tower outputs a neural network analogue
to the SVM+ slack variables.

Lambert et al. (2018) utilize PI by making the training-time
Gaussian-dropout variance (Kingma et al., 2015) a function
of the PI. At test time the PI is approximately marginalized
over by removing the dropout. Similarly Hernández-Lobato
et al. (2014) allow the additive Gaussian noise component of
a heteroscedastic Gaussian Process Classifier (Rasmussen
& Williams, 2006) to be a function of the PI. The classifier
is homoscedastic at test time.

Lopez-Paz et al. (2015) propose a distillation (Hinton et al.,
2015) style approach to learning with PI. The teacher net-
work is trained with access to PI. In the distillation step the
student network is given x as input and a convex combina-
tion of soft labels from the teacher network and true labels y
as targets. Xu et al. (2020) extend and apply this distillation
method to a recommender system.

TRAM implements knowledge transfer via weight sharing,
performs efficient approximate marginalization at test time
and can be applied to many widely used architectures. Lam-
bert et al. (2018) also share weights and approximate the
marginal p(y|x) however they require the use of Gaussian
dropout, which is not widely used. The distillation and
MIML-FCN+ methods do not transfer via weight sharing
and do not approximate p(y|x). Distillation also requires a
two-step training procedure. See Table 1 for a comparison
of the key features of selected LUPI methods.

5. Experiments
Our experiments tackle the general LUPI problem. There
are a few large-scale public datasets with PI. We thus use
both real-world datasets with PI as well as synthesizing PI
for a re-labelled version of ImageNet (Deng et al., 2009).

We evaluate a number of baselines in addition to our method.

• The “No PI” baseline is standard neural network train-
ing which directly learns p(y|x) and never uses PI.

• Zero and mean imputation learn p(y|x,a) at training
time and substitute a = 0 and a = 1

N

∑
i ai respec-

tively at test time. For mean imputation, averaging
takes place after feature pre-processing, e.g., one-hot
encoding of the annotator ID.

• The “Full marginalization” baseline is an expensive
MC estimate of p(y|x) =

∫
p(y|x,a)p(a|x)da at test

time, see §3.1 for details. It is a gold standard (up to in-
dependence assumption error), impractical to compute
in many applications.

• We also compare to distillation based approaches. “Dis-
tillation No PI” is an ablation of the effect of distillation

Table 2: CIFAR-10 neg. log-likelihood & accuracy (trained
on CIFAR-10H). Averaged over 20 runs ± 1 std. deviation.

METHOD ↓NLL ↑ACCURACY

NO PI 1.058 ± 0.050 67.0 ± 1.7
ZERO IMPUTATION 1.009 ± 0.032 68.7 ± 1.4
MEAN IMPUTATION 0.963 ± 0.058 70.1 ± 1.5
LAMBERT ET AL. (2018) 1.033 ± 0.044 67.1 ± 1.3
FULL MARGINALIZATION 1.119 ± 0.058 70.3 ± 2.5
TRAM 0.980 ± 0.037 70.1 ± 1.4
HET-TRAM 0.972 ± 0.038 70.4 ± 1.5

DISTILLATION NO PI 1.118 ± 0.037 70.1 ± 1.4
LOPEZ-PAZ ET AL. (2015) 1.121 ± 0.040 70.2 ± 1.4
DISTILLED-TRAM 0.941 ± 0.039 71.8 ± 1.4

alone, independent of PI, in which a network trained
without access to PI is distilled into another network
also without access to PI (Furlanello et al., 2018).

Prior work did not evaluate against these imputation base-
lines or full marginalization (Lopez-Paz et al., 2015; Yang
et al., 2017; Lambert et al., 2018), which we found to be
remarkably competitive despite their simplicity.

5.1. CIFAR-10H

One dataset with annotator features is CIFAR-10H (Peterson
et al., 2019), which is a re-labelled version of the CIFAR-10
(Krizhevsky & Hinton, 2009) test set. The new labels are
provided by crowd-sourced human annotators. We make use
of three annotator features; the annotator ID, the reaction
time of the annotator to provide the label and how much
experience the annotator had with the task, as measured by
the number of labels the annotator had previously provided.

As we only have annotator features for the CIFAR-10 test
set, we use this as our training set and evaluate on the of-
ficial training set. As a result we have only 10,000 images
for training. To achieve reasonable performance we start
from a MobileNet (Howard et al., 2017) pretrained on Ima-
geNet. Images have on average> 50 annotations each. This
is unrealistic for typical applications where 1-3 labels per
example is more common. Therefore, we subsample 16,400
labels (1.64 labels per example), see Appendix D for details
of the subsampling procedure. The subsampled labels agree
with the true CIFAR-10 test set labels 79.4% of the time.

In Table 2 we see the results. First, and as expected, us-
ing annotator features via TRAM, marginalization or the
imputation methods provides a performance improvement
over standard neural network training without PI. Second,
we see that TRAM performs on par with full marginaliza-
tion (which uses 16,400 MC samples of a from the training
set), despite having constant time compute and memory
requirements w.r.t. the number of MC samples for the full

TRAM: Explaining Away Label Noise with Privileged Information

Table 3: ImageNet validation neg-log-likelihood and accu-
racy. Avg. over 10 seeds ± 1 std. deviation.

METHOD ↓NLL ↑ACCURACY

NO PI 1.264 ± 0.007 71.7 ± 0.2
ZERO IMPUTATION 1.895 ± 0.008 63.5 ± 0.2
MEAN IMPUTATION 1.619 ± 0.007 65.1 ± 0.3
LAMBERT ET AL. (2018) 1.264 ± 0.006 71.8 ± 0.1
FULL MARGINALIZATION 1.217 ± 0.004 72.6 ± 0.2
TRAM 1.225 ± 0.006 72.5 ± 0.2
HET-TRAM 1.207 ± 0.008 72.8 ± 0.2

DISTILLATION NO PI 1.207 ± 0.004 72.6 ± 0.2
LOPEZ-PAZ ET AL. (2015) 1.216 ± 0.003 72.7 ± 0.2
DISTILLED-TRAM 1.154 ± 0.004 73.8 ± 0.2

marginalization baseline (recall that full marginalization is
not practical to apply to real-world production use cases).
Mean imputation is a strong baseline on CIFAR-10H. Het-
TRAM improves over TRAM demonstrating the efficacy of
making q(y|x,a) heteroscedastic. It is noteworthy that dis-
tillation using PI, (Lopez-Paz et al., 2015) does not improve
over standard distillation without PI. However Distilled-
TRAM with makes use of PI for distillation but then per-
forms approximate marginalization and transfer learning via
weight sharing improves over the distillation baselines on
both accuracy and log-likelihood metrics.

5.1.1. QUALITATIVE ANALYSIS OF CIFAR-10H
RESULTS

We qualitatively analyse how PI is helping improve the per-
formance of TRAM on CIFAR-10H. The PI for CIFAR-10H
does not contain a feature for annotator accuracy. However
the PI feature do include the annotator ID, reaction time
and experience, from which it may be possible to learn to
trust some annotators more than others. TRAM can learn to
output a less confident distribution for unreliable annotators,
thus reducing the harmful impact of incorrect labels.

In Fig. 3 we show an analysis of the confidence of the
TRAM and No PI (i.e., standard) models for each annotator
in CIFAR-10H. Confidence is defined as the max probability
given by the model across the 10 labels. We see that the
trend for TRAM is a strong linear relationship between the
reliability of an annotator and the confidence of the model,
Fig. 3a. The TRAM model is consistently more confident
than the No PI model for reliable annotators while the No
PI model is overconfident for unreliable annotators, Fig. 3b.

5.2. ImageNet ILSVRC12

In order to create a large-scale dataset with annotator fea-
tures, we re-label the ImageNet ILSVRC12 training set by
the following procedure. We download 16 different models
pre-trained on ImageNet, see Appendix D for further de-

(a) Average confidence per model.

(b) Delta in average confidence between models.

Figure 3: How model confidence varies with annotator relia-
bility for CIFAR-10H. Each point represents a single human
annotator. The x-value is the probability the annotator’s
label agrees with the true CIFAR-10 label. See individual
captions for the y-value meaning. TRAM is less confident
for less reliable annotators.

tails. We also add a 17th malicious annotator model which
picks a label uniformly at random from the 1,000 ImageNet
ILSVRC12 classes. For each image in the training set we
select the malicious annotator with 10% probability and oth-
erwise sample one of the 16 models with equal probability.
We then sample a label from the predictive distribution of
that model for that image. This is the label used for training.
On average the sampled label agrees with the true ImageNet
label 68.3% of the time.

For TRAM and other PI baselines, the annotator features
are the model ID (a proxy for a human annotator ID) and the
probability of the label assigned by the model (a proxy for
the confidence of a human annotator). The ImageNet image
is used as the non-privileged information x. φ in TRAM is
randomly initialized ResNet-50 (He et al., 2016).

See Table 3 for the results. The full marginalization base-
line uses 1,000 MC samples of a from the training set. The

TRAM: Explaining Away Label Noise with Privileged Information

imputation baselines perform worse than not using PI, per-
haps due to the imputed values having low density p(a|x).
Again TRAM performs on par with full marginalization and
Het-TRAM has higher accuracy than both. The ImageNet
labels are known to exhibit heteroscedasticity (Collier et al.,
2021), therefore we make both q(y|x) and q(y|x,a) heads
heteroscedastic for Het-TRAM. Distilled-TRAM has signif-
icantly better NLL and accuracy than the two distillation
baselines. In Appendix E, we check that the efficient and
easier to implement approximate one-step TRAM solution
(as evaluated above), does perform on par with the “exact”,
more expensive two-step TRAM method on ImageNet.

Robustness and limits of TRAM. In Appendix H, to test
the robustness of TRAM w.r.t. the available PI features,
we run an ablation removing the PI feature encoding the
probability of the label assigned by the model. We show that
even with a reduced PI feature set, TRAM still improves
over the No PI method, but, as expected, the delta between
TRAM and the No PI method reduces. As this experiment
demonstrates, TRAM requires a PI feature set which is
predictive of the label given the non-PI feature set.

Empirically, we have found that a further condition for
TRAM to provide gains is that the model capacity must be
sufficient to overfit to noisy samples. This agrees with prior
empirical and theoretical work in the PI literature (Lopez-
Paz et al., 2015; Vapnik & Vashist, 2009; Vapnik & Izmailov,
2015). In Appendix F, we conduct an experiment on the
ImageNet benchmark, where we vary the model capacity
to move to an underfitting regime and demonstrate that the
resultant gain from using TRAM is indeed reduced.

5.3. Civil Comments

We further evaluate our method on a large-scale text clas-
sification dataset. Civil Comments1 is a collection of com-
ments from independent news websites annotated with 7
toxicity labels (identity attack, insult, obscene, severe toxic-
ity, sexually explicit, threat, toxicity). The Civil Comments
Identities subset of the Civil Comments data contains privi-
leged information in the form of 24 attributes identified in
the comment (male, female, christian and so on), the non-
PI feature is just the text comment. The Identities subset
consists of 405,130 training examples, 21,293 validation
examples and 21,577 test set examples.

The shared network φ is a pre-trained Universal Sentence
Encoder (Cer et al., 2018). Table 4 contains the test set
results. We report negative log-likelihood and accuracy
averaged over the 7 labels. The TRAM, Het-TRAM and im-
putation methods perform similarly well in terms of average
accuracy, outperforming the No PI baseline as well as the

1https://www.kaggle.com/c/jigsaw-unintended-bias-in-
toxicity-classification/data

Table 4: Civil Comments Identities test set negative log-
likelihood and average accuracy over 7 classes. Averaged
over 10 training runs ± 1 std. deviation.

METHOD ↓NLL ↑ ACCURACY

NO PI 0.085 ± 0.011 97.8 ± 0.12
ZERO IMPUTATION 0.073 ± 0.004 98.2 ± 0.01
MEAN IMPUTATION 0.069 ± 0.003 98.2 ± 0.02
LAMBERT ET AL. (2018) 0.084 ± 0.012 97.8 ± 0.17
FULL MARGINALIZATION 0.065 ± 0.004 97.8 ± 0.00
TRAM 0.064 ± 0.002 98.2 ± 0.01
HET-TRAM 0.062 ± 0.001 98.1 ± 0.1

DISTILLATION NO PI 0.094 ± 0.011 97.8 ± 0.1
LOPEZ-PAZ ET AL. (2015) 0.089 ± 0.000 97.8 ± 0.0
DISTILLED-TRAM 0.065 ± 0.001 98.2 ± 0.0

Gaussian Dropout and full marginalization methods.

The poor accuracy of the full marginalization method is
interesting to note. The PI is directly derived from the non-
PI (in the form of 24 identity human labelled attributes for
the non-PI). This is a clear violation of the independence
assumption required for a MC estimate of full marginaliza-
tion. The dependence of a on x is most clearly identifiable
for the Civil Comments Identities dataset; as a result the
relative performance of the full marginalization method is
poorest on this dataset. Further note that the TRAM and Het-
TRAM methods have lower negative log-likelihood than all
other baseline methods. Standard distillation with no PI and
Lopez-Paz et al. (2015) style distillation where the teacher
network is trained with PI does not provide a performance
improvement over the no PI baseline. Distilled-TRAM per-
forms on par with vanilla TRAM.

6. Conclusion
We introduced TRAM, a new method for LUPI in super-
vised neural networks. TRAM (i) learns an efficient, simple
distribution to approximately marginalize over PI at test
time and (ii) partitions the parameter space enabling transfer
via weight sharing of the knowledge learned with access to
PI. TRAM can be successfully combined with established
methods for dealing with noisy labels; distillation (Distilled-
TRAM) and heteroscedastic output layers (Het-TRAM). We
have analysed a linear model with PI where deriving analytic
results are feasible. In this setting we have shown the utility
of using PI and ingredient #1 of our TRAM method, the
marginalization over PI. Using a synthetic low-dimensional
problem we have further shown the effectiveness of ingre-
dient #2 of our proposed TRAM method, transfer learning
via weight sharing of representations learned with access
to PI. We then have empirically validated the single-step
TRAM procedure on larger-scale datasets in the image and
text domain; CIFAR-10H, a noisy version of ImageNet and
Civil Comments Identities.

TRAM: Explaining Away Label Noise with Privileged Information

References
Bach, F. Learning Theory from First Principles. (draft),

2021.

Cer, D., Yang, Y., Kong, S.-y., Hua, N., Limtiaco, N., John,
R. S., Constant, N., Guajardo-Céspedes, M., Yuan, S.,
Tar, C., et al. Universal sentence encoder. arXiv preprint
arXiv:1803.11175, 2018.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International conference on machine
learning, pp. 1597–1607. PMLR, 2020.

Collier, M., Mustafa, B., Kokiopoulou, E., Jenatton, R., and
Berent, J. Correlated input-dependent label noise in large-
scale image classification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2021.

Cordeiro, F. R. and Carneiro, G. A survey on deep learn-
ing with noisy labels: How to train your model when
you cannot trust on the annotations? In 2020 33rd SIB-
GRAPI Conference on Graphics, Patterns and Images
(SIBGRAPI), pp. 9–16. IEEE, 2020.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Frénay, B. and Verleysen, M. Classification in the presence
of label noise: a survey. IEEE transactions on neural
networks and learning systems, 25(5):845–869, 2013.

Furlanello, T., Lipton, Z., Tschannen, M., Itti, L., and
Anandkumar, A. Born again neural networks. In Interna-
tional Conference on Machine Learning, pp. 1607–1616.
PMLR, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hernández-Lobato, D., Sharmanska, V., Kersting, K., Lam-
pert, C. H., and Quadrianto, N. Mind the nuisance: Gaus-
sian process classification using privileged noise. In Neu-
ral Information Processing Systems, 2014.

Hinton, G., Vinyals, O., and Dean, J. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Jonschkowski, R., Hofer, S., and Brock, O. Patterns
for learning with side information. arXiv preprint
arXiv:1511.06429, 2016.

Kendall, A. and Gal, Y. What uncertainties do we need
in bayesian deep learning for computer vision? In Pro-
ceedings of the 31st International Conference on Neural
Information Processing Systems, pp. 5580–5590, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kingma, D. P., Salimans, T., and Welling, M. Variational
dropout and the local reparameterization trick. arXiv
preprint arXiv:1506.02557, 2015.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. Technical report, University
of Toronto, 2009.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Sim-
ple and scalable predictive uncertainty estimation using
deep ensembles. In Proceedings of the 31st International
Conference on Neural Information Processing Systems,
pp. 6405–6416, 2017.

Lambert, J., Sener, O., and Savarese, S. Deep learning under
privileged information using heteroscedastic dropout. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 8886–8895, 2018.

Lapin, M., Hein, M., and Schiele, B. Learning using priv-
ileged information: Svm+ and weighted svm. Neural
Networks, 53:95–108, 2014.

Little, R. J. and Rubin, D. B. Statistical analysis with
missing data, volume 793. John Wiley & Sons, 2019.

Lopez-Paz, D., Bottou, L., Schölkopf, B., and Vapnik, V.
Unifying distillation and privileged information. arXiv
preprint arXiv:1511.03643, 2015.

Peterson, J. C., Battleday, R. M., Griffiths, T. L., and Rus-
sakovsky, O. Human uncertainty makes classification
more robust. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 9617–9626,
2019.

Rasmussen, C. E. and Williams, C. K. Gaussian processes
for machine learning. The MIT Press, 2006.

Sheng, V. S., Provost, F., and Ipeirotis, P. G. Get another
label? improving data quality and data mining using mul-
tiple, noisy labelers. In Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, pp. 614–622, 2008.

TRAM: Explaining Away Label Noise with Privileged Information

Snow, R., O’connor, B., Jurafsky, D., and Ng, A. Y. Cheap
and fast–but is it good? evaluating non-expert annotations
for natural language tasks. In Proceedings of the 2008
conference on empirical methods in natural language
processing, pp. 254–263, 2008.

Song, H., Kim, M., Park, D., Shin, Y., and Lee, J.-G. Learn-
ing from noisy labels with deep neural networks: A sur-
vey. arXiv preprint arXiv:2007.08199, 2020.

Vapnik, V. and Izmailov, R. Learning using privileged
information: similarity control and knowledge transfer. J.
Mach. Learn. Res., 16(1):2023–2049, 2015.

Vapnik, V. and Vashist, A. A new learning paradigm: Learn-
ing using privileged information. Neural networks, 22
(5-6):544–557, 2009.

Wu, Z., Xia, X., Wang, R., Li, J., Yu, J., Mao, Y., and Liu,
T. Lr-svm+: Learning using privileged information with
noisy labels. IEEE Transactions on Multimedia, 2021.

Xu, C., Li, Q., Ge, J., Gao, J., Yang, X., Pei, C., Sun, F., Wu,
J., Sun, H., and Ou, W. Privileged features distillation
at taobao recommendations. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 2590–2598, 2020.

Yang, H., Tianyi Zhou, J., Cai, J., and Soon Ong, Y. Miml-
fcn+: Multi-instance multi-label learning via fully con-
volutional networks with privileged information. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1577–1585, 2017.

TRAM: Explaining Away Label Noise with Privileged Information

A. Appendix

B. Proof of Equation (3)
As a reminder, we consider C class labels and denote by
∆C the C-dimensional simplex. We define the set of distri-
butions Q over the C class labels by

Q = {q(y|·) | ∀x ∈ X , q(y|x) ∈ ∆C}.

Consider the optimization problem

min
q∈Q

Ex∼p(x) [DKL(p(y|x)‖q(y|x))] (6)

whose solution is straightforwardly given by the marginal
distribution x 7→ q?(y|x) = p(y|x). We recall that the KL
DKL(p(y|x)‖q(y|x)) is defined by

DKL(p(y|x)‖q(y|x))=

C∑
j=1

pj(y|x) log
(pj(y|x)

qj(y|x)

)
.

(7)
For any x and j ≤ C, we can rewrite the terms of the sum

pj(y|x) log
(pj(y|x)

qj(y|x)

)
as

Ea|x∼p(a|x)

[
pj(y|x,a) log

(pj(y|x)

qj(y|x)

)]
where we have used (i) the fact that log(

pj(y|x)
qj(y|x)) does not

depend on a and (ii) the definition of the marginal distribu-
tion

pj(y|x) =
∫
pj(y|x,a)p(a|x)da

= Ea|x∼p(a|x) [pj(y|x,a)] .

Multiplying and dividing in the argument of the log by
pj(y|x,a), we obtain

Ea|x∼p(a|x)

[
pj(y|x,a) log

(pj(y|x,a)

qj(y|x)

pj(y|x)

pj(y|x,a)

)]
.

Summing over j ∈ {1, . . . , C} to reconstruct the KL
term (7), this leads to, for any x,

DKL(p(y|x)‖q(y|x)) = Ea|x [DKL(p(y|x,a)‖q(y|x))]

−Ea|x [DKL(p(y|x,a)‖p(y|x))] .

Since the second term above does not depend on q, mini-
mizing (6) is equivalent to minimizing

min
q∈Q

Ex

[
Ea|x [DKL(p(y|x,a)‖q(y|x))]

]
= min

q∈Q
E(x,a)∼p(x,a) [DKL(p(y|x,a)‖q(y|x))]

which is equal to (3) and which is, analogously to (6), mini-
mized by the marginal distribution x 7→ q?(y|x) = p(y|x).

C. Heteroscedastic Motivation
We consider a simplified special case of our framework in
which the conditional model p(y|x,a) is homoscedastic but
the optimal variational distribution in the sense of Eq. 3
is heteroscedastic. This motivates Het-TRAM, in which
the variational approximations q(y|x) and q(y|x,a) are
heteroscedastic.

Suppose we have a regression dataset constructed from la-
bels assigned by M annotators. Each annotator has their
own homoscedastic Gaussian model p(y|x, a = m) =
N (µθm(x), 1). Here the PI is a single discrete Categori-
cal feature representing the annotator ID which takes one of
M values with equal probability, a ∼ Cat(1

M).

The marginal p(y|x) is a Gaussian Mixture Model. We
choose our variational family to be the Gaussian distri-
bution, q(y|x) = N (µ(x), σ2(x)). The values of µ and
σ2 that minimize Eq. 3 are: µ∗(x) = 1

M

∑
m µθm(x)

and σ2
∗(x) = (M − µ∗(x)) + 1

M

∑
m µ

2
θm

(x) (Lakshmi-
narayanan et al., 2017). Crucially note that despite the
conditional distribution being homoscedastic, the best varia-
tional distribution is heteroscedastic as the variance depends
on the location in X space.

D. Experimental Details
D.1. Data generation process

Synthetic classification experiment. Compared to the
synthetic regression experiment, for the synthetic classi-
fication experiment, we increase the number of training
samples from N = 2, 500 to N = 20, 000 and increase the
scale of the additive noise such that ε ∼ N (0, 0.4).

CIFAR-10H. We use the CIFAR-10 image as the non-
privileged information x. The annotator ID, the number of
prior annotations the annotator has provided and the reaction
time in milliseconds of the annotator, are used as privileged
information a. For feature pre-processing the annotator ID
is one-hot encoded. The number of prior annotations and
the reaction time are independently divided into 10 equally
sized quantiles and the quantile ID is one-hot encoded. The
image is pre-processed according to the standard MobileNet
pre-processing (Howard et al., 2017).

As CIFAR-10H has on average more than 50 annotations per
image and the labels are not particularly noisy. We subsam-
ple the CIFAR-10H labels by the following procedure. We
keep all labels by the 41 annotators that agree with the true
CIFAR-10 label less than 85% of the time. We then select a
further 41 annotators from the remaining annotators. The
average agreement of the bad annotators with the CIFAR-
10 label is 63.3%, in the full subset of labels: 79.2% and
in the full CIFAR-10H dataset: 94.9%. The subsampling

TRAM: Explaining Away Label Noise with Privileged Information

Table 5: Pre-trained models used to re-label ImageNet
ILSVRC12 training set and their accuracy on that training
set.

Model Training set accuracy

ResNet50V2 0.70086
ResNet101V2 0.72346
ResNet152V2 0.72738
DenseNet121 0.74782
DenseNet169 0.76184
DenseNet201 0.77344
InceptionResNetV2 0.8049
InceptionV3 0.77994
MobileNet 0.70594
MobileNetV2 0.71458
MobileNetV3Large 0.75622
MobileNetV3Small 0.68158
NASNetMobile 0.74302
VGG16 0.71178
VGG19 0.71156
Xception 0.79076

procedure leaves 16,400 labels from 82 annotators while
the full CIFAR-10H dataset has 514,200 labels from 2,571
annotators.

ImageNet. The annotator features are the model ID used
to re-label x, which is one-hot encoded and the probabil-
ity of that label being sampled. See main paper for de-
tails on the sampling procedure and see Table 5 for the
list of models used and their accuracy on the ImageNet
training set. The pre-trained models are downloaded from
tf.keras.applications2.

D.2. Hyperparameters

Synthetic experiments. Both layers of the two-layer
MLP are of dimension 64, with tanh hidden activations
and linear output activation. Both the PI and non-PI net-
works are fit for 10 epochs by the Adam optimizer (Kingma
& Ba, 2014) with mean squared error loss function.

CIFAR-10H. For all methods φ(x) (or equivalent) is a
MobileNet (Howard et al., 2017) pre-trained on ImageNet
ILSVRC12, followed by a global average pooling layer and
a Dense + ReLU layer with 64 units. ψ(x,a) is a two-layer
MLP with 64 units per layer and ReLU activation. The first
layer takes only a as an input, while the second layer takes
the output of the first layer concatenated with φ(x) as input.

All models are trained for 20 epochs with the Adam op-

2https://www.tensorflow.org/api docs/python/tf/keras/applications

timizer with base learning rate= 0.001, β1 = 0.9, β2 =
0.999, ε = 1e− 07. All models are trained with L2 weight
regularization with weighting 1e− 3.

Heteroscedastic models are trained using the method of Col-
lier et al. (2021) with 4 factors for the low-rank covariance
matrix approximation and a softmax temperature param-
eter of τ = 3.0. Distilled models are also trained with
a softmax temperature of τ = 3.0 to smooth the teacher
labels and with the distillation hyperparameter λ = 0.5
which weights the losses from the soft teacher labels and
the true labels. A grid search over τ ∈ {1.0, 2.0, 3.0, 4.0}
and λ ∈ {0.0, 0.25, 0.5, 0.75, 1.0} was conducted.

ImageNet. For all methods φ(x) (or equivalent) is a ran-
domly initialized ResNet-50 (He et al., 2016) with the output
layer removed. ψ(x,a) is a two-layer MLP with 128 units
per layer and ReLU activation, the output of this MLP is
concatenated with φ(x) and then passed to the output layer.
The first layer of the ψ(x,a) MLP takes only a as an input,
while the second layer takes the output of the first layer
concatenated with φ(x) as input.

All but Het-TRAM models are trained for 90 epochs with
the SGD optimizer with base learning rate= 0.1, decayed
by a factor of 10 after 30, 60 and 80 epochs. Following
Collier et al. (2021), Het-TRAM is trained for 270 epochs
with the same initial learning rate and learning rate decay
at 90, 180 and 240 epochs. All models are trained with L2
weight regularization with weighting 1e− 4.

Heteroscedastic models use 15 factors for the low-rank
covariance matrix approximation and a softmax temper-
ature parameter of τ = 1.5. Distilled models are trained
with a softmax temperature of τ = 3.0 and with the dis-
tillation hyperparameter λ = 0.5. A grid search over
τ ∈ {1.0, 2.0, 3.0, 4.0} and λ ∈ {0.0, 0.25, 0.5, 0.75, 1.0}
was conducted.

E. Two-step TRAM: ImageNet scale
representation learning experiment

We conduct experiment to test two things: 1) does the one-
step TRAM procedure, introduced in §3.2, which is easier
for practitioners to implement, approximate the two-step
TRAM procedure well and 2) can the results of the synthetic
representation-learning experiment, §2.2, be replicated in a
larger scale setting.

We train a feature extractor with and without access to PI
on ImageNet, following the same procedure, architecture
and dataset used in the main paper. We then freeze the
feature extractor and train a single dense/linear layer with
softmax activation on top of the fixed features. We then eval-
uate the efficacy of these features trained with and without
PI using this “linear probe” evaluation widely used in the

TRAM: Explaining Away Label Noise with Privileged Information

Table 6: Two-step TRAM: scaling up our synthetic
representation-learning experiment. ImageNet validation
set negative log-likelihood and accuracy. Averaged over 10
training runs ± 1 std. dev.

METHOD ↓NLL ↑ACCURACY

ONE-STEP NO PI 1.264 ± 0.007 71.7 ± 0.2
TWO-STEP NO PI 1.265 ± 0.008 71.7 ± 0.3
ONE-STEP TRAM 1.225 ± 0.006 72.5 ± 0.2
TWO-STEP TRAM 1.226 ± 0.002 72.7 ± 0.2

representation learning literature (Chen et al., 2020).

The results are presented in Table 6. We see that the simpler
single-step TRAM method approximates the more compli-
cated two-step TRAM method very well. In addition we see
that the features learned by the network with access to PI
which are then frozen and evaluated using a linear probe pro-
tocol perform better in terms of accuracy and log-likelihood.

F. Examining the conditions under which PI
is helpful

If there are a large number of training samples relative to
the capacity of the model being fit, the ability of a model
with access to PI to explain away noisy samples will not
result in significant performance improvements as the noise
can be averaged out by the large training set. We test this
hypothesis using our ImageNet benchmark.

We move to an underfitting regime by reducing the capacity
of the network trained on the ImageNet PI dataset. In partic-
ular, we train a ResNet-50 with 1

4 the number of parameters
as the standard ResNet-50. In Table 7 we see that when
we reduce the capacity of the network while keeping the
number of training samples fixed the gains to the TRAM
method are reduced. This indicates a limitation of TRAM,
that it is most beneficial in a setting where the model has
sufficient capacity to overfit to noisy training samples. This
aligns with prior empirical and theoretical work on the gen-
eral limitations of PI (not specific to TRAM) (Lopez-Paz
et al., 2015; Vapnik & Vashist, 2009; Vapnik & Izmailov,
2015).

G. Synthetic experiment: vary ε

We vary the standard deviation of ε used in our motivating
synthetic regression experiment, §2.2. The results can be
seen graphically in Fig. 4. Fig. 4 also contains the average
RMSE to the true marginal across the data points plotted.
The graphical and numerical results demonstrate that even
for large levels of noise PI aids with representation learning
but as expected, as the level of noise grows the advantage

Table 7: ImageNet ablation with reduced capacity networks.
ImageNet validation set negative log-likelihood and accu-
racy. Averaged over 10 training runs ± 1 std. dev.

METHOD ↓NLL ↑ACC.

NO PI RESNET-50 1.264 ± 0.007 71.7 ± 0.2
TRAM RESNET-50 1.225 ± 0.006 72.5 ± 0.2
NO PI @ 1

4
CAPACITY 1.717 ± 0.717 62.1 ± 0.3

TRAM @ 1
4

CAPACITY 1.720 ± 0.415 62.4 ± 0.2

of using PI diminishes as it becomes increasingly difficult
to distinguish irreducible noise from noise which can be
explained away with PI.

For these experiments, we make a Monte-Carlo estimate
of the conditional mutual-information, I(y;a|x), (based
on a binning approach) and provide a correspondence table
from ε to I(y;a|x), see Table 8. As noted above, as we
increase ε the gains to the method PI reduces. Using this
correspondence table, we can now see increasing ε causes
I(y;a|x) to go down.

Table 8: ε to I(y;a|x) correspondence table for Fig. 4.

ε 0.1 0.5 1.0 1.5 2.0
I(y;a|x) 0.408 0.150 0.059 0.034 0.024

H. Imagenet experiment PI ablation
We run an ablation, removing PI feature: the probability of
the label assigned by the model from the PI set. We are thus
left with just one PI feature, the one-hot encoded ID of the
model that produced the label.

We see the results in Table 9. As expected (and predicted by
our theoretical analysis), removing informative PI reduces
the effectiveness of TRAM. Nonetheless, TRAM with the
reduced PI feature set still outperforms the No PI baseline,
with accuracy and log-likelihood lying between the No PI
and full PI feature set TRAM methods.

Table 9: ImageNet ablation with reduced PI feature set. Im-
ageNet validation set negative log-likelihood and accuracy.
Averaged over 10 training runs ± 1 std. dev.

METHOD ↓NLL ↑ACC.

NO PI 1.264 ± 0.007 71.7 ± 0.2
TRAM W/ FULL PI SET 1.225 ± 0.006 72.5 ± 0.2
TRAM W/ REDUCED PI SET 1.246 ± 0.004 72.0 ± 0.2

TRAM: Explaining Away Label Noise with Privileged Information

(a) ε ∼ N (0, 0.1).
RMSE No PI to marginal:
0.0858
RMSE PI to marginal: 0.0008

(b) ε ∼ N (0, 0.5).
RMSE No PI to marginal:
0.0880
RMSE PI to marginal: 0.0007

(c) ε ∼ N (0, 1.0).
RMSE No PI to marginal:
0.0897
RMSE PI to marginal: 0.0027

(d) ε ∼ N (0, 1.5).
RMSE No PI to marginal:
0.0841
RMSE PI to marginal: 0.0472

(e) ε ∼ N (0, 2.0).
RMSE No PI to marginal:
0.0977
RMSE PI to marginal: 0.0977

Figure 4: Varying the influence of ε on our motivating
synthetic experiment.

TRAM: Explaining Away Label Noise with Privileged Information

I. Risk analysis
Generative model and notations. We assume the following

• a ∈ Rm,x ∈ Rd,

• a ∼ p(a|x) = N (µ(x)|Σ(x)) for some mean and covariance dependent on x,

• y = x>w? + a>v? + ε with ε ∼ N (0, σ2).

When considering n observations from this generative model, we use the matrix representations y ∈ Rn,X ∈ Rn×d,
A ∈ Rn×m and ε ∈ Rn. We also write the zero-mean Gaussian vector

z = (A− µ(X))v? + ε ∈ Rn ∼ N (0, σ2I + Λ)

where we have defined the diagonal covariance

Λ = Λ(v?,X) = Diag
(
{(v?)>Σ(xi)v

?}ni=1

)
∈ Rn×n.

We list below some notation that we will repeatedly use

• The orthogonal projector associated with X:

Πx = X(X>X)−1X> ∈ Rn×n.

• Similarly, the orthogonal projector associated with A:

Πa = A(A>A)−1A> ∈ Rn×n.

• The projections Xa⊥ = (I −Πa)X and Ax⊥ = (I −Πx)A.

• The matrices: H = (X>X)−1X> ∈ Rd×n and G = (A>A)−1A> ∈ Rm×n.

• The matrices above when restricted to the projections of X and A respectively, that is,

Ha⊥ = (X>a⊥Xa⊥)−1X>a⊥ ∈ Rd×n and Gx⊥ = (A>x⊥Ax⊥)−1A>x⊥ ∈ Rm×n.

I.1. Definition of the risk

We will compare different estimators based on their different risks. We focus on the fixed design analysis (Bach, 2021), i.e.,
we study the errors only due to resampling the noise ε and the feature a.

Given a predictor τ(X) based on the training quantities (X,A, ε), we consider y′ = Xw? + A′v? + ε′ (where the prime
is to stress the difference with the training quantities without prime) and define the risk of τ as

R(τ(X))) = Eε′∼p(ε′),a′∼p(a′|x)

{
1

n
‖y′ − τ(X)‖2

}
. (8)

Expanding the square with y′ − τ(X) = Xw? − τ(X) + µ(X)v? + z′, we obtain the expression

R(τ(X)) =
1

n
‖Xw? − τ(X) + µ(X)v?‖2 +

1

n
tr(σ2I + Λ). (9)

Following common practices (Bach, 2021), to assess the risk, we finally take a second expectation
Eε∼p(ε),a∼p(a|x)[R(τ(X))] with respect to the training quantities (A, ε).

Since we will mostly consider differences of risks, we omit the variance term 1
n tr(σ2I + Λ) in the equations below.

TRAM: Explaining Away Label Noise with Privileged Information

I.2. Capturing the benefit of PI without marginalization

We first describe when, in absence of any marginalization, ordinary least squares ignoring PI is worse than ordinary least
squares using PI with mean imputation at prediction time.

Proposition I.1. Assume that X>X is invertible. Moreover, assume that A>A and [X,A]>[X,A] are almost surely
invertible. We have that

E[R(τNO-PI(X))] > E[R(τPI(X))]

if and only if
1

n
‖(I −Πx)µ(X)v?‖2 +

σ2d

n
+

1

n
tr(ΠxΛ) >

σ2

n
E[‖K‖2]

with K = XHa⊥ + µ(X)Gx⊥. When m = 1 (i.e., A is a column vector), a sufficient condition is

1

n
‖(I −Πx)µ(X)v?‖2 +

1

n
tr(ΠxΛ) > 2E

[
‖ΠxA‖2 + ‖µ(X)‖2

‖(I −Πx)A‖2

]
+
σ2d

n
.

We provide the details of the derivation of the risk for τNO-PI and τPI in Section I.2.1 and Section I.2.2 respectively. Moreover,
the second part of the proposition follows from an application of Lemma I.5.

I.2.1. ORDINARY LEAST SQUARES (NO MARGINALIZATION)

The solution of
min
w

1

2
‖y −Xw‖2

is given by ŵ0 = (X>X)−1X>y = Hy. The corresponding predictions are

τNO-PI(X) = Xŵ0 = Πxy = Xw? + Πxµ(X)v? + Πxz.

Plugging into (9), we obtain

R(τNO-PI(X)) =
1

n
‖(I −Πx)µ(X)v? −Πxz‖2.

Expanding the square and using that tr(Πx) = d, the final risk expression is

E[R(τNO-PI(X))] =
1

n
‖(I −Πx)µ(X)v?‖2 +

1

n
E[‖Πxz‖2]

=
1

n
‖(I −Πx)µ(X)v?‖2 +

σ2d

n
+

1

n
tr(ΠxΛ). (10)

I.2.2. ORDINARY LEAST SQUARES WITH PI AND MEAN IMPUTATION (NO MARGINALIZATION)

We focus on the solution of
min
w,v

1

2
‖y −Xw −Av‖2

to construct an estimator. Using Lemma I.3, we have

ŵ1 = Ha⊥y and v̂1 = Gx⊥y.

Using Lemma I.4, we can simplify
ŵ1 = Ha⊥y = w? + 0 + Ha⊥ε

and
v̂1 = Gx⊥y = 0 + v? + Gx⊥ε.

Since A is not available at prediction time, we impute it instead with its mean µ(X), which is assumed to be perfectly
known. This leads to

τPI(X) = Xŵ1 + µ(X)v̂1 = Xw? + µ(X)v? + Kε,

TRAM: Explaining Away Label Noise with Privileged Information

with
K = XHa⊥ + µ(X)Gx⊥.

Plugging into (9) and taking the expectation, we obtain

E[R(τPI(X))] =
1

n
‖0‖2 +

1

n
E[‖Kε‖2]

=
σ2

n
E[‖K‖2]. (11)

I.3. Capturing the benefit of PI with marginalization

We then describe when, with marginalization, ordinary least squares ignoring PI is worse than ordinary least squares using
PI.
Proposition I.2. Assume that X>X is invertible. Moreover, assume that A>A and [X,A]>[X,A] are almost surely
invertible. We have that

E[R(τmarg. NO-PI(X))] > E[R(τmarg. PI(X))]

if and only if
1

n
‖(I −Πx)µ(X)v?‖2 +

σ2d

n
>
σ2

n
‖E[L]‖2

with L = XHa⊥ + AGx⊥. When m = 1 (i.e., A is a column vector), a sufficient condition is

1

n
‖(I −Πx)µ(X)v?‖2 > 2E

[
‖ΠxA‖2 + ‖A‖2

‖(I −Πx)A‖2

]
+
σ2d

n
.

We provide the details of the derivation of the risk for τmarg. NO-PI and τmarg. PI in Section I.3.1 and Section I.3.2 respectively.
Moreover, the second part of the proposition follows from an application of Lemma I.5.

I.3.1. ORDINARY LEAST SQUARES (WITH MARGINALIZATION)

Restarting from Section I.2.1, we consider the predictions marginalized with respect to A. We have

τmarg. NO-PI(X) = Ea∼p(a|x)[Xŵ0] = Xw? + Πxµ(X)v? + Πxε.

Plugging into (9), we obtain

R(τmarg. NO-PI(X)) =
1

n
‖(I −Πx)µ(X)v? −Πxε‖2.

Expanding the square and using that tr(Πx) = d, the final risk expression is

E[R(τmarg. NO-PI(X))] =
1

n
‖(I −Πx)µ(X)v?‖2 +

1

n
E[‖Πxε‖2]

=
1

n
‖(I −Πx)µ(X)v?‖2 +

σ2d

n
. (12)

I.3.2. ORDINARY LEAST SQUARES WITH PI AND MARGINALIZATION

Restarting from Section I.2.2, we consider the predictions marginalized with respect to A. In particular, we do not impute
A by its mean but rather directly take the expectation over A. We have

τmarg. PI(X) = Ea∼p(a|x)[Xŵ1 + Av̂1] = Xw? + µ(X)v? + Ea∼p(a|x)[L]ε,

with
L = XHa⊥ + AGx⊥.

Plugging into (9) and taking the expectation, we obtain

E[R(τmarg. PI(X))] =
1

n
‖0‖2 +

1

n
E[‖Ea∼p(a|x)[L]ε‖2]

=
σ2

n
‖Ea∼p(a|x)[L]‖2. (13)

TRAM: Explaining Away Label Noise with Privileged Information

I.4. Technical lemmas

Lemma I.3. Assume that both X>X and A>A are invertible. Moreover, assume that both X>a⊥Xa⊥ and A>x⊥Ax⊥ are
invertible.

We can write the solution of

min
w,v

1

2
‖y −Xw −Av‖2

as
ŵ = Ha⊥y and v̂ = Gx⊥y.

Proof. The proof follows by applying inversion formula for the block matrix

Q =

[
X>X X>A
A>X A>A

]
where X>a⊥Xa⊥ and A>x⊥Ax⊥ are the two Schur complements of X>X and A>A. Under the assumptions of the lemma,
the matrix is Q is invertible.

Lemma I.4. We have the following properties

• Ha⊥X = (X>a⊥Xa⊥)−1X>(I −Πa)X = (X>a⊥Xa⊥)−1(X>a⊥Xa⊥) = I ,

• Ha⊥A = (X>a⊥Xa⊥)−1X>(I −Πa)A = 0.

Conversely, we have

• Gx⊥A = (A>x⊥Ax⊥)−1A>(I −Πx)A = (A>x⊥Ax⊥)−1(A>x⊥Ax⊥) = I ,

• Gx⊥X = (A>x⊥Ax⊥)−1A>(I −Πx)X = 0.

Lemma I.5. Assume m = 1, i.e., A is a column vector. We have

E[‖K‖2] ≤ 2d+ 2E
[
‖ΠxA‖2 + ‖µ(X)‖2

‖(I −Πx)A‖2

]
.

Similarly, it holds that

‖E[L]‖2 ≤ 2d+ 2E
[
‖ΠxA‖2 + ‖A‖2

‖(I −Πx)A‖2

]
.

Proof. We start by splitting the term into

‖K‖2 ≤ 2‖XHa⊥‖2 + 2‖µ(X)Gx⊥‖2.

Notice that Ha⊥H
>
a⊥ = (X>a⊥Xa⊥)−1 and similarly Gx⊥G

>
x⊥ = (A>x⊥Ax⊥)−1.

Since ‖M‖2 = tr(M>M), we have

‖K‖2 ≤ 2tr((X>X)(X>a⊥Xa⊥)−1) + 2tr(µ(X)>µ(X)(A>x⊥Ax⊥)−1).

By definition of Ax⊥, when m = 1, we have

(A>x⊥Ax⊥)−1 =
1

‖(I −Πx)A‖2
.

For the term (X>a⊥Xa⊥)−1, the Sherman–Morrison formula leads to

(X>a⊥Xa⊥)−1 = (X>X)−1 +
1

1− b>(X>X)−1b
(X>X)−1bb>(X>X)−1

TRAM: Explaining Away Label Noise with Privileged Information

with b = 1/‖A‖ ·X>A ∈ Rd. Further simplifying, we obtain

tr((X>X)(X>a⊥Xa⊥)−1) = tr
(
I +

ΠxAA>Πx

‖A‖2 − ‖ΠxA‖2
)

= d+
‖ΠxA‖2

‖(I −Πx)A‖2
.

For the second part of the proof, we start by applying Jensen inequality:

‖E[L]‖2 ≤ E[‖L‖2].

The rest of the proof follows along the same arguments, replacing µ(X) by A.

