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Abstract

Interior point methods (IPMs) are a common ap-
proach for solving linear programs (LPs) with
strong theoretical guarantees and solid empirical
performance. The time complexity of these meth-
ods is dominated by the cost of solving a linear
system of equations at each iteration. In common
applications of linear programming, particularly
in machine learning and scientific computing, the
size of this linear system can become prohibitively
large, requiring the use of iterative solvers, which
provide an approximate solution to the linear sys-
tem. However, approximately solving the linear
system at each iteration of an IPM invalidates the
theoretical guarantees of common IPM analyses.
To remedy this, we theoretically and empirically
analyze (slightly modified) predictor-corrector
IPMs when using approximate linear solvers: our
approach guarantees that, when certain conditions
are satisfied, the number of IPM iterations does
not increase and that the final solution remains
feasible. We also provide practical instantiations
of approximate linear solvers that satisfy these
conditions for special classes of constraint matri-
ces using randomized linear algebra.

1. Introduction

Linear programming is a ubiquitous problem appearing
across applied mathematics and computer science, with
extensive applications in both theory and practice. Mod-
ern machine learning applications of linear programming
include ¢;-regularized SVMs (Zhu et al., 2004), basis pur-
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suit (BP) (Yang & Zhang, 2011), sparse inverse covariance
matrix estimation (SICE) (Yuan, 2010), the nonnegative
matrix factorization (NMF) (Recht et al., 2012), MAP in-
ference (Meshi & Globerson, 2011), compressed sensing
(Donoho, 2006), and adversarial deep learning (Wong &
Kolter, 2018). The central importance of this problem has
resulted in substantial research on provably accurate algo-
rithms for linear programming. At the same time, practically
efficient algorithms are critically needed.

The two major families of algorithms used to solve linear
programs are simplex methods and interior point methods
(IPMs), with combinations of the two (e.g., [PMs used in the
early stages and simplex methods used once approximately
optimal solutions have been reached) being useful in prac-
tice (Wright, 1997). Predictor-corrector methods, a special
type of IPMs, have been particularly useful in solving linear
programs accurately and are perhaps the most successful
example of theoretically provable yet practically efficient
approaches for linear programs.

More precisely, consider a linear program (LP) of the fol-
lowing (standard) form. Let A € R™*" be the constraint
matrix and x € R" be the free variable:

min c¢’'x, subjectto Ax = b, x > 0. (1)

The associated dual problem is
maxb’y, subject to ATy +s=c,s>0, 2)

where y € R™ is the dual variable and s € R" is the slack
variable. The first (weakly) polynomial time algorithm for
linear programming is the ellipsoid method, as proved by
Khachiyan in 1979 (Khachiyan, 1979). While the ellipsoid
method was deemed to be inefficient in practice, it provided
inspiration for the first IPM, developed by Karmarkar in
1984 (Karmarkar, 1984). Karmarkar’s initial work was
followed by an explosion of research on IPMs that led to
numerous algorithms with various theory-practice tradeoffs.

Predictor-corrector IPMs achieve nearly optimal theoretical
guarantees, while being commonly used in popular linear
optimization packages (Schork & Gondzio, 2020; Almeida
& Teixeira, 2015). More precisely, predictor-corrector algo-
rithms are primal-dual path-following IPMs. They compute
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a sequence of iterates (x”, y*,s*) within the primal-dual
polytope of feasible solutions which approach an optimal
solution of the LP. Path-following IPMs require that the iter-
ates within the polytope remain near the so-called central
path of the polytope, which results in faster convergence.
In each iterate, updates are computed by solving the nor-
mal equations, namely a system of linear equations of the
following form:

AD?ATAy = p. 3)

In the above equation, p, Ay € R™ are vectors (see eqn. (8)
for the exact definition of p) and D? = XS~!, where X is
the diagonal matrix whose entries are the x; and S is the
diagonal matrix whose entries are the s;. To analyze the
computational complexity of predictor-corrector methods,
one first computes the number of outer iterations, namely
the number of iterations in the IPM algorithm required to
converge to an approximately optimal solution. Then, one
analyzes the time required to compute each of the iterates
by solving the linear system of eqn. (3).

Standard approaches analyzing the rate of convergence and
the time complexity of predictor-corrector methods (and
other IPMs) typically assume that eqn. (3) is solved exactly
at each iteration. However, this assumption becomes unten-
able for large-scale problems and inexact iterative solvers
are nearly universally used in practice. The resulting meth-
ods are often called inexact predictor-corrector [IPMs. Theo-
retically understanding the behavior of inexact linear equa-
tion solvers when combined with IPMs is highly non-trivial.
Indeed, an early, provably accurate, approach combining in-
exact solvers with short step [IPMs (a different, less practical,
class of IPMs) appeared in the work of Daitch & Spielman
(2008), which argued that eqn. (3) can be solved in near lin-
ear time when the constraint matrix AD?A” is symmetric
and diagonally dominant. This allowed fast approximate
solutions to problems such as generalized maximum flow
(Daitch & Spielman, 2008). More recently, the literature sur-
vey by Gondzio (2012) highlighted that pairing IPMs with
iterative linear solvers is the way forward towards solving
large-scale LPs that arise in machine learning applications.
See Section 1.2 for a detailed discussion of relevant prior
work on LP solvers.

1.1. Our contributions

In this paper, we prove that a (slightly modified) predictor-
corrector IPM can tolerate errors in solving the linear system
of eqn. (3) at each outer iteration without sacrificing the
feasibility of the derived solution and without increasing the
number of outer iterations of predictor-corrector [IPMs. Our
proposed inexact predictor-corrector IPM (Algorithm 1 in
Section 4) starts with a feasible point and converges to an
e-optimal exactly feasible solution in O(y/nlog “2) outer
iterations, where p is the duality measure at the starting

point', while approximately solving the system of linear
equations of eqn. (3).

Approximately solving the linear system of eqn. (3) is prob-
lematic for two reasons: first, it invalidates known anal-
yses of classical predictor-corrector IPMs and, second, it
results in infeasible iterates, even when the IPM starts from
a feasible point. To address these issues in theory and in
practice, we introduce an error-adjustment vector, similar to
the work of Monteiro & O’Neal (2003); Chowdhury et al.
(2020). The error adjustment vector is our only modifica-
tion to the classical predictor-corrector IPM and it allows
us to return provably accurate, feasible solutions, without
any increase in the outer iteration complexity of predictor-
corrector IPMs.

More precisely, let Ay be an approximate solution for the
linear system of eqn. (3) and let v € R" be an error ad-
Justment vector (more on this vector v later). Let these two
vectors satisfy the following conditions:

AD?ATAy =p+AS!'v and ||v[2 < O(e). (4)

In words, the above conditions simply state that the approxi-
mate solution Ay is an exact solution to a slightly modified
system of normal equations, where the vector p has been
replaced by the vector p + AS~!v. The two norm of the
vector v must be relatively small, namely less than O(e),
where € is the target accuracy of the (overall) IPM solver.
We emphasize that the error-adjustment vector v.€ R”
is user-controlled, as long as it satisfies the above condi-
tions. Then, these conditions are sufficient to guarantee that
our predictor-corrector IPM (see Algorithm 1 in Section 4)
converges to a solution (x*, y*, s*) with a duality measure
p* < ein O(y/nlog £2) outer iterations. Importantly, the
final solution is exactly (and not approximately) feasible.

A few additional remarks are necessary to better understand
our results for the error-adjusted inexact predictor-corrector
IPM. First, we note that our method achieves the best-known
outer iteration complexity for predictor-corrector IPMs. Sec-
ond, the error tolerance of the approximate linear equation
solver does not directly depend on n and is constant if € is
constant. Third, there are many potential constructions of v
which fulfill the above guarantees. This raises the problem
of finding efficient constructions of v for an inexact linear
solver, as this has significant impact on the efficiency of the
method.

To address the last point, we exhibit efficient, practical meth-
ods to compute Ay and v by adapting the preconditioned
conjugate gradient (PCG) algorithm for constraint matri-
ces A that are short-and-fat, tall-and-thin, or even have
exact low-rank (see Section 4.1 and Appendix D for details).

"The duality measure jn = %XTS quantifies how close a primal-

dual point (x,y, s) is to optimality at a certain iteration.
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More precisely, we show that using PCG, we can compute
Ay and vin O (log %) inner iterations, where each inner
iteration is simply a matrix-vector product. It is notable that
this inner iteration complexity does not depend on the spec-
trum or the condition number of the input matrix AD?A”.
This is particularly important since the condition number
of this matrix changes over iterations and might increase
significantly as the outer iterations of the predictor-corrector
IPM approach the optimal solution.

Our second contribution in this paper is a novel analysis
of the classical, inexact predictor-corrector IPMs in the
special setting where the final solution is allowed to be only
approximately feasible. More precisely, assume that Ay is
an approximate solution to the linear system of eqn. (3) that
satisfies the following two conditions:

|Ay — (AD?A")"'p|ap2ar <6 (5)
and |[AD’ATAy —p|2 < 4. (6)

Here § is the error tolerance of the solver and we note
that the first condition guarantees that the exact and the
approximate solutions are close with respect to the energy
norm, while the second condition guarantees that the two-
norm of the residual error of the solver is small. (See Sec-
tion 2 for notation.) We provide a novel analysis of the
standard predictor-corrector method described in Wright
(1997) when approximate solvers that satisfy the above
conditions are used. Theorem 1 proves that these condi-
tions suffice in order to prove that the standard predictor-
corrector algorithm (see Algorithm 3 in Section 5) converges
to a solution (x*, y*, s*) with duality measure p* such that
[Ax* — b2 < eand p* < €in O(y/nlog £2) outer iter-
ations. Assuming that y and € are constant, the accuracy
parameter § is set to © (1/y/n) at all iterations of the algo-
rithm.

A few remarks are necessary to better understand the second
result. First, the outer iteration complexity is equivalent
to the “optimal” O(+/n log £2) iteration complexity of the
exact predictor-corrector IPM methods and exhibits linear
convergence in the accuracy parameter €. Second, the ac-
curacy parameter ¢ for the approximate solver is, generally,
proportional to 1/4/n, which is similar to the condition
of Daitch & Spielman (2008). It is worth noting that our
proof collapses if the error bound exceeds this threshold,
and an interesting open problem is whether this condition
is necessary for predictor-corrector IPMs. Third, the fi-
nal solution vector is only approximately (and not exactly)
feasible, satisfying || Ax* — b||2 < e for the accuracy pa-
rameter? . Fourth, for the same family of matrices as in our

2For notational simplicity, we use the same accuracy parameter
e for both the duality measure and the approximate feasibility of
the final solution vector. Our analysis can be easily extended to
use different accuracy parameters.

previous approach (tall-and-thin, short-and-fat, or exact low-
rank k£ < min{m,n}), we can again show that by using
PCG solvers, we can efficiently compute an approximate

w) iterations of the pre-

solution Ay in O (log
conditioned solver, where oy,,x(AD) is the largest singular
value of the matrix AD. We emphasize that, unlike our
previous approach that uses the error-adjustment vector v,
the convergence of the standard inexact predictor-corrector
IPMs depends logarithmically on properties of the input

matrix AD at each iteration.

Our two contributions exhibit a trade-off between algorith-
mic simplicity and theoretical guarantees. On one hand,
the standard predictor-corrector IPM can be used without
modifications with an iterative linear solver, but will not
return a feasible solution and will need higher solver ac-
curacy that depends on the largest singular value of AD.
Alternatively, the predictor-corrector method can be slightly
modified to use an error-adjustment vector with the added
benefits of obtaining an exactly feasible solution and re-
moving dependence of the inner iteration complexity on the
largest singular value of AD.

We conclude by noting that our proof techniques are flexible
and can be extended to analyze long-step and short-step
IPMs, which are, however, less interesting in practice.

1.2. Related Work

Due to the central importance of linear programming in com-
puter science, there exists a large body of work on LPs and
IPMs specifically. We refer the reader to the 2012 survey of
Gondzio (2012) for more information on the broader state of
IPMs, as we focus on literature that is most closely related
to our work. Recall that our main focus in this paper is a
theoretical analysis of the outer iteration complexity of inex-
act predictor-corrector [PMs with and without a correction
vector that guarantees an exactly feasible solution.

Since the 1950s, there has been continual effort in the the-
oretical computer science community to develop new LP
solvers with improved worst-case asymptotic time complex-
ity. Presently, there is no single fastest LP solver over all
typical regimes of LPs. The work of Lee & Sidford (2019)
provides an IPM which requires O(/rank(A) log 1) outer

iterations and O(1) linear system solves at each outer it-
erations. The recent works of Cohen et al. (2021); Song
& Yu (2021) have a total time complexity of O*(n® log %)
where w ~ 2.37 is the current best-known exponent of
matrix multiplication. The work of van den Brand et al.
(2020) provides the theoretically fastest solver when A is
tall and dense, in which case the outer iteration complexity
is O(y/n) and the total time complexity is O(mn + n?3).
All three of these works provide short-step IPMs, which
have been found to converge slowly in practice. Addition-
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ally, these works leverage techniques such as fast matrix
multiplication and inverse maintenance, which, due to nu-
merical instability and large constant factors, are generally
ineffective in practice. Our algorithms do not depend on
any of these techniques. We instead focus on the predictor-
corrector method, which is highly effective in practice, yet
still has strong theoretical guarantees, with an outer iteration
complexity of O(y/nlog %) and one linear system solve
per outer iteration. Our method can be fully implemented in
less than 150 lines of code using well-established numerical
techniques such as preconditioned conjugate gradient de-
scent, as we show in Appendix D. The time complexity of
this inexact linear system solver is O(nnz(A) + k3), where
k is the rank of A.

In our work, we analyze the prototypical predictor-corrector
algorithm described in (Wright, 1997). One variant of
this method, given by Mehrotra (1992), is considered the
industry-standard approach to solving LPs and is perhaps
the most common IPM used in linear programming pack-
ages (Schork & Gondzio, 2020; Almeida & Teixeira, 2015).
We do note that Mehotra’s algorithm (unlike the standard
predictor-corrector IPMs) does not come with provable ac-
curacy guarantees. Development of new predictor-corrector
variants along with theoretical analyses is ongoing. Exam-
ples include the variant of Mehrotra’s predictor-corrector
IPM given by Salahi et al. (2008) or the analysis by Almeida
& Teixeira (2015) of a predictor-corrector method specifi-
cally suited for LPs arising in transportation problems (Bas-
tos & Paixdo, 1993). Other recent works includes the pa-
per by Schork & Gondzio (2020) on empirically evaluat-
ing Mehrotra’s algorithm when using preconditioned con-
jugate gradient descent to solve the normal equations at
each step. The work of Yang & Yamashita (2018) provides
an infeasible predictor-corrector method with O(n log %)
outer iteration complexity and empirically demonstrates its
competitiveness with existing methods. The importance of
predictor-corrector methods motivates us to develop a better
theoretical understanding of their convergence properties
when using inexact linear solvers.

Multiple works have analyzed the impact of using inexact
linear solvers within IPM algorithms, with early examples
being (Bellavia, 1998) and (Mizuno & Jarre, 1999). One
method which is relevant to our work is that of Monteiro
& O’Neal (2003) which guaranteed the convergence of a
long-step IPM by correcting the error of the inexact solver
using a correction vector v as we describe in eqn. (4). This
idea was further developed by Chowdhury et al. (2020),
which introduced a more efficient construction of v. An-
other example of such works is Daitch & Spielman (2008),
which gives a short-step IPM alongside an inexact Laplacian
system solver to solve the generalized max-flow problem.
However, the analysis of their inexact short-step IPM does
not seem to be directly applicable to solving general LPs

where the constraint matrix is not Laplacian. We improve
over these prior works by analyzing the inexact predictor-
corrector method using two different approaches and we
make minimal assumptions of the linear system solver and
LP.

We further note that recently various first-order methods
(with proper enhancements) are also being explored to iden-
tify high-quality solutions to large-scale LPs quickly (Basu
et al., 2020; Lin et al., 2021; Applegate et al., 2021). How-
ever, most of these endeavors are based on the combinations
of existing heuristics and do not come with theoretical guar-
antees.

2. Background
2.1. Notation

For any natural number n, let [n] = {1,2,...n}. Bold
capital letters denote matrices (e.g, A); bold lower case
letters denote vectors (e.g., x); and the ¢-th element of vector
x is written as x;. Let I,, denote the n X n identity matrix;
let 1,, and 0,, denote length m vectors of all ones and
zeroes respectively. We define the norm of a vector ||x||, to
be its well-known ¢, norm and the norm of a matrix ||A||,
to be the induced £, norm, i.e. [|Al[, = max x|, =1 [|AX]|.

We also use the energy norm ||x||m = vVxTMx, where x
is a vector and M is a symmetric positive definite matrix.
We denote the Hadamard (element-wise) product of two
vectors u, v as u o v. Finally, we denote the Moore-Penrose
pseudoinverse of a matrix A as AT,

2.2. Background

Interior point methods using an exact linear solver iteratively
converge towards a primal-dual solution (x*, y*, s*), which
optimally solves the primal and dual LPs of eqns. (1, 2).
The direction of each iterative step is determined by solving
the so-called normal equations:

AD?ATAy = —opAS™'1, + Ax, (7a)

As = —AT Ay, (7b)

Ax = —x + O',MS_l].m — D?As. (7¢)

In the above, o € [0, 1] is the centering parameter, which
controls the tradeoff between progressing towards the op-

timal solution and staying near the central path. Let p be
equal to the right-hand-side of eqn. (7a), i.e.,

p=—-ouAST11, + Ax. ®)

Path-following IPM algorithms ensure that the iterates re-
main sufficiently far from the boundary of the convex poly-
tope representing the feasible set of the primal and dual
LPs and near the central path. In this paper, we use the {5



On the Convergence of Inexact Predictor-Corrector Methods for Linear Programming

neighborhood N2 (6) defined as follows.

No(0) = {(x,y,s) € R2ntm .
[xos—plylla < Ou, (x,8) >0}  (9)
The step size of the outer iterations will need to be dynam-
ically determined to ensure that the iterates remain in the
appropriate neighborhood. The following notation com-
pactly describes the next iterate after a step of size a:
x(a) = x + aAx, y(a) =y + aAy, s(a) =s + aAs,
and p(a) = (x + aAx)T (s + aAs) /n.

The following identities hold for the exact steps determined
by eqn. (7) above; see (Wright, 1997) for details:

AxTAs =0, (10)
sTAx +xTAs = —np + nop, an
pla) = (1 —a+ao)pu. (12)

We will also use the following bound on ||[Ax o As||s to
argue that the iterative steps remain in the neighborhood
defined by eqn. (9); see Lemma 5.4 in (Wright, 1997) for a
proof:

0% +n(l —o0)?

23/2(1 — 0)
(13)

(x,y,8) € Na(f) = ||[Ax o As|2 <

3. Overview of our approach and proofs

Inexactly solving the normal equations when determining
the step direction in predictor-corrector IPMs adds new diffi-
culties to the convergence analysis such methods. Identities
that are critical in analyzing the the exact methods, such as
AxT As = 0, no longer hold. Another source of difficulty
is that, even when starting from a feasible initial point, the
iterates will become infeasible due to the error incurred by
the solvers. We can handle this infeasibility in two different
ways. First, we can assume bounds on the maximum error
of the solver at each step, which would guarantee that the fi-
nal solution is e-feasible, i.e. ||[Ax* — b||s < €. The second
approach, previously introduced in (Monteiro & O’Neal,
2003), is to adjust the error in each step to ensure that the
next iterate is feasible. We analyze both approaches in our
work.

The following equation block designates the step of inex-
actly solving the normal equations, where the vector f is the
error residual incurred by solving for Ay using an inexact
linear solver:

AD?ATAy = —opuAS™'1, + Ax — 1, (14a)
As = —AT Ay, (14b)
A% = —x + opuS~ 1, — D?AS. (14c)

The next equation block deals with the case of an error-
adjusted approximate step. The idea behind this error-
adjustment is the construction of a vector v with small norm
such that the error vector f is exactly equal to —AS~!v.
We then correct the primal step A% by subtracting S™'v,
which guarantees that AAX is equal to zero:

AD?ATAy = —opuAS~'1, + Ax + AS~ v, (15a)
As = —AT Ay, (15b)

A% = —x+opS™ 1, — D?A5 — S~ 1v.
(15¢)

Note that both the inexact and error-adjusted normal equa-
tions maintain dual feasibility of the iterate when starting
from any dual feasible starting point, i.e., ATy +s = c.

In order to derive our theoretical bounds, we first analyzed
the uncorrected inexact predictor-corrector IPM, which is
the original predictor-corrector IPM using an approximate
solver denoted Solve. We present an overview of this
analysis in Section 5 (see Algorithm 3). In the interest of
space, we delegate detailed analysis of this algorithm to
the Appendix (see Appendix B). The uncorrected inexact
predictor-corrector IPM takes two steps (a predictor step
and a corrector step) in each outer iteration. Starting from a
point in A5(0.25), the algorithm takes a predictor step with
centering parameter o = 0 and a dynamically chosen step
size «, such that the iterate remains in A5(0.5). The algo-
rithm then takes a corrector step with centering parameter
o = 1 and step size o = 1, which returns the iterate back
to NM>(0.25). The predictor step results in a multiplicative
decrease in the duality measure, and the corrector step sets
up the next predictor step, while only resulting in a slight
additive increase in the duality measure. Our main result for
Algorithm 3 in Section 5 is given by the following theorem.

Theorem 1. Let ¢ > 0 be a tolerance parameter and
(%0, ¥0,80) € N2(0.25) with duality measure 1 be a fea-
sible starting point. Then, Algorithm 3 (see Section 5)
converges to a dual-feasible point (x*,y*, s*) with duality
measure [1* such that ||Ax* — b|la < € and p* < 2¢ in

so . . . .
O(y/nlog £2) outer iterations, where the approximate lin
ear solver Solve is called twice in each outer iteration with

— mind Ve eCo

error tolerance parameter 0., = min{¥s, VAT uo/e}

and the constant Cy is defined in Lemma B.4.

Next, in Section 4, we present and analyze our main contri-
bution, the error-adjusted predictor-corrector method (Algo-
rithm 1), which uses a linear solver® Solve" to compute
an approximate solution Ay and an error-adjustment vector
v that satisfy eqns. (15). The main result of Section 4 is the
following theorem.

3(A¥,v) = SolveY(A,p,d) takes three inputs: the input
matrix A, the response vector p, and the target accuracy (or tol-
erance) ¢ and returns an approximate solution Ay and the error-
adjustment vector v.
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Theorem 2. Let € > 0 be a tolerance parameter and
(%0, ¥0,80) € N2(0.25) with duality measure pg be a feasi-
ble starting point. Then, Algorithm 1 converges to a primal-
dual feasible point (x*,y*,s*) with duality measure p*
such that i* < 2¢ in O(y/nlog 22) outer iterations, where
SolveV is called twice in each outer iteration with error
tolerance </2".

The convergence analysis of both inexact predictor-corrector
algorithms shares the same overall structure, which we now
outline. First, we upper bound ||A%X o A3||2, a technical
result that will be needed in upcoming steps. Second, we
derive a bound for the left-hand side of the A5 neighborhood
condition (||x o' s — ul,||2) after step size . This bound
depends on ||Ax o A§||2 and the error of the linear solver.
Third, we find a value for the step size « that depends on
||Ax o AS||2, which keeps the next iterate in the appropriate
neighborhood, N5 (0.5). Fourth, we lower bound the step
size o using the upper bound on ||Ax o A§||2. Fifth, we use
the lower bound on « from the previous step to lower bound
the multiplicative decrease in the duality measure after the
predictor step. Finally, we prove that the corrector step with
step size o = 1 returns the iterate to N5 (0.25) by using the
inequality from the second step and then bound the resulting
additive increase in the duality measure.

For both predictor-corrector algorithms, the above structure
provides a guaranteed decrease in the duality measure over

a single step of the form fi; < (1 — %) wo + Ch 6"",

n
where Cyy € (0,1), C; € [0,Co/+/n], and dc,, > 0 is the
tolerance parameter for the corresponding linear solver. We
can use this relation to conclude (using standard arguments)
that each algorithm converges to a point (x*, y*, s*) with
duality measure u* < 2e. We note that the proof of the inex-
act predictor-corrector IPM without using error-adjustment
is simpler, partly because the duality measure during its
inexact predictor-corrector step is always higher than the du-
ality measure during the exact step. This is not the case for
the inexact predictor-corrector IPM with error-adjustment,
which needs extra care in bounding the duality gap decrease
in each iteration.

In Section 4.1 (see also Appendix D), we show how the
approximate linear solver Solve" can be efficiently in-
stantiated when the constraint matrix A has exact low rank
(which includes as special cases tall-and-thin and short-and-
fat matrices), by using a preconditioned conjugate gradient
(PCG) method.

4. Error-adjusted Inexact Predictor-Corrector
IPMs

In this section, we introduce an algorithm that we will
call error-adjusted inexact predictor-corrector IPM (Algo-
rithm 1). This algorithm uses an inexact linear solver

SolveY, which returns an approximate solution Ay and a
correction vector v that satisfies the conditions of eqn. (4).
This correction vector guarantees that the final solution
will be exactly feasible and, as discussed in Section 1, Al-
gorithm 1 can tolerate larger errors for the inexact solver.
We follow the proof sketch of Section 3 to prove conver-
gence guarantees and time complexity for Algorithm 1.
We will assume that the matrix A has full row rank, i.e.,
rank(A) = m < n; see Appendix D.3 for extensions
alleviating this constraint.

Algorithm 1 Error-adjusted Inexact Predictor-corrector

Input: A € R™*", initial feasible point (x°,y°,s") €
N3(0.25); IPM tolerance € > 0.

Initialize: k < 0;

while ji, > 2e

Predictor Step (o = 0):

(a) Compute (Ay,v) = SolveY(AD?AT, Ax,¢/27).
(b) Compute Ax and AS via eqn. (15).

(¢) Set o = min {1/27 (#/IGHAioAéHg)l/z}

(d Compute (xg,Yk,Sk) =
Oé(A)N(k, AS’k, Agk)

Corrector Step (« = 1,0 = 1):

(e) Compute (Ay,v) = SolveV(AD?AT, —nAS™!'1,,+
Ax, ¢/27).

(f) Compute Ax and AS via eqn. (15).

(g) Compute (Xki1,Yk+1,Sk+1) =
(Axg, Ay, ASg).

)k k+1.

end while

(XK, ¥Y&,Sk) +

(Xkayka Sk) +

We proceed by expressing the difference of the exact vs.
approximate solutions, using eqn. (7) vs. eqn. (15):

Ay — Ay = —(AD?AT)"1AS lv, (16)
As — As = —AT(Ay — Ay)

= AT(AD?AT)tAS 1y, (17)
Ax — Ax = —D?*(As — A8) + S v

= —D?AT(AD?AT)"'AS v + S 1.
(18)

We prove that Algorithm 1 converges to a point (x*,y*, s*),
such that p* < 2¢, Ax* = b, and ATy* +s* = cin
O(y/nlog ro/e) outer iterations. First, we start with a tech-
nical result to bound ||A% o A§||2. (All proofs are delegated
to Appendix C.)

Lemma 4.1. Ler (x,y,s) € Na(0) and let (A%, Ay, AS)
be the step calculated from the inexact normal equations
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without error-adjustment (see egn. (15)). Then,

~ _ 0% +n(l—o0)?
[Ax o AS|2 < mﬂ

s ¢ (62 + n(1 — 0)2)u

1(XS)~" 2]z

(1-9)
+2/|(XS) 723,

This inequality represents a key technical contribution of our
results. The proofs of Monteiro & O’Neal (2003); Chowd-
hury et al. (2020) on the convergence of a long-step IPM can-
not be readily extended to the predictor-corrector method,
as the predictor-corrector algorithm requires finer control
over deviations from the central path due to using the /o-
neighborhood. However, this more restrictive neighborhood
allows it to achieve better outer iteration complexity. Ob-
serve that in the corrector step, when o = 1, our bound does
not directly scale with n in this case, in contrast to Lemma
16 in (Chowdhury et al., 2020) and Lemma 3.7 in (Monteiro
& O’Neal, 2003).

We can use the previous inequality to bound the deviation

of the iterate from the central path after a step of size a.
Lemma4.2. [fa € [0,1], then

[%(a) 0 8() = fi(a)1nlls <

(I—a)lxos—pulyl2
+ o?[| A% o A8l|z + 20| v]|2.

Given the previous bound, we can then derive a step size «
which guarantees that the iterate remains in N5 (0.5) after
the predictor step.

Lemma 4.3. If (x,y,s) € N3(0.25),
min {1/2, (#/16|\A>20A§H2)1/2 , and ||v|2 < #/32, then the
predictor step (X(a),y(a),8(a)) € N2(0.5).

« =

We then show that the predictor step with step size «v as given
in the above lemma guarantees a multiplicative decrease in
the duality gap. Recall that o = 0 in the predictor step when
solving the normal equations

Lemma 44. If (x, y7 € N(0.25),
} and ||v||2 < #/32, then the

predictor step (X(a),y(a),8()) remains in N2(0.5) and
there exists a constant Cyy € (0, 1) such that,

Ma) . _ Co

I vn
After the previous lemma, we have shown that the predictor
step results in a multiplicative decrease in the duality gap,
while keeping the next iterate in the neighborhood N3(0.5).
We then show that the corrector step returns the iterate to the

N5(0.25) neighborhood, while increasing the duality gap
by a small additive amount.

« =

min {1/2, (u/m”A;coAsH

I /\

Lemma 4.5. Let (x,y,s) € N>(0.
Then, the corrector step (%(1),y(1),

A1) — ] < ]l

5) and ||[v||2 < #/2".
§(1)) € M2(0.25) and

Overall, the structure of the proof approach for the inexact
predictor-corrector method (Section 5) is similar to the proof
structure shown here. However, proving the individual lem-
mas for the error-adjusted algorithm requires slightly more
work, since the correction step adds an additional adjust-
ment to the iterates in each step, which must be accounted
for.

In comparison to the proof of the standard predictor-
corrector method found in Wright (1997), the general idea
and organization of the lemmas are shared, however, ac-
counting for the error in each step can lead to unwieldy
and complicated formulas. An important part of our proof
that partially alleviates this problem is to generalize the in-
equalities used in Wright (1997) to depend smoothly on the
error of the inexact linear system solve, so we recover the
statement of each lemma when the error is zero. This allows
us to appropriately set the linear system solver precision to
give up small factors in the tightness of our result in each
lemma, which can then be offset by increasing the precision
of the linear system solver. By doing so, we ensure that the
added proof complexity for the inexact predictor-corrector
method is locally resolved in each lemma. As a result, our
proofs are conceptually simpler than prior work proving
the convergence of inexact IPMs, such as Chowdhury et al.
(2020) and Daitch & Spielman (2008).

4.1. Implementing Solve"

We demonstrate that SolveY can be effectively imple-
mented using a preconditioned conjugate gradient (PCG)
method that also constructs the correction vector v that satis-
fies the conditions of eqn. (4). By employing a randomized
preconditioner, the resulting PCG method guarantees an
exponential decrease in the energy norm of the residual.
Here we sketch our approach, and we provide details in
Appendix D.

Let AD = UXVT be the thin SVD representation with
V € R™*™ and W € R™*" be an oblivious sparse sketch-
ing matrix which satisfies, for some accuracy parameter

¢ €(0,1/2):

IVWWIVT —1, |, < g (19)

with probability at least 1 — 1. The work of Cohen et al.
(2016) shows how to construct such a matrix W fulfilling
this guarantee with sketch size w = O(m/¢? - log ™/n) and
O(Y/¢ - log m/n) non-zero entries per row. Next, we use the
above sketching matrix to define

Q=ADWWTDAT,
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Figure 1. This graph demonstrates the linear relationship between
the number of iterations and /n, as predicted by Theorem 2.
The line shows the median number of iterations and the intervals
designate the 10% and 90% quantiles out of 60 repetitions. Other
parameters are m = 20; e = 0.1; and solver tolerance 0.001.

We note that Q does not need to be explicitly constructed,
since we will only use the inverse of its square root Q~1/2
(see Algorithm 2). More specifically, since W has log m/n
non-zero entries per row and D is a diagonal matrix, ADW
can be computed in O(nnz(A) - log m/y) time. Then, com-
puting Q~'/2 via the SVD of ADW takes O(m? log m/y)
time. The overall time complexity to compute Q~1/2 is
O(nnz(A) - log™/n + m?log ™m/n).

Next, we prove that the vector Z! returned by PCG (Algo-
rithm 2) fulfills the following inequality with probability at
least 1 — n:

1Q~2(AD*AT)Q /22" — Q7 /?p|2 < ¢'| Q%P2

for the aforementioned error-parameter (.

Algorithm 2 Preconditioned Conjugate Gradient (Algo-
rithm 1 in (Chowdhury et al., 2020))

Input: AD € R™*" with m <« n, p € R™, failure
probability 7, iteration count ¢;

1. Compute ADW and its SVD, where W € R"*%
fulfills eqn. (33) with r = m. Let Ugq € R™*™ be the

matrix of its left singular vectors and let Zlc/zz € Rmxm
be the matrix of its singular values;

2. Compute Q"2 = UQEE;/ZUT;
0

3. Initialize z° <« 0,, and run standard CG on
Q /2AD?ATQ /2% = Q~'/?p for t iterations;
Output: return Ay = Q~1/2z;

Given W (the sketching matrix used to construct the pre-
conditioner), we proceed to construct the error-adjustment

50 A
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Figure 2. This graph demonstrates the linear relationship between
the number of iterations and log(1/¢), as predicted by Theorem 2.
The line shows the median number of iterations and the confidence
intervals designate the 10% and 90% quantiles out of 60 repetitions.
Other parameters are m = 30; n = 70; and solver tolerance equal
toe.

vector v as follows:
v = (XS)/?*W(ADW)"(AD?ATAy — p),

where Ay = z! aftert = O (log "—e“) iterations. The addi-
tional time needed to compute the error-adjustment vector v
is negligible, since it only adds matrix vector products, using
quantities that have already been computed and are available
to the algorithm. Combining randomized preconditioning,
conjugate gradients, and our proposed construction of the
error-adjustment vector v is theoretically and practically
efficient for short-and-fat, tall-and-thin, and exact low-rank
matrices. It can also take advantage of any sparsity in the
input matrix, since both our preconditioner construction and
conjugate gradient methods leverage input sparsity.

4.2. Empirical validation of Theorem 2

We experimentally validate the statement of Theorem 2 on
synthetic data. Specifically, we observe the predicted linear
relationship between the number of iterations vs. /n and
log(1/€), when the precision of Solve" is set to O(e). To
generate the synthetic LPs, we sample a constraint matrix
A € R™*™ the initial primal variable x, € R", and the
initial dual variable y, € R™, where each entry is sam-
pled uniformly over an appropriate interval. From these
points, we can choose an initial slack variable such that
lxo © s — polnll2 < (0.25)po. The initial primal-dual
point along with the constraint matrix completely describes
the LP, since the initial point is assumed to be primal-dual
feasible. We implement Solve" to find the primal-dual
step and correction vector v by uniformly sampling a vector
v € R™ fulfilling || v||2 = O(€) and then solving for the cor-
responding step in eqn. (15a) exactly; see Figures 1 and 2.
We also test our preconditioned gradient descent method for
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finding the primal-dual step, and error-adjustment vector
v in Appendix E and we find that the performance of our
approach is comparable to the exact method shown here
in terms of outer iteration number. Additionally, we eval-
uate the real running time of Algorithm 1 versus the same
predictor-corrector IPM using an exact linear system solve
(see Appendix E.4)

5. Inexact Predictor-Corrector IPM

We next briefly introduce the inexact predictor-corrector
IPM (without error-adjustment) and describe how the proof
of Theorem 1 compares to the approach described in Sec-
tion 4. This algorithm calls an inexact linear system solver
Solve which returns a solution with guarantees on the
energy-norm and f3-norm of the residual (see eqn. (5)).
Further details are provided in Appendix B.

Algorithm 3 Inexact Predictor-Corrector without correction

Input: A € R™*" initial feasible point (x°,y?,s’) €
N2(0.25); IPM tolerance € > 0, linear solver tolerance
den > 0.

Initialize: £ < 0;
while ;i > 2e

Predictor Step (o = 0):
(a) Compute Ay = Solve(AD?AT Ax,6..,).

(b) Compute Ax and AS using eqn. (14).

(c) Set @« = min {1/27 (#/16(\|AioA§H2))1/2}
(d Compute (Xg,Yk,Sk) =
Oz(A)N(k, Ay, Agk).

Corrector Step (« = 1,0 = 1):

(e) Compute Ay = Solve(AD?AT, —yAS~'1, +
AX,0cp).

(f) Compute Ax and AS using eqn. (14).

(g) Compute (Xg41,Yk+1,Sk+1) =
(Aik; Aykv Ask)

h k<« k+1.
end while

(XK, Y&, Sk) +

(XK YksSk) +

We again proceed by expressing the difference of the exact
vs. approximate solutions, using eqn. (7) vs. eqn. (14):

Ay — Ay = (AD?AT)7'f, (20)
As — As = —AT(Ay — Ay)

= —AT(AD2AT)"'f, (1)
Ax — Ax = —D?(As — As)

= D?AT(AD?AT)'f. (22)

Proving the convergence of Algorithm 3 follows essentially

the same high-level structure as for the error-adjusted al-
gorithm described in Section 4, where now ||(AD)'f||,
effectively measures the the error of the IPM steps and du-
ality measure decrease due to the inexact solve in place of
Iv||2. By ensuring that the energy norm of the residual

|AY — (AD*AT)"'p| ap2ar

is sufficiently small, we ensure that, equivalently,
|(AD)Tf|| is sufficiently small, allowing us to prove that
the inexact solver converges to a point with duality mea-
sure less than €, with only a constant factor increase in the
number of outer iterations. The proofs of the lemmas for
the predictor-corrector without error-adjustment are slightly
simpler due to the fact that we do not need to account for the
correction of the primal step (compare eqn. (22) to eqn. (18)).
Therefore, we provide the proof for Theorem 1 first in the
appendix, since it served as a starting point for our work.

We note that while guaranteeing that the energy-norm of
the residual is small is sufficient for a fast decrease in the
duality measure of the iterates, this does not necessarily
imply that the iterates remain approximately feasible. As
described in Appendix B, the maximum change in the pri-
mal infeasibility at each iteration is exactly ||f||2, which is
the ¢5-norm of the residual of the inexactly solved normal
equations. Lemma D.1 shows that both the energy-norm
and the /;-norm guarantee of Solve can be guaranteed
using Algorithm 2.

6. Conclusions

We present and analyze an inexact predictor-corrector IPM
algorithm that uses preconditioned inexact solvers to acceler-
ate each iteration of the IPM, without increasing the number
of iterations or sacrificing the feasibility of the returned
solution. In future work, it is of interest to extend this frame-
work to design fast and scalable algorithms for more general
convex problems, such as semidefinite programming.
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On the Convergence of Inexact Predictor-Corrector Methods
for Linear Programming (Appendix)

A. Additional Proofs
Lemma A.1. Ifthe duality measure of the IPM decreases with the relation,
Co C(0
<|1-— C C 0,1), C 0, —
Ml_( \/ﬁ)uo-l- 1€ for Gy € (0,1), 16[7\/5)7

Sor all g > 2, then the IPM algorithm converges to a point (x*,y*,s*) with duality measure p* < 2¢ in *é—f log £2 outer
iterations.

Proof. Each algorithm terminates when p;; < 2¢ indicating convergence has been reached. Therefore, we assume that at
each iteration pj, > 2e.

Although the starting point is assumed to be feasible. This fact can be ignored in the convergence analysis. The constraint
matrix of the linear program is assumed to be full rank and the system is undetermined. This implies that for all (xg, yo, So)
there exists a vector b so that the starting point is feasible. Since the duality measure does not depend on b, the decrease in
the duality gap occurs whether or not the starting point is feasible.

Given this, we can define a recurrence relation 7 (k) such that p, < T (k), where,

T@p:@-cfynk—n+cw T(0) = ro.

npbP

If we define £ = ( - %), then we have a recurrence relation of the form 7 (k) = £7 (k — 1) + Cye. The solution to the

recurrence relation is.

ok
T(h) = ) s b

601 k
< Cofur + & o

< e+ po.

Therefore, p, < T(k) < 2¢if €y < e. We can prove the outer iteration complexity using a standard argument by

substituting back in ( — %) for £ and using the identity log(1 + 8) < § for all 5 > —1. We prove that u; < 2¢ if
k> ‘é—? log £2.
Voo
k>—1
B C() o €
—kCy
= <log —
vn Ko
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Therefore, the IPM algorithm is guaranteed to converge in \é—f log £ outer iterations. O

Lemma A.2. Letu,v € R™.

laovlz < flullo[[v]2

Proof.
n

n n n
luov|3 =Y (uvi)? =3 uiv?< (Z uf) (Z v?) = [lul3[lv]3.
=1

=1 =1 i=1
O

Lemma A.3. If M is an m x n matrix of full row rank and x is an arbitrary vector in the row space of M, then
IMx[|3 > o (M)]|%]|2-

Proof. Let M = UXVT where U, X € R™*™ and V € R™*™ constitute the thin-SVD of M. Since U is an orthonormal
matrix, multiplying a vector by U does not change the £5-norm. Therefore, we have the following with y = V'x:

IMx|[3 = [USVTx|3 = |EVTx]]3

m

= Byl3 = > o:(M)?y}
=1
m

> 0, (M)? Zyg > g (M)?[ly 3,
=1

The vectors y and x have the same norm since y’y = x? VVTx = x”

M3 > o (M) 113

x, and the columns of V are orthonormal. Therefore,

[
Lemma A.4. (Simplification of Lemma 12 in (Chowdhury et al., 2020)) If (x,y,s) € N2(0), then,

_ 2np
1Q *pl2 <o T—g TV

Proof. By Lemma 7 in (Chowdhury et al., 2020), if the condition given by eqn. (33) is fulfilled by sketching matrix
W, then |[Q"Y/2AD?ATQ 12 — 1,,||» < ¢. Since ¢ € (0,1), this imples |Q'/?AD?ATQ~'/2||; < 2 and so
|Q~'/2AD||; < v/2. Recall that p = —ouAS~'1,, + Ax. We can split the terms of Q~!/2p by the triangle inequality
and then bound these terms separately below. We begin with the first term:

lopnQ 1 ?AS™ 1,2 = opl|Q/2PAD(XS) /21,2
< op||Q 2AD||[(XS) 21,2
< V2oul|(XS) 7121,

[ n
= \/ia,u min x;s;
n 2np
< =0y —=.
—ﬁ‘”‘\/ 1-ou “Vi-o
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Next, we bound the second term:
IQ™"?Ax|» = |Q""/*ADD " 'x
= Q" /2AD(S'/2X /) X1,
= |Q™"?AD(SX)/?1, |5
< [1Q™?AD|2[|(SX) /21,5

By adding the bounds together, we conclude that:

2n
1Q7"2pll2 < oy |75 + V/2nm

B. Inexact Predictor-Corrector IPM

In this section, we analyze the inexact predictor-corrector method (Algorithm 3) using an inexact linear solver Solve.
We follow the proof outline given in Section 3 to prove the convergence guarantees and time complexity of Algorithm 3.
As is common in predictor-corrector IPMs (see (Wright, 1997)), we will assume that the matrix A has full row rank, ie.,
rank(A) = m < n. See Appendix D.3 for extensions alleviating this constraint.

We will prove that Algorithm 3 converges to a point (x*, y*,s*) satisfying ;1* < 2e and ||Ax* —b||2 < ein O(y/nlog Ho/e)
outer iterations. First, we start with a technical result to bound ||Ax o A§||.

Lemma B.1. Let (x,y,s) € Na(0) and let (Ax, Ay, AS) denote step calculated from the inexact normal equations (see
eqn. (14)). Then

. . 0% +n(1 —o)? 02 +n(l —o0)2
1A% 0 As|l2 < MN+2\/( (1(_ 7 P (AD)it, + [ (AD) £

Proof. We start by expressing the inexact step as the difference from the corresponding exact step, using eqns. (21) and (22).
This will allow us to leverage results for exact predictor-corrector IPMs in our proof:

JA% 0 Asll2 = [Ax — (Ax — AR)] o [As — (As — Az
< |Ax 0 As|ls + [|Ax o (AT (AD?AT)7f) — Aso (D?AT(AD?*AT)71f) ||,
+ [[(AT(AD2AT)71f) o (D?AT(AD2AT)71f)||5.
We will bound each of the three terms in the last inequality separately. Let B; = [[Ax o Asl2; By = ||[Ax o
(AT(AD?AT)"1f) — Aso (D2AT(AD?AT)~!f)||»; and
B; = [|[(AT(AD?AT)~1f) o (D2AT(AD?AT)~1f)| 2. Using eqn. (13), we get a bound on B:

0% +n(l —o0)?
< 7
B < 23/2(1 — 0)

Next, we bound Bs. First, we rearrange B2 using properties of the Hadamard product (see Lemma A.2) and Moore-Penrose
pseudoinverse:

By = |[Ax o (AT(AD?*AT)7'f) — Aso (D?AT(AD?AT)"1f)||,
= ||[[D7'Ax] o [DAT(AD?A”)"'f] — [DAs] o [ DAT (AD?AT)~'f]||;
= ||[D~'Ax — DAs] o [DAT(AD?AT) 71|,
< |D™'Ax — DAs|[ (AD) £ (23)
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We now bound |[D~!Ax — DAs||, by using the definitions of Ay, As and Ax given in eqn. (7). Thus,
D !'Ax -DAs =D !'(—x+ouS™'1,, — D*As) — DAs
=D '(—x+opS'1,) — 2DASs
=D Y(—x+ouS7'1,) - 2(AD) A(—x 4+ ouS~'1,)
= (D! - 2(AD)'A)(—x + ouS7'1,)
= (D !'-2(AD)'A)DD }(—X1, + ouS'1,)
(I-2(AD)"AD)[(XS) Y/?(—XS1,, + oul,)|.

At this point, we have shown that
By < [[T—2(AD)'AD|5||(XS)™/*(=XS1,, + opl,)||2[|(AD)f]|. (24)

We can now use the fact that the two-norm of I — 2(AD)"AD =1~ (AD)"AD — (AD)AD is upper bounded by two,
since I — (AD)TAD and (AD)"AD are both projection matrices and have two-norm at most one. Next, we bound the
middle term, namely ||(XS)~/2(—=XSe + ou1,,)]||2; the proof will use the fact that (x,y,s) € Na(6), which implies that
[xos—plyf2 <0u:

n

_ iton)? _ [xos—oplnl3
XS)~1/2(—XS1 1,))2 = X 2
H( S) ( S1n +op ; X;S; - min; x;S;
< xos—oulaf3 _ |i(xos—pln) + (1= o)plal3
B C ) T (1—=0)u
<[(X°S—M1n)+(1_0,u1n] [(XOS_M1)+(1_U)M1n]
- (1-0)u
o xos—p1a|3 4201 - o)pd) (xos — ply) + (1= 0)*p’n
- (1—=0)u
< lxos— p1n 3 4 2(1 = o)p(np — np) + (1 — 0)*u’n
(1-0)u
0?p? + (1= 0)?u’n _ (02 + (1 - 0)*n)u
(1-0)u - (1-0)

Inserting the bounds for ||T — 2(AD)TAD||; and ||(XS)~/2(~XS1,, + op1,)|2 into the previous bound for B gives:

(02 + (1= 0)n)p
82<2¢ g IAD)].

Finally, we bound Bs using properties of the Hadamard product (see Lemma A.2):
Bs = ||[[AT(AD?AT)~f] o [D*AT(AD?*AT) ]|,
= |[DAT(AD?AT)~f] o [DAT(AD?AT) ]|
= |DAT(AD*AT) 7|3
= ||(AD)" ((AD)(AD)")~'f|3
= [I(AD)"£3. (25)

Adding the bounds on By, B, and Bj gives the final inequality:

~ ~ 0% +n(1—o0)? 02 +n(l —o0)2
HAonﬂzéﬁmé_Qﬁu+2¢( A ADy e + (AD)
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The next lemma will bound the value of ||%(«) o §(a) — fi(a)1,,
in the correct neighborhood for a given step size.

Lemma B.2. Ifa € [0, 1], then

2, which will allow us to later show that the iterates remain

I%(cr) 08(ar) = i) 1nll2 < (1 = @) x 0’8 — pLy ]2 + o?[[ A% 0 A2 + o? | (AD)f 3.

Proof. First, we derive an expression for the difference in the duality measure between the exact and inexact step, (u(a) —
fi(c)). We begin by expanding the definition of n(u(a) — i(«)).
n(p(a) — i) = (x + aAx)T (s + aAs) — (x + aA%)T (s + aAS)
= (xTs + aAxTs + xTaAs + o> AxT As) — (xT's + aAxT's + xT aA§ + o? AxT AS)
= a(Ax — Ax)Ts + axT (As — A8) + o*(Ax — A%)T (As — A3)

‘We next substitute the differences between the exact and inexact steps given by eqns. (21, 22). We do this in two parts for
clearer exposition.

a(Ax — Ax)Ts + axT(As — A8) = a[D?AT(AD?AT) " ]Ts + axT[-AT(AD?AT) " 1f]
= of T(AD?AT)'AD?s — axTAT(AD?*A”)~'f
= of T(AD?AT)1AXS 's — axTAT(AD?AT)"'f
= of "(AD?AT) ' Ax — axT AT(AD?AT) " f
=0.

Therefore, substituting this result into the previous set of equations, we get the following.

n(u(a) — i(e)) = o*(Ax — Ax)T(As — A3)
=} [D2AT(AD?AT) )T [-AT(AD?AT)~1f]
= o’ fT(AD?AT)"1(AD?AT)(AD?AT)~If
= —*fT(AD?AT)"!f =
a2
— |

p(a) = fia) = (AD)'f|3, (26)

where the final line follows from properties of the pseudoinverse. Next, we prove two identities that will be useful. For the
first identity, we expand the term x;(«)s; () and insert eqn. (12) to cancel terms:

x;i(a)si (@) — p() = x48; + a(x;A8; + Ax;s;) + ?Ax;As; — (1 — a1l — 0))p
= (1 — Q)x;s; + aop + a?Ax;As; — (1 —a+ ao)u
= (1 - a)(xis; — p) + a®Ax;As;. (27)

For the second identity, we expand terms and substitute eqns. (21) and (22) for As — AS and Ax — AX, respectively:

x;(@)s; () — x();8(a);

= x;8; + a(x;As; + Ax;8;) + a2 Ax;As; — [x58; + a(x;A8; + A%;s;) + o’ A%; A8

= afx;(As; — A§;) + s;(Ax; — AX;)] + o?(Ax;As; — AX;AS;)

=a[xo (—AT(AD?AT)7f) + so (D2AT(AD2AT) ")}, + o?(Ax;As; — AX;AS;)

= afxo (~AT(AD?*AT)7f) + x o (AT(AD?AT) 7)), 4+ o (Ax;As; — A%;AS;)

= a?(Ax;As; — A%;AS;). (28)
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using the above two identities, we expand and rearrange X(«);S(«); — i) to get:
x(a)is(@)i — fila) = x(a)is(a)i — (x(a)is(a)i — X(a)id(a)i) — [u(@) = (u(a) = A(a))]
= [x(a)is()i — p(@)] — (x(a)is(@)i — %(@)is(a)i) + (u(a) — fi(a))
= [(1 = a)(xisi — p) + o® Ax;Asi] = (x()is(e); — X(a)i8(a)s) + (u(a) — fi))
= (1 —a)(xss; — p) + A2 Ax;As; — o®(Ax;As; — A% A8;) + (p(e) — fi(a))
= (1 —a)(xis; — p) + A% A8 + (u(a) — fi(a)).
Taking vector norms of the above element-wise equality and substituting eqn. (26) for u(«) — fi(a), we conclude,
I%(a) 0 8(ar) = fi(e)1nll2 < (1 = @)llx 05 — plnll2 + a?[|A% 0 A2 + [[(1(e) — () 1n ]2
< (1 - a)xos —plyll2 +a?|A% 0 A3||; + o*|(AD)'f3.
O

Next, we prove that the predictor stays in the slightly enlarged neighborhood N>(0.5) when starting from the smaller
neighborhood M>(0.25). We will later show that the corrector step guarantees that the iterate “returns” to the “correct”
MN3(0.25) neighborhood. Recall that o = 0 in the predictor step to get the following lemma.

Lemma B.3. If (x,y,s) € N2(0.25),

1/2
a = min N L £ |y Vi
{1/2’<16<||Af<oAs|2>) } AT = 75~

then the predictor step (X(a), ¥ (), 8(a)) € N2(0.5).

Proof. We begin with the inequality of Lemma B.2. Recall that ||x o s — 1, |2 < #/4 since (x,y,s) € N(0.25):

[%(a) 0 8() = fi(a)1nll2 < (1*a)IIXOS*uln\lz+a2llAX°AS|\2+a2ll(AD)Tf||2
plAxo Aslls) 1 p

<(1- — Ly + B2XC BS2) | DL
s (1 -allxes—pn H2+16(||A5<0A§||2 22 4

= . _4O‘)M 8(1 1, a) (1—a)p (since (x,y,s) € N2(0.25))
< (1 f4oz)u L a —404)# (since a < 1/2)
< 50— a)u < 5iia).

The last line follows from eqn. (12), which gives u(a) = (1 — a)u for o = 0. We also know from eqn. (26) that
fi(a) > p(ar). Therefore, | X () o §(a) — fi(a)1, ]2 < /2 fi(er). Now, we must show that the condition (%X(«), 8(ar)) > 0
is fulfilled. First, by eqns. (12, 26), we have ji(a) = [1 — a(1l — 0)|u + O‘%H(AD)TfH%, which shows fi(a’) > 0 for
all positive step sizes &’ < «. From the first part of this proof, we have that X;(«)$;(«) > 1/2fi(«). We conclude that
(%(a), y(a), () € N2(0.5).

O

The next lemma shows that the step size given in the previous lemma will result in a multiplicative decrease in the duality
gap during the predictor step.

Lemma B.4. If (x,y,s) € N2(0.25),

1 1/2 \/ﬁ
=min< 1/2, | ——F— AD)f||, < ¥X&
° mm{/v(wqmmg”z) } ot ADIER =55

then the predictor step (X(a),y(a),8(a)) € N2(0.5) and there exists a constant Cy € (0, 1) such that,

o) G

I vn
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We note that in the above lemma (X(«), ¥ (), 8(«x)) is the output after the predictor step only, before the corrector step is
applied.

Proof. To lower bound the decrease in the duality gap at each step, we first find a lower bound for the step size «, using the
upper bound for || Ax o A§||s. By Lemma B.1, we have the following inequality:

. . 0% +n(l —o0)? 02 +n(l —0)?
%0 s> < 2?42((1—9))”“\/ P AD) e + (D)

We can simplify this inequality by substituting || (AD)"f||» < \/1z/8, 6 = 0.25, and o = 0 to get:

2 n o 2 . n —
1A% 0 AS[|, < (02;)2(1*_(01.25)0) +2\/(0 252 + (1 — 0)2)p /fi

(1-0.25) 8 6l 64

< 1/16—&-n'u_~_2 (/16 +n)p /B |

23/2(3/4) 3/4 8 64

1/16 + 1 (1/16+1)1 1

< B N Y ol M e

=" (23/2(3/4) 34 8 @ 64
< 0.82 - npu.

We can now insert the upper bounds for || A% o A3, and ||(AD)f||5 to lower bound o

1/2
= min .
o= {1/27 (8(||A5<OA§2+I(AD)”"||§)> }
| " 1/2
> mln{1/2, 8(082)71/Hru/8>

1/2
{1/2’ (656 + 1/8)) }

0.14/p,

We proceed by using eqns. (12) and (26) to upper bound ji(cr). We substitute the upper bound for ||(AD)'f||, as well as the

upper and lower bounds for « as needed to derive a worst case bound. Recall that the step size « is upper bounded by 1/2
(by definition):

fi(a) < pla) = [p(e) — i(@)] < (1 —a)u+ 7||(AD)Tf||2

.14
- il
= a)“+64n ( ) i 64n
o 14 V014 — (1/256)
< _ _
Then, if we let Cy = +/0.14 — (1/256), we get

fi(a) Co .

—<1-— th 1).
P NG with Cy € (0,1)

O

So far, We have shown that the predictor step results in a multiplicative decrease in the duality gap while keeping the next
iterate in the neighborhood N3 (0.5). We now show that the corrector step returns the iterate to the N5 (0.25) neighborhood
while increasing the duality gap by only a small additive amount.
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Lemma B.5. Let (x,y,s) € N2(0.5) and ||(AD)'f|y < vA/25. Then, the corrector step (%(1),5(1),8(1)) € N2(0.25)
and |ji(1) — p| < I(AD)TE(3 /p,

Proof. First, we show that taking a step with step size a = 1 and centering parameter ¢ = 1 from a point in N5(0.5)
“returns” that point to the smaller neighborhood N5 (0.25). We start with the inequality given by Lemma B.2 with o = 1 and
then substitute the bound for ||A%X o AS||s from Lemma B.1 to get:

1%(1) 0 8(1) = A(1)[|2 < A% 0 AS[l2 + [|(AD)f3

< 92:/?((11—_90))# + 2\/(92 +ﬁ(1éf)2”‘ I(AD)'f]|z + 2| (AD)"f]3.

Next, we use [|(AD)f||, < //2%, 6 =0.5,and o = 1:

05 +n(L-1)? 2\/((0.5)2 Fn(l—12)uiE | 2

x(1)os(1) — (1 < 56 | 912
HX( )OS( ) :U’( )H2 = 23/2(1 — 05) (1 _ 05) 26 + 212
w9 o, [y
— 23/2(1/2) (1/2) 26 = 212
1% 1% o1
_W—FQH/Q +ﬁgzﬂ~

Again, ji(a)) > p(a) which implies that ||%(1) 0 §(1) — ji(1)|l2 < 1/4fi(1), so we can conclude that (%(1),¥(1),8(1)) €
Na(0.25).

Finally, we show that the duality gap increases only slightly. In the exact case, the duality gap does not increase at all when
o =1,1i.e. u(1) = u, as can be seen in eqn. (12). Therefore, by looking at the difference between the exact and inexact
duality gaps, i.e. eqn. (26), we get

AD)'f|3

I(AD)TE]3 (1) — uf < It

n n

(1) — p(1)] <
O

Finally, we combine the results of the previous lemmas with a standard convergence argument to show the overall correctness
and convergence rate of Algorithm 3, namely the inexact Predictor-Corrector IPM, thus proving Theorem 1.

Proof. (of Theorem 1) We introduce the following notation to more easily discuss the steps of Algorithm 3. Let
(Ax,, Ay,, AS,) denote the predictor step computed by steps (a-b) and (A%x., Ay., AS.) denote the corrector step
computed by steps (e-f).

Algorithm 3 first computes the predictor step from Ay, = Solve(AD2AT, Ax,J. ,) and then computes the corrector
step from Ay, = Solve(AD?AT, —uAS~!1, + Ax,J..,,). Let f, and f. denote the error vectors incurred when solving
for the predictor and corrector steps, respectively. Guarantee (i) of Solve (see eqn. (5)) allows us to bound the term
|(AD)'f||5 as follows:
IAY — (AD?AT) ! (~opAS ™1, + Ax)||apzar < den
= |AY — Ayllap2a7 < den
= HAy - AYHADZAT < 66,71
= [[(AD*AT) | ap2ar < den
= | (AD)¥f]> < 6. (29)

Thus, we have the following bounds, using the value of d. ,, in Theorem 1:

I(AD)"E, |12, [I(AD) fe[l2 < v&/2°.
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Algorithm 3 sets the step size « for the predictor step to the value given by Lemma B.3. If (xq, yo,s0) € N2(0.25) and
o > 2¢, then Lemma B.4 guarantees that the predictor step will reduce the duality gap by a multiplicative factor of
1 — Co/,/n, while keeping the iterate in the neighborhood N2(0.5). Lemma B.5 then guarantees that the ensuing corrector
step will return the iterate to the neighborhood M, (0.25), while increasing the duality measure by at most 9¢.»/n. Therefore,
a single iteration of Algorithm 3, starting from a point (xg, yo, so) € N2(0.25) such that ;1o > 2¢ guarantees:

(1), <Co
= v )T aymog o /e

This fulfills the conditions of Lemma A.1 with Cy € (0,1) and C; < M#;}Mok < Co/\/n. Therefore, we conclude that
Algorithm 3 converges after ‘C/,—? log £2 outer iterations iterations.

We now prove that the final iterate of Algorithm 3, which we denote by (x*,y*, s*), is e-feasible. In a single iteration,
the primal variable changes by Ax = A%, + AX.. Let f = f, 4 f. and recall that by the second guarantee of Solve,

|AD2ATAy — pll2 < dcn. This is equivalent to ||f,||2, ||f:||2 < ., for all iterations of Algorithm 3. We proceed by
showing that the change in the primal residual at the k-th iteration is exactly fy:

[Ax), — Axp—1l2 = [[A(xp—1 + A1) — Axpor |2 = [[AAK—1 ]2
= [|A(Axp—1 =A%) |2 = [|AD*AT(AD?AT) i) [l = [[fi—1 -

We can use the bound ||f;||2 < 20, ,, to bound the primal residual at the k-th iteration.

Ib — Axi|l2 = ||b — Axy + (Axs — Ax1) + ... + (Axp — Axp—1)||2
= [[(Axg — Ax1) + (Axs — Ax1) + ... + (Ax — Axp—1)||2
< JJAxg — Axq |2 + ||Axa — Axq]| + ... + ||Axk — Axp_1|2
< |foll2 + Ifillz + - + [[fk—1ll2 < 2kdc p-

We previously concluded in this proof by Lemma A.1 that the Algorithm 3 will converge after k = # log £° iterations.
eCo ? ‘

By the conditions of Theorem 1, d. ,, < S log o)<

e-primal feasible.

. Therefore, we conclude that ||Ax* — b||s < ¢, i.e. the solution is

O

C. Error-Adjusted Predictor-Corrector IPM

Lemma C.1. Let (x,y,s) € Na(0) and let (Ax, Ay, AS) be the step calculated from the inexact normal equations with
error-adjustment (see egn. (15)). Then,

N . 02 +n(l —0)? 02 +n(l—-0))u _ _
e 3\/ ot )12+ 21/X8) 2

Proof. This proof has a similar structure to Lemma B.1. However, there are additional steps needed due to the correction
vector and we will use several of our previous bounds throughout the proof. First, we start by expressing Ax o AS as
a function of the exact step and then we substitute the difference between the exact and error-adjusted steps (eqns. (17)
and (18)):
1A% 0 A8[l2 = [[[Ax — (Ax — A%)] 0 [As — (As — AF)]]l2
< ||Ax o As||s + |Ax o (AT(AD?AT)"1AS 1v)
— Aso (D?AT(AD?AT)"1AS v — S71v)||»
+ [[(D?AT(AD?AT)'AS v — S71v) o (AT (AD?AT) T ASIv) o
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We will bound each of these three terms in the last inequality separately. Let B
(AT(AD?AT)"1AS lv) — Aso (D?AT(AD?AT)"'AS~'v — S71v)||o; and
B; = [|(D2AT(AD?AT)"'AS v — S71v) o (AT (AD?AT)"tAS~!v)||2. Using eqn. (13), we get a bound on B:

|[Ax o As

2, BQ = ||AX o

0% +n(l—o0)?
B < —7
L= 9321 - g)

Next, we bound B by splitting it into two parts:
By = |Ax o (AT(AD?AT)"'AS™'v) — Aso (D?AT(AD?*AT)'AS™'v — S71v) ||,
= |Ax o (AT(AD?AT)"'AS™1v) — Aso D?AT(AD?AT)"1AS v + Aso S 1v||;
< ||Ax o (AT(AD?AT)"'AS™'v) — As o D?AT(AD?AT) ' AS lv|y + |[As 0 ST v||s.
Let B = | Ax o (AT(AD2AT)"1AS 1v) — As o D2AT(AD2AT)"1AS v, and BY = ||As 0 S~1v]|s. Notice

that Bg“) can be bounded in the same way as Bs was bounded in eqn. (24) in the predictor-corrector proof without
error-adjustment of Section 5 by setting f = AS~!v:

B < |1 - 2(AD)TAD |3 (XS)""/*(=XSe + opu1,,) 5| (AD)TAS ). (30)

Furthermore, the first two terms of the above inequality were already bounded in the predictor-corrector proof without
error-adjustment:

024+ (1—0)%n)u
(—0)

|T—2(AD)'AD; <2 and ||<Xs>1/2<XSe+au1n>||2g\/(

Next, we note that
I(AD)TAS™'v|); = (AD)TAD(XS) /vy < [|(AD)TAD|5[(XS)/?v|]y < [(XS)~/?v],.

Substituting the above three inequalities into eqn. (30) we get:

By < 2\/ T xs) o

We now bound Béb). Using the definition of AS (eqn. (17)), as well as ||[(AD)'AD||; < 1 and the bound on
[(XS)~1/2(=XS1,, + opul,)||2, we get. Again, we apply Lemma A.2 to go from the fourth to the fifth line.
By = |S7'vo As

= |IS7!vo AT(AD?AT) "1 (0pAS™1, — Ax)|2

=|(XS)"%v o DAT(AD?AT) " (0 uAS™'1,, — AX)||2

= [|(XS)"2v o (AD)(cAS™1,, — AX)|2
(XS)/2v|2[|(AD) (04 AS "1, — Ax)l2
< [[(XS)"/*v|2||(AD)T AD(ou(X8)/*1,, — (XS)"/*1,,)]2
< [[(XS)~/*v|2||(AD)TAD||2[|(XS) ~/*(=XS1,, + ouly)|2

<l

(02 + 01— 0, o 1o
# g IXS)

We can now use the bounds on Bga) and Béb) to obtain the desired bound on Ba:

(02 + n(l —0)?)p
(1-9)

By < BY +BY < 3\/ 1(XS) 2|5,
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Finally, we bound Bs. We distribute the terms in B3 and split the norm into two components using the triangle inequality:
Bs = |(D?AT(AD?AT)1AS v + S7!v) o (AT(AD?AT)"1AS™ V)5
= |(D?AT(AD?AT)'AS 'vo (AT(AD?AT)'AS 'v + S lvo (AT(AD?AT)tAS tv|,
< (D2AT(AD?AT)'AS v o AT(AD?AT)"1AS v + [|STvo AT(AD?AT) 1 AS v ||s.
Let B = ||(D?AT(AD2AT)"1AS~1vo AT(AD?AT)"1AS~lv|jy and B = |S~1vo AT(AD2AT)~1AS lv|s,.

We first bound Béa) following similar ideas to the derivation of the bound of B3 in the predictor-corrector proof without
error-adjustment:

B = |(D?AT(AD?AT)"'AS " 'vo AT(AD2AT)'AS 1y
= |(DAT(AD?AT)'AS v o DAT(AD?AT)1AS v||,
= [(AD)TAS™!v[|3 < [[(XS)~"/2v3.

We also bound Béb):

BY = |8 'vo AT(AD?AT) " TAS Iv||, = [|(XS)"/>v o DAT(AD?AT) ' AS lv|;
< [[(XS) ™2 v]|oo[|(XS) "1 2v ]2 < [[(XS) 72V 5.

Combining the above two inequalities, we get the overall bound for Bs:
1Bsl2 < B + By < 2)/(X8)/2v]3.

Finally, summing up all bounds for 1, B2, and B3 gives our final inequality:

~ _ 0% +n(1—0)? 02 +n(l—0)2)u _ _
A% 0 A8 < 23/2((1_9))u+3\/ R TR xs) vl 4 20(X8) 2

O

Recall that a point (x,y,s) is in the neighborhood N2 () if ||x o s — pl,||2 < pf. We bound the left hand side of this
condition after a step of size « is taken.

Lemma C.2. Ifa € [0, 1], then
I%(a) 0 8() = fi(@)1nll2 < (1 = a)[x 05 — pLpl2 + @*[| A% 0 A2 + 2a][v ]2
Proof. We start by expanding the expression for X () o §(«):

x(a) o 8(a) = (x + aAX) o (s + aAS)
=xo0s+a(xoAs+soA%)+a?Axo As
=xos+a(xoA§+so(—x+ouS 1, - D?*A5 - S7'v)) + a®?A% 0 A
=xos+a(—xos+opul, —v)+ a?Ax o A

(1—a)xos+aoul, —av+a?Axo As.

Left-multiplying the final expression by the vector 17" and dividing by n, gives an expression for fi(c). Notice that
AxTAs = —A%T AT Ay = 0 by substituting the definition of the As without error-adjustment and using the fact that
Ax = b at each step:

1
j(a) = =111 — a)x os + aoul, — av + a? A% o A§]
n

=1 —a(l—0o)p—2/nvil,. (31)
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For simplicity of exposition, we first look at individual elements of the vector X(«) o §(«v) — fi():

av’l,

%i()i(a) — ji(a) = (1 — a)xis; + aop — av; + a?A%;AS; — p+ o — o+

T]-n
= (1 —a)(xis; — p) + 2A%;A8; — « (vi _Y - ) )

‘We bound the norm of the last summand as follows:

1,

(vT1,)

1 1 1
~[vLa] < — Vil talls € =lvll2 = v -
n n n

NG

1
< — <2 .
, < ¥l vl < 2/l

Therefore, we can conclude that,
[%(a) 0 8(r) — fia)1nlls < (1 = a)llx 08 — plylls + a?|A% 0 ASls + 2al|v]2.

O

Given the previous bound, we can now derive a step size a which guarantees that the iterate remains in N5 (0.5) after the
predictor step.

Lemma C.3. If (x,y,s) € N2(0.25), @« = min {1/27 (#/16\|A&0A§\|2)1/2}, and ||v||2 < w/32, then the predictor step
(%(a), ¥(a),8(cr)) € N2(0.5).

Proof. Our starting point is the bound of Lemma C.2. By definition, « is upper-bounded by both 1/2 and the term depending
on (i

[1%() 0 8(a) — (@) 1nllz < (1 = @)llx 08 — plnll2 + a®||A% 0 AS||2 + 2a]|v]|2

—a)p 0 - aall 2
< A% o A z
ST 1 Tigaxoas), X0 A8k T3l
(I-a)p p  p
< L
I T
A=y g
= 8 32
I-—ap Q- p
=4 8(1—a) 32
1 %
< (1 — _ =
<50-ap-o
1.
< 5#(04)

The last step follows from eqn. (31), which states fi(a) = [1 — a(1 — o) — ¢/nv1'1,,. By applying the Cauchy-Schwarz
inequality to v7'1,, as done previously and o = 0, we obtain ji(a) > (1 — a)u — % ||[v]|2, which allows us to conclude
that [|%(a) 0 §(cr) — fi(@)1, ]2 < 3/i(cr). Now, we must show that the condition (%(at),§(c)) > 0 is fulfilled. First, by
eqns. (12, 31), we have ji(a) = [1 — a(1 — 0)]p — @/nvT'1,,, which shows fi(a’) > 0 for all positive step sizes o’ < a.
From the first part of this proof, we have that X;(«)s; () > 1/2/i(a). We conclude that (X(a), y(a),8(a)) € N2(0.5). O

We now show that the predictor step with step size « as given in the above lemma guarantees a multiplicative decrease in the
duality gap. Recall that ¢ = 0 in the predictor step when solving the normal equations.

Lemma C4. If (x,y,s) € N3(0.25), &« = min {1/2, (M/16\|A5<0A§\|2)1/2}, and ||v||2 < #/32, then the predictor step
(x(),¥(a),8(c)) remains in N>(0.5) and there exists a constant Cy € (0,1) such that,

o) o Co

I vn
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Proof. Lemma C.3 already shows that this value of « ensures that the next iterate remains in N5 (0.5). Therefore, we just
need to prove the multiplicative decrease in the duality measure. Towards that end, we will again need to lower bound the
step size «, starting from the upper bound for ||Ax o A§||. By Lemma C.1, we get the following inequality:

o Az 0° +n(l —0)? (0> +n(l—0)*)u —1/2 —1/22
[A% o AS|l2 < mﬂ‘*‘?’ =) [(XS)™ " =vlla +2[[(XS) ™/ =v||3.
We now derive a bound on ||(XS)~!/2v||, using the bound on ||v||o. We use the fact that for (x,y,s) € Na(f), x;8; >
(1 —0)uto get:*

2V

1(XS) "2 vl2 < [[(XS) ™21z |lv]|2 < 9

IN

1 1 n
vl < =
Vs vl < VO

Next, we simplify the inequality from Lemma C.1 by substituting ||(XS)~/?v||y < #, 6 = 0.25, and o0 = 0 to get

A% 0 Asfly <

(0.25)2 +n(1 - 0)? 5 ((0.25)2 +n(1-0)2)pu2ypn 222
23/2(1 — 0.25) * (1—0.25) 9 o

(1/16) +n (1/16) +n2u  23u
=orEm TN Tem 9 T

(1/16) +1 (1/16) +12 23
S"“(23/2(3/4) +3\/ (3/4) 9+92>
<14 -nu.

The above upper bound can now be used to lower-bound a:

o = min 1 # v
) 20\ 16 A% o Al
1 1/2
>mind =, [ —F
{2 <16n,u(1.4)> }

Eqn. (31) states that ji(a) = [1 — a(1 — o)]u — ¢/nvT'1,,. Combining it with our upper and lower bounds for o we can
bound the decrease in the duality measure i as follows:

fle) = [L—al - o)u— V1,

A%
v

S(“%)“w%-&)

0.2—1/18
<)
<(1-22)n ()

n

<1-—a(l-0)p+ (By Cauchy-Schwarz)

“The inequality x;s; > (1 — ) follows from the definition of N2 (6).
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We have shown that the predictor step results in a multiplicative decrease in the duality gap, while keeping the next iterate in
the neighborhood N5 (0.5). We now show that the corrector step returns the iterate to the M (0.25) neighborhood, while
increasing the duality gap by a small additive amount.

Lemma C.5. Ler (x,y,s) € N2(0.5) and ||v||o < #/27. Then, the corrector step (x(1),¥(1),8(1)) € N2(0.25) and
(1) = pl < =Vl

Proof. We start by simplifying the inequality of Lemma C.1 for the corrector step. Recall:

~ ~ 02 +n(1—o0)2 02 +n(l—0)?)u _ _
nAonﬂ2<2y%ﬁ@)u+3¢( AL x8) /2 +21/68) 2

We bound ||(XS)~!/2v||, using the bound on ||v||» from the condition of the lemma:

— _ 1 1 I m
I068) 2 < IX) 2 alvle < il < <L < U

We then simplify the inequality from Lemma C.1 by substituting ||(XS)~/2v||, < %, 6 =0.5,and o = 1:

23/2(1 - 0.5) * Tom

<o Agll, < 05)? +n(1l—1)7 (05 +n(A-D>)pvp  ,pn _ p 3 p
HAXOASHQ < +3 (1_05) 2764_22? < 25/2 213/2 913

>

Next, we show that taking a step with step size @« = 1 and centering parameter 0 = 1 from a point in the “larger’
neighborhood N> (0.5) returns the iterate to the “smaller” neighborhood N3(0.25). We start from the result of Lemma C.2
with o = 1:

I%(1) 0 8(1) = a(1)ll2 < (1 = a)lx o5 — plul2 + a®[[ A% 0 A3[|2 + 2a]|v ]

< [[Ax 0 AS[lz + 2| vz

1% 3 B, 2p
<o T ama tam T ar

1% 3 B 20
Spp tosp Tom tor o T or
<B_KE B
4 2T 4

The last step follows from ji(«) > p — e |lv||2, which can be derived from eqn. (31).

This implies that the corrector step will return the iterate to the neighborhood N5(0.25).

Finally, by eqn. (31), we know that ji(a) = [1 — (1 — o)]u — @/nvT1,,. Substituting o« = 1 and & = 1 allows us to bound
A1) —

i 1 ) -1 i 1 ) 1
i) = p— vy = (1) —p=—v' 1y = i(1) = p < —Vnfvls = (1) - p < TVl
=

We are now ready to combine the results of the previous lemmas to show the overall correctness and convergence rate of
Algorithm 1, the error-adjusted inexact predictor-corrector IPM.

Proof. (of Theorem 2) By the guarantees of Solve"V, we know that the error-adjusted normal equations are solved for a
given o and ||v||2 < ¢/27 < #/27 at each iteration. First, Lemma C.3 guarantees that the intermediate point computed at
step (d) of Algorithm 1 remains in the neighborhood N3(0.5). Lemma C.4 guarantees that the predictor step decreases the
duality measure of the iterate by at least a multiplicative factor of the form (1 — Co/,/n) for some constant Cy.
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Next, Lemma C.5 ensures that the corrector step of Algorithm 1 returns the iterate to the neighborhood N5 (0.25), while
increasing the duality measure by at most 1/\/n||v||2 < 9c.n//n. Therefore, a single iteration of Algorithm 1 starting from a
point (Xg, ¥o,S0) € N2(0.25) such that o > 2¢ guarantees the following inequality:

Co €
<(1-2L .
B> ( \/ﬁ) Ho + 7 n
This fulfills the conditions of Lemma A.1 with Cy € (0,1) and C; < ﬁ < Cy/+/n (see eqn. (32)). Therefore, we
conclude that Algorithm 1 converges in O(y/n log #o/e) iterations.

Finally, we prove that the final iterate is primal-feasible, i.e. ||Ax* — b||2 = 0. By eqn. (18), at each step of Algorithm 1,
Ax — Ax = —D?AT(AD?AT)"1AS~ v + S~!v. We left multiply this expression by A to get

AAx — AAx = —AD?AT(AD?AT)"1AS v+ AS7lv = 0,,.

This implies that the change in the primal-residual of the error-adjusted algorithm is the same as the change in the primal-
residual of the exact algorithm at every iteration. Therefore, since the exact algorithm returns a primal-feasible solution, the
error-adjusted algorithm does as well. O

D. Implementing Solve and Solve" using randomized linear algebra

We now discuss how to implement the solvers that are needed in our inexact predictor-corrector IPMs, with and without the
correction vector, using standard preconditioned solvers, such as the preconditioned conjugate gradient (PCG) method. We
use well-known sketching-based approaches to construct the preconditioner, leveraging results from the randomized linear
algebra literature.

We first focus on (full row-rank) constraint matrices A € R”**" that are short-and-fat, ie., m < n. Clearly such matrices
have rank m < n. In Appendix D.3 below we will discuss how to reduce general LP problems with exact low-rank
constraint matrices to this setting. Moreover, in Appendix D.2, we also discuss how to handle the tall-and-thin constraint
matrices. Towards that end, consider the LP of eqn. (1) with an input matrix A € R™*" and m < n. First, we prove that
the preconditioned conjugate gradient (PCG) method of Algorithm 2 (see also (Chowdhury et al., 2020)) can fulfill the

tfmax(AD)nu) ny
§

requirements of Solve in O (log iterations and the guarantees of Solve" in O (log T) iterations.

Let AD = UXVT be the thin SVD representation and W € R™* be an oblivious sparse sketching matrix which
satisfies:’
¢

2 )
with probability at least 1 — 7. The work of Cohen et al. (2016) shows how to construct such a matrix W fulfilling this
guarantee with sketch size w = O(m/¢? - log™/n) and O(Y/¢ - log ™/n) non-zero entries per row. One possible construction
is to uniformly sample s = O(1/¢ - log ™/n) entries per row of W without replacement and set each of the selected entries
to +1/s independently and uniformly randomly. Next, we use the above sketching matrix to define Q = ADWWTDAT;

we note that Q is not explicitly constructed in Algorithm 2. Then, with probability at least 1 — 7, the vector Z computed by
Algorithm 2 fulfills the following inequality (see Equation 7 in (Chowdhury et al., 2020)).

IQ™/*(AD*AT)QY?2" — Q™ pll < '|Q/?p2, (€ (0,1). 34)

[VWWTVT -1, < (33)

Recall that the function Solve is defined to have the following guarantees:
Ay = solve(AD?AT p,d) = ||Ay — (AD?AT) " 'p|[ap2ar < and |AD?ATAy — p|l» < 6.

The next lemma shows that Algorithm 2 fulfills the conditions of Solve.
Lemma D.1. If Algorithm 2 is used to compute Ay = Solve(AD?AT p,d), (x,y,s) € Nz(0), and t =
(@) (log %ﬂ), then, with probability at least 1 — n, Ay satisfies

|AY — (AD?AT)"'p|lapear < 6 and |AD*ATAy — p|l» < 4.

Let |Al% = Z” A; = tr(AT A) denote the (square of the) Frobenius norm of matrix A..
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Proof. We start by bounding ||Ay — (AD?A”)"'p||ap2ar, where Ay = Q~'/2%!, using the guarantee given by
eqn. (34) and Lemma 2 of (Chowdhury et al., 2020), which guarantees (1 + ¢/2)' < 0?(Q~'/2AD) < (1 —¢/2)~! for
alli = 1...m, when W fulfills eqn. (33):

IQ™*(AD*AT)Q™ /%2 — Q~/?p||; = |Q"/*(AD*AT)(Q"/?2") — (AD?AT)"'p)|

1
DAT —1/2z(t) _ ADQAT -1
> e IPAT@ (AD?AT)'p)
1 _ -
> ——||(Q 22V — (AD?AT) 'p)ll(ap2AT)-

T V14 ¢/2

The first step is justified by Lemma A.3, since the column space of DA7 is the row space of Q~'/2AD. We show in
Lemma A.4 that |Q~'/?p|| < C./nj for some constant C' depending only on o and #. Combining this bound with
eqn. (34) gives:

¢t (1+¢/2)" Oy > [(Q722) — (AD?AT)'p) || (ap2ar). (35)

This implies that | Ay — (AD2A”) "'p[|ap2ar < § aftert = O (log ") iterations. Next, we bound || AD2AT Ay —p|;
using the guarantee of eqn. (34):

IQ*(AD*AT)Q™ 221 — Q7V/?p|s > 5 (Q/?)|AD’AT Q221" — p];
= (omax(QV)]|Q?pll2 > |[AD?*ATQ /22" — p|,
= Ctomax(Q/?)C /i > | AD?ATQ /22" — pl|5.

Again, the first step follows from Lemma A.3. Since ¢ € (0,1), we conclude that |[AD?ATAy — p|l2 < & after
t= (’)( log %?D)"“) iterations. Therefore, both guarantees of Solve can be achieved with probability at least 1 — 77 in
t = 0O(log %‘?D)n“) iterations. O

Satisfying eqn. (34). Exploiting the properties of the preconditioner Q ~'/2, (Chowdhury et al., 2020) showed how to satisfy
eqn. (34) using popular solvers beyond conjugate gradient. Such solvers include steepest descent and Richardson iteration.
We could do the same in our work and prove similar results for, say, the Chebyshev iteration (Barrett et al., 1994; Gutknecht,
2008; Gutknecht & Rollin, 2002). Indeed, the preconditioner Q_l/ 2 can be combined with Theorem 1.6.2 of (Gutknecht,
2008) to satisfy eqn. (34). Chebysheyv iteration avoids the computation of the inner products which is typically needed for
CG or other inexact methods. As a result, Chebysheyv iteration offers several advantages in a parallel environment as it does
not need to evaluate communication-intensive inner products for computing the recurrence parameters.

D.1. Computing the error-adjustment vector v for Algorithm 1

In this section we discuss how to efficiently compute the correction vector v for our “corrected” inexact predictor-corrector
IPM. Recall eqn. (15): the correction vector must satisfy AS~!v = (AD2AT)(Ay — Ay). One possible construction of
such a vector v is the following:

v = (XS)/*W(ADW) (AD?ATAy — p). (36)

Notice that this vector can be constructed efficiently from quantities already computed in Algorithm 2. Left-multiplying by
AS~! immediately proves that this construction for v satisfies AS~'v = (AD2AT)(Ay — Ay), with probability at least
1 — n. We now prove the following lemma:

Lemma D.2. Let Ay be computed by Algorithm 2 and let the correction vector v be computed by eqn. (36). Then,
after t = O (log ™) iterations.

vl <0

Proof. Lemma 5 from (Chowdhury et al., 2020) (using our notation) guarantees that:

[vll2 < v/3nu||Q 2 (AD?AT)Q /22 — Q/2p|,.
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Using eqn. (35),
Ivll> < v/3npu|| Q7 /2(AD?AT)Q /22" — Q7' 2p]5
< \Bnp(C'(1+¢/2)'2Cny/p).
Again, since ¢ € (0, 1), we can conclude that [|v||2 < & after t = O (log ) iterations of Algorithm 2 with probability at
least 1 — 7. O
D.2. Constraint matrices with m > n and rank(A) =n

So far, we only focused on constraint matrices that have full row-rank and are wide i.e., m < n. By considering the dual
problem, our methods also address constraint matrices that are tall-and-thin and have full column rank i.e., m > n. Let
A € R™*™ be the constraint matrix with m > n and rank(A) = n such that the primal LP is given by

min ch, subjectto Ax = b, x > 0. 37

The associated dual problem is,
maxb'y, subjectto ATy +s=rc,s >0, (38)
Note that the dual variable y is a free variable i.e. it can have both non-negative and non-positive entries. However, we can

always rewrite y as the difference between two non-negative vectors. Therefore, let y = y™ — y—, where both y*, y~ > 0.
Now, if we rewrite eqn. (38) in terms of y* and y~ and change max b’y to min —b”'y, it becomes

min —b 'y, subjectto ATyt — ATy~ +s=c,and y",y s>0 (39)

Now, we can express eqn. (39) as

minb'y, subjectto Ay =c, y >0, (40)
] (D y'
where A = [AT —AT I, eR™*Cm) b= | b | eR™ M andy= | y | € RF",
0, S

Note that A is short-and-fat as 2m + n > n and it also has full row-rank. Therefore, eqn. (40) can be solved using our
framework.

D.3. A generalization to low-rank constraint matrices

We will now discuss how to apply randomized preconditioners and iterative solvers to LPs where A can be any m x n
matrix with rank(A) = k < min{m, n}, which we assume to be known°. In addition, we further emphasize that we also
assume the set of primal-dual solutions of the LP is non-empty i.e. there exists at least one feasible point.

First, we briefly discuss the approximate SVD “proto-algorithm” of (Halko et al., 2011) that will be instrumental in
translating the low-rank LP into our sketching-based framework. The single-iteration “proto-algorithm” of (Halko et al.,
2011) returns a matrix Z € R"*(+2) with ZTZ = I(t42) (¢ < k) such that for some constant g > 0, the following
inequality holds with high probability:’

|A - ZZTA|s < (1+€)||A — Aglf2, (41)

where A is the best {-rank approximation of A. The computation of Z is dominated by the cost of multiplying A by a
vector and thus, can be computed in O(¢ - nnz(A)) time. By taking ¢ = k, we have A = A}, which makes the right hand

side of eqn. (41) equal to zero. Therefore, letting A = ZZT A directly yields A = A.

®When k is not known in advance, one can efficiently estimate it using trace estimation techniques (Avron & Toledo, 2011; Ubaru &
Saad, 2016).

"Here, ¢o = 97 + p - y/min{m,n}. We set p = 2 (the minimal allowed value), which suffices for our purposes, since the matrix
A = Ay has exact low-rank.
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Now, as we already have A = A from eqn. (41) with £ = k,

argmin c'x = argmin c'x.

Ax=b, x>0 Ax=b, x>0

Now, the matrix Z is orthogonal, so it has full column-rank. Therefore, when multiplying from the left, it keeps the same
rank. So rank(ZTA) = rank(ZZ"A) = rank(A) = k.
Next, let x is a feasible point, then

b=Ax=ZZ"Ax=ZZ"b. (42)
Let F1 = {x : Ax =b,x > 0} and F, = {x : ZTAx = ZTb,x > 0} be two sets. If u € F, then
ZTAu=(Z"2)Z2"Au=Z2"(ZZ"A)u=Z"Au=2"b, iecuck.

The last equality above holds as u € F7. Therefore, 1 C F2. Now, we need to prove Fo C Fj. For this, let u € Fo.
Then, Ax = Z(ZTAu) = ZZ"b = b, where the last equality follows from eqn. (42). Therefore, we have F; = Fo
i.e. the feasible region induced by (A, b) is identical to the feasible region induced by (ZT A, Z™b). Therefore, the LP
minxxzh x>0 c"x can be restated as

min ¢'x, subjectto Z'Ax =Z'b,x > 0. (43)

Note that we have already shown rank(ZTA) = k (which is < n). However, ZT A € R*+2)X™ does not have full-rank.
Therefore, we can use Gaussian elimination to get the k linearly independent rows of ZT A in O(nk?) time and solve
eqn. (43) using our framework. See Appendix D.4 for the running time of our algorithms for low-rank constraint matrices.

D.4. Running times for Algorithm 2, Solve, and SolveV

Finally, we discuss the running times of Algorithm 2, Solve, and SolveV.

Lemma D.3. Algorithm 2 called with input matrix AD € R™*", failure probability n and iteration count t has a total time
complexity O (nnz(A) - log m/n 4+ m3log m/n + mt + nnz(A) - ¢).

Proof. First, recall that W has log ™/ non-zero entries per row and D is a diagonal matrix. Therefore, ADW can be
computed in O(nnz(A) - log m/5) time. Then, computing Q /2 via the SVD of ADW takes O(m? log m/») time. We
conclude that the overall time complexity to compute Q= /2 is O(nnz(A) - log ™/n 4+ m?3 log m/y).

After computing the preconditioner, each inner iteration requires multiplying z with Q '/2AD?AT =
Q '/?(AD)(AD)”. Multiplying a vector by (AD)(AD)” takes O(nnz(A)) time and multiplying a vector by Q~1/2
takes O(m) time. Therefore, the overall time complexity of Algorithm 2 is

O (nnz(A) - log™/n + m®log ™/n + mt + nnz(A) - t) .
O

We can then immediately derive the time complexity of Solve by combining Lemma D.3 and Lemma D.1. We conclude
that Solve can be implemented by Algorithm 2 with probability at least 1 — 7 in time

Omax(AD)npu

d

o (nnz(A) log™/n + m®log m/n + mlog 5

max AD
+nnz(A) - log U()n,u> . (44)
We can similarly derive the time complexity of implementing Solve" by combining Lemma D.3 and Lemma D.2. Observe
from eqn. (36) that computing v does not affect the time complexity, since it is a single matrix-vector product using
values already computed by Algorithm 2, except pre-multiplying the vector (ADW)T(AD?AT Ay — p) by W that takes
time O(nnz(A).log™/y) (assuming nnz(A) > n), which is dominated by the cost of computing (ADW)T. Therefore,
Algorithm 2 combined with eqn. (36) can implement Solve" in time,
npy np

o (nnz(A) -log™/y +m>log m/n + mlog 5 +nnz(A) - log ?> . (45)
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Recall that 7 is the failure probability of the algorithm.

We note that it is straightforward to obtain an overall time complexity for Algorithms 3 and 1 using the above results by
setting 7 = O (1/y/nlog(#o/<)) and applying the union bound.

Running time for Low-rank constraint matrices. In Appendix D.3, the approximate SVD takes O(k - nnz(A)) time, com-
puting ZT A takes another O(k - nnz(A)) time, and performing the Gaussian elimination to get k linearly independent rows
of ZT A takes O(nk?) time. Therefore, overall it takes O(k? - nnz(A)) time to preprocess the data (assuming nnz(A) > n).

Now, Solve can be implemented in O (nnz(A) -log ¥/ + k3log k/n + klog M + nnz(A) - log M)
time and similarly, Solve" can be implemented in O (nnz(A) - log #/n + k3 log k/n + klog “£ + nnz(A) - log 2£) time.

E. Experiments

We experimentally validated the key predictions of our results. First, we measure the number of iterations needed for
Algorithm 1 to converge in relation to the number of variables n, and the precision of the final solution e.

E.1. Generating the random LP

To construct a random LP, we first sample xg € R", yo € R™, and A € R™*", where the entries of x( are sampled
uniformly from [0, 10] and the entries of yo and A are sampled uniformly from [—10, 10]. We then set sg € R™ by
[So]: = 20 - [xo]i_l. This guarantees that yp = 1/n - stxo = 20 and s 0 X9 — p191,||2 = 0. The generated constraint
matrix A and initial primal-dual point (xg, Yo, Sp) along with the assumption that the initial point is primal-dual feasible is
enough information to exactly describe the linear program.

E.2. Testing Algorithm 1

We first test the predictions of Theorem 2 under a simple instantiation of Solve". To implement SolveV, we sample a
random vector v € R™ randomly from the unit sphere and rescale it so that AS~1v = §, where § is the accuracy parameter
of SolveV. We then use a standard linear system solver to solve the perturbed system given by Equation 4. Note that this
instantiation of SolveY would not be useful in practice, but it is nevertheless useful to test whether the outer iteration
complexity of Theorem 2 holds empirically. Figures 1 and 2 summarize our results on the relationship between the number
of outer iterations versus n and e.

We find that, in all displayed experiments, primal infeasibility is around 10~% and does not change substantially with n or e.
We conclude that the error-adjustment effectively keeps the iterates primal-feasible, modulo minor numerical errors.

E.3. Testing an iterative instantiation of Solve" (Algorithm 2)

We repeat the above two experiments while using the iterative linear system solver described in Appendix D. We note that
the iterative solver only requires a few number of iterations (< 20) in the parameter regime we test. We avoid a more
in-depth analysis of the PCG iteration complexity, as this was already performed in (Chowdhury et al., 2020). Overall, we
find that there is no notable difference between using the perturbed Solve" method or the iterative instantiation. Results of
our experiments are summarized in Figures 3 and 4 below.
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Figure 4. This graph demonstrates that the linear relationship
between the number of iterations and log(1/¢) continues to hold
when using the iterative instantiation of Solve". The line shows
using the iterative instantiation of Solve". The line shows the the median number of iterations and the intervals designate the

median number of iterations and the intervals designate the 10% 10% and 90% quantiles out of 60 repetitions. Other parameters
and 90% quantiles out of 60 repetitions. Other parameters are are m = 30, n = 70, §(¢) = ¢, and (sketch size) w = 60.

m = 20,e = 0.1, § = 0.001, and (sketch size) w = 60.

Figure 3. This graph demonstrates that the linear relationship
between the number of iterations and /7 continues to hold when

E.4. Running time of Algorithm 1

Finally, we evaluated how the use of an inexact solver affects the empirical running time on randomly generated LPs.
Figure 5 shows the empirical running time of Algorithm 1 versus the same IPM algorithm where the normal equation is
solved by directly inverting the normal matrix and computing Ay = (AD?A7T)~!'p. When implementing Algorithm 1, we
instantiated Solve" using Algorithm 2, where the matrix W is a normalized Gaussian sketching matrix. We show the
running time of the inexact IPM method (/) in total, (2) excluding the time to form W, and (3) excluding the time to execute
SolveV.

Our experiments show that inexactly solving the normal equations at each step can result in improved running time when the
time to inexactly solve the normal equations is negligible. However, our basic implementation of the Solve" is insufficient
to show improved total performance at the scale of the LPs in our experiments. First steps towards improving the running
time of our inexact implementation would be (/) using a sparse or structured sketching matrix for W, rather than a dense
Gaussian sketch, (2) computing the preconditioner with a more efficient decomposition, rather than SVD, and (3) using
sparse matrix libraries.

The fact that, even at small scales, our experiments show inexact solutions to the normal equations can improve running
time when the SolveY cost is excluded is a promising sign for future benefit in solving sparse large-scale LPs, as running
time improvements to using randomized linear algebra and, in particular, matrix sketching for large matrices has already
been established in prior literature (Halko et al., 2011; Dahiya et al., 2018; Avron et al., 2010). Likewise, the running time
benefits of PCG on sparse matrices has also been established in prior literature (Quarteroni & Valli, 1996; Press et al., 2007).
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Figure 5. This shows the average running time in seconds for the exact and inexact IPM algorithms, where the inexact (PCG) running time
is shown in total, excluding the time to construct the sketch, and excluding the time to construct the sketch/run PCG. The line shows the
median number of iterations and the intervals designate the 10% and 90% quantiles out of 60 repetitions. Other parameters are m = 20,
€ = 0.1, § = 0.001, and (sketch size) w = 60.



