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Abstract
Generalizing causal knowledge across environ-
ments is a common challenge shared across many
of the data-driven disciplines, including AI and
ML. Experiments are usually performed in one
environment (e.g., in a lab, on Earth, in a train-
ing ground), almost invariably, with the intent of
being used elsewhere (e.g., outside the lab, on
Mars, in the real world), in an environment that
is related but somewhat different than the original
one, where certain conditions and mechanisms are
likely to change. This generalization task has been
studied in the causal inference literature under the
rubric of transportability (Pearl and Bareinboim,
2011). While most transportability works focused
on generalizing associational and interventional
distributions, the generalization of counterfactual
distributions has not been formally studied. In
this paper, we investigate the transportability of
counterfactuals from an arbitrary combination of
observational and experimental distributions com-
ing from disparate domains. Specifically, we in-
troduce a sufficient and necessary graphical condi-
tion and develop an efficient, sound, and complete
algorithm for transporting counterfactual quan-
tities across domains in nonparametric settings.
Failure of the algorithm implies the impossibility
of generalizing the target counterfactual from the
available data without further assumptions.

1. Introduction
Counterfactuals form the basis for different notions across
human cognition and decision-making, including credit as-
signment, regret, responsibility and blame. Counterfactual
relations require retrospective thinking, where one must be
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able to compare what did happen with what would have
happened under some alternative hypothesis (Pearl, 2000).
Given the impossibility of observing an alternative outcome
once an action is taken, counterfactuals evoke “what if?”
questions which answer can only be approached by imagin-
ing hypothetical conditions usually contrary to the factual
evidence. For instance, questions such as “what would be
the death rates had the vaccination started two weeks ear-
lier?” or “given that I arrived late, would I have been on
time had I taken the subway instead of the taxi?” require
us to carry out a mental experiment where we recover some
state of affairs, perform a change in the sequence of events,
and let a hypothetical situation to play out. More generally,
counterfactuals are an important component in the construc-
tion of explanations regarding why events occurred the way
they did. For instance, the previous questions could be re-
lated to “why did the death rate achieve the number it did?”
or “was it the way of transportation that caused my late
arrival?” (Pearl & Mackenzie, 2018)[Ch. 8].

Formally, a structural account of causation provides suitable
semantics for representing counterfactual statements (Pearl,
2000). Each structural causal model (SCM)M models a
generative process and induces a collection of distributions
related to the activities of seeing (observational), acting
(interventional), and imagining (counterfactual), which to-
gether form what is known as the ladder of causation (Pearl
& Mackenzie, 2018; Bareinboim et al., 2022). In practice,
the SCMM is usually not fully observable, which leads to
the inferential challenge of using data from one part of the
ladder to make inferences about another. For instance, there
exist a plethora of methods allowing for inferences from ob-
servational to experimental (i.e., layers 1 to 2 in the ladder)
(Pearl, 1995; Tian & Pearl, 2003; Shpitser & Pearl, 2006;
Huang & Valtorta, 2006; Bareinboim & Pearl, 2012b; Lee
et al., 2019), and from observational and experimental to
counterfactual distributions (Pearl, 2001; Avin et al., 2005;
Shpitser & Pearl, 2007; Correa et al., 2021).

In practice, obtaining different experimental distributions
for the same population is often highly nontrivial. One of
the key aspects of human cognition is the ability to gen-
eralize concepts from one domain to another. The task of
leveraging causal invariances to extrapolate and fuse ex-
perimental knowledge across settings has been formally
studied in the causal inference literature under the rubric
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of transportability (Pearl & Bareinboim, 2011). By and
large, there are several graphical conditions and algorithms
for the transportability of causal effects from a combina-
tion of observational and experimental data in various set-
tings (Bareinboim & Pearl, 2012a; Lee & Honavar, 2013a;b;
Bareinboim & Pearl, 2013; 2014; 2016; Lee et al., 2020;
Correa & Bareinboim, 2019; 2020).

Despite the powerful identifiability and transportability re-
sults found in this literature, it is still largely unknown how
to transport counterfactual distributions across different en-
vironments and changing conditions. In particular, the liter-
ature on transportability has been focused on the extrapola-
tion of observational and experimental distributions (layers
1 and 2 of the ladder) but has not addressed how to operate
within counterfactual ones (layer 3). For concreteness, con-
sider an example motivated by (Powdthavee et al., 2013).

Example 1.1 (Compulsory education and well-being). Con-
sider an economic study to understand the effects of com-
pulsory schooling (X) on people’s subjective well-being
(Y ). A researcher group in Australia performed a controlled
longitudinal experiment to assess the effect of X on income
(Z), written as P (Z | do(X)). A selection diagram (to be
defined in Section 3) that describes this scenario is shown
with the graph in Figure 1, where each variable corresponds
to a vertex and the edges describe how variables causally
influence one another. The bidirected arrow between X and
Z indicates the existence of unmeasured confounders that
affect bothX and Z (e.g., social status, race, neighborhood).

Another group of researchers in the United States aims to
determine how strong is the influence of X on Y by means
other than Z. This “influence” can be captured through a
quantity known as the natural direct effect (NDE), which
is written in counterfactual language as E[Yx′,Zx

− Yx,Zx
]

(Pearl, 2001)[Def. 5]. The first expression is the value Y at-
tains if X is held constant at x′ while Z still follows X = x.
Noteworthy, this is a typical counterfactual quantity since
Z and Y consider X as taking different values, while in
the real world the variable X can take only one value at a
time. The second quantity represents the value of Y when
X = x and Z vary accordingly. As the researchers believe
that people in the US perceive well-being based on income,
which is different than in Australia, they are surveying sev-
eral people in order to obtain the observational distribution
P ∗(X,Z, Y ). This difference between the populations is
represented with a node pointing to Y ( → Y ), as shown
in Figure 1. The distributions with superscript indicate the
target population, in this case, the US, and those without
superscript represent the source population, Australia.

In this setting, the NDE cannot be determined from data
from the US alone nor from Australia alone. Still, it can be

X

Z

Y

Figure 1: Selection diagram describing the causal structure
of a model for studying the effect of compulsory education
(X) on perceived well-being (Y ) (see Example 1.1).

determined through the following expression:∑
z

(
P ∗(y | x′, z)− P ∗(y | x, z)︸ ︷︷ ︸

from the US

)
P (z | do(x))︸ ︷︷ ︸

from Australia

, (1)

In other words, the first factor in Equation (1) (in parenthe-
sis) is a difference computed from the observational distribu-
tion in America, while the second factor (the do distribution)
is from the interventional distribution in Australia. �

In this paper, our goal is to explicate why this extrapola-
tion (and formula) holds in this particular example, and
more broadly, understand under what conditions this type
of counterfactual inference across domains is allowed. We
will investigate the nonparametric transportability of arbi-
trary counterfactual quantities when the input consists of
any combination of observational and interventional distri-
butions, gathered across different heterogeneous domains.
More specifically, our contributions are as follows:

1. Graphical characterization. We introduce a graphical
condition for determining whether a counterfactual quan-
tity is transportable from a collection of datasets. We then
prove that this condition is both necessary and sufficient.

2. Algorithmic solution. We develop an efficient algorithm
to determine the existence of an estimand for a target
counterfactual distribution, as a function of available ob-
servational and experimental distributions from the dif-
ferent domains. We further show that this algorithm is
not only sound but also complete. In other words, the
failure of the algorithm implies that the quantity is not
transportable without further assumptions.

Our results generalize the identification results in (Correa
et al., 2021) to a transportability setting, where available
data comes from different domains and different experi-
mental conditions, also generalizing results in (Correa &
Bareinboim, 2020) to counterfactual queries. The remaining
of the paper is organized as follows. Section 2 introduces
structural causal models and required notions about counter-
factuals. Section 3 reviews transportability and the graphical
models used for it. It also defines the counterfactual trans-
portability task and a building block to solve it. Section 4
generalizes previous work to the context of the transporta-
bility task, including conditional and nested counterfactuals.
Section 5 presents a sound and complete algorithm for the
proposed task. Finally, Section 6 ends with the conclusions.
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1.1. Preliminaries

We denote variables by capital letters, X , and values by
small letters, x. Bold letters, X represent sets of variables
and x sets of values. The domain of a variable X is denoted
by XX . Two values x and z are said to be consistent if they
share the common values for X ∩ Z. We also denote by
x \Z the value of X \Z consistent with x and by x∩Z the
subset of x corresponding to variables in Z. We assume the
domain of every variable is finite.

We represent qualitative assumptions in the form of causal
graphs that are named with a calligraphic letter, e.g., G,
H, etc. We denote by V(G) the set of vertices (i.e., vari-
ables) in a graph H. Given a graph G, GWX is the result
of removing edges coming into variables in W and going
out from variables in X. G[W] denotes a vertex-induced
subgraph, which includes W and the edges among its ele-
ments.We use kinship notation for graphical relationships
such as parents, children, descendants, and ancestors of a
set of variables. For example, the set of parents of X in G
is denoted by Pa(X)G :=

⋃
X∈X Pa(X)G . Similarly, we

define the set of ancestors (An(·)) and descendants (De(·)),
which include the argument itself.

To articulate and formalize the generalization of counter-
factuals, we require a framework that allows us to reason
about multiple domains and alternative worlds simultane-
ously. For this purpose, we use the Structural Causal Model
(SCM) paradigm (Pearl, 2000). An SCMM is a 4-tuple
〈U,V,F , P (u)〉, where U is a set of exogenous (latent)
variables; V is a set of endogenous (observable) variables;
F is a collection of functions such that each variable Vi ∈ V
is determined by a function fi ∈ F . Each fi is a mapping
from a set of exogenous variables Ui ⊆ U and a set of
endogenous variables Pai ⊆ V \ {Vi} to the domain of
Vi. The uncertainty is encoded through a probability distri-
bution over the exogenous variables, P (U). An SCMM
induces a causal diagram G where V is the set of vertices,
there is a directed edge (Vj → Vi) for every Vi ∈ V and
Vj ∈ Pai, and a bidirected edge (Vi L9999K Vj) for every
pair Vi, Vj ∈ V such that Ui ∩Uj 6= ∅ (Vi and Vj have a
common exogenous parent).

We assume that the underlying model is recursive. That
is, there are no cyclic dependencies among the variables.
Equivalently, the corresponding causal diagram is acyclic.

The set V decomposes into subsets called c-components
(Tian & Pearl, 2002b) according to a diagram G such that
two variables belong to the same c-component if they are
connected in G by a path made entirely of bidirected edges.

2. Structural Causal Models and
Counterfactuals

Intervening on a system represented by an SCM M re-
sults in a new model differing fromM only in the mecha-
nisms associated with the intervened variables (Pearl, 1994;
Dawid, 2002; 2015). Let X̂ be a collection of functions
{X̂ : XÛX

→ XX}X∈X for some X ⊆ V and some set

of unobservable variables ÛX disjoint from the original
U. Then, an intervention can be described by some X̂
that induces a derived modelMX̂ where each fX has been
replaced by X̂ . Then, YX̂(u, ûX) is called the potential
response of Y to X = X̂, and is defined as the solution
of Y, for a particular (u, ûX), in the derived modelMX̂.
The most simple and common type of intervention con-
sidered consists on one that fixes fX to a constant value
x ∈ XX , denoted do(X = x). Other interventions may
replace fX with some X̂ which is a function of only observ-
able variables (conditional intervention) or even a function
with both observable and unobservable (from ÛX ) argu-
ments (stochastic intervention). In any case, we assume that
X̂ is not a function of any of the original U.

We use W∗ to denote sets of arbitrary counterfactual vari-
ables1. Let W∗ = {W1[T̂1],W2[T̂2], . . .} represent a set of
counterfactual variables such that Wi ∈ V and Ti ⊆ V for
i = 1, . . . , l. Define V(W∗) = {W ∈ V | WT̂ ∈W∗},
that is, the set of observables that appear in W∗. Let w∗
represent a vector of values, one for each variable in W∗.

If all variables in the expression have the same subscript, we
could write P (W1[x],W2[x], . . .) as Px(W1,W2, . . .). Also,
we will write P (Y∗ = y∗) simply as P (y∗) when there is
no room for confusion.

As the variables in the causal diagram have ancestors that
causally affect them, counterfactual variables also have
causally relevant ancestors. This generalization of the no-
tion of ancestrality and causal relevance was formalized by
(Correa et al., 2021) with the following definition.

Definition 2.1 (Ancestors of a counterfactual). Let Yx be
such that Y ∈ V,X ⊆ V. Then, the set of (counterfactual)
ancestors of Yx, denoted An(Yx), consist of each Wz, such
that W ∈ An(Y )GX (which includes Y itself), and z =
x ∩An(W )GX . �

For a set of variables W∗, An(W∗) is defined as the
union of the ancestors of each variable in the set. That
is, An(W∗) =

⋃
Wt∈W∗

An(Wt).

Example 2.1 (College Degree and Earnings — Counter-
factual ancestors). For instance, consider the causal di-

1When subscripts are used to enumerate variables such as
W1,W2, . . ., square brackets are added around the part of the
subscript denoting interventions, e.g., W1[x],W2[x], . . ..
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Figure 2: A causal diagram and a selection diagram over
four variables. The selection diagram summarizes the dif-
ferences between two source domains and a target domain.

agram in Figure 2(a) and suppose X represents college
degree, W occupation, Z socio-economic factors, and Y
earnings. Let x0 = “computer science”, then the coun-
terfactual variable Yx0

represents earnings had college de-
gree been fixed to computer science (X = x0). The set
of ancestors, An(Yx0) = {Yx0 ,Wx0 , Z}, represents the
set of random variables that causally affect Yx0

. Specifi-
cally, Yx0

is not affected by X or W , only by Z and Wx0
,

which is not necessarily equal to W . Similarly, we can com-
pute the ancestors of other counterfactual variables such as
An(Wyz) = {Wz, Xz} and An(Yw) = {Yw, X, Z}. �

There are counterfactual distributions with a special form
that exploits the local structure described by the causal dia-
gram called counterfactual factors, defined as follows:

Definition 2.2 (Counterfactual Factor (ctf-factor) (Correa
et al., 2021)). A ctf-factor is a distribution of the form

P (w1[pa1], w2[pa2], . . . , wl[pal]
), (2)

where each Wi ∈ V and there could be Wi = Wj for some
i, j ∈ {1, . . . , l}. �

Example 2.2 (ctf-factor). Consider the causal diagram in
Figure 2(a), then all of the following are ctf-factors:

P (yzxw, wx), P (wx, z), and P (yz0x0w0
, yz1x1w1

). (3)

In contrast, the following are not ctf-factors:

P (yzw, wx), P (wz, z), and P (yz0x0w0
, yz1x1

), (4)

as they do not have the required form. �

3. Transporting Counterfactual Relationships
Across Domains

In this section, we review transportability and selection
diagrams, including some examples. Then, we define the
counterfactual transportability task and provide a lemma
that serves as a basic block to solve it.

Our goal is to assess a counterfactual quantity using as-
sumptions encoded in the form of a graph and observa-

tional and/or experimental distributions arising from dif-
ferent domains. Let Π={π∗, π1, π2, . . .} be the set of do-
mains/populations involved in the analysis, and π∗ is the
target domain where the query is to be inferred.

We assume that each domain has an underlying SCM that
produces the samples observed. A distribution generated
by a domain πi is denoted with a superscript as P i. For
instance, the observational distribution in the domain π∗

is denoted as P ∗(V). Moreover, each domain is associ-
ated with a causal diagram Gi describing the qualitative
assumptions made for the SCM in that domain.

The ability to generalize pieces of data from one domain to
another depends on the commonalities and differences be-
tween domains and the quantity of interest. The differences
between domains are called “domain discrepancies” (Lee
et al., 2020), formally defined next.

Definition 3.1 (Domain Discrepancy). Let πa and πb be
domains associated, respectively, with SCMsMa andMb

conforming to a causal diagrams Ga and Gb. We denote by
∆a,b ⊆ V a set of variables such that, for every Vi ∈ ∆a,b,
there might exist a discrepancy if fai 6= f bi or P a(Ui) 6=
P b(Ui). �

We will write ∆∗,i simply as ∆i to represent the differences
between the target and each source domain, with ∆∗=∅.
Domain discrepancies can be represented graphically by
augmenting the causal diagram for a domain πi with extra
nodes that represent changes in a mechanism. This type
of diagram, called selection diagram, was first proposed in
(Pearl & Bareinboim, 2011).

While previous approaches assume that all domains have
the same causal structure (i.e., the arguments of the corre-
sponding functions in every SCM match), we allow for a
function to have different arguments in different domains as
long as no cyclic dependencies are present. Therefore, we
consider one selection diagram per domain, as defined next.

Definition 3.2 (Selection Diagram). Given a causal di-
agram Gi = 〈V,E〉 and domain discrepancies ∆i, let
S = {Sv | ∃ni=1V ∈ ∆i} be called selection vari-
ables. Then, a selection diagram G∆i is defined as a graph
〈V ∪ S,E ∪ {Sv → V }Sv∈S〉. �

Let G∆ = {G∆i | π ∈ Π} denote the collection of selection
diagrams, including one per domain. Here, G∆∗ is always
the same G∗.
Example 3.1 (Selection diagram). The selection diagram
in Figure 2(b) augments the causal diagram in Figure 2(a)
with two selection nodes pointing, respectively, to Z and W .
These nodes are labeled with the name of the domain (or
domains) for which they advertise differences with respect
to the target domain π∗. This single selection diagram is a
summary of the two selection diagrams shown in Figure 3(a)
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Figure 3: Two selection diagrams showing the possible
differences between domains π1, π2, and π∗.

and Figure 3(b). Formally, this diagram encodes ∆1 = {Z}
and ∆2 = {W}. In the context of Example 2.1, ∆1 adver-
tises possible differences in the socio-economic conditions
(Z) between the domains π1 and π∗. Meanwhile, ∆2 indi-
cates differences regarding occupation (W ) due, perhaps, to
π2 being a region where the occupational profile of several
college program alumni differs with respect to π∗. �

In this paper, our goal is to assess a counterfactual quantity
in a target domain π∗ using observational and experimen-
tal data from one or more source domains. We represent
experimental distributions using regime indicators (Dawid,
2002; Tian, 2008; Correa & Bareinboim, 2019) to indicate
an atomic, conditional, or stochastic policy. An atomic
policy σX = do(x) fixes the value of a variable X to x.
A conditional intervention σX = g(W) sets the value of
X according to a deterministic function g : XW → XX
for some set W ⊆ V \ De(X). A stochastic interven-
tion σX = P̂ (X |W) sets the value of X according to a
given probability distribution conditional on a similar set
W. A distribution affecting a set of variables X is analo-
gously represented as σX. Depending on the intervention,
the causal diagram GiσX

corresponds to the SCMMi after
being intervened with σX.

Example 3.2 (Experimental input distributions). Recall the
story in Example 2.1 and suppose we are interested in as-
sessing the impact of studying computer science (x0) on the
earnings of people in π∗. We are, however, not interested in
the effect that this has on the average person in π∗ but on
those who choose to pursue this degree on their own. To do
this, we could consider the following quantity:

E[Yx0 | x0]−
∑

x
αxE[Yx | x0]. (5)

The first expectation in Equation (5) refers to the expected
value of earnings, had a person studied computer science
given that this was the person’s choice. Naturally, by the
axioms of counterfactuals (and common sense), this is the
same as E[Y | x0]; the interesting aspect is the contrast
produced by considering the expectations in the sum that
comes after. The quantity E[Yx | x0] evokes a counterfac-
tual that considers the expected earnings had a person who
chose computer science studied some other degree x. More-
over, αx is some weight assigned to a particular college

degree x for the sake of comparison. While one could use
uniform weights, a sensible choice could be the distribution
of second choices made by people who in the end studied
computer science.

With the target quantity (Equation (5)) in mind, suppose
the available data consists of an observational study carried
out in π2 (P 2(Z,X,W, Y )) and a study in π1 reporting the
results of a large-scale scholarship program where students
were given the change to pursue any degree they wanted
regardless of socio-economical factors, which we represent
with distribution P 1(Z,X,W, Y ;σX = P̂ (X)). No data
from π∗ is observed.

The expectations in Equation (5) are associated, respectively
to the distributions P ∗(Yx0 | x0) and P ∗(Yx | x0) for x ∈
XX

2. For the reasons mentioned before, the first quantity is
simply P ∗(Y | x0), yet we have not observed data directly
from π∗, hence we need to be clever about how to use
the available data. As the conditions in Section 4 and the
algorithm introduced in Section 5 (and some simplification)
will allow us to derive:

P ∗(y | x0) =
∑

z
P 1(y | x0, z;σX)P 2(x0, z). (6)

The second probability can be similarly obtained from avail-
able data as

P ∗(yx | x0) =
∑

z
P 1(y | x, z;σX)P 2(x0, z), (7)

which together with Equation (6) allow us to estimate Equa-
tion (5) using the available distributions. �

In general, it is useful to represent graphically the effect
of an intervention. For instance, the causal diagram that
represents the intervention σX is shown in Section 3. Com-
pared to the original causal diagram (Figure 2(a)), the edges
Z → X and Z L9999K X have disappeared as they are re-
moved by σX .

Data available in each domain is specified by Z = {Zi |
πi ∈ Π}, where each Zi = {σZ1

, σZ2
, . . .}, Zj ⊆ V,

corresponds to domain πi. This means that distributions
{P i(V;σZj

) > 0 | Zj ∈ Zi}Zi∈Z are assumed to be avail-
able. Notice that P i(V;σ∅) = P i(V) describes the obser-
vational (non-interventional) distribution in domain πi. In
this example, Z = {Z∗ = ∅,Z1 = {σZ},Z2 = {σW }}.

We are now ready to formally define the task to be solved in
this paper.

Definition 3.3 (Counterfactual Transportability). A query
P ∗(y∗ | x∗) is said to be transportable from 〈G∆,Z〉, if
P ∗(y∗ | x∗) is uniquely computable from the set of dis-
tributions Z for every assignment (y,x) and every set of
models {Mi}πi∈Π inducing G∆ and Z. �

2Since we are trying to say something about π∗, we use the
superscript ∗ to indicate the domain of the distributions of interest.
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Figure 4: Causal diagram corresponding to the regime σX ,
denoted as GσX

.

To understand the conditions for counterfactual transporta-
bility to be feasible, as well as devising a systematic ap-
proach to solve it, we establish transportability at the level
of a ctf-factor, that serves as our unit of analysis.

Lemma 3.1 (Counterfactual Factor Transportability). Let
G∆i be the selection diagram based on Gi and ∆i, and let
P ∗(w∗) be a ctf-factor, then P ∗(w∗) = P i(w∗) if G∆i

does not contain selection nodes Svi pointing to any vari-
able in Vi ∈W, that is, Vi /∈ ∆i. �

Lemma 3.1 allow us to determine whether the ctf-factor
needed to estimate the query in the target domain can be
obtained from other domains, based on the assumptions
encoded in the selection diagram.

Example 3.3 (Ctf-factor transportability). Consider again
the ctf-factors in Equation (3). We have,

P ∗(yzxw, wx) = P 1(yzxw, wx), and (8)

P ∗(yz0x0w0 , yz1x1w1) = P 1(yz0x0w0 , yz1x1w1)

= P 2(yz0x0w0
, yz1x1w1

). (9)

However, we cannot guarantee P ∗(wx, z) to be equal to
its counterpart P 1(wx, z) or P 2(wx, z), as Z ∈ ∆1 and
W ∈ ∆2. �

4. Counterfactual Transportability
To solve counterfactual transportability systematically, we
will generalize results for the identifiability of counterfactu-
als in a single domain setting based on ctf-factors. The goal
is to decompose any given counterfactual query in terms of
ctf-factors which transportability from available data can be
judged independently.

For this purpose, we follow the strategy in (Correa et al.,
2021) and use the notion of ancestrality introduced in Def-
inition 2.1, to write the query in terms of all the variables
relevant for the analysis. Given an arbitrary query P ∗(y∗),
let D∗ = An(Y∗) then

P ∗(y∗) =
∑

d∗\y∗
P ∗(d∗). (10)

Next, we characterize the relationship between the trans-
portability of P ∗(d∗) and P ∗(y∗).

Lemma 4.1 (Transportability of the sum over an ances-
tral set). Let P ∗(d∗) be a ctf-factor and let Y∗ ⊆ D∗ be
such that D∗ = An(Y∗). Then,

∑
d∗\y∗ P

∗(d∗) is trans-
portable from Z iff P ∗(d∗) is transportable from Z. �

Then, P ∗(d∗) can be written in ctf-factor-form as

P ∗(d∗) = P ∗
(∧

Dt∈D∗
Dpad

= d
)
, (11)

where each d = d∗ ∩ {Dt} and pad is determined for each
Dt ∈ D∗ as the union of t∩(Pad∩T) and d∗∩(Pad \T).

Example 4.1 (Ancestral set and ctf-factor). Consider again
the selection diagram in Figure 2(b) and the target quantity
P (yx | x0) = P (yx, x0)/P (x0) in Example 3.2. The cor-
responding ancestral set is D = An(Yx,Wx, X, Z) and the
query can be written as

P ∗(yx, x0) =
∑

z,w
P ∗(yx, wx, x0, z) (12)

=
∑

z,w
P ∗(yxwz, wx, x0[z], z), (13)

where Equation (13) is in ctf-factor form. �

The next step in the solution strategy is to factorize the right-
hand-side of Equation (11) according to the c-component
structure of the graph G∗[V(D∗)]. Let C1, . . . ,Ck be the
c-components of this graph and define Cj∗ = {Dpad

∈
D∗ | D ∈ Cj} and cj∗ as the values in d∗ corresponding
to Cj∗. Then P ∗(d∗) decomposes as

P ∗(d∗) =
∏

j
P ∗(cj∗). (14)

Once the query of interest is in ctf-factor-form, the trans-
portability question reduces to determining the transporta-
bility of smaller ctf-factors.

Example 4.2 (Ctf-factor factorization). Following from Ex-
ample 4.1 and Equation (13), the query factorizes as

P ∗(yx, x0) =
∑

z,w
P ∗(yxwz, wx)P ∗(x0[z], z). (15)

�

The question becomes whether ctf-factors corresponding
to individual c-components can be transported from the
available input. The following definition and theorem char-
acterize the factors that can be transported from Z and G.

Definition 4.1 (Inconsistent ctf-factor). P (w∗) is an incon-
sistent ctf-factor if it is a ctf-factor, G[V(W∗)] has a single
c-component, and one of the following situations hold:

(i) there exist Wt ∈ W∗, Z ∈ T ∩ V(W∗) such that
z ∈ t, z′ ∈ w∗ and z 6= z′, or

(ii) there exist Wi[ti],Wj[tj ] ∈ W∗ and, T ∈ Ti ∩ Tj

such that t ∈ ti, t
′ ∈ tj and t 6= t′.
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X Y

(a) Diagram where the ctf-factor
P (yx, x

′) is inconsistent.

X W Z Y

(b) Diagram where the ctf-factor
P (wx, w

′
x′) is inconsistent.

Figure 5: Examples of causal diagrams and inconsistent
ctf-factors derived from them.

�

Example 4.3 (Some inconsistent ctf-factors). First, con-
sider the causal diagram in Figure 5(a), where the ctf-
factor P (yx, x

′) is inconsistent due to condition (i) in Def-
inition 4.1. For another example, consider the ctf-factor
P (wx, w

′
x′) is inconsistent due to condition (ii). �

Once the query has been expressed in terms of ctf-factors
and their consistency, the following theorem characterizes
their transportability with an experimental (or observational)
distribution.

Theorem 4.1 (Transportability from Z). A ctf-factor
P ∗(w∗) is transportable from Z only if it is consistent. If
consistent, let W = V(W∗) and W′ = Pa(W)\W; then
P ∗(w∗) is equal to P ∗w′(w) where w and w′ are consistent
with w∗∪

⋃
{Wpaw∈W∗} paw, and P ∗(w∗) is transportable

from Z iff P ∗w′(w) is transportable from Z. �

Example 4.4 (Ctf-factor transportability). Consider each
of the two factors in Example 4.2. First, P ∗(yxwz, wx) can
be transported from P 1(Z,X,W, Y ;σX = P̂ (X)) using
Lemma 3.1 since Y,W /∈ ∆1:

P ∗(yxwz, wx) = P 1(yxwz, wx) = P 1
xz(y, w) (16)

= P 1(y, w | x, z;σX). (17)

Moreover, P ∗(x0[z], z) can be transported from
P 2(Z,X,W, Y ), because X,Z /∈ ∆2, as

P ∗(x0[z], z) = P 2(x0[z], z) = P 2
wy(x0, z) (18)

= P 2(x0, z). (19)

Both Equation (17) and Equation (19) follow from using
σ-TR (Algorithm 4 in Appendix B) (Correa & Bareinboim,
2020) to transport P 1

xz(y, w) and P 2
wy(x0, z) from Z. �

Given a counterfactual variable Yx some values in x may
be causally irrelevant to Y once the rest of x is fixed. In
general, a counterfactual Yx can be minimized with a pro-
cess that we denote with the operator ‖·‖ as ‖Yx‖= Yt,
where T = X ∩ An(Y )GX and t = x ∩ T. For a set
of counterfactual variables Y∗, minimization is done as
‖Y∗‖= {‖Yx‖ | Yx ∈ Y∗}. Moreover, such minimization
could reveal repeated portions of a counterfactual event or
inconsistencies that make the probability of the event to be
zero. We capture these ideas in Algorithm 1.

Algorithm 1 SIMPLIFY(Y∗,y∗)

Input: Y∗ a set of counterfactual variables in V and y∗ a set of
values for Y∗.
Output: An interventionally minimal event Y∗ = y∗ without
redundant subscripts or 0 if the counterfactual event is guaranteed
to have probability 0.
1: let Y∗ ← ‖Y∗‖.
2: if there exists Yx ∈ Y∗ with two or more different values in

y∗ ∩ Yx or Yy ∈ Y∗ with y∗ ∩ Yy 6= y then return 0.
3: if there exists Yx ∈ Y∗ with two consistent values in y∗ ∩ Yx

or Yy ∈ Y∗ with y∗ ∩ Yy = y then remove repeated
variables from Y∗ and values y∗.

4: return Y∗ = y∗.

4.1. Conditional Queries

The counterfactual query of interest could be a conditional
one of the form P ∗(y∗ | x∗). For this case, there exists a
tight reduction from such conditional counterfactual to an
unconditional one, described in (Correa et al., 2021).

To perform this reduction, one needs to look at the selec-
tion diagram paying special attention to variables after the
conditioning bar that are also ancestors of those before. Let
X∗(Wt) = V(‖X∗‖∩An(Wt)), that is, the primitive vari-
ables in X∗ that are ancestors of Wt.

Definition 4.2 (Ancestral components). Let W∗ be a set
of counterfactual variables, X∗ ⊆ W∗, and G be a
causal diagram. Then the ancestral components induced
by W∗, given X∗, are sets A1∗,A2∗, . . . that form a par-
tition over An(W∗), made of unions of the ancestral sets
An(Wt)GX∗(Wt)

,Wt ∈ W∗. Sets An
(
W1[t1]

)
GX∗(W1[t1])

and An
(
W2[t2]

)
GX∗(W2[t2])

are put together if they are not

disjoint or there exists a bidirected arrow in G connecting
variables in those sets. �

Next, we extend the result in (Correa et al., 2021) to the
transportability task:

Lemma 4.2 (Conditional-marginal transportability reduc-
tion). Let Y∗,X∗ be two sets of counterfactual variables
and let D∗ be the set of variables in the same ancestral
component, given X∗, as any variable in Y∗, then

P ∗(y∗|x∗)=
∑

d∗\(y∗∪x∗)
P ∗(

∧
Dt∈D∗

Dpad
=d)∑

d∗\x∗ P
∗(
∧
Dt∈D∗

Dpad
=d)

, (20)

where pad is consistent with t, d∗ and x∗(Dt), for each
Dt ∈ D∗. Moreover, P ∗(y∗ | x∗) is transportable from Z
iff P ∗(

∧
Dt∈D∗

Dpad
= d) is transportable from Z. �

Example 4.5 (Conditional query simplification). Recall the
selection diagram in Figure 1 and consider the counterfac-
tual P ∗(yx | zx, x′). While the unconditional probability
P ∗(yx, zx, x

′) is not transportable due to the inconsistent
ctf-factor P ∗(zx, x′), the probability P ∗(yx | zx, x′) is still
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X

Z

Y

Figure 6: Causal diagram used to compute the ancestral sets
of Y∗ = {Yx} given X∗ = {Zx, X}, denoted GX∗(Yx).

transportable as we can see by using Lemma 4.2. Here
Y∗ = {Yx}, X∗ = {Zx, X}, then X∗(Yx) = {Zx} and
D∗ can be computed as the ancestors of Yx in the causal
diagram in Figure 6, that is, {Yx}. This gives

P ∗(yx | zx, x′) = P ∗(yxz), (21)

which is equal to P ∗x,z(y) = P ∗(y | x, z) and could be
obtained from a suitable Z. �

4.2. Nested Queries

The query of interest could involve counterfactuals with
interventions that involve other counterfactuals, also called
“nested counterfactuals”. One example of this is the natural
direct effect that we described in Example 1.1. Theorem 4
in (Correa et al., 2021) reduces the identifiability of a nested
counterfactual to that of a non-nested one. We extend this
reduction to the transportability case in the following.

Lemma 4.3 (Counterfactual Unnesting). Let X̂, Ẑ be any
counterfactual variables (nested or non-nested) sets X,Z ⊆
V. Then, for Y ⊆ V disjoint from X and Z such that
X ⊆ An(Y)GZ , P ∗(YẐ,X̂ = y) is transportable from

〈Z,G∆〉 iff P ∗(YẐ,x = y, X̂ = x) is transportable from
〈Z,G∆〉 for every x, and given by

P ∗(YẐ,X̂=y) =
∑

x∈XX

P ∗(YẐ,x=y, X̂=x). (22)

�

Example 4.6 (Conditional and nested). In Example 1.1,
one of the target quantities is P ∗(yx′,Zx), which is a nested
counterfactual. Using Lemma 4.3 we get

P ∗(yx′,Zx
) =

∑
z
P ∗(yx′z, zx) (23)

and the problem is reduced to transporting P ∗(yx′z, zx)
from Z. �

5. A Sound and Complete Algorithm for
Counterfactual Transportability

Using the factorization of the query described in the pre-
vious section and Lemma 3.1, we propose CTFTR (Algo-
rithm 3), an algorithm that determines the transportability
of a probability of the form P ∗(y∗ | x∗) corresponding to
a target domain π∗ from a collection of observational and

Algorithm 2 CTFTRU(Y∗,y∗,Z,G∆)

Input: G∆ = {G∆i}π∈Π selection diagrams over V; Y∗ a
set of counterfactual variables in V; y∗ a set of values for
Y∗; and available distribution specification Z.
Output: P ∗(Y∗ = y∗) in terms of available distributions
or FAIL if not transportable from 〈G∆,Z〉.

1: (Y∗,y∗)← SIMPLIFY(Y∗,y∗).
2: let W∗ ← An(Y∗), and let C1∗, . . . ,Ck∗ be corre-

sponding ctf-factors in G∗[V(W∗)].
3: if ∃ inconsistent Ci then return FAIL.
4: for each Ci do
5: Q← σ-TR(Ci,Z,G∆).
6: if Q is not FAIL then
7: let P ∗Pa(Ci)\Ci

(Ci)← Q.
8: let c← (ci∗ ∪

⋃
Ct∈Ci∗

pac).
9: let P ∗(Ci∗ = ci∗)← Q|c.

10: move to the next Ci.
11: end if
12: end for
13: if any P ∗(Ci∗ = ci∗) was not transported from Z then

return FAIL.
14: return P ∗(Y∗ = y∗)←

∑
w∗\y∗

∏
i P
∗(Ci∗ = ci∗).

experimental distributions Z, and a selection diagram G∆.
When the query is transportable, the algorithm outputs an
expression for P ∗(y∗ | x∗) in terms of the specified distri-
butions and FAIL if the query is not transportable from such
input in G∆.

In CTFTR, line 1 computes the ancestral components as-
sociated with the query and line 2 determines the set D∗.
In line 3 invokes the subroutine CTFTRU to transport the
numerator of Equation (20) that is later returned in line 14.

The subroutine CTFTRU can be used to transport non-
conditional counterfactuals. Line 1 invokes SIMPLIFY (Al-
gorithm 1) which makes the query interventionally minimal,
removes redundant variables, or determines if the event has
probability zero. Line 2 computes the ancestral set and ctf-
factors corresponding to the query and line 3 checks whether
any of them is inconsistent, in which case the algorithm fails.
The loop in line 4 tries to transport every ctf-factor from
the available input. Line 5 calls σ-TR (Algorithm 4 in Ap-
pendix B) to transport Q = P ∗Pa(Ci)\Ci

(Ci) from Z and
G∆. If successful, line 8 creates a set with the values that
are used to evaluate Q (in line 9) so that it is equal to the
ctf-factor P ∗(Ci∗ = ci∗). Line 10 moves on to the next
factor when the current one has been transported. Finally,
line 13 fails if any of the ctf-factors is not transportable from
the input or line 14 the corresponding expression.

Theorem 5.1 (CTFTR completeness). A counterfactual
probability P ∗(y∗ | x∗) is transportable from Z and G∆ if
and only if CTFTR returns an expression for it. Moreover,
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Algorithm 3 CTFTR(Y∗,y∗,X∗,x∗,Z,G∆)

Input: G∆ causal diagram over variables V; Y∗,X∗ a set
of counterfactual variables in V; y∗,x∗ a set of values for
Y∗ and X∗; and available distribution specification Z.
Output: P ∗(Y∗=y∗ | X∗=x∗) in terms of available distri-
butions or FAIL if not transportable from 〈G∆,Z〉.

1: Let A1∗,A2∗, . . . be the ancestral components of Y∗ ∪
X∗ given X∗.

2: Let D∗ be the union of the ancestral components con-
taining a variable in Y∗ and d∗ the corresponding set
of values.

3: let Q← CTFTRU(
⋃
Dt∈D∗

Dpad
,d∗,Z,G∆).

4: return
∑

d∗\(y∗∪x∗)
Q/
∑

d∗\x∗ Q.

CTFTR decides this task in time O(n4z) where n = |V|
and z =

∑
Zi∈Z |Zi|. �

6. Conclusions
In this paper, we studied the problem of transporting coun-
terfactual quantities from a combination of observational
and experimental distributions obtained from one or more
heterogeneous domains. Using a decomposition based on
ctf-factors, we characterized the transportability of such
factors between domains (Lemma 3.1) and used it to estab-
lish a sufficient and necessary graphical condition for the
transportability of a given counterfactual query (Lemma 4.1,
Theorem 4.1). We considered conditional and nested coun-
terfactuals, and then provided tight reductions for those
types of queries (Lemmas 4.2 and 4.3). In Section 5, we
developed a sound and complete algorithm (Algorithm 3)
for the counterfactual transportability task (Theorem 5.1).
In other words, this means that the target counterfactual
quantity is not transportable whenever the algorithm returns
failure, unless further parametric assumptions are made
about the underlying generating model. The problem of gen-
eralizing and fusing information across settings is pervasive
in the sciences. Many questions in the empirical sciences
can be formulated as counterfactual queries, with data com-
ing from observations and experiments in heterogeneous
domains, which constitute counterfactual transportability
tasks. We hope the language, conditions, and algorithms
developed in this paper serve as stepping stones in the mod-
eling and the solution of these problems.
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A. Graphical Condition for Transportability
Lemma 3.1 (Counterfactual Factor Transportability). Let G∆i be the selection diagram based on Gi and ∆i, and let
P ∗(w∗) be a ctf-factor, then P ∗(w∗) = P i(w∗) if G∆i does not contain selection nodes Svi pointing to any variable in
Vi ∈W, that is, Vi /∈ ∆i. �

Proof. A ctf-factor can be expressed, as3

P ∗(w∗) =
∑

{u|W∗(u)=w∗}

P ∗(u). (24)

The predicate W∗(u) = w∗ depends on the functions fw,W ∈ W and W∗(u) only depends on P ∗(U(W)), where
U(W) =

⋃
W∈W Uw. Since no Vi ∈W ∩∆i, we have f∗w = f iw and P ∗(U(W)) = P i(U(W)). Then, it follows that

Equation (24) is also equal to ∑
{u|W∗(u)=w∗}

P i(u) = P i(w∗). (25)

Lemma A.1. Suppose P ∗(W∗ = w∗) is not transportable from a set of available distributions in a causal diagram G. Let
A1[t1], A2[t2] ∈W∗ such that A2[t2] is a function of A1[t1]. Then

∑
a1
P ∗(W∗ = w∗) is not identifiable from the same

input either. �

Proof. LetM(1) andM(2) be the two sets of models witnessing the non-transportability of P ∗(W∗ = w∗), they agree on
available distributions, but for w∗ we have P ∗(1)(W∗ = w∗) = α, P ∗(2)(W∗ = w∗) = β with α 6= β. Assume, without
loss of generality that α > β. We will extend the strategy used by (Huang & Valtorta, 2008) to construct two sets of models
M(1)′ andM(2)′ where the domain of A2 is XA2

× {0, 1}, where XA2
is the domain of A2 inM1,M2. Let F (A1) be a

probability function from XA1
to {0, 1}, such that P (F (a1) = k) > 0, k = 0, 1 and P (F (a1) = 0) = 1− P (F (a1) = 1).

InM(i)′ , i = 1, 2 we define the new function for A2 such that:

P ∗(i)
′
((a2, k) | paa2 ,ua2) = P ∗(i)(a2 | paa2 ,ua2)P (F (a1)=k). (26)

For any other Vj ∈ V \ {A2} we keep the same function such that P ∗(i)
′
(vj |paj , uj) = P ∗(i)(vj |paj , uj). In particular,

the functions of variables that are children of A2 simply ignore the new bit in A2’s domain. We can verify that for any
counterfactual Z∗ on whichM(1) andM(2) agree, we have

P ∗(i)
′
(Z∗ = z∗) =

∑
d∗\z∗

P ∗(i)
′
(D∗ = d∗), (27)

where D∗ = An(Z∗) and d∗ is the union of z∗ and the indexing values of the sum. This can be written in the form of a
ctf-factor as

P ∗(i)
′
(Z∗ = z∗) =

∑
d∗\z∗

P ∗(i)
′

( ∧
Dt∈D∗

Dpad
= d

)
, (28)

and then sum over U

P ∗(i)
′
(Z∗ = z∗) =

∑
u,d∗\z∗

P ∗(i)
′

( ∧
Dt∈D∗

Dpad
= d | u

)
P ∗(i)

′
(u). (29)

Note that P ∗(i)
′
(u) = P ∗(i)(u). Also, once U has been fixed, any Dpad

becomes deterministic and independent of any
other variable, as it only depends on Pad and Ud. Then we can write

P ∗(i)
′

( ∧
Dt∈D∗

Dpad
= d | u

)
=

∏
Dt∈D∗

P ∗(i)
′
(Dpad

= d | u) =
∏

Dt∈D∗

P ∗(i)
′
(d | pad,u), (30)

3see (Correa et al., 2021) for details on computing counterfactual probabilities from the SCM
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For any D 6= A2 we have P ∗(i)
′
(d | pad,u) = P ∗(i)(d | pad,u). Then P ∗(i)

′
(Z∗ = z∗) = PMi(Z∗ = z∗), if D∗ does

not contain any A2.

By construction, the factor for A2 is given by Equation (26). Hence if D∗ does contain some instance of A2 and d∗ has
some (a2, k),

P ∗(i)
′
(Z∗ = z∗) =

∑
d∗\z∗

P ∗(i)

( ∧
Dt∈D∗

Dpad
= d

)
P (F (a1) = k). (31)

If (a2, k) /∈ z, we can sum out k to obtain P ∗(i)
′
(Z∗ = z∗) = P ∗(i)(Z∗ = z∗). If a1 /∈ (d∗ \ z∗) then the expression

becomes

P ∗(i)
′
(Z∗ = z∗) = P (F (a1) = k)

∑
d∗\z∗

P ∗(i)

( ∧
Dt∈D∗

Dpad
= d

)
= P (F (a1) = k)P ∗(i)(Z∗ = z∗). (32)

For any input distribution P k(V;σT), we have

P k(V;σT) = P kt (V \T)
∏
T∈T

P (T | Pat;σT) = P k(
∧

Vi∈V\T
Vi[t])

∏
T∈T

P (T | Pat;σT), (33)

either A1[t] appears in the expression and does not have an index in d∗ \ z∗, or A1 ∈ T so that no instance of A1 is an
ancestor of any other variable in the expression. Hence any experimental distribution of the form P (V;σT), given as input
(T ∈ Z), will match inM(1)′ andM(2)′ as it matches inM(1) andM(2).

Consider the assignment w∗ \ {a2}, (a′2, 0), by construction we have

P ∗(i)
′
(W∗ = (w∗ \ {a2}) ∪ (a2, 0)) = P ∗(i)(W∗ = w∗)P (F (a1) = 0) (34)

For a1 ∈ w∗, a
′
1 6= a1, let P (F (a1) = 0) = 1/2 and P (F (a′1) = 0) = (α− β)/4. Then∑

a′1

P ∗(i)(W∗ = (w∗ \ {a1, a2}) ∪ {a′1, (a2, 0)})

=
∑
a′1

P ∗(i)(W∗ = (w∗ \ {a1, a2}) ∪ {a′1, a2})P (F (a′1) = 0) (35)

ForM(1)′ this means ∑
a′1

P ∗(1)′(W∗ = (w∗ \ {a1, a2}) ∪ {a′1, (a2, 0)})

= 1
2α+

(
α−β

4

) ∑
a1 6=a′1

P ∗(1)(W∗ = (w∗ \ {a1, a2}) ∪ {a′1, a2}) (36)

> 1
2α (37)

As forM′2: ∑
a′1

P ∗(2)′(W∗ = (w∗ \ {a1, a2}) ∪ {a′1, (a2, 0)})

= 1
2β +

(
α−β

4

) ∑
a1 6=a′1

P ∗(2)(W∗ = (w∗ \ {a1, a2}) ∪ {a′1, a2}) (38)

< 1
2β + α−β

4 (39)

< 1
2α. (40)

Then,M(1)′ andM(2)′ are compatible with G, match in the available distributions and yield different
∑
a1
P ∗(W∗ =

w∗).
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Lemma 4.1 (Transportability of the sum over an ancestral set). Let P ∗(d∗) be a ctf-factor and let Y∗ ⊆ D∗ be such that
D∗ = An(Y∗). Then,

∑
d∗\y∗ P

∗(d∗) is transportable from Z iff P ∗(d∗) is transportable from Z. �

Proof. If P ∗(W∗ = w∗) is transportable, then
∑

w∗\y∗ P
∗(W∗ = w∗) is clearly transportable too. Since W∗ is ancestral

with respect of Y∗, every variable in W∗ \Y∗ must have a children in W∗, that is, another variable that is a function of it.
Then, we can use Lemma A.1 in a topological order for the variables in W∗ \Y∗ to claim that if P ∗(W∗ = w∗) is not
identifiable then

∑
w∗\y∗ P

∗(W∗ = w∗) is also not identifiable.

Lemma A.2 (Inconsistent factor non-identifiability (Correa et al., 2021)). Let P (W∗ = w∗) be an inconsistent ctf-factor.
Then, P (W∗ = w∗) is not identifiable from any set of interventional distributions. �

Theorem 4.1 (Transportability from Z). A ctf-factor P ∗(w∗) is transportable from Z only if it is consistent. If consistent,
let W = V(W∗) and W′ = Pa(W) \W; then P ∗(w∗) is equal to P ∗w′(w) where w and w′ are consistent with
w∗ ∪

⋃
{Wpaw∈W∗} paw, and P ∗(w∗) is transportable from Z iff P ∗w′(w) is transportable from Z. �

Proof. Let z = w∗ ∪
⋃
{Wpaw∈W∗} paw. Since the factor is consistent, z contains at most one value per observable. We

can write P ∗(W∗ = w) = P ∗(
∧
{Wpaw∈W∗}Wpaw

= w) where every paw is consistent with z.

Let W ∈W be such that Paw ∩W = ∅, then Paw ⊆W′ and Wpaw
= Ww′ where w′ has any valid value for W′ \ Z.

For a W with parents in W, suppose every T ∈ Paw \W′ already appears as Tw′ . Then, we can use composition to make
W[paW∪w′] = Ww′ . Applying this reasoning from parent to children in W we get

P ∗(w∗) = P ∗
(∧

{Wpaw∈W∗}
Ww′ = w

)
= P ∗w′(w). (41)

The ‘only if’ portion of the statement follows from Lemma A.2 because even if P ∗(w∗) cannot be identified from any subset
of interventional distributions in the target domain π∗, it will certainly not be transportable from interventional distributions
in other domains, even if they can be transported to π∗.

A.1. Conditional Counterfactual Transportability

Before the proof of Lemma 4.2, we prove some auxiliary lemmata.

Lemma A.3. Let A,B and C be binary random variables causally related as given by the chain A→ B → C. Suppose
P (B = 1 | A = 1) = α and P (B = 1 | A = 0) = 1 − α, for some α ∈ [0, 1]. Then, for any β such that
|1/2− β| ≤ |1/2− α| there is always a function fC such that P (C = 1 | A = 1) = β, P (C = 1 | A = 0) = 1− β and
P (A,B,C) is a positive distribution. �

Proof. Let P (C = 1 | B = 1) = x and P (C = 1 | B = 0) = 1− x, then

β = P (C = 1 | A = 1) =
∑
b

P (C = 1 | b)P (b | A = 1) = 1− α+ x(2α− 1) (42)

x =
α+ β − 1

2α− 1
. (43)

Since x must belong to the interval (0, 1), we can bound β ∈ (1− α, α) if α ≤ 1/2 and β ∈ (α, 1− α) if α > 1/2. Both
conditions are satisfied when |1/2− β| ≤ |1/2− α| as assumed, so any solution x is a valid probability.

Then, we can define the function for C as

fC = B ⊕ Uc, (44)

where Uc is a binary unobservable, P (Uc = 0) = x and ⊕ is the logical xor operator.

Lemma A.4. Let A and B be two variables in a causal graph where A ← An ← An−1 ← · · · ← A1 ← C → B1 →
· · · → Bm−1 → Bm → B. The variablesA1, . . . , An, B1, . . . , Bm are observable, C could be observable or unobservable
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and m,n are nonnegative integers. Then we can define functions for all variables involved such that they are binary and

P (a, b) =

{
1
2γ if a = b
1
2 (1− γ) otherwise

, (45)

for any γ ∈ (0, 1). �

Proof. First, if C is unobservable set P (C = 1) = 1/2, else define an unobservable Uc with P (Uc = 1) = 1/2 and let
fC = Uc. Let α, β ∈ (0, 1) be parameters to decide later.

If n = 0 define fA such that P (A = 1 | C = 1) = α, P (A = 1 | C = 0) = 1− α. Similarly, if m = 0 define fB such that
P (B = 1 | C = 1) = α, P (B = 1 | C = 0) = 1− α.

Suppose n > 0, then we will define the functions for A1, A2, . . . , An, A such that P (Ai = 1 | C = 1) gets closer to α as i
increases. If α < 1/2, set fA1 such that P (A1 = 1 | C = 1) = α/(n+ 1), P (A1 = 1 | C = 0) = 1− α/(n+ 1). Then
use lemma A.3 to define fAi , i = 1, . . . , n and fA such that P (Ai = 1 | C = 1) = iα/(n + 1), P (Ai = 1 | C = 0) =
1− iα/(n+ 1) and finally P (A = 1 | C = 1) = (n+ 1)α/(n+ 1) = α, P (A = 1 | C = 1) = 1− α.

If α > 1/2 use the same strategy but starting from P (A1 = 1 | C = 1) = 1 − (1 − α)/(n + 1) and decreasing as
P (Ai = 1 | C = 1) = 1− i(1− α)/(n+ 1), to obtain P (A = 1 | C = 1) = 1− (n+ 1)(1− α)/(n+ 1) = α.

The same procedure is applied for B1, . . . , Bm, B to obtain P (B = 1 | C = 1) = β, P (B = 1 | C = 0) = 1− β.

Finally,

P (A = 1, B = 1) =
∑
c

P (A = 1 | c)P (B = 1 | c)P (c) (46)

= 1
2 [αβ + (1− α)(1− β)] (47)

P (A = 0, B = 0) = 1
2 [(1− α)(1− β) + αβ] (48)

P (A = 0, B = 1) = 1
2 [(1− α)β + α(1− β)] (49)

P (A = 1, B = 0) = 1
2 [α(1− β) + (1− α)β]. (50)

If γ < 1/2 make β = 1− α and α = 1±
√

1−2γ
2 . If γ ≥ 1/2, let β = α and α = 1±

√
2γ−1
2 . It is just a matter of algebra to

verify that P (A,B) results in the intended distribution.

Lemma A.5. Let W∗ be a set of counterfactual variables, X∗, and let A1∗,A2∗, . . . be the ancestral components of W∗
given X∗. Then

P (W∗ = w∗) =
∏
j

∑
aj∗\w∗

P

(∧
At∈Aj∗

Apaa
= a

)
, (51)

where paa is consistent with t and aj∗, for each At ∈ Aj∗ . �

Proof. For the sake of simplicity let X∗ = ‖X∗‖. First, note that by definition A1∗,A2∗, . . . must be mutually disjoint and
their union is equal to A∗ = An(W∗). Then, we can write

P (W∗ = w∗) =
∑

a∗\w∗

P
(∧

j
Aj∗ = aj∗

)
. (52)

Furthermore, no variable in two distinct ancestral components could be in the same c-component in G[V(A∗)]. Hence, we
have

P (W∗ = w∗) =
∑

a∗\w∗

∏
j

P

(∧
At∈Aj∗

Apaa
= a

)
. (53)
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To prove the result, it suffices to show that this expression can be factorized such that the sum over each aj∗ \w∗ only
affects factor j. For this, we argue that for At ∈ Aj∗ no value of paa or a appears in ak∗ \w∗ for any k 6= j. To see why
this is the case, assume for the sake of contradiction that (i) there is some value in paa that appears in such a ak∗ \w∗ or (ii)
a appears in the same set. For case (i), this implies that there is an ancestor of At (not in X∗) which is also an ancestor of
some variable in component Ak∗. For case (ii), this means that At /∈ X∗ is an ancestor of some variable in component Ak∗.
In both cases would imply that Aj∗ and Ak∗ are not disjoint, a contradiction.

Lemma 4.2 (Conditional-marginal transportability reduction). Let Y∗,X∗ be two sets of counterfactual variables and let
D∗ be the set of variables in the same ancestral component, given X∗, as any variable in Y∗, then

P ∗(y∗|x∗)=
∑

d∗\(y∗∪x∗)
P ∗(

∧
Dt∈D∗

Dpad
=d)∑

d∗\x∗ P
∗(
∧
Dt∈D∗

Dpad
=d)

, (20)

where pad is consistent with t, d∗ and x∗(Dt), for each Dt ∈ D∗. Moreover, P ∗(y∗ | x∗) is transportable from Z iff
P ∗(

∧
Dt∈D∗

Dpad
= d) is transportable from Z. �

Proof.

P ∗(Y∗ = y∗ | X∗ = x∗) =
P ∗(Y∗ = y∗,X∗ = x∗)∑
y∗
P ∗(Y∗ = y∗,X∗ = x∗)

(54)

Let A1∗,A2∗, . . . be the ancestral components of Y∗ ∪X∗, given X∗. Then, by Lemma A.5

P ∗(Y∗ = y∗,X∗ = x∗) =
∏
j

∑
aj∗\(y∗∪x∗)

P ∗
(∧

At∈Aj∗
Apaa

= a

)
. (55)

Let Yr ∈ Y∗ and y its corresponding value in y∗. If there exists any variable At ∈ A∗ such that y ∈ t, Yr and At must be
in the same Aj∗, as the former is then an ancestor of the latter. Let Ay∗ be the union of ancestral components that contain
ancestors of Y∗, and let Ay∗ be the rest. Then, if we sum over y∗ in the right-hand-side of Equation (55), the factors with
variables in Ay∗ can taken out of the sum.

P ∗(Y∗ = y∗ | X∗ = x∗)

=

(∑
ay∗\x∗

P ∗
(∧

At∈Ay∗
Apaa

= a
))(∑

ay∗\(y∗∪x∗)
P ∗
(∧

At∈Ay∗
Apaa

= a
))

(∑
ay∗\x∗

P ∗
(∧

At∈Ay∗
Apaa

= a
))∑

y∗

(∑
ay∗\(y∗∪x∗)

P ∗
(∧

At∈Ay∗
Apaa

= a
)) (56)

After cancelling out the first factor, simplifying the expression, and defining D∗ = Ay∗, we obtain Equation (20).

For simplicity, let G∆′ be the same as G∆ after removing all edges out of V(X∗∩D∗) and any edge out of V(Y∗∩An(X∗)).
G′ and G have the same c-component structure and the same ancestral relationships; therefore and by the same reasoning,
the query is not transportable from 〈G′,Z〉 either. For the rest of the proof, let G∆ denote G∆′ instead. Clearly, if
P ∗(

∧
Dt∈D∗

Dpad
= d) is transportable, so it is P ∗(Y∗ = y∗ | X∗ = x∗). For the second part of the statement, suppose

this query is not transportable and letM(1),M(2) be two sets of models witnessing this fact.

For simplicity, let

ρ(y,x) =
∑

d∗\(y∗∪x∗)

P ∗
(∧

Dt∈D∗
Dpad

= d
)

(57)

then

P ∗(Y∗ = y∗ | X∗ = x∗) =
ρ(y∗,x∗)∑
y∗
ρ(y∗,x∗)

. (58)

If ρ(x) =
∑

y ρ(y,x) is transportable then P ∗(Y∗ = y∗ | X∗ = x∗) must be non-transportable, else

ρ(y,x) = P ∗(Y∗ = y∗ | X∗ = x∗)ρ(x), (59)
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contradicting the assumption that the ρ(y,x) is not identifiable. Therefore, we can further assume ρ(x) is not identifiable,
for the rest of the argument.

Let (y′,x′) be an assignment such that ρ(y′,x′) differs betweenM(1) andM(2), then let

X∗ Y∗ ρ(1)(X,Y) ρ(2)(X,Y)

x′ y′ a b
x′ 6= y′ c d
6= x′ y′ e f
6= x′ 6= y′ g h

Due to the non-transportability of ρ(y,x) we have a 6= b and without loss of generality we can assume a > b. Similarly,
due to the non-transportability of ρ(x) we have a+ c 6= b+ d. ForM(1) andM(2):

ρ(1)(y′ | x′) =
a

a+ c
(60)

ρ(2)(y′ | x′) =
b

b+ d
. (61)

These probabilities are equal if and only if ad = bc. Hence, if they are not equal, we are done as ρ(1)(y′ | x′) 6= ρ(2)(y′ | x′).
If they are equal, let Xt ∈ X∗ ∩D∗ be such that Xt and some Yr ∈ Y∗ have a common ancestor or they have ancestors
sharing a bidirected edge. Assume Xt is such that no other element in X∗ is closer to Yr in the corresponding path in G. Let
p be the path in G that goes from X to Y , passing to the common ancestor or bidirected alluded before. Add a bit to every
variable in p and denote them with subscript p. Define independent functions for the bits which we will parametrize later.

We define two new sets of models,M(1)′ andM(2)′, based onM(1) andM(2). For every variable in p except for X and
Y , append the corresponding extra bit, defined in p, to the original variables inM(1) andM(2). Rename X and Y as X̃, Ỹ
and make them unobservable, then define X in the new models with functions:

f ′x =

{
x′ if Xp = 1

X̃ otherwise,
(62)

where Xp is unobservable too and x′ = x′(X), for which the query disagrees inM(1) andM(2).

Analogously, define

f ′y =

{
y′ if Yp = 1

Ỹ otherwise.
(63)

According to our choice of X , there exists Z ∈ p ∩ An(X) ∩ An(Y ) (possibly Y itself) or there exists Z1, Z2 ∈ p with
Z1 ∈ An(X), Z2 ∈ An(Y ) and there is an edge Z1 L9999K Z2 in p. For the parametrization of the extra bits in p define a
new unobservable U and let Zp = U if the common ancestor is observable or let U be the unobservable parent of Z1p and
Z2p in the second. Notice that Z1 and Z2 may be equal to X and Y themselves.

Using lemma A.4 we will parametrize p such that

X0 Y0 P (X0, Y0)

1 1 1
2γ

1 0 1
2 (1− γ)

0 1 1
2 (1− γ)

0 0 1
2γ

for some γ ∈ (0, 1) that we will pick later.
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Claim A.1 (Disagreement on the query). M(1)′ andM(2)′ disagree on the query for any γ such that c− d 6= [(a+ c+
1)h− (b+ d+ 1)g](1− γ). �

Proof. ForM(1)′ andM(2)′ we have

ρ′(x′,y′) =
∑

xp,yp,x̃,ỹ

ρ′(x′,y′, x̃, ỹ | xp, yp)P (xp, yp). (64)

Going over each possible combination of Xp and Yp, we get

ρ′(x′,y′) = ρ(X = x′,Y = y′)P (Xp = 0, Yp = 0) (65)
+ ρ(Y = y′)P (Xp = 1, Yp = 0) (66)
+ ρ(X = x′)P (Xp = 0, Yp = 1) (67)
+ P (Xp = 1, Yp = 1). (68)

Similarly,

ρ′(x′) = ρ(X = x′)P (Xp = 0) + P (Xp = 1). (69)

ForM(1)′

ρ(1)′(y′ | x′) =
1
2aγ + 1

2 (a+ e)(1− γ) + 1
2 (a+ c)(1− γ) + 1

2γ
1
2 (a+ c) + 1

2

(70)

=
aγ + (2a+ c+ e)(1− γ) + γ

a+ c+ 1
(71)

=
a− (a+ c+ e)(γ − 1) + γ

a+ c+ 1
(72)

=
a+ (a+ c+ e)(1− γ)− (1− γ) + 1

a+ c+ 1
(73)

=
a− (1− (a+ c+ e))(1− γ) + 1

a+ c+ 1
(74)

=
a− g(1− γ) + 1

a+ c+ 1
(75)

Analogously forM(2)′:

ρ(2)′(y′ | x′) =
b− h(1− γ) + 1

b+ d+ 1
(76)

Those two are equal if and only if

ab− bg(1− γ) + b+ ad− dg(1− γ) + d+ a− g(1− γ) + 1

= ab− ah(1− γ) + a+ bc− ch(1− γ) + c+ b− h(1− γ) + 1 (77)
⇐⇒

−bg(1− γ) + ad− dg(1− γ) + d+−g(1− γ)

= −ah(1− γ) + bc− ch(1− γ) + c+−h(1− γ) (78)

Recall that we have ad = bc, which also implies that c 6= d, else a = b which is a contradiction. Then, the condition for
equality can be further simplified as

c− d = [(a+ c+ 1)h− (b+ d+ 1)g](1− γ). (79)

The left hand side is nonzero, all a, b, c, d, g and h are fixed, and γ is a free parameter. Therefore, as long as we pick a γ such
that the equality doesn’t hold, we get that ρ′(y′ | x′) = P ′(Y∗ = y′ | X∗ = x′) does not match inM(1)′ andM(2)′.
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Claim A.2 (Agreement on given distributions). Let Z ⊂ V be any subset of observable variables and let σZ ∈ Zk ∈ Z. If
M(1) andM(2) agree on P k(V;σZ), thenM(1)′ andM(2)′ also agree on P k(V;σZ). �

Proof. For simplicity we omit the superscript k for the domain, which is fixed with σZ. The superscript (1) and (2) indicate
to which of the sets of models under consideration the expression refers to.

As the input distributions are in layer 2, let us use c-factor notation, where each c-factor corresponds to a causal effect. For
any C ⊆ V, the quantity Q[C](v) is the c-factor of C and denotes the following function

Q[C](v) =
∑

u(C)

∏
{i|Vi∈C}

P k(vi | pai,ui)P k(u(C)), (80)

where U(C)=
⋃
Vi∈C Ui.

Let C1,C2, . . . be the C-components of GσZ
. By assumption we haveQ(1)[V;σZ] = Q(2)[V;σZ], and since anyQ[Cj ;σZ]

is identifiable from Q[V;σZ] (Tian & Pearl, 2002b), it follows Q(1)[Cj ;σZ] = Q(2)[Cj ;σZ] for any Cj not intersecting Z.

M(k)′ is identical toM(k), k = 1, 2, except for the functions of the observables in the path p. For any variable T not in p,
but with a parent on it, the function fT remains the same and it simply ignores the extra bit that its parent has inM(k)′.

Let Cj be a c-component containing some set of variables R in p different to X and Y (the endpoints of p). First, by
definition

Q(k)′ [Cj ;σZ](v) =
∑

u(Cj)

∏
Vi∈Cj

P (k)′(vi | pai,ui;σX)P (k)′(u(Cj)). (81)

For any S /∈ p, R ∈ R, X and Y that could be in Cj inM(k)′ , their corresponding factors in the previous expression can
be re-written in terms of probabilities ofM(k), as follows:

P (k)′(s | pas, us;σX) = P (k)(s | pas, us;σX), (82)

P (k)′(r | par, ur;σX) = P (k)(r | par, ur;σX)P (rp | (par)p), (83)

P (k)′(y | pay, uy;σX) = P (k)(y | pay, uy;σX)P (Yp = 0 | (pay)p)

+ 1[y = y′]P (Yp = 1 | (pay)p)), (84)

P (k)′(w | paw, uw;σX) = P (k)(w | paw, uw;σX)P (Wp = 0 | (paw)p)

+ 1[w = w′]P (Wp = 1 | (paw)p)). (85)

It follows that

Q(k)′ [Cj ;σZ](v) =

(∏
R∈R

P (rp | (par)p)

)[
Q(k)[Cj ;σZ](v)P (Yp = 0 | (pay)p)P (Wp = 0 | (paw)p)

+Q(k)[Cj \ {Y };σZ](v)P (Yp = 1 | (pay)p)P (Wp = 0 | (paw)p)1[y = y′] (86)

+Q(k)[Cj \ {W};σZ](v)P (Yp = 0 | (pay)p)P (Wp = 1 | (paw)p)1[w = w′]

+Q(k)[Cj \ {W,Y };σZ](v)P (Yp = 1 | (pay)p)P (Wp = 1 | (paw)p)1[w = w′, y = y′]]
.

Since X and Y have no descendants in G,

Q(k)[Cj \ {W,Y };σZ](v) =
∑
w,y

Q(k)[Cj ;σZ](v) (87)

Q(k)[Cj \ {W};σZ](v) =
∑
w

Q(k)[Cj ;σZ](v) (88)

Q(k)[Cj \ {Y };σZ](v) =
∑
y

Q(k)[Cj ;σZ](v), (89)
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all match between M(1) and M(2). Consequently, every c-factor in the right-hand side of (86) is the same in those
models, and since every other term is also the same in both M(1)′ and M(2)′, we conclude that Q(1)′ [Cj ;σZ](v) =

Q(2)′ [Cj ;σZ](v), which in turn implies our claim since

P (k)′(v;σZ) =
∏
j

Q(k)′ [Cj ;σZ](v). (90)

In summary,M(1)′ andM(2)′ induce G∆ and matching Z, yet they differ on the value for P ′(Y∗ = y′ | X∗ = x′), proving
the non-identifiability of the query.

A.2. Nested Counterfactual Transportability

Lemma 4.3 (Counterfactual Unnesting). Let X̂, Ẑ be any counterfactual variables (nested or non-nested) sets X,Z ⊆ V.
Then, for Y ⊆ V disjoint from X and Z such that X ⊆ An(Y)GZ , P ∗(YẐ,X̂ = y) is transportable from 〈Z,G∆〉 iff

P ∗(YẐ,x = y, X̂ = x) is transportable from 〈Z,G∆〉 for every x, and given by

P ∗(YẐ,X̂=y) =
∑

x∈XX

P ∗(YẐ,x=y, X̂=x). (22)

�

Proof. (soundness) From the model we have: P ∗(YẐ,X̂ = y) =
∑
{u|YẐ,X̂(u)=y} P

∗(u). InMẐX̂, for any given u, the

variables in X take a particular value-vector x = X̂(u). Then, we can partition {u | YẐ,X̂(u) = y} as
⋃

x∈XX
{u |

YẐ,X=x(u) = y, X̂(u) = x}. Hence

P ∗(YẐ,X̂ = y) =
∑

x∈XX

∑
{u|YẐ,x(u)=y,X̂(u)=x}

P ∗(u) =
∑

x∈XX

P ∗(YẐ,x = y, X̂ = x). (91)

(necessity) Suppose P ∗(YẐ,x = y, X̂ = x) is not transportable from Z. Since X ⊆ An(Y)GZ there exist Xr ∈ X̂ and a
set of variables DẐ such that a path X → D1 → D2 → Dk → Y exists in G∗ for some YẐ ∈ Y∗ with k ≥ 0. This implies
that D1[Ẑ] is a function of Xr, Di+1[Ẑ] is a function of Di[Ẑ] and YẐ is a function of Dk[Ẑ]. Then, we can use Lemma A.1
from X to Y following this path to prove the result.

B. Algorithm
B.1. Soundness and Completeness

Lemma B.1 (CTFTRU completeness for non-conditional, non-nested queries). A counterfactual probability P ∗(y∗) is
transportable from Z and G∆ if and only if CTFTRU returns an expression for it. �

Proof. (soundness) The algorithm starts by simplifying the target event by removing irrelevant subscripts and looking for
inconsistent or redundant events (line 1). Line 2 finds the relevant ctf-factors consisting of a single c-component, licensed
by the properties of ancestral sets and ctf-factors. As long as the factors are consistent, and allowed by Theorem 4.1,
lines 7-10 try to transport of the causal effect P ∗Pa(Ci)\Ci

(Ci) from the available distributions employing the algorithm
σ-TR (Algorithm 4) as a subroutine. Then, the factor P ∗(Ci∗ = ci∗) is transported by evaluating P ∗Pa(Ci)\Ci

(Ci) with the
appropriate values according to Theorem 4.1. If all the ctf-factors are consistent and transportable, the algorithm returns the
query as in line 14. This expression is equal to the original query.

(necessity) The procedure fails if any of the factors P ∗(Ci∗ = ci∗) is inconsistent or not transportable from Z. If inconsistent,
Theorem 4.1 ascertains the non-transportability of the factor from Z. On the other hand, σ-TR (in line 5) failing to obtain
P ∗Pa(Ci)\Ci

(Ci) from Z implies the non-transportability of P ∗Pa(Ci)\Ci
(Ci) from Z (Correa & Bareinboim, 2020). That is,

there exist two sets of models that agree on all distributions given by Z but differ on P ∗Pa(Ci)\Ci
(Ci) for a particular set
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Algorithm 4 σ-TR(Ci,Z,G∆)

Input: A set of variables Ci that form a single c-component in G, a set of distributions Z, and a selection diagram G∆.
Output: An expression for the c-factor P ∗Pa(Ci)\Ci

(Ci) in terms of distributions available in Z or FAIL if this distribution
is not transportable.

1: for each Z∈Zk∈Z s.t. Ci ∩ Z=∅ and Ci∩∆k=∅ do
2: let Bi be the c-component of GkσZ

such that Ci⊆Bi.
3: compute PV\Bi

(Bi) from PZ(V).
4: let Q← IDENTIFY(Ci,Bi, PV\Bi

(Bi),GkσZ
).

5: if Q is not FAIL then
6: return Q.
7: end if
8: end for
9: return FAIL

of values v. With a proper encoding of the values, consistent with (ci∗ ∪
⋃
Ct∈Ci∗

pac), this is also a counterexample for
P ∗(Ci∗ = ci∗).

If any P ∗(Ci∗ = ci∗) is not transportable, then P ∗(W∗ = w∗) is also not transportable. This is because if the latter were
transportable, the former can be obtained from it; a contradiction. Moreover, Lemma 4.1 then implies that P ∗(Y∗ = y∗) is
not identifiable.

Theorem 5.1 (CTFTR completeness). A counterfactual probability P ∗(y∗ | x∗) is transportable from Z and G∆ if and
only if CTFTR returns an expression for it. Moreover, CTFTR decides this task in time O(n4z) where n = |V| and
z =

∑
Zi∈Z |Zi|. �

Proof. (Soundness and completeness) Lines 1 and 2 determine the set of variables and values D∗ and d∗ as specified
by Lemma 4.2 to reduce the conditional query to a marginal one. Then, line 3 invokes CTFTRU to identify this quantity.
If CTFTRU succeeds, the returned expression is equal to the conditional query. If it fails, Lemma 4.2 implies that the
conditional query is also not transportable.

(Efficiency) Let n = |V| and z =
∑
πi |Zi|. Operations such as computing the set of ancestors, ancestral components or

c-components in a graph can be done in O(n2) time. The number of sets of ancestors and c-components is O(n), hence
the first two operations in CTFTR take at most O(n3) time. CTRTRU is called once and the first step, that uses SIMPLIFY,
takes at most O(n3) time because the simplification is done by computing sets of ancestors and then performing checks that
take O(n2) time. There are O(n) ctf-factors to process, so the total number of times the for-loop in CTFTRU could execute,
calling σ-TR is O(n). Besides some O(n2) operations, σ-TR may call IDENTIFY up to z times. IDENTIFY recursively
reduces the input c-factor at least by one variables each time, and the operations used can be performed in O(n2) so it takes
O(n3) time per call to return an expression or FAIL. Consequently, CTRTRU takes O(n4z) time, which is also the overall
time for CTFTR.

B.2. Transportability algorithm for interventional distributions

Our algorithm CTFTRU relies on a subroutine to trasnport a given interventional distribution from Z. For this purpose we
employ σ-TR (Correa & Bareinboim, 2020) which is shown in Algorithm 4. In turn, σ-TR uses the IDENTIFY algorithm
(Tian & Pearl, 2002a), shown in Algorithm 5.
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Algorithm 5 IDENTIFY(C,T, Q,G)

Input: C ⊆ T ⊆ V, Q = Q[T] and graph G. Assuming G[C] and G[T] are composed of a single c-component.
Output: Expression for Q[C] in terms of Q or Fail.
1: Let A← An(C)G[T].
2: if A = C then return Q[C] =

∑
t\cQ.

3: if A = T then return FAIL.
4: if A = C then
5: Let T′ be the C-component containing C in G[A].
6: Compute Q[T′] from Q[A] =

∑
t\aQ.

7: return Identify(C,T′, Q[T′],G).
8: end if


