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Abstract

Recent empirical evidence has driven conven-
tional wisdom to believe that gradient-based meta-
learning (GBML) methods perform well at few-
shot learning because they learn an expressive
data representation that is shared across tasks.
However, the mechanics of GBML have remained
largely mysterious from a theoretical perspec-
tive. In this paper, we prove that two well-known
GBML methods, MAML and ANIL, as well as
their first-order approximations, are capable of
learning common representation among a set of
given tasks. Specifically, in the well-known multi-
task linear representation learning setting, they
are able to recover the ground-truth representa-
tion at an exponentially fast rate. Moreover, our
analysis illuminates that the driving force caus-
ing MAML and ANIL to recover the underlying
representation is that they adapt the final layer of
their model, which harnesses the underlying task
diversity to improve the representation in all di-
rections of interest. To the best of our knowledge,
these are the first results to show that MAML
and/or ANIL learn expressive representations and
to rigorously explain why they do so.

1. Introduction

A widely popular approach to achieve fast adaptation in
multi-task learning settings is to learn a representation that
extracts the important features shared across tasks (Maurer
et al., 2016). However, our understanding of how multi-
task representation learning should be done and why certain
methods work well is still nascent.

Recently, a paradigm known as mefa-learning has emerged
as a powerful means of learning multi-task representations.
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This was sparked in large part by the introduction of Model-
Agnostic Meta-Learning (MAML) (Finn et al., 2017), which
achieved impressive results in few-shot image classification
and reinforcement learning scenarios, and led to a series
of related gradient-based meta-learning (GBML) methods
(Raghu et al., 2020; Nichol & Schulman, 2018; Antoniou
et al., 2019; Hospedales et al., 2021). Surprisingly, MAML
does not explicitly try to learn a useful representation; in-
stead, it aims to find a good initialization for a small number
of task-specific gradient descent steps, agnostic of whether
the learning model contains a representation. Nevertheless,
Raghu et al. (2020) empirically argued that MAML’s im-
pressive performance on neural networks is likely due to
its tendency to learn a shared representation across tasks.
To make this argument, they noticed that MAML’s repre-
sentation does not change significantly when adapted to
each task. Moreover, they showed that a modified ver-
sion of MAML that freezes the representation during local
adaptation, known as the Almost-No-Inner-Loop algorithm
(ANIL), typically performs at least as well as MAML on
few-shot image classification tasks. Yet it is still not well
understood why these algorithms that search for a good ini-
tialization for gradient descent should find useful a global
representation among tasks. Thus, in this paper, we aim to
address the following questions:

Do MAML and ANIL provably learn high-quality
representations? If so, why?

To answer these questions we consider the multi-task linear
representation learning setting (Maurer et al., 2016; Tripu-
raneni et al., 2021; Du et al., 2020) in which each task is a
noisy linear regression problem in R? with optimal solution
lying in a shared k-dimensional subspace, where k < d.
The learning model is a two-layer linear network consisting
of a representation (the first layer of the model) and head
(the last layer). The goal is to learn a representation that
projects data onto the shared subspace so as to reduce the
number of samples needed to find the optimal regressor for
anew task from Q(d) to Q(k).

Main contributions. We prove, for the first time, that
both MAML and ANIL, as well their first-order approxi-
mations, are capable of representation learning and recover
the ground-truth subspace in this setting. Our analysis re-
veals that MAML and ANIL’s distinctive adaptation updates
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Figure 1. Distance of learned representation from the ground-truth
for ANIL, MAML and average risk minimization run on task pop-
ulation losses in multi-task linear representation learning setting.

for the last layer of the learning model are critical to their
recovery of the ground-truth representation. Figure 1 visual-
izes this observation: all meta-learning approaches (Exact
ANIL, MAML, and their first-order (FO) versions that ig-
nore second-order derivatives) approach the ground truth
exponentially fast, while a non-meta learning baseline of
average loss minimization empirically fails to recover the
ground-truth. We show that the inner loop updates of the
head exploit task diversity to make the outer loop updates
bring the representation closer to the ground-truth. How-
ever, MAML’s inner loop updates for the representation
can inhibit this behavior, thus, our results for MAML re-
quire an initialization with error related to task diversity,
whereas ANIL requires only constant error. We also show
that ANIL learns the ground-truth representation with only
O(% + k3) < d samples per task, demonstrating that
ANIL’s representation learning is sample-efficient.

Related work. Several works have studied why meta-
learning algorithms are effective; please see Appendix A
for a comprehensive discussion. Building off Raghu et al.
(2020), most of these works have studied meta-learning
from a representation learning perspective (Goldblum et al.,
2020; Saunshi et al., 2021; Arnold et al., 2021; Wang et al.,
2021a; Kao et al., 2022). Among these, Ni et al. (2021);
Bouniot et al. (2020); Setlur et al. (2020) and Kumar et al.
(2021) showed mixed empirical impacts of training task
diversity on model performance. Most related to our work
is (Saunshi et al., 2020), which proved that the continuous
version of a first-order GBML method, Reptile (Nichol &
Schulman, 2018), learns a one-dimensional linear repre-
sentation in a two-task setting with a specific initialization,
explicit regularization, and infinite samples per task. Other
works studied multi-task representation learning in the linear
setting we consider from a statistical perspective (Maurer
et al., 2016; Du et al., 2020; Tripuraneni et al., 2021). Fur-
thermore, Collins et al. (2021) and Thekumparampil et al.
(2021) gave optimization results for gradient-based methods
in this setting. However, the algorithms they studied are
customized for the assumed low-dimensional linear repre-

sentation model, which makes it relatively easy to learn the
correct representation efficiently. A more challenging task
is to understand how general purpose and model-agnostic
meta-learning algorithms perform, such as the algorithms
we study.

Notations. We use bold capital letters for matrices and bold
lowercase letters for vectors. We use O4** to denote the
set of matrices in R?** with orthonormal columns. A hat
above a matrix, e.g. B, implies the matrix is a member
of O%*_ We let col(B) denote the column space of B,
and col ™ (B) denote its orthogonal complement. N(0, o2)
denotes the Gaussian distribution with mean 0 and variance
2. O(-) and ©(-) hide constant factors, and O(-) and €2(-)
hide constant and logarithmic factors.

2. Problem Formulation

We employ the multi-task linear representation learning
framework (Maurer et al., 2016; Du et al., 2020; Tripuraneni
et al., 2021) studied in prior works. Each task in this setting
is a linear regression problem in R?. We index tasks by
(t,1), corresponding to the i-th task sampled on iteration ¢.
The inputs x; ; € R? and labels y;; € R for the (¢,i)-th
task are sampled i.i.d. from a distribution F; ; over R? x R
such that:

Ztq ™ N(0,02)7 Yti =

where 0. ,,; € R? is the ground-truth regressor for task
(t,), p is a distribution over R? and 2, ; is white Gaussian
noise with variance o2. Each task has a set of m samples
Dy = {(Xt,i,5, Yt,i.j) }jeim) drawn iid. from P ; avail-
able for training.

Xt ~ D,y (O t)irXei) + 264

To account for shared information across tasks, we suppose
there exists a matrix B, € O%** such that the ground-truth
regressors {6, ; ;}; for all tasks lie in col(B,), so they can
be written as 0., ;; = B, w, ;; for all ¢,7, where w, ;; €
R*. We refer to B, as the ground-truth representation and
W, as the ground-truth head for task (¢,7). The task
environment consists of B, and a distribution v over ground-
truth heads. With knowledge of col (B, ), we can reduce the
number of samples needed to solve a task from (d) to (k)
by projecting the task data onto col (B.), then learning a
head in R*. The question becomes how to learn the ground-
truth subspace col (B.).

The learning model consists of a representation B € R%**
and a head w € R¥. We would like the column space of B
to be close to that of B.., measured as follows.

Definition 1 (Principle angle distance). Let B € O7%k
and fhy L€ O¥(d=F) denote orthonormal matrices whose
columns span col(B) and col™ (B,), respectively. Then the
principle angle distance between B and B, is

dist(B,B,) = |B/]  B|.. (1)
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For shorthand, we denote dist; := dist(B¢, B.).

Notice that dim(col(B.)) = k. Thus, the learned represen-
tation B must extract k£ orthogonal directions belonging to
col(B.). As we will show, MAML and ANIL’s task-specific
adaptation of the head critically leverages task diversity to
learn k such directions.

3. Algorithms

Here we formally state the implementation of ANIL and
MAML for the problem described above. First, letting
0 = [w;vec(B)] € R(@*D* denote the vector of model
parameters, we define the population loss for task (¢, 4):

Et,i(e) = %E(Xt,i,yt,i)"‘Pt,i |:(<Bw7xt,i> -

Often we approximate this loss with the finite-sample loss
for a dataset Dgz = {(%t,i,5, ytﬂi’j)}je[m/]:

ym)z] .

MAML. MAML minimizes the average loss across tasks
after a small number of task-specific gradient updates. Here,
we consider that the task-specific updates are one step of
minibatch SGD with batch Di’; consisting of my,, i.i.d. sam-
ples from P, ;. Specifically, the loss function that MAML
minimizes is
ngin £MAML(0) = Ew*,t,i,Dif; [»Ct,i(o—aveﬁt,iw; Di,’i)))]
2
where for ease of notation we have written E, ,,Din, as
shorthand for E., ., Dim o pn - MAML essentlally
solves (2) with minibatch SGD At iteration ¢, it draws
n tasks with ground-truth heads {w. ; ;}ic[,,) drawn from
v, and for each drawn task, draws m samples contained
in Dy ; i.i.d. from P, ;. MAML then partitions D; ; into
Dy and DyY* such that [D%| = mip, DY = mou,
and m;, + Moy = m (We assume m;, < m). For task
(t,4), in what is known as the inner loop, MAML takes a
task-specific stochastic gradient step from the initial model
(B¢, wy) using the samples D;"; and step size o to obtain
the adapted parameters 6, ;:

Wy — avwﬁi(Bt, W; D%’i)
)

0, Wi |
BT vec(By,;) veC(Bt)faVveC(B)Li(Bt,wt;D;’g

Then, in the so-called outer loop, MAML takes a minibatch
SGD step with respect to the loss after task-specific adapta-
tion using the samples {Dy%"};c[,) and step size 3

0i416,— %Z(I_anﬁt,iwﬁD?gt»Vﬁt,i(at,iJfoiLt)

i=1

Note that the above Exact MAML update requires expen-
sive second-order derivative computations. In practice, FO-
MAML, which drops the Hessian, is often used, since it
typically achieves similar performance (Finn et al., 2017).

ANIL. Surprisingly, Raghu et al. (2020) noticed that train-
ing neural nets with a modified version of MAML that lacks
inner loop updates for the representation resulted in models
that matched and sometimes even exceeded the performance
of models trained by MAML on few-shot image classifica-
tion tasks. This modified version is ANIL, and its inner loop
updates in our linear case are given as follows:

Wi i
0,;= [

_ Wt—OéV ﬁtl(Bt,Wt,D”L>
’ vec(Bys)|

vec(By)

In the outer loop, ANIL again takes a minibatch SGD step
with respect to the loss after the inner loop update. Then,
the outer loop updates for Exact ANIL are given by:

B . ou A ou
Ori1 0, — = > Hii(01: D7) VoL (01, D7)

i=1
where, for Exact ANIL,

Ik—aV ﬁ“(ot, ut)y 0

I:It,i(Btawt;’D?fiLt) = Et (et Dout) 1
t » Tt

—Q3 VeC(B)Bw

To avoid computing second order derivatives, we can instead
treat H, ; as the identity operator, in which case we call the
algorithm FO-ANIL.

3.1. Role of Adaptation

Now we present new intuition for MAML and ANIL’s rep-
resentation learning ability which motivates our proof struc-
ture. The key observation is that the outer loop gradients for
the representation are evaluated at the inner loop-adapted
parameters; this harnesses the power of task diversity to
improve the representation in all k directions. This is easiest
to observe in the FO-ANIL case with m;, = My = 0.
In this case, the update for the representation is given as:

n n

T T

B :Bt(Ik_g E WtJ'Wt’i)—‘rB* % E Wi t,iWe i
i=1 i=1

| S ——
FO-ANIL signal weight

3)

FO-ANIL prior weight

If the ‘prior weight’ is small and the ‘signal weight’ is
large, then the update replaces energy from col(B;) with
energy from col(B, ). Roughly, this is true as long as ¥, :=
%Z?:l wmw;— is well-conditioned, i.e. the wy;’s are
diverse. Assuming w; ; =W, ;; for each task, then ¥, is
well-conditioned if and only if the tasks are diverse. This
shows how task diversity causes the column space of the
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representation learned by FO-ANIL to approach the ground-
truth. For FO-MAML, we observe similar behavior, with a
caveat. The representation update is:

n n
(@)
Bt+1 = Bt —% Z Bmwtyiwzi + B*g Z W*,tJWIi

i=1 i=1

b n
®) B, ( I — (I —awtwj)g Z wm-w;- )
i=1

FO-MAML prior weight

+B. ( BN (1= a(we i, W))W iw/ )
i=1

FO-MAML signal weight

Equation (a) is similar to (3) except that one B; is replaced
by the By ;’s resulting from inner loop adaptation. Expand-
ing B, ; in (b), we notice that the prior weight is at least
as large as in (3), since Apax (I —aw;w, ) < 1, but it can
still be small as long as the w; ;’s are diverse and ||w||2 is
small. Thus we conclude that FO-MAML also can learn the
representation, yet its inner loop adaptation complicates its
ability to do so.

Comparison with no inner-loop adaptation. Compare
these updates to the case when there is no inner loop adap-
tation, i.e. we run SGD on the non-adaptive objective
ming Ev, , ,[£:,:(0)] instead of (2). In this case, By, is:

Bt+1ZBt(Ik—BWtW;l—)‘FﬂB*V_V*,tW: 4)

where W, ; == 1 3" | w,, ;. Observe that the coefficient
of B, in the update is rank £—1, while the coefficient of B,
is rank 1. Thus, col(By1) can approach col(B.) in at most
one direction on any iteration. Empirically, w, points in
roughly the same direction throughout training, preventing
this approach from learning col(B,) (e.g. see Figure 1).

Technical challenges. The intuition on the role of adap-
tation, while appealing, makes strong assumptions; most
notably that the w; ;’s are diverse enough to improve the
representation and that the algorithm dynamics are stable.
To show these points, we observe that w; ; can be written as
the linear combination of a vector distinct for each task and
a vector that is shared across all tasks at time ¢. Showing
that the shared vector is small implies the w, ;’s are diverse,
and we can control the magnitude of the shared vector by
controlling || w |2 and ||Ty—aB; By||2. Showing that these
quantities are small at all times also ensures the stability of
the algorithms. Meanwhile, we must prove that HB;r 1 Bil2

and dist; = HEILB)&”Q are contracting. It is not obvious
that any of these conditions hold individually; in fact, they
require a novel multi-way inductive argument to show that
they hold simultaneously for each ¢ (see Section 5).

4. Main Results

In this section we formalize our intuition discussed pre-
viously and prove that both MAML and ANIL and their
first-order approximations are capable learning the column
space of the ground-truth representation. To do so, we first
make the following assumption concerning the diversity of
the sampled ground-truth heads.

Assumption 1 (Task diversity). The eigenvalues of the sym-
metric matrix W, , == (L 37" Wt iW, ;) are uniformly
bounded below and above by u? and L?, respectively', i.e.,

Pl < W, , < L21, forallt € [T).

The lower bound on the eigenvalues of the matrix W, ;
ensures that the k x k matrix W, ; is full rank and hence
the vectors {w. ;;}7 ; span R”, therefore they are diverse.
However, the diversity level of the tasks is defined by ratio
of the eigenvalues of the matrix ¥, 4, i.e., Kk, = Q If
this ratio is close to 1, then the ground-truth heads are very
diverse and have equal energy in all directions. On the other
hand, if x. is large, then the ground-truth heads are not
very diverse as their energy is mostly focused in a specific
direction. Hence, as the following results reveal, smaller .
leads to faster convergence for ANIL and MAML.

Now we are ready to state our main results for the ANIL
and FO-ANIL algorithms in the infinite sample case.

Theorem 1. Consider the infinite sample case for ANIL
and FO-ANIL, where M, = Mgyt = 00. Further, suppose
the conditions in Assumption 1 hold, the initial weights
are selected as wo = 0y and aB(—)'—BO = 1. Let the step
sizes are chosen as o = O(Y/L.) and B = O(ak;*) for
ANIL and B = O(ar;* min(1, #%/42)) for FO-ANIL, where
n. satisfies || =370 wo yilla < n. for all times t € [T
almost surely. If the initial error satisfies the condition
disty < V0.9, then almost surely for both ANIL and FO-
ANIL we have,

. (&)

dist(Br, B.) < (1 —0.58aEu?)"

where Ey := 0.9 — distg.

Theorem 1 shows that both FO-ANIL and Exact ANIL learn
a representation that approaches the ground-truth exponen-
tially fast as long as the initial representation By is normal-
ized and is a constant distance away from the ground-truth,
the initial head wy = 0, and the sampled tasks are diverse.
Note that [ is larger for ANIL and hence its convergence is
faster, demonstrating the benefit of second-order updates.

"We could instead assume the ground-truth heads are sub-
gaussian and use standard concentration results show that with
n = Q(k + log(T)), the set of ground-truth heads {w. ¢ ;}i—;
sampled on iteration ¢ are (1 + O(1),1 — O(1))-diverse for all
T iterations with high probability, but instead we assume generic
bounds for simplicity.
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Next, we state our results for FO-MAML and Exact MAML
for the same infinite sample setting. Due to the adaptation
of both the representation and head, the MAML and FO-
MAML updates involve third- and fourth-order products
of the ground-truth heads, unlike the ANIL and FO-ANIL
updates which involve at most second-order products. To
analyze the higher-order terms, we assume that the energy
in each ground-truth head is balanced.

Assumption 2 (Task incoherence). For all times t € [T
and tasks i € [n], we almost surely have | W ; ;|2 <cVkL,,
where c is a constant.

Next, as discussed in Section 3.1, MAML’s adaptation of
the representation complicates its ability to learn the ground-
truth subspace. As a result, we require an additional con-
dition to show that MAML learns the representation: the
distance of the initialization to the ground-truth must small
in the sense that it must scale with the task diversity and in-
versely with k. We formalize this in the following theorem.

Theorem 2. Consider the infinite sample case for MAML,
where M, = Moy = 00. Further, suppose the conditions
in Assumptions I and 2 hold, the initial weights are selected
as wo = 0, and aBJBo = I, and the step sizes satisfy
a =0k 2BPL T4 and B = O(ak;*). If disty =
O(k=0" k15, then almost surely

dist(Br,B.) < (1 —0.58aEu2)"

where Ey := 0.9 — distg.

Theorem 2 shows that the initial representation learning
error for MAML must scale as O (k=% 7k, 1-%), which can
be much smaller than the constant scaling that is sufficient
for ANIL to learn the representation (see Theorem 1). Next
we give the main result for FO-MAML, which requires an
additional condition that the norm of the average of the
ground-truth heads sampled on each iteration is small. This
condition arises due to the fact that the FO-MAML updates
are approximations of the exact MAML updates, and thus
have a bias that depends on the average of the ground-truth
heads. Without control of this bias, the iterates B; and wy
may diverge.

Theorem 3. Consider the infinite sample case for FO-
MAML, where M, = Moyt = 00. Further, suppose the
conditions in Assumptions I and 2 hold, the initial weights
are selected as wg = 0 and ozBJBO = I, and the step
sizes satisfy o« = O( \/EIL* Yand B = O(ak;?*). If the initial
error satisfies distg = O(k=%°k; 1), and the average of
the true heads almost surely satisfies || £ 37" | w, 4i|l2 =
O(k=Y5k3p.) for all times t, then almost surely

dist(Br, B) < (1 —0.58aEou?)" ",

where Ey := 0.9 — distg.

Theorem 3 shows that FO-MAML learns col(B..) as long as
the initial principal angle is small and || 2 37" w, 4 ;|2 =
O(k=1%k3p.) on all iterations, due to the biased updates.
Note that the FO-ANIL updates are also biased, but this bias
scales with ||T; —aB, By||2, which is eventually decreasing
quickly enough to make the cumulative error induced by
the bias negligible without any additional conditions. In
contrast, | I, —aB; By||2 is not guaranteed to decrease for
FO-MAML due to the inner loop adaptation of the represen-

tation, so we need the additional condition.

To the best of our knowledge, the above theorems are the
first results to show that ANIL, MAML, and their first-
order approximations learn representations in any setting.
Moreover, they are the first to show how task diversity plays
a key role in representation learning from an optimization
perspective, to the best of our knowledge. Due the the
restrictions on 5 and «, Theorems 1 and 2 show that the
rate of contraction of principal angle distance diminishes
with less task diversity. Thus, the more diverse the tasks, i.e.
the smaller k.., the faster that ANIL and MAML learn the
representation. Additionally, the less diverse the tasks, the
more accurate initialization that MAML requires, and the
tighter that the true heads must be centered around zero to
control the FO-MAML bias.

4.1. Finite-sample results

Thus far we have only considered the infinite sample case,
i.e., Mip = Moyt = 00, to highlight the reasons that the
adaptation updates in MAML and ANIL are essential for
representation learning. Next, we study the finite sample
setting. Indeed, establishing our results for the finite sample
case is more challenging, but the mechanisms by which
ANIL and MAML learn representations for finite m;,, and
Myt are very similar to the infinite-sample case, and the
finite-sample problem reduces to showing concentration of
the updates to the infinite-sample updates.

For MAML, this concentration requires assumptions on
sixth and eighth-order products of the data which arise due
to the inner-loop updates. In light of this, for the sake of
readability we only give the finite-sample result for ANIL
and FO-ANIL, whose analyses require only standard as-
sumptions on the data, as we state below.

Assumption 3 (Sub-gaussian feature distribution). For x ~
p, E[x] = 0 and Cov(x) = 15, Moreover, x is 14-sub-

2
gaussian in the sense that Elexp(v ' x)] < exp(%) Vv

Under this assumption, we can show the following.

Theorem 4 (ANIL Finite Samples). Consider the finite-
sample case for ANIL and FO-ANIL. Suppose Assumptions
1, 2 and 3 hold, o = O((VkL. + o)~ and j3 is chosen as
in Theorem 1. For some § >0 to be defined later, let Ey=
0.9—distg —6 and assume Fy is lower bounded by a positive
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constant. Suppose the sample sizes satisfy m;, = Q(Mm)
and meyr = Q( Moyt ) for some expressions My, Moyt to
be defined later. Then both ANIL and FO-ANIL satisfy:

dist (B, B,) < (1 — 0.5[3(1/L3)T_1 + 0(6)
where for ANIL,
My, = k> + B4, M, = k? 4 etk
KxO o2 ;
6= (VEr? + 52 4 5)(h+ L) (At )

and for FO-ANIL,
M. = k2 M ;= dk+k>

n

) . 2 Vdk
0= (VEKI + 52 + o) oy

L___O(Te %),

. e T
with probability at least 1 oty (7))~ poly (min)

For ease of presentation, the Q() notation excludes log fac-
tors and all parameters besides k, d and n; please refer to
Theorem 8 in Appendix E for the full statement. We focus
on dimension parameters and n here to highlight the sample
complexity benefits conferred by ANIL and FO-ANIL com-
pared to solving each task separately (n =1). Theorem 4
shows that ANIL requires only 7, + mous = Q(k3 + %)
samples per task to reach a neighborhood of the ground-
truth solution. Since £ < d and n can be large, this sample
complexity is far less than the Q(d) required to solve each
task individually (Hsu et al., 2012). Note that more samples
are required for Exact ANIL because the second-order up-
dates involve higher-order products of the data, which have
heavier tails than the analogous terms for FO-ANIL.

5. Proof sketch

We now discuss how we prove the results in greater detail.
We focus on the FO-ANIL case because the presentation is
simplest yet still illuminates the key ideas used in all proofs.

5.1. Theorem 1 (FO-ANIL)

Intuition. Our goal is to show that the distance between the
column spaces of B; and B,, i.e. dist; := ||]A3Il]§t||2 is
converging to zero at a linear rate for all £. We will use an in-
ductive argument in which we assume favorable conditions
to hold up to time ¢, and will prove they continue to hold at
time ¢+ 1. To show dist;; is linearly decaying, it is helpful
to first consider the non-normalized energy in the subspace
orthogonal to the ground-truth, namely ||B] | B; 1 ||2. We
have observed in equation (3) that if the inner-loop adapted
heads w, ; at time ¢ are diverse, then the FO-ANIL update
of the representation subtracts energy from the previous rep-
resentation and adds energy from the ground-truth represen-
tation. Examining (3) closer, we notice that the only energy
in the column space of the new representation that can be

orthogonal to the ground-truth subspace is contributed by
the previous representation, and this energy is contracting
at a rate proportional to the condition number of the matrix
formed by the adapted heads. In particular, if we define the
matrix ¥, := 3" wy;w/,, then we have

IB] | Bigall2 = B, Bi(I— B%,)|2
< (1= BAmin(¥1))|IB]  Byll2,  (6)

as long as 8 < 1/x,...(®,). Therefore, to show that the nor-
malized energy ||B] | B;, 1|2 approaches zero, we aim to
show: (I) The condition number of W, continues to stay con-
trolled and finite, which implies linear convergence of the
non-normalized energy in col(B, )+ according to (6); and
(II) The minimum singular value of the representation By ;
is staying the same. Otherwise, the energy orthogonal to the
ground-truth subspace could be decreasing, but the repre-
sentation could be becoming singular, which would mean
the distance to the ground-truth subspace is not decreasing.

To show (I), note that the adapted heads are given by:

T
wei = Aw, +aB, Bow, g, @)
N—— ————
non-unique unique

where A; = I, — aB;'—Bt. The vector A;wy is present
in every wy ;, so we refer to it as the non-unique part of
w¢ ;. On the other hand, aB:B*W*M is the unique part of
w ;. Equation (7) shows that if the non-unique part of each
wy ; is relatively small compared to the unique part, then
v, ~ athTB*\II*,tBIBt, meaning the w; ;’s are almost
as diverse as the ground-truth heads. So we aim to show
|[A¢||2 and ||w¢||2 remain small for all . We specifically
need to show they are small compared to o2, (B/ B.),
since this quantity roughly lower bounds the energy in the
diverse part of w; ;. One can show that 02, (B B,) =
1-— dist?, so we need to use that dist; is decreasing in order
to lower bound the energy in the unique part of wy ;.

It is also convenient to track ||A¢||2 in order to show (II),
. . . /1—

since ||A¢y1|l2 < e implies omin (Bit1) > We Note

that for (I), we need control of || A 1|2, whereas to show

(I) we needed control of ||A¢||2. This difference in time in-

dices is accounted for by the induction we will soon discuss.

It is now evident why it makes sense to initialize with
||[Agll2 = 0 and ||w¢||]2 = 0 (in fact, they do not have
to be exactly zero; any initialization with ||wgl|2 = O(v/«@)
and ||A;|l2 = O(a?) would suffice). However, proving
that || A¢||2 and ||w¢||2 remain small is difficult because the
algorithm lacks explicit regularization or a normalization
step after each round. Empirically, op,in, (B;) may decrease
and ||w;||2 may increase on any particular round, so it is
not clear why o,in(B;) does not go to zero (i.e. ||A¢ll2
does not go to 1) and ||w¢||2 does not blow up. To address
these issues, one could add an explicit regularization term
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to the loss functions or an orthonormalization step to the al-
gorithm, but doing so is empirically unnecessary and would
not be consistent with the ANIL formulation or algorithm.

Inductive structure. We overcome the aforementioned
challenges by executing a multi-way induction that involves
the following six inductive hypotheses:

L Ay(t) = {[well2 = O(vamin(1, £ )n.)},

2. Ag(t) ={ | Adll2 < p| Ars[l2+O(F%> LA dist? )},
3. As(t) = {l[Adl2 < 35}

4. Ay(t) = {0.904E0u*1k <, < 1.2aLiIk},

5. As(t) = {IB]  Bill2 < p|B] , Brs |2}

6. Ag(t) = {dist, = | B, Byl|» < p' '},

where p =1 — 0.58aEyu2. Our previous intuition moti-
vates our choice of inductive hypotheses A1 (t), ..., A5 (t)
as intermediaries to ultimately show that dist; linearly con-
verges to zero. More specifically, 41 (t), A2(t), and As(t)
bound ||w||2 and ||A||2, A4(t) controls the diversity of
the inner loop-adapted heads, and A;(t) and Ag(t) confirm
that the learned representation approaches the ground-truth.
We employ two upper bounds on ||A¢||2 because we need to
use that {||A¢||2}+ is both summable (A5(¢)) and uniformly
small (A3(t)) to complete different parts of the induction.
In particular, if true for all ¢, A5(t) shows that ||A¢||2 may
initially increase, but eventually linearly converges to zero
due to the linear convergence of dist;. The initialization
implies each inductive hypothesis holds at time t = 1. We
must show they hold at time ¢ + 1 if they hold up to time ¢.

To do this, we employ the logic visualized in Figure 2. The
top level events (A1 (¢t + 1), Ax(t + 1), A5(t + 1)) are most
“immediate” in the sense that they follow directly from other
events at all times up to and including ¢ (via the dashed
green arrows). The proofs of all other events at time ¢+1
require the occurrence of other events at time ¢ + 1, with
more logical steps needed as one moves down the graph,
and solid red arrows denoting implications from and to time
t + 1. In particular, As(t + 1) requires the events up to
and including time ¢ and a top-level event at ¢ + 1, namely
As(t+ 1), so it is in the second level. Similarly, Ag(t + 1)
requires events up to and including time ¢ and the second-
level event at t+1, so it is in the third level, and so on.

Recall that our intuition is that diverse adapted heads lead to
contraction of the non-normalized representation distance.
This logic drives the implication A4(t) = As(t + 1).
We then reasoned that contraction of the non-normalized
distance leads to linear convergence of the distance as long
as the minimum singular value of the representation is con-
trolled from below. This intuition is captured in the implica-
tion A5(t + 1) n Ag(t + 1) — Aﬁ(t + 1).

We also discussed that the diversity of the adapted heads
depends on the global head being small, the representation
being close to a scaled orthonormal matrix, and the repre-
sentation distance being bounded away from 1 at the start
of that iteration. This is ensured by the implication that
the adapted heads are again diverse on iteration ¢ + 1, in
particular Ay (t+1)NAs(t+1)NAg(t+1) = A4(t+1).
The other implications in the graph are technical and needed
to control ||wy41]|2 and || Ay41]|2-

Proving the implications. We now formally discuss each
implication, starting with the top level. Full proofs are
provided in Appendix C.

o A4(t) = As(t+1). This is true by equation (6).

o Ai(t) N As(t) N Ag(t) = Az(t+1). It can be shown
that A4 is of the form:

A1 =A(I,—a’B/ B, ¥, ;B/B,)+N, (8

for some matrix IN; whose norm is upper bounded by a
linear combination of | A¢||2 and dist;. We next use

Amin(B{ B, W, ;B By) > pii00,,(B/ B.)
> 09,2 (1—dist})  (9)

where (9) follows by 02, (B B,)=1—dist? and As(t).

min

The proof follows by applying Ag(t) to control 1 —dist?.

o (Nt_;As(s)N Ag(s)) = Aj(t+1). This is the most
difficult induction to show. The FO-ANIL dynamics are
such that ||wy||2 may increase on every iteration through-
out the entire execution of the algorithm. However, we
can exploit the fact that the amount that it increases is
proportional to ||A¢||2, which we can show is summable
due to the linear convergence of dist;. First, we have

wip1= (1 —FB] BiA)w, + J > ABIB.w. .
i

which implies ||w;||2 increases on each iteration by

O(% |A¢||27+). In particular,

(a)
Iwerillz < (14 221 A ) [wellz + 222 | Al2
t

|
—

t—1

S 2 A [T+ 22 A ))

r=Ss

=1 t—s
28nx 2
2| A (14745 Y2 A1)
r=s

—~
o
=

IN

+ W
= o

—~

c

<

-~

0

w
i

where (b) follows by recursively applying (a) for ¢,t—
1,.... and (c) follows by the AM-GM inequality. Next,
for any s € [t], recursively apply As(s),A2(s—1),... and
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Figure 2. Logical flow of the proof. Note that there are no cycles among the implications from ¢ + 1 to ¢ + 1, so the logic is consistent.

use Ag(r) Vr € [s] to obtain, for an absolute constant c,

(d) s—1 s—1
|Adl < ey p 7B Lidist <cp® Y 7 6% L
r=0 r—0

Plugging (d) into (c), computing the sum of geometric
series, and applying the choice of 5 completes the proof.

o Ao(t+1) N As(t) = As(t+1). This follows straight-
forwardly since [ is chosen sufficiently small.

o As(t+1)N (ﬁt;llA5(s)) N Ag(t) = Ag(t+1). Using
the definition of the principal angle distance, the Cauchy-
Schwarz inequality, and N} A5(s), we can show

Omax(Bo)

. 1 5T i
dlStt'H < Omin(Bt41) ”B*let'H ”2 < O'min(Bt,+1)p disto

from which the proof follows after applying Az(t+1)
and the initial conditions. Note that here we have normal-
ized the representation only once at time ¢+ 1 and used
the contraction of the non-normalized energy to recurse
from ¢£41 to O, resulting in a ;;:?71;’?53) scaling error. If
we instead tried to directly show the contraction of dis-
tance and thereby normalized analytically on every round,

we would obtain distyy < (HZ:O Ua%l(sz))pt distg,
t Omax(Bs)

meaning a Hs=0_a,3,in(Bs+1) scaling .error, which is too
large because B is in fact not normalized on every round.

s A1+ 1) NAs(t+ 1) NAst+1) = Ayt +1).
This follows by expanding each w ; as in (7), and using
similar logic as in (9).

5.2. Other results — ANIL, FO-MAML, and MAML

For ANIL, the inductive structure is nearly identical. The
only meaningful change in the proof is that the second-
order updates imply ||[wy1||2—||well2 = O(||A¢||3), which
is smaller than the O(||A;||2) for FO-ANIL, and thereby
allows to control ||wy4 1|2 with a potentially larger /.

For FO-MAML and MAML, recall that the inner loop up-
date of the representation weakens the benefit of adapted
head diversity (see Section 3.1). Thus, larger adapted head

diversity is needed to learn col(B,). Specifically, we re-
quire a tighter bound of || A¢||2 = O(a?), compared to the
[[A¢|]2 = O(1) bound in ANIL, and for FO-MAML, we
also require a tighter bound on || w2 (recall from Section
5 that smaller ||A¢||2 and ||w;||2 improves adapted head
diversity). Moreover, to obtain tight bounds on ||[w41]/2
we can no longer use that |[w;1||2—||w¢||2 is controlled by
||A¢]|2 due to to additional terms in the outer loop update.
To overcome these issues, we must make stricter assump-
tions on the initial distance, and in the case of FO-MAML,
on the average ground-truth head. Please see Appendix D
for details.

Finally, the proof of Theorem 4 relies on showing concen-
tration of the finite-sample gradients to the population gradi-
ents. The principal challenge is showing this concentration
for fourth-order products of the data that arise in the ANIL
updates, since we cannot apply standard methods to these
higher-order products while maintaining o(d) samples per
task. Instead, we leverage the low-rankness of the products
by applying a truncated version of the concentration re-
sult for low-rank random matrices from (Magen & Zouzias,
2011). We also use the L4-L2-hypercontractiveness of the
data to control the bias in these higher-order products. De-
tails are found in Appendix E.

6. Numerical simulations

In this section we run numerical simulations to verify our
theoretical findings. First, we explore the effect of task di-
versity on MAMLs rate of convergence to the ground-truth
representation. In Figure 3, we execute MAML on the task
population losses (m;, = My = 00) in the multi-task
linear representation learning setting. We set d =100 and
k=mn=05. On each round, the ground-truth heads are sam-
pled i.i.d. from N(0,diag([1,...,1,4?])), where u? < 1.
We randomly draw B, and By at the start of algorithm exe-
cution. The parameter ;1 controls task diversity, with larger
1% meaning the ground-truth heads are closer to isotropic
and therefore more diverse. The results show that MAML’s
linear convergence rate improves with greater task diversity,
consistent with Theorem 2.
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Figure 3. Task diversity improves convergence rate. Principal
angle distance vs number of iterations for MAML with varying
ground-truth head distributions. The larger value of %, the more
diverse ground-truth heads.
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Figure 4. MAML and FO-MAML initialization and ground-
truth mean conditions are empirically necessary. (Left) Ran-
dom By. (Right) Methodical By. In both cases, the mean ground-
truth head is far from zero.

Next, we show that the additional conditions relative to
ANIL and FO-ANIL required for MAML and FO-MAML
to learn the ground-truth representation are empirically nec-
essary. That is, (i) MAML and FO-MAML require a good
initialization relative to the underlying task diversity, and
(ii)) FO-MAML further requires the ground-truth heads to
be concentrated around zero. To test these conditions, we
set d = 20, n = k = 3, randomly draw B,, and use the
task population losses. The ground-truth heads are drawn
as w*,tﬂw/\/ (101, I)). Ground-truth task diversity is thus
low, since most of the energy points in the direction 1. In
Figure 4 (left), we use a random Gaussian initialization of
By, which has distg ~ 0.99. In Figure 4 (right), we initial-
ize with a noisy version of B, satisfying distg € [0.65,0.7].
The plots show that in this low-diversity setting, MAML
requires good initialization to achieve linear convergence,
whereas FO-MAML cannot obtain it even with good ini-
tialization, as ||E[w., ; ;||| > 0. Lastly, note that Figure 1
employs the same setting as Figure 4 (left), except that the
mean of the ground-truth heads is zero in the former case,
which leads to all four GBML approaches learning col(B.).

7. Conclusion

Our analysis reveals that ANIL, MAML, and their first-order
approximations exploit task diversity via inner adaptation
steps of the head to recover the ground-truth representa-
tion in the multi-task linear representation learning setting.
Further, task diversity helps these algorithms exhibit an im-
plicit regularization that keeps the learned representation
well-conditioned. However, the inner adaptation of the rep-
resentation plays a restrictive role, inhibiting MAML and
FO-MAML from achieving global convergence. To the best
of our knowledge, these are the first results showing that
GBML algorithms can learn a low-dimensional subspace.
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A. Additional Related Work

Meta-learning background. Multi-task representation learning and meta-learning have been of theoretical interest for
many years (Schmidhuber, 1987; Caruana, 1997; Baxter, 2000). Recently, meta-learning methods have garnered much
attention due to successful implementations in few-shot learning scenarios with deep networks. These modern approaches
are roughly grouped into three categories: model-based (Ravi & Larochelle, 2016), metric-based (Snell et al., 2017; Vinyals
et al., 2016), and gradient-based (Finn et al., 2017). In this paper we focus on gradient-based methods.

Gradient-based meta-learning and MAML. The practicality and simplicity of model-agnostic meta-learning (MAML)
(Finn et al., 2017) has led to many experimental and theoretical studies of gradient-based meta-learning in addition to those
mentioned in Section 1. There have been numerous algorithms proposed as extensions of MAML (Li et al., 2017; Finn
et al., 2018; Yoon et al., 2018; Antoniou et al., 2019; Nichol & Schulman, 2018; Rajeswaran et al., 2019; Zhou et al., 2019;
Raghu et al., 2020; Zintgraf et al., 2019), and MAML has been applied to online (Finn et al., 2019) and federated (Fallah
et al., 2020b; Jiang et al., 2019) learning settings. Theoretical analyses of MAML and related methods have included sample
complexity guarantees in online settings (Balcan et al., 2019; Denevi et al., 2018), general convergence guarantees (Fallah
et al., 2020a; Ji et al., 2020b;a), and landscape analysis (Wang et al., 2020; Collins et al., 2022). Other works have studied
the choice of inner loop step size (Wang et al., 2021b; Bernacchia, 2020) and generalization (Chen et al., 2020; Fallah et al.,
2021), all without splitting model parameters.

Gradient-based meta-learning and representation learning. A growing line of research has endeavored to develop
and understand gradient-based meta-learning with a representation learning perspective. Besides ANIL, multiple other
meta-learning methods fix the representation in the inner loop (Lee et al., 2019; Bertinetto et al., 2018). Goldblum et al.
(2020) showed that these meta-learners learn representations that empirically exhibit the desirable behavior of clustering
features by class. However, they also gave evidence suggesting this is not true for MAML since it adapts the feature extractor
during the inner loop. Meanwhile, other works have argued for the benefits of adapting the representation in the inner loop
both experimentally, when the head is fixed (Oh et al., 2020), and theoretically, when the task optimal solutions may not
share a representation (Chua et al., 2021).

Two recent works have argued that ANIL behaves similarly to empirically successful approaches for representation learning.
Wang et al. (2021a) showed that the models learned by ANIL and multi-task learning with a shared representation and
unique heads are close in function space for sufficiently wide and deep ReLU networks, when the inner loop learning rate
and number of inner adaptation steps for ANIL is small. Kao et al. (2022) noticed that ANIL with the global head initialized
at zero at the start of each round is a “noisy contrastive learner” in the sense that outer loop update for the representation is a
gradient step with respect to a contrastive loss, which suggests that ANIL should learn quality representations. Moreover,
they showed that zeroing the global head at the start of each round empirically improves the performance of both ANIL and
MAML. However, neither work shows that ANIL, let alone MAML, can in fact learn expressive representations. Additionally,
our analysis rigorously explains the observation from Kao et al. (2022) that having small ||w || aids representation learning.

Meta-learning and task diversity. Initial efforts to empirically understand the effects of meta-training task diversity on
meta-learning performance with neural networks have shown a promising connection between the two, although the picture
is not yet clear. Ni et al. (2021) and Bouniot et al. (2020) made modifications to the the meta-training task distribution and the
meta-learning objective, respectively, to improve the effective task diversity, and both resulted in significant improvements in
performance for a range of meta-learners. On the other hand, Setlur et al. (2020) and Kumar et al. (2021) empirically argued
that reducing the overall diversity of the meta-training dataset does not restrict meta-learning. However, Setlur et al. (2020)
only considered reducing intra-task data diversity, not the diversity of the tasks themselves (as no classes were dropped from
the meta-training dataset), and the results due to Kumar et al. (2021) showed that reducing the overall number of tasks seen
during meta-training hurts performance for most meta-learners, including MAML.

Multi-task linear representation learning. Several works have studied a similar multi-task linear representation learning
setting as ours (Saunshi et al., 2021; Thekumparampil et al., 2021; Collins et al., 2021; Du et al., 2020; Tripuraneni et al.,
2021; Bullins et al., 2019; Maurer et al., 2016; McNamara & Balcan, 2017), but did not analyze MAML or ANIL. Moreover,
multiple works have shown that task diversity is necessary to learn generalizable representations from a statistical perspective
(Du et al., 2020; Tripuraneni et al., 2020; Xu & Tewari, 2021; Tripuraneni et al., 2021). Our work complements these by
showing the benefit of task diversity to gradient-based meta-learning methods from an optimization perspective.
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B. General Lemmas

First we define the following notations used throughout the proofs.

Notation | Definition
At Ik — OéB;rBt
At Id — OLBtB;r

L, maXie[T) 0 gigx (% ZZL 1 W*,t,iw* t z) < L.
s 0< s < mmtem obs (& Z?:l w*ymw;r’t’i)
T maxie ] H n Z;n:l W*,t,z||2 < < L,
Lax maxye(r),iefn] [Wetill2 < Lmax < eVkL, for constant ¢
Kx L*/,U«*

R max Lm‘"‘x/#*

Now we have the following general lemmas.

Lemma 1. Suppose Assumption 1 holds and for some t, dist? < ﬁ dist?2. Also, suppose | Asl|z < 7 forall s € [t]. Then,

for By =1 — 7 — dist3,

1 - T T T Eops

*

Omin gZBt B.w.iw, B, B; 2701
i=1

Proof. First note that since omin (A1A2) > Omin(A1)0min(Az) for any two square matrices A, Ao, we have

Omin (BTB ZW* tzw B B ) mm(B Bt Omin < ZW* tlw )

=1

Z 0-12nin(B>—krB )/’(’*
> Ur2nin(B*TB ) mm(Rt)
> U?rliI](B;rBt)iu*

where B; = B;R; is the QR-factorization of B;. Next, observe that

dist = ||B) 1 Be[|3 = [|(Ia — BB, ) By |3

max u'B; (I; - B,B])(1; - B,B])Bu
u€eRk:|lull2=1
= max u' B/(I;-B,B/)Bu
ueRk:||ull2=1
max u' (I, — B/B,B/B))u
u€RF:||ufl2=1

(B./B:)

=1- Umln

B/B,)=1- dmt
Z 1-— ﬁ dlstg .

=

mlIl (

which gives the result after combining with (11).

(10)

(1)

12)

O

Note that all four algorithms considered (FO-ANIL, Exact ANIL, FO-MAML, Exact MAML) execute the same inner loop
update procedure for the head. The following lemma characterizes the diversity of the inner loop-updated heads for all four
algorithms, under some assumptions on the behavior of dist; and || A¢||2 which we will show are indeed satisfied later.

Lemma 2. Suppose Assumption 1 holds and that on some iteration t, FO-ANIL, Exact ANIL, FO-MAML, and Exact MAML
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satisfy dist? < - dist? and ||A,|2 < 7 for all s € [t]. Then the inner loop-updated heads on iteration t satisfy:

1 n
Tmin (n Zwt,thT,i> > aBop? — 2(1 4 [|Adl2)vVal Adlla|wllan. (13)

=1

1 n
and Omax (n Zwt,thT,i> < (lAdllallwellz + Va(l + [[Adl2) L) (14)
=1

Proof. We first lower bound the minimum singular value. Observe that *=12¢l2 < 52 (B,) < 52 (B,) < 1Az py

min (
Weyl’s inequality. Next, we have

n

RN T 1 T T T
min | i i] = Omin| — I, —aB, B I. —aB, B
o (n ;Wt, Wy ) o <n Z( r —aB, Byw,w, (I, — aB, By)

i=1
+ a1, — aB/ B)wyw, ;B B; + aB/ B.w. . ;w/ (I, — aB/ B,)

2pT T
+ Bt B*W*,t,iW*,t,iB* Bt)

1 — 1 —
> Omin (n > o’B B*w*,t,iw*,t,iBIBt> —20|Awi— > .. iB/B; (15)
i=1 i=1 9
1 n
> aBopl = 20 || Agw, - W BB, (16)
i=1 2
> aEop? — 2(1+ || A¢ll2) vVl Alla]|wel|2n. (17

where (15) follows by Weyl’s inequality and the fact that B, B;w;w,] B/ B; = 0, (16) follows by Lemma 1, and (17)
follows by the Cauchy-Schwarz inequality.

. : 1\ T
Now we upper bound the maximum singular value of - 3" | w¢ ;W ;. We have

1 n
Omax (’I’L ZWtZWZz) < H(Ik - aB;rBt)WtW;r(Ik - aB:Bt)HQ

i=1
1< 1< ’
+2a||(T — oB By)wy, - Z B/ B.w..i| +a° - Z B,/ B.w.;
i=1 2 i=1 2
< | ABIwell3 + 2 Adllzllwellz /oL + [ Adll2)m + a(l + [|A¢]l2) LT
< ([Adllzlwellz + Val + [[Adl2) L) (18)
O
Lemma 3. Suppose the sequence {w iilo satisfies:
[woll2 =0,

[Wstillz < (1 + &) [Wsll2 + &2, (19)

where &5 > 0, E&2. 5 > 0 for all s € [t] and Zi:l &1,5s < 1. Then:

t t
[Wisalla <> éas (1 + 22@) (20)
s=1 r=s
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Proof. We have

(Wil < (1+ & o)l[wellz + &2t
<A+ &)Y wieallz + €2t (1 — &1p) + €

t t t—1
<lwoll2 [T+ &0+ > & [+ 600
) st_ll s=1 r=s
=> G JJa+é,) @1
s=1 r=s

t 1 t t—s
<D s (1 +— Zsl,r> (22)
s=1 r=s

t—s
where (21) is due to |wgl|2 = 0 and (22) follows from the AM-GM inequality. Next, note that (1 + 3 f1,r) is

t—s
of the form (1 + %)w, wherex =t —sand a = Zi:s &1, Since (1 + %)w is an increasing function of x, we can upper
bound it by its limit as © — oo, which is e®. Thus we have

t t
[Wigalla <D sexp (Z 51,r>
s=1 r=s
t t
P (1 + 2251,7«) (23)
s=1 r=s

where (23) follows from the numerical inequality exp(z) < 1 4 2z for all z € [0, 1]. O
Lemma 4. Suppose that Bi11 = By — Gy and

G, = —A;S;B; — xS;B:A; + N, (24)
for N; € R¥™* and a positive semi-definite matrix S; € R***. Then

1Az < [Adll2 (1= (14 X)Baomin(B] S:By)) + 280 By Ne|l2 + 520 Gell3 (25)

Proof. By expanding A1, Biy1, and G, we obtain
A =1-aB/, By
=1-aB/B; + faB' G, + faG/ B, — oG/ G,
= At — ﬂOZAtB;rStBt — XBOéB;rStBtAt + BO&B:Nt

— xBaB/ 8B A; — faAB/S;B; + faN, B; — oG/ G, (26)
= 1A, (I — (1+ x)BaB/ S;B;)
+ 3 (It — (1 + x)BaB/ S:B;) A; + Ba(B, N; + N/ B;) — 2aG, Gy (27)

Therefore,

A2 < [|A2 [Tk = (1 + x)BaB 8;By ||, + 28a|B/ N||2 + *al|G: |3
< A2 (1= (14 x)Baomin(B/] S¢By)) + 28a|B] Ny|l2 + 52| G5 (28)

where the last inequality follows by the triangle and Weyl inequalities. O
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C. ANIL Infinite Samples

We start by considering the infinite sample case, wherein m;,, =m,,; =00. Let Ey :== 0.9 — distg. We restate Theorem 1
here with full constants.

Theorem S (ANIL Inﬁnlte Samples). Let m;y, =Myt =00 and define Ey:=0.9 — dlst0 Suppose Assumptlon 1 holds and
distg < 4/0.9. Let o < L s aBO By = I, and w; = 0. Then FO-ANIL with 5 < igg‘ﬁ* mln(l T ) and Exact ANIL with

B < Zgﬁ‘i both satisfy that after T iterations,

dist(Br,B.) < (1—0.58aEu2)" (29)

Proof. The proof uses an inductive argument with the following six inductive hypotheses:

Lo AL() = {lwell2 < 22 min(1, ). )

2. Ay(t) = {[|A¢ll2 < (1 = 0.58aEop?)|| Arila + Fa2B2LE dist}_, },
3. As(t) = {1 A2 < 15}

4. Ay(t) = {0.9aEgulTy = L3770  wyiw; 2 1.2 L2},

5. As(t) = {IIB,] \B¢ll2 < (1 = 0.5aEou?) B B2},

6. Ag(t) = {dist; < (1 — 0.58aEu2)'}.

These conditions hold for iteration ¢ = 0 due to the choice of initialization (By, wq) satisfying I), — aBOTBO = 0 and
wo = 0. We will show that if they hold for all iterations up to and including iteration ¢ for an arbitrary ¢, then they hold at
iteration ¢ + 1.

1. ' _o{A2(s) N Ag(s)} = Ai(t+1). This is Lemma 5 for FO-ANIL and Lemma 9 for Exact ANIL.

2. Ai(t) N As(t) N As(t) = Aa(t +1). This is Lemma 6 for FO-ANIL and Lemma 10 for Exact ANIL.

3. As(t+1) N As(t) = As(t+ 1). This is Corollary 1 for FO-ANIL and Corollary 2 for Exact ANIL.

4. A1(t+1)NAs(t+1)NAg(t+1) = Ay(t+ 1). This is Lemma 7 for FO-ANIL and Lemma 12 for Exact ANIL.

5. FO-ANIL: A4(t) = As(t + 1). This is Lemma 8.

Exact ANIL: A; (t)NA3(t)NA4(t) = As(t+1). Thisis Lemma 11. The slight discrepancy here in the implications
is due to the extra terms in the outer loop representation update for Exact ANIL.

6. As(t+1)N{ ﬂtH 5(s)} = Ag(t+1). Recall distyq = ||B;':J_]A3t+1||2 where B, 1 is the orthogonal matrix

resulting from the QR factorization of Byy;,1.e. By = Bt+1Rt+1 for an upper triangular matrix Ry 1. By A3(t+1)
and N1, A5(s) we have

VITIA T gy, = VITIAle BT B, ),
Tumin(Bi41)[| B, 1 Bes |2
B, | Biyill2

—0-5504E0M*) B, Boll2

_ (1 - 0.58aE?)" |B]  Bo|»

IN AN A

IN
ST

— (1-0. 5ﬂan,u*) distg .
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Dividing both sides by 7W and using the facts that distq < \/% and || A4 ]|z < 5 yields

disty 1 < ———— (1 —0.58aEu2)’ dist
ister1 S ( BaEou?) dist
< ‘/,TTO (1 - 0.5Banuz)t distq
< (1-0.58aE?)", (30)
as desired.
O
C.1. FO-ANIL
First note that the inner loop updates for FO-ANIL can be written as:
Wi = W — Oévwﬁt,i(Bt, Wt)
= (I — aB/By)w; + aB, B.w. ; ;, 31)
while the outer loop updates for the head and representation are:
Wil = Wi — é i Vwlii(Bt, wii)
n & ) ;
/B n /8 n
=wi— - ; B/ Bw,;+ Z; B/ B.w. . (32)
Bit1 =B — p ZH:VBQ (B, Wi i)
n 2 ; ;
:Bt—éiBthW:-—?—éiB*W*tiW: (33)
[t S i o
1 n
=B, - B(Is— aBtBtT)ﬁ Z;(Btwt —Buw. i)W/, (34)

Lemma 5 (FO-ANIL A, (¢t + 1)). Suppose we are in the setting of Theorem 1, and that the events As(s) and Ag(s) hold
forall s € [t]. Then

Sw‘}m

[Wistll2 < 45 v/aEomin(1, 25 )n,. (35)

Proof. Forall s =1,...,t, the outer loop updates for FO-ANIL can be written as:

B BxmpT BT
Wst1 = W5 — E ; vwﬁs,i(Bsyws,i) = W5 — E ;Bs Bsws,i + E ;BS B*W*,s,i (36)

Substituting the definition of w, ;, we have

«a n n
Wei1 = ws— (B! B,(I—aB]B,)w, — Fﬁ ; B/B.B/B.w,,; + g ; B!B.w...;

1 n
= (I —B(I— aB/B.)B/B,)w, + B(I - aB/B,)B/B.— Y w..; (37)
n
=1

Note that |J'_, A3(s) implies opmax(BIB,) < 2allz o L1 for a1 5 € {0,...,¢+1}. Letc == 1.1. Using
Omax(B4 Bs) < £ with (37), we obtain

IWarillz < (1+ LNA2) [wsll2 + Z Al (38)
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forall s € {0,...,t}. Therefore, by applying Lemma 3 with &; , = %”ASHQ and &3 s = \c/—%HASHQn*, we have

[Witallz < Z = 1A 27 <1+2CZ ﬁllAer) 39

r=s
Next, let p := 1 — 0.58aEqu?. By UZ:O As(s), we have for any s € [t]

[Asll2 < pllAs—1]|2 + 5 a?p2Ld disti 1
< pPllas 2||2+ 5a262pL4 dist? 2 +3 202B2 Lt dist?

s—1
<Pl Agll2 + 20°B°L; Zps_l_r dist?
r=0
s—1
=3a2B2LLY p T dist? (40)
r=0

since || Apl|2 = 0 by choice of initialization. Next, we have that dist, < p® forall s € {0, ...,¢} by U’;:O As(s). Thus, for
any s € {0, ...,t}, we can further bound || A||2 as

s—1
5 2pn2714 s—1—r 2r
70°B°L; E p P

r=0
s—1
_ 5 2pn2714 s—1 r
= Ja°B°Lip E p
r=0

s—1 5(12/32111
= 4(1-p)

—15 Lf
<P (41)

1Al

IN

which means that

t t

58aL? —15B8aL?

Iwesalle <3 20" Siekim. (1 +2ey 0 G0 )
s=1 r=s

Lin, < Lt <
< 2.5052\/&E;/j; Zps_l (1 + SCﬂzE = Zpr_1>

(0] 2o r—s

< 2 5 52\/7[11177* s—1 <1 + 652 *ps )
.0C (0% E — <
- Eopz < g Eopz(1—p)

Lin. BL?
§352\/5E (1+12 i

*

t
Z
t

=1

42
o2 (42)

ﬁ"ﬁn*

<18
= VaE}
2

< TI()\/&EO min(1, Z—é)n* (43)
where (42) and (43) follow since § < {228 min(1, %5 )1, O

Remark 1. As referred to in Section 5, it is not necessary to start with ||wql|2 and ||Aq||2 strictly equal to zero. Precisely, it
2 4
can be shown that the above lemma still holds with ||wg|2 < ¢y/aFgmin(1, 2—2)77* and || Agll2 < cif:iz for a sufficiently
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small absolute constant c. Inductive hypothesis Ag(t + 1) would also continue to hold under this initialization, with a
slightly different constant. These are the only times we use ||wWoll2 = |[[Aqll2 = 0, so the rest of the proof would hold.
Similar statements can be made regarding the rest of the algorithms.

Lemma 6 (FO-ANIL Ax(t + 1)). Suppose we are in the setting of Theorem 1 and that A;(t), As(t), As(t) hold. Then
As(t + 1) holds, i.e.

[Ar]l2 < (1= 058aEu?) [| A2 + 552 L dist} . (44)

Proof. Let G be the outer loop gradient for the representation, i.e. G; = %(Bt — Bit1). We aim to apply Lemma 4, we
write G; as —A,S;B; + N, for some positive definite matrix S, and another matrix N,. We have

n

1
G = E Z(Btwt,i - B*W*,t,i)W;—i

i=1

1 n
= Z(BtAtWt + aBtB;rB*W*,t,i - B*W*,t,i)WtE

=1
1 -« T
= E Z At(BtWt - B*W*,t,i)wt,i
1=1
ST N £ DR |3 D DY R DY BRI
i=1 i=1
= —AtStBt + Nt

where (45) follows by expanding w; ;, and S; = aB. (% > W*Mw* . z) B, and
N, =1%", AtBtwtwL — L5 ABLw. W[ Ay Since oyin(B] S;B;) > Eou? (by Lemma 1), we have by
Lemma 4

1A1ll2 < (1= BaBopd) | Adllz + 28a]B, N2 + 82a||Gl3 (46)
To bound || B, N||2, we have
B/ N2 = ZAtB Byw,w,, — ZAtB B.wW. W, A
i=1 i=1 2

S ||AtB:BtWtWtTAt||2 + « ZAtB BtWtW B Bt

=1

2

1 n

=3 AB/B.w. W/ A
i=1 2

A lwell3 + ﬁ(l\AtHz + AR [well2m

CEO/”'*
< %uillAtHz (47)

'{:
*w*m

where we have used A; (t) and A3(¢) and the fact that min(1, )r]}k < p2. To bound ||G||% we have

IGell2 < [A¢S:Bl2 + N[>

1<~ «
- Z AtB*W*,t,iW;rAt
n

1 n

§ A T
E AtBtWtwt’i
i=1

=1

< evVaL?(||Agl|2 + disty) +

2 2
< ey/aL2 (|1 Ala + dists) + 55 1A [well3 + 26 Acllallwillons + Ay [[we . dist:

< evaLi|| Al + ev/alLidi to00 Vi || Adllz + $5VaLan.| A2
< 15VaL?||Aglls + 1.1v/aL? dist, (48)
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where (48) follows since 1, < L,. Therefore
IG5 < aLi(2.5]| A5 + 3.3[| A2 + § dist?)
<4aL}| A2+ 2aLfdist]
and
A2 < (1= BaEopl + 0.25BaEu? + 48°°LY) | Adlla + 387 LY dist?
<(1- 0.5ﬂanu*) A2 + 282 L? dist] (49)

where in (49) we have used 3 < N4 ,a< 7-,and By < 1. O

180

Corollary 1 (FO-ANIL Aj3(t + 1)). Suppose we are in the setting of Theorem 1. If inductive hypotheses As(t + 1) and
As(t) hold, then As(t + 1) holds, i.e.

Al < 15 (50)

Proof. Note that according to equation (49), we have

||At+1uz (1-0. 5Banu*)||Atllz +38% 2L4

1
=10
where equation (51) is satisfied by our choice of § < 1§0E5 and v < - and inductive hypothesis As(t). O

Lemma 7 (FO-ANIL A4(t + 1)). Suppose the conditions of Theorem 1 are satisfied and inductive hypotheses A1(t), As(t)
and Ag(t) hold. Then A4(t + 1) holds, i.e.

1 & - )
Omin <n Zthrl,thJrl,i) > 0.9a ks

i=1

1o T 2
and 0 max <n ZWHMWHM <1.2alL;

i=1

Proof. By Lemma 2 and inductive hypotheses A;(t), A3(t) and Ag(t), we have

1 n
Tmin ( > wiiw,/, ) > aBopl — 0.0220Eou? > 0.9aEo 2
- :

i=1
1 n
Omax ( Zwm’w;) < (WI(J\/&EOH*—l + \/1.1ozL*)2 < 1.2aL2 (52)
n & '
where we have used the fact that min(1, ”—g)n* < 12 to lower bound the minimum singular value. O

Lemma 8 (FO-ANIL A5(t + 1)). Suppose the conditions of Theorem 1 are satisfied. If inductive hypotheses A4(t) holds,
then As(t + 1) holds, i.e.

IB] | Bitill2 < (1 - 0.58aEou?) |B]  Bla. (53)

-1 . 3
Proof. Note from Ay(t + 1) that (omax (2 D7 weiw/))) > —z > 7—. Thus, since § < 1’;534 < £+ <

(O'max (% S WtinZi) )) 71, we have by Weyl’s inequality that

n
< HB J_BtHQ (1 - Bamin (711 Zwt,iw;>>
9 =1

n

I, - @zwt v

<|B) B2 (1 - O.SBaEQM*) .

B 1Btz < [IB]  Byll2
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C.2. Exact ANIL

To study Exact ANIL, first note that the inner loop updates are identical to those for FO-MAML. However, the outer loop
updates are different. Here, we have

Wipl = Wi — g Z VwFti(Bye, wy)
i=1
/8 n

B =B - - Z VBF;i(Be, wy)
i=1

where for all ¢, ¢:

Ft,i(Bt,Wt) = L:t,i(Btth - avwﬁt,z‘(Bth)) = %”Vtz' 3 (54)
and
vii = BiAgwy + OéBtB;rB*W*,t,i —Biw.ii = At(BtWt —Biw. i) (55
Therefore,
VwFri(Be,we) =B Ayvy (56)
\vaS o v T wT RTR, _ TR _ To ol ~T
B (B, wi) = viiw, Ay +avyiw, B, By —aBwv By —aBB, vy iw, +aB.w, v, By (57)

One can observe that for w, the outer loop gradient is the same as in the FO-ANIL case but with an extra «B; A factor.
Meanwhile, the first two terms in the outer loop gradient for B compose the outer loop gradient in the FO-ANIL case, while
the other three terms are new. We deal with these differences in the following lemmas.

Lemma 9 (Exact ANIL A, (t + 1)). Suppose the conditions of Theorem 1 are satisfied and As(s) and Ag(s) hold for all
s € [t], then A1 (t + 1) holds, i.e.

lWiri]le < 1—10\/an min(1, Z—E)n* (58)

Proof. Similarly to the FO-ANIL case, we can show that for any s € [t],

B T P
s = s — vwFSi Bsa s) — I, — Ang BsAs s Ang B** *,8,1 59
War1 = Wo = 3 VuFui(Baws) = (It~ SAB]B.A )W, + SAIBB. -3 w. . (59)

i=1 =1

Note that Ui:o Az(s) implies ooy (B! By) < w < Llforalls € {0,...,t+1}. Letc:= 1.1.
Unlike in the first-order case, the coefficient of w in (59) is the identity matrix minus a positive semi-definite matrix, so
this coefficient has spectral norm at most 1 (as 3 is sufficiently small). So,we can bound ||ws1 |2 as:

B
[Wstallz < flwsll2 + ﬁllAsH%m (60)

which allows us to apply Lemma 3 with §; s = 0and &3 s = \C/—% | Asl|3n. for all s € [¢]. This results in:

¢
cp 2
[Wit1ll2 < E —= | As[27x-
po Va
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Next, note that

A2 < (1—0.58aE0pl)||[ A1z + 2B%a°Li dist?_,

s—1
< Z(l — 0.58aEou2)* (2 20’ L; dist?)
r=1
s—1
< 2LIB%P(1 - 0.58aEop?) ™Y (1 - 0.58aEpu?)"
r=1
58aLl os_1
< *(1-0. E s 61
therefore
t
2553 1. 5L8 .
[Wesll2 < Z TARA “(1 - 0.58aEou?)* ~n.
O *
< 14ﬂ2\/5L§
- Bt
VaEy
< ——1ns 62
< o2 U] (62)
O[EO . 2
< \FlO mln(l,’;—%)n*‘ (63)
where (62) follows by choice of 5 < Z‘Oi‘i and o < 1/L,, and (63) follows since 7, < L. ]

Lemma 10 (Exact ANIL Ay (t + 1)). Suppose the conditions of Theorem 1 are satisfied and A, (t), As(t) and As(t) hold,
then As(t + 1) holds, i.e.

|A¢l2 < (1= 0.58aB0pd)| Az + 367> LY dist; . (64)
Proof. Let Gy = % Z?:l VBF::(By,wy) = %(Bt — By+1) again be the outer loop gradient for the representation, where
VBF; (B, w;) is written in (57). Note that G, can be re-written as:
G, =—-A;S;B; — $;B;A; + N, (65)
where S; := aB, (£ Y1) Wi, iw, ;) B and

n
1 § T A T T T T T
Nt = (Vm-wt At + aAtBtWtW*yt’iB* Bt — CYBtWthBt - CkBtBt Vi, iWy
i=1

+ OéB*W*,t,iW;rB;rBtAt) (66)

Since Lemma 1 shows that i, (B, S;B;) > Egpu?, Lemma 4 (with y = 1) implies that

[Arllz < (1= 28aEoul)||Als + 280|B, Nylls + 20| G|l3 (67)
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It remains to control || B, N ||z and ||G¢||2. Note that

1B/ Nell2 < +a

2

1 n
§ T T

ﬁ Bt Vt_’th At
i=1

ZB AtBtWtW B Bt

=1

+ «
2

1 n
- > B/BB/viiw/

=1

1 n
E Z B;rBtWtV;IZiBt

i=1

2

1 n
=Y B/ B.w...w,B/B,A,
n

i=1

2

Selwilla [ Al (5 Iwellz + 1) + 25 [ wellzl| A .
25 Iwilla | Az (5 lwellz +n.)
+ 2 w3l Al
< 0.6Eopu2 || Al (68)

by inductive hypotheses A1 (t) and Az(t) and the fact that min(1, £5)n? < u2. Next,

1Gell2 < [[AS:Byll2 + [[SeBrAl2 + [N |2
< Va2l Az + disty) L + [Ny
< VAl + dist) L2 + [will2| Adlz (5 Iwill2 | A2 + (1A ]2 + disto)n. )
+ deffwilloll Adllan. + 22 wilIZ A3

< VBl + 0t 1 6wl Al + Zlwel3lI A2
< 3VaLil|Alls + ev/aL? dist

— 1G3 < aL O A3+ T Al + § dist?)
< aLi(8]|A¢llz + 5 dist}) (69)

Combining (67), (68) and (69) yields

|A¢1lle < (1= 28aEoud)|| Al + 2680]Bf Ni|l2 + 52al|Gyl3
< (1 —2BaBou? + 1.28aEou? + 8820 LY)|| A¢l|2 + 282 dist]
< (1 - 0.58aE}) | Adllz + 367" dist (70)

2
where the last inequality follows since § < Z‘Oi‘i and @ < 1/L,. O

Corollary 2 (Exact ANIL As(t + 1)). Suppose the conditions of Theorem 1 are satisfied. If As(t 4+ 1) and As(t) hold.
Then Az(t + 1) holds, i.e.

HAf—‘rlHQ ~ 10 (71)

Proof. Note that according to equation (70), we have

[Aviillz < (1= 0.58aEou?)|| Az + 28°°L;

(1= 0.58aEo )1 + 2 EoBap? (72)
1
10

IA A

where equation (72) is satisfied by the choice of 8 < 40 4 and inductive hypothesis A3(t). O
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Lemma 11 (Exact-ANIL A, (t + 1)). Suppose the conditions of Theorem 1 are satisfied and that inductive hypotheses
A1(t), As(t) and Ag(t) hold. Then A4(t + 1) holds, i.e.

1o - )
Omin <n Zwt-i-l,iwt-i-l,i Z OQCYEO'U/*

i=1

1 ¢ T 2
and opax (n ZWHMWHM <1.2al;

i=1
Proof. The proof is identical to that of Lemma 7. O

Lemma 12 (Exact ANIL A5 (¢t + 1)). Suppose the conditions of Theorem 1 are satisfied. If inductive hypothesis A4(t) holds,
then As(t + 1) holds, that is

IB.  Bitalla < (1 —0.58aEul) B, Bl
Proof. Note that from (57), the outer loop gradient for the (¢, ¢)-th task can be re-written as:

T T T T T T T
VBFM(Bt, wi) = VW Ay + avt7iw*7t)iB* B; — aBtwtvat —aBB, vi;w, + OéB*W*i}inﬂ-Bt

T T T T T T
= BtWt,in — B*W*JJ-WM — aBtthth —aBB, v, ;w, + OKB*W*,t,iVth
. 1 n : T —
Therefore, noting G; = == > " | VB F; (B¢, w;), and using B, | B, = 0, we have
T _RT
B, 1 Beyillz = B, (B: — BGy)|2

n n
< HBI’J_Bt (Ik — g Zwmw; + 57& Z(wtv;Bt + ijt,iw3)>

i=1 i=1 2
< HBILBt (Ik - g Zwmwzi> + 25&\\BIlBt 9 %Zwtv;Bt
i=1 2 i=1 2
2
< IBL, B (1 ~ 0.98aEou? + fadE min(1, ’;gmi) 73

< |B) 1 Bill2(1 - 0.58a By )

where (73) follows by inductive hypotheses A (t), A3(t), and A4(t), and A3(t) and the fact that min(1, %)nf <p? 0O

D. MAML Infnite Samples
D.1. FO-MAML

We consider FO-MAML when m;,, = m,+ = oo. In this case, the inner loop updates are:

Wi =Wy — aVw Ly i(By, wy)
= (I; — aB/ B))w; + oB/ B.w.;;
B =B; —aVBL (B, wy)
=B:(I; — aww, ) + aB.w. ; iw, (74)

The outer loop updates are:

ﬂ n
Wii1 = Wt — E vaﬁt,i(Bt,i,Wt i) = Wt — — ZB Bt iWt — B.w. it 1,)
i—1
ﬁ n
By =By —— Z VBL: (B, wei) =By — - Z(Bt,iwt,i - B*W*,t,i)WtTi (75)

=1 =1
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Now we state the main result for Exact MAML in the infinite sample case. Due to third and higher-order products of the
ground-truth heads that arise in the FO-MAML and MAML updates, we require an upper bound on the maximum w ; ;.
We define the parameter Ly, as follows.

Assumption 4. There exists L.y < 00 such that almost surely for all t € [T, we have

it [Wetill2 < Liax (76)

Note that if Assumption 2 holds, we have Ly, = O(vV/kL,). Here we prove a slightly more general version of Theorem 3
in which we allow for arbitrary finite L,,.,. Note that Theorem 6 immediately implies Theorem 2 after applying Assumption
2. First we state the following assumption, then we prove the theorem.

Assumption 5 (Initialization and small average ground-truth heads). The following holds almost surely:

, A1y - 282t
distg < K and, for all t € [T, 1 Z Wil < < L3OM 77)
max 121 2 max
Theorem 6 (FO-MAML Infinite Samples). Let m;, = Moyt = 00 and define Fy = 0.9 — dlst0 Suppose that o < ax,
2
B < %, aB;'—Bt = I, wo = 0 and Assumptions 1, 4 and 5 hold. Then FO-MAML satisfies that for all T € Z+,
dist(Br, B,) < (1 — 0.58aEou?)" 1, (78)

Proof. The proof follows by showing that the following inductive hypotheses hold for all ¢ € [T]:

L Au() = {[Iwiell2 < 28 Vapanz2n)

2. As(t) = {[|Adll2 < Toa®ul}

3. As(t) = {IB/]  Bill2 < (1 - 0.58aEou?)|B, | Bi1]2}
4. Ag(t) = {dist; < YIO(1 — 0.58aEu2)"~" disto}

5. As(t) = {dist; < (1 — 0.53aEqu2)=1}

These conditions hold for iteration ¢ = 0 due to the choice of initialization. Now, assuming they hold for arbitrary ¢, we will
show they hold at ¢ + 1.

1. A1(t) N Aa(t) N Ay(t) = Aq(t+1). This is Lemma 13.
2. Ai(t) N Asx(t) N Ag(t) = Az(t+1). This is Lemma 14.
3. Ai(t) N Ag(t) N As(t) = Asz(t+1). Thisis Lemma 15.
4. Ax(t+1) NN As(s) = Au(t+1) N As(t + 1). Note that A(t + 1) N (L1} As(s) implies

VITIA e gigg,,y = VITIAl BT

Tumin(Bi41)[| B, 1 Bes |2
B, | Biyill2

- 0-5504E0M*) IB, 1 Boll2

_ (1 - 0.58aE?)" |B]  Bo|»

1Biyall2

ININ IAN TN
ST

— (1-0. 5ﬂan,u*) distg .
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Dividing both sides by 7W and using the facts that distq < \/% and || A4 ]|z < 5 yields

dist;, < ——L— (1 —0.58aEou2)" dist
st < i paEou,) disto

‘/TTO (1 - 0.5Banuz)t distg

< (1-0.58aE0?)", (79)

IN

as desired.
O

Lemma 13 (FO-MAML A, (t + 1). Suppose the conditions of Theorem 6 are satisfied and A (t), A2(t) and A4(t) hold.
Then Aq(t + 1) holds, i.e.

||Wt+1||2 = 70 \/alj’*’%;?nax' (80)

Proof. Let Gt ; be the inner loop gradient for the representation for the (¢, ¢)-th task, in particular G ; = Bw,w, —
B.w, ¢ 4w, . By expanding the outer loop update for the head, we obtain:

1
Wit I,— BB/ B, (I - aB/B,))w; + B Z B/,(I-aB;;B/)B.w. .,

1 n
==
i=1 =1
1 n 1 n
== Z(Ik—BB;BM(I —aB/By))w; + Bazﬁ Z B, G;,B/B.w,,
=1

=1

1 — 1 —
+ 6 Z B/,(I-aB,B/)B.w, ;- Bagg > G/,GiiB!B.w,

i=1

1 n
= =3 (B[ Bii(1 - aB] B,)w
=1

1 n
+ 02— S Bl (Biwiw] — Buw. i iw) )B{ Buw.;

i=1

1 n
+ 8= Z B/,(I-aB,B/)B,w, ;- 50435 > G/,GiiB!B.w, i

i=1

1
:ﬁZ(Ik—BBLBM(I—aBtTBt))wt Ba’B/ B, < Zwmw )B Biw;

i=1

1 n
+ /BQZB;FBtWtW;rB;rB* (n ZW*,t,z)
i=1

1 n
+ 8- Z B/,(I-aB;B/)B.w. ;- 5a35 > G/,GiB[B.w. i

i=1
1
= (Ik_ ﬁa2B:B* ( ZW*,t,iWIt 2> BIBt> Wi + Nt (81)
et o
where Nt = —ﬁ% Z?:l BZiBt,iAtWt + ﬂa2B;rBtth;rB;rB*}L Z? 1 Wi t,i + ﬂ% Z?:l BZZ‘AtB*W*,t,i —
a3l GziGt,iB:B*W*,t,i- Since omin(B/ B. (£ 30, W*Mw* . Z) BTBt) > L1FEou? by Lemma 1, and
B < 57z, we have

Witz < [well2 + [IN]l2

I,— fa’B/ B, ( Zwmw ) BB,
2

< (1= BaBous)|lwell2 + HNtHz (82)




MAML and ANIL Provably Learn Representations

The remainder of the proof deals with bounding ||N;||2. First note that UZ:O As(s) with @ < 1/(4Lax) implies
Omax(BJ By) < w < % forall s € {0,...,t+1}. In turn, this means that o!-5||B,||3 < 1.1 Let ¢ := 1.1.

We consider each of the four terms in N separately. Using /a||Bg||2, a-?||B¢||3 < c and the Cauchy-Schwarz and triangle
inequalities, we have

1 n
B || (n Zl BIiBt,i> Aywy

< (1Bl 20lBe].

[well2

n

1 E

n Wi t,i
i=1

n
+a2||;2w*,t,z-w;,iugwtn%)nAtunwm

i=1

< B(5 + 2evalwillam + o LI [[we )] Ael2

B Btwtwt B B.— Zw*tz Scﬂ\/an*”“’t”%
2

2

pa?

n

1 ~ cf .
oY BLABw. | < LA, + faLlwela| Al + faLuwiladist?  (83)
2

i=1

B

]‘n CW2 Cl|W-
=3 GliGuB/Buw.,; < cpa® (liy, 4 2vlelh 4 3 ) w3, (84)
L= 2

Note that the dist? in (83) is due to the fact that | B] (I, — B,B;)B, ||z = | B/ (I, — B;B,] )1 — B,B])B,||> < dist?.
Combining these bounds and applying inductive hypotheses A5 () and A3(t) yields

HNt”Q < ﬁ H( ZB Bt,i) Atwt
+ Ba?

1
5‘ !
n
2 2
<B(E+ 2c\fIIWt|I2m + P L2 |wi DA 2llwillz + eBvan.[wll5 + iHAtllzm
+ Bal? aX||W,EH A2 + BaL2,, |[wel|s dist? +cBa?5 (C”V(V;”m + 2‘:”“}'2“ + Lf’nax) w2
= 10060‘1 Sui Ky, max + ﬁﬁal SHiW*EO + %5041 5.”“2”* maxEo diStt

+ Ba?
2

B Biw:w, BTB ZW* tyi

2

T =
E Bt’iAtB*W*,t,i

n
1
T T
n § G iGeiBy Baw,r

Thus we have

[Wieialla < (1= BaBopl) [willz + fa5 80t P uin 5 By + 2680t P 1uin B + 15801 12k max Eg dist;

1 2 —1 1.5 3371 15373 3 2c 1.5, 2
S EEOI:U’* *max_iﬁa EOIU‘* *max+mﬂa MR *max +1T)BO[ M*W*EO
1 1.5, 3
+ qgBa ik maxE0 dlst0

< LB (85)

N

where (85) follows by Assumption 5, namely:

2E2u8 dp,
ne < P and - disto < (86)
O

Lemma 14 (FO-MAML As(t + 1)). Suppose the conditions of Theorem 6 are satisfied and A1 (t), A2(t) and A4(t) hold.
Then Az (t + 1) holds almost surely, i.e.

A2 < Fga?u?. (87)
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Proof: We will employ Lemma (4), which requires writing the outer loop gradient for the representation, i.e. Gy =
%(Bt —Bii1), a8 G, = —A;S;B; — xB:S:A; + Ny, for some positive definite matrix S; and a matrix IN; (note that this
N, is different from the N, from that was used in the previous lemma). To this end, we expand the outer loop gradient:

n
1
o T T
G = ﬁ g Bt,th,in - B*W*,t,iwm
i=1

n
1
T T T
= > " (Bri(Ix — aBBy)w; — (Is — B ;B )B.w. ;i) w/,
i=1
1 n
T A T 2 TRT T
== E BiiAiwiw, , — ABaw, p iwy ; + " Bywyw, By Baw g iwy
i=1
2 TRT T
—a"Buw, Wy By Baw iwy

_ 1 <& 1 < _
= _AtB* <O[n ;W*,t,iwlt,i>BIBt + E Zl (Bt,iAtWtWIi - AtB*W*’t’iW:At
= i=

2 TRT T 2 TRT T
+a’Bywiw, By Baw, 1w, —a"Buaw, ¢ ;w, By B*w*,mwt,i)

= —AS,B, + N, (88)
where S; := B, (Ozl > Wt iW, )B*T’

n *,t,1

n
1 —
. E T T 2 TpT T
Nt = - (Bt,iAtWtWt7i — AtB*W*J/J‘Wt At + « BtWth, Bt B*W*7t7iwt7i
i=1

— OLZB*W*JJW;BZB*W*J,,'WI?;), (39)
and y = 0. Since omin (B, S:B;) > Eou? (by Lemma 1), Lemma 4 shows
1Az < (1= BaEou?)|| A2 + 28a| B Ny|l2 + 82al|Gel5 (90)

So, the remainder of the proof is to bound || B, N;||2 and ||G||3. First we deal with || B, N;||2. We have

1 1« -
T T T T T
B, N¢l2 < - E B, B Aywiw, || + - E B, AB.w, ;W Ay

i=1 2 =1 2

1 n 1 n

2pT TpT T 2T TRpT T
+ - E a“B, Byw,w, B, B*W*miwm + - E ‘B, Bow, ,w, B, B*w*,mwm ©n
=1 2 =1 2
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We consider each of the four terms in (91) separately.

1 n
2 T T

E Bt Bt,iAtWtWt’i
=1

S HB;rBtAtAtWtWtA;r

2
ZBTB AAyww], BB,
=1 2
+ liBTB WariW, Ayw,w A
n 4 t * Wt Wi tWiEWieay
=1 2
1 n
+a?||= ZBTB*W* tiWy Atwtw B B;
n -
i=1 2
< Sl AdZlwells + S5l Adllallwel2n-
+ eVl A3 Iwell3n. + cal|Adlla|lwi|[3L7
1 ~ .
~ Y BIABw. W] Ayl < A wel2n.
i=1 2
n
= o®B/Biw,w B{B.w. o iw/;|| < cvalwil3(|Aallwellzn. + vaL)
i=1 2
1 n
Hn S a?B/Bow. o w! B/ Bow. o w/, | < callwillo(|Adallwill2L? + VaL?,,)
i=1 2
Therefore, after applying inductive hypotheses A; (t) and Az (t), we obtain
||BTN75||2 <2c 18a N*
Next we bound |G ||2. Note that ||G||2 < ||A¢S:By¢l|2 + ||N¢||2, and
||AtStBt||2 S C\/&Lz(HAtHQ + dlStt)
< evaL?(a?u?Ey + dist,).
Moreover,
1 — 1<
[INg|l2 < > ZBt,z‘AtWthi o Z AtB*W*,t,thTAt
=1 2 i=1 2
l zn:aQBtwtw B B.w, el l zn:QQB*W* t w, B B,w, : W,
n & t AWt n 4 tiWe Dy i W
2 i=1 2
< 3cE'0 o 5@1
thus

1Ge]l3 <

(ev/aL?(a®u? + disty) +

3cE0 Q23 M4)
ES

<32’ Lipt 4+ 22l dlStt

< 3aLl

which means that

1Az < (1= BaBEoud)[| A2 + 100 Ba’ s + 367 L
< IOQZEOM* /BQSEOH’* QCEO BO{ + 362(12[/;%
< LoPEoul
(ng

where (93) follows by choice of 8 < 5.

92)

93)
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Lemma 15 (FO-MAML A3 (t + 1)). Suppose the conditions of Theorem 6 are satisfied and A1 (t), A2(t), and A4(t) hold.
Then As(t + 1) holds almost surely, i.e.

IB] 1Byl < (1 —0.58aEu2)|B, | Byl

Proof. Recalling the definition of B, from (75) and noting that BI B, = 0, we obtain

B*T,J_BH_I = BIJ_Bt <I;g - 81 — awtwt Zwt W, Z) (94)

Next, using the triangle and Cauchy-Schwarz inequalities, we obtain

I, — — E W“W“

2
1
<1- Bgmin (n Zwt,iw;—i> + lé)a”WtH%

1
LS i,
=1 =1 2
<1-B(aBou? — cnvalwllal|Ad2) (95)
+ cBallwell3 ([[well2ll A3 + n*\/&llwtll A2 + aLQ)

E2
<1- /BOZEO,Ufi + QWOOﬁO‘ M*U* rnax « T clooﬂa3M2L2 Ko max
<1-0.58aEu? (96)

I. — (Ik — awtwt wa ,thz <

2

+ Ba Wth E Wy th p

where (95) follows by the diversity of the inner loop-updated heads (Lemma 2) and (96) follows from o« < 1/(4Lpax). O

D.2. Exact MAML

The first step in the analysis is to compute the second-order outer loop updates for Exact MAML. To do so, we must compute
the loss on task ¢ at iteration ¢ after one step of gradient descent for both the representation and head. Let Ay := I, — aw;w,,
Ay =1, — othTBt, and A; =1, — aBtBtT. Note that

Ft,i(Bth) = £t,i(Bt - avBﬁt,i(Bhwt);Wt - Oévwﬁt,i(Bth)) = %||Vt,z||§ o7
where

T T 2 TpT
Vi = B A AW, + aBtAtBt B*W*,t,i + aB*W*,t,th Aw + B*W*,t,iwt Bt B*W*,t,i - B*W*,t,i

= A(Bw; — B.w, ;) — a(Byw;, — B*W*,t,i)WtTAtWt — QQBtWtW;rB;rB*W*7t,i
+a’B w*tlw B B,w,
=(A¢— (aw + at,i)Id)(BtWt —Baw. i) (98)

where a; ; = w B Biw, Vt,7 and w; == w, T A,w; Vt. The outer loop updates for Exact MAML are given by:

Wipl = Wi — g Z VwFii(Bt, wy)
i=1

Bt+1 =B - SZVBFm(Bt,Wt)
i=1

Again, we prove a more general version of Theorem 2 in which we allow for general L, ,x. First we make the following
assumption.

Assumption 6 (Exact MAML Initialization). The distance of the initial representation to the ground-truth representation
satisfies:
distg < Lx 1o 99)

17 "V, max"*
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Theorem 7 (Exact MAML Infinite Samples). Let m;, = Moy = 00 and define Ey = 0.9 — distg. Suppose that

By w3/ 4 (Ln/Linax) /4 Ega T .
a < = AT TI;TX and < o aBg By = Iy, wo = 0 and Assumptions 1, 6, and 4 hold. Then Exact MAML
satisfies

disty < (1 —0.58aEqu?)T 1 (100)

Proof. The proof follows by showing that the following inductive hypotheses hold for all ¢ € [T7]:

Lo Au(t) = {lwellz < [wi-1lla + 1680 L]t + 3Bal* L3, dist7 }
2. As(t) = {|lwill < S8v/ap.}.

3. As(t) = | Allz < ? L2

4. Ay(t) ={|B] Bill2 < (1 - 0.58aEou?)| B! By 1|2}

5. As(t) = {dist; < @(1 — 0.5B8aEou?)t = distg}

6. Ag(t) = {dist; < (1 —0.58aFEou2)=1}

These conditions hold for iteration ¢ = 0 due to the choice of initialization. Now, assuming they hold for arbitrary ¢, we will
show they hold at ¢ + 1.

1. Ay(t) N As(t) = Ai(t+1). This is Lemma 16.

2. Moy {AL(s)
As(t) N As(t) N As(t) = Asz(t + 1). This is Lemma 18.

NAs(s)} = As(t+1). This is Lemma 17.

w

4. Ay(t) N As(t) N As(t) = A4(t+1). This is Lemma 19.

5. As(t+1) NN Au(s) = As(t+1)N Ag(t+1). Note that As(t+1)NLE] Ag(s) and o < 1/(4Lynay) implies

\/?dlstt_i_l = WHB LBt+1||2
< Umin(Bt+1)||B*,LBt+1||2
<|IB] Byl
< (1-058aEu?)" |BI, Bollz
< L (1-058aEou?)" B Bol» (101)
= ﬁ (1 — O.Sﬁanu*) distg,

where (101) follows due to initialization ||Bg||2 = % This implies

distry1 < Y20 (1 — 0.58aEu?) disto < (1 — 0.58aEu?)" (102)

since @ < 1/(4Lax) and disty < f by Assumption 6.

O
Next, we complete the proof of Theorem 7 by proving the following lemmas.
Lemma 16 (Exact MAML A/ (t)). Suppose Assumptions 1 and 6 hold, and As(t) and A3(t) hold. Then
Hwt+1||2 < ||Wt||2 + 16@3 5L;5nax + 3(11 5L§nax dlSt? (103)
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Proof. Using (98) and the chain rule (while noting that a, ; is a function of w), we find that for all i € [n], the gradient of
F, ;(By, w;) with respect to wy is:
VwFii(Bi,wi) = (BiA, — aw By — a?a;,;By) T (BAy — aw; B, — a’a; i By)w
- B:(At — awely — a2at,iId)2B*w*7tﬂ-
—20Awi(Byw; — B*W*,t,i)TVt,z‘ - QQB:B*W*,tﬁi(Btwt - B*W*,t,i)TVt,i
= (B:A; — aw; By — a2at,iBt)T(BtAt — aw By — a2am~Bt)Wt + Ny, (104)

) T(A 2 2 T
where Ny ;.= —B, (A, — aw Iy — o?a;,i14)°Baw. 1 — 208,wi (Bywy, — Bow, i) 'vi s
2RT T
—o’B, B.w, ;i (Biw, —B,w, ;) v;;. Thus,

Wip1 = Wi — gz VwFii(By, wy)

i=1

i=1 i=1

B n ,8 n
= (Ik — E Z(BtAt — Oétht — aQat,iBt)T(BtAt — OéOJtBt — ozzath) Wi — E ZNt’i (105)
which implies that

[will2
2

[Witill2 <

3 \

ﬁ Z BtAt — O(OJtBt — Oé Q¢ th) (BtAt — Oétht — aQat,iBt)
=1

Hi

2

(106)

1
< [lwellz + 8 Hn ZNt,i
i=1

2

where (106) follows since - ZZ L(BiAy — aw By — aay, :By) T (BiA; —awB; —a?a; ;B;) is PSD and f3 is sufficiently
small. Next, we upper bound || }L 21:1 Ny i||,. and to do so, we first use the triangle inequality to write

1 n
~ Ni| <
i=1 2

1 — -
— E B;F(At — awely — a2at,iId)2B*W*7tﬂ-
n

i=1

2

n
1
T
E E OéAtWt(BtWt_B*W*,t,i) Vii

2

1 n
- Z a2B2—B*W*,t,i(Btwt - B*W*,t,i)Tvt,i (107)
[ 2
We will bound each of the three terms above shortly. First, note that A4(t) and o < 1/(4Lpayx) implies
15 1— 212 1+ 212 17
/16 < & Zmax < gmlIl(Bt) max(Bt) O ines < /16' (108)
a o o a

In turn, this implies that ||B;||3 < 1.1. Let ¢ := 1.1. Also, note that B/ A; = A;B] and

IB] AB.|]2 = B (Is — «B:B/ )B,|
<|B] (I, — BB/ )B.|2 + |B] (B,B] — aB,B/)B.|>
< B! (I, - B:B)|l(Is — BB/ )B. |2+ [|B:B] — aB:B/ |
= dist? +|B;(Ix — oRR,)B/ |2
< dist} +[| A2 (109)
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where Ry € R*** is the upper triangular matrix resulting from the QR decomposition of B;. We will use these observations
along with inductive hypotheses A2 (t) and A3(t) and the Cauchy-Schwarz and triangle inequalities to separately bound
each of the terms from (107) as follows. Let ¢ := E/20. Then we have:

n

1
- Z (A — (awy; + a’ay z)Id) B.w. .

n - 9
1< 1<
2p T T
< g Zl At Bt B*W*,t,i +2 ﬁ Zl aWtAtBt B*W*,t,i
i= 2 i= 2

1 n 1 n
2 T 3 T
- E aar; ABy Baws il +2 - E a’wiar i By Baw. t

=1 2 1=1 2

1 & 1 &
2, 21T 4
— E o‘w; B, Bow, il + || — E aaj lB B.w,
n 4 n i
=1 = 2
< ca®?L*

max/ls + 2ca’ Ly axmllwtllz + 2ca3LfnaxLillwtllz
+ 200 L LE||We |3 + ca®2 L, axn*IIWtIIQ +ca®? Lo [well3
< 0™ Loy + 2cc2a5'5Lﬁmw* Ko 2ccza3 5L?WL2 K max
+ 26307 Lo L2 e + €307 Lo 2R e + 3% T Lo 2R T
< 4ca® LY (N + ps) (110)

n
1
T
% E O[AtWt(BtWth*W&t,i) Vii

2

1< _
g Z aAtwtthBtT(At — athd — aQat,iId)(Btwt — B*W*7t)i)
i=1 2

Z aAtwtw B (A — awdy — a’ay ila)(Bewy — Baw 1)
2
< 0 Ly Wi I3 + 200 Ly i [Wil5 + ca® Ly [[Wi[3 + 2¢a®™P Lo [ we 12

+caP L2, .|l wi 4 + 200 L2

max

max]
max
LE|[wel3 + ca® LYo well3

distf [Ilwell2
7574

4.5L?nax||wt H% + CQSL?naxHWtH2 + CO£3L4

+ca max
5 5L4

axlu* * max + ZCC > 5Lmax’r]*,u* Ko max + 662a
> 5L12nax77*u* Ry ,max + 2CC3Oé5 5L12nax
+ CCQOLF 5L?naxﬂ“* Ky ,max +cco Oéo dLglax:u’*

+ ccoa dist?
5.5L5

5 e LB 2 dist? (111)

S CC ax:u* * max

+ 2CC T 5Lfnaxn*:u’* * ,max + CC « L

7.5L6

maxp’* *,max

*l’[’* * ,max

+ 002(1

* ,max

3.5174
Lmaxﬂ“* *max

< 9ccox
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1 n
E 2p T T

ﬁ (0% Bt B*W*7t7i(BtWt - B*W*,t,i) Vii
i=1

2

1 — _
— Z a2B2—B*W*’mw:B:(At — awely — a2amId)(Btwt —B.w. i)
i=1

2

1< _
2T T nT 2
- g a'B, Buw. 1w, B, (A — awdy — a”ay 1a)(Biyw; — Baw, 1)
i=1 2

2-5Lr2naxn* Hwt H2 + 0063L2

< ca max

LE|Iwell2 + ca™ L, ms [we 3

+ CO‘ZBL;‘)’nax”WtHQ +calL? ||Wt||2 + CQQLQHWt||2

max-—— *

+ca® L2 L3 will2 + ca®P L3 w3

3.571r2 3 1573 : 3r4d
+co Lmameax +co Lmax dlStt +ca Lmdx||wt||2

4.515 472
+ ca Lmax||wt‘|2+ca Lmax n*Hth2
3.512 3.5 2 5.5
L axrr]*ﬂ* * max + [£6-167 LmaxL R max + 002a Lmaxn*:u* * max

3573 5.5 12 2 3,3 3572,3,.-3
Lmaxu* *,max LmaxL * * ,max L * * ,mnax

35712

+ ceaa® L

2
max L

3572 13 1573
+ co Lmameax + catPL2  dist? +ccra

5512
LrnaxL*T]*:u* * max

dist? (112)

< ccga

—|—cca +cca —|—cca

3.5713 -2
+ CC «Q Lmaxu*’{*,max

3.574
Lmax/”L* *max

* ,max

5.5
+ CC « Lmax:u* * max + ca

< 9ca®°L2  + catPL3

max max

where we have used co = F/20 and o < 1/(4Lax) to reduce terms. Next, combining the above bounds with (107) yields:

i; Nt,i

Applying ¢ = 1.1 yields the result. O

< 14¢a®°L3 + 2ca'®L3

max max

dist? (113)

Lemma 17 (Exact MAML As(t + 1)). Suppose the conditions of Theorem 7 are satisfied, and (\,_,{A1(s) N As(s)}.
Then

[Weiall2 < 22v/apu,. (114)

ax 3 dist? for
all s € [t], so we can invoke Lemma 3 with & , = 0 Vs € [t] and &, = 168> P L5+ 38a'°L3 dist?. This results in

max max

Proof. By inductive hypotheses A1 (1), ..., A;(t), we have |[wyi1]l2 < ||[Ws|l2 + 168a35L5 .+ 3Bal-5L3

t
[Wigall2 <D 1680°° LY, +3Ba’ P L3, dist? (115)

s=1

Next, we invoke inductive hypotheses Ag(1), ..., Ag(t) to obtain dist? < 21— 0.58aFou?)?=1 distj for all s € [t].
Therefore

t
el < 316507 2L, 4350171, 7 %0

s=1
t
<1680% LY, + 380 LY, Y " R (1 - 0.58aEu?)* 7Y dist]
s=1
dist?
<1680 LYt + RBa LY sere— (116)

max (. 5BO‘EON

< 1680*7L3, t+ 2 /aL3, 254

max max Egp,

< eVau (117)
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Bopt = (as a is sufficiently

where (116) is due to the sum of a geometric series and (117) follows since 5 < 1054 < 61005 L5 T

small) and the initial representation satisfies

20 5 dist)

E,
3 aLmaxEONQ < 278@”*/2

= 0<pd— (3013, + 2ud)distg + 1 distg

which is implied by
distg < Lk LD (118)

17 "x max

O

Lemma 18 (Exact MAML As(t + 1)). Suppose the conditions of Theorem 7 are satisfied and As(t), As(t) and As(t) hold.
Then As(t + 1) holds, namely

[A¢41]2 < &L

max

(119)

Proof. According to Lemma 4, we can control A, by controlling G, recalling that G; = %(Bt —By1) € Rk s
the outer loop gradient with respect to the representation at time ¢. Before studying G, we must compute the outer loop
gradient with respect to the representation for task 7. Again we use the fact that F} ;(B;, w;) = %||v]|3 and apply the
chain rule to obtain:

VBF. (B, wi) = vi,;w] AAy — aBy(wevy BiAy + ABJ vy w)/ )
+ a(vtyiwj’t’iBI + B*W*,t,iv;)BtAt
— 2a2(w;|:t7iB*Tvt,i)Btth;r + aQB*W*,t7ivtTiB*w*,t7ith (120)
Note that G; = 2 3" | Vg F, ;(B;, wy). We aim to write G as Gy = —A;S;B; — $;B;A; + N, for some positive

definite S so that we can apply Lemma 4. It turns out that of the five terms in (120), the only one with ‘sub’-terms that
contribute to S; is the third term. To see this, note that

a(vt,iw*—'—)t’iBI + B*W*’t,iv;)BtAt = —a(AtB*w*)mw* ‘. ZB Bt +B.w, w]
+ (Ve + ABaw, i)W, 0Bl
+B.w, (Ve + W* , ZBTAt))B Ay
+a’AB,w, ;w,), ;BB +B.w, . ;w/, B/BA)ww,
—(A¢S:B; + S;B;A,)
+a((vei + ABuaw,r )W, it zBT
+Baw. (Ve + W/, B A))BA,

+ o’ ABw, i iw,], BB + Bow, iw, BB A)ww,

B/B.A,)

*,t,0

where S; = ol Zl 1 Baw, 1w BT Thus we can write

Gt - _AtStBt - StBtAt + Nt (121)
where
N; ZVthAAt—*ZOZ Btwtw B V“wt + — Zan*“W B, v“w;r
=1 =1 =1

- — ZO&Bt tht LB At + AtB V¢ th +

SRS

Zav”+Athm) 1 BIBA,
=1

+ — ZaAtB w*tlw tiBu Btawtth (122)

i=1
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in(B; S$:B¢) > Eou?

Note that \|Af||2 < 15 due to A3(t)
where £y = 1 — dlst0 Thus by Lemma 4 W1th X = 1 we have

1A lla < 1821 - 28aE0u?) + 280 B] Ny |2 + 52| Gell2 (123)

So it remains to control ||B,” N¢||» and ||G||3. First we deal with || B, N¢||» by upper bounding the norm of B, times each
of the six terms in (122). As before, we use ¢ = 1.1 as an absolute constant that satisfies o2, (B;) < c¢/a!*5. We have

1 n
ﬁ Z B;thﬂ;WtTAtAt

2

2

Z ]3—r O[Cdt + O[ Q¢ Z)Id)(Btwt — B*W*’tﬁi)W:AtAt

1
E Z AtB;r(BtWt - B*W*7t,i)W;AtAt

i=1 2
1 n
+ n Z(Cw-)t + 042at,i)B;r(BtWt - B*W*,t,i)W:AtAt
i=1 2

(Wellons + cl| Agll3]|well3

< elladiBlwedls + 5 llAdd3
+evalAdlalwell3n. + evallAdlwell3n. + col|Aqll2]|we |5 L2

1 1 & -
n Y aww/ BI(A; — (aw + a’ar,)La)

ZO[ZB Btwtw B Vi thT <c
2

=1

X (Btwt - B>5<V"'x<,t,i)v"';r

2
< eval| Az wil3n. + ca(l| Az + dist?) [we | 3L7

+ca P Adllalwell3n. + co®l| Al l|W3 L3

+ca®|will3L7 + ca? || Wi | 315

n
1
20T T T T
n E a’By B*W*,tﬂw*,t,iB* Vi,iWy

i=1

< callAdl2well3L3 + cat S (| Adllz + dist?) [ we 2L,

2
+ co®|| Al well2L3 + o || A2 [ WI3 L3

+ Ca2 5||VV]5H2 max + COZ3HWtH2 max
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1 n 1 n
H ﬁ Z OéB;rBt (thZiBtAt + AtB:Vt,iW;r) ﬁ Z O[B;rBtWtVZiBtAt

i=1

2 2

< 2c

i=1

x (Ay — (aw: + a2am)Id)BtAt

1 — -
E Z Wt(BtWt - B*W*,t,i)

2

< ZlAdlwel3 + ZEllAdll2l[well2n.
+ 2| Az well3 + 2ev/al Al wel3n.

+ 2ev/al|wel[3n. + 2calwe 3L

1 « _
H - > aB/ (vii+ ABuw.ri)w., BIBA,

i=1

< ElAd2lwell2n + ev/al Adllzllwe3n.

+cal| Al wel3L2 + callw|[3L2

+ ca®?|\wy||o L3

max

< af| Azl well3L2
2

n
1 _
T T T T
- E aB, AtB*w*yt}iW*’mB* Biaw,w,
i=1

Let co := Ey/20. We can combine the above bounds and use inductive hypotheses Az (t) and A3(t) to obtain the following

bound on || B/ N¢||2:

HB;rNt”Q < 2CC L*M* Ky, ,max + Cc2a4L37)*M*H;}nax + 4CC4C¥6L4

+ Cc2a6L4n*M* * ,max + 3CC 4L2L13nax/’b* Ry ,max + 3CC 2L13naxu* Ry ,max
+ CCQOZGL?n*N* Ky ,max + 266204 N’SLfnax >ijmax + 2CC 3L13naxL2 Ry ,max

+2CC 2L2 2, -2

474
+ CCQQ LH max M Fox ,max

ldX/”L* * I‘IlaX
2 4712 4 —4 3 2 3,.—3

+ 30020[ Lmaxn*:u’* *,max + 2CC Lmaxu* *,max + 20020[ n*u*’i*,max

+ 4deeg L2 + 2cc00 L2 L2u%k72

max:u* *,max max M* *,max

< 2lecoa (Lin. + LfnaXLz)y*n;max + 3ccia’ L3 dist?
+ 4cea0® (Lyax + Lipax (11 4 f12) ) 14K ppa

< 10ccoa® L2, % + 3ecsa® L2, 12 disty

< 13cepa® L2, 12

< 1562@2 L?naxlj‘z

maxu*ﬁ*,max

4 —4 3 4712
Moy *,max+4002a L

maxn*u*’%*,max

dlStt

(124)

using that o < 1/L,, ¢ = 1.1 and combining like terms. We have not optimized constants. Next we bound ||G||3. First, by

(121) and the triangle and Cauchy-Schwarz inequalities,

Gl < 1A 2Bl + 1512 Bl A + [N 2
< eva(dist; +2[|A¢l2) L2 + [N |2

(125)

We have already bounded ||B, N;|| by separately bounding B, times each of the six terms in N;. We obtain a similar
bound on || N¢||2 by separately considering each of the six terms in N, (see equation (122)). Of these terms, all but the first
and last can be easily bounded by multiplying our previous bounds by +/« (to account for no B;). The other two terms

are more complicated because we have previously made the reduction ||B; A||o = ||A:B/ ||2

< %HAt”Q, but now that

there is no B/ to multiply with A;, we must control A; via ||A;B.||2 < ||A¢||2 + dist;. Specifically, for the easy four
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terms we have

< cal| Aglal[wel3n. + catS(|| Az + disty) [we |5 L

max

n
1
2 T T T
- E « Btwtw*ymB* ViiW,
i=1

2
+ e[| Al wel|3n. + co® || Aylla[lw 3L

max
3

max

+ca®? w307 + co®[[ w31

< ca || Adl|a|lwel|3L2 + ca® (| Adllz + dist?) | we| 2L

max

n
1
2 T T T
- E a’Buw, iw, By v iwy
=1

2
0| AdllawilIAL2 + co | Al WIS

max
+ co® || W[5 L5 0 + ca® [ we[I3L5

max max

1 n
E Z O[Bt (WtVZiBtAt + AtB;thin;r)
i=1

< ZE N AlIwell3 + 2¢] Aglla][we | 2.
2
+ 2ev/a| Ayla][wel|2 + 2cal| A2 [lw 37

+ 2callwe|3n. + 2ca’? w313
n

1 _
Z a(vy; + AtB*W*,t,i)WIt,iBIBtAt

- < cllAdllzlwellzn. + cal Aella|lwe 5.
i=1

2
+ cat ¥ Ayl w12 + cat?|lw |3L2

+ CO(Q HthQLilax

and for the first and last term from (122), we have

1 n
it § VW) AA
n

i=1

< FlABIwel3 + cll Adll2 (| Aellz + diste) [ we 2.
2

+eval Adl3lwels + coll Adlla[lwel 3.

+ cal| AW 5. + cot | Acll2|lw |32

n

A T nT T

- E aAB.w, ¢ iw, B, Braww,
i=1

< a5 (|| Ayllo + disty) || we||2L2

2
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Combining these bounds and applying inductive hypotheses A5 (¢) and A3(t) yields

INt[l2 <

<

<
<

A

<

45712 45712712
Lmaxn*/’(‘* * ,max + CC2Oé L Lmax/’b* *,max + CC204

65L277*,“* *max+002a6 5L2 L +CC a4 SL*/’L*

max

2572
Lmax/’(‘* *,max

ccha dlStt

5
+ CCox maxl”L* * ,max Ky ,max
3 45713
+ CCx L ax:u’* * max
45713 2
*,max + CCx LmaxL ax.u* * max + Cetx

+ecya®SL3 L2

ax max/’(‘* *,max

25713
Lmaxu* * max

+cc2a* LA 1iik dlStt
+ a2 L2

457174
Lmaxﬂ’* *max

45L3

+ cc2a max:u’* *,max

ax:u’* *,max

2 2.5
+ 662a + ZCC « L*:u* * ,max
25712 4512 3 45712
L 77*:“* * max + 2CC « L ax/J“* * Inax + QCC Q@ L axn*:u* * max
25712
Lmaxu* *max

+ 2ccoax

+ 2ccsa P k3 ‘max + 2ccia*P Ll k; + ccox

*max
4572
+cc2aSL2, L2 1Pk

4.5712
L max’x
2. 5L3

+ 002a maxn*:u* *,max

*,max

4574 —2
max Moy max + 662a L HsFos max

4.5 2.5 4574 4, -4
+ cer L Nx sk max + cea Lmaxn*,u* * max dlStt +CCQQ L p *H* ,max

4.5712 6.574
Lmaxn*ﬂ* * ,max + 062a L

2 45712
+ CC Y LmaxL*:U’*
2. 5L2

+ cc2a2 SL21k; + ccox

* de

4512
W*H* * ,max + CCQOZ LmaxL*M* *,max

+ cc2a®S L2 P2k disty

+ ccza

*,max * * ,max

cc « aX/”L* * Iﬂax

+ 5ecyabP L2 b
+19ccoa®SL2 L2

25713
ax maxu* L

+ cCox max/’b* *,max dlStt

2 25 25712 1
+ 2CC a L*/u’* * ,max + 266 «@ L*U*/‘*"ﬁ* ,max

+ 2ccia* 577*u* + 2ccsa* 5L*,u* 2512

*max + ceox
+CC a25L 25L3

* l’ﬂaX aXN* * Hlax

+ CC « aXlLl’* *,max

*/1’* *,max
2.5 :

+ 66,167 Lmaxn*ﬂ*’i* max dlStt

disty

2ccoa® L2 L2 12 4+ 12cc00®5 L2, 12 + 3ccoa®P L2 12 dist,

max

+ ceaa® L2 1%k

* * ,max

ldceaa®S L2, 12 + 3ccaa®P L2 i disty

17ceo a0 L2

Sceav/ap?

ax:u‘*

using & < 1/(4Lyax), dist; < 1, and again, co = E/20. Thus,

G413 < (ev/a(dist, +2] A¢l2) L2 + Secav/an?)®
(2cv/aL? + gcc%/a,u*)
2
s (L2 + copi?)
< 3aL?

IN

IN

(126)

(127)

using ¢ = 1.1 in (127). Returning to (123) and applying our bounds on ||B/ N;|» and ||G¢||2, along with inductive
hypothesis A3(t), yields

[Ar1ll2 = [[A2(1 = 28aEou?) + 30c2fa’ Ly i + 3% Ly
< 2Ly (1 = 2BaEop?) + 30c280° L i + 36%a° L
<a’L?,. —2BaPEL?, 2 +30coBa® L2, p? + 36%a° L2
<a’L?

max

2 2
where the last inequality follows due to 3 < £o% < % and c; = Fy/20.

10x2 —

(128)
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Lemma 19 (Exact MAML A4 (t + 1)). Suppose the conditions of Theorem 7 are satisfied and A5 (t), As(t) and As(t) hold.
Then Ay(t + 1) holds, i.e.

IB, | Bisill2 < (1 —0.58aEou?) B Byl2. (129)

Proof. Recall from (121) that the outer loop gradient for the representation satisfies
G;=—-A;S;B; — S;B;A; + N; (130)

where S; == ot 31" | Buw, . ;w,, Bl and [|[N¢|[2 < 2ecay/ap2, where cp := E/20. As aresult,

*,1,1

||B1—,J_Bt+1||2 = ||B:—,J_(Bt - B(_AtStBt - S:BiA; + Nt))”Q
= |B) (B, + 8S;B; — BaB;B/ S;B; + 3S;B, — 8aS;B,B/ B, — N,||»
= ||B*T,¢Bt<1k - 5aBtTStBt) - BB*T,LNt||2

< B, 1 Bi|ol|Tk — BB/ SiBy[l> + BB N2 (131)
where the last equality follows because B*TJ_St =al Z" B*TJ_B*W* LW, * .B] = 0. Note that due to Lemma 1 and
A2 < 10, Omin(B S¢B¢) > Eou? where Ey = 1 L — dist?. Therefore, by Weyl’s inequality,

[T — BaB/ SiBy|l2 < 1 — BaLous. (132)

Furthermore, from (126), we have

IB] | Nifl2 < INg[|2 < 2ecovap? < 2eav/ap?
= |B] | Bijall2 < |B]  Bell2(1 — BaFoul) + Seav/ay (133)

Next, recall that ||B] 1Bill2 > omin(B;':J_Bt) > /% Omin(B] J_Bt)/\f = /15 1—dist?/y/a >
V34 /1 - L distd//a = v/Ey/\/a due to inductive hypotheses As(t) and A4(t) and Ep := 0.9 — distg. Therefore,
using co < 2E3/2/5, we obtain

Sexvap? < 0.5VaEy *p? < 0.5aEu?|B] Byl
= B Biill2 < [IB) Bifl2(1 — 0.580Eou3) (134)

E. ANIL Finite Samples

First we define the following notations for the finite-sample case.

The inner loop update for the head of the i-th task on iteration ¢ is given by:

wi; = wi — aVyLi(By, wy, Di")
= (It — aB; ="By)w; + oB/ 3} B.w. i + 72-B/ (X}%) "2/ (135)
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Notation Explanation

=[x, X min T Data for inner loop gradient

o LN T — : : : :
2= 2ot Xps, (x5 ) Emp.11T10al covariance matrix fo.r inner loop gra.d1ent
z" = (201, zm,mm] Additive noise for samples for inner loop gradient

=1, — aB, "B, Finite-sample analogues of A
~ in ; .. A
A, =1;— aBtBTEm Finite-sample analogues of A
Xout = [x2ut .. x?jtmout]—r Data for outer loop gradient

out . _ 1 Mout out (yout \T e H R R
B0 = ijl xP4 (%) Emp.1r.10al covariance matrix for outer loop gra.dlent
z;’“f = (2001, s Ztimons) Additive noise for samples for outer loop gradient

Vd1+104/log(n .

Om.ds = Vi +10y/log(n) Local concentration parameter

,d1 m
5 — 10vdy .
Om,dy = o Global concentration parameter

For Exact ANIL, the finite-sample loss after the inner loop update is given by:

Ft,i(Bhwt; t Z,Dout)
= ﬁt,i(Btawt - avwﬁt,i(Btawt; ) Dout)

= 2m1(,ut mzoét(xtT,i,jBt(Wt — OthTZ ‘Biw, + aBTE”LB Woti — mLthT( “)sz)
j=1
*XZi,jB*W*,t,i) Z;nftj)z
= s %t(xtl A“(Btwt —Baw. 1) + 72 BB (X)) T2 — 2145)°
j=1
= ﬁ ¥+,

outAt {(Biw, — Buw. 1) + 22 X049 B B (X)) 2y — 204!

Therefore, using the chain rule, the exact outer loop gradients for the ¢-th task are:

VBth(Btvwh tz’ ) (A ) Mout
+a#(X?}:t)Tvmw B/ %{B;

L (X4 79w/ — a2 (X94) ¥, ;w, B BB,

Mout

*,t,7

in out ST out
— a3} BtWtV“m X7 Bt—I—aEt "B. w*“v“m W Bt

Jraig(xt )T{’tz(ztl) X BtJFiQ( tz)Tz;Z{I;FZXoutBt

MinMout "t MinMout

Vo Fri(By, wis D% DY) = B (AT (X044 T 0, — T (Xgut)T et

Mout

Meanwhile, the first-order outer loop gradients for the ¢-th task are

VeLei(Bi, w3 D, DY)
_ BTzoutBtwt p BTzoutB*w* i

out T « out\T jout .. T
=37 (Btwti_B*w*ti)Wti_ (th) Zii Wi

Mout
Eo“t(Bt( “wi+aB! T Baw. 1) — Baw. i) (AW + aB/ 2 Baw. 1)

« out\ T out T
mou,( ti) ti Wt

t in Tsv T T to T
Eou At 1(Btwt - B*W*,t,i)(At,iwt +aB, 2;2 “Wati)  — S (X?I: ) Zy; Wy,

Mout

vwﬁt,i(Bt;Wt,i; tq,DOUt) BTZOUtAtZ(Bfo B*W*,t,i)* (Xout)TZ?zt

'"Lo ut
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Define

1 n . 1 n
G = > VBFi(Bi,wi), Gpyi= -~ > VBF.i(Bi,w)

=1 =1

1 — R 1 — .
Gw,t = E Z VwFt,i(Bth), Gw,t = g Z vwFt,i(Bt7Wt)

i=1 i=1

Now we are ready to state the result.

Theorem 8 (ANIL Finite Samples). Suppose Assumptions 1, 2 and 3 hold. Let Ey:=0.9 —distg —§ for some § € (0,1)
to be defined shortly and assume E is a positive constant. Suppose the initialization further satisﬁes ozB0 By = Ik and
wo = 0, and let the step sizes be chosen as o < \/Eg* ,and 3 < < aEO for ANIL and 3 < O‘EO”* min ( )for
FO-ANIL, for some absolute constant c. Then there exists a constant ¢ > O such that, for ANIL, if

Mgu > T2 L) (Ut i) 4 o Tk + 52 1 log(n))ss (g7 + k) + ck + clog(n)

nn2Ks

M > T2 (k2 + klog(n))(ﬁ?ﬂ + T (K + klog(n)) (k) + Z5) + cf%(""“n)nﬁ(y +1) (136)

and for FO-ANIL, if

Tdk Tdk kS . T2)3 ki
Mout = Cn/{,% "‘CanZz +c +c nﬂo +Cn -|—C n*
T2k3 4: T2k2 i 2 T2k2 Li+0'2
M > Tk + log(n)) (k% + %) + ¢ +elbe | Tkt

then both ANIL and FO-ANIL satisfy that after T iterations,
. o T—1
dist(Br, B,) < (1 — 0.58aEou7) +0(0) (137)

with probability at least 1 — O(T exp(—90k)) —

T T
poly(n) — poly(miny» Where for ANIL,

6= (f+ Z > + ﬁ(Umi + VEkao /) (VE + \/log(n))>
+ \/ﬁ ((lmi + \/EK*U/,LL*)(\/E+ \/log(n)))
i ((lmi + Vo /i) (ky/dlog(nmin) + klog(nmiy) + Vdlog"® (nmiy,) + log® (nmiy))

+

25 (VD4 Valog(um) +1og" (i) + (ke + V..V

1
+ \/m<(lm + fﬁ*d/ﬂ*)\[+ (Vi * f)>
and for FO-ANIL,
= (VI + 522 4 o)A (138)

Proof. The proof uses an inductive argument with the following five inductive hypotheses:

LoAL(E) = {[well2 < Y52 min(1, % )n.}

2. Ay(t) = {[|A¢ll2 < (1 = 0.58aEop2)| A1 |2 + B2 LE dist}_; +Bas},
3. A3(t) = {llAdl2 < 5}

4. Ay(t) = {|B] | Bella < (1 = 0.58aEou2) |B] | Biill2 + Bv/ats},

A
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5. As(t) = {dist, < Y10 (1 — 0.58aEou2)" disto +6}.

where (5 is defined separately for ANIL and FO-ANIL in Lemmas 34 and 28, respectively, and (4 is defined separately for
ANIL and FO-ANIL in Lemmas 35 and 29, respectively. These conditions hold for iteration ¢ = 0 due to the choice of
initialization (B, wg). We will show that if they hold for all iterations up to and including iteration ¢ for an arbitrary ¢, then

L — O(exp(—90k)).

. . . .y 1
they hold at iteration ¢ + 1 with probability at least 1 — soly(n) ~ poly(min)

1. ﬂi:O{AQ (s)N Ag(s)} = Ai(t+1). This is Lemma 27 for FO-ANIL and Lemma 33 for Exact ANIL.
2. A1(t) N As(t) N As(t) = Aa(t + 1). This is Lemma 28 for FO-ANIL and Lemma 34 for Exact ANIL.

(
(
4. A1(t) N Az(t) N As(t) = A4(t+ 1). This is Lemma 29 for FO-ANIL and Lemma 35 for Exact ANIL.
Az(t+1)N (ﬁ';illA4(s)) = As(t+1). By A3(t + 1) and A4(¢ + 1) we have:
1B, Bii1ll2 < (1—0.58aEul)|B,  Bill2 + Sv/als

< (1-0.58aE12)?|B]  Bii]l2 + (1 — 0.58aEou?)Bvats + Bv/als

t

< (1-0.58aEu?)! B Boll2 + Avads > (1 — 0.58aEu2)’

5=0

<(1-o0. DB, e

< (1= 0.58aEou;)" B, | Boll2 + 1—(1—-0.58aEyu?)
2¢

= (1 - 0.58aE})"| B, 1 Bollz + \/aTi;ﬂ

(
3. A1) N Ax(t+1) N As(t) N As(t) = As(t+1). This is Corollary 3 for FO-ANIL and Corollary 4 for Exact ANIL.
(

(139)

Now we orthogonalize B; and By via the QR-factorization, writing B; = Bth and By = EORO. By inductive
hypothesis As(t + 1), we have oy (Bit1) > %, and by the initialization we have oy,ax(Bo) < % Thus, using

(139) and the definition of the principal angle distance, we have

: . 2¢4 _
dist(By11,B.) < <(1 — 0.58aEou)" dist(Bo, B..)[|Roll2 + w) IR 2
V10 . 3¢,

< T(l — 0.58aEzus)" dist(Bg, B.) + For?

< (1-0.58aEou?)t +6

where ¢ = O(ﬁ—‘;)

After T rounds, we have that the inductive hypotheses hold on every round with probability at least

O(exp(—90k)))T > 1 — O(T exp(—=90k)) — —L~ — T

(1 _ 1 _ 1 _
poly(n) poly(min) poly(n) poly (m;r,)

where the inequality follows by the Weierstrass Inequality, completing the proof.
Throughout the proof we will re-use c, ¢/, ¢, etc. to denote absolute constants.

E.1. General Concentration Lemmas
We start with generic concentration results for random matrices and vectors that will be used throughout the proof.

We use x¢ to denote the indicator random variable for the event £, i.e. xe¢ = 1if £ holds and x¢ = 0 otherwise.

(140)

(141)

(142)
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Lemma 20. Ler X = [x11,..., x1,ml]T € R™ >4 phave rows which are i.i.d. samples from a mean-zero, 14-sub-gaussian
distribution, and let X1 1, ..., X4 ,, be independent copies of X;. Likewise, let X3 = [X21, . .. ,X27M2]T € R™m2xd pgye
rows which are i.i.d. samples from a mean-zero, 14-sub-gaussian distribution, and let X5 1, ..., Xa ,, be independent copies

of Xo (and independent of X1 1, ..., X1 ). Define 3y ; == W%XLXLZ- and X ; == mizX;—,inifor all i € [n]. Let the
elements of z1 € R™ and zy € R™2 be i.i.d. samples from N'(0,02). Further, let Cy; € R¥*41e/2) for ¢ = 1, ..., 6 be fixed

matrices for i € [n], and let ¢y = max;c(y [|Cyill2 for £ = 1,...,6. Let 0y q, = CW and 0y 4, = clOT\/‘/T?

for some absolute constant c. Assume that in all cases below, each & and § is less than 1. Then the following hold:
1. P (H% S Cl21iCoy — CIZ-CQ,Z'HQ > 01025m1,d0+d1> < 27 90(do+d1)

2 p( |15, O] %1,Cy,CL 50,Cas — CF,Cs,CLLC

> e169¢3¢a (1 + Oy dy s )Omy dotds + Oy dordy) < 207 20000Fd2) 4 2799

3. ]P’( |+ 370 € 21:C2,iCy ;32,,Cy i — CJ ;C2,,Cy ,Cai],
Z 0C1C2€3C ((1 + 5’m27d1 +d2)57711»d0+d2 + 57n2,d1+d2) S 26790(d0+d2) + 27’L799

4P (|2 i CLXT 214, = 0010m, a, ) < 26700

5. P ( %Z?:l CLZLZ-CQJC;%»%XLZM ) > 0102C3(1+5m1,d0)6m2,d1) < 2¢—90d: + 2, —99

> 0'010263(1 + 6m2,d1)6m1,d0) < 2¢—90do =+ 20,99
2

S
~

Lime 232,iC3.

1\ T 1 ~T T
(EZi:1C T X1,i%1,iCo,

N
~

1 n T 1 T 1,7
( 7 2oic1 Crim X4 121,175 22, X2,iCo,

Lim,

> 0201025m1,d05m2,d1) < 2¢790do 4 9e=90d:
2

15 T T T T T T
8. ]P’< |30, C;21,Cs,CJ;55,Cy,CJ ;35,:C i — C17¢02,i03,ic4,ic57i06,i||2

> €102€3C4C5C6 ((1 + 5m2,d1+d2)(1 + 5m2,d2+d3)5m1,d0+d3 + 6m27d2+d3 + (1 + 6m2,d2+d3)5m2,d1+d2) >

S 26—90(d0+dd) + 477/_99
9. P( |5 211 €1 21,iC2,iC3;82,,Ca,iCJ ;31,iC6,s — C[ ;C2,,C3 ;C4,iC3 ;Ce.i|,

2 €1C2€3C4C5C6 ((1 + 5m1,d0+d1)(1 + 57711,d2+d3)57n27d1+d2 + Smhdo-‘rds + (1 + 5m17d2+d3)5‘m17d0+d1) >

< 26_90(d0+d3) 4 4TL_99
10. ]P( ||% Z?:l CLEMCQ,ZC;X;ZZQVZCLC;ﬂEgﬂcm||2

> ocrcac3ca0sCo (14 Omy dotds) (10 ds) 6m2’d1> < 9e=90d1 | [, —99

11. P( H% Z?:l CIZ‘21,iC2,iC;z’EQﬂ'C‘l,iC;iXIiZLiH2

> ocrcacscacsCe (14 Oy do+dy) (1+H0msy,dy+ds) (5m1,d2> < 9e=90d2 | 4, =99

12. P( |5 Xy CLiX jz1,ie5 ,C3 ;21,iC,iC3  22,C i,

> oc1c2¢3¢4¢5C6 (14 Oy datds) (14+0my,di+ds) 5m1,d0) < 2e790do 4 =90
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13. P( |5 2oy Cli21,iC0,iC5 ;X3 122,25 X2, Cui,

> 0‘201020304055”12@157%2@2 (1+5m1,d0+d2)) < 2e90d1 | 9p—90d2 4 4y —99

Proof. We give the proofs for (1), (2), and (8) since the rest of the proofs follow using analogous arguments. In all cases,
the proofs are standard applications of Bernstein’s inequality.

1. For any fixed unit vector u € R%, ry ; ; := u’ C| ;wy; ; is sub-gaussian with sub-gaussian norm at most c[|C1 ;|2
Likewise, for any fixed unit vector v € R%, ry ; ; := v Cg ;X2 ; is sub-gaussian with norm at most ¢||Cz ;|2 for an
absolute constant c. Furthermore, E[ry ; jru.i ;] = uTCLxl,me’ngﬂ;v = uTCL—CQ,iv. Therefore,

n mi

1 n
n Z CIixl,iCQ,i - CL’CM u=

niTwing — Elrv,i it gl) (143)
’L_lj 1

is the sum of nm, independent, mean-zero, sub-exponential random variables with norm O(||C ;|2]|C2,||2). By
Bernstein’s inequality we have

n maq

dotdi+))?
ZZ [rv.iiTw,ig] = Tv,igTuig)| < C?éé[ﬁ||Cl,i||2||C2,¢||2maX (\/df/:%H’ (it 2 )
1=1 j=1

for some absolute constant ¢ and any A > 0, with probability at least 1 — 2¢=*’ over the outer loop samples. Let S%—1
and S~ denote the unit spheres in R% and R¥, respectively. From Corollary 4.2.13 in (Vershynin, 2018), we know
that there exists i-nets M and M5 on S%~1 and S~ with cardinalities at most 9% and 991, respectively Thus,
conditioning on using the variational definition of the spectral norm, and taking a union bound over the ;-nets, we have

1 n n m
T T
=3 € %1:Co; — C],Cos| = max E E (Elrv,i,iT i) = Tv,ijTu,ing)
n 1 veSd—1 ueSh—1 | nmy
= 2 : :

n Mout

<2 max Tvi‘Tui‘—Tvi‘rui‘
= C My EMs | Ny §1 E BN ,,J] 18,3 ,,J)
1=

=1

<d Hé?)]{ |C1,ill2]|C2,i |2 max (\/d°+d1+’\ (*/d”dl“)z)
1 n

nm1 ? nmi

for some absolute constant ¢, with probability at least 1 — 2 x 9gdotdic=X* gver the outer loop samples. Choose

A = 10v/d and let v/nmy > 114/dy + dq to obtain that,
1 n
-~ Z C{,;%1,Cs,; — C{,Cy| < cmax IC1ill2ICx,ill20m, dot+dy < cC1C20m, do+ds
. K3 n
= 2

with probability at least 1 — 2e~90(do+d1),

2. LetE = % Z?:l Ciizl’icz,icg—’iEQ’iczl’i — CIiCQ,iC;—,iC4,i~ We have

1 n
IE|2 < -~ Z CIiE1,iCQ,iC;iE2,iC4,i - ClT,iC2,ich,iC4,i
i=1 2
=17, Z C (B — Id)C?ﬁin—sr,iEZiCM + ClT,iC2,iC:—3r,i22,iC4,i - CIZ‘C2,iC;iC4,i
2
1 n
<|| = Z C (31— Id)CQ,iC;:iE2,iC4,i + H - Z CIiCQ,iC;i(EQ’i —1;)Cy, (144)
2 — 2

=K =Eo
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We first consider ||Eq ||2. For any 7 € [n], we have by Theorem 4.6.1 in (Vershynin, 2018),

|C3,:2,iCai — C3;Cusi|, < cmax 1Cs,ill2[1Caill20my dy+dy = CC3C40m, dy+ds (145)
1 n

with probability at least 1 — 2n.~1%°, Union bounding over all i € [n] and using the triangle inequality gives

P (.A = {{2271‘}1'6[”] : ||C3T71-2271‘C4,1‘H2 S 66364(1 + 5m2,d1+d2) Vi € [TL]}) Z 1-— 271799. (146)

Next, for any fixed set {25, Z}Ze € A, the ds-dimensional random vectors

{me02110371227104,2}16[,1],],5%] are sub-gaussian with sub-gaussian norms at most ¢’cacsca(1 + Gy dy+ds )-
Likewise, the dy-dimensional random vectors {ClT,ixi, I }ie[n],j/E{Q,...,m} are sub-gaussian with norms at most c. Thus
using the same argument as in the proof of (1.), we have

(H Elz _Id)CQ lC3 222 1041 (147)
2

<c 01020364(1 + 5m27d1+d2)6m1,d0+d2 ’{22 Z}ZE {22 Z}ZE € A)
> 1 — 2¢90(dotdz), (148)

for an absolute constant ¢”’. Integrating over all {2y ;}ic[,, € A and using 0, 4, 14, < 1 yields
(H 21 R Id)CQ zC?) 222 1C4 i < C//CICQC3C4gm17do+d2 ‘A> >1- 26_90(d0+d2)~ (149)

2
Therefore, by the law of total probability and (146), we have

P (||E1||2 < c"610203C45m17d0+d2) < 2e790(dot+d2) | P(A%) < 2¢~90(dotd2) | 9y, =99 (150)

Next, we have from (1.) that |Eq|2 = < 0010203045m27d0+d2 with
2

), Finally, combining our bounds on the two terms in (144) via a union bound yields

3, CliCiCF (B0 — 1a)Cui

probability at least 1 — 2e~90(do+d2

P <||E||2 < Cl/ClCQC3C4(5m1;do+d2 + (1 + 6m2;d1+d2)5m27d0+d2>) (151)

as desired. Note that we could instead use (146) to bound ||Ez||2, which would result in the bound (3.).

8. LetE = % Z?:l CIZ‘El,iCZ,iC;,r,i22,1'0471'0;1‘22,1'06,7; _CIiCZiC;—,iC‘LiC;iCGJ' We make a similar argument
as in the proof of (2.) We have

1 n
IEll2 < || =) CJ (81, —14)C2,,C4 ,;%2,,C4,,Cy ;32,;Cq ;
n 22Ot , ,

2

=E;

+| = Z C/ iCo zC?, (Ba,; — Id)C4,iC5T7i22,iC6,i

2

2:E2

(152)

1 n
+ -~ Z: CLCQ,iC;iCMCL(EQ,i —1;)Cs

2

::Eg

We know from Theorem 4.6.1 in (Vershynin, 2018) that P(||Cy ;(22,; — L) Cu,ill2 < cc3¢40my.dy+d,)
>1—2n""and P(||C3 ;32,Ce.ill2 < cesc(1 + Oy dytas)) = 1 — 2070, Union bounding these events over
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i € [n] gives P(||Ea|l2 < cc10203¢45C60my,dy+ds (1 + Omado+ds)) > 1 — 4e~%2. Union bounding over the same
events, we also have P(||Es||2 < ccicacscacscedmy.dyrds) > 1 — 2n7 %9, Next, we make a similar argument as in (2.)
to control ||Eq ||2, except that here A is defined as

A= {{EQ,i}iE[n] : HC;—,122ZC4,1||2 < 60304(1 + 5m2,d1+d2)7
||C5T7i22,i06,i||2 < cesce(1 + Oy, dotds) Vi € [ﬂ]} (153)

which occurs with probability at least 1 — 4n~? (which is implied by our discussion of bounding ||Es]|2). Thus,
following the logic in (2.), we obtain P(||Ei|ls < ceicacscacscs(l + Omy,dy+ds) (1 + Omo.dotds)Omy dotds) =
1 — 4n=99 — 2¢=90(do+ds) Combining all bounds yields the desired result.

More generally, we add and subtract terms to show concentration through either a ¥ — I; matrix, or an Xz matrix, with off
terms bounded for each ¢ by sub-gaussianity. O

Lemma 21. Consider the setting described in Lemma 20. Further, suppose min(dy, ds, ds) = 1 and max(dy,da,ds) = k.
Then the following events each hold with probability at most ¢’ (e %0 + n=9 4+ m, =) for absolute constants c,c':

.ul:{

— 1 n T T T S
. Z/{Q = { Hﬁ Zi:l 21’1'0271'C3,i227ic4’i05,ixl,izl,iH2 Z 60'020304655}

1 n T T T T
7 2ie1 21,iC2,iC3 ;39 ;Cy i Cy ;31,;Cs i — Co,,C3 ;32,,C4,;Cy ;Cs i

> 00203040506(5—1—”’;)}
2

. ug = { H% Z?:l 217i02’iZIiX1)Z‘C47iC;i22’1'0677;H2 > 00620364655}
. Z/{4 = { ||% Zf?:l Xir,izlyic;,iC;izlyic4qicgi227icﬁaiHg

(Vkd++/dlog(nmi)+log(nmi)) log(nmi)
NI

> €OC1C2C3C4C5Cq

. Z/{s = {H 1 Z?:l Xzizt,iz;&xt,iCQ,iC;iEZiC‘Li||2

nm%
> coeyescan ((m+\/d10g(nm1)::lgl(nml))q/log(nml)+7711) }

where

6 == (k+/dlog(nmy) + klog(nmy) 4+ Vdlog"® (nmy) + log?(nmy))//nmy.

Proof. 1. Similarly to previous proofs involving sums of products of independent matrices, the idea is to first use that

one set of matrices is small with high probability, then condition on these sets of matrices being small to isolate the
randomness of the other matrices. Note that matrix C;i227i04_’i has maximum dimension at most &, so by Lemma
20, for any i € [n], {[|C4 ;22,iCuill2 > cczca(1 4 0m, &)} holds with probability at most n'°°. Applying a union
bound over [n] gives that A := Ne[n{[|C4;32,:Cuill2 < cczca(1+ dm, 1)} holds with probability at least 1 —n~%°.
Conditioning on A, and using &,,, , < 1, we can apply Lemma 22 to obtain that

1 n
H -~ Z 217ic2,icg—>,r,i22,1'0471'0;;‘21,1'06,1‘_CQ,iC;iEQ,iCAL,iCsT,iCG,i

i=1

200263646566(84-1;7?2) (154)
2

occurs with probability at most . Since P(U;) < P(U;|.A) + P(A), we obtain the result.

2. We make the same argument as for (1) except that we apply Lemma 23 instead of Lemma 22.
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3. Again, we use Lemma 23 as in (2).
4. Again, we use Lemma 23 as in (2).

5. Here we make the same argument as (1) except that we apply Lemma 24 instead of Lemma 22.

The following is a slightly generalized version of Theorem 1.1 in Magen & Zouzias (2011): here, the random matrices are
not necessarily identically distributed, whereas they are identically distributed in Magen & Zouzias (2011). However, the
proof from (Magen & Zouzias, 2011) does not rely on the matrices being identically distributed, so the same proof from
Magen & Zouzias (2011) holds without modification for the below result.

Theorem 9 (Theorem 1.1 in (Magen & Zouzias, 2011)). Let 0 < e < 1 and My, ..., My be a sequence of independent
symmetric random matrices that satisfy ||+ Zi\il E[M;]|l2 < 1and |M;l||2 < B and rank(M;) < r almost surely for all
i € [N]. Set N = Q(Blog(B/e?)/e?). If r < N almost surely, then

'

The following lemma again gives generic concentration results but for a more difficult set of matrices. The key technical
contribution is a truncated version of Theorem 9.

1 & 1
—N"M, - E[M; < 155
N 2 M 0” by (V) (5

Lemma 22. Suppose that x is a random vector with E[x] = 04, and Cov(x) = 14, and is 1,4-sub-gaussian. Let
{xi,j Yicn),je[m) be nm independent copies of x. Further, let Cy; € R 1e/2) for £ = 2,3, 4 be fixed matrices for i € [n),
and let ¢ ‘= max;c[y) [|Ceill2 for £ = 2,3, 4. Denote X; = % 27:1 xi,szj. Then, if m > max(1, C%ccaczeady),

1 & 1 &

-~ Z EiCQ,iCliziCél,i - Z CZ,iCliC4,i
=1 1=1 2

< c(y/log(nm) 4+ v/dy)(+y/log(nm) + \/d2)d+d+mlog(m)6203czl

4

+ \/:Lim(\/log(nm) +Vd) (H( log(nm) + \/dWQJ)> max(cocseq, 1) + 0%0203@

=2

for an absolute constant c, with probability at least 1 — 2m =% — 2901,

1 _
poly(nm)
As in previous cases, in this lemma we would like to show concentration of fourth-order products of sub-gaussian random
vectors with only m = poly(k)@(% + 1) samples per task. The issue here, unlike in the cases in Lemma 20, is that the
leading X; has no dimensionality reduction - there is no product matrix C; ; to bring the d-dimensional random vectors that
compose the leftmost ¥; to a lower dimension. Thus, we would need m = €(d) samples per task to show concentration of
each 3; (or 33;C5 ;). We must get around this by averaging over n. However, doing so requires dealing with fourth-order
products of random vectors instead of bounding each of the two copies of 3; in the ¢-th term separately (perhaps along with
their dimensionality-reducing products).

Due to the fourth-order products, we cannot apply standard concentrations based on sub-gaussian and sub-exponential
tails. Instead, we leverage the low rank (at most k) of the matrices involved by applying a truncated version of the of the
concentration result for bounded, low-rank random matrices in (Magen & Zouzias, 2011).

Proof. Throughout the proof we use c as a generic absolute constant. First note that by expanding 3; and the triangle
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inequality,

1 n 1 n
- Z 3iCs,C3,3;Cy,; — -~ Z C2,iC3,Cuy
i=1 i=1

2

1 & m(m

n
T T T -1 T
5> Y X% ;CoiCfix; rx]; Cay — 3 > C2,C5,Cu
i=13,5'#j =1

n
m T
Z Z Xi,jX; JC2 103 iXi,j X JC4 i 2 Z Cg’ic3’iC4,i
i=1

=1 3

m—1x~ 1 & (m—1) <
— — E E 1 E T CT x: ) . _ E Noll .
= H . E (ml Xl,]’xi,j’>CQ,lCB,iXLJXi,jC4J_ oy, : 102,103’1-04,7(
i=

=1 j=1 i'#i

<

2

2
nm 2

2

=:E/
n

25 E xmx CQZCSZXZJX C4Z——E C“C&CM
i=1 j=1

1
nm

2

=E"

Note that E’ is unbiased while E” is biased due to the fourth-order product. We first bound ||E’||5.

Step 1: Bound ||E’||5. Add and subtract (m 1) S 1 C2,iC4 X 5%, ;C4 i to obtain

zlm

e < |t §j Ej(m 3 eyl ) CasCl i X, Ca

J'#3

HZCQ ZC: (711 ZXiJXZj —Id> C4’i

j=1

= Z Z <m 1 ledlx _Id> C, 1C3 zXz,7X C4z

J'#d
+ 00263046m,max(d*,d2) (156)

2

2

2

where (156) follows with probability at least 1 — 2¢~90(41+42) by Lemma 20, and dx denotes d if the C, ;’s are distinct,
and denotes d; otherwise (since if these matrices are equal, they can be factored out of the norm, in which case we show
concentration of d; X do-dimensional random matrices). To deal with the first term in (156), note that as mentioned before,
we need to show concentration over ¢ € [n] to avoid requiring m = Q(d). Ideally, we could also concentrate over j € [m],
but we would lose independence of the summands. Thus, we reorder the sum and use the triangle inequality to write

‘ n;l Z Z (m 1 ZX%J'X Id)CQ zcd lejX Ca

2

i= 1 j=1 J'#J
l e=m—1¢
— 1
= Hm > . > (m1 > XX Id) C1,C3 ;i ;%; ;Ca
j=1 i=1 3'#7 2
1 lm-1<
= m Z nm Z (mll Z XiJ’X Id) Cy lCB zxmx Cui
; 2

For each j € [m)], define £; as the event {||C4 ;x; ;]l2 < (v + Vd1)es, [|Cf i xijlla < (v 4+ Vdz)es Vi € [n]} for some
« > 0. Note that x; ; and C27ix11 ;j are d (resp. dz)-dimensional sub-gaussian random vectors with sub-gaussian norm at
most ¢ (resp. ccz). Thus &; occurs with probability at least 1 — 2ne=¢"". Then using the law of total probability, for any
€ > 0, we have

P(|Ejll2 =€) <P(|Ej|l2 > €l&) + P (E5) < P(|E;j|l2 > €l&) + 2ne" (157)
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Consider E;. For any fixed set {Xi,l}ie[n] € &1, the ds-dimensional random vectors

{Xi,j'Cz,iC;in‘JXIlsz,i}ie[n] j'e{2,...,m} are sub-gaussian with norms at most ¢/ (y + /dy) (7 + v/d2)cacscq. Likewise,
the d-dimensional random vectors {x; ;/ }ie[n] j'€{2,...,m} are sub-gaussian with norms at most c. Thus using Bernstein’s
inequality, we can bound

IED(]531”2 < "(y 4+ Vdi)(y + Vda)caczes max (\/V ﬁiﬁfy d&fﬁf) [{xi1 Fieqn), {Xi1 biem) € 51)

>1-2"*, (158)

for A > 0 and an absolute constant ¢”. Integrating over all {X; 1 };c[n] € &1 yields

P (||E12 <"y + V)3 + v/dz)erezeq max (ini?fg, dﬂﬁf*?;) |51) >1-2e7Y, (159)

Therefore, using (157), we have

P <||E1||2 > (v +V/d1)(y + V/d2)caczea max (\/CrlIin\)v d&iﬁﬁ)) <2¢ 4 ope= ", (160)

Repeating the same argument for all j € [m] and applying a union bound gives

1 m
— 3 B2 > (v + Vi) (7 + V/da)eacses max (V‘“dﬁi’ fifiif*ff)
m =

V/n(
< 2me=*" 4 2mne=°". (161)
Choose A = 104/log(m) and v = 104/log(mn), and use \/n — 1) > /d + d3 + 104/log(m) to obtain

P Z IEjll2 > " cacsea(/log(nm) + Vdy)(y/1og(nm) + v/d) d+d2+nmlog(m

j=1
<2m 799+2(mn)7995d1 +2(””1)799cd2

— BBl = ¢ cxcucs (v ogm) + /) (ol + /) YT L PR

S\H

+ ccacs C457n,mau((d>k,dg )>

< 2m799 + Q(mn)fggcdl + 2(mn)799cd2 + 26790(d1+d2) (162)
= P <||E’|| > " caeseq(\/log(nm) + v/dy ) (\/log(nm) + @)VW)
S 2m—99 + 2(mn)—990d1 =+ Q(mn)—990d2 + 26_90(d1+d2) (163)

where (162) follows from (156) and (163) follows by the fact that gm,max(d*,dg) is dominated.

Step 2: Bound ||E”||>. Bounding ||E” || is challenging because we must deal with fourth-order products in x; ;, which
may have heavy tails. However, we can leverage the independence and low-rank of the summands, combined with the
sub-gaussian tails of each random vector. Second, we must control the bias in E’, which we achieve by appealing to
C-LA4-L2 hypercontractivity. First note that by the triangle inequality

B, < (164)

=x; x CQC X; x ;Ca,
anE,E i, i3 i Xi,j i

i=1 j=1

1 <« T
D siciion],

It remains to control the first norm. To do so, we employ Theorem 9 (a.k.a. Theorem 1.1 from (Magen & Zouzias, 2011))
which characterizes the concentration of low-rank, bounded, symmetric random matrices with small expectation. Thus, in
order to apply this theorem, we must truncate and symmetrize the random matrices, and control their expectation.
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Define &, ; = {||Cpr,ixi jll2 < c(p + 4 /dWQJ)Cg} for some p > 0and ¢ = 2,3,4 and all 4, j, and &1 ; ; == {||x; ;]2 <
clp + \/g)} for some p > O and ¢ = 2,3,4 and all 4, j. Let xg, , ; be the indicator random variable for the event & ; ;.
Define the truncated random variables }_(g i = XEs 7Cg X for{ =2,3,4and all 4, j and Xy ; ; = X&e.i 1 Xi g for all

1,7. LetS;; = x”x .Cy ZC3 ZXZJX Cyi/mand S, ; = X; ZJX;'—”X3 ”x4”/m for each i, j. Note that due to

cp

sub-gaussianity and earlier arguments, IP>(Uw U, Erij) <2mn Yy, e=¢"" = 8mne=" . Thus, for any ¢ > 0,

m
—c 2
P( | LSS, §e>_ (nmzzsd <)+ smes (165)
=1 j=1 i=1 j=1
First, form the lifted, symmetric matrices
= L 0 gi,j

for all i, j, and note that HZL > §”

’2 =2 HZ?:l Z;n:1 gi,j

2(p + Vd) Hj:Q(p + \/d|¢/2)) max(caczey, 1) for all 4, j almost surely, and the S; ;s are independent.

R Also note that by definition, ||§”||2 < B =

We still must control ||IE[§,J]||2 We have that ||E[§”]||2 = 2||E[S; j]||2. Using Lemma 25 (with C; = 1), we obtain

m”E[gi,ij S mCQHCQJ‘||2||C3}iH2||C4,i 2 S mCQCQC3C4d1 forall i € [’I’L],j S [m] Thus, ||E[§Z7J]||2 S 1 for all i,j as
m Z 2020263C4d1.

Next, note that each Si,j is rank at most min(d, dy, dz), so §i’j is rank at most 2 min(d, d1, d2). Now we are ready to apply
Theorem 9. Doing so, we obtain:

n m

ESi]| > e> <— (167)
( nm ;]Zl ;; 7, poly(nm)
as long as nm > cBlog(B/€?)/e? and nm > cmin(d, dy, dy). Setting € = \/Can yields
P izn:zm: > Zn:ZE > By . ! (168)
nm = Si nm Sidl|| 2 vnm ) ~ poly(nm)

as long as nm < Be“' B which always holds since we will soon choose p = +/log(nm) and we have chosen B appropriately.

Therefore, with probability at least m, we have

1 1 n m ~ 1 1 n m ~ 1 n m ~ 1 1 n m ~

2| 2o 22 Su|| S5 | 22208 DB 45 20D D ElS)

i=1 j=1 9 i=1 j=1 i=1 j=1 9 i=1 j=1 9
B e
— 2y/nm T ;|
which implies that
4
1+C?)d
1E"||, < \/%(KH' \/ﬁ) (eHQ(fH' dwzﬂ) max(caczcq, 1) + %02@,04 (169)

with probability at least 1 — W Snme="’ by (164) and (165). Choose p = 104/log(nm) and recall that C'is an

absolute constant to obtain

IE"|l, < ——(/log(nm) + \f (H log(nm) + 4 /dWQJ)> max(caczeq, 1) + 0%020304 (170)

1=2
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with probability at least 1 — Combining Steps 1 and 2, we have

1
poly(nm) "

1 & 1 &
_ zic iCT‘EiC [ C iCT‘C i
n Z 2, 3,1 4, n Z 2, 3,1 4,

i=1 i=1

2

< e(y/log(nm) + \/d1)(/log(nm) + \/dg)%mlog(m)cwgq

log(nm) (H log(nm) + ,/dWQJ)> max(cocgeq, 1) + %620364
=2
for an absolute constant ¢ with probability at least 1 — 2m =9 — ——L_— — 2¢=90d1, O
poly(nm)
Lemma 23. Suppose that X is a random vector with mean-zero, 14-sub-gaussian distribution over RY. Let {xi,j}iem),jem
be nm independent copies of x. Denote X; = % Z;n:l xi,jx;':j and X; = [Xi1,...,Xim] foralli € [n]. Let
z = [z1,...,2m] € R™ be a vector whose elements are i.i.d. draws from N'(0,0?), and let {2;};c|n) be n independent

copies of z. Further, let Cy ; € R¥*dies2) for £ = 2,3,5 be fixed matrices for i € [n], and let Cy € R?. Also define
ce = maX;e] [|Ce,ill2 for £ = 2 3,5, ¢4 = maxc[, HC4 ill2. Then,

cocacs(Vd4+/log(nm))(dy+log(nm))
Vnm

cocyes(Vd+4/log(mn))(vVdi+4/log(nm))log(nm)
Vnm

IN

1
— Z 2ic2,iC;,:iXiZi

i=1

2

(44)

IA

ZXTzlc4 2:C,
=1

2

1

for an absolute constant c, each with probability at least 1 — 2m ™% — Tt
poly(nm)

Proof. We only show the proof for (¢) as the proof for (i¢) follows by similar arguments. We argue similarly to the proof of
Lemma 22. We have

H mn;bl Z Z (m 1 ZX”/X >CQzC3 iXi,5%i,j

J'#j

=:e

.
m2§ E xi jX; jC2:Cy Xi j2i

1=15=1

2

1 n
f§ 3,Cy,CJ  Xizi|| <
" ,

=1 2

’

—.e/!

Step 1: ||€/||>. Add and subtract 2= %" L Z] 1 C2,iC4 X 2 ; to obtain

nm

nm Z ZCQZC?”X”Z”
j=
HZ;Z<’” 1ZXZJIX Id)czzcgzxwzu
1 =1

le'lls < '

3 2
B n 1 m
< cocac3dm,da, + H Z o Z (m T Z X; j,x Id> C, 103 iXij %5 (171)
=1 j=1 31 2

where the second inequality follows with probability at least 1 — e~2%%1 by Lemma 20. Next,

' n;11 Z Z (m Y XXl Id)chcslxmzu

J'#7

m —
e E (m 15 x”/x Id>022032x”z”

J'#i

2

2
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By sub-gaussianity, we have that with probability at least 1 — 4(nm) =%, ||Cs;x; j|l2 < ces(v/di + y/log(nm)) and
|zi jll2 < coy/log(nm) forall i € [n],j € [m]. Thus, as in previous arguments, we have

n
m—1
1 T T
H e E (ml E :Xz‘,j'Xi,jf—Id)Cz,icg,iXi,jzi,j

i=1 '

< cocaes(Vd+y/log(m))(vdi+4/log(nm))y/log(nm)

2
for all j € [m] with probability at least 1 — 2m =% — 4(nm) =%, resulting in

cocacs(Vd + /log(m))(v/dy + /log(nm))\/log(nm)
Vnm

< docyes(Vd + /log(m))(vdy + /log(nm))+/log(nm)

< o

with probability at least 1 — 2m = — 4(nm)~9.

[€']l2 < cocacsdm.a,

172)

Step 2: ||e€”||2. For €”, we again use Theorem 9. Define & ; ; and X, ; ; as in Lemma 22 for ¢ = 1,2,3 and i € [n]

and j € [m]. Define & ;; = {[zi ;| < coy/log(nm)} and z; ; = xe,, 2, foralli € [n] and j € [m]. Define

o xx ) . S i = X1 R R T =3 ili
Sij = Xi,j%; jC2:C3 ;X j2i,5/m and 8; j = X1, ;%o ; ;X3,4,j%i,j/m, then we have s; ; =§; ; for all i, j with probability

atleast 1 — m. Also, |5 || < B = cocacs(Vd + \/log(nm))(d; + log(nm))\/log(nm). Next, by the symmetry

of the Gaussian distribution, E[2; ;] = 0, thus ||E[S; ;]||2 = 0 by independence. Defining §; ; as in Lemma 22, we can now
apply Theorem 9 as in Lemma 22 to obtain:

1 " = cocacs(Vd+/log(nm))(di+log(nm))4/log(nm) 1
([l o 2o 2 et G e e ) < a7)
i=1j=1
which, recalling [le” |2 = || 27, Y202 si 5|, implies
2
cocges(Vd++/log(nm))(di+log(nm))4/log(nm) 1

P([le"]ls > === N ) < So (174)
Combining (172) and (174) completes the proof. O]
Lemma 24. Suppose that x is a random vector with mean-zero, 1,-sub-gaussian distribution over R%. Let {x;, j Yiem].ieim]
be nm independent copies of x. Denote X; = % E;nzl xi,szj and X; = [Xi1,...,Xim] foralli € [n]. Let
z = [21,...,2m] € R™ be a vector whose elements are i.i.d. draws from N(0,0?), and let {2i}ie[n) be n independent

copies of z. Further, let C; € R be fixed matrices for i € [n], and let ¢ := max;e|,] ||C;||2. Then,

1 - co’e og(nm og(nm og(nm c
szjzizjxici < (Vd++/log( ))(Vﬁ:vlg( )/ log( )_'_%%

vnm
i=1 2
for an absolute constant c with probability at least 1 — 2m ™% — —1
poly(nm)
Proof. We have
1« m—1g- 1
T, .7 - 1
,in z;z; X;C;|| < H Z(m_l waz”)z”xucl
n 4 nm m “ 9
i=1 2 =1 j=1 J'#J
7:E/
1 n m
2
s Zz”xwxl JCl ,
=1 j=1
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Step 1: ||E’||2. Note that

m—1
‘ nm Z mezw m— 1ZZWIX G nm ZXW’ZW m— IZZ%J’X i Ci
J'#J

J'#3
Next, with probability at least 1 — 4(nm) =%, ||C;x; ;|2 < c(v/di + y/log(nm)) and ||z; j||2 < co+/log(nm) for all
€ [n],j € [m]. Thus, by conditioning on this event as in previous arguments, we can show

H n;ll sz 3% (m oY 2% G >H2 < co’e(Vd + W)(% V/log(nm))+/log(nm)

<iz
2

j=1

J'#J

for all j € [m] with probability at least 1 — 2m = — 4(nm) =9, resulting in

co?e(Vd + \/log(m))(v/di + /log(nm))+/log(nm)
NGO

IE |2 < (175)

with probability at least 1 — 2m = — 4(nm)~9.

Step 2: ||[E”||2. Define & ;; = {|xi ;| < c(ﬂ—i— Vdog(nm))}, €2, = {||Cixijll2 < e(v/di + /log(nm))} and

Esi; = {lzi;| < coy/log(nm)} for all ¢ € [n],j € [m]. Define x1 i = XEriXigs X2 = Xés.,Cl xi 5, and
Zi,j = Xés., % foralli € [n] and j € [m]. Define S; ; = 27 x1,;,;%5, ;Ci/mand S; ; = 22,%1; ;X; , ;/m, then we

have S; ; = S; ; for all i, j with probability at least 1 — m. Also, ||S; ;|| < B = co?e(Vd + /log(nm))(v/d; +
V/log(nm))+/log(nm). Note that by the law of total expectation,

IE[Sill2 = 1E[Sij|€x,i N E2ig N E3,i,5)12P(En,i,5, E2,igs E,i.)
< || E[ ¢j|51 ij N €205 N Esijlll2P(E1i5 NE25 NE3i )
+ ||E[S ,J|51zg UE&s, ; UES, jlllP(Er,; ; UES, ; UEs )
= [IE[Si ]l
= ZICills

Now, defining §Z ; as in Lemma 22, we can now apply Theorem 9 as in Lemma 22 to obtain for m > e

1 S co?e(v/d++/log(nm)) (v/d1++/log(nm))/log(nm) 1
IP’(Hn ZZS” E[S:,l|| > = < oot (176)
=1 j=1

2

Now, note that

n m

1 _ 1 nom _
D ID I 1 P 3) SRS IR = wp nec i |
i=1j=1 2 i=1 j=1 i=1j=1
1 nom. _ - o
<= DD Sy —ESyl|| +%¢ (177)
i=1 j=1 2
Thus, recalling [[E"[|2 = || 1= >0, D70, Sij|| » we have

co cf+\/lo (nm))(v/di++/log(nm))/log(nm) o2c 1
IP’(E”llz ST el =4 m> ) (178)

Combining (175) and (178) completes the proof. O

Fact 1. Suppose x ~ p satisfies E[x] = 0, Cov(x) = 1; and x is 14-sub-gaussian, as in Assumption 3. Then x is C-LA4-12
hypercontractive for an absolute constant C, that is for any u € R? : ||uf|o = 1,

E[(u,x; ;)" < C*(E[(u, x; ;)*])* (179)
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Lemma 25 (L4-L2 hypercontractive implication). Suppose x € R is C-L4-L2 hypercontractive, E[x] = 0, and Cov(x) =
14 Further, let C, € R¥e2) for ¢ = 1,2,3,4 be fixed matrices for i € [n], and let ¢; = max;cn) [|Crqll2 for
{ =1,2,3,4. Given scalar thresholds ay for £ = 1,...,4, form the truncated random vectors Xy = X|cy Cix.
Then,

x|[2<ae

B[R X3%, ][|2 < C?||C1l|2]|Call2)|Csll2/| Call2ds - (180)

Proof. First we note that if a random vector x is C-L4-L.2 hypercontractive, then for any fixed matrix C € R4*9:, then the
random vector C"x € R% is also C-L4-L2 hypercontractive, since for any unit vector u,

e B, CTx)Y = E[(84, %)) < C*(El(1&% %0%)? = 1ok CA(El(w, CTx)?)?

= E[(u,C"x)"] < C*(E[(u,CTx)?])

Also, if the random vector x is C-L4-L2 hypercontractive then the truncated random vector X := X |\x||,<al[X]|2 is also
C-LA4-L2 hypercontractive. To see this, observe that by the law of total expectation,

E[<uvi>4] = E[<quHxH2§ax>4} = E[<u7 X>4|||X||2 < a} P(HXHQ < a) < E[<U,X>4} < CZ(EKuv X>2])2 (181)

So we have that the truncated random vectors {Xy, }}_, are C-L4-L2 hypercontractive. Next, pick some u € R% : [ul|z < 1
and v € R% : ||v|| < 1. By the Cauchy-Schwarz inequality and C-L4-L2 hypercontractivity, we have

Elu' %%, X3%, V]|
< (E[(u %] v) E[(=] £:)°])
< (El(u"50) Y E[R] ) ) VA E[Tr (%e5%] )] 2
d 29\ 1/2
< C(E[(u'%)2E[(x; v)?)/?(E e, XyXJ e
V2 ([;z 1)
1/2

< C(E[(u %) E[&] v)?]) ( S E [ef %] ecel %:x] ey )

o

1/2

< 0<E[<uTxl>2]E[<xTv>2]>1/2( (E [(ef o) JE{(=] er) |El(ep %2) [E[(%] er)"] )”4)

2.0
< CX(B{(u" %)Y E[(R] v)2) /2

s 1/2
< ( (Bl(e] %2)2) (BI(E] e0)?) El(ep %)) (E[(xT er)2)?) ) (182)

where ey is the /-th standard basis vector in R?. Note that by the law of total expectation and the nonnegativity of
UTCIxxTclU,

E[(%{ u)’] =E [u' C{ xx " Cyu||C{ x[|2 < a] P(||C{ x[|> < a)
<E[u'C{xx"Ciul=u'C]Ciu < ||C,|3

Therefore, applying the same logic for E[(e, X2)?], E[(e] %3)?], and E[(e/ X4)?], and using (182), we obtain
1/2
Blu’ %1%; 5%, V] < 02||01||2||C4ll2(2 ||02§||03||§) = ?|[Cul2l|Call2 | Csl|Cal2da
I

Repeating this argument over all unit vectors u, v completes the proof. O

Next, we characterize the diversity of the inner loop-updated heads for both ANIL and FO-ANIL. Note that now we are
analyzing ANIL and FO-ANIL specifically rather than studying generic matrix concentration.
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Lemma 26. Let w,; be the inner loop-updated head for the i-th task at iteration t for ANIL and FO-ANIL for all i € [n].
Define ji* = omin (2301, wtﬂ-w;—i) and L? = opax (137, wm—wzi). Assume || A2 < %0 and Assumption 1, 2,
and 3 hold. Then

1 & 2
Finax <n > Wi, ) < 2% = 2 (J|A 2 [Wellz + VAL + 6y o[ Will2 + VaLinax + Vao)) (183)

i=1
1 n
Omin (n ZwtﬂtW;) > u2 = O.9oonHi - 2-2\/a||wt||2||AtH277*
i=1
— 2| Atll2l[Well20m. 1 (IWell2 + VA Liax + Vao)

— 2.2/ @b, k([[Well2 + VaL. + Vao) Lyax (184)

with probability at least 1 — 4n=9 — 6e =90k,

Proof. Note that w; ; can be written as:
Wi = Wi — aBtTEiZBtWt + OéBthiﬁB*W*,t,i =r+s;+Pp1,;+ P2+ Ps3; (185)

T ) T T i ) T Ty
where r = Aywy, s; = aB, Buw. 1, p1i = (B, B; — B, X{'By)wy, p2; = —a(B, B, — B, X{'B.)w. ;;, and

pPs,i = mLLBtT (X{") "2} for all i € [n] (for ease of notation we drop the iteration index ¢). Note that since || Al < =,
(IBell2 < ¥ 1\/15/10. As aresult, for any ¢ € [n], from Lemma 20 we have
[P1illz < L1|Well26m, ks [IP2:ll2 € V1daLmaxOm,, ks [IPsillz < V1.1aodm,, k (186)

each with probability at least 1 — 2n=°,  Thus, all of these events happen simultaneously with probabil-
ity at least 1 — 6n71% via a union bound. Further, a union bound over all i € [n] shows that A =
{Niem) {lIPLillz < 1L1Well20m,, k N [[P2,ill2 < V110 LmaxOm,, .k N IP3,illz < V1.1a0bm,, k1 } } occurs with proba-
bility at least 1 — 69, Thus by the triangle inequality, a

1 n
||n Zpl,i + P2+ P < 110, k(|Well2 + VaLmax + Vao) (187)
i=1 2
with probability at least 1 — 6n.~%, and
1 n
- D r+s)r+s)T|| < [AE[Iwel3 +2.2val Al will2n. + 1.1aL (188)
=1 2
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So,

+ 2
2

D (e +8)(Pri+P2i+psi)

=1

S esars)T| 2|l

n -
=1

n

2
n

1
i Z(Pu + P2,i + Ps3.i)(P1i + P2 + P3i) |
i=1

+

2

< A Iwell + 2-2v/al| Agllz[|well2m. + 1.1aL? + 2

n
Z r(P1i + P2+ P3i) |
i=1

S

2

1 .
+2a| B/ B, |2 EW*T,t (Pri+P2i+p3i)' ||| + max IP1.i + P2.i + Psill3 (189)
1 n
2

< A3lwell3 + 2.2v/al| Agllo||wl|2n. + 1.1aL?

+ 2~2||AtHgHWt”Z(Smm,k(HWt”Q + V@ Lmax + \/ag)

+ 2'2\/aL*5mm7k(Hwt”2 + \/aLmax + \/ad) + 1'12(||Wt||2 + \/aLmax + \/50)2512n7¢n,k

2

<2 (| A¢ll2l[well2 + VAL + Sy ([Well2 + VA Linax + Vao)) (190)

where W, ; = [Wat1,..., w*,t’n]T, (189) follows from the triangle inequality, and (190) follows with probability at least
1 — 6179 from the discussion above.

We make an analogous argument to lower bound ouin (= Y1 | W¢;w, ;). This time, we only need to bound first-order
products of the p matrices, which concentrate around zero as n becomes large. So now we are able to obtain finite-sample
dependence on 6,,,,,, 1 (which decays with ﬁ) instead of §,,,,, » (which does not), as follows.

1 T 1 T T
Omin (TL ;Wt,zwtﬁ‘) = Omin (n Z(r + Sz)(r + Sz) + (I‘ + Sz)(pl,z + P2, + p3,z)

i=1
+ (p1,i + P2,i + P3,i)(r + si) "

+ (P1,i + P2,i + P3,i)(P1,i + P2,i + Ps,z')T>

1 & T 1 & T
2 Omin | — i i —2||= i i i T P3i
=7 (n;(r+5)(r+5) ) n;(r+8)(p1,+pz+ps,) 2
> Omi lzn:svsT -2 li:rs-T -2 lzn:(r—ks)(p 4+ Pai +Pai)
= Umin n 4 194 n 4 i n 4 7 1,2 2,1 3.t
=1 =1 2 =1 2

> 0.9aEop? — 2.2v/allw 2] Al

- 2||At||2Hwt||2(§min;k(|‘wt||2 + VaLmax + Vao)

—2.2¢/0m,, k(|[Will2 + VoL + vao) Liyax

where the last inequality follows with probability at least 1 — 6% O

E.2. FO-ANIL
For FO-ANIL, inner loop update for the head of the ¢-th task on iteration ¢ is given by:
Wi = Wi — avwﬁi(Bt, Wy, Df")
= (It — aB; "By)w; + oB/ 3} B.w. ;i + 72-B/ (X}%) "2, (191)
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The outer loop updates for the head and representation are:

t
Wit1 —Wt—*zv Li(By, wy i, DPY')

—w, P Z (BngztBtwt ; BTzoutB Wi — -B, (ng;tﬂg)'l'ztoz«bg) (192)
B, =B, -2 Z VeLi(Bi, wy;, DY)
i=1
B . ou ou ou ou
=B, - ) (Et,itBtWt,z‘WtT,i = B Baw. W/ - (th)sz-tthi) (199
i=1

Lemma 27 (FO-ANIL, Finite samples A; (¢t + 1)). For any t, suppose that A3(s), As(s) and A4(s) occur for all s € [t].
Then

IWesall2 < 35 VaEy min(1, 4 )n. (194)

. . 1
with probability at least 1 — Doy () -

Proof. The proof follows similar structure as in the analogous proof for the infinite-sample case. Recall the outer loop
updates for ANIL (here we replace ¢ with s):

1 n
wer1 = (I — BB!B,(I, — aB!B,))w, + (I, — B/ B,)B/ B, — § Wi s
n

i=1

1 ) 1 <& .
T - T - ing o T . T - in »
+afB]B, - > (B/B.-B/Z'B,)w, — aB] B, > (B/B.-B[ZI'B.)w..;

i=1 i=1

1 n n
+afB/B,— Y Bl (X)) 2 é Z (B!B, - B/ Z%B,)w.,
n “— n = ’

ﬂ - T T t 25 T t\ T t
- =3 (B/B. - B[2B,)w. ., § B, (XZ%) "2 195
n & ( s s S,% )W NMout z ( )

Note that [ J_, A3(s) implies opax(B] B,) < 2H2:llz < L1 fora11 5 € {0,...,¢41}. Also, we can straightforwardly
use Lemma 20 with the Cauchy-Schwartz inequality to obtain, for some absolute constant c,

1 <& , _
aﬁBZBSﬁ > (BB, —B[Z"B,) wi|| <cZ|will26m,,

i=1 2
1 & , -
aﬂBIBSE > (B/B.-B/ZI'B.)w...; e LimaxOmin (196)
=1 2

3 (B/B, - B/ Z%'B,)w,;
=1

< 25, 5 max w2
9 i€[n]

< ngmom,k(HAsHZHWSHZ“‘\/aLmax + 57”in7kHW3H2
+\/a($m7:n,kLmax + \/aaamimk)
< ngmout,k(”AsH2||WS||2+C/\/aLmax + \/&O’(Smimk) (197)

L 6moutak7

3 n . 5
— E B B*—B ou B* Wi s.i —=
Hn ; 1( * s BB Wesi| < e g lm

2

§ :BT Xout T (S)ult
’ﬂmout

C%U(Smoutvk

2
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using that ,,,, » < 1 and ||w;l||2 < ¢y/an, in (197). Thus using (195) and the Cauchy-Schwarz and triangle inequalities,
we have for an absolute constant c:

IWorilla < (1+ 2 Al [willa + e LI All2m + 2 [ Wll28m,, 1
+ Cfamm (Lmax + J) + Cadmout,k\/al/max + C\/aLmax(smout k+ C\/*U(Smc,ut k
< (1 + C§||A3||2)HWSH2 + t%HASHﬂI* + t% (Lmax + U) (5mm,k + 5mout’k)
= (1+C§||A8”2)HW5H2+C%HASH277*+%Cl (198)

using ||[wWy ;|2 < v/&Lmax, Where (1 = ¢(Lmax + ) (Smm,k + Smou,tyk)' Thus, by Lemma 3, we have

t t
Iwiiill < e ST (IAam + ) (1 +23° ﬁnArnQ) (199)

s=1
Next, let p := 1 — 0.58aEou? and (2 = O((Lmax + 0)20mpue e + (L + Linax0) (G e + 02, 1) + 0202 4+
Ba(Lmax + 0)453,10%{1) as defined in (219). By |J7_, A2(r), we have
[Agii]l2 < pllAglla + ca?B2LE dist? +Baty
< PPl As-ill2 + plea® B2 dists_; +Bals) + ca® B2 dist] +Bats

P Aoz + > p " (ca? BPLE dist? +Bals)
r=0

= p" " (ca’B7 L dist? +Baly) (200)
r=0

since [|I—aBg Byl|2 = 0 by choice of initialization. Now, we have that dist, < p* +¢ forall s € {0, ...,t} by Ui:o As(s).
Thus, for any s € {0, ...,t}, we have

[Asilla <Y p° " (ca®B2LE dist? +BaCs)
r=0

< Zp (ca®BLL(2p"" + 26%) 4 Bats)

s s
SZC(XQBQL;%Z/)S_TPQT+200[2ﬂ2Lins r 2+Bazps r<~2
r=0

r=0
< 2cpt L H (2ca?B2Lie? + Bagg)—
< 2cp° BaLi 2/ Eo + 2c*Ballkl/Eo + Co/ (Eop)
=€ (201)

Now, applying equation (199) yields

(Esn* + Cl <1 + 2 Z 67’)

(esthe + C1) (1 +4cBp’ny /(@B + 4c(t — 8)3%* K212 | Eg + 2(t — 5)BCa/(aBop))  (202)

M=~

[Werilla <

s=1

»
Il
-

(esm + C1) (1 + 4eBr1/(aEY) + AcT B*e*K2L3 | Eg + 2T B¢/ (aEop?)) (203)

Ve

IN

= gle 3
MN

w
Il
_
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where (202) follows by plugging in the definition of €, and using the sum of a geometric series.
2

In order for the RHS of (203) to be at most 15+/aEp min(l,‘;—;)n* as desired, we can ensure that

(405&3/(@&%)—|—4CT5252&3L§/E0+2T6§2/(aE0ME)) < 1 for all s and %Zzzl(esn* + G) <

2
%J&Eo min(1, ﬁ—;)n* To satisfy the first condition, it is sufficient to have

) aE?
B<c 3
2 / Ey
€ S Crprare

raBop?
=75t

For the second condition, it is sufficient to have

B < caE3k;* min(1,

IS

)

G<d e,

= ¢ TEZ
¢ 4
/Ky
g €s <c E?
s=1
2 " 1
e=sc TBau?Ey
0 L2k2
<2 S c TEo (204)

’ 2
However, for Corollary 3, will need a tighter bound on (3, namely (o < CET““ In summary, the tightest bounds are:

B < caBE3k;* min(1, %) (205)

2 < CTBaL’on (206)

G < c’f,;’; (207)
0

G < o (208)

To determine when these conditions hold, we must recall the scaling of ¢, (1, (5.

_ LmaX(LmaX""U) S
e = O( Lo Lgmte)
(1= O((Lmax + U) (5mm,k + (Smout’k))
G2 = O(((Lhax + Limnax?) G b + sk + Oy i) + 0200, 1)

+ ﬁaggnout)d(llmax + 0>2(Lmax + Uamm,k)Q)

Thus, in order to satisfy (205)-(208), we can choose:

/ AT Eo(Liax+0)* | T?*kEZL2, (Lumax+0)? | T?Ejk(Lmax+0)? TL2, (Lmax+0)?Eod
Mout Z & (5& n#?‘a + 0 nut b + OTLUE:‘”E + ﬁOZ = 2 .

Recalling that Ly, < evVkL,, b < om;‘*, and a < L T We see that our choice of M, as

Tdk Tdko® T2k3ki . T230%  kp?  ko?
Moyt = C
Y7 e T R I

is sufficient, where we have treated E as a constant. For m;,,, we can choose:

T(k +log(n))Eo(Lyax + 0)? L T?kE3L2 . (Limax + 0)?2 L T?kEg(Liax + 0)?

/
Mip > C
= 2 4 2,8
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which is satisfied by

TRy | JTPKERie? | TP (LE4o?)

n Wn MRS

Min > cT(k + log(n))(kx? + Z—i) +c

Since m;, and m,,,; satisfy these conditions, we have completed the proof.

Lemma 28 (FO-ANIL, Finite samples, Ax(t + 1)). Suppose the conditions of Theorem 8 are satisfied and inductive
hypotheses A1 (t), As(t) and As(t) hold. Then As(t 4 1) holds with high probability, i.e.

A1z < (1= 0.58aEou?)[| Atz + cf2a® L dist] +fads (209)

for an absolute constant ¢ and (3 = O ((Lmax + o’)QSmom,k +(L2, + Lmaxo)(gmmk + 67271 e) 0252 Lkt Ba(Lmax +

0)4572%“75@), with probability at least 1 — m.

Proof. Note that we can write:

Biy1 =B — A Z(Btwt —B.w. i) (I — aB/ By)w; + aB{ B.w. ;)|
i=1

+ AL Z(Btwt —B.w.i)(a(B{ B, — B/ Z!"B,)w; + (B, B, — B, Z{"B.)w. ;)" (210)

=1
+BAE D (Biw, — Buw. 1i)(oB/] S (X)) T2,0) " (211)
=1
n
+ 83 (1g = 20%) (Biwri — Buwa i) W/, + - Z (Xp) Tz w (212)
i=1 i=1
+ Be Z BB/ (Is— /%) (Byw: — Buw. i) Wi, + -2 Z B.B/ (X;") "z{"w/, (213)
, =1
=B + B(E1 + By + B3 + Ey) (214)

where By ,,, = B; — ﬁ&t% S (Bewe —Buaw, ) (Aywe + cuB;'—B*W*M)—r denotes the update of the representation
in the infinite sample case, and E;, E5, E3 and E, are the finite-sample error terms in lines (210), (211), (212) and (213),
respectively. From (214) and the triangle inequality, we can compute the final bound.

A1z < [Tk — aB{ 0, Bepopllz + 282B] 0p(E1 + Ez + Es + Ey)[|2 + 2a|E1 + Eo + Es + By} (215)

Note that from Corollary 1 and the fact that ||B;||s < 1.1/4/a by As(¢), and §, « are sufficiently small, we have that
Byl < 1—\/}; Also, clearly BY?f € R9**. Therefore by the concentration results in Lemma 20 and the triangle and
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Cauchy-Schwarz inequalities, we have, for an absolute constant c,

max[lwrifl2 < | Adflaflwell2 + cVaLmax + Omy, kl[Will2 + cVa00m,,
1€

1B/ popErllz < £l A IIthlggmm,k + A Linax [ Well20m,,, 0 + 5 | Adll2l|Well2 LinaxOm,.,
+l ALy

< CLmax(Smm N

max mm K

B,

N

tpopBzll2 < =l A2 ‘Wt||2‘75mm,k + C||AtH2LmaXUgmm,k < CLmangmm,k
,pOP Ja
= 2
Eslla < €0,k (1A 2]lWill2 + VaLmax + 6m, kllWill2 + Vaobm,, 1)
+ ﬁgmout,kl/max (HAt”Q”Wt“Z + \/aLmax + 5mm,k||wt||2 + \/ao'(smm,k)
+ LUgmout,k [A¢ll2][well2 + VaLpayx + O || We |2 + \/aa‘smm,k
7o
< Cgmout,k(Lmax + U) (Lmax + U(smm,k)
HBt pOpE4H2 < C(Sm,;n,k (Hwoi”z + L\r/nix) (”At”\/lvn”z -+ Lmaxf + 5m1,'n7k||wt||2 + \/>0-6’mm,k>

e

B,

IN

t,pop

||At||2HWtH205m““k + LmaxU‘SMimk + 06% (Mg, k)% + 0252<mina k))

T
< Camm,kLmax(Lni\/)%x + Lmax(smi,,“k: + Uémimk>

+ C<Lmax05mm,k + Lmaxon(s2 (mi'ru k) + 0262 (min; k))
< Cgmnu,f,,k(Lmax + 0) (Lmax + 00m,, k) + Lfnax(a (Min, k) + gmm,k)

+ CLinax0 (0%, & + Oman ) + c026,%m K (216)

with probability at least 1 — Thus

poly( )

Camou £,k 5m7nk
HBt pop(El + Eo + E; + E4) ||2 < Tnf(Lmax + C’) (Lmax + 0'5mm ) + C(L?rnx LmaxU)Tﬁ

+ Lfnaxdgwm k + Lmaxaéfnm,k + 0-2572nm,k (217)

Similarly,

B> < (% + dists Lmax =+ [|A¢]l2 Lnax) (G £l We 2 + V081, 5 Linae) T

< fLmax 7:1/7(17
By < (1Relzlvellz 4 sty Lo + [| Al Linas) Voo
O
< VaLpaxo \/ﬁ’“
||E3||2 < g’mout,d\/a(Lmax + U) (Lmax + Uémm,k)

||E4||2<f< ok (HW(;Hz +L\r/nix)(HAtH\2/thH2Jr\/aj%naxJr(;mml’k”thQ+\/ag5mimk)

[e3 n

§minv

Jn

+ (182 Well20 258 + Lisax08m i+ 067, 4 122 4 Qéfnm,k))

1)
< \/a(smm,kLmax(Ly%x + Lmaxamm,k + U5mm,k) + \/a(LmaxO' min + Lmax05 ok + 02672nm,k)

f
< C\/agmoumk(Lmax +0) (Lmax + TOmip k )+ \/>Lmax(53nm kT 5mm,k)
+ VALmax0 (0, 1+ Omin k) + V0?62, )
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thus

|E1 + Bz + Es + Eyll2 < Va(Li . + Linax0) O, ks + 6, 1)
+ gmoumd\/a(LmaX + J) (Lmax + O-(Smmnyk') + \/50-25727”7“]6
Now, from (215) and the triangle inequality, we can compute the final bound.
At
< HIk - aBIpoth7P0P||2
+ cfa (gmuut7k(Lmax +0) (Lmax + Oémi'/uk) + (lenax + Linaxo) (Swun,k + 57271,,“/@) + ‘7251271,-",19)
+ 0,82a2 ((Lr2nax + LmaxU) (gmm,k‘ + 53%-7“/@) + gmout,d([’max =+ ‘7)(Lmax + ‘75mm7k) + ‘7267271“,,1@)2
< HIk - aBinothyPOPH2
+ cBa (Smuut,k(Lmax +0) (Lmax + Uamm,k) + (L12nax + LmaxU)(gmm,k + 57%11-",19) + ‘72672nm,k)
+ Cﬂza2572nom7d(Lmax + 0)2(Lmax + O—ém,;n,k)2
= HIk - aB;I,—poth,POPHQ + ﬁaCQ
< (1 = 0.58aEou?)|| A2 + cf?a’ L2 dist? +Bals (218)

where the last line follows from Lemma 6 (note that all conditions for that lemma are satisfied by ||I;, — aBI popBt.popll2),
and

Co = O((Lmax + )0 b + (Linax + Linax0) Ok + 0, 1) + 0200, g+ B Linax +0) 100, 4)  (219)

O
Corollary 3 (FO-ANIL, Finite samples As(t 4+ 1)). Suppose that As(t + 1) and As(t) hold. Then
Al < 55 (220)
Proof. From As(t 4 1) we have
[Ariill2 < (1 —0.58aEu2)|| At 4 2L dist] +Bats
< (1= 05B8aEu) & + cf2a’Ly + Bats
< 15— 0.258aEgul + cf*a’Ly; (221)
<4 (222)
where (221) follows as long as (> < 0.25E,2, and (222) follows since 3 < caEjr~*. O

Lemma 29 (FO-ANIL, Finite samples, A4 (t + 1)). Suppose A1 (t), A3(t) and As(t) hold. Then A4(t + 1) holds, i.e.
B Bisill2 < (1 - 0.580Eou?)|B,  By|l2 + Bvals

where (4 = O((Lmax + 0)(Lmax + 06m,,, k)Om,.,,d) With probability at least 1 — m.

Proof. Using (213), we have

. . B —
B! By, =B B (Ik - > wiawl,
=1

1

NMout

1 n n
+8 - Y B! (Li—=0%) (Biwy; — Bow.y)w,, +8 > OB (X Tzgttw] (223)
i=1 i=1

=E; =:E>
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Next, we can use the concentration results in Lemma 20 to show that all of the following inequalities hold with probability

_ 1
at least 1 ooly ()

Hel?)]( [weilla < [A¢2]lwell2 + eV aLmax + — A C\/aa(smm,k < dVaLmax + C\/ao'(smm,k
1 n

[IE1]l2 < ¢Lmax Helé[ﬂ]( |We.ill26my.,.d (224)
[Ezl2 < co max [We,ill20m,.,.d (225)

Thus we have

A A B —
IB] | Bijall2 < HBLBt(Ik - S weiwl )|+ BvVad
i=1 2
where (4 = O((Lmax + ) (Lmax + 0m., k)0m..,.d) With probability at least 1 — m Next, recall from Lemma 29 that

1 n 9
Omax (n Zwt,thT,i> < L =2 ([ Adl2llwello + VaLi + 0my, k([Well2 + VO Lmax + Vao))

i=1
1 n
Fmin (n Zwt,iw;> > p? = 0.9aEou — 2.2v/a| w2l Agll2n.
i=1
- 2||At||2||Wt||2gmm,k(||wt”2 + VaLpax +Vao)
- 2-2\/agmm,k(||wt”2 + \/&L* + \/&U)Lmax

with probability at least 1 — m. Apply inductive hypotheses A;(t) and A3(¢) to obtain

i=1

1 n
Omax < E Wt,thTi) < 4al? + da(Lpax +0)%62, < 12al?

by choice of mi, = Q((k +10g(n))(Lmax + 0)?) . This means that we have 8 < omax (£ Y1 Wi W/ ) ! since we
have chosen 3 = O(ak; *). Also, we have

1< .
Tumin ( > wiaw] i) > 0.80Eop? — 2.3 Linax (Linax + 0)0m,, & > 0.5aEqu? (226)
n Wi,

i=1

where the last inequality follows since m;,, = (k2 (kkd + w20%u; 2)), recalling that L. < ¢VkL,. Thus, using the

n =

. . . -1 .
above and Weyl’s inequality with 8 < opax (% Z:L:l Wy g th Z) , we obtain:

(1 —0.58aEpa?) + Bv/als (227)
2

B Biyal2 < HB*T,J_Bt

E.3. Exact ANIL

Lemma 30 (Exact ANIL FS representation concentration I). For Exact ANIL, consider any t € [T|. With probability at

least 1 — — ce™ 90k

1 1
poly(n)  poly(mn)

|G, — G2 = Vata,a, (228)
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where

czao<< () (L B+ )V + TR

T - (LmaX(Lmax +o)(VE+ \/M)>

+ \/% (LmaX(Lmax + 0)(k\/dlog(nmgy,) + klog(nmsy,) + Vdlog'® (nmiy,) + log?(nmin))

o?(Vkd + Vdlog(nm,) + log"® (nmin)) + Lmax(Lmax + O')\/E>

GO}

Proof. Letq;; = Byw; — B,w, ;. First recall that Gg ; = DD Ve F} (B, w;), where

VeEi(Bewi) = (A7) (X?fit)T“metT—Oémim(X?’it) Via), BBy

Mout
in ~T 1 out out\T & T~rin
—aXy zqt iV @ B+ (Xt i) Ve l(zt ) X4iBy

£ty Moy

(Xi’i)TZiZ\”’?zX??tBt

MinMout

+ mt'nmn'uf
where ¥, = X4 A qq, + S XPUB B Xzl — 20" Also, Gt = = > VBFi:(By, wi), where

A T T T
VBFt,i(Bt,Wt) = Ayvy W, — th,iqt,iBt - OIQt,z‘Vt,iBt

and vy ; = Atqtﬂ;. Thus,

Mout

2

1 x in
T 1 T4 T
- Z(At i) Xt ivt, th - Ayvy Wi

::El

> A X Taal BBy — viaq) By

=1

2

S|

::E2
n

(XP4) T9,(2f7) X[ By
=1

+ «

in out T

ta| - Et 19t, th i Xt i Bt — v, By
mo )

2

2

NIMinMout i

=:E3 =:E4

n
+a 1 (in)T n AT XOUtBt
M Mout i—1 t ‘ f ‘

(229)

2

=:E;5

We will further decompose each of the above terms into terms for which we can apply concentration results from Lemmas
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20 and 21. First we bound ||E; ||2. We have

n
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=E; 3
1 n
§ 2§in T sout Tsvin T 2 T T T
+ || = « Et,iBtBt Et,i BtBt qumwt — BtBt BtBt qt,i Wy
" i=1 2
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n “ 9 n 4 0
1=1 i=1
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Note that after factoring out trailing w;’s where necessary, each of the above matrices is in the form that is bounded in Lemma
20 or Lemma 21. We apply the bounds from those lemmas and use || B¢||3 = O(1), ||w¢]|2 = O(v/amin(1,72/u?)n.),

and maxX;e[n] [|qs,i|l2 = O(Lmax) to obtain that each of the following bounds hold with probability at least 1 — m —
90k ’

—L____ /e799% for some absolute constants ¢, ¢'.
poly(min) ’

IE1 1]z < C\/a%gmom,d

[E1z2l2 + [[E1 ]2 < /o Lmaxle (S'"Loumd + gvrumd)

2
K/*

ky/dlog(nm,)+Vdlog!-® (nmiy,)+log? (nmiy,) 2 <
evatate (B FEE LG,

N Min

A

[E14ll2 <

IE1sll2 < evVaZi=6m,, k
K*

ky/dlog(nmin)+Vdlog!® (nm;y,)+log? (nmiy,) <
[Br ol < cvast S/ ) Hog? i)

\/nmm 5mo'u,t k

|Eq7]l2 < C\/aaﬁlé* S d

IE1sllz < evVas dm,. .k (230)
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For || Es|

2, we have

[Ball2 < H Zzg’;tAmq“qu“Bt — Asarial;Be

2
1 y

out T in\ T in n ouf T ouf n
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:1E273 :1E274
As before, we apply the bounds from Lemmas 20 and 21 and use o||B¢||2 = O(1), [|wi2 = O(Van./x? ), and
max;e(y] |qt,ill2 = O(Lmax) to obtain that each of the following bounds hold with probability at least 1 — W(n) —
W — e 9% for some absolute constants c, ¢’.
2
[Ezqll2 < CL\/";i‘X (Brmosnd + O k)
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1 1
poly(n) poly(mn)

Each term is bounded as follows with probability at least 1 — — /e for some absolute constants

e, c.
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For ||E4||2, we have
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Each term is bounded as follows with probability at least 1 — —— — L___ _ /e=99 for some absolute constants
poly(n)  poly(min)

c,c.
cLmaxo

[Egille < =526, k
NG

|Egz2]2 < hmax0 5
e

1Easll2 < €=07,,

N

IEs4ll2 < =0mpnr.dOmin k

For ||E5||2, we have

1 n a n
Bl < | o SoOKE el BB |+ | O S el BB BB
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Each term is bounded as follows with probability at least 1 — —L —~ — —L__ — ¢/e=90 for some absolute constants

poly(n)  poly(min)
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3

cLmax0o §

[Esall2 < 22226, q
B2 < \I;ixa (rlog(nmm)-i-flogl 5 (nmin)+log?(nmin) + VE )

N

AN

fin VIMout
ﬁ 1 in 1 1.5 in
sl < (/e
|Es5 ]2 < & 5 T

Applying a union bound over these events yields that

IGB, —
< cx/a<,,}m <’“Lma; ) + <Lmax(Lmax +o)(VE+ \/M)>
(B (B + )V + o)

+ \/ﬁ (Lmax(Lmax + 0)(ky/dlog(nmin) + klog(nmiy) + Vdlog'® (nmay) + log?(nmin))

o (VEd+ Villoglnm) +log" )

v (Lo W ) )
= \/&42,(1

with probability at least 1 — L

L : ¢'e=9% for absolute constants ¢, ¢’. O
poly(n) poly(min)

Lemma 31 (Exact ANIL FS representation concentration Il). For Exact ANIL, consider any t € [T']. With probability at

least 1 — ce= 100k _ poly for an absolute constant c:
IB/Gg: — B G ll2 < Cop
where
VE++/log(n 2, VEk+4/log(n
<2,b = O <\/W(;g()(Lmax(Lmax + U) + ( m;g( + \/’VW\CM )) + \/n\ncom (Lmax(Lmax + O'))) . (231)

Proof. We adapt the proof of Lemma 30. Multiplying GB,t —Gp on the left by B serves to reduce the dimensionality
of GB,t —Gp,; from R4*k to R¥*k  This means that all of the d dependence in the previous concentration result for
HGBJ —Gmp,t||2 is reduced to k. Moreover, we no longer need to apply the complicated bounds on sums of fourth-order

products (Lemma 21) to show concentration at a rate of \/[%, since we can afford to show concentration of each second

f—i-\/log(n
since ||B¢|j2 = O( \/la) Maklng these changes yields the result.

order product at a rate ——“——- (see Lemma 20). Finally, we must divide the remaining bound from Lemma 30 by /&

O
Lemma 32 (Exact ANIL FS head concentration). For Exact ANIL, consider any t € [T]. With probability at least

1 — ce 100k _ oly () for an absolute constant c, we have
|Gw.t — Gw.ll2 < ﬁCh (232)
where Cl = O((Lmax+g (f+ Vv log(n Lyax+o \/E)

VMin nMout
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Proof. We have:
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By Lemma 20 and the facts that || B;||2 = % O(1), and max; ||q¢,i||2 = Lmax We have

P(|[Erll2 = [|A¢l2]B¢]l2 max At il|20m,,, k) < 267 9%
P(|[Ezll2 > o[|Bell26m,,. k) < 2¢77%

]P)(HESHQ Z QQHBt 5 25mm,k, S 8n799

P([Esll2 > o Bil3ol|All20m,, 1) < 4n~*

P(|[Esll2 > o?(IB¢|[300m,, 1 < 60~
P(|[Esll2 > || B¢||300m,, k) < 4n~°
P(|E7ll2 > [IBell2c || A¢ll20m,,, 1) < 2¢77%

P(|Es|l2 > alBel306m,,, k0m,.. k) < 2677 + 2079

IN

Combining these bounds with a union bound yields:

A ¢ Imaxto)(VE+y/log(n)) | ¢ (Lmaxto)Vk
HGw7t - Gw,t||2 < T VMin . + \/E( Jnmou)t
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with probability at least 1 — ¢’e 9% — L — for absolute constants c, ¢'. O
po y(n)

Lemma 33 (Exact ANIL, Finite samples, A1 (t + 1)). For Exact ANIL, suppose As(s) and As(s) hold for all s € [t]. Then
2
[Wit1l2 < 35v/@Eymin (1, Z—z) M (234)

with probability at least 1 — ce™100F — poli(n) for an absolute constant c.

Proof. For any s € [t], we have
||Ws+l||2 = ||Ws - 6Gw,s + 6(Gw,s - GW,S)HQ
< st - ﬁGW7SH2 + BHGw,s - Gw,SH2

< lwsll2 + C%HAsngn* + BIGw,s — GW,SHZ (235)
< [lwsllo + ez 1A N5 + =G, (236)

where (; is defined as in Lemma 32, (235) follows from equation (60) and (236) follows from Lemma 32. This will allow
us to apply Lemma 3 with &, s = 0and &3 s = \C/—BE(HASH%T]* +C1).

Before doing so, let (s be defined as in Lemma 34 and (4 := (2 4, corresponding to Lemma 35. Observe that for any s € [t],
we can recursively apply As(s), A2(s — 1),... to obtain

[All2 < (1= 0.58aEou2)||As_1l2 + B2a®Li dist2_, +Bals

s—1
<) (1 - 058aEpu?) ' " (cf?a’ L dist; +Baly)
r=1
s—1
<Y (1= 05BaEu?) (B2 Li(2p™ + B*aC}) + Batz)
r=1
s—1
< da?p?L? Z (1 —0.58aEou?)* 1" p?" + daB L} Z(l — 0.58aBou?)* 17"
r=1 r=1
s—1
+Ba Y (1= 0.58akEul)* "G
r=1
"a?B2LE(1 — 0.58aEqu?)~! N dadBrLACE N Bals
- 0.58au? 0.58au? 0.58au?
< "aBr2L2(1 — 0.58aFou?) ! + "o B3R2L2CE + ] (237)
i

Therefore, via Lemma 3,

t
Iwegills <Y el ALl3m. + %G

s=1

t
3.1.578
<Y T (1 - 058aEou)* n, + 8T ki Lin.(f + - 2565 + 125G,

EZn
s=1

< HE\:(sL e + "B PRI LNl + Cﬂt\f i (3 + Cut\fc (238)

<" ‘FEO min(1, ‘7;—3) +t87 a3 kL. + t‘FEO min(1, “* )U*Cg t‘FEO min(1, %)Q (239)

< CW(\FEO min(1, 7,2 t‘FEO min(1, & t 5)04C3 + 16707 £ min (1, )77*<2 a

2 )T +
thU min(1, %)¢) (240)

02
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2
akEj
Py

where (238) follows by the sum of a geometric series and (239) follows by choice of 5 < ¢ for a sufficiently small

constant ¢, (240) follows by using the definitions of (4 and (o, the numerical inequality (a+b)? < *2a2 +2b2, and subsuming
the dominated term.

In order for the RHS (240) to be at most \/?f % min(1, %)77*, we require the following:

L2 L.
Q=7 GQb< 7 Ca< Jgarem (241)
However, from Corollary 4 we require tighter bounds on (2 ; and (2 , when 71" is small. Accounting for these, it is sufficient
to choose

Cfiim
G <=5

Eou?

C?,bgcﬁa

o < o Bl 24)

We also require mqy¢ > ck + clog(n) so that the concentration results hold. This implies that we need

Mot > T2 Emaxta)® 4 op FLiax(Lmat0)® | C\/TEf)zz (L2, (Linax + )2 (k 4+ log(n)) + (Lmax + 0)*2)

2,.8 2 n
nnZks nE3pt max n

+ ck + clog(n)
For m;,,, we need

. 2 (Lmax+0')2(k+10g(n)) (Lmax+g)4(k+10g(n)) 0.25 VBaLmaxk
My, > T TZHE + I EZul + T e

alL? max+0)? og(n a(Lmax+0)*k*dlog(nmin
—‘,-C\/Tﬁ Linax (L E;—ui) (k+log(n)) —|—C\/Tﬁ (L +n355;42fl g( ) (243)

under the natural assumption that k& = Q(log(nm;,)). Note that if m;,, satisfies the above lower bound, this implies
Mg, >> k + log(n), as needed. Using our upper bounds on § and «, replacing Ly,ax with VkL,, and treating Ey as a
constant gives the final results:

2

Mgus > T2 Lt | ch%f(ni:ﬁ/ui) + VT (k+ 5 +log(n))k; 2(% + k) + ck + clog(n)

2.8
nn2Kg

Min > T2k + klog(n)) L2 4 e (k3 + klog(n))(k + ;—;‘) + cﬁi’“%“gymm)n—?(”z +1)

2,.8 2
nIRg * VL2

O

Lemma 34 (Exact ANIL Finite samples As(t + 1)). Suppose the conditions of Theorem 8 are satisfied and A1 (t), As(t)

and As(t) hold. Then with probability at least 1 — ce=9%% — poli(n) — poly(lmx ) for an absolute constant c,

1Az < (1= 0.58aEud) | Adl2 + §5%a’Ly disty +Bacs, (244)

G2 = 2Cop + ﬂagg’a, and (2,4 and (o p are defined in Lemmas 30 and 31, respectively.

Proof. AsinLemma 28, let B,y1 = B!, + 3(Gp, — Gp,), and let AP% = I;, — a(BE?) TBY?,. Note that the bound
pop

from Lemma 10 applies to || A7 [|2 This results in

|A1ll2 = |ALY — BaB/ (Gp, — Gp,t) — Ba(Ge: — Gp.) By
+B2a(Gp: — Gr:) (G — GB.1)2
< | AYE |2 +2B0|B] (Gt — G )2 + B2l|Ge . — GB.4)ll3
< (1—0.58aB2)|| Al + 222 LY dist? +260|B/ (Gr: — Gr.1)|2
+5%l|Gg — Gal3 (245)
< (1—0.58aE0u2)|| A2 + 2 820> L dist; +2B8alap + G, (246)
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where (245) follows from Lemma 10 and (246) (3, and (2 are defined in Lemmas 30 and 31, respectively. Define
G2 =2Cp + ﬂa@z’a to complete the proof.

O

Corollary 4 (Exact ANIL, Finite samples, A3(t 4+ 1)). Suppose the conditions of Theorem 8 are satisfied and As(t + 1)
and A3(t) hold. Then

[A1ll2 < 15 (247)
Proof. By As(t + 1) and As(t), we have

A1l < (1 — 0580 B} )| Adllz + § 520 L7 dist] +28alay + 52%(3,

< & = 0.058aEou? + 2202 LY + 28a(e, + B2%CE,

< 35 — 0.04BaEoi? +2BaGop + B0, (248)
1

<1 (249)

where (248) follows by choice of 5 = co‘EO and (249) follows by (2.p < cEopu2 and (3, < ch“ for a sufficiently small
constant c. O

Lemma 35 (Exact-ANIL, Finite samples, A4(t + 1)). Suppose the conditions of Theorem 8 are satisfied and A1 (t), As(t)
and As(t) hold. Then A4(t + 1) holds with high probability , i.e.

||B* 1 Bigillz < (1 - 058aEu?)|B, 1Bz + BVag (250)

where (4 = (2,4 Where (o q is defined in Lemma 30, with probability at least 1 — ce™ 0k _ poli(n) — poly(lmm) for an

absolute constant c.

Proof. We have

B! 1 Bisilla = [IB! . (B: — BGr,) + BB/ (GB,: — GB.o)ll2
< ”BT (Bt — BGB,)|2 + Bl|GB,t — Gs tll2
< (1-0.58aEu3)|B) Btz + 8Gr,: — G ill2 (251)
<(@1- 0-5504E0M*)‘|B*,J_Bt”2 + BVataa (252)

where (251) follows by Lemma 12 (note that all the required conditions are satisfied) and (252) holds with probability at
least 1 — ce 90k — 5 for an absolute constant c according to Lemma 30, where (s ,, is defined therein.

O

poly( ) poly(m

F. Additional simulation and details

In all experiments, we generated B,, by sampling a matrix in R%** with i.i.d. standard normal elements, then orthogonalizing
this matrix by computing its QR-factorization. The same procedure was used to generate B in cases with random
initialization, except that the result of the QR-factorization was scaled by ﬁ such that Ay = 0, and for the case of
methodical initialization (Figure 4 (right)), we initialized with an orthogonalized and scaled linear combination of Gaussian
noise and B.. such that distg € [0.65,0.7] and ||Ag|| = 0. Meanwhile, we set wo = 0. We used step sizes § = o = 0.05
in all cases for Figure 4, which were tuned optimally. Figure 1 uses the same setting of d = 20, n = k = 3, and Gaussian
ground-truth heads as in Figure 4, except that the mean of the ground-truth heads is shifted to zero. We are therefore able to
use the larger step sizes of &« = 8 = 0.1 and observe faster convergence in this case, as task diversity is larger since the
ground-truth heads are isotropic, and L. and L,y are smaller. Additionally, in Figure 1, Avg. Risk Min. is the algorithm
that tries to minimize E,, , ,[£¢ (B, w)] via standard mini-batch SGD. It is equivalent to ANIL and MAML with no inner
loop (o = 0). In Figure 3, we use d=100, k=n=>5 and a = § = 0.1. All results are averaged over 5 random trials.



