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Abstract
Deep learning based image reconstruction meth-
ods outperform traditional methods. However,
neural networks suffer from a performance drop
when applied to images from a different distri-
bution than the training images. For example,
a model trained for reconstructing knees in ac-
celerated magnetic resonance imaging (MRI)
does not reconstruct brains well, even though
the same network trained on brains reconstructs
brains perfectly well. Thus there is a distribu-
tion shift performance gap for a given neural net-
work, defined as the difference in performance
when training on a distribution P and training
on another distribution Q, and evaluating both
models on Q. In this work, we propose a domain
adaptation method for deep learning based com-
pressive sensing that relies on self-supervision
during training paired with test-time training at
inference. We show that for four natural distri-
bution shifts, this method essentially closes the
distribution shift performance gap for state-of-
the-art architectures for accelerated MRI.

1. Introduction
Deep learning methods enable fast and accurate image
reconstruction and outperform traditional methods on
a variety of imaging tasks (Dong et al., 2014; Jin et al.,
2017; Zhang et al., 2017; Sriram et al., 2020; Rivenson
et al., 2018; Jalal et al., 2021). Performance is typically
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measured as in-distribution performance: A dataset is
split into test and training sets, and a method trained
on the training set is evaluated on the test set.

In practice, however, the train and test distributions are
usually different: For example, we train a network on
data from one hospital, and apply the network to data
from a different hospital. Or we train on data acquired
with one scanner type and acquisition mode, and apply
it to a different scanner type or acquisition mode.

Deep learning imaging methods perform significantly
worse under such distribution shifts. For accelerated
MRI, a medical imaging technique, deep learning meth-
ods incur a significant accuracy drop when shifting
from one distribution to another, as shown for three
natural distribution shifts by Zalbagi Darestani et al.
(2021) and for SNR changes by Knoll et al. (2019).

The part of this accuracy drop that can be overcome
in principle can be measured by the distribution shift
performance gap: Suppose P and Q denote the train
and test distributions. We define the distribution shift
performance gap as the reconstruction accuracy (mea-
sured by a standard metric, e.g., the SSIM score) of
training on Q and testing on Q minus the reconstruc-
tion accuracy of training on P and testing on Q.

In this paper, we propose a novel domain adaptation
method for deep learning based compressive sensing,
and show that it overcomes the gap caused by four natu-
ral distribution shifts in accelerated MRI. Our approach
consists of two parts: (1) including self-supervision
during the supervised training stage of deep learning
models, and (2) performing self-supervised test-time
training for each new test sample at inference.

We show that our method works with two well-
known network architectures: the baseline U-Net (Ron-
neberger et al., 2015) and the state-of-the-art end-to-
end variational network (Sriram et al., 2020). We eval-
uate robustness under four natural distribution shifts,
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Figure 1: We study our domain adaptation method
under four natural distribution shifts: anatomy, dataset,
modality, and acceleration shifts. P and Q are the train
and test domains.

illustrated in Figure 1: (1) anatomy shift, (2) dataset
shift where the training set comes from a different
hospital than the test set, (3) modality shift where the
acquisition mode changes, and (4) acceleration shift
where the acceleration factor changes. For the U-Net,
our method closes the distribution shift performance
gap by 98.6, 87.4, 96.3%, 97.4% (see Table 1) which in
each case yields a significant increase in image quality.

1.1. Prior work
A series of recent influential works in image classi-
fication has shown that image classifiers often incur
a significant performance drop under natural distri-
bution shifts (Recht et al., 2019; Taori et al., 2020;
Hendrycks et al., 2021; Koh et al., 2021; Miller et al.,
2021). For image reconstruction, Zalbagi Darestani
et al. (2021) demonstrated that reconstruction methods
for accelerated MRI (even un-trained methods such as
ℓ1-minimization tuned on the train distribution) also
suffer a significant accuracy drop when shifting from
one distribution to another. (Knoll et al., 2019; John-
son et al., 2021) also observed a performance drop
under distribution shifts in MRI. Consequently, several
works, mainly in image classification, made efforts to
overcome the distribution shift performance gap:

Robust optimization. Distributionally-robust opti-
mization learns a model by minimizing a loss with a
robustness notion (Duchi & Namkoong, 2019; Duchi

et al., 2020; Duchi & Namkoong, 2021). Robust opti-
mization methods yield a robustness gain on synthetic
distribution shifts, and can yield a small gain on some
natural shifts Koh et al. (2021), but it is unclear whether
they yield significant gains on natural shifts.

Data-driven interventions. Training on larger
datasets (Mahajan et al., 2018; Yalniz et al., 2019) and
data augmentations (DeVries & Taylor, 2017; Geirhos
et al., 2018; Zhang et al., 2018; Engstrom et al., 2019;
Hendrycks et al., 2019; Yun et al., 2019; Xie et al.,
2020) are popular data-driven robustness interventions.
For classification, Taori et al. (2020) found training
with more data to marginally improve model robust-
ness to natural distribution shifts. Fabian et al. (2021)
found a small improvement by using data augmenta-
tions, and Desai et al. (2021) recently also proposed a
data augmentation scheme that yields robustness gains
for accelerated MRI.

Domain adaptation. Fine-tuning-based domain
adaptation pre-trains classifiers on an auxiliary dis-
tribution R, then fine-tunes on a train distribution
P , and evaluates on a test distribution Q to measure
the out-of-distribution (OOD) generalization perfor-
mance (Sharif Razavian et al., 2014; Donahue et al.,
2014; Kornblith et al., 2019). Zero-shot learning meth-
ods, pre-train classifiers on R and perform zero-shot
inference on Q (Radford et al., 2021). A third group
of domain adaptation methods, most closely related to
ours, train classifiers on P and perform per-instance
test-time training (TTT) at inference (Sun et al., 2020;
Liu et al., 2021b; Wang et al., 2021). However, Miller
et al. (2021) has shown that for several natural distri-
bution shifts, zero-shot methods offer only marginal
robustness improvements and the other domain adapta-
tion methods do not offer any improvement.

Domain adaptation methods have also been proposed
for improving robustness in imaging. For image denois-
ing, Mohan et al. (2021) proposed GainTuning, which
performs TTT at inference only on a few scaling fac-
tors of a neural network. We studied a version of this
method tailored to MRI, and found no improvement in
robustness for our problems. For accelerated MRI re-
construction, Liu et al. (2021a) proposed a method that
assumes access to examples from the target domain,
which we do not have here.

Finally, Yaman et al. (2021) proposed a zero-shot learn-
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training scheme setup P: knee P: fastMRI P: AXT2 P: 4x P: fastMRI
Q: brain Q: Stanford Q: AXT1PRE P: 2x Q: adv-filt fastMRI

supervised
ctrain on Q test on Q 0.9187 0.7164 0.9026 0.9004 0.6865
train on P test on Q 0.8521 0.6830 0.8506 0.8385 0.6861
distribution shift performance gap 0.0666 0.0334 0.0520 0.0619 0.0004

self-supervision
included

train on Q test on Q + TTT 0.9234 0.7268 0.9086 0.9192 0.6827
train on P test on Q + TTT 0.9225 0.7226 0.9067 0.9176 0.6806
distribution shift performance gap 0.0009 0.0042 0.0019 0.0016 0.0021
fraction of gap closed by TTT 98.6% 87.4% 96.3% 97.4% –

Table 1: Self-supervision with test-time training (TTT) closes 99%, 87%, 96%, and 97% of the distribution
shift performance gap for anatomy, dataset, modality, and acceleration distribution shifts. SSIM scores are
averaged over 100 samples for U-Net. The adversarially-filtered shift is an example where the distribution shift
performance gap is close to zero (more than an order of magnitude smaller than for the other shifts), and thus
TTT is not having an impact here (and other methods are also not expected to have an impact here).

ing method (ZS-SSL) for accelerated MRI and demon-
strated that it can be used as a TTT method as well.
Specifically, Yaman et al. (2021) applied ZS-SSL to
a pre-trained (on one anatomy in a fully supervised
manner) model and observed that it improves model
robustness under anatomy shift. Our TTT approach
differs from ZS-SSL in that ZS-SSL relies on creat-
ing a synthesized dataset by repeatedly splitting the
given under-sampled measurement into training and
validation measurements, whereas our approach is to
include a self-supervised loss in pre-training and then
performing TTT with respect to that self-supervised
loss. See the supplement for further comparison.

2. Problem setup
We consider the problem of reconstructing an image
from undersampled measurements. We focus on accel-
erated multi-coil magnetic resonance imaging (MRI),
but our method also applies to other compressive sens-
ing image reconstruction problems, for example to
computed tomography. For such imaging problems,
deep learning methods perform best. In our setup, the
network is trained on one distribution (e.g., knees) and
is tested on another distribution (e.g., brains).

2.1. Compressive sensing
Our goal is to reconstruct an image x∗ ∈ CN from
undersampled measurements

y = Ax∗ + noise ∈ CM , (1)

where the number of measurements, M , is typically
lower than the dimension of the image, N . We are
given the measurement matrix A. We focus on accel-
erated MRI, in which the measurements, often called

k-space measurements, are obtained as

yi = MFSix
∗ + noise ∈ CMc , i = 1, . . . , nc.

Here, nc denotes the number of radiofrequency coils,
Si is a complex-valued position-dependent coil sensi-
tivity map, that is applied through element-wise multi-
plication to the image x∗, F is the 2D discrete Fourier
transform, and M is a mask (a diagonal matrix with
ones and zeros on its diagonal) that implements under-
sampling of k-space data. The measurements yi and
matrices can be organized so that the measurement
model has the form (1).

The MRI datasets we work with (see Section 5) consist
of pairs of measurements and corresponding reference
image {(xj ,yj)}. The datasets are constructed from
fully-sampled MRI data (i.e., taken with an identity
mask M = I). The reference images are obtained by
reconstructing the coil images from each full coil mea-
surement as xi = F−1yi and then combining them via
the root-sum-of-squares (RSS) algorithm to a single
image: x =

√∑nc
i=1|xi|2. Here, |·| and

√
· denote

element-wise absolute value and squared root opera-
tions. The under-sampled k-space measurements (for
acceleration) are obtained by applying a standard 1D
random mask (random vertical lines in the frequency
domain), which is the default in the fastMRI challenge.
We consider 4x acceleration throughout the paper, the
acceleration factor considered in the fastMRI chal-
lenge (Knoll et al., 2020; Muckley et al., 2021).

2.2. Image reconstruction with neural networks
We study our domain adaptation method for two neural
networks, a standard baseline method (U-net) and the
state-of-the-art reconstruction method (VarNet).
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U-Net (Ronneberger et al., 2015) is a convolutional
network which for MRI is trained end-to-end to map
a least-squares reconstruction obtained from a mea-
surement y to a clean image x by minimizing the loss
L(y,x,θ) =

∥∥x− fθ(A
†y)
∥∥
1

over a training dataset
{(x1,y1), . . . , (xn,yn)} (Jin et al., 2017). Here, fθ is
a U-Net with parameters θ.

VarNet is a variational network that gives state-of-the-
art performance (Sriram et al., 2020). Similar to U-Net,
VarNet is trained to map an under-sampled measure-
ment to a clean image, but contrary to U-net, it contains
data consistency blocks.

2.3. Problem statement: Overcoming the
distribution shift performance gap

Neural networks for MRI are often trained on the
fastMRI training set (Zbontar et al., 2020) and eval-
uated on the fastMRI test set. This measures in-
distribution performance since the sets are constructed
by collecting data and splitting it in train and test sets.

This evaluation mode is not reflective of performance
in practice, where we typically train on data acquired
in one setup (anatomy, scanner type, acquisition mode,
etc.) and apply the network in a different setup on data
from another anatomy, scanner, or acquisition mode.
All those changes introduce distribution shifts.

Under anatomy shifts (training on knee and testing on
brain) and dataset shifts (training on NYU data (Zbon-
tar et al., 2020) and testing on Stanford data (Epperson
et al., 2013)), different methods lose a similar and sig-
nificant amount in image quality Zalbagi Darestani
et al. (2021). This loss comprises two parts: one is due
to variations in difficulty of the datasets; e.g., images
with finer details are harder to reconstruct and result in
lower scores. This part cannot be overcome by better
algorithms or even by having access to the test distri-
bution. The second part is due to a missfit of algorithm
and test distribution, this can in principle be overcome
if we had access to the test distribution. We call this
second gap the distribution shift performance gap.

The goal of this work is to close the distribution shift
performance gap without having access to the test dis-
tribution. We assume that we can train a network on
a training distribution P , but at inference, we are only
given a measurement y from a test distribution Q, with-
out any other information about the test distribution.

3. The distribution shift performance gap for
four natural distribution shifts

In this section, we introduce the four natural distribu-
tion shifts we consider and measure the corresponding
distribution shift performance gap. We also include a
fifth distribution shift for which the distribution shift
performance gap is close to zero, even though we ob-
serve a performance drop.

We then show that the models we consider have the
ability to close the performance gap, by training a
network on data from both distributions. This show
that the networks we consider can perform well on both
distributions simultaneously. Of course, in practice we
cannot train on the test distribution, since we do not
have access to examples from the test distribution.

3.1. Natural distribution shifts considered
We consider four natural distribution shifts illustrated
in Figure 1, and one artificial distribution shift.

Anatomy shift. We consider an anatomy shift from
training on fastMRI knee images to testing on fastMRI
brain images.

Dataset shift. We consider a dataset shift from train-
ing on fastMRI knee images (collected at NYU) to test-
ing on Stanford knee images (Epperson et al., 2013).
The main differences are: (1) The Stanford data is con-
structed via volumetric 3D recording (fastMRI scans
are 2D), (2) The Stanford set contains samples with a
lower frequency resolution than fastMRI, and (3) the
slice thickness is 5 times smaller in the Stanford set.

Modality shift. A modality shift occurs when the
acquisition mode of training images is different than
the one for test images. A modality shift is subtle, in
that it occurs within an anatomy (say brain) and only
the contrast of the images changes. We consider a
modality shift from AXT2 to AXT1PRE images (see
Figure 1 for an example, and the supplement for the
change in pixel intensity distribution).

Acceleration shift. We consider an acceleration shift
from training on 4x accelerated measurements to test-
ing on 2x accelerated measurements.

For each of these natural distribution shifts, we com-
pute the distribution shift performance gap for a given
model as the gap in SSIM (an image comparison met-
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ric) when the training domain changes. Table 1 shows
the distribution shift performance gap for U-Net given
each of the distribution shifts explained above.

We note that there are distribution shifts for which the
distribution shift performance gap is essentially zero,
and thus no robustness intervention can be helpful.
An example is an adversarially-filtered shift which
occurs when the target distribution contains hard-to-
reconstruct samples from the original domain. Specifi-
cally, models trained on the fastMRI dataset achieve
a significantly lower score on fastMRI-A, which con-
tains hard-to-reconstruct samples (Zalbagi Darestani
et al., 2021). However, models achieve a low score on
fastMRI-A simply because those samples contain finer
details. This can be seen in Table 1 where the best
performance obtainable by models is 0.6865 and when
models are trained on fastMRI instead of fastMRI-A,
they still achieve that performance on fastMRI-A. This
example shows that a performance degradation on the
target domain does not necessarily translate into a dis-
tribution shift performance gap as defined above.

3.2. Networks can close the distribution shift
performance gap

Before describing our domain adaptation method, we
investigate whether models are capable of achieving
close-to-zero performance gap. To this end, we as-
sume access to data from distribution Q and train a
U-Net on the mixture distribution of P and Q, for each
distribution shift introduced in the previous section,
and evaluate the models on the two distributions. The
results are shown in Figure 2, which depicts perfor-
mance as a function of the mixture coefficient, which
indicates the proportion of data from distribution Q.

The distribution shift performance gap is captured by
the difference in the vertical direction between points
with mixture coefficient 1.0 and 0.0. For the natural
distribution shifts we study, there is a significant distri-
bution shift performance gap, while for adversarially-
filtered shift, the gap is relatively small.

We observe an approximately vertical section inter-
sected with an approximately horizontal section at a
relatively sharp angle. This shows that, when more
data from the target distribution Q is added to the train-
ing set, performance on Q increases while performance
on P does not degrade. As a consequence, the perfor-
mance gap is roughly closed when the model is trained

on the mixture distribution with the mixture coefficient
at the intersection point.

4. Method: Incorporating self-supervised
training and then performing test-time
training at inference

In this section, we describe our domain adaptation
method for compressive sensing which incorporates a
self-supervised loss into the training of a deep learning
model, and performs test-time training (TTT) during
inference. Let fθ be a neural network mapping a coarse
reconstruction from a measurement y to a clean image
(e.g., a U-Net or VarNet). The training and inference
stages are as follows.

Training stage: Given a training set consist-
ing of (ground-truth-image, measurement) pairs
{(x1,y1), . . . , (xn,yn)}, we learn a model by min-
imizing the loss function L(y,x,θ) =

1

n

n∑
i=1

∥∥xi − fθ(A
†yi)

∥∥
1

∥xi∥1︸ ︷︷ ︸
Lsup

+

∥∥yi −Afθ(A
†yi)

∥∥
1

∥yi∥1︸ ︷︷ ︸
Lself

.

(2)

Here, Lsup is the supervised part of the loss function
which ensures that the output of the network is close
to the ground truth image. For our setup, the ℓ1-norm
works well as a loss but other choices, such as the
SSIM loss, also work.

The un-supervised loss we propose is simply enforcing
data-consistency, and might seem like an odd choice,
given that existing TTT schemes from the classifica-
tion literature typically choose an auxiliary task, and
not a fitting term as a self-supervised loss. We also ex-
perimented with auxiliary reconstruction tasks, such as
a self-supervised denoising task (see appendix), with-
out success. We further discuss the motivation for the
un-supervised loss below.

Inference stage: At inference, we are given a (typi-
cally out-of-distribution) measurement y, and we es-
timate an image as follows. We optimize the network
parameters θ with respect to the loss Lself for the given
under-sampled test measurement. We refer to this step
as TTT. To prevent TTT from overfitting to the mea-
surement, we early-stop the optimization based on a
self-validation loss computed over a fraction of the
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Anatomy shift Dataset shift Modality shift Acceleration shift Adversarially-filtered shift
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Figure 2: Performance of U-Net trained on the mixture distributions of source and target domains: Numbers
are the mixture coefficients; for example 0.25 means that 25% of the training data comes from distribution Q.
The performance gap is significant for the four natural distribution shifts, but essentially non-existent for the
adversarially-filtered shift. The model can perform well on both distributions P and Q simultaneously irrespective
of the distribution shifts. Error bars denote 95% confidence intervals.

under-sampled measurement. Specifically, let y be the
under-sampled test measurement with M frequency-
domain measurements. We split y into a ytrain and
yval, which contains a random fraction q = M/k of
all measurements in y. We then perform TTT on ytrain
and monitor the error between yval and the predicted
frequencies by the network for self-validation to stop
TTT early when the self-validation error starts to rise.

Motivation for the self-supervised loss: Our self-
supervised loss is low if the network generates an im-
age that is consistent with the measurement. This loss
might seem an unusual choice, given that TTT methods
from the literature usually use a loss based on an auxil-
iary task. However, we observe footprints of this loss in
works on cycle consistency losses in image translation
(Zhu et al., 2017) and image classification (Hoffman
et al., 2018). For image-to-image translation, Zhu et al.
(2017) proposed cycle consistency to learn a consistent
mapping from one image domain X to another image
domain Y . Oh et al. (2020) used a cycle consistency
loss to train a GAN for image reconstruction.

Our self-supervised loss uses the network as an im-
age model to enforce consistency between the output
and the under-sampled measurement. Therefore, we
expect such self-supervision to work well for architec-
tures that are good image models. Both U-Net and Var-
Net are Convolutional Neural Networks (CNNs), and
CNNs are good image priors even without any train-
ing Ulyanov et al. (2018). Un-trained CNNs are such
good image priors so that they can perform image re-
construction without any training (Ulyanov et al., 2018;
Heckel & Hand, 2019; Arora et al., 2020; Heckel &
Soltanolkotabi, 2020; Wang et al., 2020; Bostan et al.,
2020; Zalbagi Darestani & Heckel, 2021).

5. Experiments
In this section, we show that self-supervised training
with test-time training (TTT) closes the distribution
shift performance gap for the four natural distribution
shifts considered.

For each experiment, we have an original distribu-
tion P and a target distribution Q. Performance
is measured in terms of the structural similarity
index measure (SSIM). The distribution shift per-
formance gap when training is fully supervised is
defined as gapbefore = SSIM(train on Q test on Q) −
SSIM(train on P test on Q), and is defined as
gapafter = SSIM(train on Q test on Q + TTT) −
SSIM(train on P test on Q + TTT) when we include
self-supervision during training and then apply TTT. If
the robustness intervention is successful, then gapafter
is significantly smaller than gapbefore.

Throughout the experiments, we work with a U-Net
with 8 layers and 64 channels as the width factor and
a VarNet with 12 cascades and 18 channels as the
width factor. For training, we run the Adam opti-
mizer (Kingma & Ba, 2015) with learning rate set
to 1e-5 for U-Net (and 1e-4 for VarNet).

The train and test datasets we used for each experiment
are described below for each distribution shift. We
observed that a training set of 300-400 slices gives
a good performance on the validation set. For larger
training sets, we observed no significant performance
improvement (less than 0.5% SSIM score).

Anatomy shift: Here, the distribution P are knee
images, and Q are brain images. The knee training set
consists of 376 PD knee slices of the fastMRI train-
ing dataset and the brain training set consists of 310
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anatomy shift dataset shift modality shift acceleration shift
P:knee Q:brain P:fastMRI Q:Stanford P:AXT2 Q:AXT1PRE P:4x Q:2x

training scheme setup U-Net VarNet U-Net VarNet U-Net VarNet U-Net VarNet
SSIM SSIM SSIM SSIM SSIM SSIM SSIM SSIM

self-supervision
included

train on P test on Q + TTT 0.9225 0.9315 0.7226 0.7247 0.9067 0.9084 0.9176 0.9203
train on Q test on Q + TTT 0.9234 0.9322 0.7268 0.7295 0.9086 0.9110 0.9192 0.9207

supervised
train on Q test on Q 0.9187 0.9344 0.7164 0.7442 0.9026 0.9105 0.9004 0.9224
train on P test on Q 0.8521 0.8717 0.6830 0.7062 0.8506 0.8744 0.8385 0.8744
train on P test on Q + TTT 0.8648 0.8533 0.6130 0.6026 0.8695 0.8102 0.8090 0.8324

fraction of gap closed by TTT 98.6% 98.8% 87.4% 87.3% 96.3% 92.7% 97.4% 99.1%

Table 2: Including self-supervision while training deep learning models combined with TTT improves
model robustness to natural anatomy, dataset, modality, and acceleration shifts. SSIM scores are averaged
over 100 slices from the test set of Q. Note that TTT is only effective when self-supervision is included during
training, and as shown in the second to the last row, it offers marginal improvement when applied to a model that
is trained in a supervised fashion.

AXT2 brain slices of the fastMRI training dataset. We
train U-Net and VarNet on both training sets separately,
and test them on a brain test set consisting of 100
AXT2 brain slices of the fastMRI validation dataset,
this yields the numbers for supervised training in Ta-
ble 2. Next, we performed the same experiment, but
this time we included self-supervision into the training,
and we applied test-time-training as described above.

Dataset shift: Here, the distribution P is a subset
of the fastMRI dataset, and Q is the Stanford dataset.
The version of the fastMRI training set consists of
366 PDFS knee slices, and the Stanford training set
consists of 308 PDFS knee slices. We then repeat the
same experiment explained above for anatomy shift.

Modality shift: Here, the P and Q distributions are
the AXT2 and AXT1PRE slices of the fastMRI brain
dataset. The AXT2 training set consists of 310 slices,
and the AXT1PRE consist of 320 slices. We then
repeat the same experiment explained above.

Acceleration shift: Here, the distribution P are 4x
accelerated knee measurements, and Q are 2x acceler-
ated knee measurements. The 4x training set consists
of 376 PD knee slices of the fastMRI training dataset
and the 2x training set consists of the same 376 PD
knee slices but accelerated 2 times instead of 4.

Table 2 contains the results of the experiments. Fig-
ure 3 contains example reconstructions, more examples
are in the appendix in Figures 11, 12, 13, and 14.

5.1. Discussion on the results
We draw the following conclusions from the results.

TTT essentially closes the distribution shift perfor-
mance gap. For the four considered natural distribu-
tion shifts, our method closes the distribution shift per-
formance gap by 87-99%. Thus, our method closes the
gap for practical purposes for those four distribution
shifts. This is also reflected in a significant increase in
perceptual quality (see Figure 3 and the appendix).

TTT also slightly improves in-distribution perfor-
mance, which is not surprising as it tunes the pa-
rameters on each instance individually as opposed to
finding the parameters that work best on average on all
slices. That is why we measure the performance gap
with and without TTT included.

Increased computation cost. Our approach offers
significant reduction in the distribution shift perfor-
mance gap. However, TTT comes at the cost of more
computations at the inference as shown in Table 3.

5.2. Ablation studies
Including self-supervision in training is critical for
performance. TTT on a model trained only on the
supervised loss (without the self-supervised loss during
training) gives only minimal (for anatomy shift) to no
(for dataset shift) performance improvement.

Early-stopping TTT is critical for performance.
TTT is performed on the under-sampled test measure-
ment and overfits to it without our early-stopping mech-
anism, which chooses the early-stopping time based on
a hold-out set obtained from the under-sampled mea-
surement. Figure 5 in the supplement illustrates that
early stopping is critical for TTT to perform well.
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anatomy shift dataset shift modality shift acceleration shift
P:knee Q:brain P:fastMRI Q:Stanford P:AXT2 Q:AXT1PRE P:4x Q:2x

U-Net VarNet U-Net VarNet U-Net VarNet U-Net VarNet
training scheme setup runtime runtime runtime runtime runtime runtime runtime runtime

(mins/slice) (mins/slice) (mins/slice) (mins/slice) (mins/slice) (mins/slice) (mins/slice) (mins/slice)
self-supervision

included
train on P test on Q + TTT 10.1 12.9 1.2 1.5 1.6 6.5 3.6 5.2
train on Q test on Q + TTT 3.3 4.2 0.4 0.7 0.7 2.6 2.6 5.1

Table 3: Reducing the robustness gap comes at a noticeable computational cost for TTT. Runtimes are
averaged over 100 slices from the test set of Q and are reported for a single GPU.

Variants of TTT. TTT in image classification is
typically quite different than the version of TTT pro-
posed here, in that a network with two heads is trained,
one part on a supervised loss and one part at a self-
supervised loss on an auxiliary task, such as predicting
rotations of an image. At inference, TTT is performed
on the self-supervised loss (Sun et al., 2020). We exper-
imented with the analogous idea for image reconstruc-
tion: We took a U-Net with two decoders and a joint
encoder, and trained the network on a self-supervised
denoising problem and the supervised compressive
sensing problem. At inference, we performed TTT on
the denoising problem. This approach fails to improve
model robustness (see Figure 6 in the supplement).

We also experimented with another variant of TTT that
also does not work well. We exploited the idea behind
the CycleGAN (Zhu et al., 2017) to build CycleU-Net.
CylcleU-Net comprises two U-Nets in tandem and is
trained based on two forward passes: (1) a supervised
pass mapping the ground-truth image to itself, and (2) a
self-supervised pass mapping the low-quality image to
itself (by switching the places of the two U-Nets). This
type of training enables TTT w.r.t. the self-supervised
pass at inference. Table 5 in the supplement shows that
only 29% of the gap is closed for anatomy shift when
this approach is employed.

6. Test-time training can provably adapt to a
distribution shift

In this section, we discuss an example illustrating that
test-time training (TTT) with an appropriate loss can
optimally adapt to a particular distribution shift.

Consider the problem of denoising a signal that lies in a
subspace. The training distribution draws a signal from
an unknown d-dimensional subspace and corrupts it by
Gaussian noise with noise variance σ2:

P : y = x+ z,x = Uc, c ∼ N (0, I), z ∼ N (0, Iσ2).

The test distribution draws a signal from the same

subspace, but corrupts it with noise that has a different
noise variance:

Q : y = x+ z,x = Uc, c ∼ N (0, I), z ∼ N (0, Iς2).

Here, U ∈ Rn×d is an orthonormal basis for the sig-
nal subspace. We consider a linear denoiser of the
form f(y) = αVVTy, where V ∈ Rn×d is an or-
thonormal basis and α ∈ [0, 1] is a scalar. We measure
performance in terms of the population risk

RQ(α,V) = EQ

[∥∥x− αVVTy
∥∥2
2

]
.

The population risk is minimized by the estimator α =
1

1+ς2
and V = U. So the optimal estimator for the

unknown signal x is x̂ = 1
1+ς2

UUTy and it projects
the observation onto the subspace and then shrinks with
a coefficient that is dependent on the noise variance,
the larger the noise variance, the more the estimator
shrinks.

We train the method on the supervised loss

LP (α,V) = RP (α,V). (3)

For simplicity, we choose as the supervised loss the
population loss, because we are not interested in finite-
sample effects. This corresponds to a setup where we
have abundant training data on the distribution P .

A minimizer of the loss is α = 1
1+σ2 ,V = U, thus

minimizing on the loss gives an estimator that is opti-
mal on the distribution P . However, the estimator is
sub-optimal on the distribution Q.

We next obtain an observation y from the distribution
Q, and our goal is to estimate the corresponding signal
x. Towards this end, we first perform TTT on the dis-
tribution Q, i.e., we minimize the self-supervised loss

LSS(α,U,y)=
∥∥y−αUUTy

∥∥2
2
+

2αd

n− d

∥∥(I−UUT )y
∥∥2
2

over the scale parameter α. Note that we already
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train on P
test on Q

SSIM: 0.8562

after our domain
adaptation method

SSIM: 0.9215

train on Q
test on Q

SSIM: 0.9185

anatomy
shift

SSIM: 0.6709 SSIM: 0.6902 SSIM: 0.6918

dataset
shift

SSIM: 0.8705 SSIM: 0.9317 SSIM: 0.9248

modality
shift

SSIM: 0.8572 SSIM: 0.9107 SSIM: 0.9122

acceleration
shift

Figure 3: Our domain adaptation method significantly
improves high perceptual quality when closing the
distribution shift performance gap. All images are U-
Net reconstructions.

obtained V = U from the training on the distribution
P . For d and n large, the self-supervised loss
LSS(α,U,y) concentrates around the expectation,
which can be shown to be (1 − α)2d + α2dς2.
Minimizing this over α gives α = 1

1+ς2
. Thus, for

this example, TTT yields the optimal estimator for the
signal x under the distribution Q.

This example demonstrates that in theory, TTT can
yield an optimal estimator under a distribution shift.
It also illustrates that for TTT to work, the main task
and the self-supervised learning task have to be related,
and the choice of the self-supervised loss has to take
this relation into account. Also note that this partic-
ular self-supervised loss will not work for a different
distribution shift, it is tailored to the anticipated shift
in noise variance. This highlights that different dis-
tribution shifts might require different self-supervised
losses for TTT to work.

7. Conclusion
Distribution shifts are a key limiting factor in deep
learning based imaging. In this paper, we proposed
a novel domain adaptation method based on self-
supervised training and test-time training (TTT) that
reduces the distribution shift performance gap for four
natural distribution shift by 87-99%, and thus gives
significantly better image quality at inference.

It is perhaps surprising that TTT works so well for
natural distribution shifts, in particular since a vari-
ety of domain adaptation methods for classification
only give a marginal improvement (if at all) for natural
distribution shifts Miller et al. (2021). However, im-
age reconstruction problems are much more amenable
for domain adaptation methods, since at test time, we
are given an entire measurement of an image, which
contains lots of information about the image and a
potential distribution shift. We exploit this informa-
tion through TTT and to perform early stopping during
TTT. Contrary, in an image classification setup, we are
not given any information about the label and thus it
might be much harder to adapt at test time.

Many important questions remain: Due to the TTT,
our method has significantly higher computational cost
at inference than using a plain neural network with-
out TTT. Reducing this computational cost is desir-
able. Moreover, our method is specific to compressive
sensing problems, and thus developing TTT methods
that are also applicable to inverse problems beyond
compressive sensing is an important future direction.
Finally, it is important to gain a better theoretical un-
derstanding of the mechanisms making TTT work.

Reproducibility
Our repository at https://github.com/MLI-
lab/ttt_for_deep_learning_cs contains the code
to reproduce all results in this paper.

Acknowledgment
M. Zalbagi Darestani and R. Heckel are (partially)
supported by NSF award IIS-1816986, and R. Heckel
acknowledges support by the Institute of Advanced
Studies at the Technical University of Munich, and
the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) - 456465471, 464123524. J. Liu
is supported by the 6G Future Lab Bavaria.

https://github.com/MLI-lab/ttt_for_deep_learning_cs
https://github.com/MLI-lab/ttt_for_deep_learning_cs


Test-Time Training Can Close the Natural Distribution Shift Performance Gap in Deep Learning Based Compressed Sensing

References
Arora, S., Roeloffs, V., and Lustig, M. Untrained

modified deep decoder for joint denoising parallel
imaging reconstruction. In International Society for
Magnetic Resonance in Medicine Annual Meeting,
2020.

Bostan, E., Heckel, R., Chen, M., Kellman, M., and
Waller, L. Deep phase decoder: Self-calibrating
phase microscopy with an untrained deep neural
network. In Optica, pp. 559–562, 2020.

Desai, A. D., Gunel, B., Ozturkler, B. M., Beg, H.,
Vasanawala, S., Hargreaves, B. A., Ré, C., Pauly,
J. M., and Chaudhari, A. S. Vortex: Physics-
driven data augmentations for consistency training
for robust accelerated MRI reconstruction. In arXiv
preprint: 2111.02549 [eess.IV], 2021.

DeVries, T. and Taylor, G. W. Improved regularization
of convolutional neural networks with cutout. In
arXiv preprint: 1708.04552 [cs.CV], 2017.

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang,
N., Tzeng, E., and Darrell, T. DeCAF: A deep
convolutional activation feature for generic visual
recognition. In International Conference on Ma-
chine Learning (ICML), pp. 647–655, 2014.

Dong, C., Loy, C. C., He, K., and Tang, X. Learn-
ing a deep convolutional network for image super-
resolution. In European Conference on Computer
Vision (ECCV), pp. 184–199, 2014.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weis-
senborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., et al. An
image is worth 16x16 words: Transformers for im-
age recognition at scale. In International Conference
on Learning Representations (ICLR), 2020.

Duchi, J. and Namkoong, H. Variance-based regular-
ization with convex objectives. In The Journal of
Machine Learning Research, volume 20, pp. 2450–
2504, 2019.

Duchi, J., Hashimoto, T., and Namkoong, H. Distribu-
tionally robust losses for latent covariate mixtures.
In arXiv preprint: 2007.13982 [cs.LG], 2020.

Duchi, J. C. and Namkoong, H. Learning models
with uniform performance via distributionally robust
optimization. In The Annals of Statistics, volume 49,
pp. 1378–1406, 2021.

Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., and
Madry, A. Exploring the landscape of spatial ro-
bustness. In International Conference on Machine
Learning (ICML), pp. 1802–1811, 2019.

Epperson, K., Sawyer, A., Lustig, M., Alley, M., and
Uecker, M. Creation of fully sampled MR data
repository for compressed sensing of the knee. In
Proceedings of the 22nd Annual Meeting for Section
for Magnetic Resonance Technologists, 2013.

Fabian, Z., Heckel, R., and Soltanolkotabi, M. Data
augmentation for deep learning based accelerated
MRI reconstruction with limited data. In Interna-
tional Conference on Machine Learning (ICML),
2021.

Feng, C.-M., Yan, Y., Chen, G., Fu, H., Xu, Y., and
Shao, L. Accelerated multi-modal MR imaging
with transformers. In arXiv preprint:2106.14248
[cs, eess], 2021a.

Feng, C.-M., Yan, Y., Fu, H., Chen, L., and Xu, Y. Task
transformer network for joint MRI reconstruction
and super-resolution. In International Conference on
Medical Image Computing and Computer-Assisted
Intervention (MICCAI), pp. 307–317, 2021b.

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M.,
Wichmann, F. A., and Brendel, W. ImageNet-trained
CNNs are biased towards texture; increasing shape
bias improves accuracy and robustness. In Inter-
national Conference on Learning Representations
(ICLR), 2018.

Heckel, R. and Hand, P. Deep decoder: Concise image
representations from untrained non-convolutional
networks. In International Conference on Learning
Representations (ICLR), 2019.

Heckel, R. and Soltanolkotabi, M. Compressive sens-
ing with un-trained neural networks: Gradient de-
scent finds the smoothest approximation. In Inter-
national Conference on Machine Learning (ICML),
2020.



Test-Time Training Can Close the Natural Distribution Shift Performance Gap in Deep Learning Based Compressed Sensing

Hendrycks, D., Mu, N., Cubuk, E. D., Zoph, B.,
Gilmer, J., and Lakshminarayanan, B. AugMix:
A simple data processing method to improve robust-
ness and uncertainty. In International Conference
on Learning Representations (ICLR), 2019.

Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang,
F., Dorundo, E., Desai, R., Zhu, T., Parajuli, S., Guo,
M., et al. The many faces of robustness: A criti-
cal analysis of out-of-distribution generalization. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pp. 8340–8349,
2021.

Hoffman, J., Tzeng, E., Park, T., Zhu, J., Isola,
P., Saenko, K., Efros, A., and Darrell, T. Cy-
CADA: Cycle-consistent adversarial domain adap-
tation. In International Conference on Machine
Learning (ICML), pp. 1989–1998, 2018.

Jalal, A., Arvinte, M., Daras, G., Price, E., Dimakis,
A. G., and Tamir, J. Robust compressed sensing
MRI with deep generative priors. In Advances in
Neural Information Processing Systems (NeurIPS),
volume 34, 2021.

Jin, K. H., McCann, M. T., Froustey, E., and Unser, M.
Deep convolutional neural network for inverse prob-
lems in imaging. In IEEE Transactions on Image
Processing, pp. 4509–4522, 2017.

Johnson, P. M., Jeong, G., Hammernik, K., Schlemper,
J., Qin, C., Duan, J., Rueckert, D., Lee, J., Pezzotti,
N., Weerdt, E. D., et al. Evaluation of the robustness
of learned MR image reconstruction to systematic
deviations between training and test data for the
models from the fastMRI challenge. In International
Workshop on Machine Learning for Medical Image
Reconstruction, pp. 25–34, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. In International Conference on
Learning Representations (ICLR), 2015.

Knoll, F., Hammernik, K., Kobler, E., Pock, T., Recht,
M. P., and Sodickson, D. K. Assessment of the gen-
eralization of learned image reconstruction and the
potential for transfer learning. In Magnetic Reso-
nance in Medicine, volume 81, pp. 116–128, 2019.

Knoll, F., Murrell, T., Sriram, A., Yakubova, N., Zbon-
tar, J., Rabbat, M., Defazio, A., Muckley, M. J.,
Sodickson, D. K., Zitnick, C. L., et al. Advancing
machine learning for MR image reconstruction with
an open competition: Overview of the 2019 fastMRI
challenge. In Magnetic Resonance in Medicine,
2020.

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M.,
Zhang, M., Balsubramani, A., Hu, W., Yasunaga, M.,
Phillips, R. L., Gao, I., et al. WILDS: A benchmark
of in-the-wild distribution shifts. In International
Conference on Machine Learning (ICML), pp. 5637–
5664, 2021.

Korkmaz, Y., Yurt, M., Dar, S. U. H., Özbey, M., and
Cukur, T. Deep MRI reconstruction with generative
vision transformers. In International Workshop on
Machine Learning for Medical Image Reconstruc-
tion, pp. 54–64, 2021.

Korkmaz, Y., Dar, S. U., Yurt, M., Özbey, M., and
Cukur, T. Unsupervised MRI reconstruction via
zero-shot learned adversarial transformers. In IEEE
Transactions on Medical Imaging, 2022.

Kornblith, S., Shlens, J., and Le, Q. V. Do better
ImageNet models transfer better? In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2661–2671, 2019.

Lin, K. and Heckel, R. Vision transformers enable fast
and robust accelerated MRI. In Medical Imaging
with Deep Learning (MIDL), 2021.

Liu, X., Wang, J., Liu, F., and Zhou, S. K. Univer-
sal undersampled MRI reconstruction. In Interna-
tional Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI), 2021a.

Liu, Y., Kothari, P., Delft, B. V., Bellot-Gurlet, B.,
Mordan, T., and Alahi, A. TTT++: When does
self-supervised test-time training fail or thrive? In
Advances in Neural Information Processing Systems
(NeurIPS), volume 34, 2021b.

Mahajan, D., Girshick, R., Ramanathan, V., He,
K., Paluri, M., Li, Y., Bharambe, A., and Van
Der Maaten, L. Exploring the limits of weakly super-
vised pretraining. In Proceedings of the European



Test-Time Training Can Close the Natural Distribution Shift Performance Gap in Deep Learning Based Compressed Sensing

Conference on Computer Vision (ECCV), pp. 181–
196, 2018.

Miller, J. P., Taori, R., Raghunathan, A., Sagawa, S.,
Koh, P. W., Shankar, V., Liang, P., Carmon, Y.,
and Schmidt, L. Accuracy on the line: On the
strong correlation between out-of-distribution and
in-distribution generalization. In International Con-
ference on Machine Learning (ICML), pp. 7721–
7735, 2021.

Mohan, S., Vincent, J., Manzorro, R., Crozier, P.,
Fernandez-Granda, C., and Simoncelli, E. Adap-
tive denoising via GainTuning. In Advances in Neu-
ral Information Processing Systems (NeurIPS), vol-
ume 34, 2021.

Muckley, M. J., Riemenschneider, B., Radmanesh, A.,
Kim, S., Jeong, G., Ko, J., Jun, Y., Shin, H., Hwang,
D., Mostapha, M., et al. State-of-the-art machine
learning MRI reconstruction in 2020: Results of the
second fastMRI challenge. In IEEE Transactions on
Medical Imaging, 2021.

Oh, G., Sim, B., Chung, H., Sunwoo, L., and Ye, J. C.
Unpaired deep learning for accelerated MRI using
optimal transport driven CycleGAN. In IEEE Trans-
actions on Computational Imaging, volume 6, pp.
1285–1296, 2020.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh,
G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P.,
Clark, J., et al. Learning transferable visual models
from natural language supervision. In International
Conference on Machine Learning (ICML), 2021.

Recht, B., Roelofs, R., Schmidt, L., and Shankar, V.
Do ImageNet classifiers generalize to ImageNet?
In International Conference on Machine Learning
(ICML), pp. 5389–5400, 2019.

Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., and
Ozcan, A. Phase recovery and holographic image re-
construction using deep learning in neural networks.
In Light: Science & Applications, volume 7, pp.
17141–17150, 2018.

Ronneberger, O., Fischer, P., and Brox, T. U-Net:
Convolutional networks for biomedical image seg-
mentation. In International Conference on Medical

Image Computing and Computer-Assisted Interven-
tion (MICCAI), pp. 234–241, 2015.

Sharif Razavian, A., Azizpour, H., Sullivan, J., and
Carlsson, S. CNN features off-the-shelf: An as-
tounding baseline for recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR) Workshops, pp. 806–813,
2014.

Sriram, A., Zbontar, J., Murrell, T., Defazio, A., Zit-
nick, C. L., Yakubova, N., Knoll, F., and Johnson,
P. End-to-end variational networks for accelerated
MRI reconstruction. In International Conference on
Medical Image Computing and Computer-Assisted
Intervention (MICCAI), pp. 64–73, 2020.

Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A., and
Hardt, M. Test-time training with self-supervision
for generalization under distribution shifts. In Inter-
national Conference on Machine Learning (ICML),
pp. 9229–9248, 2020.

Taori, R., Dave, A., Shankar, V., Carlini, N., Recht,
B., and Schmidt, L. Measuring robustness to nat-
ural distribution shifts in image classification. In
Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. Deep im-
age prior. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 9446–9454,
2018.

Wang, D., Shelhamer, E., Liu, S., Olshausen, B., and
Darrell, T. Tent: Fully test-time adaptation by en-
tropy minimization. In International Conference on
Learning Representations (ICLR), 2021.

Wang, F., Bian, Y., Wang, H., Lyu, M., Pedrini, G.,
Osten, W., Barbastathis, G., and Situ, G. Phase
imaging with an untrained neural network. In Light:
Science & Applications, pp. 1–7, 2020.

Xie, C., Tan, M., Gong, B., Wang, J., Yuille, A. L.,
and Le, Q. V. Adversarial examples improve image
recognition. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pp. 819–828, 2020.



Test-Time Training Can Close the Natural Distribution Shift Performance Gap in Deep Learning Based Compressed Sensing

Yalniz, I. Z., Jégou, H., Chen, K., Paluri, M., and Ma-
hajan, D. Billion-scale semi-supervised learning for
image classification. In arXiv preprint: 1905.00546
[cs.CV], 2019.

Yaman, B., Hosseini, S. A. H., and Akcakaya, M.
Zero-shot physics-guided deep learning for subject-
specific MRI reconstruction. In NeurIPS Workshop
on Deep Learning and Inverse Problems, 2021.

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and
Yoo, Y. CutMix: Regularization strategy to train
strong classifiers with localizable features. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 6023–6032, 2019.

Zalbagi Darestani, M. and Heckel, R. Accelerated MRI
with un-trained neural networks. In IEEE Trans-
actions on Computational Imaging, volume 7, pp.
724–733, 2021.

Zalbagi Darestani, M., Chaudhari, A. S., and Heckel,
R. Measuring robustness in deep learning based
compressive sensing. In International Conference
on Machine Learning (ICML), 2021.

Zbontar, J., Knoll, F., Sriram, A., Muckley, M. J.,
Bruno, M., Defazio, A., Parente, M., Geras, K. J.,
Katsnelson, J., Chandarana, H., et al. fastMRI: An
open dataset and benchmarks for accelerated MRI.
In Radiology: Artificial Intelligence, 2020.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz,
D. mixup: Beyond empirical risk minimization. In
International Conference on Learning Representa-
tions (ICLR), 2018.

Zhang, K., Zuo, W., Chen, Y., Meng, D., and Zhang,
L. Beyond a gaussian denoiser: Residual learn-
ing of deep CNN for image denoising. In IEEE
Transactions on Image Processing, volume 26, pp.
3142–3155, 2017.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A.
Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of
the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pp. 2223–2232, 2017.



Test-Time Training Can Close the Natural Distribution Shift Performance Gap in Deep Learning Based Compressed Sensing

A. Intensity distribution changes under modality shift
One of the natural distribution shifts we study in our work is a modality shift, where the acquisition mode of train
and test domains differ. This difference results in a shift in intensity distributions that is illustrated in Figure 4 for
the shift from T2 to T1PRE brain images that we consider.

T2 intensity distribution T1PRE intensity distribution

0 2 4 ·10−4
0

0.5

1

0 2 4 ·10−4

Figure 4: Modality shifts occur within an anatomy where the contrast changes via modality change, and thus the
intensity distribution of the images changes.

B. Comparison to ZS-SSL
We mentioned in the introduction that an alternative test-time training (TTT) approach compared to our work is
to use the method ZS-SSL (Yaman et al., 2021), which was originally introduced as a method for performing
reconstruction for a single instance. Given a single under-sampled measurement y of an image x, ZS-SSL creates
a dataset {(y1,y

′
1,y

′′
1), . . . , (yK ,y′

K ,y′′
K)} by randomly sampling pixels from y. Each triplet is a random

partition of the under-sampled k-space and the proportions are determined by two hyper-parameters p and p′. In
each triplet, yi is fed to the network as input, y′

i is used in the TTT loss based on the network output, and y′′
i is

used for self-validation to determine when to stop training. Unlike our method that relies on no hyper-parameters,
ZS-SSL has three hyper-parameters to tune which are K, the number of splits for the synthesized dataset, and p
and p′ which determine how to split the under-sampled measurement to three partitions

Our TTT approach incorporates a consistency-based self-supervised loss during the supervised pre-training stage,
and then TTT is performed w.r.t. that self-supervised loss. Thus, the main advantage of ZS-SSL over our method
is that it does not impose any constraints on the pre-training scheme. Performance-wise, Table 4 compares our
method to ZS-SSL for anatomy shift. Both methods are applied to unrolled networks (our approach is applied to
VarNet and ZS-SSL is applied to a similar unrolled network explained in (Yaman et al., 2021)). Table 4 shows
that both achieve on-par performance in terms of closing the distribution shift performance gap. However, our
approach is computationally cheaper than ZS-SSL which is expected since our method does not rely on dataset
synthesis for TTT.

C. Early stopping of test-time training
We discussed in the min body that early stopping is a critical component of our test-time training (TTT) approach.
Figure 5 shows that the self-validation error in the middle panel (which is computed using a fraction of under-
sampled test measurement) yields a good early-stopping time, in that the validation loss is inversely correlated
with the true accuracy, as expected.



Test-Time Training Can Close the Natural Distribution Shift Performance Gap in Deep Learning Based Compressed Sensing

anatomy shift
P:knee Q:brain

Our approach ZS-SSL
setup SSIM TTT runtime SSIM TTT runtime

(mins/slice) (mins/slice)
train on P test on Q + TTT 0.9358 12.9 0.9343 59.4
train on Q test on Q + TTT 0.9375 4.2 0.9365 33.5
train on Q test on Q 0.9396 - 0.9331 -
train on P test on Q 0.8802 - 0.9029 -
fraction of gap closed by TTT 97.1% 93.1%

Table 4: Both ZS-SSL and our test-time training (TTT) approach are highly effective for overcoming
natural anatomy shift. SSIM scores are averaged over 30 validation slices of the fastMRI brain dataset. For
both methods, TTT is applied with a similar learning rate as the one used during pre-training.

0.5
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0.8

test-time-train error
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iteration t
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SSIM(fθt(y),x)

Figure 5: Test-time-training error, validation error, and error with respect to the original (unknown) image x.
The given measurement y is split into a part for test-time-training (ytrain) and into a part for validation (yval),
which in turn is used to determine the early-stopping time. Comparing the validation error with the true accuracy
shows that i) the validation error is a good proxy for the true accuracy, and ii) early stopping is critical for the
performance of test-time training.

D. Variants of TTT
As mentioned in the main body, we also experimented with two variants of TTT, which fail to improve robustness.
Those variants are discussed here.

Variant 1. The first variant is very similar to how TTT is typically performed in image classification. Let Eβ

be the encoder of the U-Net and let Dθ and Dϑ be two decoders. The encoder with the first decoder is trained to
solve the main task which is the supervised compressed sensing task, and the encoder with the second decoder is
trained to solve an auxiliary task which we take as a self-supervised denoising task. Specifically, we train the
method on the loss:

L(β,θ,ϑ) = 1

n

n∑
i=1

( ∥∥xi − Eβ(Dθ(A
†yi))

∥∥
1

∥xi∥1︸ ︷︷ ︸
Lsup

+

∥∥A†yi −AEβ(Dϑ(A
†yi + zi))

∥∥
1

∥A†yi∥1︸ ︷︷ ︸
Lself

)
, (4)
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Figure 6: A variant of test-time training (TTT) with a two-head U-Net inspired from image classification
does not improve model robustness. Including denoising as an auxiliary task during supervised training of U-Net
even impairs model robustness for some artificial distribution shifts. Evaluation scores when each transformation
on the x axis is applied to the brain validation set.

where z ∼ N (0, σ2) is random Gaussian noise that we generated for the self-supervised loss, and A†y is the
input of the U-Net (i.e., the least-squares reconstruction from measurement y). Similar to our domain adaptation
method, at the inference, we optimize the self-supervised loss Lself(β,ϑ,y) with respect to the weights β,ϑ
for a given undersampled measurement y. The stopping iteration was set to 10 heuristically (as opposed to our
domain adaptation method where we used a self-validation-based automatic early stopping).

Figure 6 shows the results when training U-Net with loss function (4) in comparison to a U-Net trained in a
supervised manner. Because we observed no benefit from this type of TTT under a natural anatomical shift (i.e.,
0% of the gap is closed), in Figure 6, we illustrate the result for artificial distribution shifts. We specifically
evaluate this variant on the brain validation set of fastMRI under (1) no transformation (regular), (2) horizontal
flipping (fliph), (3) vertical flipping (flipv), (4) 90-degree rotation (rot90), (5) Gaussian noise (noisy), (6) blur
artifacts (blur), (7) elastic transformation (elastic), (8) spike artifacts (spike), and (9) ghosting artifacts (ghost).
Interestingly, this variant of TTT is not even helpful with these artificial shifts according to SSIM scores reported
in Figure 6.

Variant 2. The second variant is a method we propose based on CycleGAN (Zhu et al., 2017), dubbed CycleU-
Net, and works as follows. Suppose we put two U-Nets fθ and gβ in tandem to form a larger model. We then train
the resulting model by making two forward passes for each input pair (yi,xi) at each epoch: (1) a self-supervised
pass as gβ(fθ(A†yi)), and (2) a supervised forward pass as fθ(gβ(xi)). This is illustrated in Figure 7.

By defining those two forward passes, we can build the training loss function as follows:

L(β,θ) = 1

n

n∑
i=1

(
∥xi − fθ(gβ(xi)))∥1 +

∥∥∥A†yi − gβ(fθ(A
†yi)))

∥∥∥
1

+
∥∥∥xi − fθ(A

†yi)
∥∥∥
1
+
∥∥∥A†yi − gβ(xi)

∥∥∥
1

)
.

Here, the first two terms enforce input-output equality for each of the two forward passes. The third term ensures
that fθ learns a mapping from the under-sampled to the ground-truth domain (likewise, the fourth term ensures
that gβ learns a mapping from the ground-truth to the under-sampled domain). Note that without the last two
terms, there is no guarantee that fθ reconstructs the ground-truth image from the under-sampled measurement.

At inference, we perform TTT w.r.t
∥∥A†yi − gβ(fθ(A

†yi)))
∥∥
1

(both θ and β are optimized) which is fully
self-supervised, then detach fθ from the architecture and use it for reconstruction as fθ(A†y).

Table 5 shows the performance of this approach for anatomy shift (the training and test data are the same as
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:self-supervised
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Figure 7: Forward passes in CycleU-Net. fϑ and gβ are two U-Nets with the same number of parameters.
Training based on the two forward passes enables test-time training (TTT) w.r.t. the self-supervised pass. Only fθ
is needed for inference after TTT.

setup P: knee
Q: brain

train on Q test on Q 0.9187
train on P test on Q 0.8521
distribution shift performance gap 0.0666
train on Q test on Q + TTT 0.9212
train on P test on Q + TTT 0.8742
distribution shift performance gap 0.0470
fraction of gap closed by TTT 29.4%

Table 5: A variant of test-time training (TTT) with a CycleU-Net inspired from CycleGAN improves model
robustness only slightly. The first three rows are SSIM scores for U-Net when trained in a supervised manner.
The second three rows are SSIM scores for CycleU-Net when TTT is applied at the inference. This variant closes
the gap by 29.4% but is outperformed by our original method which closes the gap by 98.6% which is discussed
in the main body.

Section 5). As shown, the fraction of gap closed by performing TTT on CycleU-Net is 29.4% which demonstrates
that this approach is not effective in closing the gap.

E. Relation to imaging with un-trained neural networks
Our domain adaptation method consists of training a network with supervised and self-supervised loss and at
inference, training again on the self-supervised loss with early stopping.

The inference step is very similar to how an un-trained neural network is used for image recovery. To see
this, reconstruction of a signal from an observation with an un-trained network works as follows. Let fθ be a
convolutional network that is initialized randomly, and optimized on the loss

L(θ) = ∥y −Afθ(z)∥1,

with gradient descent and early-stopping the iterates for regularization. Here, z is an input that is typically
random, and has observed to be relatively irrelevant. Ulyanov et al. (2018) demonstrated that this method works
well for denoising and super-resolution, and Heckel & Hand (2019); Arora et al. (2020); Zalbagi Darestani &
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Figure 8: Test-time training (TTT) improves the reconstruction accuracy of a pre-trained model when self-
supervision is included during training (right column), but treats a pre-trained model as an un-trained network
when pre-training is fully supervised (left column). The first row shows the self-validation error which is used to
stop TTT early. The second row shows SSIM w.r.t. the ground truth image during TTT.

Heckel (2021) have shown that un-trained convolutional networks work well for denoising and accelerated MRI.
Reconstruction with an un-trained network is very similar to our TTT step, with the difference that the un-trained
networks start from a random initialization of the weights (which in this case, for the DIP-based model introduced
in (Zalbagi Darestani & Heckel, 2021), they achieve 0.9046 SSIM on brain images for the anatomy shift setup
we consider in Table 2).

We could also just initialize the weights of an un-trained network by pre-training the network on a dataset, and we
might expect that this improves performance. Viewed from that angle, our method might look like an un-trained
network in disguise.

In this section, we argue that our method is not an un-trained network in disguise by demonstrating that TTT
improves over the image prior learned by pre-training. We perform the following experiment. We consider
the anatomy shift and train a U-Net fsup in a supervised manner and another U-net fjoint using our joint loss
function (2) that incorporates self-supervision. We then perform TTT by applying fsup and fjoint to a brain test
sample.

Figure 8 depicts the results. The first row shows the self-validation error whose increase determines the early-
stopping point. The second row depicts the SSIM with respect to the unknown ground truth image during TTT.
Observe that when TTT is applied to fjoint, SSIM improves during TTT. Thus TTT improves over the learned
prior from knees to achieve a good reconstruction accuracy on the brain test sample.

Contrary, when TTT is applied to fsup, SSIM first decreases dramatically and then starts to rise again. This
suggests that TTT applied to a fully self-supervised loss ignores the learned prior and uses the model as an
un-trained network.

F. Proof of claims in Section 6: Test-time training can provably adapt to a distribution shift
Proposition F.1. The supervised loss

RP (α,V) = EP

[∥∥x− αVVTy
∥∥2
2

]

is minimized by α = 1/(1 + σ2) and V = U.



Test-Time Training Can Close the Natural Distribution Shift Performance Gap in Deep Learning Based Compressed Sensing

Proof. Let W = αVVT and consider the following related convex optimization problem

min
W

EP

[
∥x−Wy∥22

]
.

Note that here we optimizer over a larger space, as we do not constrain W to be symmetric. We show that a
solution to the optimization problem is W = 1

1+σ2UUT , therefore (α,U) is a minimizer of RP (α,V), which
proves the claim.

The gradient of the objective function above is

∇WEP

[
∥x−Wy∥22

]
= ∇Wtr

(
EP

[
xxT

]
− 2WTEP

[
xyT

]
+ α2WTWEP

[
yyT

])
= 2WEP

[
yyT

]
− 2EP

[
xyT

]
.

Setting the gradient to zero, the minimizer satisfied

W = EP

[
xyT

] (
EP

[
yyT

])−1
.

Since y = x+ z and x = Uc, where c ∼ N (0, I) and z ∼ N (0, Iσ2) are independent, it holds that

EP

[
xyT

]
= EP

[
xxT

]
= UUT ,

and

EP

[
yyT

]
= EP

[
xxT + zzT

]
= UUT + σ2I.

Plugging in the two expressions into the expression for W we obtain

W =
1

1 + σ2
UUT ,

as desired.

Proposition F.2. For fixed U, the expectation of the self-supervised loss

EQ [LSS(α,U,y)] = EQ

[∥∥y − αUUTy
∥∥2
2
+

2αd

n− d

∥∥(I−UUT )y
∥∥2
2

]
is minimized by α = 1/(1 + ς2).

Proof. Note that

EQ

[∥∥y − αUUTy
∥∥2
2

]
= tr

(
EQ

[
yyT

]
− 2αUTUEQ

[
yyT

]
+ α2UTUEQ

[
yyT

])
= tr

((
I+ (α2 − 2α)UTU

)
EQ

[
yyT

])
= tr

((
I+ (α2 − 2α)UTU

) (
UUT + ς2I

))
= tr

(
ς2I+ ((1− α)2 + (α2 − 2α)ς2)UUT

)
= ς2n+ (1− α)2d+ (α2 − 2α)ς2d.

It follows that, for α = 1,

EQ

[∥∥y −UUTy
∥∥2
2

]
= ς2n− ς2d.

Hence,

EQ [LSS(α,U,y)] = ς2n+ (1− α)2d+ (α2 − 2α)ς2d+
2αd

n− d
(ς2n− ς2d)

= ς2n+ (1− α)2d+ α2ς2d,

whose minimum is achieved at α = 1/(1 + ς2). To see this, take the derivative with respect to α, set it to zero,
and solve for α.
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G. Test-time training for non-convolutional architectures
The two networks that we studied throughout are based on the U-Net, a convolutional neural network. There
are, however, other non-convolutions neural network architectures that perform well for image reconstruction
problems. In this section we explore how our test-time training (TTT) approach performs with non-convolutional
networks.

We consider the Vision Transformer (ViT) (Dosovitskiy et al., 2020) that works very well for signal reconstruction
problems. ViT has been tailored to accelerated MRI reconstruction as well (Feng et al., 2021a;b; Korkmaz et al.,
2021; 2022), and has been shown to be computationally faster than U-Net and also slightly more robust than
U-Net against anatomy shift (Lin & Heckel, 2021).

We repeated the same experiment we performed for U-Net under the anatomy shift. The results, reported in
Table 6 show that TTT for a ViT is effective, but not as effective as for the U-Net (specifically, the fraction of
the gap closed by TTT is only 84.5% for ViT, whereas the gap closed by TTT is 98.6% for U-Net). This is also
reflected in the visual quality of the images, as illustrated in Figure 9. In Figure 9 we see that TTT for a ViT gives
reconstruction artifacts.

The self-supervised loss function used in our TTT approach works better for U-Net compared to ViT, and hence
our TTT is more effective for U-Net. To see this, we perform the following experiment. We train U-Net and ViT
on the knee training set of fastMRI in a fully self-supervised manner, i.e., we minimize the training loss

L(θ) =
n∑

i=1

∥∥yi −Afθ(A
†yi)

∥∥
1

∥yi∥1
,

on a set of training measurements y1, . . . ,yn, for both U-net and ViT. During training, we monitor true accuracy,
by comparing the reconstructions generated by U-Net and ViT to the (unknown) ground-truth images x1, . . . ,xn

associated with the measurements y1, . . . ,yn. Figure 10 shows that towards convergence, there is a constant gap
between the true accuracy achieved by U-Net and ViT. This demonstrates that our self-supervised loss works
better with U-Net than ViT in terms of the quality of the learned prior for the images.

setup P: knee
Q: brain

train on Q test on Q 0.9041
train on P test on Q 0.8429
distribution shift performance gap 0.0612
train on Q test on Q + TTT 0.8947
train on P test on Q + TTT 0.8859
distribution shift performance gap 0.0095
fraction of gap closed by TTT 84.5%

Table 6: For ViT, using self-supervision with test-time training (TTT) closes 84% of the distribution shift
performance gap for anatomy shift. The first three rows are SSIM scores for ViT when trained in a supervised
manner. The second three rows are SSIM scores for ViT when self-supervision is included during training and
then TTT is applied at the inference.

H. More reconstruction examples
The results of Table 2 demonstrate that our domain adaptation method closes the distribution shift performance
gap for anatomy, dataset, modality, and acceleration shifts by about 90%. Figure 3 in the main body shows
example images reconstructed with U-Net to demonstrate that the perceptual quality is improved after applying
our domain adaptation method.
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trained on knee
(supervised)

SSIM: 0.8480

trained on knee + TTT
(self-supervision included)

SSIM: 0.8855

trained on brain
(supervised)

SSIM: 0.9040

ground truth

Figure 9: Including self-supervision while training DL models (a Vision Transformer in this case) combined with
TTT improves model robustness to natural anatomy shifts. The sample belongs to the fastMRI brain validation
dataset.
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Figure 10: The inductive bias of self-supervised training of U-Net results in a higher true accuracy at convergence
than ViT. True accuracy is monitored using the ground-truth data during the self-supervised training.

In this section, we provide more detailed illustrations for both U-Net and VarNet under each distribution shift.
Figure 11, Figure 12, Figure 13, and Figure 14 provide reconstruction examples for anatomy, dataset, modality,
and acceleration shifts before and after our domain adaptation method. As shown in the figures, the perceptual
quality of the reconstructions improve noticeably with test-time training.
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SSIM: 0.8562

trained on knee + TTT
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SSIM: 0.9215
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SSIM: 0.8782 SSIM: 0.9292 SSIM: 0.9316
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Figure 11: Including self-supervision while training DL models combined with TTT improves model robustness
to natural anatomy shifts. The sample belongs to the fastMRI brain validation dataset.

trained on fastMRI

(supervised)

SSIM: 0.6709

trained on fastMRI + TTT

(self-supervision included)

SSIM: 0.6902

trained on Stanford

(supervised)

SSIM: 0.6918

ground truth

U-Net

SSIM: 0.6863 SSIM: 0.7050 SSIM: 0.7236

VarNet

Figure 12: Including self-supervision while training DL models combined with TTT improves model robustness
to natural dataset shifts. The sample belongs to the Stanford validation dataset and the pointed region reveals how
each setup shines or fails at reconstruction.
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trained on AXT2

(supervised)

SSIM: 0.8705

trained on AXT2 + TTT

(self-supervision included)

SSIM: 0.9317

trained on AXT1PRE

(supervised)

SSIM: 0.9248

ground truth

U-Net

SSIM: 0.9089 SSIM: 0.9325 SSIM: 0.9299

VarNet

Figure 13: Including self-supervision while training DL models combined with TTT improves model robustness
to natural modality shifts. The AXT1PRE sample belongs to the fastMRI brain validation dataset.

trained on 4x

(supervised)

SSIM: 0.8572

trained on 4x + TTT

(self-supervision included)

SSIM: 0.9107

trained on 2x

(supervised)

SSIM: 0.9122

ground truth

U-Net

SSIM: 0.8804 SSIM: 0.9038 SSIM: 0.9173

VarNet

Figure 14: Including self-supervision while training DL models combined with TTT improves model robustness
to natural acceleration shifts. The sample belongs to the fastMRI knee validation dataset and the pointed region
reveals how each setup shines or fails at reconstruction. VarNet, unlike U-Net, does not include a region of artifact
and the overall contrast of the image has changed under the shift.


	Introduction
	Prior work

	Problem setup
	Compressive sensing
	Image reconstruction with neural networks
	Problem statement: Overcoming the distribution shift performance gap

	The distribution shift performance gap for four natural distribution shifts
	Natural distribution shifts considered
	Networks can close the distribution shift performance gap

	Method: Incorporating self-supervised training and then performing test-time training at inference
	Experiments
	Discussion on the results
	Ablation studies

	Test-time training can provably adapt to a distribution shift
	Conclusion
	Intensity distribution changes under modality shift
	Comparison to ZS-SSL
	Early stopping of test-time training
	Variants of TTT
	Relation to imaging with un-trained neural networks
	Proof of claims in Section 6: Test-time training can provably adapt to a distribution shift
	Test-time training for non-convolutional architectures
	More reconstruction examples

