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Abstract

We propose a novel formulation for the Inverse
Reinforcement Learning (IRL) problem, which
jointly accounts for the compatibility with the
expert behavior of the identified reward and its
effectiveness for the subsequent forward learn-
ing phase. Albeit quite natural, especially when
the final goal is apprenticeship learning (learn-
ing policies from an expert), this aspect has been
completely overlooked by IRL approaches so far.
We propose a new model-free IRL method that is
remarkably able to autonomously find a trade-off
between the error induced on the learned policy
when potentially choosing a sub-optimal reward,
and the estimation error caused by using finite
samples in the forward learning phase, which can
be controlled by explicitly optimizing also the
discount factor of the related learning problem.
The approach is based on a min-max formulation
for the robust selection of the reward parameters
and the discount factor so that the distance be-
tween the expert’s policy and the learned policy is
minimized in the successive forward learning task
when a finite and possibly small number of sam-
ples is available. Differently from the majority
of other IRL techniques, our approach does not
involve any planning or forward Reinforcement
Learning problems to be solved. After presenting
the formulation, we provide a numerical scheme
for the optimization, and we show its effective-
ness on illustrative numerical cases.
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1. Introduction
Inverse Reinforcement Learning (IRL, Ng & Russell, 2000)
is the process of recovering, from (demonstrations of) an
expert’s policy, a reward function, which, in many cases, is
the most parsimonious way to describe the behavior of the
expert. The learned reward is intended to be successively
used in forward Reinforcement Learning (RL, Sutton &
Barto, 2018) to find new policies that could generalize over
unseen states or even improve the expert’s actions in new
environments.

Learning policies from demonstrated examples, also known
as Imitation Learning (Osa et al., 2018), is indeed often a
much easier way to capture the expert’s behavior compared
to specifying an informative reward function, especially in
complex problems (Ng & Russell, 2000), which usually
involves some not straightforward tuning and tweaking to
elicit the desired result. A direct approach to imitation learn-
ing, known as Behavioral Cloning (Bain & Sammut, 1995),
involves the direct extrapolation of the policy function from
the expert’s demonstrations by using some supervised learn-
ing technique, but this may lead to surprisingly poor behav-
iors, especially under environment modifications (Ng &
Russell, 2000; Ross & Bagnell, 2010; Bagnell, 2015). On
the contrary, IRL methods are some of the most successful
approaches to Imitation Learning, where first a reward func-
tion is learnt under the assumption of the expert’s optimality,
and then used to recover the expert’s policy using forward
RL (rather than mimic it). This accounts for a better gener-
alization and transferability of the expert’s intention, which
is compactly described by its reward function.

Although theoretically sound, the IRL problem is scattered
itself by a number of difficulties, to which many studies
were devoted in the literature. The main dilemma is the “ill-
posedness” of IRL, i.e., the fact that a policy can be optimal
for multiple reward functions (Abbeel & Ng, 2004; Lopes
et al., 2009). To obtain a unique solution, some approaches
propose ad-hoc objective functions to be optimized, such
as margin between the optimal policy and others (Ng &
Russell, 2000; Abbeel & Ng, 2004; Ratliff et al., 2006;
2009; Silver et al., 2010), or the selection of a maximal
entropy policy (Ziebart et al., 2008; Ziebart, 2010; Kitani
et al., 2012; Shiarlis et al., 2016).
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In their quest for the expert’s reward function, many IRL
approaches implement an iterative learning process (Abbeel
& Ng, 2004; Syed et al., 2008a; Neu & Szepesvári, 2007;
Ho & Ermon, 2016; Ho et al., 2016) that proceeds by alter-
nately solving a forward RL problem and updating a reward
function estimate. In particular, consistency in terms of
performance equivalence between the demonstrated trajec-
tories and the ones induces by the learner’s policy must be
enforced during the optimization of the reward function.
Additionally, the learning of a generalized policy is then
updated using a forward RL procedure based on the current
estimate of the reward function.

A final common aspect to take care of in IRL approaches
is the assumption about the underlying MDP. Traditionally,
most IRL methods rely on model knowledge (either given or
accurately learned from the demonstrated trajectories) (Ng
& Russell, 2000; Ratliff et al., 2006; Ramachandran & Amir,
2007; Neu & Szepesvári, 2007; Syed et al., 2008a; Ziebart
et al., 2008; Herman et al., 2016), which sometimes is also
used to perform the internal forward RL subroutines for find-
ing/evaluating intermediate optimal policies. More recently,
model-free approaches have been proposed (Boularias et al.,
2011; Ho et al., 2016; Pirotta & Restelli, 2016; Metelli et al.,
2017; 2020; Ramponi et al., 2020; Likmeta et al., 2021),
even though some of them still require continuous inter-
actions with the environment (Abbeel & Ng, 2004; Ho &
Ermon, 2016; Ho et al., 2016).

In this paper, we take a somewhat different point of view
on IRL and focus our effort on finding a reward function
not only compatible with the expert’s demonstrations, but
that can make the next forward learning phase as efficient
as possible, in terms of the sample complexity required
to learn a near-optimal policy. All the methods presented
above break the ambiguity by enforcing some particular
property on the reward function directly (e.g., maximum
entropy, maximum margin). However, they do not explicitly
take into account how the recovered reward function will
be employed. Indeed, such a reward will be plugged into (a
possibly different) environment and used to perform forward
RL. In this spirit, among the compatible ones, we should
prefer the rewards that can make the next forward learning
phase as efficient as possible. This goal is indirectly pursued
by many IRL algorithms, but, to the best of our knowledge,
no algorithm performs the reward selection phase by explic-
itly quantifying the sample complexity of forward RL. Our
novel formulation blends these ambitious goals together and
results in an algorithmic procedure which i) is purely model–
free, ii) does not need any interaction with the environment
to collect new on-policy data for evaluation, and iii) does
not require solving any forward problem (i.e., finding an
optimal policy given a candidate reward function).

2. Preliminaries
Notation We denote with ‖f‖2µ =

∫
f(x)2µ(dx) the

square of the L2-norm of f weighted by the probability
distribution µ, and with ‖f‖∞ = supx f(x) the L∞-norm
of f . The L2-Wasserstein distance between two proba-
bility distributions µ and ρ is defined as: W 2

2 (µ, ρ) =
infξ∈Ξ(µ,ρ)

∫
‖x−y‖2ξ(dx, dy), where Ξ(µ, ρ) is the set of

couplings with marginals µ and ρ, and ‖·‖ is some norm. Let
F be a functional space and projF g = arg minf∈F ‖f−g‖
the projection operator, where ‖ · ‖ is some norm.

Markov Decision Processes A Markov Decision Pro-
cess (MDP, Puterman, 2014) is defined as M =
(S,A, P, r, γ), where S and A are continuous state and
action spaces, P : S × A × S → R≥0 is the Markovian
state transition density P (s′|s, a) defined for every triple
(s′, a, s), r : S × A → [0, 1] is the reward function, and
γ ∈ [0, 1) is the discount factor. A Markovian stationary
stochastic policy π : A × S → R≥0 specifies the action
density function π(a|s) defined for every pair (a, s). A pol-
icy is deterministic if, for any s, π(·|s) is concentrated on a
single action. The class of Markovian stationary stochastic
policies will be denoted by Π.

Value Functions, Operators, and Optimal Policy Given
a reward function r and a discount factor γ, the state-
action value function Qπr,γ : S × A → R is de-
fined as Qπr,γ(s, a),Eπ[

∑+∞
t=0 γ

tr(st, at)|s0 = s, a0 =
a], where we denote with Eπ the expected value w.r.t.
the probability measure induced by executing π on
M. The state-action value function is the unique fixed-
point of the Bellman operator Tπ : Qπr,γ(s, a) 7→
r(s, a) + γ

∫
S×A π(a′|s′)P (s′|s, a)Qπ(s′, a′)ds′da′. The

optimal state–action value function is defined as
Q?r,γ(s, a),maxπ∈ΠQ

π
r,γ(s, a) for every pair (s, a) (Put-

erman, 2014). Any policy π ∈ Π satisfying the equal-
ity
∫
A π(a|s)Q(s, a)da = maxa∈AQ(s, a) for all states

s ∈ S is named greedy w.r.t. the function Q. We denote
with G[Q] ⊆ Π the set of greedy policies w.r.t. Q. Any
policy that is greedy w.r.t. the optimal state-action value
function Q?r,γ is an optimal policy and is denoted by π?r,γ .

Inverse Reinforcement Learning The IRL problem is in-
formally defined as finding a reward function r that can
explain the observed behavior of an expert following a pol-
icy πE , which is optimal w.r.t. some unknown reward rE
(see Ng & Russell (2000)). Formally, a reward r is compati-
ble with the expert’s policy πE if πE ∈ Π is optimal under
r, i.e., πE ∈ G[Q?r,γ ]. Sometimes, especially in the Ap-
prenticeship Learning class of algorithms, a learner policy
π is obtained as a by-product of the IRL process. In these
cases, the learner must find a policy that performs at least
as well as the expert πE on the unknown true reward func-
tion (Abbeel & Ng, 2004; Ramachandran & Amir, 2007;
Neu & Szepesvári, 2007; Syed et al., 2008a).
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3. The IRL Formulation for Efficient
Forward Learning

In this section, we introduce our new IRL formulation and
show how it is possible to select a reward that makes the
forward RL task as efficient as possible. In doing so, we
still need to guarantee that the derived reward is compatible
with the expert demonstrations, i.e., that the corresponding
optimal policy π matches the expert’s policy πE .

The issue of efficient learning is inextricably related to the
concept of the sample complexity of finding a good ap-
proximation of the optimal value function and/or policy
and, loosely speaking, can be questioned as how much data
must we collect in order to achieve “learning”? (Kakade,
2003). In RL, the number of calls to the sampling model is
generally a function of different problem parameters and,
in particular, of the discount factor γ (linked to the effec-
tive number of decision epochs), and (the variance of) the
reward, together with an accuracy parameter ε (w.r.t. the
performance criteria used) and a confidence parameter δ.
The smaller is the discount factor, the smaller is the number
of samples required to attain a near-optimal estimate of the
optimal value-function, as witnessed by numerous sample
complexity theoretical results, usually depending on a power
of 1/(1− γ) (e.g., Munos & Szepesvári, 2008; Farahmand
et al., 2010; Lazaric et al., 2012; Azar et al., 2013). Nev-
ertheless, the reward function recovered by IRL has to be
compatible with the expert’s policy, which is known only
with some accuracy and confidence, being estimated from a
finite set of demonstrations.

The following novel IRL formulation blends all these differ-
ent elements together, and takes into direct consideration the
effect of the learned IRL reward on the subsequent forward
learning phase. Suppose we are given a forward RL algo-
rithm that, provided with a reward function r, a discount
factor γ, and a number of samples M ≥ 0, is able to output
an ε?(M,γ)-approximation Q̂?M of the optimal Q-function
Q?r,γ , with probability at least 1− δ?. Then, the influence
of the IRL reward r and discount factor γ on the distance
between the expert’s policy πE and the learned policy in the
successive forward learning task, when a finite and possibly
small number M of samples is available, can be captured
by the next adversarial min-max optimization program:

min
r∈R,γ∈[0,1)

max
π∈G[Q̂?M ]

∥∥QπErE ,γE −QπrE ,γE∥∥ (1a)

s.t.
∥∥∥Q̂?M −Q?r,γ∥∥∥ ≤ ε?(M,γ), (1b)

whereR is a set of available reward functions and ‖ · ‖ is a
suitably defined norm.

The formulation (1a) constitutes a worst-case guarantee on
the sub-optimality of the learned policy π with respect to the
expert’s policy πE , when evaluated under the true (and un-

known) reward rE and discount factor γE . This implies also
the compatibility of the learned reward r with the expert’s
policy πE , which is the main requirement in IRL. Moreover,
the explicit optimization of the learned discount factor γ
allows to trade-off with the reward itself the optimality of
the learned policy π, and hence tune the sample complexity
in the subsequent forward RL task. To this end, we define
in (1b) the confidence region of the future estimated optimal
Q-function Q̂?M under the optimized reward r and discount
factor γ, which is determined by the used forward RL algo-
rithm. This set determines the feasible domain where we
can seek for a greedy policy mimicking the expert’s one,
which will be known within some accuracy ε? and confi-
dence level δ? varying with the number of data M available
during the successive forward learning phase.

In summary, our novel IRL formulation (1) accounts for a
new aspect that has not been taken into account by previous
IRL approaches, i.e., the trade-off between the optimal-
ity (in the IRL sense, i.e., compatibility) and the sample
complexity for learning a policy in the subsequent forward
RL phase. The recovered reward aims at minimizing the
worst-case error of the forward RL (objective (1a)) when
a finite-sample budget M will be available in the forward
RL phase (constraint (1b)). This does not imply that the
policy will be easy to learn in general, but the optimized
pair (r, γ)1 will make the forward RL policy as efficient as
possible to learn.

We finally remark that formulation (1) is not readily solvable,
because it involves the unknown quantities rE and γE in
its objective function (1a). In Section 4, we will show how
we can get rid of the state-action value functions QπErE ,γE
and QπrE ,γE , and how we can determine an approximation
of the confidence region in (1b). The numerical scheme for
solving (1) will be described in Section 5.

4. Construction of a Solvable IRL
Formulation

We devote this section to the description of the main ele-
ments involved in the formulation (1), and to the construc-
tion of a numerically solvable optimization problem.

Parametrizations First, we introduce some widely ac-
cepted approximations, and assume that there are vectors
of features φ : S × A → [0, 1]dθ and ψ : S × A →
[0, 1]dω through which we can linearly parameterize the
reward function and the action-value function, such that
rθ(s, a) = φ(s, a)>θ and Q̂ω(s, a;ω) = ψ(s, a)>ω,
where θ ∈ Rdθ and ω ∈ Rdω .2 Also, we restrict the search

1(r, γ) are reported under the min operator because they are
the optimization variables that influence the constraint (1b) and
hence the objective function in an indirect way.

2We require the features φ and ψ to be linearly independent
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of the greedy policy in the inner maximization over a class
of parametrized policies Πη =

{
πη : η ∈ Rdη

}
, with the

only constraint that πη is differentiable w.r.t. η.

Relaxation Steps Second, we then proceed with the ma-
nipulation of the objective function and the constraint of the
formulation (1) according to the following steps.

(i) Section 4.1: substitution in (1a) of the distance between
Q-functions with the distance between the policies
π and πE , so as to avoid the usage of the unknown
quantities rE and γE ;

(ii) Section 4.2: replacement of the forward optimal Q-
function Q?r,γ in the constraint (1b), since it is not
available during the IRL problem, with one computable
during the IRL task, say Q̂πEN , assuming to have access
to a budget of N samples during IRL (instead of M );

(iii) Section 4.3: estimation of the IRL Q-function Q̂πEN
and definition of its confidence interval.

4.1. Wasserstein Distance on Expert’s Policy πE

The formulation of the optimization problem (1) cannot be
solved directly as it involves in the objective the expert’s
reward rE and discount factor γE , which are clearly un-
known. Thus, we consider a surrogate objective function,
and bypass the value-function distance by introducing a
policy divergence. Specifically, the following result, due
to (Rachelson & Lagoudakis, 2010; Pirotta et al., 2015),
bounds the Q-function distance with the policy distance.

Theorem 4.1 (Rachelson & Lagoudakis (2010)). If the
MDP is Lipschitz continuous with constants (Lr, LP ) and
π is Lipschitz continuous with constant Lπ. Then, it holds
that:

∥∥QπErE ,γE −QπrE ,γE∥∥µ≤LQ E
s∼dπEµ,γE

[W2(πE(·|s),π(·|s))],

where LQ = γELrLπ
(1−γE)(1−γELP (1+Lπ)) , W2 is the L2-

Wasserstein distance and dπEµ,γE is the γE-discounted state
occupancy (Sutton et al., 1999) induced by policy πE and
initial state distribution µ.

Since we aim to deal with continuous action spaces and
deterministic policies (the expert’s policy is usually deter-
ministic), the Wasserstein’s distance (Villani, 2008) is an
appropriate distributional divergence.3 Formally, given two
deterministic policies πη and πE , and a state s ∈ S , we can

to ensure that there are no redundant parameters and that the
subsequent computations involve full-rank matrices.

3Other common divergences, like Total Variation or Kullback-
Leibler are unsuited for deterministic distributions since they will
provide the maximum distance value.

compute the L2-Wasserstein distance as:4

W 2
2 (πE(s), πη(s)) = (πE(s)− πη(s))

2
. (2)

Remark 4.2. Thanks to Theorem 4.1, we can remove from
the formulation (1) the dependence on expert’s reward rE
and discount factor γE . From now on, unless explicitly
stated, all the Q-functions will refer to the optimized pair
(r, γ), which, for sake of compactness, will be removed
from the subscripts.

4.2. Dealing with the Forward Q-function Q?r,γ
Removing, in the previous sections, the dependence on the
expert’s reward and discount factor from the definition of
the objective function (1a) is not sufficient yet to translate
the program (1) into a solvable one. The main open issue
is that the confidence region of the constraint (1b) involves
the unknown quantity Q?r,γ , i.e., the optimal Q-function
computed with the optimized pair (r, γ).

Replacing Q?r,γ with QπEr,γ In principle, one could execute
forward RL as an inner loop for every candidate pair (r, γ)
and come up with an approximation of Q?r,γ and employ
it to enforce the constraint (1b), at least in an approximate
way. However, this choice is not viable in our setting, as
we have access to just the budget of N samples available
at IRL time and, in any case, we want to avoid performing
forward RL. To this end, we replace in constraint (1b) the
optimal Q-function Q?r,γ with the expert Q-function QπEr,γ .
The rationale behind this approximation is that, when (r, γ)
are compatible with the expert’s policy πE then it holds that
Q?r,γ = QπEr,γ . This approximation has the remarkable advan-
tage of not requiring to perform forward RL, but just policy
evaluation. Indeed, we need to estimate, for every candi-
date pair (r, γ), the expert’s Q-function QπEr,γ only. Thus,
constraint (1b) is substituted with:∥∥∥Q̂πEM −QπEr,γ∥∥∥ ≤ ε1(M,γ), (3)

where the ε1(M,γ) depends on the policy evaluation algo-
rithm employed to estimate Q̂πEM and the bound holds with
probability at least 1− δ1. The policy evaluation task will
be easily performed leveraging the N samples available at
IRL time.

Relaxing the Greedy Constraint A second issue concerns
the computation of the greedy policy to perform the inner
maximization. To counteract this obstacle, we begin by
rewriting explicitly the greedy constraint on the policy in the
inner maximization of (1a) and performing two relaxations:

4To ease the exposition, we deal with deterministic policies,
but the formulation and, in particular, the Wasserstein distance,
can be extended to stochastic policies.
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πη ∈ G
[
Q̂πEM

]
⇒ Q̂πEM (s, πη(s)) ≥ Q̂πEM (s, πE(s)) ∀s ∈ S

⇒
∑
s∈DIRL

Q̂πEM (s, πη(s))− Q̂πEM (s, πE(s)) ≥ 0.

(4)

The first relaxation involves the transition from a greedy
policy to all policies with at least a performance improve-
ment (i.e., positive advantage), so as to have an explicit
dependence of the learner policy πη on Q̂πEM . The second
relaxation implies that the constraint should hold on average
over a finite subset of selected states DIRL ⊆ S, since it
would be impossible to enforce it in an infinite state space
(a similar relaxation is operated for instance in (Schulman
et al., 2015) for the KL-divergence).

Enforcing Constraint (3) Finally, in order to enforce con-
straint (3), we show how to obtain a relaxed version in
combination with the policy improvement inequality (4) to
remove from problem (1) the dependence on the expert’s
Q-function QπEr,γ . The idea is to compute a looser constraint
than (3) but which does not involve the unknown quantity
QπEr,γ .

Proposition 4.3. Suppose that, simultaneously for all r ∈
R and γ ∈ [0, 1), we have that the Q-function Q̂πEM is known
within some accuracy level ε1(M,γ) (with probability 1−
δ1), and let us introduce a new Q-function Q̂πEN which can
be estimated with N samples during the IRL task within
some accuracy ε2(N, γ) (with probability 1− δ2), i.e.,:∥∥∥Q̂πEM −QπEr,γ∥∥∥∞ ≤ ε1(M,γ), (5)∥∥∥Q̂πEN −QπEr,γ∥∥∥∞ ≤ ε2(N, γ). (6)

Then, with probability at least 1− δ1− δ2, the inequality (4)
can be upper bounded by dropping the dependence on Q̂πEM ,
obtaining the following inequality:∑

s∈DIRL

Q̂πEN (s, πη(s))− Q̂πEN (s, πE(s))

+ 2ε1(M,γ) + 2ε2(N, γ) ≥ 0. (7)

Proof. See Appendix A.

As for the parameters ε1(M,γ) and ε2(N, γ), in the follow-
ing we consider the general structures:

ε1(M,γ)=
γc1

(1−γ)
√
M
, ε2(N,γ)=

γc2

(1−γ)
√
N
, (8)

which generalize most of the sample complexity bounds
available in the literature, typically asymptotic to a power of
1/(1−γ) (e.g., Munos & Szepesvári, 2008; Farahmand et al.,

2010; Lazaric et al., 2012; Azar et al., 2013). Parameters
c1 and c2 are appropriate constant factors determined by
specific finite-sample analysis, and they usually capture the
characteristics of the underlying MDP, together with the
choice of the particular estimation algorithm.
Remark 4.4. We remark that the assumption (5) is simply
the constraint (3) itself instanced with the L∞-norm, which
we directly use here to build the new relation involving only
Q̂πEN . In particular, inequality (7) comprises all the uncer-
tainties related either with Q̂πEM and Q̂πEN , and it depends on
both the outer optimization variables γ (via parameters ε1
and ε2, and the Q-function Q̂πEN ) and r (via the Q-function
Q̂πEN ), as well as on the number of samples N available for
the IRL task (rather than on the number of samples M that
will be used in the forward RL problem). Dependence of (7)
on the policy πη is instead straightforward.

4.3. Expert’s Policy Evaluation with Q̂πEN
The final stage in our construction of a solvable IRL formu-
lation is the estimation of the new Q-function Q̂πEN . While,
in principle, any policy evaluation algorithm may be used
to this purpose, here we resort to the the Least-Squares
Temporal Difference (LSTDQ, Lagoudakis & Parr, 2003)
algorithm, for which a confidence region of the form (6) is
available via finite-sample analysis. In summary, LSTDQ
returns the parameter vector ω ∈ Rdω that minimizes the
mean-squread projected Bellman error (MSPBE):

MSPBE(ω),
∥∥∥Q̂ω − projΨ T

πE Q̂ω

∥∥∥2

ρπE
, (9)

where projΨ is the projection operator onto the linear space
Ψ spanned by the basis functions ψ and ρπE is the sta-
tionary distribution induced by πE . Due to the employed
linear parametrization, the projection operator turns out to
be linear as well and it is given by the matrix representation
Ψ(Ψ>Ψ)−1Ψ>, where Ψ ∈ R|S||A|×dω is a matrix with
feature vectors ψ(s, a)> as rows for every (s, a) ∈ S ×A.5

LSTDQ relies on a batch of transitions (even col-
lected off-policy) DLSTD = {(si, ai, s′i, ri)}Ni=1 , where
s′i ∼ P (·|si, ai) is the next state and ri = φ(si, ai)

>θ is
the reward, to numerically evaluate the Bellman operator,
thus avoiding the knowledge of the underlying MDP,
and to sample the full feature matrix Ψ, which cannot
be formed in a continuous environment.6 By defining
the sample vectors Ψ̃,

[
ψ(s1, a1)>; . . . ;ψ(sN , aN )>

]
,

Ψ̃′,
[
ψ(s′1, πE(s′1))>; . . . ;ψ(s′N , πE(s′N ))>

]
, and

5With a slight abuse of notation, we overload the symbols Ψ
and Ψ to represent either the space and the matrix of the basis
functions ψ.

6In our IRL setting, the dataset DLSTD can be the same used
for solving the IRL, i.e., DIRL or, if available, a newly collected
dataset.
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Φ̃,
[
φ(s1, a1)>; . . . ;φ(sN , aN )>

]
, the above equation

can be manipulated to obtain the empirical MSPBE as a
standard least-squares problem:

ω̂ = arg min
ω

‖Aω − b‖2 = A−1b, (10)

where A, Ψ̃>(Ψ̃ − γΨ̃′), and b, Ψ̃>(Φ̃θ). It is worth
noticing that the terms A and b depend upon the discount
factor γ and the parameterized reward Φ̃θ evaluated on
the samples in DLSTD, respectively. Finally, it has been
shown (Bradtke & Barto, 1996; Nedić & Bertsekas, 2003;
Lazaric et al., 2012) that the LSTDQ solution Ψ̃ω̂ converges
to the fixed-point of projΨ T

πEQπE as N →∞.

As anticipated above, the choice of LSTDQ allows us to
provide a specific confidence region for Q̂πEN of the form (6).
A useful result to this end is given by (Lazaric et al., 2012,
Theorem 5), where the authors derived a finite-sample anal-
ysis of the LSTD algorithm. Here below we reformulate this
theorem to provide a bound on the prediction error of the
LSTDQ solution Q̂ω̂ = Q̂πEN (s, a; ω̂) w.r.t. the true value
function QπEr,γ(s, a). The theorem holds under the assump-
tion that, with probability 1 − δ, the sample-based Gram
matrix 1

N Ψ̃>Ψ̃ is invertible and its smallest eigenvalue νN
is positive, which is guaranteed if the number of samples N
satisfies the condition (up to constant and logarithmic fac-
tors) N ≥ Õ

(
288L2/ν(d+ 1) log(N/δ)

2
)

, where ν is the
smallest eigenvalue of the exact Gram matrix (see Lazaric
et al., 2012, Lemma 4).

Theorem 4.5 (Lazaric et al. (2012)). Let (s1, a1),
. . . , (sN , aN ) be a path generated by a stationary β-mixing
process with parameters β̄, b, κ (that is, its β-mixing coeffi-
cients satisfy βi ≤ β̄ exp(−biκ)) and stationary distribution
ρπE . With probability at least 1− δ2 we have:∥∥∥QπEr,γ − Q̂πEN ∥∥∥

ρπE
≤ ε2(N, γ) = (11)

2√
1− γ2

(
2
√

2
∥∥QπEr,γ − projΨQ

πE
r,γ

∥∥
ρ

+ ε(1)
)

+ ε(2)

+
2

1− γ

[
γQmaxL

√
d

ν

(√
8 log (8K/δN )

N
+

1

N

)]
,

with ε(1) and ε(2) that are O(Qmax/
√
N), where Qmax =

‖r‖∞/(1 − γ), and L is the upper bound of each basis
function ψj of a feature vector ψ, i.e., ‖ψj‖∞ ≤ L.

5. Optimization Algorithm
Having introduced in the previous section all the necessary
elements for the definition of our new IRL formulation, we
discuss now the optimization algorithm for the solution of
the min-max optimization problem. We start by rewriting
the final optimization problem in terms of the optimization

variables (θ, γ,η) as:

min
θ∈Rdθ
γ∈[0,1)

max
η∈Rdη

∑
s∈DIRL

W2(πE(s),πη(s))︸ ︷︷ ︸
,f(η)

, s.t. (12)

∑
s∈DIRL

Q̂πEN (s,πη(s))−Q̂πEN (s,πE(s))+2εM +2εN︸ ︷︷ ︸
,−g(θ,γ,η)

≥0,

where the sample-based approximation on the dataset DIRL
is used for the computation of the Wasserstein distance f(·),
as well as for the constraint g(·) (the dependence of g(·) on
the optimization variables is described in Remark 4.4).

When min-max problems are concave in the inner variables
(i.e., η) and convex in the outer variables (i.e., θ, γ), a
wide range of algorithms have been proposed in the litera-
ture (Wang & Li, 2020). On the contrary, solving problems
as (12) could be extremely challenging in the non-convex
setting, where there are no widely-accepted optimization
algorithms. For instance, the naı̈ve extension of a gradient-
like descent-ascent algorithm to the min-max setting may
easily fail to converge to any meaningful point (Razaviyayn
et al., 2020).

Here we look at the min-max optimization as a com-
petitive game between two players and seek for a sta-
tionary solution of the problem. Following (Razaviyayn
et al., 2020), we reformulate (12) via the potential function
F (θ, γ),maxη∈Rdη :g(η,θ,γ)≤0 f(η), obtaining:

min
θ∈Rdθ , γ∈[0,1)

F (θ, γ).

Under the assumption that there exists an implicit func-
tion η?(θ, γ), arg maxη∈Rdη :g(η,θ,γ)≤0 f(η), we can
compute the gradient of F (·) using the chain rule
as follows: ∇θ,γF (θ, γ) = ∇θ,γf(η?(θ, γ)) =
∇θ,γη

?(θ, γ)∇ηf(η)|η=η?(θ,γ) (Danskin, 1966). Some
caution should be exercised here, since η? is an implicit
function of (θ, γ), as it is defined by satisfaction of the con-
straint g(·) = 0. In place of partial derivatives, we should
then resort to the following choice of total differential forms:

dF

dθ
=

∂f

∂η?
dη?

dθ
, with

dη?

dθ
= − ∂g

∂θ

/
∂g

∂η?
, (13a)

dF

dγ
=

∂f

∂η?
dη?

dγ
, with

dη?

dγ
= −∂g

∂γ

/
∂g

∂η?
, (13b)

where the differentials and the divisions are to be intended
component-wise, and the differentials of η are computed by
applying to g(·) = 0 the Implicit Function Theorem (Krantz
& Parks, 2012). We can now finally solve problem (12) by
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running the following iterative procedure, for t ∈ N:

ηt+1 = argmax
η∈Rdη :g(η,θ,γ)≤0

f(η), (14a)

θt+1 =θt−αθ
dF (ηt+1,θ,γt)

dθ

∣∣∣∣
θ=θt

,

γt+1 =proj[0,1)

[
γt−αγ

dF (ηt+1,θt,γ)

dγ

∣∣∣∣
γ=γt

]
,

where αθ > 0 and αγ > 0 are suitable learning rates.

The previous algorithm would require to find the exact so-
lution of the maximization in (14a), which can be com-
putationally unfeasible if the function f(·) is not con-
cave. Fortunately, we can substitute an approximate com-
putation of the point ηr+1 so as to satisfy the condition
f(ηr+1) ≥ maxη∈Rdη :g(η,θ,γ)≤0 f(η) − ε′, and relax the
concavity assumption. In this case, the algorithm is guar-
anteed (Razaviyayn et al., 2020) to find an approximate
stationary point (with suitable choice of αθ and αγ), where
the accuracy level is given by the value of ε′ > 0.

6. Related work
Existing algorithms for IRL or Apprenticeship Learning
have focused mainly on solving the issue of ill-posedness
(Abbeel & Ng, 2004; Lopes et al., 2009) between the expert
policy and multiple reward functions, and proposed meth-
ods to differentiate and rank different policies according
to unique criteria. In particular, most of the approaches in
the literature either use an algorithm for finding the MDP
optimal policy (e.g., value iteration or policy iteration) as a
subroutine in the IRL procedure, or return apprentice poli-
cies that are randomized combinations of stationary poli-
cies. Our min-max formulation takes a completely different
point of view, and seeks a reward that results in an efficient
forward learning problem, while still retaining the compat-
ibility with the expert. Thanks to the max selection, the
ambiguity on equivalent policies is avoided by construc-
tion. Furthermore, no planning algorithm is involved in our
procedure.

Beyond these two main distinctions, the closest works in
the literature to ours are those based on a game-theoretic
view of the IRL problem. In (Syed et al., 2008a), a two-
player zero-sum game is presented to select a policy that
can perform significantly better than the expert’s one by
maximizing the worst-case performance in the case of a
wrongly chosen reward. However, their algorithm requires
the repeated solution of a planning problem. Moreover, the
same authors, focusing on the computational complexity of
the apprenticeship learning task, cast in (Syed et al., 2008b)
their max-min problem as a linear program to improve the
running time of their algorithm.

A different perspective is discussed in (Ho & Ermon, 2016),

where the authors propose a new framework that directly
derives a policy as if it were obtained by reinforcement
learning following IRL, cast as a generative adversarial imi-
tation learning problem. Despite the common attention for
the forward learning task, the goal of (Ho & Ermon, 2016)
is put on the sample efficiency of IRL in terms of expert
data, whereas it requires several environment interactions
during train. On the contrary, our formulation aims to find a
sample-efficient reward for the forward learning task, what-
ever learning algorithm will be used, and, at the same time,
it does not require any interaction with the environment
during IRL.

Another min-max formulation is designed in (Ho et al.,
2016) to determine a parametrized stochastic policy that
performs at least as well as the expert’s policy on an un-
known reward function. This model-free algorithm avoids
the explicit learning of the reward to remove the need to
understand whether it is compatible with the expert or not,
which is usually done by running an expensive reinforce-
ment learning algorithm on it (Neu & Szepesvári, 2009).
We reach the same objective by directly guaranteeing, in a
worst-case scenario, the compatibility of the learned reward
with the expert’s policy, without accessing any environment
but implicitly evaluating the performance of the learned
policy over the expert data.

7. Numerical Simulations
As a proof of concept of the need for a reward function
that is aware of the subsequent forward RL phase and to
investigate the behavior our new IRL formulation, we run
a set of experiments in Linear Quadratic Gaussian (LQG)
control problem (Dorato et al., 1994) and in the Mountain
Car domain (Moore, 1990).

Linear Quadratic Gaussian Regulator We consider a
scalar LQG problem with nominal parameters, and compute
in closed-form the expert policy πE which is optimal for the
reward rE(s, a) = −s2−a2 and γE = 0.9. The Q-function
feature vector is ψ(s, a) = [s2, a2, sa] so as to span the
space of the exact Q-function QπErE ,γE , while the reward
features are set to φ(s, a) = [−s2 − a2, QπEs̄ (s, a)], where
QπEs̄ represent the Q-function of the expert in a shifted LQG
problem with the goal in s̄ 6= 0 (i.e., the expert is optimal
w.r.t. the reward rs̄(s, a) = −(s − s̄)2 − (a − ā)2, with ā
being the equilibrium control action corresponding to s̄). In
all the following experiments, the policy is parametrized
linearly in the state as πη(s) = ηs, and the reward weights
θ are normalized to sum to 1. The dataset DLSTD for the
estimation of Q̂πEN has been generated starting from 40 uni-
formly sampled states in the interval [−1, 1] and following
for H = 5 steps the expert policy, whose actions were cor-
rupted by a white noise with standard deviation of 0.05.
The dataset DIRL for the resolution of the IRL formulation
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(b) s̄ = 0.1
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(c) s̄ = 0.2
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(d) s̄ = 0.4

Figure 1: Value of the objective function f(η?) in (12) related to the change of the outer variables (γ,θ), with N =
200, c1 = 0.01 and M =∞. Each plot refers to different values of the goal s̄.

has been set to 200 randomly sampled states in the interval
[−1, 1], and hence N = 200. Finally, we assumed to have
an infinite number of samples to solve the forward learning
problem, and set M =∞.7

For a complete numerical analysis of the new min-max for-
mulation, we show, in Figure 1, the values of the maximum
Wasserstein distance f(η?) in (12) related to the change of
the discount factor γ and the weights θ of the reward rθ,
when we gradually increase the value of the goal state s̄. As
expected, when s̄ = 0, the formulation selects as the opti-
mal min-max solution γ? = 0, thus minimizing the sample
complexity for the forward learning phase, and rθ? = QπEs̄ ,
which recovers the same behavior of the expert’s reward rE .
Interestingly, while the goal s̄ moves from 0 (the expert’s
goal) to a higher value, the formulation trades off the sample
complexity induced by a higher γ with the error induced
on the learned policy when choosing a sub-optimal reward,
moving towards the selection of the unbiased expert reward,
selecting γ? = γE and rθ? = rE when the goal s̄ = 0.4 is
too different (sub-optimal) w.r.t the expert goal 0.

In order to highlight the effect of employing a possibly sub-
optimal reward when the forward RL phase has a limited
number of samples at disposal, we design an additional ex-
periment in the LQG setting. Specifically, we consider the
two reward functions learned in the previous experiments
−s2−a2 andQπE0 (s, a). In Figure 2, we plot the learned pa-
rameter (top row) and the average discounted return (bottom
row), when performing RL with REINFORCE (Williams,
1992) in two different LQG environments. On the left, we
consider the very same environment in which we performed
the IRL phase, while on the right we consider an LQG in
which we change the dynamical matrix (multiplied by 0.85
compared to the original setting). Thus, on the left, as ex-

7We assumed to have a sufficiently high number of samples
in the forward learning phase to reach the asymptotic behavior
ε(M,γ) → 0. Furthermore parameters M and N are numerically
interchangeable, and for simplicity in Figure 1 and 3, we set a
given value to N and M = ∞.

pected, we observe that both reward functions QπE0 (s, a)
(Controller with IRL reward) and−s2−a2 (Controller with
Real reward) are able to recover the optimal parameter, al-
though QπE0 (s, a) requires a smaller number of samples.
However, the interesting behavior is displayed on the right.
While the original reward function −s2 − a2 is able to re-
cover the correct parameter, when the number of samples is
limited the biased reward QπE0 (s, a) learned in a different
environment is more effective to achieve a reasonable per-
formance. Clearly, as the number of samples increases the
effect of bias is more visible.

The effect of using the optimized IRL reward on the sample
complexity of the forward learning problem is also depicted
in Figure 3. After solving the problem (12) (with parameters
N = 200, c1 = 0.01,M =∞, s̄ = 0), we employ the final
pair (γ?,θ?) to learn the optimal policy parameter as the
number of available samples varies. In particular, we select
20 uniformly random initial states and then estimate the
gradient direction in the REINFORCE (Williams, 1992)
algorithm by a Monte Carlo evaluation of the reward along
trajectories of different lengths (we used H = 1 with the
IRL reward and H ∈ {2, 6, 10} with the real one). The plot
clearly shows how the IRL reward and discount factor allow
the RL algorithm to reach the optimal value of the policy
parameters much faster than using the LQG reward, i.e., the
number of samples processed during the learning process is
much lower if the solution of our proposed IRL formulation
is used in place of the expert’s (and exact) one (γE , rE).

Mountain Car To further support the need for a reward
function that is aware of the budget available in the forward
RL phase, we provide an additional experiment in the Moun-
tain Car domain (Moore, 1990). We consider two different
reward functions:

(i) r0(s, a) = 200 · 1[s=goal](s) − a2: an almost sparse
reward we call “Real Reward” that prizes the agent
when reaching the goal while penalizing large actions;

(ii) r1(s, a) = −(a − π̃(s))2: a dense reward we call
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Figure 2: Comparison of the learned policy parameter and average return when learning in the same environment used for
IRL (left) and when changing the environment (right) (10 runs, 95% c.i.).
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Figure 3: Impact of the optimized IRL reward on the sample
efficiency of the forward learning task, and convergence to
the expert’s policy parameter (10 runs, 95% c.i.).

“IRL Reward”, a dense reward that induces the agent to
imitate a sub-optimal policy π̃, obtained by perturbing
the parameters of the optimal policy.

While the “Real Reward”, leading to the optimal policy,
requires a large γ (because of the action penalization −a2)
and it is preferred by our IRL objective when many samples
are available (i.e., large value for M ), the “IRL Reward”
leads to a sub-optimal policy but it is very easy to learn
(it amounts to imitate π̃), admitting very small γ, and it
is preferred for small values of M . Figure 4 shows the
forward learning results obtained by REINFORCE on the
two rewards and confirms the properties discussed above.

8. Conclusions
In this paper, we proposed a novel approach to the IRL prob-
lem which takes into account, during the reward selection
phase, the availability of finite samples in the subsequent for-
ward RL phase. The core idea was to select both the reward
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Figure 4: Comparison of the effect of two different reward
functions on the sample complexity of REINFORCE on the
Mountain Car problem (5 runs, 95% c.i.).

parameters and the discount factor through the definition of
a min-max problem that minimizes the distance between the
expert’s policy and the learned policy in the successive for-
ward learning task. In this way, the algorithm is able to find
a trade-off between a potentially sub-optimal reward and the
estimation error caused by using a finite number of samples
in the forward learning phase. The numerical simulations
showed the need for selecting a reward function account-
ing for the available samples in the successive forward RL
phase and illustrated the features of our approach. Future
works include the extension of the presented approach to
more complex and challenging environments.
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A. Proof of Proposition 4.3
The idea of this proposition is to start from the constraint (4):∑

s∈S
Q̂πEM (s, πη(s))− Q̂πEM (s, πE(s)) ≥ 0, (15)

which includes the unknown quantity Q̂πEM , and to compute a new looser inequality that involves only the known quantity
Q̂πEN . To make the above constraint looser, we need to take a larger LHS, i.e., we need to consider an upper bound to
Q̂πEM (s, πη(s)) and a lower bound to Q̂πEM (s, πE(s)). Starting with the former, we can write:

Q̂πEM (s, πη(s)) = Q̂πEN (s, πη(s)) +
(
Q̂πE(s, πη(s))− Q̂πEN (s, πη(s))

)
+
(
Q̂πEM (s, πη(s))− Q̂πE (s, πη(s))

)
(16)

≤ Q̂πEN (s, πη(s)) +
∣∣∣Q̂πE(s, πη(s))− Q̂πEN (s, πη(s))

∣∣∣+
∣∣∣Q̂πEM (s, πη(s))− Q̂πE (s, πη(s))

∣∣∣ (17)

≤ Q̂πEN (s, πη(s)) + ε2(N, γ) + ε1(M,γ), (18)

where in the last step we applied the assumptions (5) and (6). Similarly, we can proceed with latter term, and derive:

Q̂πEM (s, πE(s)) = Q̂πEN (s, πE(s)) +
(
Q̂πE(s, πE(s))− Q̂πEN (s, πE(s))

)
+
(
Q̂πEM (s, πE(s))− Q̂πE (s, πE(s))

)
(19)

≥ Q̂πEN (s, πE(s))−
∣∣∣Q̂πE(s, πE(s))− Q̂πEN (s, πE(s))

∣∣∣− ∣∣∣Q̂πEM (s, πE(s))− Q̂πE (s, πE(s))
∣∣∣ (20)

≥ Q̂πEN (s, πE(s))− ε2(N, γ)− ε1(M,γ), (21)

where again in the last step we applied the assumptions (5) and (6). Putting back together the computed upper and lower
bound we obtain:∑

s∈S
Q̂πEM (s, πη(s))− Q̂πEM (s, πE(s)) ≤

∑
s∈S

Q̂πEN (s, πη(s))− Q̂πEN (s, πE(s)) + 2ε2(N, γ) + 2ε1(M,γ). (22)

If the original constraint is satisfied, also the looser one holds.


