Streaming Algorithms for High-Dimensional Robust Statistics

Ilias Diakonikolas! Daniel M. Kane? Ankit Pensia! Thanasis Pittas '

Abstract

We study high-dimensional robust statistics tasks
in the streaming model. A recent line of work
obtained computationally efficient algorithms for
a range of high-dimensional robust statistics tasks.
Unfortunately, all previous algorithms require
storing the entire dataset, incurring memory at
least quadratic in the dimension. In this work, we
develop the first efficient streaming algorithms
for high-dimensional robust statistics with near-
optimal memory requirements (up to logarithmic
factors). Our main result is for the task of high-
dimensional robust mean estimation in (a strength-
ening of) Huber’s contamination model. We give
an efficient single-pass streaming algorithm for
this task with near-optimal error guarantees and
space complexity nearly-linear in the dimension.
As a corollary, we obtain streaming algorithms
with near-optimal space complexity for several
more complex tasks, including robust covariance
estimation, robust regression, and more generally
robust stochastic optimization.

1. Introduction

This work studies high-dimensional learning in the pres-
ence of a constant fraction of arbitrary outliers. Outlier-
robust learning in high dimensions is motivated by pressing
machine learning (ML) applications, including ML secu-
rity (Barreno et al., 2010; Biggio et al., 2012; Steinhardt
etal.,2017; Tran et al., 2018; Diakonikolas et al., 2019a) and
exploratory analysis of datasets with natural outliers (Rosen-
berg et al., 2002; Paschou et al., 2010; Li et al., 2008). This
field has its roots in robust statistics, a branch of statistics ini-
tiated in the 60s with the pioneering works of Tukey and Hu-
ber (Tukey, 1960; Huber, 1964). Early work developed min-
imax optimal estimators for various robust estimation tasks,

Authors are listed in alphabetical order. 'University of
Wisconsin-Madison “University of California, San Diego. Cor-
respondence to: Ankit Pensia <ankitp@cs.wisc.edu>, Thanasis
Pittas <pittas @wisc.edu>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

albeit with runtimes exponential in the dimension. A recent
line of work in computer science, starting with (Diakoniko-
las et al., 2016; Lai et al., 2016), developed polynomial time
robust estimators for a range of high-dimensional statistical
tasks. Algorithmic high-dimensional robust statistics is by
now a relatively mature field, see, e.g., (Diakonikolas &
Kane, 2019; Diakonikolas et al., 2021a) for surveys.

This recent progress notwithstanding, even for the basic task
of mean estimation, previous robust estimators require the
entire dataset in main memory. This space requirement can
be a major bottleneck in large-scale applications, where an
algorithm has access to a very large stream of data. Indeed,
practical machine learning methods are typically simple it-
erative algorithms that make a single pass over the data and
require a small amount of storage — with stochastic gradi-
ent descent being the prototypical example (Bottou, 2010;
Bottou et al., 2018). Concretely, in prior applications of
robust statistics in data analysis (Diakonikolas et al., 2017a)
and data poisoning defenses (Diakonikolas et al., 2019a),
the storage requirements of the underlying algorithms were
observed to significantly hinder scalability'. This discussion
motivates the following natural question:

Can we develop efficient robust estimators in the streaming
model with (near-) optimal space complexity?

We emphasize that this broad question is meaningful and in-
teresting even ignoring computational considerations. While
any method requires space complexity 2(d), where d is the
dimension of the problem (to store a single sample), it is not
obvious that a matching upper bound exists. We note that
it is relatively simple to design O(d)-memory streaming
algorithms with sample complexity exponential in d. But
it is by no means clear whether there exists an estimator
with near-linear space requirements and poly(d) sample
complexity (independent of its runtime).

1.1. Our Results

In this work, we initiate a systematic investigation of high-
dimensional robust statistics in the streaming model. We
start by focusing on the most basic task — that of robust
mean estimation. Our main result is the first space-efficient
streaming algorithm for robust mean estimation under nat-

'See, for example, Section 5.1 of (Diakonikolas et al., 2017b).

Streaming Algorithms for High-Dimensional Robust Statistics

ural distributional assumptions. Our computationally ef-
ficient algorithm makes a single pass over the data, uses
near-optimal space, and matches the error guarantees of
previous polynomial-time algorithms for the problem.

Given this result, we leverage the fact that several robust
statistics tasks can be reduced to robust mean estimation to
obtain near-optimal space, single-pass streaming algorithms
for more complex statistical tasks.

To formally state our contributions, we require some basic
definitions. We start with the standard streaming model.

Definition 1.1 (Single-Pass Streaming Model). Let .S be
a fixed set. In the one-pass streaming model, the elements
of S are revealed one at a time to the algorithm, and the
algorithm is allowed a single pass over these points.

Our robust estimators work in the following contamination
model, where the adversary can corrupt the true distribution
in total variation distance (for distributions P and (), we use
drv (P, Q) to denote their total variation distance).

Definition 1.2 (TV-contamination). Given a parameter
€ < 1/2 and a distribution class D, the adversary speci-
fies a distribution D’ such that there exists D € D with
drv(D,D’) < e. Then the algorithm draws i.i.d. samples
from D’. We say that the distribution D’ is an e-corrupted
version of the distribution D in total variation distance.

The distribution D’ in Definition 1.2 can be adversarially
selected (and can even depend on our learning algorithm).
Since Huber’s contamination model (Huber, 1964) only al-
lows additive errors, TV-contamination is a stronger model.

STREAMING ALGORITHM FOR ROBUST MEAN
ESTIMATION

The main result of this paper is the following (see Theo-
rem D.2 for a more general statement):

Theorem 1.3 (Streaming Robust Mean Estimation). Let
D be a distribution family on R% and 0 < ¢ < € for a
sufficiently small constant g > 0. Let P be an e-corrupted
version of D in total variation distance for some D € D
with unknown mean pp. There is a single-pass streaming
algorithm that, given € and D, reads a stream of n i.i.d.
samples from P, runs in sample near-linear time, uses mem-
ory dpolylog(d/e), and outputs an estimate [that, with
probability at least 9/10, satisfies the following:

1. If D is the family of distributions with identity-bounded
covariance, then n = O(dz/e) and ||f — pplle =

O(Ve).

2. If D is the family of identity-covariance subgaussian
distributions, then n = O (d?/€?) and ||i — ppll2 =

O(er/1og(1/e)).

We note that the above error guarantees are information-
theoretically optimal, even in absence of resource con-
straints. While prior work had obtained efficient ro-
bust mean estimators matching these error guarantees (Di-
akonikolas et al., 2016; 2017a; Steinhardt et al., 2018), all
previous algorithms with dimension-independent error in-
curred space complexity 2(d?).

BEYOND ROBUST MEAN ESTIMATION

Using the algorithm of Theorem 1.3 as a black-box, we
obtain the first efficient single-pass streaming algorithms
with near-optimal space complexity for a range of more
complex statistical tasks. These contributions are presented
in detail in Appendix E. Here we highlight some of these
results.

Our first application is a streaming algorithm for robust
covariance estimation.

Theorem 1.4 (Robust Gaussian Covariance Estimation).
Let Q be a distribution on R? with drv(Q,N(0,%)) < ¢
and assume %Id = X < 14. There is a single-pass stream-
ing algorithm that uses n. = (d*/e®)polylog(d, k, 1/¢) sam-
ples from Q, runs in time ndpolylog (d, k, 1/€), uses mem-
ory d*polylog (d, k, 1/€), and outputs a matrix S such that
|=-Y28%-Y2 — 1,||p = O(clog(1/€)) with probability
at least 9/10.

See Theorem E.3 for a more detailed statement.

Our second application is for the general problem of ro-
bust stochastic optimization. Here we state two concrete
results for robust linear and logistic regression (see Theo-
rem E.9 and Theorem E.12 for more detailed statements).
Both of these statements are special cases of a streaming
algorithm for robust stochastic convex optimization (see
Corollary E.6).

Theorem 1.5 (Streaming Robust Linear Regression). Let
D be the distribution of (X,Y) defined by Y = X10* + Z,
where X ~ N(0,1;), Z ~ N(0,1) independent of X,
and ||0*||2 < r. Let P be an e-corruption of D in total
variation distance. There is a single-pass streaming algo-
rithm that uses n = (d*/¢) polylog (d(1 + r)/€) samples
from P, runs in time ndpolylog(d(1 + r)/€), uses mem-

ory dpolylog(dr /), and outputs an estimate 6 € R? such
|10 — 0*|l2 = O(\/€) with high probability.

Theorem 1.6 (Streaming Robust Logistic Regression). Con-
sider the following model: Let (X,Y) ~ D, where X ~
N(0,1,), Y | X ~ Bern(p), forp =1/(1+¢=X""), and
|0*]]2 = O(1). Let P be an e-corruption of D in total vari-
ation distance. There is a single-pass streaming algorithm
that uses n = (d?/¢) polylog (d/€) samples from P, runs
in time nd polylog(d/¢), uses memory d polylog(d/e), and
outputs an estimate 0 € R% such |6 — 6*||o = O(+/€) with

Streaming Algorithms for High-Dimensional Robust Statistics

high probability.

Finally, in Appendix E, we include an additional application
to distributed non-convex optimization in the streaming
setting.

Remark 1.7 (Bit complexity). For simplicity of presentation,
in the main body of the paper, we consider the model of
computation where the algorithms can store and manipulate
real numbers exactly. We show in Appendix L that our
algorithms can tolerate errors due to finite precision. In
particular, all our algorithms (including Algorithm 5) can be
implemented in the word RAM model with d polylog(d/e)
bits.

1.2. Overview of Techniques

In this section, we provide a brief overview of our approach
to establish Theorem 1.3. We start by recalling how robust
mean estimation algorithms typically work without space
constraints. A standard tool in the literature is the filtering
technique of (Diakonikolas et al., 2016; 2017a; Diakoniko-
las & Kane, 2019). The idea of the filtering method is the
following: Given a set .S of corrupted samples, by analyzing
spectral properties of the covariance of S, we can either
certify that the sample mean of .S is close to the true mean
of the distribution, or can construct a filter. The filter is a
method for selecting some elements of S to remove, with
the guarantee that it will remove more outliers than inliers.
If we can efficiently construct a filter, our algorithm can then
remove the selected samples from S, obtaining a cleaner
dataset and repeat the process. Eventually, this procedure
must terminate, giving an accurate estimate of the true mean.

We proceed to explain how to implement the filtering
method in a streaming model. We start with the easier
case where the dataset is stored in read-only-memory, or
more generally in a multi-pass streaming setting. At each
round of the algorithm, one has a subset S’ of the original
dataset S that needs to be maintained (in particular, the set
of samples that has survived the filters applied thus far). To
do this naively would require n = |S| many bits of mem-
ory, which is too much for us. A more inventive strategy
would be the following: instead of storing these subsets S’
explicitly, store them implicitly by instead storing enough
information to reconstruct the filters used to obtain S’. This
seems like a productive idea, as most filters are relatively
simple. For example, a commonly used filter is to remove
all points z € S for which vTx > t, for some vector v
and scalar t. One could store enough information to apply
this filter by merely storing (v, t), which would take O(d)
bits of information. Unfortunately, most filtering algorithms
may require €(d) many iterations before attaining their fi-
nal answer. Consequently, the sets S’ one needs to store
are not just the result of applying a single filter, but instead
the result of iteratively applying Q(d) of them. In order to

store all of these extra filters, one would need (d?) bits.
(For the sake of this intuitive description, we focused on
“hard-thresholding” filters. Our algorithm will actually use
a soft-thresholding filter, assigning weights to each point.)

To circumvent this first obstacle, one requires as a starting
point a filtering algorithm that is guaranteed to terminate
after a small (namely, at most poly-logarithmic) number of
iterations. Recent work (Dong et al., 2019; Diakonikolas
et al., 2021b) has obtained such algorithms. Here we gen-
eralize and simplify the filtering method of (Diakonikolas
et al., 2021b). This allows us to obtain an algorithm with
space complexity d polylog(d/e) that works in the multi-
pass streaming model, where polylog(d/e) passes over the
same dataset are allowed.

To obtain a single-pass streaming algorithm, new ideas are
required. In the single-pass setting, we cannot implicitly
store a subset of the full dataset S; once we access some
points from .S, we will never be able to see them again. To
deal with this issue, we will need to slightly alter our way of
thinking about the algorithm. Instead of being given a set S
of samples, an e-fraction of which have been corrupted, we
instead adopt the view of having sample access to a distri-
bution P, which is e-close in total variation distance to the
inlier distribution GG. Given this point of view, instead of a
filter defining a procedure for removing samples from .S and
outputting a subset S, we think of it as a rejection sampling
procedure that replaces P with a cleaner distribution P’.

This shift in perspective comes with new technical chal-
lenges. In particular, when constructing the next round of
filters, we will need to compute quantities pertaining to the
current distribution P of the data points. In the setting of
the multiple-pass model, this imposed no problem; these
quantities could be calculated exactly. This is no longer
possible when we merely have sample access to P. The
best one can hope for is to approximate these quantities to
sufficient precision for the rest of our analysis to carry over.
However, the natural estimators for some required quantities
(e.g., powers of the covariance matrix) would need to access
the data multiple times. Circumventing this issue requires
non-trivial technical work. Roughly speaking, instead of
iterating over the same dataset to approximate the desired
quantities, we show that it suffices to iterate over statistically
identical datasets.

1.3. Prior and Related Work

Since the dissemination of (Diakonikolas et al., 2016; Lai
et al., 2016), there has been an explosion of research in al-
gorithmic aspects of robust statistics. We now have efficient
robust estimators for a range of more complex problems,
including covariance estimation (Diakonikolas et al., 2016;
Cheng et al., 2019a), sparse estimation tasks (Balakrishnan
et al., 2017; Diakonikolas et al., 2019b; Cheng et al., 2021),

Streaming Algorithms for High-Dimensional Robust Statistics

learning graphical models (Cheng et al., 2018; Diakoniko-
las et al., 2021c), linear regression (Klivans et al., 2018;
Diakonikolas et al., 2019¢; Pensia et al., 2020), stochas-
tic optimization (Prasad et al., 2020; Diakonikolas et al.,
2019a), and robust clustering/learning various mixture mod-
els (Hopkins & Li, 2018; Kothari et al., 2018; Diakonikolas
et al., 2018; 2020a; 2021b; Bakshi et al., 2020a; Liu &
Moitra, 2020; Bakshi et al., 2020b). The reader is referred
to (Diakonikolas & Kane, 2019) for a detailed overview. We
reiterate that all previously developed algorithms work in
the batch setting, i.e., require the entire dataset in memory.

For the problem of robust mean estimation, (Dong et al.,
2019; Diakonikolas et al., 2021b) gave filtering-based
algorithms with a poly-logarithmic number of iterations.
The former algorithm relies on the matrix multiplicative
weights framework, while the latter is based on first
principles. Our starting point in Section 3 can be viewed
as a generalization and further simplification of the ideas
in (Diakonikolas et al., 2021b). Specifically, our algorithm
works under the stability condition (Definition 2.1), which
broadly generalizes the bounded covariance assumption
used in (Diakonikolas et al., 2021b).

In the context of robust supervised learning (including, e.g.,
our robust linear regression application), low-space stream-
ing algorithms are known in weaker contamination mod-
els that only allow label corruptions, see, e.g., (Pesme &
Flammarion, 2020; Shah et al., 2020; Diakonikolas et al.,
2020c). We emphasize that the contamination model of
Definition 1.2 is significantly more challenging, and no low-
space streaming algorithms were previously known in this
model. In particular, naive methods of outlier removal do
not lead to dimension-independent errors, see, for example,
Section 3 of (Diakonikolas et al., 2016), Section 2 of (Lai
et al., 2016), and Section 1 of (Diakonikolas & Kane, 2019).

We note that the focus of our work is orthogonal to the that
of (Sharan et al., 2019) that studies memory-sample tradeoff
for linear regression without any outliers.

Finally, we note that recent work (Tsai et al., 2021) studies
streaming algorithms for heavy-tailed stochastic optimiza-
tion. While the goal of developing low-space streaming
algorithms is qualitatively similar to the goal of our work,
the algorithmic results in (Tsai et al., 2021) have no impli-
cations in the corrupted setting studied in this work.

2. Preliminaries

Basic Notation We use Z to denote the set of positive
integers. For n € Z ., we denote [n] := {1,...,n}. Fora
vector v, we use ||v||2, ||v]|co for its £ and infinity norms
respectively. We let ® denote the Kronecker product for
vectors. We use boldface letters for matrices. We use I
to denote the d x d identity matrix. We use ||A||r for

the Frobenius norm of A. For a square matrix A, we use
||A[l2 for its spectral norm and tr(A) for its trace. We
use = for the Lowner ordering of matrices. Finally, Ab
denotes the vector obtained by concatenating the rows of
A. For a distribution D, we denote up = Ex..p[X] and
¥p = Exp[(X — up)(X — pp)T]. Given a weight
function w : R? — [0, 1], we define the re-weighted distri-
bution D, to be Dy, () := D(z)w(x)/ [pa w(x)D(x)dz.
We use f,p = Ex~p,[X] for its mean and fﬁ:}D =
Ex~p, [(X —u)(X —u)T] for the second moment centered
with respect to p (we will usually drop ¢ from the notation
when it is clear from the context). We use drv (P, Q) for
the total variation distance between P, (). For a set .S, we
use U(.S) for the uniform distribution on S.

2.1. Stability Condition

Our algorithms succeed for every distribution satisfying the
following standard set of deterministic conditions. (See
Appendix B.2 for more details.)

Definition 2.1 ((¢, 6)-stable distribution). Fix 0 < e < 1/2
and § > e. A distribution G on R? is (e, §)-stable with
respect to 4 € R? if for any weight function w : R? — [0, 1]
with Exg[w(X)] > 1 — € we have that

lpwe —pll, <6 and [T — L, < 6%/

We can similarly define the same notion for sets.

Definition 2.2 ((e, §)-stable set). Fix 0 < € < 1/2 and
§ > e. A finite set Sy C R% is (e, §)-stable with respect to
u € RY if the empirical distribution U (Sp) is (e, §)-stable
with respect to p.

Fact 2.3 ((Diakonikolas & Kane, 2019)). A set of
O(d/(e*1og(1/¢))) i.i.d. samples from an identity covari-
ance subgaussian distribution is (¢, O(e/log(1/€)))-stable
with respect to |1 with high probability. Similarly, a set of
O(d/e) i.i.d. samples from a distribution X with Cov[X] <
1, contains a large subset S, which is O(e, O(\/€))-stable
with respect to its mean E[X with high probability.

All known filtering techniques rely on the following lemma,
stating that if the empirical covariance is not too large in the
Lowner order, while the distribution is close to the original
in total variation distance, then the sample mean is a good
estimate of the true mean.

Lemma 2.4 (Certificate Lemma). Let G be an (e, §)-stable
distribution with respect to p € RY, for some 0 < € < 1/3
and § > e. Let P be a distribution with dpv(P,G) <
€. Denoting by up, ¥ p the mean and covariance of P, if
Amax(Xp) < 1+ A for some X\ > 0, then ||up — ulla =
O(8 + VeN).

Streaming Algorithms for High-Dimensional Robust Statistics

3. Filtering Algorithm with Small Number of
Iterations

In this section, we develop a filtering algorithm (in the batch
setting) that terminates in polylog(d/¢) iterations for any
stable set. This leads to an algorithm that runs in near-
linear time, i.e., nd polylog(nd/¢), generalizing the results
of (Dong et al., 2019; Diakonikolas et al., 2021b). Crucially,
this algorithm will form the building block of our streaming
algorithm in Section 4. We remark that the algorithm of this
section works even against the strong-contamination model
(Definition C.1), where the outliers may not be i.i.d. samples
from any distribution, but are allowed to be completely
arbitrary. We prove the following (see also Theorem C.2).

Theorem 3.1 (informal). Let 0 < € < €y, for a sufficiently
small constant €y. Let Sy be a set of n points in R¢ that
is (€, 0)-stable with respect to j and S be an e-corrupted
version of Sy. There exists an algorithm that runs in time
nd polylog(nd/e€) and with high probability finds a vector
i such that ||jt — pl]2 = O(9).

Theorem 3.1 applies to any stable set. By Fact 2.3, we
directly obtain (i) an O(e+/log(1/¢))-accurate estimator
given O(d/(¢%/log(1/€))) many e-corrupted samples from
an identity covariance subgaussian distribution; and (ii) an
O(+/€)-accurate estimator for any distribution X ~ D with
Cov[X] =< 14, given O(d/e) many e-corrupted samples.

The pseudocode of the algorithm establishing Theorem 3.1
is presented in Algorithm 1. We will define the necessary
notation as needed (see the pseudocode for details). First,
we assume that the distribution over the input samples is
of the form P = (1 — €)G + B, where G is the uniform
distribution over the stable set of inliers and B is the uniform
distribution on the outliers. Although this mixture may seem
to suggest that the adversary only adds points, it is without
loss of generality. Indeed, in the case that the adversary also
removes points, we can think of GG as the distribution of the
remaining inliers (which continues to be stable with slightly
worse parameters; see Lemma B.12).

We begin with a high-level explanation of Algorithm 1. At
each iteration ¢, we assign a weight w(z) € [0, 1] to each
point x. Let P, be the distribution on S, weighted according
to wy. Let uy and X, be the mean and covariance of P,
respectively. We want to assign scores to each point, using
spectral properties of 32; and the stability of inliers, so that
the scores over outliers are more than those of inliers. Essen-
tially, if a direction v has variance larger than 1 + Q(52/e),
then the stability of inliers implies that this must be due to
outliers. Thus, we can assign scores based on the values
(vT'(z — p¢))? that have provably more mass on outliers
than inliers. The filters proposed in (Diakonikolas et al.,
2016; 2017a) assigned scores based on a single direction,
the leading eigenvector of 3, and can take as many as Q(d)

iterations (see Section 1.2).

To reduce the number of iterations, we need to filter in
all directions of large variance simultaneously. Letting
B, ~ X; — (1 — C162/€)14, we would like to filter along
all directions where the eigenvalue of B, is within a con-
stant factor from \; := ||B¢||2, not necessarily the leading
eigenvector of B;. As we show in Section 3.2, this can be
approximately achieved by assigning scores for each point
 based on g;(z) := | My (z — j1;)||2, where M; = B8
At a high level, this happens because the spectrum of M is
distributed across along all large eigenvectors of B;.

Algorithm 1 Robust Mean Estimation in polylog iterations
1: Input: S = {x;},c[n), 0, €
2: Let C7 > 22, C be a sufficiently large constant, C; =
100C and C5 = 0.1.

3: Let R = +/(d/e)(1 + 6% /e).

4: Let P = (1 — €)G + €B be the empirical distribution
on the points from S. 2

5: Let K = polylog(d/e), L = polylog(nd/e).

6: Obtain a naive estimate ji of o with ||z — pf]2 < 4R.
7: Initialize wy (x) < 1{|jx — @]z < 5R} forallz € S.
8
9

: for t € [K] do
Let P; be the distribution of P weighted by w;.
10: Let u4, 3 be the mean and covariance of P;.
1. Let B, = (Exoplw(X)])?E; — (1 - c@) 1,

and M, = B¢,

12: Let \;=||By|2. Compute X; € [0.8)\;,1.2)] using
power iteration.

13: ith > (6% /¢ then

14: for j € [L] do

15: g5~ L{({:I:l}d), Vt,j < MtZtJ'.

16: end for

17: Denote by U, the matrix having the vectors
%vt,j for j € [L] as rows.

18: Let i (x) = ||U¢(z — pe)]|3 and

(@) = (@) 1{Gi(w) > Cs[|[Uy} hi/e}
19: linax < (dR/€)C1°84 T « 0.01\ || Uy %.

20: Wit — DownweightingFilter(P, w,
7~—t7 R7 T7 émax)

21: endif

22: end for

23: return fi;.

Even though assigning scores based on My, i.e., g;(x), re-
duces the number of iterations, computing g;(x) for all
x € S is slow. We thus use a Johnson-Lindenstrauss (JL)
sketch of M, denoted by U;. We denote by g:(z) :=
|U(z — pe)|2 the resulting scores. We claim that the set

2Without loss of generality, outliers are within O(R) from y in
£>-norm. This is ensured in Line 7, which removes only e-fraction
of inliers (Claim C.12).

Streaming Algorithms for High-Dimensional Robust Statistics

Algorithm 2 Downweighting Filter
1: Input: P,w,7, R, T, {1ax
2: 7 ¢+ CdR*t4losd,
3: Letwy(z) = w(x)(1 — 7(x)/r)".
4: Find the smallest ¢ € {1,...,0nax} satisfying
Exp [we(X)7(X)] < 2T using binary search.
5: return wy.

{G:()}zes can be calculated in time O(nd) such that for
each z € S, §:(z) ~ gi(x). First, we will show (see
Lemma C.5) that U; can be as small as L x d, where
L = polylog(nd/e¢), which follows from the classical JL
lemma (stating that n points can be linearly embedded
into a log n-dimensional space). Also, each row of U,
can be computed by repeatedly multiplying a vector log d
times by B, (Line 15). Thus, by also noting that for any v,
B0 = 3 es w(@) (07 (@ — 1))@ — 1) /(s we())
can be computed in O(nd) time by calculating y; and
vT'(z — py) first, all rows of Uy can be computed in time
O(nd). Thus, each iteration of Algorithm 1 runs in near-
linear time.

For the proof of correctness, we require that the JL and spec-
tral approximations used by the algorithm are sufficiently
accurate. We prove in Appendix C.2 that the following event
occurs with high probability.

Condition 3.2 (Deterministic Conditions For Algorithm 1).
For all ¢ € [K], the following hold:

1. Spectral norm of By: Xt € [0.8M\;, 1.2)].
2. Frobenius norm: |Uy||% € [0.8[|M,]|%, 1.2[|M,||%].
3. Scores: Forall x € S, g(z) € [0.8¢g:(x),1.2g:(x)].

3.1. Downweighting Filter

The final scores 7;(x) used in filtering are thresholded ver-
sions of g;(z), as defined in Line 18. Recall that we have
P = (1 —€)G + eB, where G is the uniform distribution
over inliers satisfying stability and B is the uniform distribu-
tion of the outliers. Roughly speaking, our filter guarantees
two things when modifying the weights w;(x) to w1 ()
(see Lemma C.6):

1. The weight removed from the outliers is greater than the
weight removed from the inliers.

2. EX~P[U/t+1 (X)’]Zt (X)] S 2 EXNG[’LUt (X)’?Zt (X)}, i.e.,
the weighted mean of scores after filtering over both
inliers and outliers is at most twice the weighted mean
of scores of inliers before filtering.

Moreover, Algorithm 2 terminates in O(n log(#max)) time.
The first guarantee ensures that P; will be never be more

than O(e)-far in total variation distance from G. Regarding
the second item above, using straightforward implications
of stability (Appendix B.2), we show in Appendix C.2 that
Ex~cwi(X)7(X)] is small, and thus filtering will make
the corresponding expectation for both inliers and outliers
comparably small. Let 7;(x) be the thresholded scores de-
fined using M;. Then we have the following:

Lemma 3.3 (Informal). Under the deterministic Con-
dition 3.2, we have that eEx. .plwi1(X)7(X)] <
e\t || M ||% for some constant ¢ < 0.01. As a consequence,
it also holds € Ex . p[wi1(X)7e(X)] < eAe||[M¢]|%.

The second part of the lemma holds because Item 3 of Con-
dition 3.2 implies that 7;(x) is close to 7¢(x) (Claim C.10).
Lemma 3.3 is crucial towards proving our main theorem,
since it essentially means that filtering reduces the variance
by a multiplicative factor in the directions of M.

3.2. Correctness of Algorithm 1: Proof of Theorem 3.1

Recall that each iteration of Algorithm 1 can be imple-
mented in near-linear time. Thus, it remains to show that the
choice K = polylog(d/e) suffices to guarantee correctness
of our algorithm. We now sketch the proof using a potential
function argument. Let A; be the vector in R? containing
the eigenvalues of B;. Recall that our goal is to show that
Bi]l2 = [|[Atllec = O(6?/€) in polylog many iterations.
Let p=2logd. Since ||z, = O(||z|) for any z € RY,
we are motivated to use the potential function ¢; := || A¢|?.
We now focus on showing that ¢; decreases rapidly. Ob-
serve that for any i € Z, tr(Bi)=||A¢||%. We start with the
following inequalities (and explain them directly below):

1 p
b1 = 1Aeally < (4707 [Aryaflpsn)

P

1 T

= a7t (Jaalp)™
pl

= 47 (tx(BY)) 7

— 7T (tr(Mt+1Bt+1Mt+1))p%
< d (tr(MBy1My)) 74 M

where the first line uses Fact B.1, the third one uses
tI'(B;’+1) = ||At+1 H?L, the fourth one Mt+1Bt+1Mt+1 =
ij:ll , and the last one uses the fact B;y; =< By, which
holds because removing points can only make their covari-

ance smaller; see Appendix C.4 for more details.

Then the goal becomes to bound from above the term
tr(M;B¢+1M;). As will be shown below, we have that
tr(M;B¢y1 M) is related to Ex . p[wi41(X)7:(X)]. Us-
ing the guarantees of the Downweighting filter (Lemma 3.3),
we prove the following result in Appendix C.4.2 (see
Lemma C.16):

Lemma 3.4 (informal). Assume Condition 3.2 holds. Then
tr(M; B 11 M;) < e\ ||M,||% for some constant ¢ < 0.1.

Streaming Algorithms for High-Dimensional Robust Statistics

Having this at hand, we continue with Equation (3) as fol-
lows:

Dry1 < dv (tr(MtBt-&-lMt))#
< 5 (cl|Adllool|AdlI2) 75T
N (Pl
= d%cﬁ“/\tng
< 3Vl Al < 0.9999¢; ,

where the third line uses that | A¢||c < ||A¢||; fori > 1, and
the last line uses that d'/? = exp((logd)/(2logd)) < 3,
p/(p+1) > 0.5, and ¢ < 0.1. We thus get the desired
convergence.

(using Lemma 3.4)

The final step is to bound from above the number of iter-
ations needed for Lemma 2.4 to ensure that ||u; — pf|2 =
O(9). Concretely, due to our naive pruning, at the beginning
of the algorithm we have the upper bound ¢; < dRP(°g %),
In the ¢-th iteration, if the condition of Line 13 still holds,
we have that ¢; < 0.99)dRCU°¢4) Thus, when t =
polylog(d/e), we have that |By||2 < (¢;)7°s7 = O(52/e).
Otherwise, if the condition of Line 13 is violated for any ¢,
then we directly have || B; |2 = O(6%/e). As a consequence,
we obtain that || 3|2 < 1+ O(62/¢) for t = K. An appli-
cation of Lemma 2.4 shows that the final weighted mean i,
for t = K has error at most ||y — p|l2 = O(J), completing
the proof of Theorem 3.1. O

4. Efficient Streaming Algorithm for Robust
Mean Estimation

‘We now turn to the main focus of our paper, and present a
streaming algorithm with near-optimal space complexity for
robust mean estimation. To obtain our streaming algorithm,
we will appropriately modify Algorithm 1 from the previous
section. This will eventually lead to a single-pass streaming
algorithm with near-optimal space complexity. Due to space
limitations, the final pseudocode of our streaming algorithm
is Algorithm 5 in the appendix. In this section, we give an
overview of the key modifications to Algorithm 1 required
in tandem with a sketch of the analysis.

Moving to the streaming model requires a change in per-
spective: instead of having a corrupted dataset, we now have
sample access to a distribution P such that dpv (P, D) < e,
where D is a stable distribution. We will reweight this
distribution using weights, wy(+), that are now functions
on the whole R® instead of a fixed dataset. Thus, P; now
denotes the reweighting of the (corrupted) distribution P
with the weights w;. Similarly p;, 3, By, M; denote the
quantities that pertain to the distribution P;. The goal of our
algorithm remains essentially the same: obtain P; such that
dry (P, P) = O(e) and || 2|2 < 1+0(6%/¢); Lemma 2.4
would then imply that ||z — pl|2 = O(6).

Since weights are now functions over R¢ and not stored any-
where, we need an efficient way to compute w; () whenever
required. As outlined in Section 1.2, it is sufficient to store
a representation of the filters, i.e., the matrices U; and the
counts ¢; from the downweighting filter. Then, given a
point z, w¢(z) can be computed in poly-logarithmically
many operations. Moreover, we need a way to simulate
samples from the weighted distributions P;, which can be
done using rejection sampling. We will follow the structure
of Algorithm 3 and show the following: (i) it is possible to
approximate the necessary quantities in Algorithm 1 using
i.i.d. samples from P in the streaming model, and (ii) the
size of the JL-sketch can be kept small.

We begin with the first obstacle of calculating approximate
scores. Recall that the only place where M is used in Algo-
rithm 1 is Line 15, where M is multiplied with the vectors
z.4. Let z be an arbitrary vector. Since M; = Blogd ip
the previous section we were able to compute M, z by itera-
tively multiplying z by B;. Since we now do not have access
to By, but only samgle access to P;, we need a sufficiently
fine approximation B, of B; (obtained using i.i.d. samples).
The natural approach would then be to multiply B; with
z iteratively log d many times. Even though B,z can be
computed in a streaming fashion (as outlined in the previous
section), it is not possible to compute (B;)!°® <z without
accessing the data logd times. To circumvent this issue,
we use a fresh sample approximation of B; in every mul-
tiplication step. That is, we approximate M,z with ﬁtz,
where ﬁt = H§:1 ﬁt’j and each ﬁt,j is computed on a
different set of samples. This approach crucially leverages
the fact that in the contamination model of Definition 1.2,
outliers are added in a way that is oblivious to the inliers,
and therefore these datasets are statistically identical and
independent of each other. We show in Appendix D.3 that
the resulting ﬁt is a sufficiently accurate approximation of
Mt:

Lemma 4.1 (informal). Let the estimator M ;:= H§:1 ﬁt’ i

where f”t,j is the empirical version of B, on the same
number of samples as in Theorem 1.3. Then it holds that
[M; — M¢||2 < O(1/v/d)||My|| with high probability.

Similarly, we need to modify the downweighting filter, since
its implementation using binary search requires performing
checks of the form Ex . p[w(X)7(z)] > 2T and calculat-
ing the weighted mean exactly is no longer possible. We
propose a sample-efficient estimator to approximate that ex-
pectation (see Lemma D.16 in Appendix D.3.3) and run an
“approximate” variant of binary search (see Appendix D.2).

We now turn to the more technical issue of controlling the
size of the JL-sketch, i.e., the number of rows, L, of the
matrix U, € RE*4, For simplicity, assume M; = M, and
recall that 7(x) is the thresholded version of || Uy (z — y¢)]|3,

Streaming Algorithms for High-Dimensional Robust Statistics

as defined in Line 18 and 7(z) is the same score but using
M;. The potential-based analysis in Section 3.2 requires
that Ex . p[wig1(X)7(X)] is small. However, the stop-
ping condition of the downweighting filter only implies that
Ex.plwit1(X)7(X)] is small. In the previous section,
the bound on the former was obtained from the bound on
the latter by using that ||U;(z — u)]|2 & [|[Me(x —)2
pointwise in the support of P (Claim C.10).

By the classical JL. lemma, the size of the JL sketch, L,
needs to be at most logarithmic in the size of the set .S
where we require the pointwise approximation to hold.
Thus, in the previous section, L scaled as log|S| = logn.
However, in the streaming model where there is no such
dataset, it is far from obvious how the analysis should pro-
ceed. A ndive approach would be to require the approxi-
mation to hold on a cover S of the support of P;. Since
|5’ | scales exponentially with d, the required bound on L
would be log|S| = ©(d), which is too large for our pur-
poses. Luckily, we can still find a fixed set Scover Such
that the following holds: (i) log |Scover] = polylog(d/e)
and (ii) the expectation of scores over U (Scover) apProx-
imates the expectation of scores over P. That is, as far
as the expectation of the scores are concerned, P can be
approximated by the uniform distribution over S¢oyer. Argu-
ing as before, if ||U (2 — p)|| & || M¢(z — pe)|| for each
T € Scover, then the downweighting filter also ensures that
Ex.plwit1(X)7(X)] is small. Thus, Scover can serve as
a proxy dataset (only used in the analysis) to ensure that
the size of the JL sketch is sufficiently bounded, i.e., that
L =log |Scover| = polylog(d/e).

Establishing the desired upper bound on the cardinality of
Scover requires a somewhat more sophisticated argument
that relies on the VC-dimension of a family of functions
corresponding to the weight update rule. Due to space
limitations, this proof is deferred to Appendix D.2.1.

In summary, the algorithm for the streaming setting (Algo-
rithm 5) is obtained via a number of crucial adaptations of
Algorithm 1. Specifically, we perform the following major
modifications: (i) sample approximations for M, and p,,
(ii) a slightly larger JL-sketch, (iii) an approximate binary
search in the downweighting filter, and (iv) storing only
the representations ¢; of w;(z)’s and the JL-sketches U,
in memory. The analysis is again based on a set of high
probability events (Condition D.5) similar to Condition 3.2.
Due to space limitations, the full algorithm and the proofs
of the technical arguments are deferred to Appendix D.3.

Given the aforementioned differences, we again use the
same potential function as in Section 3.2, and show that it
decreases by a multiplicative factor in every round. This
completes the analysis sketch of our streaming algorithm,
thereby completing the proof sketch of Theorem 1.3. [

5. Applications: Beyond Robust Mean
Estimation

In this section, we develop robust streaming algorithms with
near-optimal space complexity for more complex statistical
tasks, specifically for robust covariance estimation and ro-
bust stochastic optimization. The main idea enabling these
applications is that these tasks can be effectively reduced to
robust mean estimation. (Due to space limitations, detailed
statements and proofs are deferred to Appendix E.)

Robust Covariance Estimation Let X be the covariance
matrix of a centered distribution D, and define Y := X ® X
for X ~ D, where ® denotes the Kronecker product. Not-
ing that E[Y] = X" (where X" denotes the vector obtained
by concatenating all the rows of X2), estimating 3 reduces
to estimating E[Y']. Thus, as long as Cov[Y] < O(1)I2,
Theorem 1.3 yields an estimator 3 such that ||= — 2| p =
O(y/€) that uses memory at most O(d?) (see Theorem E. 1
for details). Moreover, the bounded fourth moment assump-
tion is satisfied in the case D = N(0,X) with ¥ < I,
(see Fact E.2). Therefore, the theorem covers the Gaussian
case with bounded covariance. Using a more sophisticated
approach (see (Cheng et al., 2019b) and Appendix E), we
can achieve the near-optimal error of O(elog(1/€)) for the
special case of the Gaussian distribution.

Theorem 5.1 (Streaming Robust Covariance Estimation).
Let Q be such that drv(Q, N (0,X)) < € and assume that
éId =< 3 < 1. There exists a single-pass streaming algo-
rithm that draws n = (d*/e?)polylog(dk/€) samples from
Q, runs in time nd*polylog (dr/¢), has space complex-
ity d*polylog (dk /), and returns a hypothesis $ € RIxd
such that |S~Y28%12 — 14]|p = O(elog(1/e)) with
high probability.

Robust Stochastic Convex Optimization Consider the goal
of optimizing f() := E..p[f(0;2)], given e-corrupted
samples of an unknown distribution D € D. A standard
approach for solving the uncorrupted version of this problem
is to use gradient descent, where we update 6,1 = 0, —
V£(0), and approximate V f(6) using samples from D.
Since we only have access to a corrupted version of D,
we can use a robust mean estimation algorithm to robustly
estimate Vf(0) = E..p[Vf(0;2)] (Diakonikolas et al.,
2019a; Prasad et al., 2020).

Gradient descent with an approximate gradient oracle is
well-understood, see, e.g., Theorem E.5 of (Prasad et al.,
2020). By using our streaming robust mean estimator as that
oracle, we obtain a general streaming algorithm for robust
stochastic optimization (see Corollary E.6). We highlight
below a concrete application to logistic regression.

Theorem 5.2 (Streaming Robust Logistic Regression). Con-
sider the following model: Let (X,Y) ~ D, where X ~

N(0,1), Y | X ~ Bern(p), forp=1/(1+ e X", and

Streaming Algorithms for High-Dimensional Robust Statistics

[[0*]l2 = O(1). Let P be an e-contamination of D in total
variation. There is a single-pass streaming algorithm that
uses n = (d?/e) polylog (d/¢) samples of P, runs in time
nd polylog(d/e), uses memory d polylog(d/e), and returns
8 € R such |6 — 6* || = O(y/€) with high probability.

Distributed Non-convex Optimization Finally, we study
the task of finding a second-order stationary point of a non-
convex objective, i.e., a stationary point 9 such that the
Hessian at 0 is not too negative in any direction. We con-
sider a distributed setup where a master machine collects
gradient estimates from worker machines, an e-fraction of
which are dishonest. Note that a vanilla robust gradient de-
scent method may get stuck at a stationary point with a large
negative Hessian direction. (Yin et al., 2019) showed that it
is possible to escape such points by carefully adding spheri-
cal noise to a robust estimate of the gradient. Plugging our
streaming robust mean estimator into their framework yields
a memory-efficient streaming algorithm with quantitatively
similar guarantees (see Appendix E.3 for details).

6. Discussion

In this work, we gave the first efficient streaming algorithm
with near-optimal space complexity for outlier-robust high-
dimensional mean estimation. As an application, we also
obtained low-space streaming algorithms for a range of other
robust estimation tasks. Our work is a first step towards
understanding the space complexity of high-dimensional
robust statistics in the streaming setting.

Our work suggests a number of open problems. First, the
sample complexity of our mean estimation algorithm is
O(d?/€?), while the information-theoretic optimum (with-
out space constraints!) is O(d/e?). What is the optimal
sample-space tradeoff? A similar question can be asked for
the broader tasks of covariance estimation and stochastic
optimization. A more general goal is to characterize the
tradeoff between space complexity, number of passes, and
sample size/runtime for other robust high-dimensional statis-
tics tasks, e.g., clustering and learning of mixture models.

Finally, another research direction concerns the considered
contamination model. Throughout this paper, we focused
on the TV-contamination model. One can consider an even
stronger contamination model with an adaptive adversary,
where the outliers can be completely arbitrary (i.e., not fol-
low any distribution), and the adversary can additionally
control the order in which the points are presented in the
stream. Is it possible to obtain O~€(d)—space single-pass
streaming algorithms for robust mean estimation in the pres-
ence of such an adversary? While our algorithms can be
shown to work in this model with a poly-logarithmic num-
ber of passes, it is not clear whether a single-pass algorithm
with sub-quadratic space complexity exists in this setting.

References

Achlioptas, D. Database-friendly random projections:
Johnson-lindenstrauss with binary coins. Journal of com-
puter and System Sciences, 66(4):671-687, 2003.

Anthony, M. and Bartlett, P. L. Neural Network Learning:
Theoretical Foundations. Cambridge University Press,
first edition, November 1999.

Bakshi, A., Diakonikolas, 1., Hopkins, S. B., Kane, D.,
Karmalkar, S., and Kothari, P. K. Outlier-robust clustering
of gaussians and other non-spherical mixtures. In 61s¢

IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, pp. 149-159. IEEE, 2020a.

Bakshi, A., Diakonikolas, 1., Jia, H., Kane, D. M., Kothari,
P. K., and Vempala, S. S. Robustly learning mixtures of k
arbitrary gaussians. CoRR, abs/2012.02119, 2020b. URL
https://arxiv.org/abs/2012.021109.

Balakrishnan, S., Du, S. S., Li, J., and Singh, A. Com-
putationally efficient robust sparse estimation in high
dimensions. In Proceedings of the 30th Conference on
Learning Theory, COLT 2017, pp. 169-212, 2017.

Banks, J., Garza-Vargas, J., Kulkarni, A., and Srivastava, N.
Pseudospectral shattering, the sign function, and diago-
nalization in nearly matrix multiplication time. In FOCS
2020, pp. 529-540, 2020.

Barreno, M., Nelson, B., Joseph, A. D., and Tygar, J. D.
The security of machine learning. Machine Learning, 81
(2):121-148, 2010.

Biggio, B., Nelson, B., and Laskov, P. Poisoning attacks
against support vector machines. In Proceedings of
the 29th International Conference on Machine Learning,
ICML 2012, 2012.

Birgé, L. An alternative point of view on lepski’s method.
Lecture Notes-Monograph Series, pp. 113-133, 2001.

Blum, A., Hopcroft, J., and Kannan, R. Foundations of
Data Science. Cambridge University Press, first edition,
January 2020.

Bottou, L. Large-scale machine learning with stochastic
gradient descent. In COMPSTAT, 2010.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. SIAM Review,
60(2):223-311, 2018.

Cheng, Y., Diakonikolas, I., Kane, D., and Stewart, A. Ro-
bust learning of fixed-structure bayesian networks. In
Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, pp. 10304-10316, 2018.
Full version available at https://arxiv.org/abs/1606.07384.

https://arxiv.org/abs/2012.02119

Streaming Algorithms for High-Dimensional Robust Statistics

Cheng, Y., Diakonikolas, 1., Ge, R., and Woodruff, D. P.
Faster algorithms for high-dimensional robust covariance
estimation. In Conference on Learning Theory, COLT
2019, pp. 727-757, 2019a.

Cheng, Y., Diakonikolas, I., Ge, R., and Woodruff, D. P.
Faster algorithms for high-dimensional robust covariance
estimation. In COLT, pp. 727-757, 2019b.

Cheng, Y., Diakonikolas, 1., Kane, D. M., Ge, R,
Gupta, S., and Soltanolkotabi, M. Outlier-robust
sparse estimation via non-convex optimization. CoRR,
abs/2109.11515,2021. URL https://arxiv.org/
abs/2109.11515.

Diakonikolas, I. and Kane, D. M. Recent advances in
algorithmic high-dimensional robust statistics. CoRR,
abs/1911.05911, 2019.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Moitra,
A., and Stewart, A. Robust estimators in high dimensions
without the computational intractability. In FOCS, pp.
655-664, 2016.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Moitra,
A., and Stewart, A. Being robust (in high dimensions)
can be practical. In ICML 2017, pp. 999-1008, 2017a.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Moitra,
A., and Stewart, A. Being robust (in high dimensions)
can be practical. arXiv e-prints, pp. arXiv—1703, 2017b.

Diakonikolas, 1., Kane, D. M., and Stewart, A. List-
decodable robust mean estimation and learning mixtures
of spherical gaussians. In Proceedings of the 50th An-
nual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, pp. 1047-1060, 2018. Full version available
at https://arxiv.org/abs/1711.07211.

Diakonikolas, I., Kamath, G., Kane, D., Li, J., Steinhardt,
J., and Stewart, A. Sever: A robust meta-algorithm for
stochastic optimization. In ICML 2019, pp. 1596-1606,
2019a.

Diakonikolas, 1., Karmalkar, S., Kane, D., Price, E., and
Stewart, A. Outlier-robust high-dimensional sparse esti-
mation via iterative filtering. In Advances in Neural In-
formation Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS
2019, 2019b.

Diakonikolas, 1., Kong, W., and Stewart, A. Efficient al-
gorithms and lower bounds for robust linear regression.
In Proceedings of the Thirtieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2019, pp. 2745—
2754, 2019c.

Diakonikolas, I., Kane, D. M., Kongsgaard, D., J., and
Tian, K. List-decodable mean estimation in nearly-pca
time. CoRR, abs/2011.09973, 2020a. URL https:
//arxiv.org/abs/2011.09973.

Diakonikolas, I., Kane, D. M., and Pensia, A. Outlier robust
mean estimation with subgaussian rates via stability. In
Advances in Neural Information Processing Systems 33:

Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, 2020b.

Diakonikolas, I., Kontonis, V., Tzamos, C., and Zarifis, N.
Non-convex SGD learns halfspaces with adversarial label
noise. In NeurIPS 2020, 2020c.

Diakonikolas, 1., Kamath, G., Kane, D. M., Li, J., Moitra, A.,
and Stewart, A. Robustness meets algorithms. Commun.
ACM, 64(5):107-115, 2021a.

Diakonikolas, 1., Kane, D. M., Kongsgaard, D., Li, J.,
and Tian, K. Clustering mixture models in almost-
linear time via list-decodable mean estimation. CoRR,
abs/2106.08537, 2021b.

Diakonikolas, 1., Kane, D. M., Stewart, A., and Sun, Y.
Outlier-robust learning of ising models under dobrushin’s
condition. In Conference on Learning Theory, COLT
2021, volume 134 of Proceedings of Machine Learning
Research, pp. 1645-1682. PMLR, 2021c.

Dong, Y., Hopkins, S. B., and Li, J. Quantum entropy
scoring for fast robust mean estimation and improved
outlier detection. NeurlIPS, 32:6067-6077, 2019.

Goldberg, P. W. and Jerrum, M. R. Bounding the vapnik-
chervonenkis dimension of concept classes parameterized
by real numbers. Machine Learning, 18(2):131-148,
1995.

Hopkins, S. B. and Li, J. Mixture models, robustness, and
sum of squares proofs. In Proceedings of the 50th An-
nual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, pp. 1021-1034, 2018.

Huber, P. J. Robust estimation of a location parameter. Ann.
Math. Statist., 35(1):73-101, 03 1964.

Klivans, A. R., Kothari, P. K., and Meka, R. Efficient
algorithms for outlier-robust regression. In Conference
On Learning Theory, COLT 2018, pp. 1420-1430, 2018.

Kothari, P. K., Steinhardt, J., and Steurer, D. Robust moment
estimation and improved clustering via sum of squares. In
Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2018, pp. 1035-1046,
2018.

Lai, K. A., Rao, A. B., and Vempala, S. Agnostic estimation
of mean and covariance. In FOCS, 2016.

https://arxiv.org/abs/2109.11515
https://arxiv.org/abs/2109.11515
https://arxiv.org/abs/2011.09973
https://arxiv.org/abs/2011.09973

Streaming Algorithms for High-Dimensional Robust Statistics

Lepskii, O. V. On a problem of adaptive estimation in gaus-
sian white noise. Theory of Probability & Its Applications,
35(3):454-466, 1991.

Li, J., Absher, D., Tang, H., Southwick, A., Casto, A.,
Ramachandran, S., Cann, H., Barsh, G., Feldman, M.,
Cavalli-Sforza, L., and Myers, R. Worldwide human
relationships inferred from genome-wide patterns of vari-
ation. Science, 319:1100-1104, 2008.

Liu, A. and Moitra, A. Settling the robust learnability of
mixtures of gaussians. CoRR, abs/2011.03622, 2020.

Paschou, P, Lewis, J., Javed, A., and Drineas, P. Ancestry
informative markers for fine-scale individual assignment
to worldwide populations. Journal of Medical Genetics,
47:835-847, 2010.

Pensia, A., Jog, V., and Loh, P. Robust regression with
covariate filtering: Heavy tails and adversarial contami-
nation. arXiv preprint arXiv:2009.12976, 2020.

Pesme, S. and Flammarion, N. Online robust regression via
SGD on the 11 loss. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020,
2020.

Prasad, A., Suggala, A. S., Balakrishnan, S., and Ravikumar,
P. Robust estimation via robust gradient estimation. Jour-
nal of the Royal Statistical Society: Series B (Statistical
Methodology), 82(3):601-627, 2020.

Rosenberg, N., Pritchard, J., Weber, J., Cann, H., Kidd, K.,
Zhivotovsky, L., and Feldman, M. Genetic structure of
human populations. Science, 298:2381-2385, 2002.

Shah, V., Wu, X., and Sanghavi, S. Choosing the sam-
ple with lowest loss makes SGD robust. In AISTATS
2020,, volume 108 of Proceedings of Machine Learning
Research, pp. 2120-2130, 2020.

Sharan, V., Sidford, A., and Valiant, G. Memory-sample
tradeoffs for linear regression with small error. In Pro-
ceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2019, pp. 890-901. ACM,
2019. doi: 10.1145/3313276.3316403. URL https:
//doi.org/10.1145/3313276.3316403.

Steinhardt, J., Koh, P. W., and Liang, P. S. Certified defenses
for data poisoning attacks. In NeurIPS, pp. 3520-3532,
2017.

Steinhardt, J., Charikar, M., and Valiant, G. Resilience: A
criterion for learning in the presence of arbitrary outliers.
In ITCS 2018, pp. 45:1-45:21, 2018.

Tran, B., Li, J., and Madry, A. Spectral signatures in back-
door attacks. In NeurIPS 2018, pp. 8011-8021, 2018.

Tsai, C., Prasad, A., Balakrishnan, S., and Ravikumar,
P. Heavy-tailed streaming statistical estimation. CoRR,
abs/2108.11483, 2021.

Tukey, J. W. A survey of sampling from contaminated
distributions. Contributions to probability and statistics,
2:448-485, 1960.

Vershynin, R. Introduction to the non-asymptotic analysis
of random matrices. arXiv preprint arXiv:1011.3027,
2010.

Yin, D., Chen, Y., Ramchandran, K., and Bartlett, P. De-
fending against saddle point attack in byzantine-robust
distributed learning. In ICML, pp. 7074-7084, 2019.

https://doi.org/10.1145/3313276.3316403
https://doi.org/10.1145/3313276.3316403

Streaming Algorithms for High-Dimensional Robust Statistics

A. Introduction

This work studies high-dimensional learning in the presence of a constant fraction of arbitrary outliers. Outlier-robust
learning in high dimensions is motivated by pressing machine learning (ML) applications, including ML security (Barreno
etal., 2010; Biggio et al., 2012; Steinhardt et al., 2017; Tran et al., 2018; Diakonikolas et al., 2019a) and exploratory analysis
of datasets with natural outliers (Rosenberg et al., 2002; Paschou et al., 2010; Li et al., 2008). This field has its roots in
robust statistics, a branch of statistics initiated in the 60s with the pioneering works of Tukey and Huber (Tukey, 1960;
Huber, 1964). Early work developed minimax optimal estimators for various robust estimation tasks, albeit with runtimes
exponential in the dimension. A recent line of work in computer science, starting with (Diakonikolas et al., 2016; Lai
et al., 2016), developed polynomial time robust estimators for a range of high-dimensional statistical tasks. Algorithmic
high-dimensional robust statistics is by now a relatively mature field, see, e.g., (Diakonikolas & Kane, 2019; Diakonikolas
et al., 2021a) for surveys.

This recent progress notwithstanding, even for the basic task of mean estimation, previous robust estimators require the
entire dataset in main memory. This space requirement can be a major bottleneck in large-scale applications, where an
algorithm has access to a very large stream of data. Indeed, practical machine learning methods are typically simple iterative
algorithms that make a single pass over the data and require a small amount of storage — with stochastic gradient descent
being the prototypical example (Bottou, 2010; Bottou et al., 2018). Concretely, in prior applications of robust statistics in
data analysis (Diakonikolas et al., 2017a) and data poisoning defenses (Diakonikolas et al., 2019a), the storage requirements
of the underlying algorithms were observed to significantly hinder scalability®. This discussion motivates the following
natural question:

Can we develop efficient robust estimators in the streaming model with (near-) optimal space complexity?

We emphasize that this broad question is meaningful and interesting even ignoring computational considerations. While any
method requires space complexity 2(d), where d is the dimension of the problem (to store a single sample), it is not obvious
that a matching upper bound exists. We note that it is relatively simple to design O(d)-memory streaming algorithms with
sample complexity exponential in d. But it is by no means clear whether there exists an estimator with near-linear space
requirements and poly(d) sample complexity (independent of its runtime).

A.1. Our Results

In this work, we initiate a systematic investigation of high-dimensional robust statistics in the streaming model. We start by
focusing on the most basic task — that of robust mean estimation. Our main result is the first space-efficient streaming
algorithm for robust mean estimation under natural distributional assumptions. Our computationally efficient algorithm
makes a single pass over the data, uses near-optimal space, and matches the error guarantees of previous polynomial-time
algorithms for the problem.

Given this result, we leverage the fact that several robust statistics tasks can be reduced to robust mean estimation to obtain
near-optimal space, single-pass streaming algorithms for more complex statistical tasks.

To formally state our contributions, we require some basic definitions. We start with the standard streaming model.

Definition A.1 (Single-Pass Streaming Model). Let S be a fixed set. In the one-pass streaming model, the elements of .S are
revealed one at a time to the algorithm, and the algorithm is allowed a single pass over these points.

Our robust estimators work in the following contamination model, where the adversary can corrupt the true distribution in
total variation distance (for distributions P and @, we use drv (P, Q) to denote their total variation distance).

Definition A.2 (TV-contamination). Given a parameter ¢ < 1/2 and a distribution class D, the adversary specifies a
distribution D’ such that there exists D € D with dpv (D, D’) < e. Then the algorithm draws i.i.d. samples from D’. We
say that the distribution D’ is an e-corrupted version of the distribution D in total variation distance.

The distribution D’ in Definition A.2 can be adversarially selected (and can even depend on our learning algorithm). Since
Huber’s contamination model (Huber, 1964) only allows additive errors, TV-contamination is a stronger model.

3See, for example, Section 5.1 of (Diakonikolas et al., 2017b).

Streaming Algorithms for High-Dimensional Robust Statistics

STREAMING ALGORITHM FOR ROBUST MEAN ESTIMATION

The main result of this paper is the following (see Theorem D.2 for a more general statement):

Theorem A.3 (Streaming Robust Mean Estimation). Let D be a distribution family on R and 0 < € < €q for a sufficiently
small constant €y > 0. Let P be an e-corrupted version of D in total variation distance for some D € D with unknown
mean |p. There is a single-pass streaming algorithm that, given € and D, reads a stream of n i.i.d. samples from P, runs
in sample near-linear time, uses memory dpolylog(d/¢), and outputs an estimate [i that, with probability at least 9/10,
satisfies the following:

1. If D is the family of distributions with identity-bounded covariance, then n. = O (d?/€) and || — ppll2 = O(Ve).

2. If D is the family of identity-covariance subgaussian distributions, then n = O (d2 / 62) and | — ppllz2 =
O(e+/log(1/¢)).

We note that the above error guarantees are information-theoretically optimal, even in absence of resource constraints. While
prior work had obtained efficient robust mean estimators matching these error guarantees (Diakonikolas et al., 2016; 2017a;
Steinhardt et al., 2018), all previous algorithms with dimension-independent error incurred space complexity 2(d?).

BEYOND ROBUST MEAN ESTIMATION

Using the algorithm of Theorem A.3 as a black-box, we obtain the first efficient single-pass streaming algorithms with
near-optimal space complexity for a range of more complex statistical tasks. These contributions are presented in detail in
Appendix E. Here we highlight some of these results.

Our first application is a streaming algorithm for robust covariance estimation.

Theorem A.4 (Robust Gaussian Covariance Estimation). Let Q be a distribution on R? with drv(Q,N(0,X)) < ¢
and assume %Id = ¥ <X 1. There is a single-pass streaming algorithm that uses n = (d*/e?)polylog(d, x,1/€)
samples from Q, runs in time nd*polylog (d, x, 1/€), uses memory d*polylog (d, x, 1/€), and outputs a matrix S such that
|\2*1/2§]2’1/2 —I4l|r = O(elog(1/€)) with probability at least 9/10.

See Theorem E.3 for a more detailed statement.

Our second application is for the general problem of robust stochastic optimization. Here we state two concrete results
for robust linear and logistic regression (see Theorem E.9 and Theorem E.12 for more detailed statements). Both of these
statements are special cases of a streaming algorithm for robust stochastic convex optimization (see Corollary E.6).
Theorem A.5 (Streaming Robust Linear Regression). Let D be the distribution of (X,Y) defined by Y = X16* + Z,
where X ~ N(0,14), Z ~ N(0,1) independent of X, and ||0*||2 < r. Let P be an e-corruption of D in total variation
distance. There is a single-pass streaming algorithm that uses n = (d? /¢) polylog (d(1 + 1) /€) samples from P, runs in
time nd polylog(d(1 + r)/e), uses memory d polylog(dr/e), and outputs an estimate 8 € R such Ha— 0*|l2 = O(Ve)
with high probability.

Theorem A.6 (Streaming Robust Logistic Regression). Consider the following model: Let (X,Y) ~ D, where X ~
N(0,1y), Y | X ~ Bern(p), forp = 1/(1 + e’XTe*), and ||0*]|]2 = O(1). Let P be an e-corruption of D in total
variation distance. There is a single-pass streaming algorithm that uses n = (d2 /€) polylog (d/ €) samples from P, runs in
time nd polylog(d/e), uses memory d polylog(d/e), and outputs an estimate 6 € RY such |6 — 6 ll2 = O(y/€) with high
probability.

Finally, in Appendix E, we include an additional application to distributed non-convex optimization in the streaming setting.
Remark A.7 (Bit complexity). For simplicity of presentation, in the main body of the paper, we consider the model of
computation where the algorithms can store and manipulate real numbers exactly. We show in Appendix L that our
algorithms can tolerate errors due to finite precision. In particular, all our algorithms (including Algorithm 5) can be
implemented in the word RAM model with d polylog(d/e) bits.

A.2. Overview of Techniques

In this section, we provide a brief overview of our approach to establish Theorem A.3. We start by recalling how robust mean
estimation algorithms typically work without space constraints. A standard tool in the literature is the filtering technique of

Streaming Algorithms for High-Dimensional Robust Statistics

(Diakonikolas et al., 2016; 2017a; Diakonikolas & Kane, 2019). The idea of the filtering method is the following: Given a
set S of corrupted samples, by analyzing spectral properties of the covariance of S, we can either certify that the sample
mean of S is close to the true mean of the distribution, or can construct a filter. The filter is a method for selecting some
elements of S to remove, with the guarantee that it will remove more outliers than inliers. If we can efficiently construct
a filter, our algorithm can then remove the selected samples from .S, obtaining a cleaner dataset and repeat the process.
Eventually, this procedure must terminate, giving an accurate estimate of the true mean.

We proceed to explain how to implement the filtering method in a streaming model. We start with the easier case where the
dataset is stored in read-only-memory, or more generally in a multi-pass streaming setting. At each round of the algorithm,
one has a subset S’ of the original dataset S that needs to be maintained (in particular, the set of samples that has survived
the filters applied thus far). To do this naively would require n = |S| many bits of memory, which is too much for us.
A more inventive strategy would be the following: instead of storing these subsets S’ explicitly, store them implicitly by
instead storing enough information to reconstruct the filters used to obtain S’. This seems like a productive idea, as most
filters are relatively simple. For example, a commonly used filter is to remove all points & € .S for which v 2 > ¢, for some
vector v and scalar ¢. One could store enough information to apply this filter by merely storing (v, ¢), which would take O(d)
bits of information. Unfortunately, most filtering algorithms may require 2(d) many iterations before attaining their final
answer. Consequently, the sets .S’ one needs to store are not just the result of applying a single filter, but instead the result of
iteratively applying €2(d) of them. In order to store all of these extra filters, one would need 2(d?) bits. (For the sake of this
intuitive description, we focused on “hard-thresholding” filters. Our algorithm will actually use a soft-thresholding filter,
assigning weights to each point.)

To circumvent this first obstacle, one requires as a starting point a filtering algorithm that is guaranteed to terminate after a
small (namely, at most poly-logarithmic) number of iterations. Recent work (Dong et al., 2019; Diakonikolas et al., 2021b)
has obtained such algorithms. Here we generalize and simplify the filtering method of (Diakonikolas et al., 2021b). This
allows us to obtain an algorithm with space complexity d polylog(d/¢) that works in the multi-pass streaming model, where
polylog(d/e) passes over the same dataset are allowed.

To obtain a single-pass streaming algorithm, new ideas are required. In the single-pass setting, we cannot implicitly store a
subset of the full dataset .S; once we access some points from S, we will never be able to see them again. To deal with this
issue, we will need to slightly alter our way of thinking about the algorithm. Instead of being given a set S of samples, an
e-fraction of which have been corrupted, we instead adopt the view of having sample access to a distribution P, which is
e-close in total variation distance to the inlier distribution G. Given this point of view, instead of a filter defining a procedure
for removing samples from S and outputting a subset S’, we think of it as a rejection sampling procedure that replaces P
with a cleaner distribution P’.

This shift in perspective comes with new technical challenges. In particular, when constructing the next round of filters, we
will need to compute quantities pertaining to the current distribution P of the data points. In the setting of the multiple-pass
model, this imposed no problem; these quantities could be calculated exactly. This is no longer possible when we merely
have sample access to P. The best one can hope for is to approximate these quantities to sufficient precision for the rest
of our analysis to carry over. However, the natural estimators for some required quantities (e.g., powers of the covariance
matrix) would need to access the data multiple times. Circumventing this issue requires non-trivial technical work. Roughly
speaking, instead of iterating over the same dataset to approximate the desired quantities, we show that it suffices to iterate
over statistically identical datasets.

A.3. Prior and Related Work

Since the dissemination of (Diakonikolas et al., 2016; Lai et al., 2016), there has been an explosion of research in algorithmic
aspects of robust statistics. We now have efficient robust estimators for a range of more complex problems, including
covariance estimation (Diakonikolas et al., 2016; Cheng et al., 2019a), sparse estimation tasks (Balakrishnan et al., 2017;
Diakonikolas et al., 2019b; Cheng et al., 2021), learning graphical models (Cheng et al., 2018; Diakonikolas et al., 2021c),
linear regression (Klivans et al., 2018; Diakonikolas et al., 2019c; Pensia et al., 2020), stochastic optimization (Prasad et al.,
2020; Diakonikolas et al., 2019a), and robust clustering/learning various mixture models (Hopkins & Li, 2018; Kothari et al.,
2018; Diakonikolas et al., 2018; 2020a; 2021b; Bakshi et al., 2020a; Liu & Moitra, 2020; Bakshi et al., 2020b). The reader
is referred to (Diakonikolas & Kane, 2019) for a detailed overview. We reiterate that all previously developed algorithms
work in the batch setting, i.e., require the entire dataset in memory.

For the problem of robust mean estimation, (Dong et al., 2019; Diakonikolas et al., 2021b) gave filtering-based algorithms

Streaming Algorithms for High-Dimensional Robust Statistics

with a poly-logarithmic number of iterations. The former algorithm relies on the matrix multiplicative weights framework,
while the latter is based on first principles. Our starting point in Appendix C can be viewed as a generalization and further
simplification of the ideas in (Diakonikolas et al., 2021b). Specifically, our algorithm works under the stability condition
(Definition B.8), which broadly generalizes the bounded covariance assumption used in (Diakonikolas et al., 2021b).

In the context of robust supervised learning (including, e.g., our robust linear regression application), low-space streaming
algorithms are known in weaker contamination models that only allow label corruptions, see, e.g., (Pesme & Flammarion,
2020; Shah et al., 2020; Diakonikolas et al., 2020c). We emphasize that the contamination model of Definition A.2 is
significantly more challenging, and no low-space streaming algorithms were previously known in this model.

Finally, we note that recent work (Tsai et al., 2021) studies streaming algorithms for heavy-tailed stochastic optimization.
While the goal of developing low-space streaming algorithms is qualitatively similar to the goal of our work, the algorithmic
results in (Tsai et al., 2021) have no implications in the corrupted setting studied in this work.

A.4. Organization

The structure of this paper is as follows: In Appendix B, we record the notation and technical background that will be used
throughout the paper. In Appendix C, we design a filter-based algorithm for robust mean estimation under the stability
condition with a poly-logarithmic number of iterations. In Appendix D, we build on the algorithm from Appendix C, to
obtain our single-pass streaming algorithm for robust mean estimation under the stability condition. Finally, in Appendix E,
we obtain our streaming algorithms for more complex robust estimation tasks. To facilitate the flow of the presentation,
some proofs of intermediate lemmas are deferred to Appendices G to L.

B. Preliminaries
B.1. Notation and Basic Facts

Basic Notation We use Z to denote the set of positive integers. For n € Z, we denote [n] := {1,...,n} and use S?~!
for the d-dimensional unit sphere. For a vector v, we let ||v||2 denote its />-norm. We use boldface letters for matrices. We
use I to denote the d x d identity matrix. For a matrix A, we use ||A || and ||A]|2 to denote the Frobenius and spectral
norms respectively. For A € R™*", we use A’ to denote the nm-dimensional vector obtained by concatenating the rows of
A. We say that a symmetric d x d matrix A is PSD (positive semidefinite), and write A > 0, if for all vectors € R? we
have that 27 Az > 0. We denote A\yax(A) := max,cga—1 27 Az. We write A < B when B — A is PSD. For a matrix
A e Rixd tr(A) denotes the trace of the matrix A. We use ® to denote the Kronecker product. For the sake of conciseness,
we sometimes use = a + b as a shorthand fora — b < z < a + b. We use a < b, to denote that there exists an absolute
universal constant C' > 0 (independent of the variables or parameters on which a and b depend) such that ¢ < Cb. Similarly,
we use the notation a 2> b to denote that b < a. We use ¢, ¢/, C, C’ to denote absolute constants that may change from line to
line, whereas we use constants C, Co, C'3, . .. to denote fixed absolute constants that are important for our algorithms. We
use O() to ignore poly-logarithmic factors in all variables appearing inside the parentheses. For the sake of simplicity, we
sometimes omit rounding non-integer quantities to integer ones. For example, we treat logarithmic factors as integers when
they appear in the sample complexity or number of iterations of an algorithm. We use poly(-) to indicate a quantity that is
polynomial in its arguments. Similarly, polylog(-) denotes a quantity that is polynomial in the logarithm of its arguments.

Probability Notation For a random variable X, we use E[X] for its expectation. For a set S, we use U (.5) to denote the
uniform distribution on .S. We use N (u, 3) to denote the Gaussian distribution with mean p and covariance matrix 3. For
a distribution D on R9, we denote yip = Ex~p[X]and Xp = Exp[(X — up)(X — up)T]. Moreover, given a weight
function w : R — [0, 1], we define the re-weighted distribution D,, to be Dy, () := D(z)w(z)/ [ga w(x)D(x)dz. We
use py.p = Ex~p,[X] for its mean and fZ’D =Ex~p, [(X — u)(X — u)T] for the second moment that is centered
with respect to 1 (we will often drop 4 from the notation when it is clear from the context). We use 1{z € E} to denote the
indicator function of the set E.

Basic Facts We will use the following two basic facts.

Fact B.1. Letx € R% and p > 1. Then |[|ps1 < ||zl < [|2[|p1d 777,

Fact B.2. If A, B, C are symmetric d x d matrices satisfying A = 0 and B <X C, we have that tr(AB) < tr(AC).

Streaming Algorithms for High-Dimensional Robust Statistics

Proof. Since A is PSD, we can consider its spectral decomposition A = Zle A\iv;vl, where \; > 0. Using the linearity
of trace operator, we have that

d d d d
tr(AB) = Z \itr(vol B) = Z Aitr(v] Bu;) < Z Aitr(v] Cuy) = Z Mitr(viv] C) = tr(AC) ,
i=1 i=1 i=1 i=1
where the inequality uses that B < C and \; > 0. O

‘We will use the notion of total variation distance, defined below.

Definition B.3. Let P, () be two probability distributions on R%. The total variation distance between P and (), denoted by
drv (P, Q), is defined as drv (P, Q) = sup gcga |P(A) — Q(A)]. For continuous distributions P, @ with densities p, ¢, we

have that drv (P, Q) = %fRd Ip(z) — g(x)|dz.

Whenever drvy (P, Q) = e, it is sometimes helpful to consider the decomposition below.

Fact B.4. Let a domain X. For any € € [0, 1] and for any two distributions D1, Dy on X with drv (D1, D2) = €, there
exist distributions D, Q1, Qo such that D1 = (1 — €)D + €Q1 and Dy = (1 — €)D + €Qo.

This decomposition can be achieved by the following choice of 1, @2, and D:

{DM—W if Di(a) > Da(e)) {D?(z)‘m if Dy(x) > Dy (x)
) 2 = ’

Q1(r) =

0, otherwise 0, otherwise

and D(z) = min{D;(x), D2(z)}/(1 — €). In light of Fact B.4, the adversary that performs corruption in total variation
distance can be thought of as “both additive and subtractive” adversary.

Concentration Inequalities We will also require following standard results regarding concentration of random variables:
Fact B.5 ((Vershynin, 2010)). Consider a distribution D on R? that has zero mean and is supported in an l5-ball of
radius R from the origin. Denote by X its covariance matrix and denote by £ = (1/n)>";_ | X; X the empirical
covariance matrix using N samples X; ~ D. There is a constant C such that forany 0 < ¢ < 1land 0 < 7 < 1, if
N > Ce'=2|| 2|5 ' R? log(d/T), we have that | £ — Z |2 < € || 2|2, with probability at least 1 — 7.

Fact B.6 (Gaussian Norm Concentration). For every 3> 0, Prx n0,1,)[|[| X[— d| > 8] < 2¢=<#* /4 where ¢ > 0 is a
universal constant.

Fact B.7 ((Achlioptas, 2003)). Let0 <y < landuy,...,uy € R Let z; for j € [L] drawn from the uniform distribution
on {£1}9. There exists a constant C > 0 such that, if L > C'log(N/~), then, with probability at least 1 — , we have that
0.8ui|? < £ 37 (2Twi)? < 1.2]|ug||? for all i € [N].

B.2. Stability Condition and Its Properties

Our results will hold for every distribution satisfying the following key property (Diakonikolas & Kane, 2019).

Definition B.8 ((¢, §)-stable distribution). Fix 0 < ¢ < 1/2 and § > ¢. A distribution G on R? is (¢, §)-stable with respect
to € RY if for any weight function w : R? — [0, 1] with Ex.g[w(X)] > 1 — ¢ we have that

||/’Lw,G'7H’||2 SCS and Hiﬂ),G*IdHQ < 52/6.

We call a set of points S (¢, §)-stable when the uniform distribution on S is stable :

Definition B.9 ((¢, 6)-stable set). Fix 0 < ¢ < 1/2and § > ¢. A finite set Sy C R? is (¢, §)-stable with respect to ;1 € R? if
the empirical distribution 2/ (S) is (e, §)-stable with respect to p.

We begin by stating some examples of stable distributions (see (Diakonikolas & Kane, 2019) for more details). If
G is a subgaussian distribution with identity covariance, then G is (e, §)-stable with 6 = O(e\/log(1/e)). If G is a
distribution with covariance at most identity, i.e., X =< I, then G is (¢, §)-stable with § = O(y/€). Interpolating
these two results, we have that if GG is a distribution with identity covariance and bounded k-th moment for & > 4, i.e.,
(Ex~c[|vT (X — p)|F))1/* = O(1), then G is (¢, §)-stable with 6 = O(e*~1/*). Furthermore, it is known that poly(d/e)
i.i.d. samples from these distributions also yields a set that contains a large stable subset (see, for example, (Diakonikolas &
Kane, 2019; Diakonikolas et al., 2020b; Dong et al., 2019; Diakonikolas et al., 2016)):

Streaming Algorithms for High-Dimensional Robust Statistics

Fact B.10 ((Diakonikolas & Kane, 2019)). A set of O(d/(e* log(1/¢))) i.i.d. samples from an identity covariance sub-
gaussian distribution is (¢, O(e\/log(1/€)))-stable with respect to ji with high probability. Similarly, a set of O(d/e) i.i.d.
samples from a distribution X with Cov[X| < 1,4 contains a large subset S, which is O(e, O(v/€))-stable with respect to
its mean E[X| with high probability.

The basic fact regarding stability, which is the starting point of many robust estimation algorithms, is that any slight
modification of a stable distribution can not perturb the mean by a large amount, unless it significantly changes its covariance
(see, for example, (Diakonikolas et al., 2016; Lai et al., 2016; Diakonikolas & Kane, 2019)). Here we require a slightly
different statement than that of (Diakonikolas & Kane, 2019), and hence provide a proof in Appendix G for completeness.

Lemma B.11 (Certificate Lemma). Let G be an (¢, §)-stable distribution with respect to i € R%, for some 0 < e < 1/3
and § > e. Let P be a distribution with drv(P,G) < €. Denoting by up,Xp the mean and covariance of P, if
Amax(Bp) <1+ A forsome X > 0, then ||pup — pt]]l2 = O(5 + VeN).

Given Fact B.4, we can essentially think of an e-corrupted version of a stable distribution as a mixture of a stable distribution
with a noise distribution, as shown below (see Appendix G for a proof).

Lemma B.12. Forany 0 < ¢ < 1/2 and § > e, if a distribution G is (2¢, §)-stable with respect to i € R?, and P is an
e-corrupted version of G in total variation distance, there exist distributions Gy and B such that P = (1 — €)Go + €B and
G is (¢, 0)-stable with respect to |i.

We continue with some technical claims related to stability that we prove in Appendix G. Let G be an (¢, §)-stable distribution
with respect to x and w a weight function with Ex.g[w(X)] > 1 — €. Denoting by G,, the re-weighted distribution
Gu(z) = G(z)w(z)/ [pa w(x)G(z)dz, the stability of G directly implies that 1 — 6% /e < Ex~q, [(vT (X — p))?] <
1 + 62 /e. We require a generalization of this fact for a matrix U in place of v and an arbitrary vector b in place of y:
Lemma B.13. Fix0 < ¢ < 1/2and § > e. Let w : R? — [0,1] such that Exc[w(X)] > 1 — € and let G be an
(€, 6)-stable distribution with respect to i € R%. For any matrix U € R4 and any vector b € R?, we have that

CEOX = b)[13] = (U171 +6%/¢) + U = 0)|[5 + 26 [U |1 = b2 -

We use this to show Corollary B.14, which will be required when proving correctness of our algorithm. Although its exact
role will become clearer later on, the corollary will be relevant to our analysis because we will filter out outliers using scores
of the form || U(z — b)||3 for each point z.

Corollary B.14. Fix0 < ¢ < 1/2and § > €. Let G be an (e, d)-stable distribution with respect to ji € R%. Let a matrix
U € R and a function w : R? — [0, 1] with Ex~g[w(X)] > 1 — €. For the function j(z) = ||U(z — b)||3, we have that

(1= ONUIEQ1 = 0% /e = 26[b = ull2) < B _[w(X)G(X)] < U7 (1407 /e+ b= pll3 +26]b = ll2) -

C. Filtering Algorithm with Small Number of Iterations

In this section, we develop a filtering algorithm (in the batch setting) that terminates in polylog(d/e) iterations for any
stable set. This leads to an algorithm that runs in near-linear time, i.e., nd polylog(nd/e¢), generalizing the results of (Dong
et al., 2019; Diakonikolas et al., 2021b). Crucially, this algorithm will form the building block of our streaming algorithm in
Appendix D. We remark that the algorithm of this section works even against the strong-contamination model (Definition C.1
below), where the outliers may not be i.i.d. samples from any distribution, but are allowed to be completely arbitrary.

Definition C.1 (Strong Contamination Model). Given a parameter 0 < e < 1/2 and a class of distributions D, the strong
adversary operates as follows: The algorithm specifies a number of samples n, then the adversary draws a set of n i.i.d.
samples from some D € D and after inspecting them, removes up to en of them and replaces them with arbitrary points.
The resulting set is given as input to the learning algorithm. We call a set e-corrupted if it has been generated by the above
process.

The main result of this section is the following.

Theorem C.2. Letd € Z,,0 < 7 < 1,0 < € < €q for a sufficiently small constant ¢y, and § > €. Let Sy be a set of n
points that is (Ce, §)-stable with respect to the (unknown) vector i € R, for a sufficiently large constant C > 0. Let S be
an e-corrupted version of Sy in the strong contamination model. There exists an algorithm that given €,d, T, and S, runs in
time nd polylog (d,n,1/e,1/7), and outputs a vector [such that, with probability at least 1 — 7, it holds || — [i||2 = O(9).

Streaming Algorithms for High-Dimensional Robust Statistics

We note that Theorem C.2 applies to any stable set. By Fact B.10, we directly obtain (i) an O(ey/log(1/¢))-accurate
estimator given O(d/(e?/log(1/¢))) many e-corrupted samples from an identity covariance subgaussian distribution; and
(i1) an O(+/€)-accurate estimator for any distribution X ~ D with Cov[X] < 1, given O(d/€) many e-corrupted samples.

C.1. Setup and Algorithm Description

The pseudocode of the algorithm establishing Theorem C.2 is presented in Algorithm 3. We will define the necessary
notation as needed (see the pseudocode for details). First, we assume that the distribution over the input samples is of
the form P = (1 — €)G + B, where G is the uniform distribution over the stable set of inliers and B is the uniform
distribution on the outliers. Although this mixture may seem to suggest that the adversary only adds points, it is without
loss of generality. Indeed, in the case that the adversary also removes points, we can think of G as the distribution of the
remaining inliers (which continues to be stable with slightly worse parameters; see Lemma B.12).

We begin with a high-level explanation of Algorithm 3. At each iteration ¢, we assign a weight w;(z) € [0, 1] to each point
x. Let P; be the distribution on .S, weighted according to w;. Let y; and 3; be the mean and covariance of P;, respectively.
We want to assign scores to each point, using spectral properties of 3, and the stability of inliers, so that the scores over
outliers are more than those of inliers. Essentially, if a direction v has variance larger than 1 + (62 /¢), then the stability of
inliers implies that this must be due to outliers. Thus, we can assign scores based on the values (vT (x — p1;))? that have
provably more mass on outliers than inliers. The filters proposed in (Diakonikolas et al., 2016; 2017a) assigned scores based
on a single direction, the leading eigenvector of ¥;, and can take as many as €2(d) iterations (see Appendix A.2).

To reduce the number of iterations, we need to filter in all directions of large variance simultaneously. Letting B; =~
3, — (1 — C16% /€)1y, we would like to filter along all directions where the eigenvalue of By is within a constant factor
from \; := ||B¢||2, not necessarily the leading eigenvector of B;. As we show in Appendix C.4, this can be approximately
achieved by assigning scores for each point z based on g (z) := || M (z — p;)||2, where M, = B]°*“. At a high level, this
happens because the spectrum of M, is distributed across along all large eigenvectors of B;.

Algorithm 3 Robust Mean Estimation in polylog iterations

1: Input: S = {xi}ie[n]757€

2: Let Cy > 22, C be a sufficiently large constant, Cy; = 100C' and C3 = 0.1.
3: Let R =+/(d/e)(1 + 62 /).

4: Let P = (1 — €)G + €B be the empirical distribution on the points from S. *
5: Let K = polylog(d/e), L = polylog(nd/e).

6: Obtain a naive estimate i of p with ||z — pll2 < 4R.

7: Initialize w1 () « 1{||Jz — &|]2 < 5R} forall z € S.

8: for ¢t € [K]do

9: Let P, be the distribution of P weighted by wy.
10: Let u, 3 be the mean and covariance of P;.

11: Let B, = (Exoplw(X)])2S, (1 - cé) I, and M, = Bls,

12: Let \,=||B;||2. Compute X; € [0.8\;,1.2),] using power iteration.

13: if X\, > C262 /e then

14: for j € [L] do

15: Zgg L{({:I:l}d), Vg, j Mtzt,j~

16: end for

17: Denote by U, the matrix having the vectors ﬁvt, j for j € [L] as rows.
18 Letgu(e) = [Ui(e — po)ll3 and

Fi(w) = Ge(@)1{Gi(w) > Cs[|[Uy} he/e}
19: linax < (dR/€)C1084 T + 0.010 || U2

20: wyy1 < DownweightingFilter(P, wy, T, R, T, {imax)
21: endif
22: end for

23: return fi;.

Streaming Algorithms for High-Dimensional Robust Statistics

Algorithm 4 Downweighting Filter
1: Input: P,w,7, R, T, {1ax

2 r ¢ CdRZ41oed,

3: Letwy(z) = w(x)(1 — 7(x)/r)".

4: Find the smallest £ € {1,..., {pax } satisfying Ex . p [we(X)7(X)] < 27T using binary search.
5: return wy.

Even though assigning scores based on My, i.e., g;(x), reduces the number of iterations, computing g;(x) for all z € S is
slow. We thus use a Johnson-Lindenstrauss (JL) sketch of M, denoted by U;. We denote by g;(x) := ||U¢(z — pt)||2 the
resulting scores. We claim that the set {§; () },cs can be calculated in time O(nd) such that for each z € S, §, () ~ g,(z).
First, we will show (see Lemma C.5) that Uy can be as small as L x d, where L is some polylog(nd/(et)), which follows
from the classical JL lemma (stating that n points can be linearly embedded into a log n-dimensional space). Also, each row
of U, can be computed by repeatedly multiplying a vector log d times by B; (Line 15). By the following remark, all rows
of U, can be computed in time O(nd) and thus, each iteration of Algorithm 3 runs in near-linear time.

Remark C.3. (Efficient Implementation) Note that for any v € R, the vector B;v can be calculated in O(nd) time. This is
because X0 = Y. o wi(x) (07 (x — pe))(x — pe) /(3 e we(2)) which means that the result can be computed in O(nd)
time by calculating y; and v” (x — ju;) first. Regarding Line 7, an approximate large eigenvector can be computed via power
iteration, i.e., starting from a random Gaussian vector and multiplying by B iteratively log d many times (see, for example,
(Blum et al., 2020)). As mentioned above, each of these multiplications can be done in O(nd) time.

For the proof of correctness, we require that the JL and spectral approximations used by the algorithm are sufficiently
accurate. We prove that the following event occurs with high probability.

Condition C.4 (Deterministic Conditions For Algorithm 3). For all ¢ € [K], the following hold:

1. Spectral norm of By: Xt € [0.8\;, 1.2)].
2. Frobenius norm: |Uy||% € [0.8]|M,]|%, 1.2[|M,||%].
3. Scores: Forall x € S, gi(z) € [0.8¢g:(x),1.2g:(x)].

C.2. Establishing the Deterministic Conditions

In this section, we establish that Condition C.4 holds with high probability. Regarding Item 1 of this condition, an
approximate large eigenvector can be computed via power iteration as described in Remark C.3. This gives us an algorithm
that runs in time O(nd log dlog(K /7)) and satisfies Item 1 with probability 1 — 7.

We now move to the other two conditions. The claim is that instead of using the matrix M, to calculate the scores, it suffices
to store and use only a small set of random projections {M;2; ; } je[z. This is exactly the Johnson-Lindenstrauss sketch that
is computed in Line 14 of Algorithm 3. Using Fact B.7, we get the following guarantees (see Appendix H.1 for the proof).

Lemma C.5. Fix a set of n points x1,...,z, € R% Fort € [K, define g;(z) := | My(z — ;) ||3 and let §,(x), v, ; as in
Algorithm 3. If C is a sufficiently large constant and L = C'log((n + d)K /1), with probability at least 1 — 1, for every
t € [K] we have the following:

1. 0.8g¢(x;) < Gi(zi) < 1.2g4(z;) for every i € [n],

L
2. 08IM [} < ($ 57 llengl3) < L2V
This concludes the proof that Condition C.4 is satisfied with high probability.

C.3. Downweighting Filter

We use the following re-weighting procedure also used in (Dong et al., 2019). Recall that P denotes the empirical distribution
on the samples, which we write as P = (1 — €)G + ¢ B, where G and B are the contributions from the good and bad samples
respectively. Roughly speaking, our filter guarantees two things when going from the weights w(zx) to w’(x):

*Without loss of generality, outliers are within O(R) from in f2-norm. This is ensured in Line 7, which removes only e-fraction of
inliers (Claim C.12).

Streaming Algorithms for High-Dimensional Robust Statistics

1. The weight removed from the outliers is greater than the weight removed from the inliers.

2. Exp[w(X)T(X)] < 2Ex~¢[w(X)T(X)], i.e., the weighted mean of scores after filtering over both inliers and
outliers is at most twice the weighted mean of scores of inliers before filtering.

Regarding the first guarantee, since the fraction of outliers is at most ¢, this ensures that the filtered distribution P; will
never be more than O(e)-far in total variation distance from the initial (corrupted) distribution, and thus the condition of
the certificate lemma that dpv (P, P;) < O(e) will always be satisfied. The second guarantee ensures that the filtering step
reduces the average score significantly. We prove the following in Appendix H.2.

Lemma C.6. Let P = (1 — ¢)G + €B be the empirical distribution on n samples, as in Algorithm 3. If
(1 =€) ExcwX)T(X)] < T, ||ITlloc < 1, and bmax > r/T, then Algorithm 4 modifies the weight function w to
w' such that

I. 1-¢)Excw(X)—w'(X)] < eEx.plw(X)—w'(X)],
2. Exp[w'(X)7(X)] < 2T,
and the algorithm terminates after O(log(¢max)) iterations, each of which takes O(n) time.

We note that the two conditions ||7]|co < 7, fmax > 7/T of Lemma C.6 hold by our choice of £,,,x and r inside Algorithm 3
and Algorithm 4 as follows. For ||7||~, we have the following upper bound

Fi(x) < Gel(@) < |Ule — pe) I3 S R*U < R2ML |13 < RB?||Se]f3'°8¢ = O(dR* 4108) | (2)

where we used the guarantee of our JL sketch that ||U;||3 < 1.2||M;||% (Lemma C.5). A crude upper bound on /T follows
from the following inequalities:

<

2+4logd 24+4logd O(log d)
% dR g < dR g < < dR > 7

MM 2~ MM 62 /e

where the first inequality uses the values of r and 7" as set in the algorithm, the second inequality uses Items 1 and 2 of the
deterministic conditions of Condition C.4, and the last inequality uses the fact that | M,||% > ||M,]|3 and | M,||3 cannot be
smaller than (C562/¢€)©(1°8 @) (otherwise Line 20 terminates the algorithm).

We now use the guarantees of Algorithm 4 as follows. We first show that the weighted mean of the inliers’ scores is small.

Lemma C.7. Under the setting of Algorithm 3 and the deterministic Condition C.4, we have that Ex ¢ [w¢(X)7 (X)] and
Ex~c|w (X)7(X)] are bounded from above by c\;||M;||% for some constant c of the form ¢ = C/Ca, where Cy is the
constant used in Line 13 and C'is some absolute constant.

The proof is based on stability arguments from Appendix B.2 and can be found in Appendix H.3.

Remark C.8. In our analysis, it will be important that the constant ¢ in Lemma C.7 can be made sufficiently smaller than 1,
for example, ¢ < 0.01. This can be achieved by choosing C5 to be a large enough constant.

Using Algorithm 4, we get that the weighted sum of scores after filtering is also small.

Lemma C.9. Under the setting of Algorithm 3 and the deterministic Condition C.4, we have that e Ex . p[w11(X)T:(X)] <
cAi|| M ||%, with ¢ being of the form ¢ = C'/Cy, where Cy is the constant used in Line 13 and C' is some absolute constant.
Furthermore, € Ex . p[wi11(X)T(X)] < eAg||My||2.

Proof. The first claim follows by the stopping condition of the algorithm, Lemma C.7, and the fact that w;; < w;. We
now prove the second conclusion by relating 7 to 7: Recall that we denote by .S the e-corrupted version of the original set of
samples Sp. Since §;(z) is within a constant factor of g,(z) (Condition C.4) for all z € S, the scores 7;(z) and 7;(z) are
comparable (up to an additive term) as shown below.

Claim C.10. In the setting of Algorithm 3 and under the Condition C.4, if v € S, we have that T(x) < 1.257;(x) +
3C3(\¢/e)tr(M?), where Cs is the constant used in Algorithm 3.

Streaming Algorithms for High-Dimensional Robust Statistics

We prove Claim C.10 in Appendix H.5. Using Claim C.10, we have the following set of inequalities:
1

e B [w(X)n(X)] =~ > wea (@) me(w:)
{L‘iES\SO
1
< 30N [IM[|F+ =125 Y wipa (@3)7 () (using Claim C.10)
n

1€S\So
= 303 || M||7 + 1.25¢ X]EB[th(X)f't(Xﬂ
< 303\ ||[M¢||% 4 1.25¢A | M || % (using the first part of Lemma C.9)
< 10(C/Co) N ||IM,||% . (using the value of Cs)

The last inequality above uses the fact that the constant C5 is chosen to be C5 = C'/C5 in Algorithm 3, where C' is a
sufficiently large constant. O

C.4. Correctness of Algorithm 3: Proof of Theorem C.2

The rest of this section is dedicated to proving Theorem C.2. We first state the correctness of the naive approximation step
of Line 6, then record the invariants of the algorithm in Appendix C.4.1, and finally show in Appendix C.4.2 that it suffices
for the number of iterations K to be bounded by some polylog(d, R, 1/¢).

The naive approximation step of Line 6 is based on the following folklore fact (see Appendix H.4 for more details).

Claim C.11. Let the fraction of outliers be ¢ < 1/10 and a parameter 0 < T < 1. Let the distribution P = (1 — €)G + €B.
Let R > 0, 11 € R? be such that Prx.g[|| X — pll2 > R] < e. There is an estimator Ji on k = O(log(1/7)) samples from

P such that ||Ji — pi||2 < 4R with probability at least 1 — 7. Furthermore, [i can be computed in time O(k*d) and memory
O(kd).

Claim C.12 below gives a valid upper bound on R using the (e, §)-stability of the good distribution.

Claim C.12. If R = /%(1 + 62/¢), then Prxc[|X — pll2 > R] < e.

Proof. By Markov’s inequality, we have that

d Ex-allX - 3
o 2 > 2 2 < X~G 2
P -l = (| < Eelli

C.4.1. INVARIANTS OF ALGORITHM 3

Recall that the end goal is to obtain a filtered version, P, of P that is not too far from P in total variation distance
drv (P, P;) = O(e), and satisfies that |By|l2 = O(62/¢). For the first condition to be satisfied, we ensure that the
Downweighting filter removes more weight from G than B (Lemma C.6). Using this, we show that Ex g[w:(X)] >
1 — O(e), which implies the bound on the total variation distance (Claim C.13). The proofs are deferred to Appendix H.5.

Claim C.13. Under Condition C.4, Algorithm 3 maintains the following invariant: Ex .qlw:(X)] > 1 — 3e. In particular,
ife <1/8, then dry(P;, P) < 9e.

The following properties of B, as PSD operator will also be useful later on.
Claim C.14. Under Condition C.4, if C; > 22, B, = (0.5C162 /€)1, for every t € [K].

The proof of Claim C.14 is provided in Appendix H.5. Although just showing that B; > 0 would suffice for this section,
the slightly stronger bound of the above claim will be useful in Appendix D. Claim C.14 follows from Claim C.13 and the
stability of G. In particular, the stability of G implies that 3¢ = (1 — §2/€)I;. We now prove the following claim, which is
the reason for having the multiplicative factor of Ex .. p[w;(X)]? in the definition of B;.

Streaming Algorithms for High-Dimensional Robust Statistics

Claim C.15. We have that By, = By for every t € [K].

Proof. We use the alternative definition of the covariance matrix: Let X, Y be i.i.d. from P, then

! T
X = 2Ex~plw(X)])? X,}ENP[wt(X)’LUt(Y)(X —Y)(X -Y)T].

Since wyy1(x) < wy(x) for all z, this completes the proof. O

C.4.2. REDUCING THE POTENTIAL FUNCTION

Recall that each iteration of Algorithm 3 can be implemented in near-linear time. Thus, it remains to show that the choice
K = Clogdlog(dR/e) suffices to guarantee correctness of our algorithm. We now sketch the proof using a potential
function argument. Let A, be the vector in R? containing the eigenvalues of B,. Recall that our goal is to show that
IBtll2 = || At]loc = O(6?/€) in polylog many iterations. Let p := 2log d. Since ||z||, = O(]|z||«0) for any x € R?, we are
motivated to use the potential function ¢; := [|A;||5. We now focus on showing that ¢; decreases rapidly. Observe that for
any i € Zy, tr(B) = ||A¢||%. We start with the following inequalities (and explain them directly below):

1 p
b1 = A llf < (@757 [Arsallpn)

»
— d (||At+1||§ﬁ) o
= d7 (tr(BY])) 7

S (tr(l\/ItHBtH1\/It+1))ﬁ

< dv (tr(MByy M) 77 ©)
where the first line uses Fact B.1, the third one uses tr(Bi-&-l) = [|A¢s1 ||Z’ the fourth line uses that M1 By 1 My = Bﬁ_ll’

and the last one uses the fact B, =< B, which holds because removing points can only make their covariance smaller; see
Appendix C.4 for more details.

Then the goal becomes to bound from above the term tr(M;B;;1M;). The claim is that tr(M;B;;1M;) is related
to Explw+1(X)7:(X)], and thus can be bounded by c\||M;||%. Using the guarantees of the Downweighting filter
(Lemma C.9), we prove the following result:

Lemma C.16. Consider the setting of Algorithm 3 and assume that Condition C.4 holds. Then tr(M;B; {1 M;) <
cAi||M||% for some c of the form C/Ca, where Cy is the constant used in Line 13 and C' is some absolute constant.

Before giving the details regarding Lemma C.16, we first show that it suffices to prove that the potential function decreases
by a multiplicative factor. In the rest of the proof, we will assume that ¢ < 0.1, which can be guaranteed by taking Cs to be
a sufficiently large constant (cf. Remark C.8). We continue with Equation (3) as follows:

1 _p_
Gr1 < dv (tr(MByyp1 My)) 71
< dr (C”At”oo”AtHg)ﬁ (using Lemma C.16)
1 _p_ L . .
< dF P ([l AdE) 7T (using [Adfloe < A for i > 1)
= dver T |[A

< 3Vl Al < 0.9999¢; ,

where the last line uses that d*/? = exp(21<1)§gdd) <3,p/(p+1) > 0.5, and ¢ < 1. We thus get the desired convergence.

The final step is to bound the number of iterations needed for Lemma B.11 to ensure that || — p||2 = O(J). Concretely,
due to our naive pruning, at the beginning of the algorithm we have the upper bound ¢; < dRC(°89)_ After K iterations,
we have that ¢ < 0.99KdROUogd) Setting K as

K = Clogdlog <;J/%6> 4)

Streaming Algorithms for High-Dimensional Robust Statistics

suffices to have that | B ||z < (dO(62/¢)21°8d)7mza = O(62/¢). This implies that

1 1 52 52
3 — = (||B 1)<1 — 1 Ol—|<1+0|— 5
where we used that Ex . p[wg (X)])2 >1—3¢0 > ¢,and € < €. An application of Lemma B.11 shows that the estimate
has error at most ||; — pf|2 = O(9). This completes the proof of Theorem C.2. The rest of the section focuses on proving

Lemma C.16.

Proof Sketch of Lemma C.16 Before giving the full proof of Lemma C.16, we provide a brief proof sketch. By the
definition of B, we have the following (the full proof is deferred to the end of this section)

tr(M; By 1My) < X]EP[th(X)] XIEP[th(X)gt(Xﬂ (1 - 015> ML |3 -

In order to bound from above Ex . p[w:y1(X)g:(X)], one can consider the contribution due to inliers (distribution
G) and contribution due to outliers (distribution B). Using the stability of inliers and Corollary B.14, we have that
Ex~clw(X)g:(X)] < (1 + eAy)||M¢||%, for any weight function w satisfying the conditions of Corollary B.14. We know
that w;y; satisfies them because of our invariant in Claim C.13. Turning to the contribution of outliers, we want to bound
€ - Ex~p[wi+1(X)g:(X)]. By definition, we have that g;(z) < () + C3\[|M;||% /e, and thus we get that the desired
expression is bounded from above by € E x5 wi11(X)7:(X)] + C3A¢||M¢||%. The first expression was bounded from
above in Lemma C.9 by using the downweighting filter, and the second is small because of how Cj is set in our algorithm.

This completes the proof sketch of Lemma C.16. We now provide the complete proof.
Proof of Lemma C.16. We will bound the contribution of inliers and outliers to the quantity Ex . p[w:+1(X)g:(X)] from

above. Recall from our notation that the decomposition into inliers and outliers is P = (1 — €)G + €B. For the inliers, we
use Corollary B.14 with U = M, and b = p, to obtain the following:

52
B win (X)g: (0] < M3 (1 + =+ e — w3 + 28l — mz) < M3 (1 + e (6)

where the last inequality uses that, by the certificate lemma (Lemma B.11), every term except the first in the previous
expression is less than a sufficiently small fraction of A;.

Regarding the outliers, we decompose their contribution to E x p[w;11(X)g:(X)] into two sets: (i) the set of points with
projection greater than the threshold C||M;||% \; /€ used in Line 18 of the algorithm, and (ii) the set of points with smaller
projection. Concretely, letting L; := {z € R? : g,(x) > C3]|M;||%\:/€}, we have that

€ E w1 (X)gi(X)] =€ B [we(X)n(X)] +e B [wp (X)g:(X)1{a & L}
< M| ML |1 + €C3||MtHF)‘t/€ < ML FA (7
where the first inequality follows from Lemma C.9 and the second inequality follows from the choice of C'5 in Algorithm 3.

We also use the following relation on 3, 1:

¥i1= E [(X — peg1)(X — Mt+1)T]

X~Prya

= XN]EM (X =) (X —)T
1

= Bl (0] et O =) (X =)] ®

Recalling the definition By 1 = (Ex~plwis1(X)])?Sie1 — (1 - Ch %) 14, Equation (8) implies that By < F; 4,

where Fi i1 := (Ex~p[wir1(X)]) Excplwirt (X)(X —) (X — p)T] — (1 — C1§) I,. Using Fact B.2 along with
the fact that By ; > 0 (Claim C.14), we get the following:

tr(M By 1 M) = tr(M7Byy1) < tr(M7F,) (using tr(ABC) = tr(CAB))

Streaming Algorithms for High-Dimensional Robust Statistics

= o (M (B s (0] B e (00— X)] = (1- 02 1))

62
= (B e (0] B, o (X)e((X) TMECK =)] = (1 6%) [l
52
— (B (0] B fur (000 - (1- 6%) vl
< (1 +eh +dN—(1— 0162/6)) ML || % (using Equations (6) and (7))
< NIM|E -
This concludes the proof. O

D. Efficient Streaming Algorithm for Robust Mean Estimation

We now turn to the main focus of this paper and present a low-memory algorithm for robust mean estimation. Our algorithm
works in two setups: (i) the single-pass streaming setting, where a set of i.i.d. samples from an e-corrupted distribution
in total variation distance (Definition A.2) arrive one at a time (Definition A.1), and (ii) the strong-contamination model
(Definition C.1), where the algorithm is allowed poly-logarithmically many passes over the input stream (defined below).

Definition D.1 (Streaming Model in k Passes). For a fixed set .5, the elements of S are revealed to the algorithm one at a
time. This process is repeated k times. The sequence of elements in S within each pass can be arbitrary.

Our main result is the following theorem for the single-pass streaming model, which is a generalized version of Theorem A.3:

Theorem D.2 (Robust Mean Estimation in Single-Pass Streaming Model). Letd € Z4, 0 < 7 < 1,0 < € < ¢ fora
sufficiently small constant €y, and 6 > €. Let D be a distribution which is (Ce, §)-stable with respect to the (unknown)
vector ji € R, for a sufficiently large constant C > 0. Let R be any radius such that Prx.p|[|| X — plla > R] < e. Let P
be a distribution with drv (P, D) < e. There exists an algorithm that given ¢, 6, T and

B 9 € (1+62/e)d 627d R?%¢2 R%et 11
n—O(R max(d, 52 2RI gt 52 0 g6 polylog d,e,T,R)}

i.i.d. samples from P in a stream according to the model of Definition A.1, runs in time ndpolylog (d,1/e,1/7, R),
uses memory dpolylog (d,1/e,1/7, R), and returns a vector i such that, with probability at least 1 — T, it holds that

= mll2 = O(0).

Note that Theorem A.3 in Appendix A.1 is a special case of Theorem D.2 for the two important families of distributions: (i)
subgaussian distributions with identity covariance, and (ii) distributions with bounded covariance.

1. For subgaussian distributions with identity covariance, we have that R = O(y/dlog(1/¢)), d = O(e/log(1/¢)), and
thus n = O (d?/€?).

2. For distributions with covariance at most identity, we have that R = ©(y/d/e), § = O(y/€), and thus n. = O (d?/e).

In order to obtain a low-memory algorithm for the robust mean estimation problem, we start with an obstacle that one faces
when trying to modify the existing Algorithm 3 to that setting. The issue is that, since n can be much larger than d, we cannot
even store the weight function w,. Fortunately, this can be handled by freshly computing the scores w;(z) for any given z,
whenever we need them. This requires us to store only {(Uy, ¢;) : t € [K]}, where Uy is the Johnson-Lindenstrauss sketch
at the iteration ¢, and /; is the corresponding count from the downweighting filter. This can be achieved with additional
poly-logarithmic memory. Thus, Algorithm 3 can be readily extended to setting (ii), giving us Corollary D.3.

Corollary D.3 (Robust Mean Estimation in Multiple Passes Streaming Model). Letd € Z4, 0 < 7 < 1 and 0 < € < ¢ for
a sufficiently small constant €y, and § > €. Let S be an e-corrupted version of a set that is (Ce, §)-stable with respect to the
(unknown) vector i € R, for a sufficiently large constant C. Denote by n the cardinality of S. There exists an algorithm
that operates in the streaming model of Definition D.1 with k = polylog (d, 1/e,1/7) and, given €, 9, T and T, runs in time
nd polylog (d, 1/€,1/7), uses additional memory d polylog (d,1/e,1/7), and finds a vector [i such that, with probability
at least 1 — 7, it holds ||;n — fi]|2 = O(0).

Streaming Algorithms for High-Dimensional Robust Statistics

In the main body of this section, we prove Theorem D.2.

D.1. Setup and Algorithm Description

Moving to the single-pass streaming model and Theorem D.2 requires a change in perspective: instead of having a corrupted
dataset, we now have sample access to a distribution P such that drv (P, D) < ¢, where D is a stable distribution. We will
reweight this distribution using weights, w;(-), that are now functions on the whole R? instead of a fixed dataset. Thus, P;
now denotes the reweighting of the (corrupted) distribution P with the weights w;. Similarly u,, 33;, B;, M; denote the
quantities that pertain to the distribution P;. The goal of our algorithm remains essentially the same: obtain P, such that
drv(Py;, P) = O(e) and ||Z¢l2 < 1+ O(6%/¢); Lemma B.11 would then imply that ||z; — |2 = O(J). Before presenting
the pseudocode of Algorithm 5, we identify two problems that arise in generalizing our results from Appendix C and provide
an overview of their solutions:

Calculating Scores Recall that the only place where M is used in Algorithm 3 is Line 15, where M, is multiplied
with the vectors z; ;. Let z be an arbitrary vector. Since M; = B!°2<_in the previous section we were able to compute
M,z by iteratively multiplying z by B;. Since we now do not have access to By, but only sample access to I, we need a
sufficiently fine approximation B of B (obtained using i.i.d. samples). The natural approach would then be to multiply
Bt with 2 iteratively log d many times. Even though B,z can be computed in a streaming fashion (as outlined in the
previous section), it is not possible to compute (Bt)Iog 4% without accessing the data log d times. To circumvent this issue,
we use a fresh sample appr0x1mat10n of B; in every multiplication step. That is, we approximate M,z by Mtz where
Mt =T =1 Bt .; and each Bt .j is computed on a different set of samples. This approach crucially leverages the fact that
in the contamination model of Definition A.2, outliers are added in a way that is oblivious to the inliers, and therefore
these datasets are statistically identical and independent of each other. We show in Appendix D.3 that the resulting ﬁt isa
sufficiently accurate approximation of M,. Similarly, we need to modify the Downweighting filter, since its implementation
using binary search requires performing checks of the form Ex . p[w(X)7(z)] > 2T and calculating the weighted mean
exactly is no longer possible. We propose a sample-efficient estimator to approximate that expectation (see Lemma D.16 in
Appendix D.3.3) and run an “approximate” variant of binary search (see Appendix D.2).

Cover Argument We now turn to the more technical issue of controlling the size of the JL-sketch, i.e., the number of
rows, L, of the matrix U, € RY*4. For simplicity, assume ﬁt = My, and recall that 7(z) is the thresholded version of
|U¢ (2 — 1¢)||3, as defined in Line 18 and 7 () is the same score but using M. The potential-based analysis in Appendix C
requires that Ex . p[w;1(X)7(X)] is small. However, the stopping condition of the Downweighting filter implies only
that Ex . p[ws4+1(X)7:(X)] is small. In Appendix C, the bound on the former was obtained from the bound on the latter by
using that |U;(x — py) |2 = || M (2 — ue)]|2 pointwise in the support of P (Claim C.10).

By the classical JL lemma, the size of the JL sketch, L, needs to be at most logarithmic in the size of the set S where we
require the pointwise approximation to hold. Thus, in the previous section, L scaled as log |.S| = log n. However, in the
streaming model where there is no such dataset, it is far from obvious how the analysis should proceed. A nédive approach
would be to require the approximation to hold on a cover S of the support of P;. Since |§ | scales exponentially with d, the
required bound on L would be log |S' | = Q(d), which is too large for our purposes. Luckily, we can still find a fixed set Scoyer
such that the following holds: (i) log |Scover| = polylog(d/e), and (ii) the expectation of scores over U (Scover) approximates
the expectation of scores over P. That is, as far as the expectations of the scores are concerned, P can be approximated by
the uniform distribution over Scover. Arguing as before, if ||Ut(x — ue)|| &~ ||M¢(x — p)]|| for each € Scover, then the
downweighting filter also ensures that E x . p[ws11(X)7:(X)] is small. Thus, Scover can serve as a proxy dataset (used only
in the analysis) to ensure that the size of the JL sketch is sufficiently bounded, i.e., that log | Scover| < C'polylog(d/e).

Establishing the desired upper bound on the cardinality of Scover requires a somewhat more sophisticated argument that
relies on the VC-dimension of a family of functions corresponding to the weight update rule. This result is stated in
Appendix D.2.1.

We now present the algorithm more formally. We start by clarifying the notation used.
Notation regarding Algorithm 5: The quantities involved in the algorithm and its analysis now are based on the

underlying data distribution P as well as its approximations. We note that Py, u;, 3¢, B, My, \; are functionals of the
distribution P and are primarily used in the analysis. The parameters A, M; are approximations for ||B;||2 and M,

Streaming Algorithms for High-Dimensional Robust Statistics

respectively that the algorithm forms using samples from P;. Regarding score functions, g;(z) = |[M(z —)3 is
as before. The computations however use only the Johnson-Lindenstrauss versions g;(z) := Zle(vg ST —1ip))?,
which can also be written as ||U;(x — fi;)||3 in matrix form, by defining U; to have the vectors %vm as its rows.
Note that g;(z) is defined using fi; instead of 1. Finally, we denote by 7¢(z) = g:(2)1{ge(z) > C3[[M¢[|FA¢/e} and
Fi() = ul@)1 4G () > Col[U120 /e,

Remark D.4. Recalling Lemma B.12, we may again treat the input distribution as a mixture P = (1 — ¢)G + €B, where G
is a distribution that is (C’¢, §)-stable with respect to p.

Algorithm 5 Robust Mean Estimation In Single-Pass Streaming Model

1: function RobustMeanStreaming (P, d, €,)

2: Let R be such that Prx.g[||X — pll2 > R] <e.

3: Let P = (1 — €)G + eB. Without loss of generality, we assume that the points added by the adversary are within
O(R) from g in Euclidean norm (see Appendix C.1).

4: Let K = © (logdlog(dR/e).

5: Let L = polylog(d, R,1/e,1/7).

6: Letr = CdR**4loed

7: Obtain a naive estimation i of x such that ||z — ull2 < 4R.

8: Letw:R? — [0, 1] be the weight function. Initialize wq(x) < 1{|lz — fi|l» < 5R} forall 2 € T and ¢; ¢+ 0.

9

;. for t € [K]do
10 Define w;(z) = wy_1(2)(1 — 7 (z)/r)%.
11: Let P, be the distribution of P weighted by wy, i.e., Py(z) = P(z)w;(x)/ Ex~plwi(X)].
12: Let i be the mean of P;.
13: Let X; be the covariance matrix of P;.
14 Let B, = (Explwi(X)])?S, (1 - Cé) I, and M, = B¢,
15: Compute an O(d)-accurate estimator fi; of y; (see Lemma D.11).
16 Leti = C"R¥(logd)* max (d, 58, 5", 55t) log ((4losd)
17: For k € [logd], let]A3t, « be an empirical version of B; over 7 independent samples (see Appendix D.3 for more
details). R
18: Define M, := g’fme
19: Let A\; = ||B¢||2 and an approximation A; such that A, /\; € [0.8,1.2].
20: if \; > (62 /¢ then
21: for j € [L] do
22: 2 ~U{E1}H).
23: Vt,j < Mtzt,j~
24: end for
25: Denote by U, the matrix with rows \%vm for j € [L].
26: Let gi(z) = [[Us(x — i) |3 and 7 (z) = Ge(2)1{Ge(x) > Cs|[Us|FAe/€}-
O(log d)
27 lonnx (5‘2’}6))
28: ¢, + DownweightingFilter(P, wy, 71, R, At ||Uy || %, fmax)-
29: end if
30: end for
31: return an O() approximation fi; of the mean y; of the distribution P; (see Lemma D.11).

32: end function

As already mentioned, Algorithm 5 uses two levels of approximation: the first level is approximating the true distributional
quantities by taking samples, and the second is preserving the latter quantities using the JL sketch. If both of these
approximations are sufficiently accurate, the correctness of Algorithm 5 would follow similarly to Algorithm 3. Of course,
the challenge is to ensure that these approximations hold over the entire distribution, while controlling the sample and
memory complexity of the algorithm. As we show in Appendix D.2.1, this can be achieved by restricting our attention
to a finite set (cover) of sufficiently large cardinality. Thus, the deterministic conditions that we require now also involve

Streaming Algorithms for High-Dimensional Robust Statistics

the cover set, which we denote by Scover- The reader may think of S.oyer as a fixed set, which will be specified later on
(Lemma D.9).

Condition D.5 (Deterministic Conditions for Algorithm 5). Let Scover denote the cover of Lemma D.9 for ¢ =
poly(d, R, 1/¢)'°8 4, Our condition consists of the following event:

1. Estimator [i;: For all t € [K], we have that ||fi; —]|, < ¢/100.
2. Forevery t € [K],if | B2 > (C1/2)6%/e and Ex . pwi(X)] > 1 — O(e), we have that:

(a) Spectral norm of By: Ay € [0.8), 3]
(b) Frobenius norm: ||[U,[|% € [0.8]|M,||%, 1.2[|M||%].
(c) Scores: gi(z) > 0.2g¢(z) — 0.8(6%/€?)||M¢||%, for all z € Seover-

3. Stopping condition: Let Ty := c\, |U4||%. For every w : R — [0, 1], the algorithm has access to an estimator f(w)
for the quantity E x . p[w(X)7:(X)], such that F'(P) > T;/2 whenever Ex . p[w(X)7(X)] > T;. This estimator is
accurate when called O(log(d) log(dR/¢)) times in every iteration ¢ € [K].

We note that the Item 3 above is needed to evaluate the stopping condition in the downweighting filter. For every ¢ € [K],
the stopping condition is evaluated at most O (1og({iay)) times, with £y, = O(dR?T1°8 4 /(\;||U,||?) (using Lemma C.6

with 7 = C4dR*™*1°84 and T := O(\;||U;||2)). This means that we require the estimator in Item 3 to be accurate on
O(K log(d)log(dR/¢)) calls.

D.2. Correctness of Algorithm 5

The analysis in this section is along the same lines as that of Appendix C.4. The naive estimation step of Line 7 is the same
as that used in Algorithm 3 (see Appendix H.4).

Given Condition D.5, we first show the correctness of Algorithm 5 and leave the task of establishing Condition D.5 for
Appendix D.3. The proof of correctness would largely follow by our work done in Appendix C.4. There are two adjustments
needed in these arguments.

The first concerns Lemma C.6, since the algorithm cannot perform exact binary search. Instead, it can use the approximate
oracle of Item 3 of Condition D.5, resulting in a multiplicative constant in the final guarantee. For completeness, we prove
correctness for this case in Appendix I.1.

Lemma D.6. In the context of Algorithm 5, if (1 — €) Exq[w(X)T(X)] < T, ||Tllooc < 7, and bmax > /T, then
Algorithm 6 modifies the weight function w to w' such that (i) (1 — €) Ex.glw(X) —w'(X)] < eEx.plw(X) — w' (X)),
and (ii) upon termination we have Ex . p [w'(X)7(X)] < 54T. Furthermore, if the estimator of Line 3 is set to be that of
Lemma D.16, the algorithm terminates after O(log({max)) iterations, each of which uses O((R?¢/62) log(1/7)) samples,
takes O(nd) time and memory O(log(1/7)).

The second adjustment is regarding the analog of Lemma C.9, i.e., e Ex.p[ws117:(X)] is small (the bound on
eExplwi17:(X)] follows from the stopping condition as before). Since the support is unbounded, we use an ar-
gument based on a fixed cover to show that the downweighting filter succeeds with the JL-sketch of size L. The statement is
given below.

Lemma D.7. Under the deterministic Condition D.5 and the context of Algorithm 5, we have that E x . g|wi11(X)7(X)] <
S5Ex~pwii1(X)7(X)] + c(A/€) | M¢||%, where c is of the form C/Co with C being a sufficiently large constant and Cs
being the constant used in Algorithm 5.

The next section is dedicated to proving Lemma D.7. Here we just show that Lemma D.7 suffices to prove the analog of
Lemma C.9 below.

Lemma D.8. Consider the context of Algorithm 5 and assume that Condition D.5 holds. Then € - Ex . p[wi11(X)7(X)] <
I A ||My||%, for some constant ¢’ of the form C"' | Ca, where Csy is the constant used in Line 20 and C' is some absolute
constant.

Streaming Algorithms for High-Dimensional Robust Statistics

Algorithm 6 Downweighting Filter using Approximate Oracle

1: function DownweightingFilter(P, w, 7, R, T, {iax)
2: 1 CdR*t4lesd,

3: Denote by f(£) be an estimator close to Ex.p[w(X)(1 — 7(X)/r)*7(X)] (see Lemma D.16 for details).
4 L+ {1,2...,0max}
5 while |[L| > 2do
6: Let ¢ be the element in the middle of L.
7: if f(£) > 9T then
8: Discard all elements smaller than ¢ from L.
9: else
10: Discard all elements greater than ¢ from L.
11: end if

12: end while
13: return any ¢ of L satisfying 4T < f(¢) < 367.
14: end function

Proof. Denoting by ¢, ¢, ¢’ > 0 constants that are all multiples of 1/C5, we have the following:

e B [wi1(X)m(x)] <5e B [wi1(X)7(2)] + M| M| T < 5 My[F + A [My[7 < oMMy
where the first inequality uses Lemma D.7 and the second inequality uses Lemma D.6. O

Letting ¢, := tr(M?) denote the potential function, the above result allows us to follow the same steps as in Appendix C.4.2
to prove that ¢; 1 < 0.9999¢; exactly as in Appendix C.4.2. Thus, we get that after K iterations, we have that || 3|2 < § 2 /€.
Under Item 1 of Condition D.5, we have that the final estimate fi; satisfies that ||iz; — p||2 = O(J). This completes the proof
of correctness of Algorithm 5.

D.2.1. PROOF OF LEMMA D.7 VIA A COVER ARGUMENT

To outline the idea of proving Lemma D.7, recall the proof in the setting of Appendix C. There, we just required that
gt(x)/gi(x) € [0.8,1.2] for all samples x in our dataset, which can be translated to some relation between 7(x) and 7(z).
Then, since B was the empirical distribution on en of these points, the desired condition followed. However, in our case we
cannot use pointwise relationships, since the distribution B may be continuous and the Johnson-Lindenstrauss argument
might not work for the entire R? with polylog(d) vectors. The idea is first to relate E x5 [ws41(X)7:(X)] to a discrete
expectation over [N (not too many) points from a fixed set, then use the relationship between 7 and 7 for these points, and
finally relate that discrete expectation back to Ex . g[w;+1(X)7:(X)]. The existence of a cover of a small size is stated in
the following.

Lemma D.9. Consider the setting of Algorithm 5, where B is the distribution of outliers supported in a ball of radius R
around p. Let 1’ := (C’dR2 +1+C162%/ e)c logd for sufficiently large constant C. Denote by € the contamination rate and
let an arbitrary € € (0,1). There exists a set Seoper of N = E%al‘lK?L2 (dRe/52)O(1°g 4 points x1, ..., xN lying in the
ball of radius R around p1, such that for all t € [K], for all choices of the vectors z; ; of Line 22 of Algorithm 5 it holds

N
1 iy 11 N
‘XIEB [r/wtﬂ(X)Tt(X)] TN ; Pthrl(xi)Tt(xi) <
1 1 M
and ‘X]EB [r/wtﬂ(X)Tt(X)] N ; PIUt-i—l(Z‘i)Tt(xi) <.

We prove this result in Appendix I.2. Here we show how it implies the desired condition, following the proof sketch from
the start of this section.

Proof of Lemma D.7. Let v’ := (CdR2 +1+ 0152/6)C10gd and € € (0,1). Applying Lemma D.9, let Soyer be the
corresponding cover of cardinality /N. From the guarantee of approximation of g for every & € Scover, We get the following
approximation for 7 (z) for € Scover (proved in Appendix 1.2).

Streaming Algorithms for High-Dimensional Robust Statistics

Claim D.10. Let S be the cover of Lemma D.9 with v’ and € as defined above. Suppose that the deterministic condition
Condition D.5 holds. If * € Seoyer, then 7i(z) < 57(x) + (18C5 + 12/Cs) (A /€)||M,||%, where C3 and Cy are the
constants used in Algorithm 5.

Using Claim D.10 and Lemma D.9, we obtain the following series of inequalities:

(B COn(X] =+ B | S (X)(X)

<ér'4+r— Z wH_l xi)1e(x;) (using Lemma D.9 for 73)

—67"-’-*5 wt+1szt)

< €'+ (18C3 +12/Co) (M /€)My ||% + 5— Zth)7 (T5) (using Claim D.10 and w; < 1)
< 6’ + (18C5 4 12/Ca) (N /€)My ||% + 5 XEB[wH_l(X)Tt(X)] (using Lemma D.9 for 7;)
= 5XEB[wt+1(X)7:t(X)] + (1903 + 12/C2) (A /€)My %. (using the definition of €')

For the last line above, we want to choose €’ such that ¢’ < €22¢|[M, ||%.. Since ||M,[|3. > (C242/€)?1°8 ¢ (otherwise the

2logd
algorithm has already terminated), it suffices to choose an € that satisfies ¢’ > «Cd R(Qc_ff _Jéi 52;6)0 =z~ This gives an upper
bound on the cardinality of the set Scoyer, Which gives the upper bound on the size of the JL-sketch, i.e., L. We provide

explicit calculations in Remark 1.3. O

D.3. Establishing Condition D.5

Throughout this section, we assume sample access to the distribution P;. As mentioned earlier, Algorithm 4 can simulate
this by drawing a sample = from P, calculating w; () (with poly-logarithmic cost in terms of running time and memory),
and rejecting the sample with probability 1 — w;(z). With high probability, rejection sampling can increase the sample
complexity by at most a constant factor because E[w;(X)] > 1 — O(e) (cf. Claim C.13).

D.3.1.ITEM 1

We establish Item 1 in the following, which is proved in Appendix 1.4.

Lemma D.11. In the setting of Algorithm 5, there exist estimators [i; such that, with probability at least 1 — T,
for all t € [K] we have that ||fix — putll, < 9/100. Furthermore, each [iy can be computed on a stream of

n=0 (62/ log(K/T) + H_& dd+57/e) log(K/T)) independent samples from Py, in time O(ndlog(K /7)) and using memory
O(dlog(K/T)).

D.3.2. ITEMS 2A TO 2C

Given that Item 1 holds, in this section, we show that Items 2a to 2c of Condition D.5 hold with high probability if sufficiently
many samples from the underlying corrupted distribution P are drawn. Let the scores g;(x) := ||M(z — u¢)
is the following sample-based estimator of M;:

g, where M;

1. Draw a batch Sy of 72 samples from P and let the estimate W,=E X~td(So) (Wi (X)].

2. Let P/ be the distribution of the differences (X — X’)/+/2 for two independent X, X’ ~ P;.
3. Draw log d batches S, .. ., Siog ¢ Of 72 samples, each from P;.

4. For k € [logd],

(@ LetXy) = 23 g 2z’

Streaming Algorithms for High-Dimensional Robust Statistics

(b) Let]/?\’t,k’ = Wfiuk — (1 — 0152/6)1,1.
5. Return M, = Hfff ﬁt,k.

Remark D.12. Algorithm 5 does not need to calculate or store M, because it requires only that we can calculate products of
M, with vectors z as in Line 22. This operation can be implemented in linear runtime and memory. Given the description
of the estimator above, it suffices to show how to multiply X, ;. by a vector z in linear time and memory. To this end, we

observe that f]tﬁ K2 =% D e S, x(xT2), thus by calculating the inner product (27 2) first, the result can be found in O(nd)
time in a streaming fashion.

We will show that Items 2a to 2¢ of Condition D.5 follow if Hﬁt — M|z < 0.01 min (%6, %) M| F (cf. Lemma D.15)
and ||fiz — ptl2 = O(6) (cf. Lemma D.11).

Lemma D.13. Suppose that the estimators ﬁt in Algorithm 5 are defined by the procedure as in Lines 1 to 5 above. Let C
be a sufficiently large constant and assume that the dimension is d = Q(1)°. Further assume that ||fi; — p|| < 0.016. If
7 > CR*(log d)? max (d, G;Td, %, R;§4) log (M), then Items 2a to 2¢ hold with probability at least 1 — T.

Proof. For now, we will assume that for all ¢ € [K], Hﬁt — M;||2 < 0.01 min (%, ﬁ) IM.|| 7 with the claimed sample

complexity. This follows from Lemma D.15 and a union bound. We will prove each of these conditions separately.

Proof of Item 2c: Denote 7' := 0.15/¢. Fix an iteration ¢ € [K]. We will prove that the conditions hold in the ¢-th
iteration with probability at least 1 — 7/K and then a union bound will conclude the proof.

Define gi(x) = | My(z — fig)||3. Since ||fiz —]2 < 0.016, we have the following relation between gy
and g¢:|Mi(z — f1)|3 > 0.5]|Mi(z — pe)|3 — T2 Me||%, ie., Gi(x) > 0.5g:(x) — T?|M;||%. We have that

Hﬁt — M;|l2 < 0.1(T/R)||M¢| r with probability at least 1 — 7/K (see Lemma D.15). This means that for any

point z with ||z — fit]lz < 2R, we have |[My(z — jig)|l2 < ||ﬁt(x — ft)||2 + 0.27'|| M| p, which implies that

My (2 — i) |12 < 2| My (2 — i) ||2 + 0.0872|| M ||2., or equivalently
M (2 — i) ||3 > 0.5G:(x) — 0.04T>tr(M?) . (10)

The final step is taking the Johnson-Lindenstrauss sketch of ﬁt, which gives the matrix U; used in the definition of
J:. By repeating the proof of Lemma C.5 with M., in place of M;, we get that if L = C'log((|Scover| + d)K/7), then
gi(x) > 0.8Hﬁt (x — [it)]|2 for all the points in the set Scover (the cover from Lemma D.9). The value used for L in
Algorithm 5 satisfies this condition (c.f. Remark 1.3). Combining this with Equation (10) and the relation between g; and g,
we get that §¢(z) > 0.4g:(x) — 0.0472||M;||% > 0.2g¢(z) — 0.44T2|| M¢||%.

Lemma D.15. We thus have that M, — M,||p < V/d||M; — M||z < 0.01|| M|, which implies

Proof of Item 2b: Again, fix a ¢t € [K]. We have that ||ﬁt — M2 < %HMtHF with probability 1 — 7/K using

M| — M| 7| < 0.01| My - (11)

It is easy to check that this is stronger than what we initially wanted. Indeed, squaring Equation (11) and using HI\A/It |7 <
1.01||M,|| gives

IML[[< 2 M| M7 — [M]3 + (0.01)%[M7 < 1.1 M7
which means that ||ﬁt 1% — [IM,]|% < 0.1||M,||%. For the other bound, Equation (11) implies

M |7 < 2 M| #[IMe [l e — M]3 + (0.01)% || M || %
< 2| M5 + 2(0.01) [M| oM || 7 — [M7 + (0.01)% | M| 7

>This is without loss of generality as we could avoid the JL-sketch when d = O(1).

Streaming Algorithms for High-Dimensional Robust Statistics

< L1M[f
which means that | M,||2. — [|M,|2. < 0.1||M,||2.. Therefore we obtain the following
1M1 — [IML[7] < 0.1][M |7 . (12)

Finally, the Johnson-Lindenstrauss step is exactly as described in the proof of Item 2c.

Proof of Item 2a: Since we cannot access the same samples twice, the power-iteration algorithm now uses a different
dataset in every step. Let the matrix ﬁt as in the beginning of Appendix D.3. We have already shown in the previous
paragraph that, with probability 1 — 7, for all ¢ € [K], ﬁt has Frobenius norm close to that of M (Equation (12)). For the
rest of the proof, we condition on this event. Consider the algorithm that calculates v = ﬁtw, where w ~ N (0,1,) (this
can be done in the streaming model by multiplying with ﬁt, g iteratively; moreover this multiplication can be implemented
in time O(7id)). We claim that the value X, = |Jv|3/ '&?
0.9 we have that

satisfies the desired relation. First, we note that with probability

0.8tr(M?) < [[v]|3 < 1.2tr(M3) . (13)

This is because ||v]|3 = tr(le/\\/I;fﬁtw) = tr(waﬁ;‘Fﬁt) and Pr[0.8d < ||w||3 < 1.2d] < e=°? < 0.1 (by Gaussian
norm concentration, assuming that the dimension is sufficiently large). Equations (12) and (13) imply that 0.7tr(IM?) <
|lv]|3 < 1.4tr(M?). Furthermore, we have that

1
[0l < (1Abe(M2)) 7Ree < (LadIB35 1) < 2Bz (14)

Similarly, for the lower bound, we have that

_1

o]} > (0.7er(MZ))Zea > (0.7) 7087 || By |2 > (0.7)[|Byl2 , (15)

where in the last inequality we assumed that the dimension is sufficiently large. Putting Equations (12) to (14) together, with

probability at least 0.9, we have that 0.7||B||2 < ||vH1/1°gd < 3||B¢||2- By repeating the procedure O(log(1/7)) times
and taking the median, we boost the probability of failure to 7. By union bound, choosing 7 = 7/ K makes the event hold
for all iterations ¢ € [K]. O

The remainder of this section is dedicated to showing that |M; — M2 < min (‘5—1/;, M) IM;|| . We require the
following lemma, which we prove in Appendix 1.3. We use [[?_, B; is to denote the matrix product B;By - - - B,,.
Lemma D.14. Let A, B, By, ..., B, be symmetric d x d matrices and define M = B?, Mg = [[}_, B;. If | B; — BJ]2 <
0||Bllz, then [Ms — BP[|z < pd(1 + 0)7||B][3.

We are now ready to prove our main technical result.

Lemma D.15. Assume that IB¢]|2 > (C’l /2)(52/6 and Ex .p|w:(X)] > 1 — O(e) hold in the t-th iteration of Algorithm 5.
IfW and every Bt & in the product Mt Hk 1 Bt & is calculated using

2 2.2 p2.4
. 9 9 e“d Re¢* R<e dlogd
7 > CR*(log d)® max <d754,52, 56)1og(.

samples, where C' is a sufficiently large constant, we have that

M, — M, ||y < 0.01 € =) ML |g
IR, Mill < 001min (4, 72) M

with probability at least 1 — T.

Streaming Algorithms for High-Dimensional Robust Statistics

Proof. LetT := 6 /e and p := log d for brevity. Using Lemma D.14 we have that ||ﬁt — M|z < pye?||M¢||2, where
~ > 0 1is such that

Btk — Bell2 < v[IBt[2 (16)
for all k& € [p]. Therefore, for the lemma to hold, it suffices that pye?® < 0.01 min (11;‘|||1\1\//I[i‘||\§ , ﬁ) For that, it suffices to
choose v = % min <ﬁ, gll‘ll\\/l/[‘tll“z) At this point, we also assume two things: First, that the estimate flt,k (defined in

step 4a) is such that ||f]t7k — 3¢|]a < €||X¢]|2 for some €’ to be specified later on. Second, that we have an estimate W\t for
Ex . p[w:(X)] such that

o~

We= B [w(X)]+7, a7

with |n| < £ for some £ < 1 to be decided later. By Hoeffding’s inequality, if we compute W as shown in Step 1, then
log(2/7)/&? samples suffice to guarantee that Equation (17) holds with probability 1 — 7 /2. We now focus on Equation (16).
We note that

~ It

2
Btk — Bylla = H (XPPt[wt(X)] + 77) ik — XEP [we (X)]* %,

2

PIRS _ 2 ~
< (B X IZes = Billz + (" +20 B [wi(X)])[Zelle

<ok = Zell2 + 361 Zek — Sl + 1 Zel|2)
= (14300 p — Sull2 + 3¢ -

By choosing £ = min(1,€'/3) and ¢ = £7||By||2/||%¢]|2, the above implies that Equation (16) holds. Thus, it suffices to

show that ||§tk — 3|2 < €'||X¢]|2 for our choice of €. Note that Fact B.5 is not directly applicable to the distribution P;
since it does not have zero mean. This is why we are working with samples of the form (X — X’)/+/2. By Fact B.5 with ¢’
set as above and 7 = 7/(2p), we have the following upper bound on the sufficient number of samples:

R? 2pd
h= O log ()
€222

-
R?||Z d
(e
S i B os (%) (using By |2 > (C'1/2)5%/)
< ;22;2 max (1, <) log <pTd> (18)
N e
< R?je max (d, R;f) max (1, 6%) log <p7_d> (using || M|z < || M|l r)
< R?;% max (d, ;—Z, %, R;f) log (1:_d> , (19)
Equation (18) is derived as follows: First we note that |2z < % < [|B¢||l2 + 1, where the last inequality uses

our assumption that Ex . p[w;(X)] > 1 — O(¢). We combine this with | B||2 > 62 /e as follows:

28 (Bot1? 2 g 1
B3~ BB Bg > @)

Streaming Algorithms for High-Dimensional Robust Statistics

Regarding the samples required to achieve Equation (17), a sufficient number is

il
I
Q
<)
0Q
7 N\
RERN
~~
JEH

1 1
<log <T> max (1, €I2>
1 1133
< log <> max (1, —
T 72 B3
1 1 2
< log <T> max (1, pe] max (, §4>)
1 2.2 2
< log <T> max <1,p max (d, Ré; > max (17 54>>
1 o, p*R22 pide? p?R2e
5 IOg <T> max <p d7 (52) (54 9 56)
which is smaller compared to the right-hand side of Equation (19). O
D.3.3. ITEM 3

The following lemma establishes that the estimator of Item 3 is accurate when called once. By using a union
bound on the maximum number of times that it can be called, we get the sample complexity requirement of n =

O ((R?/(6%/e€))polylog (d, R, 1, 1)).
Lemma D.16. Consider the context of Algorithm 5 and denote T, = c |U||%. Given a weight function w : R¢ — [0, 1],
there exists an estimator f(w) on n = 0(612?‘—;)E log(1/7)) samples such that, if Exp[w(X)7(X)] > Ti, then with

probability at least 1 — 7, f > Ty/2. Similarly, Ex .. p[w(X)7(X)] < Ty implies f < (3/2)T;. Moreover, the estimator
uses O(log(1/7)) memory and runs in O(nd) time.

Proof. We show the first direction; the other one has a symmetric proof. Suppose Ex . p[w(X)7(X)] > Ay [U]|%. It
suffices to show that with probability at least 0.9 we have that

1 N 3 - 1~
L2 wXD)R(X) > 7 B [wX)R(X)] = e UE (20)

as we can repeat the procedure O(log(1/7)) times and take the majority vote to boost the probability to 1 — 7. By
Chebyshev’s inequality, we have that with probability 0.9 it holds that

\/10 Varx . p(w(X)7(X)))

n

1 — _ -
- ;w(Xi)Tt(Xi) > XIEP[w(X)Tt(X)] -

Therefore, it suffices to have \/wvarXNPS"(X)HX)) < LExp[w(X)7(X)] + LeXe||U;||%, and thus we need n to be a
sufficiently large multiple of Var x . p (w(X)7 (X)) /(Exp[w(X)7(X)] + e ||U; [|%.)2. For that, it suffices to choose

n@(Varx .p(w(X)7(X))) .
Ex~p[w(X)7(X)]eA U7

We now focus on bounding by above the right-hand side. Let T} := Cs || U, ||% be the threshold used in the definition of
7i(x) = g1 (x)1{g:(x) > T/}. For the variance we have that

Var(w(X)7(X)) < E_[(w(X)7(X))?]

< B [w(X)7(X)]

Streaming Algorithms for High-Dimensional Robust Statistics

S RUIE (B [w(X)7 (X)), @)

where the last inequality uses that Ex . p, [72(X)] = Ex~p,[§7(X)1{g:(X) > T/}] and bounds from above the one of the
two factors of g; as follows:

Ge(@) = [|Us(z — me)l3 < |0 ER? (22)

where Uy is the matrix used in Line 26 of the algorithm. Using Equation (21), the number of samples that suffice can now
be bounded as follows:

Varep(R(X) _ RUIE R
A Exoplw(X)RNUNE ~ MU ~ 67/

where we used that Xt > (0562 /€ from Line 20 of our algorithm. O

E. Applications: Beyond Robust Mean Estimation

In this section, we develop robust streaming algorithms with near-optimal space complexity for more complex statistical
tasks, specifically for robust covariance estimation and robust stochastic optimization. The main idea enabling these
applications is that these tasks can be effectively reduced to robust mean estimation.

E.1. Robust Covariance Estimation

In this subsection, we study the problem of estimating the covariance matrix ¥ of a distribution D, having access to
e-corrupted samples from D in the sense of Definition A.2. Let X ~ D and the Kronecker product Y = X ® X. Note
that E[Y] = X°, where b denotes the flattening operation. Then, using any robust mean estimation algorithm on this
d?-dimensional distribution, one efficiently compute a vector close to 3 in £5-norm, which translates to a Frobenius-norm
guarantee for 33. Of course, our mean estimator works as long as the distribution of Y is stable. If Cov[Y'] is bounded from
above by a multiple of the identity matrix, then Y is (e, O(1/€))-stable with respect to X°, and thus we get the following as
a corollary of Theorem D.2:

Theorem E.1 (Robust Covariance Estimation for Distributions with Bounded Moments). Let a distribution D with
Covx~p|X ® X]| =X 12 and denote by X its covariance matrix. Letd € Z4, 0 < 7 < 1l and 0 < € < ¢ for a
sufficiently small constant ¢y. There exists an algorithm that given e, T and a set of n = (d*/e)polylog(d,1/e, 1/7)
samples in the single-pass streaming model of Definition A.1 from a distribution Q with drv (D, Q) < €, runs in time
nd?polylog (d, 1/€,1/7), uses memory d*polylog (d, 1/e,1/7), and outputs a matrix S such that Hf) —X||r = 0\e),
with probability at least 1 — .

For the special case when D is Gaussian we have that the fourth moment tensor of D is bounded:
Fact E.2 (see, e.g., (Cheng et al., 2019b)). Let X ~ N(0,X) with¥ < I;andY = X ® X. Then, Cov[Y] < 21 .

Using the above fact, we have that the guarantees of Theorem E.1 hold in the Gaussian case, giving an algorithm for
O(+/€)-approximation in Frobenius norm. However, the information-theoretic lower bound for covariance estimation
of the Gaussian distribution is of the order of e. We can plug-in our streaming robust mean estimation algorithm to the
covariance estimator given in (Cheng et al., 2019b), and achieve the nearly-optimal error of O(elog(1/e)). This algorithm
creates a series of estimates E At the (i + 1)-th step, all samples are multiplied by 2 1/2 thus, given that E is a good
approximation for 3, this makes the distribution of the transformed samples closer to N (0,14), which in turn allows us to
produce a better approximation iiﬂ of . The resulting guarantees are summarized in the following theorem.

Theorem E.3 (Robust Gaussian Covariance Estimation). Let QQ be a distribution on R? with dpv(Q,N(0,%)) <
€ and assume that ;Id <X X <X 1 for some kK > 0. There is a single-pass streaming algorithm that
uses n = (d*/e*)polylog(d,x,1/e,1/7) samples from Q, runs in time nd*polylog (d, k,1/€,1/7), uses memory
d? polylog (d,k,1/e1/7), “128%-1/2 _ 1| g = O(elog(1/€)), with probability
atleast1 — .

The reader is referred to Appendix K for more details on using Algorithm 5 to obtain Theorem E.3.

Streaming Algorithms for High-Dimensional Robust Statistics

Algorithm 7 Robust Gradient Descent
1: Input: g(-), 7
2: fort =0toT — 1do
300" = argmingeo |16 — ng(0)];
4: end for

E.2. Stochastic Convex Optimization

Here we explore the implications of Algorithm 5 in outlier-robust stochastic convex optimization. This subsection crucially
leverages the prior works (Prasad et al., 2020; Diakonikolas et al., 2019a), which apply robust mean estimation algorithms
to perform robust stochastic optimization. In particular, we follow the framework of (Prasad et al., 2020).

Concretely, we study the following generic optimization problem: Let a parameter space ©, sample space Z, and a loss
function f(6;z) : © x Z — RT. For an unknown distribution D over Z, the goal is to minimize the associated risk
f(0) = E..p[f(0; 2)], given sample access to the distribution D. We will occasionally just write f(6) instead of f(6; z)
when no confusion arises. This setup is central in machine learning, since it captures a plethora of learning tasks. For
example, f can be a negative log-likelihood function for the learning problem of interest, e.g., square loss for linear
regression and logistic loss for logistic regression. In the robust version of the problem, the algorithm has access only to an
e-corrupted version of D in the sense of Definition A.2.

We start by recalling a generic optimization algorithm that works whenever f is 74-strongly convex and 7,,-smooth, i.e., for
all 81, 0> € O, we have that

Ty = = - Tu

5 101 = 02113 < f(61) = F(02) — (Vf(82))" (61 — 62) < 5 161 = 02115 -

We then give specific applications for robust linear regression and logistic regression.

The work of (Prasad et al., 2020) provides an analysis of projected gradient descent assuming oracle access to approximations
of the gradient:

Definition E.4 ((«, 3)-gradient estimator). A function g(6) is an («, 3)-gradient estimator for f if ||g(8) — Vf(6)||2 <
all§ — 6*||2 + 8, for every 0 € ©.

Denoting by 7 the step size of gradient descent, define the following parameter:

2NTeTy
K=)1 — 2T |y (23)
To + Tu

Theorem E.5 ((Prasad et al., 2020)). Let the domains ©,Z C RY, a distribution D over Z, and a loss function f :
O x Z — Rt such that f(0) := E..p[f(0;2)] is T-strongly convex and T,-smooth. Let g be an (o, 3)-gradient estimator
with o < 7. Let k from Equation (23) and 0* be the minimizer of f. Then Algorithm 7, initialized at ° with step size
n=2/(e +), after

1-— 90 — o*
T =log1 ((a2l ”2) (24)
" B
iterations, returns a vector 0 such that
~ 2
10— 0%l < 5. (25)
- K

If the distribution of the gradients has bounded covariance, then one can use the low-memory estimator of the previous
sections in place of g(+). This bound on the covariance will not necessarily be known to the algorithm, thus we first need to
strengthen the robust mean estimator so that it is adaptive to that unknown scale. This can be done using Lepski’s method
(Lepskii, 1991; Birgé, 2001) (the details are deferred to Appendix J). Having that version of the estimator at hand, we then
obtain the following statement (see Appendix K for the proof):

Streaming Algorithms for High-Dimensional Robust Statistics

Corollary E.6. In the setting of Theorem E.5, suppose that the distribution of gradients satisfies Cov|V f(0)] < 0?14 with
02 = a?||0 — 6*]|3 + B2 for all € ©, where a\/e < 7. Assume that the radius of the domain ©, r := maxyce ||0||2 is
finite. There exists a single-pass streaming algorithm that given O(T(d?/¢)log(1 + ar/B)polylog(d, 1/e, T /7,1 + ar/B))
samples, runs in time Tnd polylog(d, 1/e,T /1,1 + ar/j), uses memory d polylog(d,1/e, T/7,1 + ar/B), and returns a
vector 6 € R? such that H§, 0*|l2 = O(\/eB/(1 — K)) with probability at least 1 — .

We now proceed to more specific applications, where we work out the parameters «, 3 for some distributions of interest.

E.2.1. LINEAR REGRESSION

For linear regression, we assume the following generative model:
Y =XT0"+ 7, (26)

where §* € R? belongs in the ball ||0*|y < 7, X ~ D,, Z ~ D independently, and D has zero mean. The loss function
that we use in this case is f(6) = 1(Y — 67 X)?, and the risk function is

1 *\T' T * 1
FO)= B, 110)] =500 E [XXT|(6 -6+ 5 Var(2).

Letting Amax (E[X X7]) and Amin (E[X X7]) denote the largest and smallest eigenvalue of E[X X 7] respectively, it can be
checked that for any 7y < Apin(E[XX7T]) and 7, > Apax(E[X XT]), f is 7¢-strongly convex and 7;-smooth.

Since we want the distribution of gradients to be stable, we impose the following sufficient conditions on the distributions
D, and D.

Assumption E.7. The random variables X, Z are independent and satisfy the following conditions:

1. Ezp,[Z] =0
2. VarZNDZ [Z] S 52
3. ’)/Id j EXNDI [XXT] j 0'21,1.

4. For some constant C' > 0, for every v € S~ 1, Exp, [(XTv)%] < Co.

As shown below, these assumptions imply that the resulting distribution of the gradients has bounded covariance (and thus is
stable with respect to its mean).

Lemma E.8 (see, e.g., (Diakonikolas et al., 2019a)). For D, Dy satisfying Assumption E.7, for every 6 € O, we have that
Cov[Vf(0)] < (402 + 4Ca* |0 — 6%||3)14.

Having Lemma E.8 in hand, Corollary E.6 gives the following.

Theorem E.9 (Robust Linear Regression; full version of Theorem A.5). Consider the linear regression model of Equa-
tion (26) and suppose that Assumption E.7 holds. Let 0 < € < € for a sufficiently small constant €y. Assume that
Co%\/e < ~/2. Let k,T as in Equations (23) and (24) with 7, = 7, 7, = o>. There is an algorithm that uses
n="T-(d?/e)log(1+ro/&)polylog (d,1/e, T /7,1 + ro /&) samples, runs in time Tnd polylog(d,1/e, T /7,1 + ra /€),
uses memory dpolylog(d, 1/e,T/7,1+ro/€), and returns a vector 8 € RY such that H§— 0*|l2 = O(c€+/e/(1 — K)) with
probability at least 1 — T.

Proof. In our case, we have that 7, = v and 7, = o2, Given the bound of Lemma E.8, we use Corollary E.6 with
a = 2C0? and B = 20¢. The requirement from that corollary that aiy/e < 74 becomes Co?\/e < 7/2. Moreover,

ar/B = O(ra/f). O

E.2.2. LOGISTIC REGRESSION
We consider the joint distribution of X € R? Y € {0, 1}, where X ~ D, and Y given X is Bernoulli random variable:

1

Y|IX ~B 1li ithp = ————.
| ernoulli(p), with p L4 o—oT0"

27)

Streaming Algorithms for High-Dimensional Robust Statistics

The loss function we are minimizing in this case is the negative log-likelihood, which eventually can be written as
f(0) = —(0T2)y + ®(07x), where ®(t) := log(1 + e*). Regarding the strong convexity parameters, the Hessian of f can
be shown to be

0T X
V2f(6) = ‘ 28)

xXxT
X~D, 2

(1+e"X)

The parameter space © needs to be bounded in order for the eigenvalues of the Hessian to remain away from zero; we thus
use © = {# € R? : ||A||2 < r} with r > 0 being a universal constant. We also impose the following assumptions on the
covariates.

Assumption E.10. We assume the following for the distribution of X:

1. B[X] = 0.
2. (concentration) For some constant C' > 0, E[X XT] < C?1,.

3. (anti-concentration) There exists constant ¢; > 0 and ¢z € (0,1/2) such that for every unit vector v,
Prxp [(vTX)? > c1jv]3] > ca.

Under these assumptions, we have the following:

Lemma E.11 (Lemma 4 in (Prasad et al., 2020)). Supposing that Assumption E.10 holds, for every 8 € ©, we have that
Cov[V/(8)] = O(1)La.

The above lemma shows that the distribution of V f(8) is (¢, O(+/€))-stable, and thus using our robust mean estimation
algorithm one can get an (v, 3)-gradient estimator with o« = 0 and 3 = O(/€). This proves the following (see Appendix K
for a detailed proof):

Theorem E.12 (Robust Logistic Regression; full version of Theorem A.6). Consider the logistic regression model of
Equation (27) with the domain © of the unknown regressor being the ball of radius r, for some universal constant v > 0,
and suppose that Assumption E.10 holds. Assume that 0 < € < € for a sufficiently small constant €y. There is a single-pass
streaming algorithm that uses n = (d?/¢) polylog (d, 1/€,1/7) samples, runs in time nd polylog(d, 1 /¢, 1/7), uses memory
dpolylog(d, 1/¢,1/7), and returns a vector 9 € R? such that ||§— 0*||2 = O(+/€) with probability at least 1 — T.

E.3. Byzantine Adversary and Second-order Optimal Point

We now describe the application of our algorithm to the setting of robust distributed non-convex optimization. As before, for
a parameter space © C R%, a loss function f : © x Z — R*, and a distribution D over Z, the goal is to approximately
minimize f(6) = E..p[f(0; z)]. In this section, we consider the case when D is a uniform distribution over mn points
{#; 11 € [m],j € [n]} that are distributed over m machines (workers), with each machine having access to n samples.
Furthermore, we do not impose convexity constraints on f, and thus would restrict ourselves to finding a second-order
stationary point, i.e., a stationary point 8 such that the Hessian on 0 is not too negative in any direction.

We now explain the distributed setup in more detail. There are m workers who have their own private samples, and a single
master machine which is responsible for collecting gradient estimates from the workers and updating the candidate vector
iteratively. Concretely, the i-th worker has n samples {z;;}7_;. The master machine queries all workers with a parameter
6 € ©, and each i-th worker responds with g; (), where g; : R% — R is defined as follows: (i) if the i-th worker is honest,
then g;(0) is the average of the gradients of f at 6 of their samples, i.e., g;(0) := (1/n) Z;L=1 V £(6; zi;), and (ii) if the
i-th worker is dishonest, then g;(+) is an arbitrary function. In our results, we require only that (1 — ¢)-fraction of workers
are honest. Recent work of (Yin et al., 2019) provided an algorithm that uses a robust mean estimation algorithm on the
gradients as a black-box procedure. In particular, the algorithm of (Yin et al., 2019) requires only an access to the following
oracle:

Definition E.13 (A-inexact gradient). We call the vector v(6) a A-inexact gradient of f at the point 8 if |[v(6) — V f(8)]]2 <
A.

We assume that each worker machine has access to its own samples throughout the optimization process, and our goal is to
reduce the memory requirement of the master machine. Thus, we will use the algorithm from Corollary D.3 to calculate
A-inexact gradient for the master machine, which requires only an oracle access to the gradient estimates {g;(6) : i € [m]}.

Streaming Algorithms for High-Dimensional Robust Statistics

Assumption E.14. Let Z C [m)] be the set of honest workers with |Z| > (1 — €)m.

1. There exists 6 with 0 < e < 0 < o, for some sufficiently small do, such that for every 6 € ©, the set {g9:(0) |i € T}is
(Ce, 0)-stable with respect to V f () for a large enough constant C.

2. We assume that f is L-smooth and p-Hessian Lipschitz on ©, i.e., for every 61,62 € © we have that IV£(61) —
V(02)ll2 < L[|61 — 622 and [[VZf(01) — V2 F(f2)]l2 < pl|1 — 622 -

We note that if the samples of honest workers are sampled i.i.d. from a distribution P, then the set {g;(6) : ¢ € Z} for a fixed
6 € © will be stable with respect to V f(#) with high probability, provided that the distribution of V f(6; Z) satisfies mild
concentration under Z ~ P and m is sufficiently large. Using a standard cover argument with the smoothness properties of
f, this can be extended to all § € ©. We thus obtain the following theorem, under Assumption E.14.

Theorem E.15. Suppose that Assumption E.14 holds. Let m denote the number of workers. Assume 0 < T < 1,
A= C'§ < 1, for C' a sufficiently large constant and define

p(f(00) — infgepa f(6)) T e L
ASLT(AB/5a3/5 + AT/5q7/10)) * TP T 384172 L(A2/5dL/5 + AB/5G3/10Y

Q= 210g<

. . e e 2(f(60)—inf f(o . . ;
There is an algorithm where the master, if initialized at 0y, does T = (7(80) ;HAZGRd 7(6) Q Ty, iterations, each running

in mdpolylog(d, 1/¢,T/7) time, uses dpolylog(d, 1/e,T/r) memory, and outputs a vector 6 such that, with probability
V0|2 < 4A and Mpin(V2f(0)) > —A2/5d1/5,

1—7,

F. Discussion

In this work, we gave the first efficient streaming algorithm with near-optimal space complexity for outlier-robust high-
dimensional mean estimation. As an application, we also obtained low-space streaming algorithms for a range of other
robust estimation tasks. Our work is a first step towards understanding the space complexity of high-dimensional robust
statistics in the streaming setting.

Our work suggests a number of open problems. First, the sample complexity of our mean estimation algorithm is O~(d2 /€2),
while the information-theoretic optimum (without space constraints!) is O(d /€?). What is the optimal sample-space
tradeoff? A similar question can be asked for the broader tasks of covariance estimation and stochastic optimization. A
more general goal is to characterize the tradeoff between space complexity, number of passes, and sample size/runtime for
other robust high-dimensional statistics tasks, e.g., clustering and learning of mixture models.

Finally, another research direction concerns the considered contamination model. Throughout this paper, we focused on the
TV-contamination model. One can consider an even stronger contamination model with an adaptive adversary, where the
outliers can be completely arbitrary (i.e., not follow any distribution), and the adversary can additionally control the order
in which the points are presented in the stream. Is it possible to obtain Oe(d)—space single-pass streaming algorithms for
robust mean estimation in the presence of such an adversary? While our algorithms can be shown to work in this model with
a poly-logarithmic number of passes, it is not clear whether a single-pass algorithm with sub-quadratic space complexity
exists in this setting.

G. Omitted Proofs from Appendix B: Technical Details Regarding Stability

Lemma B.11 (Certificate Lemma). Let G be an (e,)-stable distribution with respect to . € R?, for some 0 < e < 1/3
and 0 > e. Let P be a distribution with drvv(P,G) < e. Denoting by up,Xp the mean and covariance of P, if
Amax(Xp) <1+ N\ forsome A > 0, then ||pp — pt]]l2 = O(5 + VeN).

Proof. Let dpy(P,G) = . By Fact B.4 we can write P = (1 — a)Go + aB. We may assume without loss of generality
a = €, since we can always treat a part of the inliers as outliers. Denoting by 11p, 3 p the mean and covariance of P, and
using fa,, B, 2G4 2B for the corresponding quantities of the other two distributions, we have that

Sp=(1-6Zq, +Zp + el —€)(ug, — s)(pa, — 1s)"

Streaming Algorithms for High-Dimensional Robust Statistics

Letting v be the unit vector in the direction of pg, — (1B, we have that
1+ A>0T8pv= (1 - e)vTBg,v+ e Tpv + e(1 —) (v (ug, — 1p))?* . (29)

The second term of the left-hand side is nonzero and the third one is just €(1 — €) || uq, — pz||3. We now focus on the first
term, which by adding and subtracting y (the vector realizing the definition of stability for (G) can be written as

(1-¢ E [(0"(X ~pg,))% = (1~ ¢) (E [(v"(X = m)*) (@ (u~ uco))2> - (30)

X~Clo X~Go

We note that in the decomposition of Fact B.4, we can write Go(x) = wo(z)G(z) with

wo(x) =

1 {P(z)/G(x), if G(z) > P(x)
1

1—ce¢ , otherwise .

Lettlng h() = (1 - e)wo(os) we have that h(z) < 1 for all z and Ex.g[h(X)] = 1 — ¢ thus Go(z) =
)/ ([h(z) dz) =: Gp(x). Returning to Equation (30), this means that

_ 52
CE T =) = B 0T (X =)’ = v Shev 21— —, (31)

by applying stability. Similarly, the other term in Equation (30) is (v (1 — pg,))? < 2. Putting everything together,
Equation (29) becomes

(1 =e)(1 = 6%/e = 6%) + (1 = O)lluc, — sl
1—

2
>1-30%/e+ (¢/2)llnc, — usl3

which yields ||ug, — pBll2 S /A€ + d/e. Then, writing up = (1 — €)ug, + €up and using stability follows that
[P — pllz S0+ Ve O

Lemma B.12. Forany 0 < ¢ < 1/2 and § > ¢, if a distribution G is (2¢, §)-stable with respect to ;i € R, and P is an
e-corrupted version of G in total variation distance, there exist distributions Gy and B such that P = (1 — €)Go + €B and
Gy is (¢, 0)-stable with respect to .

Proof. By Fact B.4, we have the decomposition P = (1 — €)Gy + eB, where Go(z) = min{G(z), P(z)}/(1 —€). We can
write Go(x) = wo(z)G (), where

wo(z) =
o(@) 1—c¢ , otherwise .

1 {P(m)/G(x), if G(z) > P(x)
1

To see why the final claim is true, we consider a weight function w : R — [0, 1] such that Ex.g,[w(X)] > 1 — ¢ and
examine the adjusted distribution G,,. We have that

w(x)Go(x) _ (1 — e)w(x)wo(x)G(x) _ h(z)G(x)
Jpa w(z)Go(x)dz [p.(1 — ew(@)wo(z)G(x)dr Ex~a[h(X)]

Gow(®) = = Gn(2)

where we let h(z) = (1 — e)w(x)wo(z). We have that h(z) < 1 point-wise and [p, h(z)G(z)dz = (1 —
€)Exg,[w(X)] > (1 —¢€)? > 1 — 2¢. Recalling that G is (2¢, 6)-stable, the conclusion follows. O

Lemma B.13. Fix 0 < € < 1/2and § > €. Let w : RY — [0,1] such that Ex.c[w(X)] > 1 — € and let G be an
(¢, 6)-stable distribution with respect to i € R%. For any matrix U € R and any vector b € R?, we have that

E [0 -0)l3] = [UlF1+6%/€) + U = b5 + 26 [U5/l — bll2 -

Streaming Algorithms for High-Dimensional Robust Statistics

Proof. We can write

(B (IO =08 = B, [I0(X = I3 + [0 b)J + 20X —) U U~ b)]

= E [0 = mlE] + 10 = b)15 + 2(pw.c — 1) U U —b). (32)

~

We now focus on the first term. Let the spectral decomposition UTU = tr(UTU) Z?Zl a;v;vl, where Zle a; = 1 and
«; > 0. We have that

d
XPGUJ “'U(X B u)||§] = <UTU XPG,U,[(X — X - M)T]) - tr(UTU) Z O‘itr(vivinw,G)

1=1
d
= 2(UT0) Y ap! Sy,ovi = tr(UTU)(1 £ 62/e) = |U|[3(1+6%/e)
=1

where the second from the end relation is due to stability. Regarding the last term of Equation (32), we have that
(. —)" UTU (= b)| = |tr(UTU (1 =) (e — 1)) < tr(UT0) [(1 = 0) (pwn,c —)" |2
= [U1% 11 = bll2llpw,c — pll2 < 10176l — b2,
where the last inequality uses stability condition for the mean. O

Corollary B.14. Fix0 < ¢ < 1/2and § > ¢. Let G be an (e, d)-stable distribution with respect to ji € R%. Let a matrix
U € R and a function w : R* — [0,1] with Ex~g[w(X)] > 1 — e For the function §(x) = ||U(z —b)||3, we have that

(1= ONTIEQ = 0% /e = 26[b = ull2) < B _[w(X)G(X)] < U7 (14 0% /e + b= pll3 +26]b = ull2) -

Proof. Beginning with the upper bound, we have the following inequalities:
B w(X)5(X)] = B [w(X)] B [5(X)

< XPG [9(X)] (Using g(z) > 0 and w(z) < 1)

IUNE(1+ 6% /) + U = b)|13 + 26[[U || [1b — a2
< IO (1 + 6/ + [1b = pll3 +26[1b — pll2)

IN

where the second inequality from the end uses Lemma B.13. The lower bound is derived similarly:

E [0(X)5(X)] = E_[w(X)] E, [{(X)

> (-0 B [j(X)

> (1= lU[EQ1 0%/ = 20]|b— pll2) ,

where we applied Lemma B.13 in the last step. O

H. Omitted Proofs from Appendix C
H.1. Johnson-Lindenstrauss Sketch

Lemma C.5. Fix a set of n points x1, ..., 2z, € R% Fort € [K), define g;(z) := | My(z — ;) ||3 and let §,(x), vy ; as in
Algorithm 3. If C is a sufficiently large constant and L = C'log((n + d)K /1), with probability at least 1 — T, for every
t € [K] we have the following:

1. 0.8g+(x;) < ge(x;) < 1.2g+(x;) for every i € [n],

L
2. 08IM I} < (3500 llengl3) < L2V

Streaming Algorithms for High-Dimensional Robust Statistics

Proof. We show that the claim holds for a fixed iteration ¢ with probability 7/K. Recall that g;(z) from Algorithm 3, can
be written as

3(@) = U= w3 = 7 3 0 —p))? = 7 3 (Ml —)’

jelL] JelL]

Applying Fact B.7 with v = 7/K and u; = My (z; —), gives that choosing L = C'log(nK/7) suffices to guarantee that
Gi(x;)/ge(z) € [0.8,1.2] for every x; with probability 1 — 7.

We now show the second claim. Again, fix at € [K]. Consider the orthonormal base {e;}%_; of R%. We apply Fact B.7
with v = 7/K and u; = Me;, i € [d]. This yields that choosing L = C'log(dK/7), we get that for all i € [d]:

L L L
ZZ zt]zt]Mteze M7 Z zt]uZ =[0.8,1.2] Z |wil|* = [0.8, 1.2]tr(M7 M;ezel) ,

h o] =

with probability 1 — 7/K. Summing all these inequalities for ¢ = 1,. .., d and noting that ZZ L eiel =1, gives that

h \

L
Z (21,521 ;M7 M) = [0.8, 1.2]tr(M{ M) ,
which precisely means that + Zle lue, ;112 = [0.8,1.2]]|M,||%. To have both claims hold simultaneously, we can just

apply Fact B.7 for all n + d points, giving the result. O

H.2. Proof of Lemma C.6

It is more useful to think of the algorithm in the following equivalent form.

Algorithm 8 Downweighting Filter

1: function DownweightingFilter(P, w, 7, R, T, {1ax)
2: 1< CdR?>t4losd,

3w wl 1.

4: whileEx p[w (X)7(X)] > 2T and £ < ly,x do
5: L+ 0+1

6: w'(x) + w(z)(1 —7(x)/r)

7 end while

8: return w’.

9: end function

Lemma C.6. Let P = (1 — €)G + €B be the empirical distribution on n samples, as in Algorithm 3. If
(1 -6 ExcwX)T(X)] < T, |Tlloc < r, and Lymax > /T, then Algorithm 4 modifies the weight function w to
w’ such that

1. (1—-€) Exog[w(X) — w'(X)] < eEx.plw(X) — w'(X)],
2. Exnp [w'(X)7(X)] < 2T,

and the algorithm terminates after O(1og({max)) iterations, each of which takes O(n) time.

Proof. We show correctness of Algorithm 8. We denote by w, the weight function at the ¢-th iteration of the filter, which
is of the form wy(x) = w(z)(1 — 7(x)/r)* for every z € R?. To show the first claim, we fix an iteration £ for which the
algorithm has not stopped yet and examine the loss in weight between that iteration and the (¢ + 1)-th iteration. From the
update rule w41 (z) = we(z)(1 — 7(x)/r) we get that wy(x) — wes1(z) = we(x)7(x)/r. Thus, the weight removed in
that iteration from the good distribution is

T

)

(1—6) B_Jun(X) —wesn(X)] = 1 B_fun(X)7(X)] < ©

Streaming Algorithms for High-Dimensional Robust Statistics

while the weight removed from the bad distribution is

e B [we(X) —wey(X)] = ~¢ B [we(X)7(X)]

> oT,

where the last inequality uses that (1 — €) Exg[we(X)7(X)] < (1 — €) Ex~g[w(X)7(X)] < T and the fact that since
the algorithm has not terminated in the ¢-th iteration it must be true that Ex . p[we(X)7(X)] > 27T. This completes the
proof of the first claim.

Regarding runtime, it suffices to show that for any £ > =, Exp [w,(X)7(X)] < 27 This follows from the inequalities

B, we(X)FX0] = B [w(X)(1 = #(X)/r) 7(X)]

IN

B [0(X) exp(~67(X) /r)r(X)

E

<

[w(X)] <

- <T
e- 0 X~P e~

~

where we used the fact that ze =% < 1/(e-«) for all z € R. By noting that w(z)(1 — 7(x)/r)¢ is monotonically decreasing
as £ grows, we can improve the running time by using a binary search implementation. This gives the logarithmic guarantee
of our statement. O

~

H.3. Proof of Lemma C.7

We state and prove a more general version of Lemma C.7 so that it can be also used in Appendix D. The difference is that
we allow the scores to center points using a vector different from the true mean p; of P;, so long as this vector is O(4)-close
to ¢ in Euclidean norm. Lemma C.7 is obtained by using Lemma H.1 below with fi; = p;.

Lemma H.1. Consider the setting of Algorithm 3 and the deterministic Condition C.4. Moreover, let fi; be any vector in R?
with || fir — pui|| = O(9) and define the functions

fe(x) = My (z —)13, fe(@) = | Uy(z — fu)|3 (33)
he(x) = fu(z)1{fi(x) > C5||M[|3-Ar/€}, he(z) = fo(2)1{ fe(z) > C3]| U3 Ae/e} .

We have that Ex . [wi(X)h(X)] and Ex q[w, (X)hi(X)] are bounded from above by cA¢||M,||% for some constant ¢
of the form ¢ = C/Ca, where Cy is the constant used in Line 13 and C' is some absolute constant.

We prove the result by using the facts from Appendix B.2. For brevity, we will prove the results for hy by using the functions
ft and the matrix Uy,; the results for h; would follow by replacing f; and U, with f+ and M, respectively and using that
||U¢||F is close to || M, || (Item 2 of the deterministic condition). We begin with Lemma H.2, which is a generalization
of the following implication of stability: The (e, §)-stability of a distribution G implies that Ex .c[(vT (X — p))?*1{X €
L}] < 382 /e for any set L with mass Prx..g[X € L] < e (see, for example, Proposition C.3 of (Pensia et al., 2020)). The
following lemma generalizes this to having a matrix in place of v.

Lemma H.2. Under the setting of Algorithm 3, the deterministic Condition C.4, and using the notation of Equation (33), if
Ly C R is a set with Exqwi(X)1{X € L;}] < ¢ then we have that

XEJG[wt(X)ft(X)ll{X € L} < eA|[UL]f7
Sor some constant c of the form ¢ = C'/Cy, where C' is a sufficiently large constant.

Proof. Define the new weight function w}(z) = we(x)1{z ¢ L:}. We have assumed that the distribution G is (C"¢, §)-
stable. Let ¢ := C" ¢ for brevity. We have the following inequalities, which we explain below.

E [w/(X)fi(X)UH{X € Li}] = E [w(X)[e(X)] = E_[w,(X)[:(X)1{X ¢ L;}]

X~G X~G X~G

Streaming Algorithms for High-Dimensional Robust Statistics

= B [w(X)/i(X)] ~ B_[ul(X)F(X)]
2 LS 2 ~
SO {1+ = + 17 = pllz + 26070 — poll
2 62
- (= 2910 (1= 5 - 2017 -l
2 62 ~ ~ 2
< 1Ol (3 + 40l — pllz + Nl — pllz
2 6 o -~ 2 2
< 1U:l% 3? + 46 (It — puell2 + llpee — pll2) + 4|72 — peellz + 4l e — pll2
52
< |[U||% <36, +60(5 4+ Ve N) + O(6% + e'/\t))
< | UellFAe -
We note that the third line above follows by applying Corollary B.14 with U = U, and b = y; on both terms of the previous
line. The fifth line uses the triangle inequality. The sixth line uses the assumption that ||fi; — u¢||2 = O(0) as well as

the certificate lemma (Lemma B.11). Note that the required assumption drv (P, P) = O(e) from that lemma is satisfied
because Ex wg[wi(X)] > Ex~g[wi(X)] —e > 1 — O(e) (see Claim C.13).

Regarding that last line, we recall Line 13 of Algorithm 3, which implies that \; > C»2/e. Thus the terms 62 /¢’ can be
bounded as 6% /¢ < 1/C5. Using that, it can be seen that we can choose ¢ = C’/Cy for some constant C’ > 0. O

We are now ready to prove our result.

Proof of Lemma H.1. We first show the following.

Claim H.3. Consider the setting of Algorithm 3, the notation of Equation (33), and assume that the deterministic
Condition C.4 holds. Let Ly = {x : fi(z) > C3||U¢||%2\¢/€}. We have that Ex c[w,(X)1{X € L;}] < e

Proof. Let u* := argmax{u : Exq[w(X)1{f;(X) > u}] > €} and the set L} = {x : f,(z) > u*}. It suffices to show
that u* < C3]|Uy||%\¢ /€ (because this would mean that L; C L}).

By Lemma H.2, we have that Ex.c[w:(X)f;(X)1{X € L}] < (C"/Co)\||Us||%. If we define the new weights
wi(x) = wi(x)1{x € L}} and use them to normalize the distribution, we get that

fo(X)] = . E [w,/(X)[,(X)1{X € Li}] < (C"/Cy)|[U] 7 A
X~Gy, Ex~clw(X)1{X € L;}] x~c" """ L= PR

where we used that the denominator is e. The fact that Ex g , [f;(X)] < (C'/C5)||U¢||%\¢ /e means that at least one
~ ~ UJt ~

pointin L} has f+(X) < (C"/C5)||U¢||% A /€, which shows that u* < (C'/Cs)||U¢||%A¢/e. Since the algorithm uses the

value C3 = (C'/C3), the proof is completed. O

Lemma H.1 now follows by combining Claim H.3 with Lemma H.2:

XEG[wt(X)ht(X)] - XIEG

wy(X) fi(X)1 {ﬁ(X) > CgUtliﬂfH
< (C)CNMN U3 < 2(C7 /C) N[M]3

where the last inequality is due to Item 2 of Condition C.4. Letting C' = 2C” we have that Ex ¢ [w:(X)hi(X)] < C/Cs
as claimed. As mentioned earlier, the same techniques lead to a similar bound on E x.¢ [w:(X)h:(X)]. O

Streaming Algorithms for High-Dimensional Robust Statistics

H.4. Proof of Claim C.11

Claim C.11. Let the fraction of outliers be € < 1/10 and a parameter 0 < T < 1. Let the distribution P = (1 — €)G + €B.
Let R > 0, 11 € R? be such that Prx.g[|| X — pll2 > R] < e. There is an estimator Ji on k = O(log(1/7)) samples from

)
P such that ||Ji — pi||2 < 4R with probability at least 1 — 7. Furthermore, [i can be computed in time O(k*d) and memory
O(kd).

We can use the following well-known fact (see, e.g., (Dong et al., 2019), for a proof):

Fact Hd4. There is an algorithm NaivePrune with the following guarantees. Let ¢ < 1/2, and 7 > 0. Let S C R be a set
of n points so that there exists a . € R? and a subset S’ C S so that |S’| > (1 — €)n, and ||z — ||s < Rforall x € S'.
Then NaivePrune(S, R, T) runs in time O(ndlog(1/7)), uses memory O(nd), and with probability 1 — T outputs a set of
points T C Ssothat S’ C T, and ||x — pll2 < 4R forallx € T.

Proof of Claim C.11. The estimator draws a set S = {Xj,..., Xy} of k samples from the distribution P. Letting
Y; := 1{|| X; — p||]2 > R} we have that E[Y;] < 2¢ < 1/5. Thus, using Hoeffding bound,

1 1o
E;Yi<E Z2 Y

i=1
Choosing k = 2001log(2/7) makes this probability at most 7. Conditioning on that event, the fraction of points outside
the ball is at most ¢’ := 1/4, thus running NaivePruning (S, R, 7) algorithm of Fact H.4 and outputting any point from the
returned set yields the desired estimator.

Pr <Pr +0.05| < 2e2k(0:05)°

1 k
EZYZ'>1/4

i=1

O

H.S. Omitted Proofs from Appendix C.4

Claim C.13. Under Condition C.4, Algorithm 3 maintains the following invariant: Ex .q[w:(X)] > 1 — 3e. In particular,
ife < 1/8, then drv (P, P) < 9e.

Proof. For every iteration, we denote by Aw; = w; — w; 1, that is for every point z € R, Aw,(x) = wy(z) — w41 () is
the difference between the weights for the two consecutive iterations ¢ and ¢ + 1.

t—1
E (X)) = E [w(X)] - ; B [Awi(X)]
t—1
>1—c— i im C.
>1—e ; B [Awi(X)] (Claim C.12)
t—1
>1 —e—)
>1—e— 2 B [Awi(X)] (Lemma C.6)
€
>1—€— _
zl-e 1—c¢ (X]EB[wl(X” X]EB[wt(X)D
€
>1—¢€—
- ¢ 1—¢
>1-3e,
where the last line uses that ¢ < 1/2. The proof of the second conclusion follows from Claim H.5 (stated below).]

Claim H.5. Lete < 1/8 IfEx..q[w:(X)] > 1 — 3¢, then dprv (P, P) < 9e.

Although we work with discrete distributions (the empirical distributions on the samples) in Appendix C, we prove the claim
for continuous distributions because it will be useful in Appendix D.

Streaming Algorithms for High-Dimensional Robust Statistics

Proof. By definition P;(x) = wy(z)P(x)/ Ex~plw,(X)]. Letting L := [, wy(x)P(z)dz = Ex.p[w(x)], we have

that
/ | P (x)|dx—(1—e)/Rd ‘W‘dere/RdB(x)lwt(xl)/L’dx.

Wenote that 1 > L > (1 — €) Exg[wi(z)] > 1 — 4e using Claim C.13. The second term can be bounded as

eAdB(z)‘W‘dmg %/RdB(x)(wt(x)JrL) < 13646 < e .

For the first term, we have that

1—
(-0 [6| "< 2 [6@ w1 -1
R4 L Rd
1
< — < .
< (1= B [wi(X)] +4e) < 1e
O
Claim C.14. Under Condition C.4, if C1 > 22, B, = (0.5C152 /€)1, for every t € [K].
Proof. Using the simple fact that for random variables X, Y it holds Var(Y) > Ex[Var(Y'|X)], we get that
Sem (-0 B (X~ pe,)X ~pe,,)"]
— (-9 (B [(X =00 =07 = (e, ~ n)uc, —)7)
wt
(1—¢) ((1—6%/e)ly — 6°14) (by stability and Claim C.13)

=
= (1—e)(1—28%/e)ly
= (1—362/e)1y,

where we used that € < §. We recall the definition B; = (Ex p, [w(X)])?E; — (1 — C162 /€)1, and bound the first term
as follows

2
(XEP [wt(X)]> 2 = (1 —3e)%(1 - 36%/e)1y (Claim C.13)
= (1 —46%/e — 6e — 276%€)1y
= (1—116%/e)1, ,
where the last line uses € < 1/6 and € < . Therefore, if we choose C; > 22, we get that B; = (0.5C12%/¢)1,. O

Claim C.10. In the setting of Algorithm 3 and under the Condition C4, if x € S, we have that 7(z) < 1.25%(z) +
3C3(\i/€)tr(M?), where Cs is the constant used in Algorithm 3.

Proof. By Condition C.4 we have that for all the n samples, g;(x) > 0.8¢,(x). Recall the definitions 7¢(z) = g(z)1{g(x) >

Cs||U |2 A /€} and 7 () = g(x)1{g(x) > C5||My||% A, /€}. We split into cases based on whether each of g;, j; has been
zeroed by its thresholding operation:

* If 7;() has been zeroed, (i.e., g;(7) < C3||M;||%\¢/€), the claim trivially holds since the left-hand side is zero.

* If none of 74(z), 7¢(x) has been zeroed, then 7;(x) = g;(x) and 74 () = g;(x), thus the claim holds by the aforemen-
tioned fact that g;(x) > 0.8¢;(x).

o If 7;(x) has been zeroed but 7 (x) has not, then the worst case is gt(x) = (1/0.8)g;(x). This means that in this case:

mi(z) < @CJ |Ut||F < 303 |Mt||F)

where we used that A < 1.2\, and ||U,||%. < 1.2||M||2., due to Condition C.4.

Streaming Algorithms for High-Dimensional Robust Statistics

I. Omitted Proofs from Appendix D
I.1. Omitted Proofs from Appendix D.2

Lemma D.6. In the context of Algorithm 5, if (1 — €) Exq[w(X)T(X)] < T, ||Tlloc < 7, and bymax > /T, then
Algorithm 6 modifies the weight function w to w' such that (i) (1 — €) Exglw(X) —w'(X)] < eEx.plw(X) — w' (X)),
and (ii) upon termination we have Ex . p [w'(X)7(X)] < 54T. Furthermore, if the estimator of Line 3 is set to be that of
Lemma D.16, the algorithm terminates after O(log({max)) iterations, each of which uses O((R?¢/62) log(1/7)) samples,
takes O(nd) time and memory O(log(1/7)).

Proof. Letthe set L* = {{ € [lyay] @ 6T < Explw(X)(1 —7(X)/r)*7(X)] < 18T}. The invariant is that throughout
Algorithm 6, the set L maintained has non-zero intersection with L*. This can be seen by examining cases about ¢ in
Line 6. If £ € L*, then ¢ is kept in L. If £ ¢ L*, then all elements discarded are not members of L* (for example
if Explw(X)(1 — 7(X)/r)7(X)] > 18T, then by Lemma D.16 f(¢) > 9T and we discard the lower half of L).
Thus, at the end, L has at most two elements with at least one of them belonging in L*. This element would satisfy
3T < f(¢) < 27T. Thus the algorithm will definitely return some element. On the other hand, any element returned will
satisfy 2T < Exp[w(X)(1 — 7(X)/r)*7(X)] < 54T This has already shown part (i) of the lemma. For part (4), it is
more convenient to imagine let ¢ increased by one at each step until it reaches the value finally returned by the algorithm
and consider the loss in weight between that and the next iteration, exactly as in the proof of Lemma C.6. That proof
was using only the facts that for all ¢/ < ¢, 2T < Exp[w(X)(1 — 7(X)/r)’ 7(X)] (which we just showed above) and
Ex~clw(X)(1—7(X)/r)"7(X)] < T (which is true by assumption). The reason why £y, = /T suffices is also shown
identically to the proof of Lemma C.6. O

L.2. Omitted Proofs from Appendix D.2.1

We now focus on showing Lemma D.9. In order to avoid confusion with the fraction of outliers €, we use €' for our
accuracy parameter. We will use a uniform convergence result from (Anthony & Bartlett, 1999) combined with a powerful
VC-dimension bound from (Goldberg & Jerrum, 1995) for the class of functions that are computable by a small number
of arithmetic operations. (Goldberg & Jerrum, 1995) considers the class of concepts parameterized by k real numbers,
F = {ha}acrr, for which there exists an algorithm A for calculating h, () that takes as input z, a and each line of A is
one of the following:

* an arithmetic operation +, —, X, and / on two inputs or previously computed values,

* ajump to a different line of the algorithm conditioned on whether an input or a previously calculated value is greater
than or equal to zero,

¢ output zero or one.

The parameters a and the inputs = consist of real numbers, and the model of computation assumed allows for arithmetic
operations and the comparisons between reals to be done in constant time. We refer the reader to (?)Section 2]gold-
berg1995bounding for more details and relation with algebraic decision trees with bounded depths. The result from
(Goldberg & Jerrum, 1995) is that VCdim(F) = O(mk) where k is the size of the parameterization and m is the runtime
of the algorithm A. Using the bound on the VC dimension, we have the following result for the uniform convergence:

Proposition 1.1 ((Goldberg & Jerrum, 1995; Anthony & Bartlett, 1999)). Let F be a class of functions of the form
F = {hg : RT = [0,1] | a € R¥}, where for any (a,z) € R* x RY, h,(x) can be computed by an algorithm A with
runtime m that takes as input a, x and is allowed to perform conditional jumps (conditioned on equality and inequality
of real values) and execute the standard arithmetic operations on real numbers (+,—, X, /) in constant time. For any
distribution D on R and any €' € (0, 1), there exist N = O (ﬁ(log(km) + km log(l/e’))) points xq,...,xx in R
such that

<€

1
Zlell; XED[h(X)] N ; h(z;)

For completeness, we show at the end of this section how this is derived from the statements of (Anthony & Bartlett, 1999)
and (Goldberg & Jerrum, 1995). We now apply this result to our case. We need to specify a family F of functions broad

Streaming Algorithms for High-Dimensional Robust Statistics

enough to capture every w;17; and w;417; that could be encountered during the execution of Algorithm 5. The factor r
used in the statement below is a normalization factor to make sure that the functions are in [0, 1].

Lemma L.2. Consider the setting of Algorithm 5. Let r' := (CdR2 +1+ 0152/6)010;5 ! There exists a family F of
functions from R? to [0, 1] such that:

1. For every iteration t of Algorithm 5, we have that = SW1T € F and 2 TWe1Te € F.

2. Functions of F are parameterized by at most k = O(dK max(L, d)) real numbers, that is, F has the form F = {h,
R — [0,1] | @ € RF}.

3. Forevery h, € F and x € R, h,(x) can be inm = dK max(L,d)(dRe/5?)°U1°89) steps in the model that allows
conditional jumps and standard arithmetic operations on real numbers.

Proof. Let L}, := max(L, d). Every function in our family will be parameterized by 2K + 1 scalars, {u; € R : ¢ €
[K+1}u{t; e R:t e [K]},and (K +1)(L5+1) vectors in RY, {a; : t € [K +1]}U{vy; : t € [K+1],5 € [L4]}. For
brevity, we denote by V the tensor in R(X+1*L2%d haying all the vectors V; ; = v; ; and by A the tensor in R(S+1)xd

with A; = ay, t € [K + 1]. Similarly, denote by w the vector (u1, ..., ux41) and let £ = (¢, ... k). We define our class
to be

F= {hmV,A ‘R? 5 [0,1] : ueREHL e RE V ¢ REFDXLoxd A ¢ R(K“)Xd} ,

which includes all functions of the form hy v a (%) = hyuv al{heuv.a(z) € (0,1)}, where

L/
. LS 0R =) | S (0F @ - ak)?
hosuv.a(e) =1 {2 — il < 5R} - - SA=EIELL T > i
2 2
K (S T a5 ar))? "
H 1—7 g=11 70 1 J d > uy . (34)

/ /
t=1 Ly Ly

We note that the radius r’ := (C’dR2 +1+ 0162/ e)mogd is an upper bound on the value that the functions w;4;7; and
wWe417¢ in Algorithm 5 can take: For 74 () we have

7i(w) < M —)5 < M3l — pell3 < 265 "5“R? = O(dR* 18)
while for 7(x) we have the bounds

7i(z) < ge(@) < Uiz — po)ll3 S B[[UL)3 < B?|| Ul
L

SRQ%Z\

j=1
< dR? (|Billa + 1+ C162/€)* %" < dR? (CR* + 1+ C16%/e)
< (CAR? +1 4 €157 /¢) 7"

3 < dR*|ML)3 < dR?|By|)5"*¢

2logd

We check that F can indeed implement the functions w;417; used in Algorithm 5 for any ¢ € [K]: Note that the scores
Gt used in the algorithm are means of the form + Zle (vtT (= a¢))?. Thus, the first line of Equation (34) implements
I{flz — a2 < 5R} %7‘,5. The purpose of the second line in Equation (34) is to match the operation of the Downweighting
filter, which, in the ¢-th round multiplies w; with (1 — 7 (z)/r)% for some power ¢;. Finally, we note that w;,7; are
implemented in F by taking v; ; to be the rows of the matrix M, (this is why we need the sums to be on L' = max(L, d)
terms in Equation (34)).

We need to specify the arithmetic complexity m and the dimension of the parameterization &k of our family . For the
first, we have that for any h € F and z € RY, the value h(x) can be computed using O(K dL'l,,) standard arithmetic

Streaming Algorithms for High-Dimensional Robust Statistics

Clogd
operations and jumps, where £}, is the maximum exponent that ¢; can have and is set to be £;,x 1= (;ﬁ—i) in Line

19 of Algorithm 5. The dL’ comes from the computation of the means (1/L') S>> = v (v} (z — a;))? and the K comes from
the fact that we have K factors in the expression of h.

Regarding the other parameter &, we have that every h € F is parameterized by O(K) scalars and O(K L') d-dimensional
vectors. Thus, k = O(KL'd). O

We are now ready to prove Lemma D.9.

Lemma D.9. Consider the setting of Algorithm 5, where B is the distribution of outliers supported in a ball of radius R
around p. Let 1’ := (CdR2 +1+ 0162/ e)c logd for sufficiently large constant C. Denote by € the contamination rate and
let an arbitrary € € (0,1). There exists a set Scpper Of N = 6%al‘lKQL2 (dRe/62)C08 D) points x1, ..., xN lying in the
ball of radius R around p1, such that for all t € [K], for all choices of the vectors z; ; of Line 22 of Algorithm 5 it holds

N
1 N 1 1 .
‘X B |: t+1(X) (X)] - N z_; pthrl(xi)Tt(xi) S 6,
1 1 L1
and ‘ E [w1 (X) 7] N ;pwtﬂ z) ()| < €.

Proof of Lemma D.9. We use Proposition 1.1 for the family 7 of Lemma 1.2 and plug the upper bounds for the arithmetic
complexity m and the dimension of the parameters k. Proposition 1.1 states that N can be chosen to be a multiple of

%(log(km) + kmlog(1/€')) .

Taking the much looser bound N = O(%%) suffices for our purposes. Plugging in k = O(dK max(L,d)),
m = dKmax(L,d)(dRe/6?)°0°8 D) from Lemma 12, we get km = d?K?max(d?, L?)(dRe/6?)OUsd) <
d*K?L?*(dRe/§%)CUogd), O

For completeness, we provide the proof of Proposition I.1.
Proof of Proposition 1.1. We derive the result from the statements of (Anthony & Bartlett, 1999) without explaining all of

the definitions of the notions involved. Please see (Anthony & Bartlett, 1999) for more details. Applying Theorem 17.7
(Anthony & Bartlett, 1999) with the loss function ¢ (x, y) = h(x) we obtain

N
1
Pr | sup E [h(X)] — = Zh(X) > | <4N1(€/8,F,2N) exp(—?N/32) , (35)
herl X N &~
where the probability is taken over a set of N i.i.d. points X3, ..., X drawn from D.

To bound from above the covering number A (¢ /8, F, 2N), we use Theorem 18.4 from (Anthony & Bartlett, 1999) which
gives that NV} (€'/8, F,2N) < e(d’' + 1)(16e/¢’)? where d’ = Pdim(F) is the pseudo-dimension of F. From that, we
conclude that choosing any

32d’
N > 10g(4e(d' +1))+ o7 log(16e/€")

makes the probability in Equation (35) less than 1.
It remains to bound d’ from above, which can be done as follows. Define the subgraph class associated to the family F
Br :={Bn|heF},

where for any h € F, By, : R™1 — {0,1} is defined as By,(z,y) = 1{h(z) > y}. The pseudo-dimension is defined to
be Pdim(F) = VCdim(Bx) (see Section 11.2 in (Anthony & Bartlett, 1999)). By Theorem 2.3 in (Goldberg & Jerrum,

Streaming Algorithms for High-Dimensional Robust Statistics

1995), we have that VCdim(Bx) = O(km) since it B functions that are parametrized by vectors of R* (same as for
family F) and the functions of By (z,y) can be computed using at most m + 2 operations (m to compute & and two to do
the comparison with y and threshold). Putting everything together, it suffices to choose

N = Ce%(log(km) + kmlog(1/€))

in order to make the probability in Equation (35) less than 1. In that case, by probabilistic argument, there exists at least one
set of IV points satisfying the desired event. O

Claim D.10. Let S be the cover of Lemma D.9 with v’ and €' as defined above. Suppose that the deterministic condition
Condition D.5 holds. If * € Seover, then 1i(z) < 57(x) + (18C5 + 12/Cs)(A\¢/€)||M¢||%, where C3 and Cs are the
constants used in Algorithm 5.

Proof. By Condition D.5 we have that for all the N samples of the cover, g;(z) > 0.2g;(z) — 0.8(62/€2) || M, ||%. Recall the
definitions 7 (z) = g(x)1{g(z) > C5||U¢||ZA¢/e}, 1t (z) = g(x)1{g(z) > C5||M¢||%\:/e}. We split into cases based on
whether each of g;, §; has been zeroed by their thresholding operation:

* If 7;() has been zeroed, (i.e., g (7) < C3]|Uy||%\¢/€), the claim trivially holds since the left-hand side is zero.

* If none of 7;(x), 7+(x) has been zeroed, then 7¢(x) = g:(x) and 7(z) = g¢(z), thus the claim holds by the aforemen-
tioned fact that g (z) > 0.2g;(x) — 0.8(6%/€?)|| M, || %.

* If 7;(x) has been zeroed but 7;() has not, then the worst case is gz (z) = 0.2¢;(x) — 0.8(6%/€?)|| M. ||%. This means
that in this case:

n(*) < 5 2Cs*llUtIIFJr‘l ”Mt”F

< 1803*||Mtllp +4 HMt”F

12 A
< 1scdf||Mt||F + FillMtllp :

where in the second inequality we used that A; < 3\, and ||U;||% < 1.2||M;||% due to Condition D.5, and in the last
inequality we used that 62 /¢ < \;/C and \; < 3\; (Condition D.5 again).

O

Remark 1.3 (On the choice of K and L). We comment on how the values for the number of iterations K and L that are used
in Algorithm 5 are derived. First, the derivation of K = C'log dlog(dR /(6% /¢)) for large enough constant C is identical
to that of Appendix C.4 (see Equation (4)). We will thus focus on L. We note that in the proof of Lemma D.7 we use

’ (52/6)210gd
Lemma D.9 with ¢’ 2> CARE 11105279

c1eza- Lhis means that the cover Sc,,e, Of that lemma has size bounded by

dR >O(10gd) - (CdR2 +1 _|_0152/6)O(10gd) L2

4o
|Scover| S d K7L (52/ (52/€)O(logd)

The analog of Lemma C.5 thus requires that L is multiple of log (M) , where 7 is the desired probability of failure.
Note that we have the following (rough) bounds

2 2 /.\O(log d)
log ([Seeverl £4Y <y, ((L(CAR" + 14 C16%/)
T (52/6) (log d)

< log?(d) log(CdR? + 1 + €162 /¢) log < !) log(L) .

Streaming Algorithms for High-Dimensional Robust Statistics

Thus, we want to choose L such that it holds L > C'log?(d) log(CdR? + 1 + C162/€) log (£)log L. Using the basic
fact that for any a > 0, z > 2aloga = = > alogz with a = C'log?(d) log(CdR? 4 1 4 C162/¢) log (L)), it suffices to
choose any L satisfying the following

2 2
L > C'log?*(d) log (CdR2 +1+ cfi) log <1> log <log2(d) log <CdR2 +1+ Cli) log (i)) .

TE

We see that the choice in Algorithm 5 satisfies this condition.

L.3. Omitted Proofs from Appendix D.3

Lemma D.14. Let A, B, By, ..., B, be symmetric d x d matrices and define M = B?, Mg = [[}_, B,. If | B; — BJ|2 <
5||B||2, then |Mg — BP|l < pd(1 + 4)?||BJ.

Proof. We have the following:

P p—1 i it1 p—1 i
B —[[B:=> | [][B|B - |]I[B;| B = [IB; | B-Bi)B !
i=1 i=0 \ \j=1 j=1 i=0 \ \j=1
Using that ||B;||2 < (1 + §)||B||2, we obtain the following bound:
p p—1 i 4
B? — H B;| < H B, | (B-Bj,)Br !
i=1 2 =0 Jj=1 9
p—1

™

@
I
-~ o

TT1B1 | IB = Bipal2Bl5
j=1

3
|

< IBIE(A+6)'d < pa(1+6)7||B5.
i=0

<

I.4. Omitted Proofs from Appendix D.3.1

Lemma L4. Forany 6,7 € (0,1) and any distribution D on R? with mean . and covariance matrix 3, there exists an
estimator fi onn = O ((tr(X)/6%)log(1/7)) i.i.d. samples from D, such that ||[fi — pl|2 = O(8). Moreover, this [i can be
computed in time O(ndlog(1/7)) and using memory O(dlog(1/7)).

Proof. Let X1,. .., X,, be independent samples from D. We first show that the empirical mean Y := (1/m) Y .~ X;, is
d-accurate with constant probability.

d 1< tr(2)
2
BIIY - ull}) = DBV -) = — D By ==
j=1 j=1
By Markov’s inequality, we get that
5 w9y _ tr(X) 1
_ < <
Prlly —pll3 > 8% < T2 < (36)

where the last inequality is true if we choose m = 20tr(X) /2. Having Equation (36) at hand, the probability of success of
the above estimator can be boosted to 1 — 7 by using Claim C.11. We use that claim with G being the distribution of Y,
B =G, e=1/20 and R = 4. This completes the proof. O

As a corollary of the above, we obtain the estimators iz of Algorithm 5.

Streaming Algorithms for High-Dimensional Robust Statistics

Lemma D.11. In the setting of Algorithm 5, there exist estimators [i; such that, with probability at least 1 — T,
for all t € [K] we have that ||fix — ptll, < 0/100. Furthermore, each [iy can be computed on a stream of

n=0 (51;2—;6 log(K/T) + d(”&i‘f“) 10g(K/7')> independent samples from P, in time O(ndlog(K /7)) and using memory

O(dlog(K/1)).

Proof. We use the estimator of Lemma 1.4 with 7/ K in place of 7. It remains to bound tr(32;). We have that dprv (P, G) =
1 — O(e), thus, by Fact B.4 we can write P, = (1 — a)Go + aB, with a = O(¢) and Go(z) = h(z)G(z) /([h(z)G(z)dz)
some weighted version of the inlier’s distribution with E x . [h(X)] = 1 — a (same argument that we have used before in
the proof of Lemma B.11). We have that

3 =(1-a)Sg, +aXp +a(l — a)(uc, — ps)(ka, — 1B)" -

Due to stability, the first term has g, < (1 + 62/¢)1,. For the second term we use that

w(Sp) = B [((X — up)(X = pup)") = B _[IX — upll}] < O(F2).

We also bound the trace of the last term by O(eR?). Therefore, we obtain that tr(3;) < d(1 + §%/¢) + eR2.

J. Adaptive Choice of Upper Bound on Covariance

In this section, we show that a simple procedure can be used to make the algorithm adaptive to the scale of covariance (such
a procedure is useful for some of our applications in Appendix E).

As noted earlier, the definition of stability that we have used so far (Definitions B.8 and B.9) was designed for distributions
with covariance matrix comparable to I;. In particular, if inliers satisfy Cov[X] =< I, then our algorithms result in error
O(+/€). In many practical cases, some of which are encountered in Appendix E, the inliers are much better concentrated,
satisfying Cov[X] < o1, with o much smaller than 1. In that case, the optimal asymptotic error is ©(c+/€)). If o is known
beforehand, then a simple preprocessing step allows our algorithms to obtain the error O(o+/€). We now describe a procedure
using Lepski’s method (Lepskii, 1991; Birgé, 2001) that can adapt to the setting when o is unknown. Concretely, we consider
the task of robustly estimating the mean 4 of a distribution where inliers have bounded covariance, Cov[X] < 021, but o
is unknown to the algorithm.

Let RobustMean(&,y) be any black-box robust mean estimation algorithm, where & is a guess for an upper bound on the
covariance of inliers (ideally, we would like to use ¢ = o) and ~ is the probability of failure. The procedure below tries
different values for & in order to find a vector that is as good as the output of RobustMean when run with the best choice of
& = 0. The assumption made here is that o belongs in some known interval [A4, B].

As a small note, a more explicit notation would be RobustMean(S, 5,~), where S is the dataset used, but we omit S
because this depends on the data-access model: If a streaming model is assumed, then S necessarily has to be different in
each call of the algorithm, otherwise there is no need for using different datasets.

Algorithm 9 Adaptive search for o

1: input: A, B,~,r(")
Denote 6; := B/27 for j = 0,1,...,log(B/A) and set v := ~/ log(B/A).
J <0
1 < RobustMean (5, 7")
while 5, > Aand |7 — Wy < r(55) +r(5;) forall j = 0,1,...,J — 1 do

J— J+1

i) < RobustMean(57,v")
end while
J—J-1
return 7i(/)

R e A A R o

Streaming Algorithms for High-Dimensional Robust Statistics

Theorem J.1. Let i € R* A/ B > 0, 0 € [A, B), and a non-decreasing function v : Rt — RT. Suppose that
RobustMean(&,) is a black-box algorithm which is guaranteed to return a vector i such that |l — p||2 < r(&) with

probability 1 — ~, whenever ¢ > o. Then, Algorithm 9 returns ﬁ(j) such that, with probability at least 1 — ~, we have that

[7) — ull2 < 3r(20). Moreover, Algorithm 9 calls RobustMean O(log(B/A)) times with desired failure probability set
to v/ log(B/A) and using at most O(dlog(B/A)) additional memory.

Proof. For j = 0,1,...,log(B/A), denote by £; the event that ||i/) — || < r(5;). Let J be the index corresponding
to the value of the unknown parameter o, i.e., 0541 < o < ;. Conditioned on the event ﬁ;-]:OSj, we have that

29 — pll2 < r(5;) forall j = 0,1,...,J. Using the triangle inequality, this gives that ||() — 0|y < r(5;) + 7(5;).
This means that the stopping condition of Line 5 is satisfied on round .J and thus, if 7i(”) denotes the vector returned by the
algorithm, we have that

15 — a2 < 7(67) +r(5s) < 2r(6s) < 2r(20) ,

where the first inequality uses that the condition of Line 5, the second uses that r is non-decreasing and 67 < &, and
the last one uses that JJ was defined to be such that 6511 < o < G so multiplying ¢ by 2 makes it greater than 7 ;.

Using the triangle inequality once more, we get ||i”) — p||2 < 3r(20). Finally, by union bound on the events &;, the
probability of error is upper bounded by ijo ~" < ~. The additional memory requirement of this algorithm is to store

{1; : 7 €A0,...,log(B/A)}}. O

We now state the implications that Theorem J.1 has for Algorithms 3 and 5, given in Appendices C and D:

Corollary J.2. Let A, B > 0. In the setting of Corollary D.3, let ¢ > 0 be such that the scaled version S' = {z/c

x € S} of the dataset S is (Ce,0)-stable with respect to ji/o. Assuming that o € [A, B], there exists an algorithm
that given S,¢,d, 7, A, B (but not o), accesses each point of S at most polylog (d,1/e,1/7, B/A) times, runs in time
nd polylog (d,1/e,1/1, B/A), uses additional memory dpolylog (d,1/e,1/7, B/A), and outputs a vector [i such that,
with probability at least 1 — 7, it holds ||jn — [i]|2 = O(09).

Proof. In order to use the search method of Algorithm 9, we define the procedure RobustMean(&,) to be the following:
e LetS={z/5 : xS}
 Let /i be the vector found by the estimator of Corollary D.3 on S using vy for the desired probability of failure.

* Return G i.

Theorem J.1 with 7(6) = C’04, for a sufficiently large C’ > 0, implies the correctness. In terms of resources used,
Algorithm 9 calls the robust mean estimation algorithm at most log(B/A) times, and thus the running time gets multiplied
by log(B/A). We also need to store one vector for each call, thus d log(B/A) additional memory suffices. O

Corollary J.3. Let A, B > 0. In the setting of Theorem D.2, let o > 0 be such that the distribution D' of the points X /o,
X ~ D is (Ce, 0)-stable with respect to 1. Assuming that o € [A, B], there exists an algorithm that given

9 e (1+6%/e)d €2d R?¢®> R2et 11 B
n=0 (R max (d, 52 s2pz gi g2 46 polylog | d, = ;,R7 1 (37)

samples in a stream according to the model of Definition A.1, and given the parameters €, 9, T, A, B (but not o), runs in time
nd polylog (d,1/¢,1/1, R, B/A), uses additional memory dpolylog (d,1/e,1/7, R, B/A), and returns a vector [i such
that, with probability at least 1 — T, it holds ||y — [i]|2 = O(09).

Finally, we note that a similar search procedure can be used for designing algorithms that are adaptive to the parameter &
when o is known. However, we will not need this generalization for our applications.

Streaming Algorithms for High-Dimensional Robust Statistics

K. Omitted Details from Appendix E
K.1. Proof Sketch of Theorem E.3

We describe how Algorithm 5 can be plugged in the algorithm of (Cheng et al., 2019b). We outline the analysis and describe
in more detail only the parts from (Cheng et al., 2019b) that need to be changed. The algorithm is Algorithm 1 from (Cheng
et al., 2019b), which remains unchanged. This uses Algorithm 2 as a subroutine, which we replace by our estimator of
Algorithm 5.

Regarding the analysis, the proof in (Cheng et al., 2019b) uses two claims that state correctness of the black-box robust
mean estimator: Lemma 3.4 and Lemma 3.5. For our case, Lemma 3.4 is replaced by our Theorem D.2 specialized to
bounded covariance distributions (also see part 2 of Theorem A.3 which says that the sample complexity of Algorithm 5 for
that case is O(d?/¢)).

Lemma 3.5 in (Cheng et al., 2019b) also holds when using our estimator. We restate this as a claim below and provide a
proof:

Claim K.1. Let D be a distribution supported on R? with unknown mean y* and covariance 3. Let 0 < v < 1,0 < € < ¢
for some universal constant ey and § = O(\/Te + elog(1/e)) for some T = O(/€). Suppose that D has exponentially
decaying tails and X is close to the identity matrix |2 — 14||2 < 7. Denote R := \/(d/€)(1 + §2/¢). Algorithm 5 uses

B 2 2 2.2 p2.4
n:O<R2m3X<d,€ (1+0%/e)d ed Re R6)> (38)

52’ 02R2 ’64’ 2 ’ 56

samples drawn from D and outputs a hypothesis vector [i such that ||t — p*||2 = O(0), with probability 1 — ~. Moreover,
this is done in nd polylog(d, 1/¢,1/v) time and d polylog(d, 1/¢,1/v) space.

Proof. Since D has exponentially decaying tails, we know that D is stable with respect to its mean p* and covariance
¥ < O(1)I; with parameter 6 = O(elog(1/e€)) (this follows from the tails of the distribution and Definition B.8). That is,
for any weight function w : R% — [0, 1] with Ex..p[w(X)] > 1 — € we have that

_ 52
w0 — plly <6 and || Zwp — EHQ < P

We claim that D is (¢, O(y/Te + elog(1/€)))-stable in the sense of Definition B.8 (the difference from what written above
is that Definition B.8 uses identity matrix in place of X). This can be seen by using triangle inequality:

_ — 1
[= Tall, < [Bup = S, + 18 - Tall, < < (6 + Ver)” . (39)

The proof is concluded by recalling the guarantee of Algorithm 5 for (¢, O(y/Te + €log(1/¢)))-stable distributions and
using Claim C.12 for the value of R. O

We also note that (Cheng et al., 2019b) uses a fast matrix inversion and multiplication procedure for calculating the rotated
versions Y = E Y2 X of the samples X. In our case, the run-time of our robust mean-estimation procedure exceeds that of
these methods, thus we do not need to use them. We can instead use any numerically stable method that has running time up
to 0(d6) and approximates the result within error poly(ex/d) (see, e.g., (Banks et al., 2020)). Finally, since Claim K.1 is
essentially used for the d?-dimensional distributions of the points Y ® Y, we get the d* factor in the final sample complexity,

as well as the d? factors in the time and space complexity.

K.2. Omitted Proofs from Appendix E.2

Corollary E.6. In the setting of Theorem E.5, suppose that the distribution of gradients satisfies Cov[V f(0)] < 0?14 with
0% = a?||0 — 0*||3 + B2 for all € ©, where av/e < 7. Assume that the radius of the domain ©, r := maxgce ||0]|2 is
finite. There exists a single-pass streaming algorithm that given O(T(d? /¢) log(1 + ar/B)polylog(d,1/¢,T/7,1+ar/j3))
samples, runs in time Tnd polylog(d, 1/¢,T /7,1 + ar/3), uses memory d polylog(d,1/e,T/7,1 4+ ar/f), and returns a
vector § € RY such that |0 — 6% ||, = O(\/€8/(1 — k)) with probability at least 1 — .

Streaming Algorithms for High-Dimensional Robust Statistics

Proof. This follows by using the estimator of Corollary J.3 in place of g(-) in Algorithm 7. The known bounds for o,
A <o < Bare A= fand B = 2ar + (, thus B/A < 1+ 2ar/f. The distribution of the scaled gradients %Vf(@) is
(Ce, O(+/€))-stable. For these parameters, n from Equation (37) gives n = (d?/e)polylog(d, 1/e, 7,1 + ar/f3), where 7’
is the desired probability of failure for each call of the estimator. Setting 7/ = 7 /T ensures that the estimates of all rounds
are successful with probability 1 — 7. Successful estimates of the gradients are within O(cd) = O((al|6 — 6*||2 + 8)/€)
from the true one in Euclidean norm, thus in every round we have an (y/ec, /€f3)-gradient estimation (in the sense of
Definition E.4). Finally, Theorem E.5 requires the condition «y/€ < 7p. Assuming that this is true, that theorem concludes
the proof. O

Theorem E.12 (Robust Logistic Regression; full version of Theorem A.6). Consider the logistic regression model of
Equation (27) with the domain © of the unknown regressor being the ball of radius r, for some universal constant v > 0,
and suppose that Assumption E.10 holds. Assume that 0 < € < €q for a sufficiently small constant €y. There is a single-pass
streaming algorithm that uses n. = (d?/€) polylog (d, 1 /¢, 1/7) samples, runs in time nd polylog(d, 1/¢,1/7), uses memory
dpolylog(d, 1/¢,1/7), and returns a vector 6 € R? such that |0 — 6*||5 = O(\/€) with probability at least 1 — 7.

Proof. The algorithm is that of Theorem E.5 using the estimator of Algorithm 5 in place of g(-) in Algorithm 7. The
distribution of the gradients is (Ce, O(4/€))-stable because of Lemma E.11. For these stability parameters, a sufficient
number of samples is (d?/¢) polylog (d, 1/¢, T/T) (see Equation (9) with § = O(y/€) and R = O(v/d)), where T is the
number of iterations over which take a union bound. It thus remains to specify the parameters 7, 7, k, T'.

Using Assumption E.10, we can calculate bounds on the parameters 7;, 7,,. For 74, let v be a unit vector from R?. Let
the event &, ¢ := {(vTX)? > ¢y and |07 X| < 2rC?/cy}, where ¢y, 2, C are the constants from Assumption E.10. The
probability of the complement of this event is

PrE o] < Prl(v"X)? <] + Pr[|07X| > 2rC% /)] <1 —ca+c2/2 < 1—¢2/2,

where the first term is bounded using the anti-concentration property and the second is bounded using the concentration
property along with Markov’s inequality. Thus, using the formula of Equation (28) for the Hessian, we have that

0T X

T2 F € T y\2
> ; F—

v'V f(G)v_Pr[&,,a]XNEDI a eeTX)z(v X)

627"02/02

(1 + 627“02/C2)201 :

51,79‘| Z 0.502

Regarding the upper bound 7, using the bounded covariance property we get that v7 V2 f(0)v < C? sup,cp €/ (1+¢%)? =
C? /4. Therefore, we can choose the values

62TCZ/C2

_ 2
WCl and Tu—C /4,

70 = 0.5¢

for Algorithm 7. The guarantees of our mean estimator imply that we have an (0, O(+/€))-gradient estimator (in the sense of
Definition E.4). Regarding the value of s, we use Equation (23) with ¢ = 0. Since that 74, 7, are positive constants, this
means that « is bounded away from 1. Therefore, we have that the factor 1/(1 —) appearing in the final error (Equation (25))
is O(1) and the number of iterations from Equation (24) are upper bounded by T' < log,(||60 — 6*||2//€) < log(1/e),
where we used that the radius of the domain © is = O(1). O

L. Bit Complexity of Algorithm 5

Until this point, we have assumed that our algorithms could save real numbers exactly in a single memory cell and
perform calculations involving reals in O(1) time. Thus, by saying that Algorithm 5 uses extra memory at most
dpolylog(d, R,1/e,1/7), we meant that it needs to store only that many real numbers. We now describe how the al-
gorithm would work in the most realistic word RAM model, where finite precision numbers can be stored in registers of
predetermined word size and operations like addition, subtraction and multiplication are performed in O(1) time. We now
show that the previous bound of d polylog(d, R, 1/¢,1/7), worsened only by another poly-logarithmic factor, holds for the
total number of bits that need to be stored. We begin by clarifying how the input is given to the algorithm.

Definition L.1 (Single-Pass Streaming Model with Oracle Access for Real Inputs). Let S be a fixed set of points in R?.
The elements of S are revealed one at a time to the algorithm as follows: For each point of .S that is about to be revealed,

Streaming Algorithms for High-Dimensional Robust Statistics

the algorithm is allowed to query as many bits as it wants from that point with whatever order it wants. The process then
continues with the next point in the stream. Each point of S is presented only once to the algorithm in the aforementioned
way.

In the reminder of this section, we use the same notation as in Theorem D.2. We assume R < M and that ||u||2 < M, for
some M = (d/e)P°V18(d/) (otherwise, the estimation of the mean with extra memory of the order dpolylog(d/e) becomes
impossible). The modified algorithm for this model is the following: Every input point X is ignored if found to have norm

greater than 2M. Otherwise, it is deterministically rounded to an X’ so that their difference X — X’ := 7(X) has norm at
most 7, for some 1 < O(min{d, %,

is run on these rounded points.

R}) (see below for more on this choice of 7). The exact same algorithm as Algorithm 5

Correctness First, we note the rejection step removes less than an e-fraction of the input, thus the resulting distribution
has not changed more than € in total variation distance from the original one. Moreover, the distribution of the rounded
points has essentially the same stability property required by our theorem. Concretely, if we choose the rounding error
71 to be n = O(min{d, %, M), then it can be seen (Lemma L.2 below) that the distribution of the rounded points is
(e,0(0))-stable and Prx/[|| X’ — u||]2 = O(R)] > 1 — ¢, which are the only assumptions needed for Algorithm 5 to provide
an accurate estimate up to O(J) error.

Lemma L.2. Fix 0 < € < 1/2 and § > . Let G be an (¢,)-stable distribution with respect to some vector ji € R?
and assume G is a distribution such that || X — pll2 < M almost surely for some M > 0. For any deterministic function
n: R — R with ||n(x)||2 < nfor all x in the support of G, if G denotes the distribution of the points X' = X + n(X),
where X ~ G, then G' is (e,0(8 + n + /enM))-stable with respect to p.

Proof. We check the two conditions for stability. Let a weight function w : R — [0, 1] with Ex.g[w(X)] > 1 — ¢ and let
§ = O0(6 +n+ enM). We have that

lttw.cr — pll2 < pw.cr — pw,cllz + 1w, — pll2

w(x)G(x)
S H/]Rd(x +n($))EXNG[w(X)]dx - Hw,G) +6
<[Loosy aceyee], -
<n+6<8,

where first inequality uses the triangle inequality and the second one uses the stability of G. Regarding the second stability
condition, we have the following:

HEU’»G' - IdHQ < wa,G’ _iw’GHQ + HEW’G - Id“2

w(x)G(x) 52
< —p+n@)(z—p+n) =/ _dz|| +—
| [@ = oo =+) g s 2
G(z) w(z)G(z)
<[@@ g g 4| [o o) g
< | [o=ty g saa| | [(o= oo gD |
w(z)G(z) 52
+ TP da|| + —
[rtamto” e+
2 572
<2Mp+npi4+— < —,
€ €
where we used stability of G, triangle inequality and the bounds ||z — ulls < M, |In(z)|2 < n. O

Total Bits of Memory Used In order for the differences X — X' := n(X) to have ||n(X)]||2 < n for all X, it is sufficient
to round every coordinate to absolute error O(n/ \/&) Recall that by our assumption on the a priori bound on the norm
of the true mean and the way that we reject input points of large norm, we know that all points surviving will have norm
at most 2. Thus, each coordinate of such points can be stored in a word of O(log(Md/n)) bits after being rounded to
accuracy 7. Therefore, each d-dimensional point that the algorithm will need to manipulate can be stored using d registers

Streaming Algorithms for High-Dimensional Robust Statistics

of size O(log(Md/n)). However, we need to show that the results of all intermediate calculations can be calculated in low
memory. We show the following result to this end:

Claim L.3. In the context of Theorem D.2, given a stream of d-dimensional points, where each coordinate has bit complexity
B, Algorithm 5 can be implemented in a word RAM machine using dpolylog(d,1/e,1/1, R) many of registers of size
Bypolylog(d,1/e,1/1, R).

Proof Sketch. Multiplying two numbers of bit complexity B; and By may result in bit complexity B; + Bs. Adding k
numbers of bit complexity B, may make the resulting bit complexity B + log(k). We need to check that every step of the
algorithm performs calculations that cannot cause the bit complexity to grow by more than poly-log factors.

Line 7 performs only comparisons and counting. Regardmg Line 23: As pointed out at the beginning of Appendix D, the
Vector vy j Mtzt j 1s calculated by multiplying z; ; by Bt r for k =1,... logd iteratively. Consider a single iteration,
say the first one. Performing Bt k%t,j involves calculatlng (Zm TT) 24 (see Appendix D.3.2), which can be done as
71) Yo (2T z i), 1.e., calculating the inner products 2Tz j ﬁrst). A single inner product of that form is just a sum of d
numbers of bit complexity B with appropriate signs, thus the bit complexity increases only by O(log d). Finally, multiplying
by = and taking the mean over for all of the 2’s can add only another O(B + log(n)). Since the number of iterations of such
calculations is log d, the final result has the claimed bit complexity.

Regarding the Downweighting filter (Algorithm 6), there are a couple of places where the weights w; are involved in
calculations. We note that Algorithm 4 stores only the counts ¢;, which fit in registers of size log(¢max) = polylog(d, 1/¢, R).
These counts are used to calculate w;(z) as wy(x) = [[,«,(1 — 7 (z)/r)% whenever there is such a need. An exact
calculation would require operations of the form 2, for some = € [0, 1] and y € [(max], i.€., exponentiation of a real number.
In fact, as we will show later on, instead of calculating w; () with perfect accuracy, it suffices to use an approximate value
of w(z) & n for some error |n| < poly(1/d,1/R, e, 7)'°¢<. This will allow us to calculate a good enough approximation
in polylog(d, R,1/e,1/7) bits as follows: we can use exponentiation by squaring algorithm for calculating w;(z)’s and
round the result in each step to make it fit into our registers. We first explain this in more detail below.

Claim L4. Letx € [0,1], y € Z, and assume that both x,y have bit complexity B. The power xV can be calculated up to
a rounding error of 2~ B) in the word RAM model that uses registers of size 2B. Furthermore, this can be done in O(B)
standard arithmetic operations.

Proof. We can use exponentiation by squaring: This consists of writing x in binary as by, - - - by for k£ = log y and calculating
the sequence r41,...,79 as rg+1 = 1, r; = riﬂx’” fori = k,...,0. We assume every r; gets rounded to 2B bits.
Because of the rounding, we incur error 2725 in each round. However, the error of the previous rounds gets amplified, since
the result of that round (true value plus error) gets squared. We consider one such iteration to see how that sequence of
errors grows: In the ¢-th iteration, let res;_; denote the true result (before rounding) from the previous round and 7; the
rounding error of that round (i.e., 7 = res; + 7). Then, we have that

res; + = (res;—1 + T]t_l)z +2728 < resf_1 + 77,52_1 + 2ni—1 + 2728

where w.l.o.g. we assume that res; < 1 always. Thus, the rounding error grows as 1; < 12 ; + 2n;_1 + 2728 <
3Mg—1 + 272B Tn the first round, we start with rounding error of 2728 Thus, after k = log(y) = B rounds, the final error
is mp < 27948 O

We continue with examining how fine approximations for w; are needed. First, in Appendix D.3.2, we use the estimator /V[7t =
E x (o) [w:(X)], which we require to be n-close to Ex . p[w;(X)] (Equation (17)) for some 1 > poly(1/d,1/R, ¢, T).
Therefore, when calculating wy, it suffices to round the intermediate results to error 7. This would mean using Claim L.4
with B = O(log((1/d,1/R,€,T)).

Second, the weights w; are also used in evaluating the stopping condition of the Downweighting filter. Line 3 of that filter is
implemented using the estimator of Lemma D.16. As it can be seen in Equation (20), it suffices to use rounded versions of
we in (1/n) vazl we(X;)7t(X;), as long as it does not change the result by an additive factor of c)Tt | U||%, for a small
constant c. Since 7 (X;) = O(dR?**t41°84) (Equation (2)) and);||Ut||% > (62 /€)®0o8) (otherwise, the algorithm has
terminated), we can again round w; up to error poly(1/d, 1/R, ¢)'°8(), This means that the results of these calculations fit
into polylog(d, R, 1/e, R) bits.

Streaming Algorithms for High-Dimensional Robust Statistics

Finally, there are two places in Algorithm 5 where we need to simulate samples from the weighted distribution P, : (i) Line
17, whose implementation is outlined in Appendix D.3 and (ii) Line 31. We focus on the first one since the argument for the
other case is identical. To simulate P,,, we use rejection sampling, as described at the beginning of Appendix D.3, with
the only difference that we use the rounded versions of the weights w,. We are thus essentially simulating samples from a
slightly different distribution Pg,. However, this is close to P,, in total variation distance, as shown below.

Claim L.5. Let P be a distribution on R? and let P,, denote the weighted version of P according to the function w : R* —
[0,1], ice., Py(z) = w(z)P(x)/ [pa w(z)P(x)dz. For any w,@ : RY — [0,1] such that [y, w(x)P(z)dz > 1/2 and
Sup,cpa |W(z) —w(x)| < §with§ < 1/8, it holds that drv (Pg, Py) < 8&.

Proof. First, letting the normalization factors C' := Jpa W(x)P(x)dz and C := [, w(x)P(x)dz, we note that |C'— C|<¢
Letting Aw(z) := @(x) — w(z) and AC := C — C, we have that

drv(Pg, Py) = %/Rd |Py () — Py(x)|do = %/Rd w(@iig(x) _ wg)
< 1/ Cw(z) + CAw(x) — Cw(z) — ACw(x)

C?+CAC
< 4/ |CAw(z) — ACw(z)| P(x)dx < 8¢,
Rd

P(z)dz

where in the last line, we first use that C2 + CAC > 1/4 — ¢ > 1/8 (since 1/2 < C < 1and 0 < £ < 1/8) and then we
use that |CAw(z) — ACw(z)| < |Aw(z)| + |AC| < 2¢€. O

As N (more than one) samples are drawn from P; in the ¢-th iteration (see Appendix D.3), we require the joint distribution of
these N samples from P,,, and P, to be within total variation 7 (the probability under which the conclusion of Lemma D.13
holds true). This bound on the total variation distance implies that Lemma D.13 continues to hold for Py, with an additional
failure probability of 7. To do this, we use Claim L.5 with £ = ©(7/N), which means that these rounded weights have bit
complexity O(log &) = polylog(d, R, 1/¢,1/7). O

