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Abstract
Myopic exploration policies such as ε-greedy,
softmax, or Gaussian noise fail to explore effi-
ciently in some reinforcement learning tasks and
yet, they perform well in many others. In fact, in
practice, they are often selected as the top choices,
due to their simplicity. But, for what tasks do such
policies succeed? Can we give theoretical guaran-
tees for their favorable performance? These cru-
cial questions have been scarcely investigated, de-
spite the prominent practical importance of these
policies. This paper presents a theoretical analy-
sis of such policies and provides the first regret
and sample-complexity bounds for reinforcement
learning with myopic exploration. Our results ap-
ply to value-function-based algorithms in episodic
MDPs with bounded Bellman Eluder dimension.
We propose a new complexity measure called my-
opic exploration gap, denoted by α, that captures
a structural property of the MDP, the exploration
policy expl and the given value function class F .
We show that the sample-complexity of myopic
exploration scales quadratically with the inverse
of this quantity, 1/α2. We further demonstrate
through concrete examples that myopic explo-
ration gap is indeed favorable in several tasks
where myopic exploration succeeds, due to the
corresponding dynamics and reward structure.

1. Introduction
Remarkable empirical and theoretical advances have been
made in scaling up Reinforcement Learning (RL) ap-
proaches to complex problems with rich observations. On
the theory side, a suite of algorithmic and analytical tools
have been developed for provably sample-efficient RL in
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MDPs with general structural assumptions (Jiang et al.,
2017; Sun et al., 2018; Wang et al., 2020; Jin et al., 2020;
Foster et al., 2020; Dann et al., 2021b; Du et al., 2021).
The key innovation in these works is to enable strategic
exploration in combination with general function approx-
imation, leading to strong worst-case guarantees. On the
empirical side, agents with large neural networks have been
trained, for example, to successfully play Atari games (Mnih
et al., 2015), beat world-class champions in Go (Silver et al.,
2017) or control real-world robots (Kalashnikov et al., 2018).
However, perhaps surprisingly, many of these empirically
successful approaches, do not rely on strategic exploration
but instead perform simple myopic exploration. Myopic
approaches simply perturb the actions prescribed by the cur-
rent estimate of the optimal policy, for example by taking a
uniformly random action with probability ε (called ε-greedy
exploration).

While myopic exploration is known to have exponential
sample complexity in the worst case (Osband et al., 2019),
it still remains a popular choice in practice. The reason for
this is because myopic exploration is easy to implement
and works well in a range of problems, including many
of practical interest (Mnih et al., 2015; Kalashnikov et al.,
2018). On the other hand, it is unknown how to implement
existing strategic exploration approaches computationally
efficiently with general function approximation. They either
require solving intricate non-convex optimization problems
(Jiang et al., 2017; Jin et al., 2021; Du et al., 2021) or
sampling from intricate distributions (Zhang, 2021).

Despite its empirical importance, theoretical analysis of
myopic exploration is still quite rudimentary, and perfor-
mance guarantees for sample complexity or regret bounds
are largely unavailable. In order to bridge this gap between
theory and practice, in this work we investigate:

In which problems does myopic exploration lead
to sample-efficient learning, and can we provide
a theoretical guarantee for myopic reinforcement
learning algorithms such as ε-greedy?

We address this question by providing a framework for
analyzing value-function based RL with myopic exploration.
Importantly, the algorithm we analyze is easy to implement
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since it only requires minimizing standard square loss on the
value function class for which many practical approaches
exist, even on complex neural networks (Mnih et al., 2015;
Silver et al., 2016; 2017; Rakhlin & Sridharan, 2015).

Our main contributions are threefold:

• We propose a new complexity measure called myopic
exploration gap α(f,F) that captures how easy it is
for a given myopic exploration strategy to identify
that a candidate value function f ∈ F is sub-optimal.
This complexity measure is large for problems with
favorable transition dynamics and rewards, where we
expect myopic exploration to perform well.

• We derive a sample complexity upper bound for RL
with myopic exploration. We show that for any sub-
optimal F ′ ⊂ F , the algorithm uses policies corre-
sponding to F ′ for at most Õ

(
H2d

α(F ′,F)2

)
episodes,

where H is the episode length, d is the Bellman Eluder
dimension and α(F ′,F) = minf∈F ′ α(f,F). Using
this sample complexity bound, we provide the first
regret bound for ε-greedy RL in MDPs.

• We prove an almost matching sample complexity lower
bound of Ω(d/α(F ′,F)2) for ε-greedy RL, hence
showing that the dependency on Bellman Eluder di-
mension or the myopic exploration gap in our upper
bound cannot be improved further.

2. Preliminaries
Episodic MDP. We consider RL in episodic Markov
Decision Processes (MDPs), each denoted by M =
(X ,A, H, P,R), whereX is the observation (or state) space,
A is the action space, H ∈ N is the number of time steps in
each episode, P = (Ph)h∈[H] is the collection of transition
kernels and R = (Rh)h∈[H] is the collection of immediate
reward distributions. An episode is a sequence of states, ac-
tions and rewards (x1, a1, r1, . . . , xH , aH , rH , xH+1) with
a fixed initial state x1 = xinit ∈ X and terminal state
xH+1 = xend ∈ X . All states (except x1) are sampled from
the transition kernels xh+1 ∼ Ph(·|xh, ah) = Ph(xh, ah)
and rewards are generated as rh ∼ Rh(xh, ah). We assume
that P and R are s.t. rh ≥ 0 and the sum of all rewards
in an episode is bounded as

∑H
h=1 rh ≤ 1 for any action

sequence almost surely.

Policies and value functions. The agent interacts with the
environment in multiple episodes indexed by t. It chooses
actions according to a policy π = (πh : X → ∆A)h∈[H]

that maps states to distributions over actions. The space of
all such policies is denoted by Π. We denote the distribution
over an episode induced by following a policy π by Pπ
and the expectation w.r.t. this law by Eπ. We define the

Q-function and value-function of a policy π at step h as

Qπh(x, a) = Eπ[rh + V πh+1(xh+1) | xh = x, ah = a],

V πh (x) = Eπ[Qπh(xh, ah)|xh = x],

respectively. The optimal Q- and value functions are de-
noted by Q?h and V ?h . The occupancy measure of π at time
h is denoted as µπh(x, a) = Pπ(xh = x, ah = a). For any
function f : X ×A → R, the Bellman operator at step h is

(Thf)(x, a) = E
[
rh+max

a′∈A
f(xh+1, a

′)
∣∣∣xh=x, ah=a

]
.

Value function class. We assume the learner has access
to a Q-function class F = F1 × · · · × FH where Fh ⊆
(X × A → [0, 1]), and for convention we set FH+1 =

{fH+1 = 0}. We denote by πf = {πfh}h∈[H] the greedy
policy w.r.t. f ∈ F , i.e., πfh(x) = arg maxa∈A fh(x, a).
The set of greedy policies of F is denoted by ΠF . The
Bellman residual and squared Bellman error of f ∈ F at
time h are

Ehf = fh − Thfh+1 and E2
hf = (fh − Thfh+1)2.

We further adopt the following assumption common in RL
theory with function approximation (cf. Jin et al., 2021;
Wang et al., 2020; Du et al., 2021; Dann et al., 2021b):

Assumption 1 (Realizability and Completeness). F is re-
alizable and complete under the Bellman operator, that is,
Q?h ∈ Fh for all h ∈ [H] and for every h ∈ [H] and
fh+1 ∈ Fh+1 there is a fh ∈ Fh such that fh = Thfh+1.

Bellman Eluder dimension. To capture the complexity of
the MDP and the function class we use the notion of Bellman
Eluder dimension dimBE(F ,ΠF , µ) introduced by Jin et al.
(2021). This complexity measure is a distributional version
of the Eluder dimension applied to the class of Bellman
residuals EhF . The Bellman Eluder dimension matches
the natural complexity measure in many special cases, e.g.,
number of states and actions (SA) in tabular MDPs or the
intrinsic dimension d in linear MDPs. The formal definition
and the main properties of the Bellman Eluder dimension
we use in our work, can be found in Appendix E.

We denote by NFh(λ) the `∞ covering number of Fh w.r.t.
radius λ, i.e., the size of the smallest Z ⊂ Fh so that for any
f ∈ F there is a f ′ ∈ Z with maxh∈[H] ‖fh − f ′h‖∞ ≤ λ

and we use N̄F (λ) =
∑H
h=1NFh(λ).

3. RL with Myopic Exploration
Our work analyzes value-function based algorithms with
myopic exploration that follow the template in Algorithm 1.
The algorithm receives as input a value function class F as
well as an exploration mapping expl that maps each function
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in F to an exploration policy Π. Before each episode, the
algorithm computes a Q-function estimate f̂t in a dynamic
programming fashion by least squares regression using all
data observed so far (finite horizon fitted Q iteration). The
sampling policy π̃t is then determined using the exploration
mapping expl. After sampling one episode with π̃t, the
algorithm adds all observations to the datasets and computes
a new value function.

This algorithm template encompasses many common ex-
ploration heuristics by setting the exploration mapping expl
appropriately. These include:1

Exploration strategy [expl(f)]h(a|x) ∝

ε-greedy (1− ε)πfh(a|x) + ε/A

softmax exp(βfh(x, a))

Gaussian noise exp
(
− 1

2σ2

(
a− πfh(x)

)2)

Note that expl only takes the point estimate for the Q-
function f̂t as input and no measure of uncertainty. Thus,
approaches like upper-confidence bounds or Thompson sam-
pling are beyond the scope of our work. Furthermore, to
keep the exposition clean, we restrict ourselves to mappings
expl that are independent of the number of episodes k, but
we allow the mapping to depend on the total number of
episodes T . Getting anytime guarantees with variable ex-
ploration policies (e.g. ε-greedy with decreasing ε) is an
interesting direction for future work.

One important feature of Algorithm 1 is that it only requires
solving least-squares regression problems, for which numer-
ous efficient methods exist, even when F are large neural
networks. This is in stark contrast to all known algorithms
for general function approximation with worst-case sample-
efficiency guarantees. Those require either solving an intri-
cate non-convex optimization problem to ensure global opti-
mism (Jiang et al., 2017; Dann et al., 2018; Jin et al., 2021;
Du et al., 2021) or sampling from a posterior distribution
without closed form (Dann et al., 2021b). The lack of com-
putationally and statistically worst-case efficient algorithms
is a strong motivation for studying the sample-efficiency
of the simple and computationally tractable approach in
Algorithm 1.

We assume that the regression problem in line 5 is solved
exactly for ease of presentation but our analysis can be easily
extended to allow small optimization error in each episode.

1Our examples are Markovian policies but we also support non-
Markovian exploration policies that inject temporally correlated
noise, e.g., the Ornstein-Uhlenbeck noise used by Lillicrap et al.
(2015) or ε-greedy with options (Dabney et al., 2020).

Algorithm 1: RL with myopic exploration
input :function class F = F1 × · · · × FH+1

input :myopic exploration mapping expl : F → Π
1 Initialize datasets Dh ← ∅ for all h ∈ [H];
2 for episode t = 1, 2, . . . do
3 Set f̂t,H+1 = 0;
4 for h = H, . . . , 1 do
5 Fit Q-function with least-squares regression

f̂t,h ← arg minf∈Fh Lh(f, f̂t,h+1) where

Lh(f, f ′) =
∑

(x,a,r,x′)∈Dh

(
f(x, a)− r −max

a′
f ′(x′, a′)

)2

6

7 Set myopic exploration policy π̃t ← expl(f̂t);
8 Sample one episode {x1, a1, r1, . . . xH+1} with π̃t;
9 Add observations to datasets

Dh ← Dh ∪ {(xh, ah, rh, xh+1)} for all h ∈ [H];

4. Myopic Exploration Gap
In this section, we introduce a new complexity measure
called myopic exploration gap in order to formalize the
sample-efficiency of myopic exploration. One important
feature of this quantity is that it depends both on the dynam-
ics and the reward structure of the MDP. This enables us
to give tighter guarantees in the presence of favorable re-
wards, a key property absent in existing analyses of myopic
exploration.

The sample complexity and regret of any (reasonable) algo-
rithm depends on a notion of gap or suboptimality, either
of individual actions or entire policies, as shown by exist-
ing works on provably sample efficient RL (Simchowitz
& Jamieson, 2019; Dann et al., 2021a; Wagenmaker et al.,
2021). Intuitively, these algorithms need to test whether
a candidate value function f ∈ F is optimal, and typi-
cally value functions that have large instantaneous regret
V ?(x1) − V πf (x1) require fewer samples to be ruled out
as being the optimal. This is also the case for myopic explo-
ration based algorithms but the suboptimality gap alone is
not sufficient to quantify their performance. This is because:

(a) Myopic exploration policies such as ε-greedy mostly
collect samples in the “neighborhood” of the greedy
policy. However, the optimal policy may visit high-
reward state-action pairs that are outside of this neigh-
borhood and thus have low probability of being visited
under the exploration policy. In such cases, to discover
the high reward states and to identify the gap, the agent
thus needs to collect a very large number of episodes.
Essentially, the effective size of the gap is reduced.

(b) The agent is not required to estimate the suboptimality
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gap w.r.t. the optimal policy π? in order to rule out a
candidate policy π – it only needs to find a better policy
π′. If there is a such a π′ in the “neighborhood” of π,
then the exploration policy may be more effective at
identifying the optimality gap between π and π′ even
though it is smaller than the optimality gap between π
and π?.

We address both of these issues in our definition of my-
opic exploration gap for f ∈ F by (1) considering the gap
V π
′

1 (x1) − V πf1 (x1) between πf and any other policy π′,
and (2) normalizing this gap by a scaling factor c. This fac-
tor, which we call myopic exploration radius, measures the
effectiveness of the exploration policy expl(f) at collecting
informative samples for identifying the gap.

Definition 1 (myopic exploration gap). Given a function
class F , exploration mapping expl : F → Π, MDP M
and policy class Π′, we define the myopic exploration gap
α(f,F ,Π′, expl,M) of f ∈ F as the value of

sup
π′∈Π′,c≥1

1√
c
(V π

′

1 (x1)− V π
f

1 (x1))

such that for all f ′ ∈ F and h ∈ [H],

Eπ′ [(E2
hf
′)(xh, ah)] ≤ cEexpl(f)[(E2

hf
′)(xh, ah)]

Eπf [(E2
hf
′)(xh, ah)] ≤ cEexpl(f)[(E2

hf
′)(xh, ah)].

(1)

Furthermore, we define the myopic exploration radius
c(f,F ,Π′, expl,M) as the smallest value of c that attains
the maximum in (1). To simplify the notation, we omit the
dependence on expl andM. When Π′ = ΠF we also omit
the dependence on Π′ and use the notation α(f,F) and
c(f,F) respectively.

The constraints in (1) determine how small the normaliza-
tion of the gap can be chosen. We compare the expected
squared Bellman errors E2

hf
′ under different distributions.

To see why, consider the following: least squares value iter-
ation in Algorithm 1 minimizes the squared Bellman error
on the dataset collected by exploration policies, which is
closely related to the RHS in the constraints. Additionally,
our analysis relates the LHS of the constraints to the gap−if
E2
hf is small for all h under for both Eπ′ and Eπf , then the

gap V π
′

1 (x1)− V πf1 (x1) cannot be large. Therefore, c mea-
sures how effective the exploration policy is at identifying
the gap between πf and π′.

Alternative Form in Tabular MDPs. The definition of
myopic exploration gap in (1) only involves expectations
w.r.t. policies induced by F , which is desirable in the rich
observation setting. However, in tabular MDPs where the
number of states S and actionsA is finite and F is the entire
Q-function class withNF (λ) ≈ (A/λ)SAH , it may be more
convenient to have constraints on individual state-action
pairs instead. Since the class of squared Bellman errors

E2
hF) for tabular representations is rich enough to include

functions that are nonzero in a single state-action pair, we
can write (1) with SAH constraints on the corresponding
occupancy measures in tabular problems:

sup
π′∈Π′,c≥1

1√
c
(V π

′

1 (x1)− V π
f

1 (x1))

such that for all (x, a) ∈ X ×A and h ∈ [H],

µπ
′

h (x, a) ≤ cµexpl(f)
h (x, a)

µπ
f

h (x, a) ≤ cµexpl(f)
h (x, a).

(2)

While determining the exact value of α(f,F) is challenging
due to its intricate dependence on the MDP dynamics, cho-
sen function class and the exploration policy, we can often
provide meaningful and interpretable bounds.

5. When are Myopic Exploration Gaps Large?
We now discuss various structural properties of the transition
dynamics and rewards under which the myopic exploration
gap is large, and thus myopic exploration converges quickly.

5.1. Favorable Transition Dynamics

Structure in the transition dynamics can make myopic ex-
ploration approaches effective. To understand how effective
is the myopic exploration gap for those cases, first note that
α(f,F) can never be larger than the optimality gap of πf

(by definition). However, as shown in the following lemma,
it is also lower bounded when the state-space distribution
induced by expl(f) is close to that of any other policy.
Lemma 1. When Q? ∈ F , the myopic exploration gap is
bounded for all f ∈ F as(

max
π′∈Π′

∥∥∥ Pπ′
Pexpl(f)

∥∥∥
∞

)− 1
2 ≤ α(f,F)

V ?1 (x1)− V πf1 (x1)
≤ 1.

Furthermore, the myopic exploration radius is bounded as
c(f,F) ≤ maxπ′∈Π′

∥∥∥ Pπ′
Pexpl(f)

∥∥∥
∞

.

Similar dependencies on the Radon-Nikodym derivative
Pπ′/Pexpl(f) can also be found in the form of the concen-
trability coefficient in error bounds for fitted Q-iteration
under a single behavior policy (Antos et al., 2008). The
lower-bound in Lemma 1 can be used to bound the myopic
exploration gap under various other assumptions, including
the following worst-case lower-bound for ε-greedy.
Corollary 1. For any MDP with finitely many actions with
|A| = A and f ∈ F , the myopic exploration gap of ε-
greedy can be bounded as

α(f,F) ≥
( ε
A

)H
2

(V ?1 (x1)− V π
f

1 (x1))

and the exploration radius is bounded as c(f,F) ≤
(
ε
A

)H
.
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We can similarly derive a lower bound on the myopic explo-
ration gap for softmax-policies, where ε is replaced by e−β ,
i.e., α(f,F) ≥ (Aeβ)−H/2(V ?1 (x1)− V πf1 (x1)).

The bound in Corollary 1 is exponentially small in H which
is not surprising. It is well known that ε-greedy is ineffective
in some problems and the construction in the proof of Theo-
rem 2 will provide a formal example of this. However, in
many problems, the gap can be much larger due to favorable
dynamics.

5.1.1. SMALL COVERING LENGTH AND COVERAGE

We first turn to insights from prior work and show that our
framework captures the favorable cases that they identified.
Liu & Brunskill (2018) investigated a related question to
ours−when is myopic exploration sufficient for PAC learn-
ing with polynomial bounds in tabular MDPs. However,
their work focuses on the infinite horizon setting and only
considers explore-then-commit Q-learning where all the ex-
ploration is done using a uniformly random policy. They
identify conditions under which the covering length of their
exploration policy is polynomially small, a quantity that
governs the sample-efficiency of Q-learning with a fixed
exploration policy (Even-Dar & Mansour, 2003). Covering
length is typically used in infinite-horizon MDPs but we can
transfer the concept to our episodic setting as well:
Definition 2. The covering length L(π) of a policy π ∈ Π
is the number of episodes until all state-action pairs have
been visited at all time steps with probability at least 1/2.

Lower bounding L(π) can be thought of as a variant of the
popular coupon collector’s problem where each object has a
different probability. Since the agent has to obtain at least
one sample from each (x, a, h) triplet with probability 1/2,
and the probability to receive such a sample is µπh(x, a) in
each episode, the covering length must scale as

L(π) = Ω
( 1

minx,a,h µπh(x, a)

)
.

Intuitively, we expect learning to be efficient if
minx,a,h µ

π
h(x, a) is large for the data collection policy π,

since the agent is able to collect samples from the entire
state-action space. Note that

max
π′∈Π′

∥∥∥∥ Pπ′
Pexpl(f)

∥∥∥∥
∞
≤
∥∥∥∥ 1

Pexpl(f)

∥∥∥∥
∞
≤ 1

minx,a,h µπh(x, a)
.

Plugging the above bound in Lemma 1 we get that

α(f,F) ≥
√

min
x,a,h

µπh(x, a)(V ?1 (x1)− V π
f

1 (x1))

= Ω(L(expl(f))−1/2)(V ?1 (x1)− V π
f

1 (x1)).

This shows that myopic exploration gap is large when the
covering length is small, and thus our definition recovers
the prior results based on covering length.

5.1.2. SMALL ACTION VARIATION

One expects myopic exploration to be effective in MDPs
where the transition dynamics have almost identical next-
state distributions corresponding to taking different actions
at any given state. In such MDPs, exploration is easy as all
the policies will have similar occupancy measures.

Prior works (Jiang et al., 2016; Liu & Brunskill, 2018) have
considered an additive notion of action variation that bounds
the L1 distance between the next-state distributions corre-
sponding to different actions. However, for our applications,
a multiplicative version of action variation is better suited.
Definition 3 (Multiplicative Action Variation). For any
MDP with state space X , action space A and transition
dynamics P , define multiplicative action variation as the
minimum δP such that for any x, a, a′ and h,∥∥∥∥ dPh(x, a)

dPh(x, a′)

∥∥∥∥
∞
≤ δP .

The above definition implies that for any state x, actions a
and a′, and next state x′, the transition probability Ph(x′ |
x, a) is bounded by δPPh(x′ | x, a′). Thus, by symmetry
we always have that δP ≥ 1. The smaller the value of δP ,
the better we expect myopic exploration to perform.
Lemma 2. LetM be any MDP with multiplicative action
variation δP , and Q∗ ∈ F . Then, for any f ∈ F , the
myopic exploration gap of ε-greedy satisfies

α(f,F) ≥
√

ε

AδHP
· (V ?1 (x1)− V π

f

1 (x1)).

Further, ∀f ∈ F , the exploration radius c(f,F) ≤ AδHP /ε.

A consequence of Lemma 2 is that when the multiplicative
action variation is small, in particular when δH ≤ 1 + 1/H ,
we have α(f,F) ≥

√
ε/eA(V π

?

1 (x1)−V πf1 (x1)) and thus
myopic exploration converges quickly (see Theorem 1). An
extreme case of this is when the next-state distributions do
not depend on the chosen action at all and thus δP = 1.
This represents the contextual bandit setting.
Corollary 2 (MDPs with contextual bandit structure). Con-
sider MDPs where actions do not affect the next-state
distribution, i.e., Ph(· | x, a) = Ph(· | x, a′) for all
x ∈ X , (a, a′) ∈ A2, h ∈ [H]. Then, for any f ∈ F ,
the myopic exploration gap of ε-greedy satisfies

α(f,F) ≥
√
ε

A
· (V ?1 (x1)− V π

f

1 (x1)),

and the myopic exploration radius satisfies c(f,F) ≤ A/ε.

5.2. Favorable Rewards

In the previous section, we discussed several conditions un-
der which the dynamics make an MDP conducive to efficient
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start state
goal state: r=1/2
r=1/(4H)

Sparse Rewards Helpful Rewards Distracting Rewards

Figure 1. Three grid-world tasks with the same dynamics and opti-
mal policy but different rewards. The optimal policy always moves
from the start (blue) to the goal (red). Left: only reward of 1 at the
goal. Middle: additional small rewards help myopic exploration.
Right: additional small rewards hurt myopic exploration.

myopic exploration, independent of rewards. However the
reward structure can also significantly impact the efficiency
of myopic exploration. Empirically, this has been widely
recognized (Mataric, 1994). The general rule of thumb is
that dense-reward problems, where the agent receives a re-
ward signal frequently, are easy for myopic exploration, and
sparse-reward problems are difficult. Our myopic explo-
ration gap makes this rule of thumb precise and quantifies
when exactly dense rewards are helpful. We illustrate this
for ε-greedy exploration in the following example.

5.2.1. GRID WORLD NAGIVATION EXAMPLE

Consider a grid-world navigation task with deterministic
transitions. The agent is supposed to move from the start
to the goal state. Figure 1 depicts this task with 3 different
reward functions. The horizon is chosen so that the agent
can reach the goal only without any detour (H = 13 here).

Sparse Rewards. In the version on the left, the agent only
receives a non-zero reward when it reaches the goal for the
first time. This is a sparse reward signal since the agent
requires many time steps (roughly H) until it receives an
informative reward. Exploration with ε-greedy thus requires
O(AH) many samples in order to find an optimal policy.
Our results confirm this, since there are many suboptimal
greedy policies πf for which the myopic exploration gap is

α(f,F) =
1

2

( ε
A

)H/2
.

Helpful Dense Rewards. In the version in the middle,
someone left breadcrumb every B steps along the short-
est path to the goal. The agent receives a small reward of
1/2H each time it reaches a breadcrumb for the first time.
These intermediate rewards are helpful for ε-greedy which
performs well in this problem. Our theoretical results con-
firm this since any suboptimal greedy policy has a myopic
exploration gap of at least

α(f,F) ≥ 1

2H

( ε
A

)B/2
. (3)

This bound holds since any suboptimal policy misses out
on at least one breadcrumb or the goal and it could reach
that and increase its return by ≥ 1/2H by changing at most
B actions. In this dense-reward setting with B � H , the
corresponding myopic exploration gaps are much larger.

Distracting Dense Rewards. Dense rewards are not al-
ways helpful for myopic exploration. Consider the version
on the right. Here, the breadcrumbs distract the agent from
the goal. In particular, ε-greedy will learn to follow the
breadcrumb trail and eventually get stuck in the bottom left
corner. It would then require exponentially many episodes
to discover the high reward at the goal state. We can show
that the myopic exploration gaps are

α(f,F)

{
= 1

2

(
ε
A

)H/2
if πf reaches all breadcrumbs

≥ 1
2H

(
ε
A

)B/2
otherwise

for any suboptimal greedy policy πf . Thus, there are value
functions with suboptimal greedy policies that have an ex-
ponentially small gap, similar to the sparse reward setting.

5.2.2. FAVORABLE REWARDS THROUGH
POTENTIAL-BASED REWARD SHAPING?

Potential-based reward shaping (Ng et al., 1999; Grzes,
2017) is a popular technique for finding a reward defini-
tion that preserve the optimal policies of a given reward
function but may be easier to learn. Formally, we here
call two average reward definitions r̄ = {r̄h}h∈[H], r̄

′ =
{r̄′h}h∈[H] with r̄h, r̄′h : S × A → [0, 1] a potential-based
reward shaping of each other if r̄h(s, a) − r̄′h(s, a) =
Φh(s)− E[Φ(sh+1) | xh = x, ah = a] for all s, a, h where
Φ = {Φh}h∈[H] is a state-based potential function with
Φ1(sinit) = ΦH+1(send) = 0. One can show by a telescop-
ing sum that the total return of any policies under r̄ and r̄′h is
identical. As a result, since the myopic exploration gaps in
the tabular setting only depend on the rewards through the
return of policies (Equation 2), the gaps are identical under
both reward functions. This suggests that the efficiency of ε-
greedy exploration is not affected by potential-based reward
shaping. Given the empirical success of potential-based
reward shaping, this may seem surprising. However, as we
illustrate with an example in Appendix A, this difference
in empirical performance is due to optimistic or pessimistic
initialization effects and not due to ε-greedy exploration.

6. Theoretical Guarantees
In this section, we present our main theoretical guarantees
for Algorithm 1. At the heart of our analysis is a sample-
complexity bound that controls the number of episodes in
which Algorithm 1 selects a poor quality value function f̂t,
for which πf̂t has large suboptimality. In particular, we
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show that for any subset of function F ′ ⊂ F , the number
of times for which f̂t ∈ F ′ is selected scales inversely
with the square of the smallest myopic exploration gap
α(F ′,F) = inff∈F ′ α(f,F).

Intuitively, when F ′ contains suboptimal policies and
α(F ′,F) is large, then for any f ∈ F ′ there exists a policy
π′ ∈ ΠF that achieves higher return than πf , and the explo-
ration policy expl(f) will quickly collect enough samples
to allow Algorithm 1 to learn this difference. Thus, such an
f would not be selected any further. The following theorem
formalizes this intuition with the sample complexity bound.

Theorem 1 (Sample Complexity Upper Bound). Let δ ∈
(0, 1) and T ∈ N, and suppose Algorithm 1 is run with
a function class F that satisfies Assumption 1. Further,
let F ′ ⊆ F be any subset of value functions. Then, with
probability at least 1− δ, the number of episodes within the
first T episodes where f̂t ∈ F ′ is selected is bounded by

O

(
ln c(F ′,F)

α(F ′,F)2
H2d ln

(N̄F (T−1) lnT

δ

))
.

Here, d = dimBE(F ′,ΠF , 1/
√
T ) is the Bellman-Eluder

dimension of F ′, and

α(F ′,F) := inf
f∈F ′

α(f,F), c(F ′,F) := sup
f∈F ′

c(f,F)

with α(f,F) and c(f,F) defined in Definition 1.

We defer the complete proof of Theorem 1 to Appendix D
and provide a brief sketch in Section 6.3. Note that, although
Theorem 1 allows arbitrary subsets F ′ ⊂ F , the result is of
interest only when F ′ contains value functions for which
the corresponding greedy policies are suboptimal. When an
optimal policy π? ∈ ΠF ′ , we have that α(F ′,F) = 0 and
thus, the sample complexity bound is vacuous.

We next compare our result to the prior guarantees in RL
with function approximation, specifically with the results of
Jin et al. (2020). For any λ ≥ 0, if we instantiate Theorem 1
with F ′ consisting of all the value functions that are not λ-
optimal, i.e., F ′ = Fλ = {f ∈ F : V π

f

(x1) ≤ V ?(x1)−
λ}, we get that within the first

Õ

(
ln c(Fλ,F)

α(Fλ,F)2
H2d ln

(
N̄F

( α(Fλ,F)2

H2d ln c(Fλ,F)

)))
(4)

episodes at least a constant fraction of the chosen greedy
policies would be λ-optimal. Thus, terminating Algorithm 1
after collecting the above mentioned number of episodes,
and returning the corresponding greedy policy of f̂t for
a uniformly random choice of t ensures that the output
policy is λ-suboptimal with at least a constant probability.
Our sample complexity bound in (4) matches the sample
complexity of the GOLF algorithm (Jin et al., 2020) in terms

of its dependence on H and d. However, our bound replaces
their λ dependency with the problem-dependent quantity
α(Fλ,F)/

√
ln c(Fλ,F) that captures the efficiency of the

chosen exploration approach for learning (this dependence
is tight as shown by the lower bound in Theorem 2). The
comparison is a bit subtle; while our sample complexity
bound is typically larger than that of Jin et al. (2020), the
provided algorithm is computationally efficient with running
time of the order of (4) whenever an efficient square loss
regression oracle is available for the class F . On the other
hand, Jin et al. (2020) rely on optimistic planning which is
typically computationally inefficient.

We can also compare our sample complexity bound to the re-
sult of Liu & Brunskill (2018) for pure random exploration.
Liu & Brunskill (2018) bound the covering length L and
rely on the results of Even-Dar & Mansour (2003) to turn
that into a sample-complexity bound for Q-learning. Their
sample-complexity bound scales as ω

(
L3

ε2(1−γ)2

)
while

our Theorem 1 in combination with Section 5.1.1 gives
Õ
(
LH2d ln N̄F

ε2

)
. A loose translation with H ≈ 1/(1− γ)

and d ln N̄F . S2A2 < L2 shows that our results are never
worse in tabular MDPs while being much more general
(e.g., apply to non-tabular MDPs and capture many other
favorable cases).

6.1. Lower Bound

We next provide a lower bound that shows that an
S/α(F ,F)2 dependency in tabular MDPs is unavoidable.
This suggests that Bellman-Eluder dimension (or alterna-
tive notions of statistical complexity such as Bellman-rank,
Eluder-dimension, decoupling coefficient, etc., which are
all bounded by SA for tabular MDPs) alone are not suffi-
cient to capture the performance of myopic exploration RL
algorithms such as ε-greedy.

Theorem 2 (Sample Complexity Lower Bound). Let c̄ =
3
√

3/32. For any given horizon H ∈ N, number of states
S ≥ 8, number of actions A ≥ 2, exploration parameter
ε ∈ (0, 1) and v ∈ [1, c̄(ε/A)H/2], there exists a tabular
MDPM = (X ,A, H, P,R) with |A| = A and |X | = S
and a function class F such that:

(a) α(F ′,F) = minf∈F ′ α(f,F) ∈
[
vc̄
√

3ε
A , v

]
where

F ′ ⊂ F denotes the set of all the value functions
that are at least 1/16 suboptimal, i.e., V ?(x1) −
V π

f

(x1) > 1/16 for any f ∈ F ′;

(b) the expected number of episodes for which Algorithm 1
with ε-greedy exploration does not select an 1/16-
optimal function f ∈ F ′ is

Ω
( S

α(F ′,F)2

)
.
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6.2. Regret Bound for ε-Greedy RL

Equipped with the sample complexity bound in Theorem 1,
we can derive regret bounds for myopic exploration based
RL. In the following, we derive regret bounds for ε-greedy
algorithm. Note that the regret can be decomposed as

Reg(T ) =

T∑
t=1

[V ?1 (x1)− V π̃t1 (x1)]

=

T∑
t=1

[V ?1 (x1)− V πt1 (x1)] +

T∑
t=1

[V πt1 (x1)− V π̃t1 (x1)]

where πt = πf̂t denotes the greedy policy at episode t.
The second term in the above decomposition is bounded
by εHT since the return of greedy and exploration policy
can differ at most by εH in each episode. The first term
denotes the regret of the corresponding greedy policies,
which can be controlled by invoking Theorem 1 to bound
the number of episodes for which the greedy policies are
suboptimal. For favorable learning tasks in which every f ∈
F with a suboptimal greedy policy has a significant myopic
exploration gap, we can simply invoke Theorem 1 with
F ′ = F sub = {f ∈ F : πf is not optimal}. For illustration,
consider the learning task in Figure 1 (middle) where gaps
are large (cf. Equation 3). In this case,

Reg(T ) = εHT + Õ
( H2d

α(F sub,F)2

)
= εHT + Õ

(SA1+BH4

εB

)
,

Setting ε ≈ A
(
SH3/T

)1/(B+1)
thus yields the bound

Reg(T ) = Õ
(
HAT

B
B+1 (SH3)

1
B+1
)
.

Clearly, as shown by the above example, the optimal choice
of ε (and thus the regret) depends on how the myopic explo-
ration gap scales with ε. We formalize this dependence in
the following theorem.
Theorem 3 (Regret Bound of ε-Greedy). Let T ∈ N and
suppose we run Algorithm 1 with ε-greedy exploration and
a function class F that satisfies Assumption 1. Further,
let there be a h ∈ [1, H] such that for any λ ∈ [0, 1],
α(F ′λ,F) ≥ Ω((ε/A)h/2λ) where F ′λ ⊂ F denotes the
set of all the value functions that are at least λ suboptimal.
Then, with probability at least 1− δ, we have,

Reg(T ) ≤ εHT + Õ
(√hAhdH3T

εh
ln
N̄F (T−1)

δ

)
,

where d = dimBE(F ,ΠF , 1/
√
T ) denotes the Bellman-

Eluder dimension of F . Furthermore, setting the explo-

ration parameter ε = Θ̃
((
hHAhd
T

) 1
2+h
)
, we get that

Reg(T ) ≤ Õ
(
H

h+3
h+2T

h+1
h+2
(
hAhd ln

N̄F (T−1)

δ

) 1
h+2

)
.

For the contextual bandits problems, Corollary 2 implies
that α(F ′λ,F) ≥ Ω((ε/A)1/2λ) and thus h = 1. Plugging
this in Theorem 3 gives us Reg(T ) = Õ(H4/3A1/3T 2/3),
which matches the optimal regret bound for ε-greedy for
the contextual bandits problem in terms of dependence on
T or A (Lattimore & Szepesvári, 2020). In the worst case
for any RL problem, we always have that α(F ′λ,F) ≥
Ω((ε/A)H/2λ) and for such problems Theorem 3 still re-
sults in a sub-linear regret bound of Õ(T (H+1)/(H+2)).

6.3. Proof Sketch of Theorem 1

We first partition F ′ into subsets {F ′1, . . .F ′ln c(F ′,F)} such
that the myopic exploration radius c(f,F) is roughly the
same for each f ∈ F ′i . The proof follows by bounding the
number of episodes Ki = {t ∈ [T ] : f̂t ∈ F ′i} individually.
In order do so, we consider the potential∑

t∈Ki

V π
′
t(x1)− V πt(x1), (5)

where πt = πf̂t and π′t ∈ ΠF denotes the policy that attains
the maximum in (1) for f = f̂t. We will bound this potential
from above and below as

|Ki|α(F ′i ,F)
√
c(F ′i ,F) ≤ (5) ≤ Õ

(
H
√
c(F ′i ,F)|Ki|d

)
which implies that |Ki| = Õ(H2d/α(F ′i ,F)2), yielding
the desired statement after summing over i. The lower
bound follows immediately from the definition of α and c.
For the upper bound, we first compose each value difference
into expected Bellman errors using
Lemma 3. Let f = {fh}h∈[H] with fh : X ×A → R and
πf be the greedy policy of f . Then for any policy π′ ∈ Π,

V π
′

1 (x1)− V π
f

1 (x1) ≤
H∑
h=1

Eπf [(Ehf)(xh, ah)]−
H∑
h=1

Eπ′ [(Ehf)(xh, ah)].

This yields an upper-bound on (5) of
H∑
h=1

[∑
t∈Ki

|Eπ′t [(Ehf̂t)(xh, ah)]|︸ ︷︷ ︸
(A)

+
∑
t∈Ki

|Eπt [(Ehf̂t)(xh, ah)]|︸ ︷︷ ︸
(B)

]

Now, both the terms (A) and (B) can be bound using the
standard properties of Bellman-Eluder dimension as:

max{(B), (A)} .
√
d|Ki|max

t∈Ki

∑
τ∈Ki∩[t−1]

(Eπτ [(Ehf̂t)(xh, ah)])2.

The remaining sum can be controlled using Jensen’s inequal-
ity and the definition of myopic exploration gap as∑
τ∈Ki∩[t−1]

Eπτ [(Ehf̂t)(xh, ah)]2 ≤
∑

τ∈Ki∩[t−1]

Eπτ [(E2
hf̂t)(xh, ah)]
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≤c(F ′i ,F)
∑

τ∈Ki∩[t−1]

Eπ̃τ [(E2
hf̂t)(xh, ah)]

.c(F ′i ,F) ln
N̄F (1/T ) ln(t)

δ
,

where the last inequality follows from a uniform concentra-
tion bound for square loss minimization.

7. Related Work
The closest work to ours is Liu & Brunskill (2018) who
provide conditions under which uniform exploration yields
polynomial sample-complexity in infinite-horizon tabular
MDPs, building on the Q-learning analysis of Even-Dar
& Mansour (2003) (see Section 5.1.1). Many conditions
that enable efficient myopic exploration also allow us to
use a smaller horizon for planning in the MDP, a question
studied by (Jiang et al., 2016) (e.g., small action variation).
However, sufficient conditions for shallow planning are in
general not sufficient for efficient myopic exploration and
vice versa. One can for example construct cases where
planning with horizon H ′ = 1 yields the optimal policy
(i.e., π?(xh) = arg maxa r(xh, a)) for the original horizon
H but there are distracting rewards just beyond the shallow
planning horizon H ′ + 1 that would throw off algorithms
with ε-greedy (see also the example in Appendix A).

Simchowitz & Foster (2020) and Mania et al. (2019) show
that simple random noise explores optimally in linear
quadratic regulators, but their analysis is tailored specifi-
cally to this setting.

There is a rich line of work on understanding the effect of
reward functions and on designing suitable rewards, to speed
up the rate of convergence of various RL algorithms and to
make them more interpretable (Abel et al., 2021; Devidze
et al., 2021; Hu et al., 2020; Mataric, 1994; Icarte et al.,
2022; Marthi, 2007). While being extremely interesting, the
problem of designing suitable reward functions to model
the underlying objective is orthogonal to our focus in this
paper, which is to understand rate of convergence for myopic
exploration algorithms.

Potential based rewards shaping is a popular approach in
practice (Ng et al., 1999) to speed up the rate of conver-
gence of RL algorithms. In order to quantify the role of
reward shaping, Laud & DeJong (2003) provide an algo-
rithm for which they demonstrate, both theoretically and
empirically, improvement in the rate of convergence from
reward shaping. However, their algorithm is qualitatively
very different from the myopic exploration style algorithms
that we consider in this paper, and is in general not effi-
ciently implementable for MDPs with large state spaces.
For a more detailed discussion of potential-based reward
shaping, see Section 5.2.2 and Appendix A.

Algorithm 1 determines the Q-function estimate by a finite-
horizon version of fitted Q-iteration (Ernst et al., 2005). In
the infinite horizon setting, this procedure has been analyzed
by Munos & Szepesvári (2008); Antos et al. (2007). These
works focus on characterizing error propagation of sampling
and approximation error and simply assume sampling from
a generative model or fixed behavior policy that explores
sufficiently, i.e., has good state-action coverage. A recent
line of work on offline RL aims to relax the coverage and
additional structural assumptions, see e.g. Uehara & Sun
(2021) and references therein for an overview. Our work
instead has a different focus. We avoid approximation errors
by Assumption 1 but aim to characterize the interplay be-
tween MDP structure and the different exploration policies
and their impact on the efficiency of online RL.

8. Conclusion and Future Work
We view this work as a first step towards fine-grained the-
oretical guarantees for practical algorithms with myopic
exploration. We provided a complexity measure that cap-
tures many favorable cases where such algorithms work
well. We focused on general results that apply to problems
with general function approximation, due to the importance
of myopic exploration in such settings. One important di-
rection for future work is an analysis of myopic exploration
specialized to tabular MDPs. We believe that a finer char-
acterization of the performance of ε-greedy algorithms in
this setting is possible by making explicit assumptions on
the initialization of function values in state-action pairs that
have not been visited so far. We purposefully avoided such
assumptions in our work to avoid conflating myopic explo-
ration mechanisms with those of optimistic initializations
which are known to be effective. It would further be in-
teresting to compare the sample complexity of different
myopic exploration strategies such as softmax-policies, ad-
ditive noise or ε-greedy and perhaps develop new myopic
strategies with improved bounds.
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A. Additional Discussion of Myopic Exploration Gap
To provide further intuition behind the definition of myopic exploration gap in Definition 1, we discuss the following simple
example. For any horizon H ∈ N, consider an MDP with states S = [2H − 1] organized in a binary tree. The agent starts at
the root of the tree and each action in A = {0, 1} chooses one of the two branches to descent. There is no stochasticity
in the transitions and the agent always ends up on one of the leaves of the tree in the final time step of the episode. The
function class F corresponds to the set of all value functions for this tabular MDP. The goal of the agent is to reach a certain
leaf state s?. We consider three different reward functions to formulate this objective (we provide an illustration of the three
rewards for H = 3 in Figure 2):

Goal reward: The agent only receives a reward when it reaches the state s?, i.e.,

r(s, a) = 1{s = s?}

Let s′1, a
′
1, s
′
2, a
′
2 . . . , s

′
H−1, a

′
H−1, s? be the unique path that leads to s?, and let f ∈ F be any Q-function so that

πf (s′h) 6= a′h for all h ∈ [H]. The myopic exploration gap of this function for ε-greedy with sufficiently small ε is

α(f,F) =
(ε

2

)H−1
2

.

This is true because only π? achieves higher return than πf but while π? reaches s? with probability 1, expl(f) only does so
with probability (ε/2)H−1 and, hence, c = (ε/2)H−1.

Path reward: The agent receives a positive reward for any right action along the optimal path, i.e.,

r′(s, a) =
1

H
1{∃i ∈ [H] : (s, a) = (s′i, a

′
i)}.

Here, the myopic exploration gap of any f ∈ F with suboptimal greedy policy πf is

α′(f,F) =

√
ε

H
√

2

because there is another f ′ ∈ F which is identical to f ∈ F except that the values of s′h, the last state on the desired path
taken by πf , are so that πf ′(s′h) = a′h, i.e., πf ′ stays at least one time step longer on the optimal path. As we can see, the
myopic exploration gap for this reward formulation is much more favorable. This is similar to the breadcrumb example in
Figure 1. Indeed, ε-greedy exploration is much more effective in this formulation.

Potential-based shaping of goal reward: Potential-based reward shaping is a popular technique for designing rewards
that may be beneficial to inprove the speed of learning, while retaining the policy preferences of given reward function (Ng
et al., 1999). We here consider a reward function that give a reward of +1 if the agent takes the first right action and then a
−1 whenever it takes a wrong action afterwards. Formally, this reward is

r′′(s, a) =


+1 if s = s′1 and a = a′1
−1 if s = s′h for 1 < h < H and a 6= a′h
0 otherwise

The potential function Φ: S → R that transforms r into r′′ is Φ(s) = −1{∃h ∈ [2, H] : s = s′h}. One can verify easily that
r′′(s, a) = r(s, a) + Φ(s)− Es′∼P (s,a)[Φ(s′)] and that the return of any policy under r and r′′ is identical. Note that r′′ is
not in the range [0, 1]. One may apply a linear transformation to all reward functions to normalize r′′ in the range [0, 1],
however in the following, we work with ranges [−1, 1] for reward and value functions for the ease of exposition since this
does not change the argument. Since we are in the tabular setting, we can use Equation 2 to compute the myopic exploration
gap. Since the return of each policy under r and r′′ is identical, all myopic exploration gaps under r and r′′ are identical.
This example illustrates the following general fact:

Fact 1. Myopic exploration gaps are not affected by potential-based reward shaping in tabular Markov decision processes.
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Figure 2. An illustration of different reward function for H = 3. Orange colored circles (circles that have a boundary) denote the optimal
path s′1, s

′
2, s?. The goal rewards are specified in the shaded diamond. The path rewards are specified without any boundary. The potential

based shaped rewards are specified in rectangular boxes. Corresponding to each reward type (given by shapes: diamond, none, boxes) any
unspecified edges denote a reward of 0.

Here, this implies that the myopic exploration gap under r′′ of any Q-function f ∈ F with πf (s′h) 6= a′h for all h ∈ [H] is

α′′(f,F) =
(ε

2

)H−1
2

.

This suggests that the sample complexity of ε-greedy exploration in this example is exponential inH . This may be surprising
since the myopic greedy policy that maximizes only the immediate reward, i.e. takes actions arg maxa∈A r

′′(s, a), is
optimal in this problem. This implies that shallow planning with horizon 1 is sufficient in this problem and may suggest that
the sample complexity is not exponential in H . How can this conundrum be resolved and what is the sample-complexity of
ε-greedy in this problem?

We will argue in the following that the efficiency of ε-greedy in this problem depends how we initialize the Q-function
estimate of state-action pairs that have not been visited. There are initializations under which the sample-complexity is
polynomial or exponential in H respecitvely. We therefore conclude that the benefit of potential-based reward shaping in
this case is not due to exploration through ε-greedy but rather optimism or pessimism in the initializations. Note that our
procedure in Algorithm 1 does not prescribe an initialization (all initializations are minimizers of Lh(ft,h+1)).

First consider initializing the Q-function table with all entries to be equal to 0. In this case, the agent will try action a′1 in
state s′1 after at most Ω(1/ε) episodes. Independent of which actions it took afterwards, the V-value estimate for s′2 will
be 0 and will always remain this value since everything is deterministic in this problem and 0 is the correct value. As a
result the Q-function estimate for (s′1, a

′
1) is +1 and the greedy policy will take a′1 in s′1. Now, in any episode where the

agent actually follows the greedy policy, it learns that one action that deviates from the optimal path is suboptimal. Hence,
after O(H/ε) episodes, the algorithm will choose the optimal policy as its greedy policy and even learn the optimal value
function. Hence, the sample-complexity of ε-greedy with this intialization is indeed polynomial in H . Interestingly, the
ε-greedy with the same 0-initialization has exponential sample complexity for the original goal-based rewards r. This is
because none of the Q-function estimates changes until the agent first reaches s?. Essentially, the same initialization is
pessimistic under the original reward function r but optimistic under the shaped version r′′.

Now consider initializing the Q-function table with all entries to be equal to −1. The agent will try action a′1 in state s′1
after at most Ω(1/ε) episodes. Unless it happens to exactly follow the optimal path, which only happens with probability
(1/2)H−1, the agent will learn to associate a Q-value of 0 for the initial action and a Q-value of −1 for all actions along the
optimal path afterwards. Hence, it has no preference between the actions in any state of the optimal path (except for the first
action) and would still need at least (1/2)H−2 episodes to randomly follow the optimal path and discover the reward of 0 in
the final state. Hence, the sample-complexity of ε-greedy with this initialization is indeed exponential in H , since there was
no optimism in the initialization and ε-greedy was ineffective at exploring for this problem.
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B. Proofs For Bounds on Myopic Exploration Gap in Section 5
Lemma 1. When Q? ∈ F , the myopic exploration gap is bounded for all f ∈ F as(

max
π′∈Π′

∥∥∥ Pπ′
Pexpl(f)

∥∥∥
∞

)− 1
2 ≤ α(f,F)

V ?1 (x1)− V πf1 (x1)
≤ 1.

Furthermore, the myopic exploration radius is bounded as c(f,F) ≤ maxπ′∈Π′

∥∥∥ Pπ′
Pexpl(f)

∥∥∥
∞

.

Proof. For the upper-bound, note that the objective of (1) is bounded for all c ≥ 1 and π′ ∈ ΠF ⊆ Π, as

1√
c
(V π

′

1 (x1)− V π
f

1 (x1)) ≤ V π
′

1 (x1)− V π
f

1 (x1)

≤ V ?1 (x1)− V π
f

1 (x1).

For the lower-bound, we show that π′ = π? and c = maxπ′∈Π′

∥∥∥ Pπ′
Pexpl(f)

∥∥∥
∞

is a feasible solution for (1). Since Q? ∈ F by

realizability, any optimal policy π? ∈ ΠF = Π′ is feasible as the expected bellman error for f ′ corresponding to π∗ is equal
to 0. Further, for any π′ ∈ Π′ and function g : X ×A → R+ we have

Eπ′ [g(xh, ah)] ≤ Eexpl(f)[g(xh, ah)]

∥∥∥∥ Pπ′
Pexpl(f)

∥∥∥∥
∞

which shows that the value of c is feasible.

Corollary 1. For any MDP with finitely many actions with |A| = A and f ∈ F , the myopic exploration gap of ε-greedy
can be bounded as

α(f,F) ≥
( ε
A

)H
2

(V ?1 (x1)− V π
f

1 (x1))

and the exploration radius is bounded as c(f,F) ≤
(
ε
A

)H
.

Proof. The likelihood ratio of an episode τ = (x1, a1, r1, . . . , xH , aH , rH , xH+1) w.r.t. expl(f) and any other policy π̄ ∈ Π
satisfies

Pπ̄(τ)

Pexpl(f)(τ)
≤

H∏
h=1

π̄(ah|xh)

expl(f)(ah|xh)
≤

H∏
h=1

1

ε/A
=

(
A

ε

)H
.

The result then follows from Lemma 1.

Lemma 2. LetM be any MDP with multiplicative action variation δP , and Q∗ ∈ F . Then, for any f ∈ F , the myopic
exploration gap of ε-greedy satisfies

α(f,F) ≥
√

ε

AδHP
· (V ?1 (x1)− V π

f

1 (x1)).

Further, ∀f ∈ F , the exploration radius c(f,F) ≤ AδHP /ε.

Proof. First note that for any policy π, the occupancy measure for state xh and action ah is given by

µπh(xh, ah) =
∑

x1,...,xh−1

(h−1∏
j=1

∑
a∈A

Pr(π(xj) = a)Pj(xj+1 | xj , a)
)

Pr(π(xh) = ah), (6)

where P denotes the transition dynamics corresponding toM and we used the fact that x1 is fixed. Next, note that as a
consequence of Definition 3, we have that for any xj , xj+1, a and a′,

Pj(xj+1 | xj , a) ≤ δPPj(xj+1 | xj , a′).
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Thus, we have that:

Pj(xj+1 | xj , a) ≤
∑
a′∈A

Pr(expl(f)(xj) = a′)Pj(xj+1 | xj , a)

≤ δP
(∑
a′∈A

Pr(expl(f)(xj) = a′)Pj(xj+1 | xj , a′)
)
.

Plugging the above in (6), we get that:

µπh(xh, ah) ≤
∑

x1,...,xh−1

(h−1∏
j=1

∑
a∈A

Pr(π(xj) = a)δP

(∑
a′∈A

Pr(expl(f)(xj) = a′)Pj(xj+1 | xj , a′)
))

Pr(π(x1) = a)

=
∑

x1,...,xh−1

(h−1∏
j=1

δP

(∑
a′∈A

Pr(expl(f)(xj) = a′)Pj(xj+1 | xj , a′)
))

Pr(π(xh) = ah)

= δh−1
P

∑
x1,...,xh−1

(h−1∏
j=1

∑
a′∈A

Pr(expl(f)(xj) = a′)Pj(xj+1 | xj , a′)
)

Pr(π(xh) = ah).

Next, note that expl(f) is the ε-greedy policy and thus Pr(expl(xh) = ah) ≥ ε/A. Using this fact in the above bound, we
get that

µπh(xh, ah) ≤ δh−1
P

∑
x1,...,xh−1

(h−1∏
j=1

∑
a′∈A

Pr(expl(f)(xj) = a′)Pj(xj+1 | xj , a′)
)APr(expl(xh) = ah)

ε

=
Aδh−1

P

ε

∑
x1,...,xh−1

(h−1∏
j=1

∑
a′∈A

Pr(expl(f)(xj) = a′)Pj(xj+1 | xj , a′)
)

Pr(expl(xh) = ah)

≤ AδHP
ε

µ
expl(f)
h (xh, ah), (7)

where the inequality in the last line holds because δP ≥ 1 and by using the definition of µexpl(f)
h (xh, ah) from (6).

Observe that (7) holds for any policy π. Thus, using this relation for π?, we get that

Eπ? [(E2
hf
′)(xh, ah)] =

∑
xh,ah

µπ
?

h (xh, ah) · (E2
hf
′)(xh, ah)

≤ AδHP
ε

µ
expl(f)
h (xh, ah) · (E2

hf
′)(xh, ah)

≤ AδHP
ε

Eexpl(f)[(E2
hf
′)(xh, ah)]. (8)

A similar analysis reveals that

Eπf [(E2
hf
′)(xh, ah)] ≤ AδHP

ε
Eexpl(f)[(E2

hf
′)(xh, ah)]. (9)

The relations in (8) and (9) thus imply that π? ∈ Π′ satisfies the constraints in the definition of α(f,F) with c =
AδHP
ε . We

thus have that

α(f,F) ≥ 1√
c
(V π

?

1 (x1)− V π
f

1 (x1)) =

√
ε

AδHP
· (V π

?

1 (x1)− V π
f

1 (x1)).
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Figure 3. MDP constructon for the proof of Theorem 2. There are two states {sg, sb} and A action. The black arrow denotes the starting
state. The blue arrow denotes the deterministic transition when the agent takes action a = 1, and the red arrow denotes deterministic
transition when the agent takes any other action in [A] \ {1}. As long as the agent picks actions 1, it stays on the good chain sg but as
soon as it chooses any other actions it transitions to the bad chain sb where it will stay forever. The observed rewards are time dependent
and are shown over the corresponding action arrows.

C. Proof of Sample Complexity Lower Bound
Theorem 2 (Sample Complexity Lower Bound). Let c̄ = 3

√
3/32. For any given horizon H ∈ N, number of states

S ≥ 8, number of actions A ≥ 2, exploration parameter ε ∈ (0, 1) and v ∈ [1, c̄(ε/A)H/2], there exists a tabular MDP
M = (X ,A, H, P,R) with |A| = A and |X | = S and a function class F such that:

(a) α(F ′,F) = minf∈F ′ α(f,F) ∈
[
vc̄
√

3ε
A , v

]
where F ′ ⊂ F denotes the set of all the value functions that are at least

1/16 suboptimal, i.e., V ?(x1)− V πf (x1) > 1/16 for any f ∈ F ′;

(b) the expected number of episodes for which Algorithm 1 with ε-greedy exploration does not select an 1/16-optimal
function f ∈ F ′ is

Ω
( S

α(F ′,F)2

)
.

Proof. We first will show the statement for S = 2 and then extend the proof to S > 2.

Construction for S = 2. Let A ∈ N, H ∈ N and ε be fixed and consider states X = {sg, sb}h∈[H+1] and actions
A = [A]. The agent always starts in state xinit = sg . The dynamics is deterministic, non-stationary and defined as

Ph(sg|sg, a = 1) = 1 Ph(sb|sg, a 6= 1) = 1 Ph(sb|sb, a ∈ A) = 1

for h ∈ [H]. All other transitions have probability 0. Essentially, the state space forms two chains, and the agent always
progresses on a chain. As long as the agent picks actions 1, it stays on the good chain sg but as soon as it chooses any other
actions it transitions to the bad chain sb where it will stay forever. The function class F = {Fh}h∈[H] is the full tabular
class, i.e., Fh = X × A → [0, H + 1 − h] for h ∈ [H]. Now, for the given value v, we define the reward distributions
R = {Rh}h∈[H] as

Rh(x, a) =


0 if h > h?

Bernoulli
(

3
8

)
if h = h? and x = sg and a = 1

0 if h < h? and x = sg and a = 1
1

8h? otherwise

where h? = d2 logε/A(4v)e ≤ H . We illustrate the transition dynamics and the corresponding reward function in Figure 3.
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Value of myopic exploration gap. We now show that the smallest non-zero exploration gap is v up to a constant factor in
this MDP. The value of a deterministic policy is only determined by how long it stays in sg (by always taking action a = 1).
For any π ∈ Πdet, let L(π) ∈ [H] denote that length. We have

V π(x1) =
3

8
1{L(π) ≥ h?}+

1

8

(
1− L(π)

h?

)
1{L(π) < h?}

The value of α(f,F ,ΠF , expl,M) can be lower-bounded for any f ∈ F with L(πf ) < h? by considering π′ = π? in (1).
This gives

α(f,F ,ΠF , expl,M) ≥
√

Pexpl(f)(a1 = 1, . . . , ah? = 1)

(
3

8
− 1

8

(
1− L(πf )

h?

))
=
( ε
A

)h?−L(πf )
2

(
1

4
+

1

8

L(πf )

h?

)
≥ 1

4

( ε
A

)h?/2
.

Further, both inequalities are tight for any f ∈ F with fh(sg, 1) < maxa∈A\{1} fh(sg, a) for all h ≤ h?, i.e., value
functions for which the greedy policy would always choose to go to sb in the first h? steps. We therefore have shown that

min
f∈F : α(f,F,ΠF ,expl,M)>0

α(f,F ,ΠF , expl,M) =
1

4

( ε
A

)h?/2
∈
[
v

1

4

√
ε

A
, v

]
.

Performance of ε-greedy. Since the regression loss in Algorithm 1 accesses function values f̂h+1(x′, a′) at state-action
pairs (x′, a′) for which the algorithm has never chosen a′ in x′, the behavior of ε-greedy depends on their default value. To
avoid a bias towards optimistic or pessimistic intialization, we assume that the datasets Dh in Algorithm 1 are initialized
with one sample transition (x, a, r, x′) from each (x, a) ∈ X ×A. An alternative to this assumption is to simply define the
value function class F given to the agent to be restricted to only those functions that match the optimal value as soon as an
action a 6= 1 was taken, i.e.,

Fh = {f : X ×A → [0, 1] | fh(x, a) = Q?h(x, a)∀(x, a) with x = sb or a 6= 1}

In this case, the argument below applies as soon as the agent visits (sg, 1) at time h? for the first time.

Note that the MDPM is deterministic with the exception of the reward at (sg, 1) at time h?. Therefore, only two possible
intializations are possible. With probability at least 1/4, the algorithm was initialized with (sg, 1, 0, sb) at time h?. In this
case, we have

f̂h(sg, a) =

{
h?−h
8h? if a = 1
h?−h+1

8h? if a 6= 1

for all h ≤ h? and πf̂ would always choose a wrong action. Unless the agent receives a new sample from state-action pair
(sg, 1) at time h?, this estimate will also not change since all other observations are deterministic. The probability with
which expl(f̂) will receive such a sample in an episode is (ε/A)h

?

and thus, the agent will require Ω(1/v2) samples in
expectation before it can switch to a different function.

Extension to S ≥ 8. Without loss of generality, we can assume that S is even, otherwise just choose S → S − 1. We then
create n = S/2 copies of the 2-state MDP described above. The initial state distribution is uniform over all copies of sg.2.
The value of any deterministic policy is still only determined by how long it stays in sg,i, each copy of sg ,

Eπ[V π(x1)] =
3

8
· 1

n

n∑
i=1

1{Li(π) ≥ h?}+
1

8
· 1

n

n∑
i=1

(
1− L(π)

h?

)
1{L(π) < h?}

2If we desire a deterministic start state, we can just increase the horizon H ← H + 1 by one and have all actions transition uniformly
to all copies in h = 1.
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where Li(π) is the number of time steps the agent stays in sg,i for each copy i. The instantaneous regret of π is then

Eπ[V ?(x1)− V π(x1)] =
3

8
− 1

8
· 1

n

n∑
i=1

(
1 +

L(π)

h?

)
1{L(π) < h?}

=
1

n

n∑
i=1

(
1

4
+
L(π)

8h?

)
1{L(π) < h?}

≥ 1

4
· 1

n

n∑
i=1

1{L(π) < h?}.

Thus, any policy π with instantaneous regret at least 1/16 needs to behave suboptimally in at least 3n/4 of the n copies. Let
F ′ = {f ∈ F : E[V ?(x1)− V πf (x1)] > 1/16} be all functions that have instantaneous regret at least 1/16. We can lower
bound the myopic exploration gap for any f ∈ F ′ by considering π′ = π? in (1). This gives

α(f,F ,ΠF , expl,M) ≥
√
Pexpl(f)(a1 = 1, . . . , ah? = 1)

1

4n

n∑
i=1

1
{
Li(π

f ) < h?
}

≥
√
Pexpl(f)(a1 = 1, . . . , ah? = 1)

3

16

≥
√

3n

4n

( ε
A

)h? 3

16
=

3
√

3

32

( ε
A

)h?/2
Further, for f ∈ F that behave optimally in 1/4n copies and choose a1 6= 1 in all other copies, all inequalities are tight.
Hence,

min
f∈F ′

α(f,F ,ΠF , expl,M) =
3
√

3

32

( ε
A

)h?/2
∈

[
v

3

32

√
3ε

A
, v

]
,

when we choose h? = d2 logε/A(32v/(3
√

3)e ≤ H .

Using the same intialization of datasets Dh of Algorithm 1 as in the S = 2 case, each copy i of the MDP has probability
p = 3/8 to be initialized with (sg,i, 1, 1, sg,i). By Hoeffding bound, the probability that at least n/2 copies are initialized in
such way is at most P(

∑n
i=1Xi − pn > n/8) ≤ exp(−2n/64). Thus, with probability at least 1− exp(−2n/64) ≥ 1/5,

there are at least n/2 copies i which are initialized with reward 0 for state-action pair (sg,i, 1). As in the S = 2 case, for
each i, the agent needs to collect another sample from this state-action pair which only happens with probability (ε/A)h

?

per
copy. Therefore, the probability that the agent receives an informative sample for any of the suboptimal copies is bounded
by (ε/A)h

?

and the agent needs to collect at least n/8 samples before the greedy policy can become 1/16-optimal. Hence,
the expected number of times until this happen is at least

1

5
· n

8
· (A/ε)h

?

= Ω

(
S

α(F ′,F)2

)
which completes the proof.

D. Proofs for Regret and Sample Complexity Upper Bounds
Theorem 1 (Sample Complexity Upper Bound). Let δ ∈ (0, 1) and T ∈ N, and suppose Algorithm 1 is run with a function
class F that satisfies Assumption 1. Further, let F ′ ⊆ F be any subset of value functions. Then, with probability at least
1− δ, the number of episodes within the first T episodes where f̂t ∈ F ′ is selected is bounded by

O

(
ln c(F ′,F)

α(F ′,F)2
H2d ln

(N̄F (T−1) lnT

δ

))
.

Here, d = dimBE(F ′,ΠF , 1/
√
T ) is the Bellman-Eluder dimension of F ′, and

α(F ′,F) := inf
f∈F ′

α(f,F), c(F ′,F) := sup
f∈F ′

c(f,F)

with α(f,F) and c(f,F) defined in Definition 1.
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Proof. We partition F ′ into F ′ = F ′1 ∪ · · · ∪ F ′imax
with F ′i = {f ∈ F ′ : c(f,F ,ΠF , expl,M) ∈ [ei−1, ei]} and

imax = dln supf∈F ′ c(f,F ,ΠF , expl,M)e and denote by Ki,T = {t ∈ [T ] : f̂k ∈ F ′i} the (random) set of episodes in [T ]
where the Q-function estimate for the episode is in the i-th part. To keep the notation concise, we denote for each t ∈ N

• πt as the greedy policy of f̂t, i.e., πt = πf̂t

• π̃t as the exploration policy in episode t, i.e., π̃k = expl(f̂t)

• π′t as the improvement policy π′ ∈ ΠF that attains the maximum in the myopic exploration gap definition for f̂t
(defined in (1)).

The total difference in return between the greedy and improvement policies can be bounded using Lemma 3 as

∑
t∈Ki,T

(
V
π′t
1 (x1)− V πt1 (x1)

)
≤
∑
t∈Ki,T

H∑
h=1

Eπt [(Ehf̂t)(xh, ah)]−
∑
t∈Ki,T

H∑
h=1

Eπ′t [(Ehf̂t)(xh, ah)] (10)

Using the completeness assumption in Assumption 1, we show in Lemma 4 that with probability at least 1 − δ for all
(h, t) ∈ [H]× N

t−1∑
τ=1

Eπ̃τ [(E2
hf̂t)(xh, ah)] ≤ 3

t− 1

T
+ 176 ln

6N ′F (1/T ) ln(2t)

δ

where N ′F (1/T ) =
∑H
h=1NFh(1/T )NFh+1

(1/T ). In the following, we consider only the event where this condition holds.
Leveraging the definition of c(f,F ,ΠF , expl,M), we bound∑

τ∈Ki,t−1

Eπ′τ [(Ehf̂t)(xh, ah)]2 ≤
∑

τ∈Ki,t−1

Eπ′τ [(E2
hf̂t)(xh, ah)] (Jensen’s inequality)

≤
t−1∑
τ=1

Eπ′τ [(E2
hf̂t)(xh, ah)] ≤ ei

t−1∑
τ=1

Eπ̃τ [(E2
hf̂t)(xh, ah)]

≤ 179ei ln
6N ′F (1/T ) ln(2t)

δ
.

Using the distributional Eluder dimension machinery in Lemma 5, this implies that

∑
t∈Ki,T

|Eπ′t [(Ehf̂t)(xh, ah)]| ≤ O

(√
eid(F ′i) ln

N ′F (1/T ) ln(T )

δ
|Ki,T |+ min{|Ki,T |, d(F ′i)}

)

where d(F ′) = dimBE(F ′,ΠF ′ , T−1/2) = maxh∈[H] dimDE(F ′h−KhF ′h,ΠF ′ , T−1/2) is the Bellman-Eluder dimension.
Applying the arguments above verbatim, we can derive the same upper-bound for

∑
t∈Ki,T |Eπt [(E

2
hf̂t)(xh, ah)]|. Plugging

the above two bounds in Equation 10, we obtain

∑
t∈Ki,T

[
V
π′t
1 (x1)− V πt1 (x1)

]
≤ O

(√
eiH2d(F ′i) ln

N ′F (1/T ) ln(T )

δ
|Ki,T |+Hd(F ′i)

)
.

Using the myopic exploration gap in Definition 1, we lower-bound the LHS as∑
t∈Ki,T

[
V
π′t
1 (x1)− V πt1 (x1)

]
≥ |Ki,T |

√
ei−1 inf

f∈F ′i
α(f,F ,ΠF , expl,M)

Combining both bounds and rearranging yields

|Ki,T | ≤ O

(√
H2d(F ′i)

inff∈F ′i α(f,F ,ΠF , expl,M)2
ln
N ′F (1/T ) ln(T )

δ
|Ki,T |+

Hd(F ′i)
inff∈F ′i α(f,F ,ΠF , expl,M)

)
.
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We apply the AM-GM inequality and rearrange terms to arrive at

|Ki,T | ≤ O

(
H2d(F ′i)

inff∈F ′i α(f,F ,ΠF , expl,M)2
ln
N ′F (1/T ) ln(T )

δ

)
.

Taking a union bound over i ∈ [imax] and summing the previous bound gives

T∑
t=1

1

{
f̂t ∈ F ′

}
=

imax∑
i=1

|Ki,T | ≤ O

(
imax∑
i=1

(
d(F ′i)

inff∈F ′i α(f,F ,ΠF , expl,M)2

)
H2 ln

N ′F (1/T ) ln(T )

δ

)

≤ O

(
H2d(F ′)

inff∈F ′ α(f,F ,ΠF , expl,M)2
ln( sup

f∈F ′
c(f,F ,ΠF , expl,M)) ln

N ′F (1/T ) ln(T )

δ

)
.

Finally, since N ′F (1/T ) =
∑H
h=1NFh(1/T )NFh+1

(1/T ) ≤
(∑H

h=1NFh(1/T )
)2

= N̄F (1/T )2, the statement follows.

Lemma 3. Let f = {fh}h∈[H] with fh : X ×A → R and πf be the greedy policy of f . Then for any policy π′ ∈ Π,

V π
′

1 (x1)− V π
f

1 (x1) ≤
H∑
h=1

Eπf [(Ehf)(xh, ah)]−
H∑
h=1

Eπ′ [(Ehf)(xh, ah)].

Proof. For any function g : X → R, we define (Bhg)(x, a) = E [rh + g(xh+1) | xh = x, ah = a]. First, we write the
difference in value functions at any state x ∈ X and time h ∈ [H] as

V π
′

h (x)− V πh (x) = E[Qπ
′

h (x, a) | a ∼ π′h(x)]−Qπh(x, πh(x))

= E[Qπ
′

h (x, a)− fh(x, a) | a ∼ π′h(x)] + fh(x, πh(x))−Qπh(x, πh(x))

+ E[fh(x, a) | a ∼ π′h(x)]− fh(x, πh(x))︸ ︷︷ ︸
≤0

(11)

where the last term is non-positive because π is the greedy policy of f . Let gh(x) = maxa∈A fh(x, a) for all x ∈ X and
write the difference Qπ

′

h − fh as

Qπ
′

h − fh = BhV π
′

h+1 − fh + Bhgh+1 − Bhgh+1 = Bh(V π
′

h+1 − gh+1)− fh + Thfh+1

= Bh(V π
′

h+1 − gh+1)− (Ehf)(xh, ah)

where we used the linearity of B and the fact that Bhgh+1 = Thfh+1. For any x ∈ X we can further bound

V π
′

h+1(x)− gh+1(x) ≤ E[Qπ
′

h+1(x, a)− fh+1(x, a) | a ∼ π′h(x)]

and combining this with the previous identity, we have

Eπ′ [Qπ
′

h (xh, ah)− fh(xh, ah) | xh = x] ≤ Eπ′ [V π
′

h+1(xh+1)− gh+1(xh+1)− (Ehf)(xh, ah) | xh = x]

≤ Eπ′ [(Qπ
′

h+1(xh+1, ah+1)− fh+1(xh+1, ah+1))− (Ehf)(xh, ah) | xh = x].
(12)

Similarly, we can write

Eπ[(fh −Qπh)(xh, ah) | xh = x] = Eπ[(fh − Thfh+1 + Bhgh+1 − BhV πh+1)(xh, ah) | xh = x]

= Eπ[(Ehf)(xh, ah) + gh+1(xh+1)− V πh+1(xh+1) | xh = x]

= Eπ[(Ehf)(xh, ah) + (fh+1(xh+1, ah+1)−Qπh+1(xh+1, ah+1)) | xh = x] .

(13)

Applying Equation 12 and Equation 13 recursively to Equation 11, we arrive at the desired statement

V π
′

1 (x1)− V π1 (x1) ≤ Eπ′ [Qπ
′

1 (x1, a1)− f1(x1, a1)] + Eπ[(f1 −Qπ1 )(x1, a1)]
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≤
H∑
h=1

Eπ[(Ehf)(xh, ah)]−
H∑
h=1

Eπ′ [(Ehf)(xh, ah)].

Lemma 4. Consider Algorithm 1 with a function class F that satisfies Assumption 1. Let ρ ∈ R+ and δ ∈ (0, 1). Then
with probability at least 1− δ for all h ∈ [H] and t ∈ N

t−1∑
τ=1

Eexpl(f̂τ )[(E
2
hf̂t)(xh, ah)] ≤ 3ρt+ 176 ln

6N ′F (ρ) ln(2t)

δ

where N ′F (ρ) =
∑H
h=1NFh(ρ)NFh+1

(ρ) is the sum of `∞ covering number of Fh ×Fh+1 w.r.t. radius ρ > 0.

Proof. The proof closely follows the proof of Lemma 39 by Jin et al. (2021). We first consider a fixed t ∈ N, h ∈ [H] and
f = {fh, fh+1} with fh ∈ Fh, fh+1 ∈ Fh+1. Let

Yt,h(f) = (fh(xt,h, at,h)− rt,h −max
a′

fh+1(xt,h+1, a
′))2 − ((Thfh+1)(xt,h, at,h)− rt,h −max

a′
fh+1(xt,h+1, a

′))2

= (fh(xt,h, at,h)− (Thfh+1)(xt,h, at,h))

× (fh(xt,h, at,h) + (Thfh+1)(xt,h, at,h)− 2rt,h − 2 max
a′

fh+1(xt,h+1, a
′))

and let Ft be the σ-algebra under which all the random variables in the first t − 1 episodes are measurable. Note that
|Yt,h(f)| ≤ 4 almost surely and the conditional expectation of Yt,h(f) can be written as

E[Yt,h(f) | Ft] = E[E[Yt,h(f) | Ft, xt,h, at,h] | Ft] = Eexpl(f̂t)
[(fh − Thfh+1)(xh, ah)2] .

The variance is bounded as

Var[Yt,h(f) | Ft] ≤ E[Yt,h(f)2 | Ft] ≤ 16E[(fh − Thfh+1)(xt,h, at,h)2 | Ft] = 16E[Yt,h(f) | Ft]

since |fh(xt,h, at,h) + (Thfh+1)(xt,h, at,h)− 2rt,h − 2 maxa′ fh+1(xh+1, a
′)| ≤ 4 almost surely. Applying Lemma 6 to

the random variable Yt,h(f), we have that with probability at least 1− δ, for all t ∈ N,

t∑
i=1

E[Yi,h(f) | Fi] ≤ 2At

√√√√ t∑
i=1

Var[Yi,h(f) | Fi] + 12A2
t +

t∑
i=1

Yi,h(f)

≤ 8At

√√√√ t∑
i=1

E[Yi,h(f) | Fi] + 12A2
t +

t∑
i=1

Yi,h(f) ,

where At =
√

2 ln ln(2t) + ln(6/δ). Using AM-GM inequality and rearranging terms in the above, we get that

t∑
i=1

E[Yi,h(f) | Fi] ≤ 2

t∑
i=1

Yi,h(f) + 88A2
t ≤ 2

t∑
i=1

Yi,h(f) + 176 ln
6 ln(2t)

δ
.

Let Zρ,h be a ρ-cover of Fh × Fh+1. Now taking a union bound over all φh ∈ Zρ,h and h ∈ [H], we obtain that with
probability at least 1− δ for all φh and h ∈ [H]

t∑
i=1

E[Yi,h(φh) | Fi] ≤ 2

t∑
i=1

Yi,h(φh) + 176 ln
6N ′F (ρ) ln(2t)

δ
.

This implies that with probability at least 1− δ, for all f = {fh, fh+1} ∈ Fh ×Fh+1 and h ∈ [H],

t∑
i=1

E[Yi,h(f) | Fi] ≤ 2

t∑
i=1

Yi,h(f) + 3ρ(t− 1) + 176 ln
6NF (ρ) ln(2t)

δ
.
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This holds in particular for f = f̂t = {f̂t,h, f̂t,h+1} for all t ∈ N. Finally, we have

t−1∑
i=1

Yi,h(f̂t) =

t−1∑
i=1

(f̂t,h(xi,h, ai,h)− ri,h −max
a′

f̂t,h+1(xi,h+1, a
′))2

−
t−1∑
i=1

((Thf̂t,h+1)(xi,h, ai,h)− ri,h −max
a′

f̂t,h+1(xi,h+1, a
′))2

= inf
f ′∈Fh

t−1∑
i=1

(f ′(xi,h, ai,h)− ri,h −max
a′

f̂t,h+1(xi,h+1, a
′))2

−
t−1∑
i=1

((Thf̂t,h+1)(xi,h, ai,h)− ri,h −max
a′

f̂t,h+1(xi,h+1, a
′))2

≤ 0 ,

where the final inequality follows from completeness in Assumption 1. Therefore, we have with probability at least 1− δ
for all t ∈ N

t−1∑
i=1

Eexpl(f̂i)
[(f̂t,h − Thf̂t,h+1)(xh, ah)2] ≤ 3ρ(t− 1) + 176 ln

6HN ′F (ρ) ln(2t)

δ
.

Theorem 3 (Regret Bound of ε-Greedy). Let T ∈ N and suppose we run Algorithm 1 with ε-greedy exploration and a
function class F that satisfies Assumption 1. Further, let there be a h ∈ [1, H] such that for any λ ∈ [0, 1], α(F ′λ,F) ≥
Ω((ε/A)h/2λ) where F ′λ ⊂ F denotes the set of all the value functions that are at least λ suboptimal. Then, with probability
at least 1− δ, we have,

Reg(T ) ≤ εHT + Õ
(√hAhdH3T

εh
ln
N̄F (T−1)

δ

)
,

where d = dimBE(F ,ΠF , 1/
√
T ) denotes the Bellman-Eluder dimension of F . Furthermore, setting the exploration

parameter ε = Θ̃
((
hHAhd
T

) 1
2+h
)
, we get that

Reg(T ) ≤ Õ
(
H

h+3
h+2T

h+1
h+2
(
hAhd ln

N̄F (T−1)

δ

) 1
h+2

)
.

Proof. We decompose the regret as

Reg(T ) =

T∑
t=1

(
V ?(xt,1)− V expl(f̂t)(xt,1)

)
=

T∑
t=1

(V ?(xt,1)− V πt(xt,1)) +

T∑
t=1

(
V πt(xt,1)− V expl(f̂t)(xt,1)

)
,

and bound both terms individually. The excess regret due to exploration in the second term is bounded as

T∑
t=1

(
V πt(xt,1)− V expl(f̂t)(xt,1)

)
≤ THε.

Second, let Fi = {f ∈ F : V ?(xt,1) − V π
f

(xt,1) ∈ [(1/2)i, (1/2)i−1]} the value functions that incur regret
[(1/2)i, (1/2)i−1] per episode. Applying Theorem 1 above, we get

T∑
t=1

(V ?(xt,1)− V πt(xt,1)) ≤ T2−m +

m∑
i=1

2−iO

(
H2d

α(Fi,F)2
ln(c(Fi,F)) ln

mN̄Fi(1/T ) ln(T )

δ

)
.
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for any m ∈ N. For ε-greedy, we can bound α(Fi,F) ≤ (A/ε)H and thus

Reg(T ) ≤ THε+ T2−m +H3d ln(A/ε) ln
mN̄1/T (F) ln(T )

δ

m∑
i=1

2−iO

(
1

α(Fi,F)2

)
.

Assume α(Fi,F) ≥ (ε/A)h/22−i−1, which which always holds for h = H . Then

m∑
i=1

2−i
1

α(Fi,F)2
≤ Ah

εh

m∑
i=1

2−i

2−2i−2
=
Ah

εh

m∑
i=1

2i+2 ≤ 4Ahm

εh
2m

and setting m such that 2m =
√

T

mdH3 ln(A/ε) ln
N̄F (1/T ) ln(T )

δ

(ε/A)h/2 gives

Reg(T ) ≤ THε+ Õ

(√
hdH3AhT

εh
ln(A) ln(T ) ln

N̄F (1/T )

δ

)
.

Finally, denote by L = Õ(ln(A) ln(T ) ln N̄F (1/T )
δ ) the log-terms above and assume the exploration parameter is chosen as

ε = Θ

((
hHdAhL

T

) 1
2+h

)
.

Then the regret bound evaluates to

Reg(T ) ≤ Õ

(
HT

h+1
h+2

(
HhAhd ln(A) ln

N̄F (1/T )

δ

) 1
h+2

)
.

E. Supporting Technical Results
We recall the following standard definitions.

Definition 4 (ε-independence between distributions). Let G be a class of functions defined on a space X , and ν, µ1, . . . , µn
be probability measures over X . We say ν is ε-independent of {µ1, µ2, . . . , µn} with respect to G if there exists g ∈ G such
that

√∑n
i=1(Eµi [g])2 ≤ ε, but |Eν [g]| > ε.

Definition 5 ((Distributional Eluder (DE) dimension). Let G be a function class defined on X , and Π be a family of
probability measures over X . The distributional Eluder dimension dimDE(G,Π, ε) is the length of the longest sequence
{ρ1, . . . , ρn} ⊂ Π such that there exists ε′ ≥ ε where ρi is ε′-independent of {ρ1, . . . , ρi−1} for all i ∈ [n].

Definition 6 (Bellman Eluder (BE) dimension (Jin et al., 2021)). Let EhF be the set of Bellman residuals induced by F at
step h, and Π = {Πh}Hh=1 be a collection of H probability measure families over X ×A. The ε-Bellman Eluder dimension
of F with respect to Π is defined as

dimBE(F ,Π, ε) := max
h∈[H]

dimDE(EhF ,Π, ε) .

Lemma 5 (Lemma 41, Jin et al. (2021)). Given a function class Φ defined on X with |φ(x)| ≤ C for all (φ, x) ∈ Φ×X
and a family of probability measures Π over X . Suppose sequences {φi}i∈[K] ⊆ Φ and {µi}i∈[K] ⊆ Π satisfy for all
k ∈ [K] that

∑k−1
i=1 (Eµi [φk])2 ≤ β. Then for all k ∈ [K] and ω > 0

k∑
t=1

|Eµt [φt]| ≤ O
(√

dimDE(Φ,Π, ω)βk + min{k,dimDE(Φ,Π, ω)}C + kω
)

Lemma 6 (Time-Uniform Freedman Inequality). Suppose {Xt}∞t=1 is a martingale difference sequence with |Xt| ≤ b. Let

Var`(X`) = Var(X`|X1, · · · , X`−1)
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Let Vt =
∑t
`=1 Var`(X`) be the sum of conditional variances of Xt. Then we have that for any δ′ ∈ (0, 1) and t ∈ N

P

(
t∑
`=1

X` > 2
√
VtAt + 3bA2

t

)
≤ δ′

Where At =
√

2 ln ln
(
2
(
max

(
Vt
b2 , 1

)))
+ ln 6

δ′ .


