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Abstract

A key feature of human intelligence is the ability
to generalize beyond the training distribution, for
instance, parsing longer sentences than seen in
the past. Currently, deep neural networks struggle
to generalize robustly to such shifts in the data
distribution. We study robust generalization in
the context of using recurrent neural networks
(RNNGs) to learn regular languages. We hypothe-
size that standard end-to-end modeling strategies
cannot generalize well to systematic distribution
shifts and propose a compositional strategy to ad-
dress this. We compare an end-to-end strategy
that maps strings to labels with a compositional
strategy that predicts the structure of the determin-
istic finite state automaton (DFA) that accepts the
regular language. We theoretically prove that the
compositional strategy generalizes significantly
better than the end-to-end strategy. In our experi-
ments, we implement the compositional strategy
via an auxiliary task where the goal is to predict
the intermediate states visited by the DFA when
parsing a string. Our empirical results support
our hypothesis, showing that auxiliary tasks can
enable robust generalization. Interestingly, the
end-to-end RNN generalizes significantly better
than the theoretical lower bound, suggesting that
it is able to achieve at least some degree of robust
generalization.

1. Introduction

A key challenge facing deep learning is its inability to gen-
eralize robustly to shifts in the underlying distribution. For
example, Lake & Baroni (2018) demonstrate that recurrent
neural networks (RNNs) have difficulty in generalizing to
longer sentences than those seen during training and is also
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Figure 1. The parity task is to classify whether z € {0,1}* has
an odd (y = 1) or even (y = 0) number of zeros. We show the
edge Markov Chains for generating (a) training, and (b) shifted test
examples. We also plot test accuracies as a function of || P — Q|| o,
where P and @ are the transition probabilities of the edge Markov
chains (the train accuracy is always 100%). The test accuracy
drops significantly as || P — Q|| increases. We plot accuracy w.r.t
the o, norm in order to compare with our theoretical bounds as
discussed in Sec. 5.3.

unable to understand novel combinations of familiar com-
ponents, i.e., they lack systematic compositionality. Sub-
sequent work have provided evidence of this failure across
different architectures (Dessi & Baroni, 2019; Furrer et al.,
2020) and tasks (Ruis et al., 2020; Kim & Linzen, 2020).

Humans, on the other hand, are remarkably robust to such
shifts, suggesting that robust generalization is possible in
practice. Thus, a key question is how to design deep learning
algorithms that achieve this property. In the theoretical
direction, most work has focused on learning in the presence
of covariate shift—i.e., shift in the distribution over inputs
(Blitzer et al., 2008; Pagnoni et al., 2018). However, these
results largely rely on the shift being small (in particular,
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bounded total variation (TV) distance), which does not hold
for many of the shifts considered in robust generalization.

Alternatively, the empirical work has focused primarily on
devising new generalization splits on which existing models
fail (Lake & Baroni, 2018; Hupkes et al., 2020). However,
without theoretical grounding, it is hard to interpret what
degree of generalization can reasonably be expected.

In this paper, we consider the problem of classifying regular
languages, which is sufficiently simple that we can theoret-
ically analyze generalization in this setting. We consider
two approaches to train neural networks. First, we con-
sider an end-to-end approach that learns a model directly
mapping strings to labels; this approach represents how neu-
ral networks are typically trained. Second, we consider a
compositional approach that is given access to intermediate
supervision on the sequence of states visited by a determin-
istic finite state automaton (DFA) representing the language.
Based on this extra information, the compositional strategy
learns a model to predict the DFA transitions and final states.

We consider a training distribution in the form of a Markov
model over strings that is constructed based on the DFA
(essentially a Markov chain, but where emissions are on the
edges); then, our goal is to generalize in the presence of
shifts to this Markov model (Fig. 1). Small shifts in the
Markov model probabilities can lead to large shifts in the
distribution over strings—for instance, leading to signifi-
cantly longer strings on average.

We provide two theoretical characterizations for each ap-
proach. First, we prove closed-form lower bounds on gen-
eralization of each strategy; these bounds rely on bounding
the TV distance between the training and test distributions.
Our results suggest that compositional approaches can gen-
eralize significantly better than the end-to-end strategy. In-
tuitively, compositionality helps since the distribution over
DFA transitions shifts significantly less than the distribution
over strings.

In practice, our bounds on the total variation distance can
be overly conservative. Thus, we additionally propose algo-
rithms for producing unbiased estimates of the relevant TV
distances, and use them to empirically study generalization.
In our experiments, the end-to-end strategy is a recurrent
neural network (RNN) trained to directly map strings to
labels. For the compositional strategy, we train an RNN in
the same way, but provide it with an auxiliary task where
on each step, its goal is to predict the current state of the
underlying DFA. Intuitively, this strategy should align the
RNN representation with the DFA state, making it easy to
predict whether the DFA accepts a given string.

Our empirical results demonstrate that the compositional
strategy generalizes significantly better than the end-to-end
strategy. Interestingly, however, the end-to-end strategy gen-

eralizes significantly better than expected according to the
estimated bound, suggesting that even end-to-end learning
can exhibit some degree of robust generalization. Finally,
our compositional strategy relies on additional supervision;
we demonstrate that it is possible to achieve some degree of
robust generalization even if we relax this supervision.

Contributions. We formalize the problem of learning reg-
ular languages (Section 3). In the context of this problem,
we provide a theoretical analysis of robust generalization for
both end-to-end and compositional learning, including theo-
retical bounds demonstrating the benefits of compositional
learning, along with algorithms for obtaining unbiased es-
timates of the relevant TV distances (Section 4). We then
empirically demonstrate that an auxiliary task of predicting
the DFA state achieves the compositional generalization
bound and significantly outperforms the end-to-end strat-
egy, though the end-to-end strategy exhibits some degree of
robust generalization (Section 5). We also perform experi-
ments to analyze the impact of “free” auxiliary signals, the
number of examples, model cell choice, length of examples,
and the confidence calibration of the end-to-end and the
compositional models on the shifted distribution.

2. Related Work

Linguistics, automata, and RNNs. Linguistics has tradi-
tionally been tightly coupled to automata theory (Knight &
May, 2009; Suresh et al., 2021). Markov used finite state
processes to predict sequences of vowels and consonants in
novels (Markov, 1956; Jurafsky & Martin), and Shannon
extended this to predict letter sequences of English words us-
ing Markov processes (Shannon, 2001). Markov chains and
DFAs have applications in transliteration, translation, lexical
processing, speech recognition, optical character recogni-
tion, summarization, sequence tagging, and in sequence
generation such as speech synthesis and text generation.
(Knight & May, 2009; Gales & Young, 2008).

Recurrent neural networks (RNNs), which have been incred-
ibly effective in natural language processing applications
have renewed interest in automata theory in both linguis-
tics and machine learning communities . RNNs have ex-
pressiveness closely connected to that of DFAs (Rabusseau
et al., 2019; Michalenko, 2019; Chen et al., 2018; Tifno et al.,
1998). For instance, it is possible to extract the DFA from
an RNN trained on sequences generated by that DFA (Weiss
et al., 2018; Giles et al., 1992b;a; Omlin & Giles, 1996;
Gers & Schmidhuber, 2001; Firoiu et al., 1998); there has
also been work trying to relate states of an RNN with those
of a DFA (Tiio et al., 1998; Michalenko, 2019). These prop-

'See (Ackerman & Cybenko, 2020) for a survey of the relation-
ships between various state-of-the-art neural network architectures
and formal languages.
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erties make RNNs ideal models for us to study. While exist-
ing work has focused on showing that RNN’s can represent
DFAs, their ability to learn DFAs in a way that generalize
robustly has not yet been studied.

Systematic generalization in deep learning. The ability
for neural networks to generalize robustly has been a long-
standing question in cognitive science (Fodor & Pylyshyn,
1988). Recently, several benchmarks have been proposed
to investigate systematic generalization on carefully crafted
train/test splits (e.g., the test set contains longer sequences
than the training set) (Lake & Baroni, 2018; Lake, 2019;
Hupkes et al., 2020; Loula et al., 2018; Tsarkov et al., 2020;
Ruis et al., 2020; Kim & Linzen, 2020). Although they are
all motivated to measure systematic compositionality, there
is no theoretical framework to understand the generalization
for the different choices of splits, making it hard to know if
generalization is at all possible for a given split; our goal in
this paper is to take a step towards bridging this gap.

Learning theory and covariate shift. There has been
significant theoretical work studying generalization in the
presence of covariate shift (Blitzer et al., 2008) (where the
input distribution changes), with a large focus on domain
adaptation (i.e., where we are given unlabeled examples
from the target domain). This has been widely studied
in machine learning (Pagnoni et al., 2018; Blitzer et al.,
2008; Zhang et al., 2019; Koh et al., 2021) and natural
language processing (Ben-David et al., 2021; Li, 2012).
Redko et al. (2020) surveys theoretical work in this area.
While covariate shift refers to a shift in the covariate (the
independent, input variable) distribution between train and
test, robust generalization refers to the property of a model
to generalize under large covariate shifts (as seen in length
generalization, for example (Lake & Baroni, 2018)). One
key challenge is that in general, learning with covariate
shift is only possible if the shift is small (e.g., small TV
distance), yet the shifts in the robust generalization settings
we consider, are typically large. Thus, we must leverage
additional structure to learn in a provably generalizable way;
we prove that compositional learning can do exactly this by
leveraging the DFA structure.

3. Learning Regular Languages

We formalize the learning problem we study. To do so,
we need to define the following objects: (i) a classifier
f*: X — Y that we want to learn, (ii) a training distribution
P over x € X, and (iii) a test distribution () over inputs
x € X. Then, the problem is to train a model f on inputs
Z1, ..., Ty, ~ P with labels y; = f*(z;), and then test fon
inputs 2/, ..., 2}, ~ Q with labels y, = f*(x}).

3

The classifier f* is defined by a regular language L(M)

represented by a deterministic finite-state automaton (DFA)
M = (S,3%,0, s0, F), where S is a finite set of states, ¥ is
the alphabet, § : S x X — S is the state transition function,
so € S is the initial state, and F C S is a set of final
states (Sipser, 1996). Given a string x = 01...07 € X%, we
call T' the length of z, and letting

S¢ = 50
! 6(3t—150t—1)

we call z = s1...s741 € S* the state sequence induced
by xz. We define L(M) C X* to be the strings accepted
by M—i.e., 01...00 € L(M) if the induced state sequence
S1...8741 satisfies sy € F. Welet X = X* be the strings
over X, let ¥ = {0,1}, and let f*(z) = 1(x € L(M))
indicate whether x is accepted by M.

ift=1
otherwise,

Next, P is defined by converting M to a variant of a Markov
chain. In particular, we assume given (i) probabilities P(o |
s) of emitting o in state s, and (ii) probabilities P(e | s)
(where e € {0,1}) of terminating upon reaching state s.
Then, we sample x ~ P as follows: initialize s; < So;
on each step ¢, terminate with probability P(e | s) and
return x = 07...04; otherwise, sample oy ~ P(- | s),
transition s;11 = d(s¢, 0¢), and continue. We call P an
edge Markov chain since it is essentially a Markov chain
with edge emissions.

This strategy only samples positive examples € L(M); to
sample negative examples, we use the same strategy with the
automaton M’ for the complement X' \ L(M). We sample
positive and negative examples in equal proportion. Finally,
we define the test distribution () similarly.

4. Theoretical Analysis

Next, we characterize the ability of algorithms for learn-
ing DFAs to generalize to shifted distributions, considering
both the case where f directly maps sequences to labels, as
well as a compositional strategy where f learns the DFA
structure.

4.1. Background on Covariate Shift

We provide background on generalization bounds in the
presence of covariate shift—i.e., when the training and test
distributions P and @ differ. Let

Lp(f) = Panp[f(z) # [7(2)]

be the loss of f on P, and similarly for LQ(f). Letting

TV(P(z),Q(x)) = >, cx |P(x) — Q(x)| be the total vari-
ation distance, we have the following.

Lemmad4.l. Lo(f) < Lp(f) + TV(P(z),Q(x))

We give a proof in Appendix A.l. In other words, we
can characterize the loss of f on the test distribution @
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in terms of its loss on the training distribution P and

TV(P(z), Q(x)).

4.2. Learning DFAs with Covariate Shift

Next, we provide bounds on TV(P(x), Q(x)). We focus on
a single pair of edge Markov chains P(z) and Q(z); given
bound TV(P*(z), Q" (x)) < €T for the positive example
distributions and bound TV(P~(x), @ (x)) < e~ for the
negative example distributions, it is easy to check that

€T+ e

2 )
where P(x) = (P (z)+ P~ (z))/2 and similarly for Q(x).
First, we have the following worst-case bound on the shift,
specialized to the case where all strings are of a fixed length
T.
Lemma 4.2. TV(P(z),Q(x)) < 2T|S|"*+e, where ¢ =
maXses TV(P(U | S),Q(O’ | S))

TV(P(z),Q(x)) <

We give a proof in Appendix A.2.
Theorem 4.3. Lo (f) < Lp(f) + 2T|S|T e

This result follows immediately from Lemmas 4.1 & 4.2.
This result says that the accuracy of f decays exponen-
tially in the length of the inputs, and it decays linearly in
€, which quantifies the shift in the emission distributions of
P and Q. However, this bound may be overly conservative.
Given edge Markov chains P(x) and Q(z), we can estimate
TV(P(z),Q(x)) using the following.

Theorem 4.4. We have
We give a proof in Appendix A.3. Thus, given samples
T1,...,Tn ~ P, we have

Q(x)
P(x)

TV(P(2), Q(x)) = Eyeop Hl -

TV(P(@).Qe) ~ Y |1~ B
i=1 v
Given x = 01...07, We can compute
T
P(a) =[] Pt | s2).
t=1

where s;...s741 is the state sequence induced by x, and
similarly for @Q(z). Note that in this strategy, T is not fixed
and can vary with z.

4.3. Compositional Learning of DFAs

So far, we have considered a classifier trained directly to
predict labels from strings. Next, we consider a composi-
tional strategy that is given access to the hidden states of the

DFA, learns to predict transitions and final states, and then
composes these predictions to form the overall prediction.

Consider a model § : S x ¥ — S trained to predict transi-
tions (i.e., §(s,0) &~ d(s,0)), along with a model h:S—
{0,1} trained to predict final states (i.e., h(s) ~ 1(s € F)).
Then, we have

f(IC) - ]]'(ST+1 € F)a
where sj...s74 is the state sequence induced by z. In
this case, because g and h take states as inputs, we directly
consider shifts in the state distribution. In particular, the

distribution P; of states encountered by g and & on step ¢ is
given by P;(s") = 1(s’ = s¢) if t = 1, and

Pt(sl) = ]PS’VPt7170'NP(‘|5) [5/ =4(s,0)]
otherwise, and similarly for Q);. In addition, we let
Pi(s,0) = P(s)P(o | s).

Then, ¢ is trained on the distribution P;(s,c) (for t €
{1,...,T}), and h is trained on Pr(s). Similar to be-
fore, we have the following worst-case bound on the shift,
specialized to the case where all strings are of a fixed length
T.

Lemma 4.5. We have TV(P;(s),Q:(s)) < (t — 1)¢, and
TV(P(s,0),Q(s,0)) < te

We give a proof in Appendix A.4.

Theorem 4.6. Lo(f) < Lp(f) + 272, where ¢ =
maxses TV(P(o | 5),Q(0 | s)) and

T
fJP(fA) = Z LPt (ﬁ) + LPT+1 (i:L)
t=1

We give a proof in Appendix A.5. In this case, the accuracy
of f scales quadratically in 7', which is significantly better
than Theorem 4.3, and linearly ¢, which is the same as The-
orem 4.3. As before, this bound can be overly conservative,
so we estimate the error for given edge Markov chains P(x)
and () based on the following.

Theorem 4.7. We have
T

Lo(f) < Le(f)+ Y TV(Pi(s,0), Qi(s,0))

7+ TV(Pri1(s), Qr+1(5))

This result follows by the same argument as the proof of
Theorem 4.6. We can estimate P;(s) by drawing samples
1, ..., Ty ~ P, and computing
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Figure 2. The eMCiq and eMCooq used to generate the train and
o.0.d. test positive examples, and the eMC,; used to generate
negative examples. Here, — denotes the start state; bold circles
denote end states; P, (), and P,.4 denote the transition matrices
for eMCiq, eMCooqd, and eMCheg, respectively; and 0 f, 1 f denotes
the end probability in states Sp and S, respectively, with poy = 0
in eMCijq and p1 ¢ = 0 in eMCooq.

where s; 1...5; 7,41 1s the state sequence induced by x;, and
similarly for Q;(s). Then, we have

V(Pi(s), Quls)) = Y [Pi(s) = Quls)].

seS

Finally, we have Pi(s,0) = P,(s)P(c | s), and similarly
for Q+(s, o), in which case

TV(P;(s,0),Q¢(s,0)) = Z |Pt(s,a) — Qt(s, o).

ses

These estimates can be used in conjunction with Theo-
rem 4.7. In our experiments, we make a modification—to
reduce variance, rather than compute estimates for each ¢
separately, we aggregate states across all steps and use the
average for all P,(s), and similarly for Q,(s). Finally, we
heuristically take 7" to be the average length of x ~ P.

5. Experiments

Next, we describe our experiments investigating whether
end-to-end models can learn regular languages in a way
that generalizes to distribution shifts, and whether different
types of auxiliary supervision can help do so, and therefore
enable robust generalization.

5.1. Experimental Setup

Classification problem. We consider the regular language
classification problem. We construct an edge Markov chain
eMCj4 to generate training examples and in-domain (i.d.)
test examples for each language by assigning transition
probabilities to each edge of the DFA for that language. To
generate out-of-domain (0.0.d.) test examples, we perturb

some of the edge probabilities of eMCijq to obtain eMCgoq.
To generate negative examples, we use the same strategy for
the complement language L& = X'\ £ to obtain eMChe; for
simplicity, we do not shift the negative example distribution.

We focus on the parity language £, as a case-study, and
include additional results for other languages in Appendix
B. This language has ¥ = {0, 1}, and consists of all strings
containing an odd number of zeros. Our DFA for L, has
two states S = {3, 1}, where sg is the start state, and final
states F' = {s1}. Fig. 2 shows the edge-Markov chains
eMCiq, eMCyoq, and eMCy,eq We use. Note that by increasing
the loop probabilities, we generate longer sequences; thus,
the 0.0.d. test distribution contains longer strings on average
than the training distribution.

We also consider a broader class of modulo languages: reg-
ular languages over X = {0, 1} of the form £,,,,4—r, where
the number of zeros are a multiple of k, for k € {3,4,5}.

Classifier. We train an RNN binary classifier on exam-
ples generated by eMCjq (positive) and eMC,, (negative).
We evaluate it on i.d. test examples generated by eMCiq,
eMC,, and on 0.0.d. test examples from eMCoo4,6MCheg.

To improve performance, we propose state sequence aux-
iliary supervision (SSAS), where we additionally train the
RNN on an auxiliary supervised learning task. In particular,
given an input example x ~ P, where P is an edge Markov
chain, in addition to training the RNN to predict the ground
truth label f*(x), we train its representation z; at each step
t to predict the state s; visited by P at step t. This supervi-
sion task is a multi-class classification problem, so we use
the cross-entropy loss. This auxiliary loss is jointly opti-
mized with the binary classification loss for the main task
(the losses are weighted equally). Importantly, the auxiliary
supervision signal is only provided during training; thus, at
test time, the RNN acts identically to an RNN trained only
on the main task (i.e., without SSAS).

We use an RNN with LSTM cells, with an embedding dimen-
sion of 50 and a hidden layer with dimension 50, optimized
using stochastic gradient descent (SGD) with a learning rate

of 0.01 2. We use N, . = 1600 positive and N,,,;, =
1600 negative train examples, N} = N, = 200 dev ex-

amples, and use N,_, = 2000 positive and N,,,, = 2000
negative examples for each of the i.d. and o.0.d. test sets.

Metrics. We perform several different experiments to
compare our theoretical bounds with the empirical accuracy,
studying the impact of the number of training examples,
model cell variations (vanilla RNN, LSTM, or GRU), asym-
metry in length generalization, the use of “free” auxiliary
tasks that do not require knowledge of the DFA, and the

“Hyper-parameters chosen based on accuracy on i.d. dev-set.
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Task E2E SSAS RI (%)
Lomodi—3 66.10  98.68 49.49
Lood—a 6461  97.58 51.03
Lood—s 6515  93.00 4275

Table 1. Accuracy (%) of the end-to-end (E2E) vs. SSAS training
on the 0.0.d. test set, with the relative improvements (RI) of SSAS
over E2E for the modulo languages: Lod—3, Lmod—4, Lmod—5-

confidence calibration of the models.

5.2. End-to-End vs. SSAS Training

First, we compare the 0.0.d. accuracy of end-to-end and
SSAS training (in both cases, the i.d. test accuracy is 100%).
Table 1 shows the 0.0.d. test accuracy of each approach for
the case TV(P, Q) = 1.3 for each of the modulo-languages
considered ®. As can be seen, SSAS training significantly
improves accuracy compared to end-to-end training. Strictly
speaking, SSAS is not a compositional learning algorithm,
but it guides the RNN to learn representations that correctly
encode the compositional structure of the DFA. Thus, these
results validate our theoretical finding that compositional
training significantly improves generalization.

5.3. Theoretical vs. Empirical Generalization

Focusing on the parity language, we compare the empiri-
cal accuracy on the 0.0.d. test set to our estimates of the
accuracy based on Theorems 4.4 & 4.7 in Section 4. We
consider eMC;4 with transitions

0.2 08 0
P= [0.7 0.2 0.1]’

eMC,,q With transitions

5§ 1-6 0
Q:[O.Q—é 5 0.1]’

where § € {0.2,0.25, ...,0.85}, and eMC, with

0.7 02 1
P"@g_{o.s 0.2 o]'

In Fig. 3, we plot the following four quantities as a function
of ||P — Qoo (for our choices of P and @), we have € =
2||P — Q||co> Where € is defined in Theorem 4.3):

* Empirical accuracy on the 0.0.d. test set (solid lines),
for end-to-end (red) and SSAS (black)

» Theoretical estimates of the accuracy (dashed lines) for
end-to-end (red) and SSAS (black)

3 Additional plots for the modulo languages are in Appendix B.
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Figure 3. We plot the empirical o.0.d. test set accuracies for the
end-to-end model (red solid) and the SSAS model (black solid),
and the theoretical estimate of the 0.0.d. accuracies for the end-to-
end model (red dashed) and the SSAS model (black dashed).

For the theoretical estimate of the accuracy: (i) for end-
to-end, we draw n = 10000 samples from eM C;y and
compute the lower bound based on Theorem 4.4, and (ii)
for SSAS, we use 10000 samples from each eM C;y and
eMCy.q, and estimate the lower bound based on Theo-
rem 4.7; for both, we average across 10 random repetitions.
Further, the reported empirical accuracies are the average
over 10 random runs.

As can be seen, the theoretical estimates are tight for SASS,
indicating the SASS matches the expected generalization
rate for compositional models. These results support our
intuition that SASS enables the RNN to learn the compo-
sitional structure of the DFA. Interestingly, the end-to-end
model significantly outperforms the theoretical estimate.
Since the estimate of the TV distance converges to its true
value, so the gap between the theoretical and empirical val-
ues must either be due to the inequality in Lemma 4.1 or
the fact that the RNN is learning some compositional struc-
ture. We expect that the latter must be happening to some
degree to explain such a large gap—importantly, the gap is
substantially larger than the gap for SASS.

5.4. Free Auxiliary Signals

While SSAS improves generalization, a critical shortcom-
ing is that it requires knowledge of the underlying DFA;
in particular, it uses the DFA to construct ground truth
state sequences used to train the RNN. In this section, we
study whether auxiliary tasks computed without such prior
knowledge can improve generalization. As an example, we
consider the count auxiliary task; intuitively, a model that
can count zeros is more likely to correctly learn the parity
concept. More precisely, we consider a 10-class classifica-
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Figure 4. For the setting described in Sec. 5.4, we plot the accura-
cies of the baseline (red), SSAS model (black), and the model with
free auxiliary supervision (green), for varying number of training
examples. We see that auxiliary count supervision helps the base-
line model consistently across varying amounts of training data.

tion task, where zero counts greater than 8 are represented
by the 10" class. As with SSAS, we equally weigh the
cross-entropy loss for this auxiliary task with the binary
cross-entropy loss for the main task.

We let P, @, and P,.4 be as in Section 5.3, with § = 0.85.
In Fig. 4, we plot the o0.0.d. test accuracy (estimated on
4000 examples) as a function of the number of training
examples, ranging from 400 to 4000. As can be seen, the
count auxiliary task improves performance by 5 — 8%. The
improvement is less than in SSAS, which is to be expected
since the task in SSAS gives information directly relevant to
the main task. These results demonstrate that even without
knowledge of the DFA, we can improve generalization via
auxiliary supervision.

5.5. Effect of Number of Training Examples

Next, we show that simply increasing the number of training
examples is insufficient for achieving robust generalization,
demonstrating that novel techniques such as SSAS are re-
quired to generalize robustly.

We consider P, ), and P4 as in Section 5.3, with § =
0.85. In Fig. 5, we plot the empirical train, i.d. test, and
o.0.d. test accuracies as a function of the the number of
training examples varying from 400 to 4000; in all cases,
we estimate accuracy on 4000 test examples. As can be
seen, the i.d. test accuracy quickly reaches 100%, but the
0.0.d. test accuracy remains significantly lower, stabilizing
around 66% at 2800 training examples (the train accuracy
is 100% throughout). These results also justify our choice
of 3200 training examples in our other experiments.

100 —-——e
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Accuracy (%)
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40
400 1200 2000 2800

Number of Training Examples

3600

Figure 5. We plot the train (black), i.d. test (green), and 0.0.d. test
(red) accuracies as a function of the number of training examples
drawn from the e M C;4 for the baseline (end-to-end) model. The
plot shows that having more in-domain training examples, by itself,
is insufficient to achieve robust generalization.

5.6. Effect of the Model Cell

Next, we study whether changes in the model cell archi-
tecture affect generalization. We consider long short term
memory (LSTM) units, recurrent neural network (RNN)
units, and gated recurrence units (GRU).

We set P, @, and P, as in Section 5.3. In Fig. 6, we plot
the 0.0.d. test accuracy (estimated using 4000 examples)
as a function of |P — Q|| for each of the three choices.
As before, the train and i.d. test accuracy are 100% for
all choices. For models trained end-to-end, LSTM and
GRU cells perform comparably in terms of 0.0.d. accuracy
whereas RNN cells perform significantly worse. These
results are in line with the fact that RNNs are worse at
capturing long-range dependencies, which are necessary for
solving the parity task. For models trained using SSAS,
LSTM:s perform the best; interestingly, GRUs perform well
at first but become worse than RNNs as || P — Q|| becomes
large. The superior performance of LSTMs over other cell
choices, justifies our use of them in the other experiments.

5.7. Asymmetric Length Generalization

Next, we study how different training distributions affects
generalization. In particular, in the context of the parity
language, we consider two training distributions given by
edge Markov chains with transition probabilities P, and P;
and a test distribution given by an edge Markov chain with
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Figure 6. We plot the accuracy of models trained end-to-end (solid)
and using SSAS (dashed) as a function ||P — Q||ss, for models
with LSTM (black), GRU (red), and RNN (green) cells.

transition probabilities (), where

[02 08 0
b= 0.7 02 0.1

(0.8 02 0]
PQ*_0.1 0.8 0.1

(0.5 05 0]
@= 04 05 0.1]°

The negative examples are generated from eMC,,, described
in Section 5.3. Importantly, we have || P — Q|loo = || P2 —
Q||coc = 0.6. In Fig. 7, we show the results of evaluating
models trained on examples from P; (red) and P, (black)
on test examples generated using Py, P», and (). As can be
seen, the model trained on examples from P; generalizes
well to test examples from @ and P,, whereas the model
trained from P, generalizes poorly to test examples from )
and P;. In this case, P, tends to generate longer sequences
than P, (with ) being in between); thus, our results show
that training on longer sequences can generalize to shorter
sequences, whereas training on shorter sequences cannot
generalize to training on longer sequences.

5.8. Confidence Calibration

We study confidence calibration of the baseline (E2E)
and SSAS models as a function of increasing separation,
||P — Q|- Calibration measures how well the posterior
probabilities of a model are aligned with the empirical like-
lihoods (Guo et al., 2017). We use the following metrics:

e Brier Score (BS) (Brier et al., 1950) is a proper scoring
rule for measuring the accuracy of predicted probabilities.
It is defined as the mean squared error between the pre-
dicted probabilities and the actual targets. If n denotes the
total number of examples and ¥; denotes the prediction

100

50 II II II
P2 Q Pl

Figure 7. As described in Section 5.7, we train models on 3200
examples generated from two different eMCs with transition ma-
trices P; (red) and P (black), and tested on 4000 test examples
separately generated from three different eMCs P, P», and Q.

Accuracy
s} e
[=) (=}

N}
(=)

(o))
(=]

Metric | Model 0.0 0.4 0.8 1.2
BS E2E | 5e-06 | 9e-04 | 0.073 | 0.262
SSAS | 3e-06 | 1e-04 | 0.008 | 0.051
ECE E2E | 4e-04 | 0.003 | 0.097 | 0.303
SSAS | 3e-04 | 0.002 | 0.035 | 0.125

Table 2. Brier Score (BS) and Expected Calibration Error (ECE)
as a function of increasing || P — Q|| = {0,0.4,0.8,1.2} for the
E2E and SSAS models. Note that lower values are better.

probability that f(z;) = 1, then the Brier Score is:

1< 5
BS =~ ;(xp )2
e Expected Calibration Error (ECE) (Guo et al., 2017) mea-
sures the difference in expectation between confidence and
accuracy. Empirically this is approximated by dividing the
data into M confidence based bins, By, ..., Bys, where B,,
contains all datapoints x; for which W; lies in (21, 2] If
acc(B,,) and con f(B,,) denotes the average accuracy and
prediction confidence for the points in B,,,, then ECE is:

M
FECFE = Z |Bm| |aCC(B7n) - conf(Bm)|.
n

m=1

In Table 2 we see that while calibration degrades with in-
creasing || P — Q|| for both models, SSAS is significantly
better calibrated than E2E under the distribution shift.

6. Conclusion

We have studied robust generalization of RNNs learning
regular languages, providing both theoretical and empiri-
cal evidence that compositional strategies generalize more
robustly to shifted distributions compared to end-to-end
strategies. In particular, leveraging an auxiliary task in the
form of state supervision (which we call SSAS) achieves
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the theoretical rate anticipated by our compositional gener-
alization guarantee. We have also demonstrated that generic
auxiliary tasks such as counting zeros can also improve gen-
eralization. Interestingly, we find that end-to-end learning
outperforms the theoretical rate for end-to-end learning, sug-
gesting that end-to-end approaches can still achieve some
degree of robust generalization.

A key direction for future work is to explore the effective-
ness of other techniques for enabling robust generalization.
It would also be interesting to explore how these results
generalize to other kinds of tasks beyond regular languages
4, as well as to study the performance of state-of-the-art
architectures such as transformers in this setting.
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A. Proofs
A.1. Proof of Lemma 4.1
We have

as claimed. O

A.2. Proof of Lemma 4.2

The given emission probabilities P(c | s) induce transition probabilities over the DFA states—in particular, the probability
of transitioning from s to s’ is

P(s'|s) = ZPJ\S 1(s" = §(s,0)).

cEX

Then, the probability of a sequence of states is P(sy...s7/) = HtT:1 P(s¢41 | 8¢), where T = T + 1, and similarly for
Q(s1...s7/). Now, we prove the claim. First, note that

[P(@) = Q(z)| = | Y Pla|2)P(2) = Y Qz|2)Q(2)

2€8T’ 2€8T’

<) (P 2)P(z) = P(x | 2)Q(2)| +| D (P(z | 2)Q(2) — Qx| 2)Q(2))
2€8T’ 2€8T’

§ZP$|Z|P |+Z|P$|Z Qz | 2)|Q(z).
2€8T’ ze8T’

Thus, we have

TV(P(2),Q(z)) = Y |P(z) — Q(x)]

zexT
<Y Y e P Q@+ Y Y P - Qe )le)
28T zexT 2€8T zexT
=TV(P(2),Q(2)) + E:n[TV(P(z | 2), Q(z | 2)]. (D

Consider the first term of (1). Letting z = s;...s77, note that

T
|P(2) — Q(2)] = HP St+1 | St) HQ St+1 | St)
1

1 T—1 T
(H P(sit1 | st) H Q(ses1 | se) = [T Plsesa se) [T Qse1 | 5t)>|
1 \t=1

3

Il
B

T= t=7+1 t=1 t=r1
T T—1
=D T Plster | s 1 l I QGsera | )| (P(sria | 51) = Q(sr41 | St))‘
1 Lt=1 t=174+1

[P(sr1 | 51) = Qsr11 | 81))l

IA
M=

Il
—

T XTV( (s ]s),Q(s" | s)).
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Furthermore, note that for any s € S, we have

TV(P(s' | s) =D [P [5) = Q(s' | 9)

s'eS

= (Pl 15) - Qo | 5) - 1 = d(s,0))
s'eS |loex

<SP | 5) = Qo | $) 3 1(s' = 3(s,0))
ceX s'es

=TV(P(o|s),Q(o|s)), 2

As a consequence, we have
Y IP() = Q) < TIS|" maxTV(P(s" | ), Q(s" | 5))

2€8T’
<T|S|" max TV(P( | 5).Q(0 | 5)).

Now, consider the second term of (1). Letting z = ¢1...07 and z = $7...57/, we have

T
|P(x|z)—Q(x\z)|:H (0¢ | s¢) — H (o1 | st)
t=1 t=1
T T T—1 T
=N Plor 1 s0) T @Qoelso)— ] Ploe | se) [] Qot | se)
T=1t=1 t=7+1 t=1 t=T1
T [r-1 T
= Z P(oy | s ‘| H Qov | s)| (P(or | sr) = Qo7 | s7))
1 Lt=1 t=T+1

T

|P(o- | 87) — Qo7 | 57))]-

M=

<

1 T
P(oy | St)] [ [T @i ls0)

t=7+1

Il
_

t

Il
_

T

As a consequence, we have

ST P | 2) - Q] 2)|
TEY . - i
Z Z H P(o¢ | St)l [ H Qo | 5¢)

o1...orexT =1 [t=1 t=7+1

=Z [H ZPJtlst] [ ﬁ Zcxonst)] > P(or | 52) = Qor | 50))

t=1 0,2 t=17+10,€X orEX

IA

|P(or | 57) = Q(o- | 5-))]

Z (07 | s7) = Q(or | s7))]

TV(P(o | s7),Q(0 | 57)).

Therefore, we have

E..o[TV(P(z | ZEZNQ [TV(P(0 | 5,),Q(c | 57))]
< Tgleaéz{TV( (0]5),Q(c | s)).

The claim follows since T'e + T'|S|T e < 2T|S|Tte. O



Understanding Robust Generalization in Learning Regular Languages

A.3. Proof of Theorem 4.4

Note that

TV(P(z

as claimed. [

A.4. Proof of Lemma 4.5

We prove the first claim by induction on ¢. The base case ¢t = 1 is trivial, since P (s)

inductive case, note that

TV(Pt(s'), Qt(s/))

) =) |P(@) -

zeX

=Y IP(s) — Qu(s)]
s'esS
Z Zpt 1 (s" [ 5) = Qi=1(s)Q(s" | 5)
s'€S seS
Z ZPt 1(8)P(s' | s) — Pi—1(s)Q(s" | 5) Z ZPt 1
s'eS seS s'eS ses
<D D PP )= Qs | )|+ Y Y [Pials) —
s'eS seS s'eS seS

< maxTV( (s s),

seS

< maXTV( (c]s),Q

seS

< (t—1e,

Q(s" | 8)) + TV(Pi—1(s), Qi—1(s))

(0 15)) +TV(Pi1(s), Qi-1(s))

Qtfl(s

_ Q@)
P(x)

|\

= Q1(s) = 1(s = sg). For the

Qi-1(s)Q(s" | 5)

Q(s' | s) -

QS | 5)

where the second-to-last step follows from (2) in the proof of Theorem 4.3, so the first claim follows. For the second claim,

note that

TV(P:(s,0),Q:(s,0)

=maxTV(P(o | s),Q(c

ZZ |Pt S, 0' Qt(S,U)|

seSoex

Y S IAEPe 9 - @ | 5)
seSoecx

<SS IRePe ]

seSoex

=> Y Pi(s)|P(a|s) = Qo | s)|+|Pi(s) —

se€ES oceX

ses

< te

= &,

so the second claim follows as well. [

— P(s)Q(o | )| + |P(s)Q0 | 5) —

Qi(s)Q(a | s)|

Q:(s)|Q(0 | 5)
| 5)) + TV(Pi(s), Qe(s))
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A.5. Proof of Theorem 4.6
First, by a union bound, we have

Lo(f) = Panolf(2) # £ (2)]

T
=Piq \/ 9(st,0¢) # 0(s,00) V h(s741) # L(s741 € F)

t=1

T
< ZP%Q[Q(SnUt) # 0(s4,00)] + Ponglh(sr11) # L(sri1 € F)]

t=1

T ~

Z]P)(s,,,m,)NQt [Q(St, Ut) 7& 5(3t,0t)] + ]PST+1NQT+1[h(ST+1) 7é ]]-(ST+1 € F)]
t=1

[M]=

LQt (g) + LQT+1 (;L)

o
Il

1

By Lemmas 4.1 & 4.5, the loss of § on step ¢ satisfies

Lq,(9) < Lp,(9) + Te,

and similarly the loss of h satisfies

LQT+1 (}AL) < LPT+1 (il) + Te.

Thus, we have

T
Lo(f) < [ Lp (@) + Lpgy, (B) | + T(T +1)e,
t=1
so the claim follows since T'(T + 1)e < 2T2¢ (since T > 1). [

B. Additional Experiments
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Figure 8. The modulo-k task is to classify whether the number of zeros in € {0,1}" is divisible by k& (y = 1) or not (y = 0). We
show the edge Markov Chains for generating examples for £,,0,4—3, and is similar for £,,,4—4 and L.,.q4—5 With additional states
in between. The shifts are introduced similar to the parity language by perturbing the loop probabilities. We plot test accuracies for
Limod—3; Lmod—4, Lmod—s (in order from L-R) as a function of || P — Q|| For the baseline model (solid red line), the test accuracy
drops significantly as || P — Q|| increases while our proposed SSAS approach (solid black line) ensures robustness to distribution shift.



