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Abstract

Deep metric learning aims to learn distance met-
rics that measure similarities and dissimilarities
between samples. The existing approaches typi-
cally focus on designing different hard sample
mining or distance margin strategies and then
minimize a pair/triplet-based or proxy-based loss
over the training data. However, this can lead the
model to recklessly learn all the correlated dis-
tances found in training data including the spuri-
ous distance (e.g., background differences) that is
not the distance of interest and can harm the gener-
alization of the learned metric. To address this is-
sue, we study metric learning from a causality per-
spective and accordingly propose deep causal met-
ric learning (DCML) that pursues the true causal-
ity of the distance between samples. DCML is
achieved through explicitly learning environment-
invariant attention and task-invariant embedding
based on causal inference. Extensive experiments
on several benchmark datasets demonstrate the
superiority of DCML over the existing methods .

1. Introduction

Deep metric learning (DML) is an effective technique to au-
tomatically learn a task-specific distance metric with a deep
neural network (DNN). It has received much attention in re-
cent years due to its wide applications in different domains,
such as image retrieval (Li & Tang, 2015; Wu et al., 2017),
self-supervised learning (He et al., 2020; Chen et al., 2020),
few-shot learning (Sung et al., 2018; Snell et al., 2017), and
face recognition (Wang et al., 2017a; Liu et al., 2017; Wang
et al., 2018a). The existing approaches (Suh et al., 2019; Sun
et al., 2020; Wang et al., 2018b) mainly focus on designing
different sampling strategies (e.g., hard or informative sam-
ple mining) or adopting different kinds of distance margins
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(e.g., an angular or similarity margin). Then a pair/triplet-
based or proxy-based loss combining with these strategies
is minimized over the training data (Hadsell et al., 2006;
Weinberger et al., 2006; Sun et al., 2020). However, simply
minimizing the loss over the training data makes the learned
metric model recklessly absorb all the correlated distances
between samples, even the spurious distances caused by
context biases, which hurts the generalization on new (test)
classes or samples. In this paper, different from the existing
literature designing different sampling or margin strategies,
we study DML from a different perspective by exploring
the true causality of the distance between samples.

In DML, the distance between a pair of samples varies with
the tasks (i.e., learning goals). For example, with two im-
ages of tigers in forests, one task is to learn the distance
between the tigers in the two images while another task can
be learning the distance between the forests in the two im-
ages, which results in different distances. The backgrounds
and foregrounds (i.e., object) can be switched based on
the tasks. However, backgrounds and objects are typically
highly correlated in reality, e.g., tigers usually appear in
forests instead of water while fish does the opposite. The
high correlation between an object and a background makes
DML more likely suffer from background (context) biases
in the training data, since the classes in the training dataset
can be totally different from those in the test dataset in
the DML, which is different from the case in classification
where the training dataset and the test dataset share the same
classes (He et al., 2016; Deng & Zhang, 2021b). An intu-
itive example is provided in Figure 1 where the task is to
learn the distance metric between animals. In the training
dataset, there are two classes of animals, i.e., tigers and
Alaskan dogs. Since most tigers live in forests and most
Alaskan dogs live in snow, when the model learns the dis-
tances between tigers and Alaskan dogs, it also absorbs
the spurious distances between forests and snow due to the
high correlations between tigers and forests, and between
Alaskan dogs and snow. In the test dataset with two new
classes, i.e., wolves and lions, the learned biased metric
mistakenly infers that the wolf in forests (i.e., the query
image) is more similar to the lion in forests instead of the
two wolves in snow due to the biases induced by the context
prior in the training data. Without dealing with the kind of
context biases in the training data, it hurts the generalization



Deep Causal Metric Learning

Training
Data:
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Figure 1. Biased distance metric induced by context prior.

of the learned metric on new (test) classes or samples where
the context distribution is different from that in the training
data. In light of this, we propose deep causal metric learning
(DCML) to learn the true distance between two samples by
removing the bad effects of context biases.

DCML is achieved by explicitly learning environment-
invariant attention and task-invariant embedding based on
causal inference. To construct different context environ-
ments, we re-weight the training samples to change the con-
text distribution; since different samples contain different
context information, re-weighting the samples is equivalent
to generating different context prior distributions. Instead
of randomly generating sample weights, we explicitly learn
the environments that the attention and embedding are not
optimal or consistent across. We iteratively train the metric
model and generate new environments, which leads to a
causal distance metric that is not affected by context priors.

Our main contributions are summarized as follows:

* Different from the existing DML approaches that fo-
cus on designing different sampling or distance margin
strategies for pair/triplet-based or proxy-based losses,
we study DML from a different perspective by propos-
ing deep causal metric learning (DCML) to pursue the
true causality of the distances between samples.

* We design a novel metric learning framework, i.e.,
DCML, that learns the causal distance between sam-
ples through explicitly learning context-environment-
invariant attention and task-invariant embedding based
on causal inference.

» Extensive experiments on several benchmark datasets
demonstrate that DCML outperforms the state-of-the-
art approaches substantially.

2. Related Work

Pair and Triplet-Based Metric Learning. Pair and triplet-
based metric learning approaches design the loss based on

sample pairs or triplets. The contrastive loss (Hadsell et al.,
2006) trains the metric model by making the distance be-
tween a positive pair less than a threshold, and the distance
between a negative pair greater than a threshold. Instead of
directly penalizing the distance between a pair, the triplet
loss (Weinberger et al., 2006) uses an anchor, an positive
sample, and a negative sample and enforces the anchor-
positive distances to be smaller than the anchor-negative
distances by a threshold. Ever since then, many efforts
have been made on improving these two losses. The an-
gular loss (Wang et al., 2017b) modifies the triple loss by
taking into account the angle relationship among triplets.
The margin loss (Wu et al., 2017) improves the contrastive
loss by using a distance weighted sampling strategy and
a learnable variable to tune the distance threshold. Kim
et al. (2018) apply ensemble techniques on DML, which
improves the performance but also introduces substantial
overheads. RML-DGATSs (Wang et al., 2020b) introduces
attention mechanism to relational metric learning but fails
to deal with data biases. Other pair/triplet-based approaches
mainly focus on designing a new (margin) threshold strategy
(Yu & Tao, 2019), using a different sampling strategy (Suh
et al., 2019; Sun et al., 2020; Liu et al., 2021; Wang et al.,
2020c; Aziere & Todorovic, 2019; Zheng et al., 2019), con-
sidering more pairs in the loss (Sohn, 2016; Oh Song et al.,
2016; Wang et al., 2019), normalizing the distance between
pairs by using softmax or other similar functions (Oh Song
et al., 2016; Cakir et al., 2019; Zhang et al., 2020a), or using
additional unlabelled data or extra embedding spaces (Duan
et al., 2021; Roth et al., 2021; Zheng et al., 2021).

Proxy-Based Metric Learning. Pair and triplet-based ap-
proaches have high sampling complexities and thus lead to
low convergence, i.e., the sampling complexities of pair and
triplet losses are O(n?) and O(n®) where n is the number
of samples, respectively. Proxy-based approaches address
this issue by assuming that there is a class proxy vector
for each class. They train a metric model by making the
samples close to their ground-truth class proxies while far
from the other class proxies with a cross-entropy loss, which
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leads to a sampling complexity O(n). These class proxy
vectors are discarded after the training process and only the
learned embedding is used to calculate the distances among
samples. NormFace (Wang et al., 2017a) uses the cosine
similarity between an embedding vector and the class proxy
vectors as the training logits. SphereFace (Liu et al., 2017)
takes a further step by considering sphere embedding. Zhai
& Wu (2018) further introduce the temperature to the cross-
entropy loss for DML. ProxyNCA (Movshovitz-Attias et al.,
2017) employs the cross-entropy loss on the Euclidean dis-
tances between an embedding vector and the class proxy
vectors. AM-Softmax (Wang et al., 2018a) and COS (Wang
et al., 2018b) introduce a cosine similarity margin to the
cross-entropy loss. Arcface (Deng et al., 2019) further in-
troduces an angular margin. Softtriple (Qian et al., 2019)
uses multiple class proxy vectors for each class instead of
one proxy vector. Recently, many proxy-based approaches
(Teh et al., 2020; Seidenschwarz et al., 2021; Yang et al.,
2022; Deng et al., 2022) have been proposed to use different
techniques, e.g., message-passing and hierarchical proxies,
to improve the embedding for metric learning.

Causal Inference. Causal inference (Pearl et al., 2016;
Pearl & Mackenzie, 2018; Rubin, 2019; Wang & Blei, 2019)
is an effective technique to identify the cause-effect rela-
tionships between different variables. In recent years, it has
been introduced to machine learning (Bengio et al., 2019)
and has been used to address the challenges in different
tasks, including but not limited to domain adaptation or
generalization (Gong et al., 2016; Magliacane et al., 2018;
Wang et al., 2021b; Teney et al., 2021; Zhang et al., 2021),
imitation learning (de Haan et al., 2019), scene graph gen-
eration (Tang et al., 2020b), image captioning (Yang et al.,
2020), imbalance classification (Tang et al., 2020a), visual
dialog (Qi et al., 2020), few-shot learning (Yue et al., 2020),
semantic segmentation (Yu & Koltun, 2016; Zhang et al.,
2020b), visual question answering (Niu et al., 2021; Teney
et al., 2021), unsupervised learning (Wang et al., 2020a),
knowledge distillation (Deng & Zhang, 2021a), and self-
supervised learning (Wang et al., 2021a). Different from
all these approaches, we propose to learn causal metrics
by explicitly learning environment-invariant attention and
task-specific embedding based on causal inference.

3. Framework

The goal of DCML is not to design a novel pair/triplet-based
or proxy-based loss, or a novel sampling or margin strategy.
Instead, it aims to learn the causal distances between sam-
ples regarding a task through causal inference and attention
mechanism. DCML is based on a classical proxy-based loss
(Wang et al., 2018b) as proxy losses have the advantages
of small sampling complexity, high convergence, and cap-
turing the global information. We thus first introduce the
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Figure 2. Structural causal model.

proxy-based loss and then present DCML.

3.1. Proxy-Based Loss

We denote the training dataset by D = {(xz;, y;) }}_, where
z; and y; are a sample and the corresponding label, respec-
tively. Proxy-based losses (Wang et al., 2018b) assume that
there are m proxy vectors {cl, COy uny cm} for the m classes
in D, where ¢; denotes the proxy vector of class ¢. The goal
is to pull the embedding vector of each sample x; close to
its ground-truth class proxy c,, while pushing it far from
the other class proxies, which can be expressed as:

ea*(C(hg, ,Cy; ) —m)

K(hi,yi, c) = —log e Chicy)=m) 45~ gasClhie,)
(D
where h; is the embedding vector of samples x;; c is the
class proxy vectors, i.e., ¢ = {¢1, €2, ..., ¢m }; C(hy, ;) de-
notes the cosine similarity between vector h; and ¢;; a is a
scaler; * denotes multiplication; and m is a threshold.

The existing approaches typically directly minimize the
empirical error over the training dataset:

> K(f@)yie) @

(zi,y:)ED

Ler(D, f,c) =

where f() is a DNN encoder. We show below that simply
minimizing the empirical error over the training dataset does
not lead to the casual distance metric between samples due
to the context biases in the dataset, and the resulting biased
metric may not generalize well on new (test) classes.

3.2. Structural Causal Model

We present the causalities among context prior D, sample
X, and metric M in Figure 2(a) where A — B denotes that
A is the cause of B. We describe the causal relationships
among these variables below.

D — X: D is the dataset-specific context prior. It deter-
mines what the object co-appears with or where the object
appears in an image X, e.g., in Figure 1, the tiger appears
in green forests instead of snow. Different datasets have
different context prior distribution, e.g., one dataset collects
most of the tigers in forests while another dataset mainly
collects tigers in zoos.
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D — S + X: S is the spurious (context) representation of
X under prior D. This relationship exists due to the fact that
even for the same image, its context representation learned
under the datasets with different context priors can differ
substantially.

X — M <+ S: M is the distance metric. Besides the images
X, the distance between two images is also influenced by
the context prior D through mediator .S. For example, as
shown in Figure 1, when most of the tigers in a training
dataset are in forests and Alaskan dogs are in snow, this
kind of context prior makes the model take into account
the representations of grasses and snow when calculating
the distance between two animals. This misleads the model
to make unreasonable predictions on the test data, i.e., the
distance between the wolf in forests and the lion in forests
is less than the distance between this wolf and the other two
wolves in snow.

As illustrated above, the context prior D is the confounder
of image X and the distance metric M. The existing ap-
proaches directly learn P(M|X), which introduces the con-
text biases to the learned metric and thus results in a biased
metric. To address this issue, we propose DCML to learn
P(M]do(X)) that learns the true causality of the distance
between samples w.r.t. the target task.

3.3. Deep Causal Metric Learning

To remove the effects of the context prior D and learn the
causal distance metric, one intuitive way is to collect data
samples evenly in different context environments, which
is impossible due to the huge cost (Zhang et al., 2020b).
Thanks to backdoor adjustment, we can learn P(M |do(X))
by cutting off D — X so that D is not a confounder any-
more as shown in Figure 2(b), which can be achieved by
stratifying confounder D into pieces D = {d;, da, ..., di }
where each d; represents one kind of context prior environ-
ment. The de-confounder model is expressed as:

P(M|do(X)) = Y [P(dj))P(M|X, S =I(X, d;))]
d;eD
3)
where Z(X, d;) is a function to generate the context repre-
sentation of X under prior d;.

By adopting the proxy-based loss, maximizing the probabil-
ity of P(M|do(X)) is equivalent to minimizing the proxy-
based loss:

‘de = Z Z K(g(ziwgi :I(Iivdj))7yiac) (4)

d; €D (x;,y:)€d;

Two challenges arise in (4): (I) how to obtain environments
d; with different context priors; (II) how to learn spurious
representation s; for each sample z;, i.e., function Z, and
the final embedding function G.

To address challenge (I), we construct environments with
different context distributions by re-weighting the training
samples (Teney et al., 2021; Wang et al., 2021a; Zhang et al.,
2021; Wang et al., 2021b). Since different samples have
different context information, re-weighting the samples is
equivalent to changing the context distribution of a dataset.
By adopting sample weights, the loss in context environment
d; in (4) is written as:

Eenv(dj7(g’z)7c) = Z

(z4,ys,wij)€d;
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where w;; is the weight for sample z; in environment d;.
The sum of the weights for a training sample in all the %
environments is set to 1, i.e., w;1 + wio + ... + w;, = 1.

The causal distance that is not affected by the context should
be invariant across different context environments, which
can be achieved by learning environment-invariant embed-
ding. Inspired by invariant risk minimization (IRM) (Ar-
jovsky et al., 2019), we learn the invariant embedding by
optimizing (4) under the constraint that there exists a class-
proxy that is invariant and optimal across environments:

['bd = Z Lenv(djv (971)76)
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(6) can be further translated to a practical version:

Eim, = Z [ﬁenv(djv(gvz->7c)

4D (M)
+a * ch\c:1£e7z,v(dj7 (g7I)7 C)HZ]

where « is a balancing coefficient; ||.||? is the square of
I2-norm; ¢ = 1 is a ”dummy” class proxy and this term is
for measuring the optimality of the dummy proxy at each
environment. Please refer to (Arjovsky et al., 2019) for the
proof and more details.

Next we need to solve challenge (II), i.e., designing G and
T for learning the final embedding and spurious feature s,
respectively. We suppose that there exits a mask m such
that m o f(x) is spurious feature s, where each element
m; in m is in the range of [0, 1] and o denotes element-
wise multiplication. We design G and 7 as the following
computation:

g(I,S = I(‘Tad)) = f(:l?) 7I(Iad)
— ()~ mo () =ao f(z)

where instead of directly learning mask m in each envi-
ronment, we learn task-specific attention map a that is the

()
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complement of m to capture the causal embedding. An
attention net 7 is used to learn a where 0 is the parame-
ters. 7y is implemented as a multilayer perceptron (Woo
et al., 2018) ( described in Appendix C). The input to Ty
is the feature representation h of = (where h = f(z)). To
effectively learn the attention map, we design two criteria:
(a) the attention should be environment-invariant as its goal
is to learn the causal embedding that is not influenced by
the context environment changes, which can be achieved
by penalizing the differences between the attention parame-
ters learned under different environments; (b) the attention
map should focus on task-invariant embedding and thus the
task-specific embedding can be emphasized. By inserting
the attention module and the two criteria to (7), we obtain:

Liv =" [Lonoldi, To, () 0 By )

d;eD
+a# |[Veje=1 Leno (dj, Ta; (B) 0 hye)|* + 8% 165 — 0]

5 Ly * 175, () © hi = Ta () © e

) ©
where 3 and +y are the balancing coefficients;  is the mean
of the attention parameters learned under different environ-
ments; note that at inference time, there is only an attention
net whose parameter values are set to 0; 1py,——y, is an
indicator function that equals to 1 when y; = vy, otherwise
0. The third and the forth terms in the right hand side of
(9) correspond to attention criteria (a) and (b), respectively.
The intuition behind the forth term is that as the distance
between two samples in the task is determined by their class
labels, the attention net is expected to focus on the invariant
“class” (task) embedding of the sample.

As the original dataset D (i.e., equivalent to sample weight
1) is also an important environment to the task, we also
minimize the empirical error on D, which results in the final
objective of DCML:

L="Li+ Ler(D,Ty(h) o h,c) (10)

The metric model is trained by minimizing (10). The remain-
ing issue is how to generate the context environments, i.e.,
sample weights w;;. Instead of using fixed environments,
DCML automatically learns the context environments that
the current embedding and the attention are not optimal or
consistent across, which is achieved by:

arg max Z [”vc‘czlﬁenv(dja 75; (h) © h7 C)H2
Y deD (11

+Hv9j\91:1['env(djv 7?9]‘ (h) o h, C) ”2]

where 6; = 1 is a "dummy” attention which the intuition
behind is similar to that behind "dummy” class proxy ¢ = 1.
The context environments are updated once every e epochs.
The implementation-level framework of DCML is sumarried
in Algorithm 1.

Algorithm 1 DCML
Input: Training data D, Encoder f, Attention MLP 7y.
for i = 1 to N epochs do
if i%e == 0 then
for i =1to M do
Update sample weights (environments) with (11)
end for
end if
Update the the model parameters by minimizing (10)
end for

4. Experiments

In this section, we first introduce the experimental settings,
then report the comparison results between DCML and the
state-of-the-art (SOTA) approaches, and finally present the
ablation studies and qualitative results.

4.1. Experimental Settings

Musgrave et al. (2020) find through extensive experiments
that when the existing approaches use their optimal hyper-
parameters and are compared in a fair manner, the SOTA
approaches only marginally outperform or perform on a par
with the classical approaches such as the contrastive loss
and the triplet loss. For a fair comparison, we adopt the
same training strategy and performance metrics as those in
(Musgrave et al., 2020).

Training Settings. We exactly follow the training settings
in (Musgrave et al., 2020). The BN-Inception (Ioffe &
Szegedy, 2015) pretrained on ImageNet (Russakovsky et al.,
2015) is adopted as the backbone. 4-fold cross validation
on the first half of the classes in each dataset is used for
training the model. Specifically, the first half of classes
are divided into 4 partitions deterministically. 3 of the 4
partitions are used as the training dataset and the remaining
1 as the validation dataset for tuning the hyper-parameters.
The training cycles through all leave-one-out possibilities.
The second half of classes are used for test. More details
can be found in (Musgrave et al., 2020).

Evaluation Metrics. Musgrave et al. (2020) shows that
the existing evaluation metrics fail to provide a complete
picture of the embedding space and they further propose
more stringent evaluation metrics by combining different
metrics. To fairly and comprehensively evaluate different
approaches, we adopt the metrics proposed in (Musgrave
et al., 2020), i.e., P@1 (also known as Recall@1), RP, and
MRP@R. More details can be found in Appendix A.

Datasets. Following the existing literature, we adopt the
three widely used metric learning benchmark datasets, i.e.,
CUB-200 (Wah et al., 2011), Cars-196 (Krause et al., 2013),
and Stanford Online Products (SOP) (Oh Song et al., 2016).
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Table 1. Comparison results (%) on CUB200.

Concatenated (512-dim)

Separated (128-dim)

P@l RP MAP@R |  P@l RP MAP@R

Pretrained 51.05 24.85 14.21 50.54 25.12 14.53

Contrastive 6813+ 0.31 3724 +£0.28 2653 £0.29 | 59.73 £0.40 31.98+029 21.18+0.28
Triplet 6424+ 026 3455+024 23.69+023 | 5576+027 29.55+0.16 18.75+0.15
NT-Xent 66.61 £029 3596+ 021 2509+022 | 58.12+023 30.81+0.17 19.87 +0.16
ProxyNCA  65.69+£0.43 35.14+026 24214027 |57.884+030 30.16+£0.22 19.32+0.21
Margin 63.60 +0.48 33.94+£0.27 23.09+027 | 5478 +030 28.86+0.18 18.11£0.17
Margin/class ~ 64.37 £0.18 3459 +0.16 2371 +£0.16 | 5556 +0.16 29.32+0.15 1851 +0.13
N. Softmax ~ 65.65+030 3599+0.15 2525+0.13 | 58754+0.19 31.75+0.12 20.96 £ 0.11
CoS 67324032 3749+021 2670+023 | 59.63+036 31994022 21.21+0.22
ArcFace 67.50 £ 025 37.31+021 2645+020 | 60.17+0.32 32374+0.17 21.49 +0.16
FastAP 63.17 £0.34 3420+£0.20 2353+020 | 5558 +031 29.72+0.16 19.09 £ 0.16
SNR 66.44 +0.56  36.56 £ 0.34 2575+ 0.36 | 58.06 +0.39 31.21 028 20.43 +0.28
MS 65.04+028 3540+0.12 2470+0.13 | 57.60 £ 0.24 30.84 +£0.13 20.15 +0.14
MS+Miner 6773 +0.18 37.37+0.19 2652+0.18 | 59.41 £0.30 31.93+0.15 21.01 +0.14
SoftTriple 67274039 3734+0.19 2651+020 | 59.94+033 32.124+0.14 21.31 +0.14
ProxyNCA++  64.69 £0.40 3437+0.13 2353+0.12 | 57.13+0.36 29.52+0.16 1876 +0.15
ContXBM 68.43 £ 1.18  37.66 £ 0.56 26.85+0.63 | 60.95+0.76 32.694+0.33 21.78 & 0.35
Proxy-Anchor  67.64 +0.42 3729+0.19 2647 +0.21 | 60.59 +0.24 32.45+0.15 21.57 £0.15
DCML (Ours)  70.09 +0.22  39.05+0.13 2836 + 0.13 | 62.28 +0.30 3339 +0.18 22.61 + 0.15

Baselines. We compare DCML with both pair/triplet-based
and proxy-based SOTA approaches including Contrastive
(Hadsell et al., 2006), Triplet (Weinberger et al., 2006), NT-
Xent (Sohn, 2016), ProxyNCA (Movshovitz-Attias et al.,
2017), Margin (Wu et al., 2017), N. Softmax (Wang et al.,
2017a; Zhai & Wu, 2018), COS (Wang et al., 2018a;b), Ar-
cFace (Deng et al., 2019), FastAP (Cakir et al., 2019), SNR
(Yuan et al., 2019), MS (Wang et al., 2019), SoftTriple (Qian
et al., 2019), ContXBM (Wang et al., 2020c), ProxyNCA++
(Teh et al., 2020), and Proxy-Anchor (Kim et al., 2020).

4.2. Comparison with SOTA approaches

Comparison on CUB-200. We train the network for 20
epochs on CUB-200. The hyper-parameter tuning strat-
egy is given in Appendix B. The comparison results are
reported in Table 1. It is observed that DCML outperforms
all these baselines by a large margin in terms of all the three
metrics in both dim-512 and dim-128 embedding spaces,
which demonstrates the effectiveness of DCML. Specifi-
cally, DCML improves P@1, RP, and MAP@R over the
original proxy loss COS by 2.77%, 1.56%, and 1.66% re-
spectively in the dim-512 embedding space, and by 2.65%,
1.40%, and 1.40% in the dim-128 embedding space. The
significant improvements indicate the importance and supe-
riority of learning causal distances.

Comparison on Cars-196. To examine the applicability
of DCML on different kinds of datasets, we further con-
duct experiments on Cars-196. We train the model for

50 epochs with the hyper-parameters given in Appendix
B. Table 2 shows that DCML beats both pair/triplet-based
and proxy-based approaches substantially on both dim-512
and dim-128 embedding spaces, which demonstrates the
usefulness and applicability of DCML on different kinds
of datasets. Specifically, the absolute improvements over
most of these baselines are consistently over 2% in terms
of the three metrics in both embedding spaces. The supe-
rior performances of DCML are due to its ability to learn
environment-invariant attention and task-invariant embed-
ding.

Comparison on SOP. We further investigate the perfor-
mance of DCML on large scale dataset SOP, where the
model is trained for 70 epochs with hyper-parameters in Ap-
pendix B. As shown in Table 3, DCML obtains the best per-
formance among these approaches, which validates the ef-
fectiveness and superiority of DCML on large-scale datasets.
It also indicates that the causal distance metric is also bene-
ficial to large datasets.

4.3. Ablation Studies

Ablation studies are conducted to examine the effects of the
strategies in DCML on CUB-200 in the dim-512 space.

4.3.1. COMPONENTS IN THE OBJECTIVE OF DCML

We first examine the effects of the components in (9). We de-
note DCML without the environment-invariant embedding
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Table 2. Comparison results (%) on Car-196.

Concatenated (512-dim)

Separated (128-dim)

P@1 RP MAP@R ‘ P@1 RP MAP@R
Pretrained 46.89 13.77 5.91 43.27 13.37 5.64
Contrastive 81.78 043 3511 £045 24.89+0.50 | 69.80 +0.38 27.78+0.34 17.24 £0.35
Triplet 79.13 +£042 3371 £045 23.024+0.51 | 65.68 £0.58 26.67+0.36 15.824+0.36
NT-Xent 80.99 +0.54 3496 £0.38 24404041 | 68.16 =036 27.66 +£0.23 16.78 £0.24
ProxyNCA 83.56 £0.27 35.62+0.28 25384031 | 73.46+0.23 2890+0.22 18.29+0.22
Margin 81.16 = 0.50 34.82 +£0.31 24214034 | 68244+035 27.25+0.19 16.40+0.20
Margin/class 80.04 +0.61 33.78 £0.51 23.11 £0.55 | 67.54 +0.60 26.68 +0.40 15.88 +£0.39
N. Softmax 83.16 £ 0.25 36.20+0.26 26.00+0.30 | 72.55+0.18 29.35+0.20 18.73 £0.20
COS 85.524+0.24 37.32+028 27.574+0.30 | 74.67+0.20 29.01 £0.11 18.80 £0.12
ArcFace 8544+ 0.28 37.02+029 27.224+0.30 | 72.104+0.37 27.29+0.17 17.11 £0.18
FastAP 7845 +0.52 33.61 £0.54 23.144+0.56 | 65.08+£0.36 26.59+0.36 1594+ 0.34
SNR 82.02+048 3522+043 25.034+048 | 69.69 +046 27.55+025 17.13+0.26
MS 85.14+£0.29 38.09+0.19 28.07+0.22 | 73.77+£0.19 2992 +0.16 19.32 £0.18
MS+Miner 83.67 034 37.08+£0.31 27.01 £0.35 | 71.80+0.22 2944 +0.21 18.86 £0.20
SoftTriple 8449 +0.26 37.03+0.21 27.08+0.21 | 73.69 +0.21 29.29+0.16 18.89 £0.16
ProxyNCA++ 82.09 £0.41 36.31+£0.24 26.024+0.26 | 70.60 £ 0.18 29.35 £0.08 18.63 + 0.09
ContXBM 83.67+0.35 36.10+£0.19 26.04 £0.24 | 72.58 £0.21 2855+ 0.10 18.07 £0.11
Proxy-Anchor 86.38 £0.15 37.53+0.17 27.774+0.20 | 76.85 £0.13 30.12+0.10 19.82 +0.10
DCML (Ours) 87.43 +0.21 39.60 + 0.16 30.29 +0.12 | 78.58 + 0.27 31.58 + 0.15 21.55 + 0.14
Table 3. Comparison results (%) on SOP.
Concatenated (512-dim) ‘ Separated (128-dim)
P@1 RP MAP@R ‘ P@1 RP MAP@R

Pretrained 50.71 25.97 23.44 47.25 23.84 21.36
Contrastive 73.12+ 020 47.294+0.24 4439+0.24 | 69.34 +£0.26 43.41 +£0.28 40.37 +0.28
Triplet 72.65 +0.28 46.46 +£0.38 43.37+0.37 | 67.33 £0.34 4094 +0.39 37.70 +0.38
NT-Xent 7422 +£022 48354026 4531+0.25 | 69.88+0.19 43.51+£0.21 40.31+0.20
ProxyNCA 75.89 +0.17 50.10+0.22 47.22+0.21 | 71.30 £0.20 44.71 £0.21 41.74 +0.21
Margin 7099 +0.36 4494+ 043 41.82+043 | 65.78 £0.34 39.71 £040 36.47 +0.39
N. Softmax 7536 +£0.17 50.01 £0.22 47.13+0.22 | 71.65+0.14 4532+0.17 42.35+0.16
COS 75.79 £ 0.14 49.77+0.19 4692+ 0.19 | 70.71 £0.19 43.56 £0.21 40.69 + 0.21
ArcFace 76.20 +0.27 50.27 +£0.38 4741 +040 | 70.88 £ 1.51 44.00+1.26 41.11 +0.22
FastAP 7259+ 026 46.604+0.29 4357 +0.28 | 68.13 +£0.25 42.06 +0.25 38.88 +0.25
SNR 73.40 +£0.09 4743 4+0.13 4454 +£0.13 | 6945+ 0.10 43.34+0.12 40.31 +£0.12
MS 74.50 2024 48.77 2032 4579 £0.32 | 7043 £0.33 4425+ 0.38 41.15 +0.38
MS+Miner 75.09 +0.17 49.51 £ 0.20 46.55+0.20 | 71.25+0.15 45.19+0.16 42.10+0.16
SoftTriple 76.12 +0.17 50.21 +£0.18 47.35+0.19 | 70.88 £ 0.20 43.83 £0.20 40.92 +0.20
ProxyNCA++ 75.10+0.15 49.50 £0.19 46.56 £0.19 | 70.43 +£0.17 43.82+0.20 41.51+0.18
Proxy-Anchor 76.12 £0.19 50.82 £0.27 47.88 +£0.26 | 72.79 = 0.22 47.00 = 0.24 43.97 £ 0.25
DCML (Ours) 77.88 £0.19 52.81 +0.22 50.00 +0.22 | 73.83 + 0.21 47.38 + 0.23 44.52 + 0.22

term (i.e., « = 0), without the environment-invariant atten-
tion term (i.e., 8 = 0), without the task-invariant term (i.e.,
~v = 0) by “DCML w/o0 inv_emb”, “DCML w/o inv_at”,
and “DCML w/o inv_task”, respectively. As shown in Table
4, the performance of DCML drops significantly without
either of the three terms, which validates the effectiveness

and necessity of the three terms.

4.3.2. ENVIRONMENT STRATEGIES AND ATTENTION

DCML updates the environments by learning sample
weights with (11). To show the effectiveness of this strat-
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Table 4. Effects of the terms in the objective function.

P@1 RP MAP@R
DCML 70.09  39.05 28.36
DCML w/o inv.emb  68.87 37.98 27.13
DCML w/o inv_at 68.96 38.64 27.78
DCML w/oinv_task  68.86 38.92 28.03

Table 6. Effects of environment update frequency.

e=1 e=3 e=5 e=10
P@l1 69.63 69.38 70.09 69.95
RP 38.86 3872 39.05 38.80
MAP@R 28.06 2794 28.36 28.03

Query

Table 5. Effects of the environments and attention.

P@1 RP MAP@R
DCML 70.09 39.05 28.36
DCML w random 69.12 38.30 27.72
DCML w/oenvs 67.69 37.34 26.56
DCML w/o at 69.03 38.22 27.88

Table 7. Effects of the number of environments.

k=2 k=5 k=10 k=15
P@1 70.09 69.89  69.47 69.10
RP 39.05 38.66 38.31 38.39
MAP@R 2836 2791 2752 27.58

Figure 3. Randomly selected 3 query images and the Top-10 retrieval results from Cars-196. The blue frame indicates that the retrieved
image and the query image belong to the same class, and the red frame indicates that they are from different classes.

egy, we compare it with DCML with randomly generated
sample weights as environments (denoted by “DCML w
random”). Table 5 reports the comparison results. It is
unsurprising that DCML outperforms the random weight
strategy significantly, since DCML explicitly learns the con-
text environments that the attention and embedding are not
optimal or consistent across while the randomly generated
weights are less informative.

To examine whether the environment-based training and
the attention module are necessary, we also report the per-
formances of DCML without environments (denoted by
“DCML w /o envs”) and without attention module (denoted
by “DCML w/o at”) in Table 5. It is observed that the per-
formances drop substantially without either of them, which
indicates their importance and necessity.

4.3.3. NUMBER OF ENVIRONMENTS OPTIMIZED
SIMULTANEOUSLY AND UPDATE FREQUENCY

As shown in (9), the losses on k (where |D| = k) envi-
ronments are optimized simultaneously and then these en-
vironments are updated once every e epochs with (11) to
cover more environments. We investigate how the perfor-
mances vary with number k and update interval e. It is
observed in Table 6 that the performance drops when the
update interval is too large or too small, since too large up-
date intervals make DCML not cover enough environments

while too small update intervals make DCML not learn well
on each environment. Table 7 shows that increasing k leads
to a slight performance drop. The reason may be that it is
difficult to optimize the model on too many environments
simultaneously.

4.4. Qualitative Results

We further present qualitative results in Figure 3. It is ob-
served that the images that are more visually similar to and
are from the same class as the query image are typically
within Top-3. We also notice that the images that are not
very visually similar to the query image but are from the
same class are also retrieved in Top-10 by DCML, which
indicates the powerful ability of DCML for learning the
causal metric regarding a target task (i.e., class here).

5. Conclusion

In this paper, we study deep metric learning from a novel
perspective and accordingly propose deep causal metric
learning (DCML). DCML learns the causal distance metric
regarding a task by removing the effects of the spurious dis-
tances. This is achieved by learning environment-invariant
attention and task-invariant embedding. Extensive experi-
ments on several metric learning benchmark datasets demon-
strate the effectiveness and superiority of DCML.
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A. Evaluation Metrics

For a fair and comprehensive comparison, we adopt the three evaluation metrics that are introduced in (Musgrave et al.,
2020), i.e., P@1, RP, and MAP@R. P@1 is also well-known as Recall@1 that has been widely used in different areas. We
next introduce the definition of R-precision (RP). For a query, suppose that R is the total number of references that are
from the same class as the query. First we find the R nearest references to the query. Suppose 7 is the number of those
nearest references that are from the same class as the query. The RP for the query is calculated with ; (Musgrave et al.,
2020). MAP@R is Mean Average Precision at R that combines the Mean Average Precision and R-precision. It is defined
as Zf;l P(i) where P(i) equals to the precision at 7 if the ith retrieval is from the same class as the query; otherwise 0.

B. Training and Hyper-parameters

DCML has 3 hyper-parameters, i.e., «, 3, and . Instead of using grid search that is time-consuming, we do a very simple
search. We first fix o and -y to 0, and tune 3 in [0, 1]. After the optimal (3 is obtained, we fix 5 and « and search the optimal
v in [0, 1]. Finally, we search o while fixing S and . Their final values on each dataset are given in the Github repository:
https://github.com/Xiang-Deng-DL/DCML. For the hyper-parameters in the proxy loss, we set them to the values searched
by (Musgrave et al., 2020). The model is trained with optimizer RMSprop. The learning rates for the backbone and the
attention net are set to le-6 and 2e-6, respectively. The learning rate for the class proxy vectors are set to the values searched
by (Musgrave et al., 2020), i.e., 2.53e-3, 7.41e-3, and 2.16e-3 on CUB-200, Cars-196, and SOP, respectively.

C. Implementation Details of Attention Net

The attention net is implemented as a MLP (Woo et al., 2018). Suppose that the feature maps h in the last convolution
layer of an image are in R®*"*™ where c is the number of channels; h and w are the height and the width of the feature
map in one channel. The attention net in the model consists of a two-layer MLP for learning channel attention a. of size
c and a two-layer MLP for learning the spatial attention map as of size h x w. ay is shared by all the feature maps in
different channels. Specifically, we first average all the feature maps in different channels to obtain hy € R"*_ We flatten
it to a vector and then simply apply the MLP and the sigmoid function mapping it to spatial attention map as. We then
element-wisely multiply each feature map in h by attention map a, and obtain »’. We then apply adaptive average pooling
to k' and obtain a vector of size c. By applying the other MLP and the sigmoid function to the vector, we obtain the channel
attention. We finally apply the channel attention to /’.

D. Embedding Visualization

As DCML maps the samples to the embedding space, we investigate "how close or far the samples are from each other in
the embedding space” by visualizing them. The t-SNE (Van der Maaten & Hinton, 2008) visualization of the embedding
features of 10 classes from CUB-200 and Cars-196 is presented in Figure 4 and Figure 5, respectively. It is observed that in
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Figure 4. Feature visualization of 10 classes from CUB. Figure 5. Feature visualization of 10 classes from Cars.
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Figure 6. Randomly selected 3 query images and the retrieval results from CUB-200. The blue frame indicates that the retrieved image
and the query image belong to the same class, and the red frame indicates that they are from different classes.

the embedding space, the samples belonging the same class are much closer than the samples from different classes, which
is consistent with the metric learning goal. This also indicates the effectiveness of DCML.

E. More Qualitative Results

We present more qualitative results on CUB-200. As shown in Figure 6, given a query image, both visually similar and
visually-not similar images can be retrieved if they are from the same class as the query image. This validates the powerful
ability of the learned causal metric.



